Obelix Development Environment!

Anders Davidsson, Joakim Lindgren
{adn99006, jIn99023}@student.mdh.se

Department of Computer Engineering at the University of Malardalen

July 18, 2000

'Part of the Asterix project at the department of computer engineering, University of Malardalen 2000. Write
something cool...

Abstract

Bakgrund, problem, bidrag, metod. The devleopment environment for a real-time operating system is an im-
portant Many of todays Real-Time Operating Systems do not supply the necessay infrastructure needed to apply
modern scheduling and analysis theory.

Contents

9

Introduction

1.1 Background
1.2 Requirements
1.3 Summary

Name definitions and terminology

2.1 Asterix framework
2.2 Obelix Development Environment (ODE) .
Obelix Configuration Tool design
3.1 The configurationfile.
3.1.1 Application modes
312 Tasks
3.1.3 Semaphores
3.14 Signals.
3.1.5 Wait- and Lock-free communication
3.1.6 Schedules
3.2 Front-End
3.3 Intermediate representation
3.4 Semantic analysis
3.5 Back-End

Obelix Down-loader Tool Design
Obelix Up-loader Tool Design
Obelix Cross Compiler Design

RCX Library Design

7.1 Serial port driver
7.2 Sensordriver
7.3 Motor controller
74 Consolebuttons.
7.5 Display window
Implementation

8.1 Obelix Configuration Tool
8.2 Obelix Down-loader Tool
8.3 Obelix Up-loader Tool
8.4 Obelix Cross Compiler
85 RCXLibrary

Summary and conclusions

A Obelix configuration language specification

14

15

16
.............................. 16
.............................. 16
.............................. 16
.............................. 16
.............................. 17

18
.............................. 18
.............................. 18
.............................. 18
.............................. 18
.............................. 18

20

22

List of Figures

1.1

3.1
3.2
3.3
4.1

5.1
5.2

6.1
7.1

Al

The Asterix architecture L 5
The phases of a compiler L e e e 9
The phases of the Obelix Configuration Tool 10
The syntax tree e e e 12
Obelix - Target System Communication 13
The OSI Reference Model. 14
Transport layer L e e e 14
The Obelix Cross-Compiler o et e 15
The role the RCX library an Asterix system. 16
Obelix configuration language 23

Chapter 1
Introduction

1.1 Background

Embedded systems are a fast growing and exciting
market. An example is a computer system that con-
trols the speed of an electrical motor. A system like
this is often called a Real-Time System (RTS). In [13]
RTS is defined by:

A real-time system is a system that re-
acts on external events and perform actions
within a fized time. Correctness is not only
depending on correct result but also on the
point in time when the result was delivered.

A hard real-time system is a system
where the cost of not fulfilling the functional
and temporal requirements is very high.

A soft real-time system tolerates oc-
casional errors with respect to the functional
and temporal requirements. This means that
constraints may be broken occasionally (typi-
cally with an upper bound defined over a time
interval), and that a service may be accom-
plished a bit late occasionally (again within
an upper bound).

In order handle such systems an operating system that
supports mentioned criteria is needed, in other words
a real-time operating systems (RTOS).

When selecting an embedded software solution, for
a new embedded system, developers face a number of
technology choices:

e Microprocessor must be chosen on basis of
cost, performance, power and application require-
ments.

e Real-Time Operating System, commercial or in-
house development to fulfill the requirements of
the embedded system.

e Software Development Tools which may be bun-
dled with the commercial RTOS or selected for a
particular microprocessor.

There exists a large number of commercial RTOS
on the market. Most of them are based on old as-
sumptions of RTS and do not supply the necessary
infrastructure needed to apply modern/contemporary

scheduling and analysis theory. This causes prob-
lems when new ideas need to be tested and evaluated,
since the real-time aspect differs between state-of-the-
practice and state-of-the-art. There already exists
state-of-the-art RTOS, for example MiThos [11], the
Spring kernel [18] and Emeralds [21], all with different
advantages and drawbacks. These systems are often
not general solutions but aim at something special, for
example special hardware or scheduling theory. Most
of the state-of-the-practice (commercial, off-the-shelf)
RTOS are in some way configurable in order to fit in
a general embedded system solution. The features in
these RTOS vary a lot, and also the way they are dis-
tributed to the purchaser. Some of them are delivered
as modules and others as open source code that can be
modified and compiled to a specific system. If the de-
veloper needs to adjust the RTOS, the source-code is
necessary, which may be a problem if the source-code
is not open. Different kinds of synchronization, com-
munication and collaboration between tasks are sup-
ported and so on. There exists more or less practical
development environments that could be used to facil-
itate the configuration of a specific embedded system
[5], [20], [19]. In fact many of these commercial RTOS
(if not all) lack desirable state-of-the-art features of
a Real-Time Operating System. Many questions are
hard to find answers to, for example:

e Is the system predictable?

e Does the system support debugging of any kind?
e Which scheduling principles are supported?

e How does the error handler work, if there is one?

e Is priority inversion prevented?

Is the system multitasking, is it preemptive?

Which development tools exists?

This gave birth to the idea of a new RTOS at the
department of computer engineering at Mailardalens
Hogskola. The name of the project is the Asterix
framework. The idea is to develop a new analyzable
distributed Real-Time Operating System, a commu-
nication system, a powerful development environment
and analysis tools. In other words a complete set of
development tools to configure and analyze a real-time
system. The Asterix framework should have the fol-
lowing features:

A task-model which supports state-of-the-art
scheduling theory.

e Support for debugging and monitoring.
e Wait-free/lock-free interprocess communication.
e Minimized kernel jitter.

e Compiling, in other words, only the parts of the
system that are utilized in a certain system is in-
cluded.

The task-model includes both preemptive scheduling
of statically generated schedules [| and fixed priority
scheduling (FPS) []. It also supports both strictly pe-
riodic and event triggered tasks. The tasks terminate
each time they finish execution.

A multi-tasking RTOS, like Asterix RTOS, enables
the user to divide an application into separate, indi-
vidual programs called tasks. A task is the basic unit
of execution in any application that runs under As-
terix. Each task can be started, suspended, resumed
and terminated separately. Asterix handles hard and
soft tasks, they can both be periodic or aperiodic. A
hard task has hard time-constraints which must be
kept or the whole system may crash. The hard tasks in
the system are included in the system analysis, which
makes sure that all time-constraints are possible to
fulfill. A soft task do not have hard time-constraints
and a missed deadline, for example, will not endanger
the system. In other words, soft tasks will be assigned
execution resources when there is time left from the
hard task execution.

When Asterix suspends an executing task, it stores
the current hardware register values, the task state,
in a memory area dedicated to the task. Later when
Asterix resumes the task it retrieves the register im-
ages from memory, loads them into the hardware reg-
isters and continues execution as though there had
been no break. This process which is known as a con-
text switching, is invisible to the task. Thus, a multi-
tasking OS makes the system more efficient in time by
permitting several activities to proceed concurrently.

In order to interest embedded real-time system de-
velopers, the Asterix framework must be portable and
the source-code open. The architecture of the Asterix
framework is illustrated in figure 1.1.

This first version of the Asterix framework aims at
the Lego RCX micro-controller.

This document describes the Obelix development
environment,.

1.2 Requirements

The specification of the thesis was to build the devel-
opment environment (DE) for the Asterix framework,
named Obelix. Requirements:

e Down-loading from DE to the target system.

e Up-loading from the target system to the DE.

ANALYSIS
TOOL

DEVELOPMENT
ENVIRONMENT

REAL-TIME REAL-TIME REAL-TIME
0S 0S (O]

| COMMUNICATION SYSTEM

Figure 1.1: The Asterix architecture

e Front-end to a configuration tool

a) Syntax, grammar and parser.

b) Descriptions of tasks and relations between
tasks, with regard to task-model, synchro-
nization, communication, error-handling,
etc.

e Back-end to initiate the kernel.

a) Generate C source code.

b) Compile along with the kernel.

e Supply for measuring of OS-overhead, and exe-
cution times for tasks. Data should be stored in
suitable format in a system description file.

e To prove the correctness, of both the DE and the
kernel, a sharp test of the system, from configura-
tion file to working real-time system, should finish
of the project.

The development environmnet should consist of
some different tools:

e A down-loader that launches a complete Asterix
system on the target hardware.

e An up-loader that allows the kernel to upload data
from the target system back to the DE.

e A configuration tool that should be utilized to set
up a Asterix system from the user point of view.
The configuration tool should take a configuration
file as input an then produce C-code that initiates
the kernel.

e A cross compiler for the target system was also
required. The compiler should be used to com-
pile the Obelix generated c-code, the kernel code
and the user written code into a working Asterix
system.

1.3 Summary

Obelix is a development environment for the Asterix
real-time kernel. Obelix consists of a configuration
tool, a down-loader, an up-loader and a cross compiler
for the target system. There are also some specific
hardware routines developed for the Lego RCX micro-
controller. The configuration tool generates C-code
that, when compiled along with the kernel code, initi-
ates the kernel on the basis of a application program-
mer specified configuration file. The cross compiler is
used to compile and link the Obelix generated C-code,
along with the kernel- and the application program-
mer written code into a working real-time system. The
system is then downloaded on the target hardware and
launched by the down-loader. The kernel may call the
up-loader to send data back to the development envi-
ronment.

In chapter two some definitions are and the remain-
ing chapters of this document describes the design and
implementation of Asterix framework development en-
vironment, Obelix, which is the authors master thesis.

Chapter 2

Name definitions and terminology

2.1 Asterix framework

The complete distributed real-time system, includ-
ing analysis tools, development environment, real-time
kernel and communication system.

Asterix

Asterix is the small, smart, powerful and free Real-
Time kernel.

Obelix

Obelix is the potent and easy-to-use Development En-
vironment in the Asterix framework.

Miraculix

Miraculix is the analysis tool for Asterix and Drakar.

Drakar

Drakar is the communication system, connecting a dis-
tributed Asterix system.

System / Asterix System

A system is a complete Asterix system, in other words
both the real-time executive and the user defined ap-
plication. An Asterix system are supposed to be down-
loaded on a target hardware system.

Application

An application is a program written by some devel-
oper. The application may consist of arbitrary number
of tasks.

Mode

An Asterix system (see above definition) can run in
two different modes, test-mode and normal-mode. An
application may be programmed to have different ap-
plication modes (schedules), which is supported by As-
terix.

Task

A task is the basic unit of execution in any applica-
tion that runs under Asterix. The Asterix framework
supports two classes of tasks, hard and soft.

Wait- and lock-free communication

Wait- and lock-free communication is a form of state
based inter-process communication (IPC). Writers and
readers communicate over a channel that is made up
by a number of buffers. Wait-free communication
guarantees instant access of the channel and a task
cannot be locked. In this document we name wait-
and lock-free communication as wait-free communica-
tion.

Target system

The target system is the platform/hardware on which
Asterix are going to be executed. In our case it is a
Lego Mindstorm RCX micro controller with a Hitachi
HS8 microprocessor. Asterix is supposed to be portable
to any kind of hardware system.

Configuration file

It is the input file to the Obelix Configuration Tool
(OCT). This file describes the user application on a
higher level than ordinary source code. It should be
written in ASCII format, therefore it is (human-) read-
able. The producer of this file could be a application
programmer or a application design tool.

System Description File

This file will be generated by the measuring mecha-
nisms in the kernel. It contains execution time for
the tasks, OS overhead for a number of cases. To up-
load the timing information we will use the Obelix
Up-loader Tool (OUT).

Lego RCX micro-controller

A suitable platform under the development phase is
the LEGO Mindstorm computer unit. A good example
of a embedded system, based on a Hitachi 8-bit micro-
processor that runs at 16 Mhz and equiped with 32k
ram.

2.2 Obelix Development Envi-
ronment (ODE)

Development platform

The development platform is PC running Windows
NT. It is the system where Obelix run, in other words
the platform where Asterix real-time embedded sys-
tems are developed.

Obelix Configuration Tool (OCT)

The configuration tool generates initiation files for the
kernel on the basis of a user defined configuration file.
The initiation files describes the system properties and
which modules that must be compiled into the system.

Obelix Down-loader Tool (ODT)

This is the down-loader tool in the Obelix environ-
ment. It takes a binary file as argument and tries to
contact the RCX unit. If a connection is establish,
the file is transferred and placed in the memory of the
RCX. Finally, the RCX receiver program launch the
down-loaded system.

Obelix Up-loader Tool (OUT)

This tool sends data back from the Asterix OS to the
DE during run-time. The data can be timing- or de-
bugging information. In fact, this tool delivers a com-
munication service between the RCX and the develop-
ment platform. It consists of code on both the devel-
opment and the target platform.

Obelix Cross Compiler (OCC)

The cross compiler is the tool used for compiling an
Asterix system into a proper binary file. The compiler
run in the development environment, on the develop-
ment platform, and generate machine code for the tar-
get hardware. In our case, the compiler is a GNU gcc
cross compiler ported to generate code for the Hitachi
H8 micro-processor.

RCX Library

Hardware device driver library for the Lego Mindstorm
RCX platform.

Chapter 3

Obelix Configuration Tool design

The Obelix Configuration Tool (OCT) takes a con-
figuration file as input and generates kernel initiation
files as output. The output files are then included
when the whole Asterix system is compiled.

Asterix is a compiling Real-Time Operating Sys-
tem. The idea is to let the application programmer
write a configuration file to specify his Asterix Real-
Time System, and then feed the Obelix Configuration
Tool with it. The configuration tool then generates
C-code to initiate the kernel. After that the whole
system is compiled in the development environment
by a cross-compiler and only those parts of the system
that are utilized will be included in the target system.
The target system is then downloaded to the target
and launched on the target system. The kernel code
is static for all systems (on the same hardware tar-
get), the Obelix configuration tool generated C-code
is the dynamic part of the system and it specifies a
Asterix real-time system together with the application
programmer written code.

The Obelix Configuration Tool consists of a front-
end, an internal representation of the configuration,
semantic analysis of the specified system and a back-
end that generates C-code. An illustration of a typi-
cal compiler is given in figure 3.1 and more described
in the book Compilers: Principles, Techniques, and
Tools[1]. As the picture illustrates a compiler has sev-
eral phases. OCT must perform lexical-, syntactic-
and semantic analysis on the configuration input file.
In our model of the configuration tool, the front-end
translates the source code (the configuration file) into
an intermediate representation, which is semantically
analyzed and from which the back-end generates the
target code as illustrated in figure 3.2. The details of
the target language are part of the back-end. It would
be possible to translate the input directly to the target
language but we decided to use a intermediate repre-
sentation due to:

e Re-targeting is easier, it is possible to attach a
new back-end.

e Good availity through an internal representation
facilitate the optimization of the memory usage.
It is possible to apply an independent code opti-
mizer.

e We found it suitable to apply semantic analysis
when the internal representation exists.

SOURCE PROGRAM

l

Lexical
analyzer

Syntax
analyzer

Semantic
T ablo analyzer
manager l

)

Error
handler

Interm.
code gen.

Code

optimizer

l

Code

generation

TARGET PROGRAM

Figure 3.1: The phases of a compiler

The objective of Obelix Configuration Tool is to set
up and initiate data structures for the kernel. The tool
is closely related to the kernel and the requirements of
the tool are specified on the basis of the kernel. A
model of the kernel was used when designing the tool,
since the kernel was developed in parallel.

The kernel supports preemptive execution and fixed
priority scheduling with or without offset. The require-
ments of the kernel consists of support for tasks, task
synchronization by semaphores and signals, wait-free
interprocess communication, and support for specifica-
tion of application modes along with clock resolution.

There was also requirements of two Asterix system
modes, one for running a sharp system and one for
measuring the target hardware and also measure the
WCET (Worst Case Execution Time) for tasks. The
timing information will then be sent back to the de-
velopment platform by the Obelix Up-loader Tool.

The kernel supports periodic tasks that are triggered
periodic by the clock, and aperiodic tasks that are trig-
gered by events. The tasks terminates each time they

finish execution.

Early, different main parts of a system was identi-
fied. We found it suitable to arrange the configuration
according to those parts. The main parts of a system
were identified as: application modes, tasks, synchro-
nization, and communication. The synchronization is
facilitated by semaphores and signals and the commu-
nication, in this first time version, is wait- and lock-free
inter-process communication. See chapter 2 for further
information about wait-free communication.

To specify an Asterix system, the system mode,
sharp or measuring, has to be defined along with the
different application modes. We also decided to, from
a optimization point of view, to input the available
RAM size of the target hardware .

OBELIX CONFIG FILE

|

Lexical
analyzer

Sym.-table
manager

Syntax
analyzer

Error
handler

Interm.
repr.

)

Semantic
analyzer

Code

generation

l

ASTERIX INIT FILES

Figure 3.2: The phases of the Obelix Configuration
Tool

3.1 The configuration file

The syntax of the configuration file was defined by a
context free grammar®.

The grammar specification is given in appendix A
and one reason for using such a formal description
of the language is the support for such grammars in
the Bison tool, which is used in the configuration tool
front-end. When the syntax of the grammar was cho-
sen we had in mind that both humans and machines
should be able to read and, in some way, understand
the contents.

1Formally named Backus Naur Form. A widely used notation
for specifying the syntax of a language.

10

3.1.1

A desirable feature of a RTOS is support for differ-
ent application modes. The application can have sev-
eral natural modes, for example an aircraft control sys-
tem may work in one mode while the plane is on the
ground and another mode after take off. If an error,
for example a dropped wing, occur a third mode is
necessary. Different application modes may consist of
different task schedules and some other parts that de-
fines the mode. In the Obelix Configuration Tool we
decided to support different application modes. A sys-
tem is defined by the different application modes. One
mode is defined by the tasks that operate in the mode,
the resources that exists, the clock resolution and the
mode identity. The resources are synchronization, by
semaphores and signals, and inter-process communi-
cation by wait-free communication. An Asterix sys-
tem may have an arbitrary number of different modes.
Mode changes are supposed to be supported by the
kernel. A mode in an Asterix system is totally iso-
lated from other modes in the system. This means
that the same identity can be used in different modes
It also imply that all tasks and resources has to be
declared in each mode they will participate in.

Application modes

3.1.2 Tasks

An application mode, in the configuration of an As-
terix system, has to consist of clock resolution, tasks,
synchronization and communication resources. The
Obelix configuration tool supports two task classes,
hard and soft tasks. The difference between the
classes, from an analytical point of view, is that hard
tasks have hard real-time requirements but soft tasks
have not. To define a task (both hard and soft) some
attributes have to be stated:

e A unique identity.
e The way the task is supposed to be triggered need

to be clear, it may be time triggered or triggered
by a signal in the system.

To be able to define precedence relationship
among tasks an offset is associated with each task.
The offset is a displacement from the period start
of the task.

The kernel supports deadline supervision and
therefore the deadline, relative period start, has
to be specified for each task.

The system demands unique user specified prior-
ities for tasks.

To minimize the memory of the embedded system
the stack size of each task should be application
programmer specified.

For each task, a start function has to be specified
along with optional arguments to that function.

e The kernel also needs to know which error routine
should be invoked if something goes wrong during
run-time.

Those attributes specifies the Asterix task model from
the configuration tool point of view.

3.1.3 Semaphores

An important issue for semaphores, in an RTOS, is
the handling of priority inversion, where a high pri-
ority task is prevented from running because it needs
a semaphore owned by a lower priority task. In the
Asterix system this is handled with the immediate in-
heritance protocol [17]. The protocol prevents prior-
ity inversion by assigning each semaphore a ceiling,
pre-runtime, on the basis of the highest priority of the
tasks that accesses the semaphore. When a task, under
run-time, access the semaphore it immediately inher-
its the priority corresponding to the semaphore ceiling.
When the task releases the semaphore, the priority is
restored. A semaphore, thus, needs the attribute ceil-
ing along with unique identity and a list of tasks that is
authorized to access the semaphore. The list is neces-
sary in order to guarantee the real-time requirements
of the hard tasks in the system, we cannot allow both
hard and soft tasks to access the same semaphore. A
soft task does not have any guarantees for finishing
execution within a certain time, and this may imply
blocking of a higher priority hard task.

3.1.4 Signals

A signal need to have a unique identity and a list of
tasks that intend to use? it under runtine.

The kernel uses the list to make sure that only those
tasks that are authorized accesses the signal.

3.1.5 Wait- and Lock-free communica-
tion

The inter-process communication supported by the
kernel is called wait- and lock-free IPC. The reason for
this is experimental and we have not found any other
RTOS that supports it. Wait- and lock-free commu-
nication is a protocol that prevents a user of a com-
munication channel to be blocked. The chosen wait-
free algorithm is a simple one and it supports a single
writer and multiple readers of each wait-free channel.
A channel is a number of buffers which the kernel will
distribute over the users, the number of buffers must
be high enough to ensure that there always is one avail-
able when a task access the channel. The writer and
the readers have to be known along with the number of
buffers and which type of messages the channel should
handle. If the number of buffers is large enough, it is
possible to give history over written messages.

2Either rise or wait for (or both) a signal

11

3.1.6 Schedules

Asterix will support application mode changes and the
design of the Obelix configuration tool was done on the
basis of that. An application mode change is a change
in the task execution order. The order is based on
task-priority, period and offset. There may also be ad-
ditional tasks in a new mode. A mode is, in other
words, a schedule. An application mode in Obelix
configuration tool is defined by the tasks and all re-
sources in the mode. A new mode is totally separated
from other modes. If tasks and resources are active
in multiple modes they have to be defined in all these
modes. An alternative to this is to introduce a new
building block of the Asterix system, called schedule.
Instead of the mode building block the schedule block
can be used. The schedule building block must contain
information about the task execution order, in other
words the definition of which task that will execute at
a given time. The necessary attributes for a schedule
is then:

e The identites of the tasks that participates in the
schedule.

e Tagsk priorites

e How the tasks are activated, that is period or the
event the task should react on.

e Task offsets.

It is possible to remove the schedule information of
the tasks from the task declaration in the configura-
tion. The kernel then has to support schedule changes
instead of mode changes, which is, in fact, the same
thing.

3.2 Front-End

The front-end requires a scanner and a parser to in-
terpret the configuration file. We decided to make use
of the reliable GNU tools Flex and Bison [15]. Bi-
son is a general-purpose parser generator that converts
a grammar description for an LALR(1)? context-free
grammar into a C program to parse the grammar. Flex
is a tool for generating programs that performs pat-
tern matching on text (scanning). A combination of
these is our configuration tool front-end. The alterna-
tive was to write our own scanner and parser, but that
seemed to be unnecessary. Further information on the
front-end is given in [3].

3.3 Intermediate representation

Bison gives opportunities to apply semantic actions
while parsing the specified grammar. We will use this
to build up our internal representation of the config-
uration specified in the input file. The internal rep-
resentation is an abstract syntax tree, consisting of

3LookAhead Left-to-right Rightmost-derivation

nodes corresponding to the building blocks of the con-
figuration as shown in figure 3.3. In the figure we see
a root of the tree pointing at an Asterix System. An
Asterix System consists of, at least, one application
mode. If there is additional application modes, the
next pointer is attached to it. Each application mode
has tasks, synchronization and communication parts.
The Tasks part consists of hard and soft tasks and
each of those consists of a list of user specified tasks.
The Synchronization part consists of semaphores and
signals, which also consists of lists of user specified
entries. Finally the communication is, in this version
of Asterix, application programmer specified wait-free
communication between tasks. A more detailed de-
scription of the internal representation is given in [7].

ROOT

Asterix
system

Application NEXT
mode

N~

Tasks Synchro- Commun-
nization ication
[hard | [soft | [semaph] [signals | [wait-free]
| htl_l | [stl | [sem1] [sig1] [wfl |
NEXT NEXT NEXT NEXT NEXT

Figure 3.3: The syntax tree

3.4 Semantic analysis

When the configuration file is scanned, parsed and the
internal representation exists, we need to apply some
semantic controls and computation. This is done in
several phases on the syntax tree.

The identites of the tasks, semaphores, signals, and
wait-free channels used in the configuration file must
be declared. If a task is triggered by a signal, the signal
must be declared and the task must be in the user list
of the signal. All tasks must be assigned unique prior-
ities and all hard tasks have to have higher priorities
than all soft tasks. We also check if the user-assigned
stack size seams to be reasonable. A warning is given
if the stack size is less then 10 bytes.

Each semaphore ceiling needs to be calculated and
we also must check if the tasks that accesses the

12

semaphore belong to conjunct classes. For each signal
we need to state that all users are declared as tasks in
the system, in other words a semaphore, can not be
a user of a signal. The last semantic action deal with
the wait- and lock-free channels, the users must also
be tasks and there have to be enough buffers to ensure
wait- and lock-free communication. Further informa-
tion is given in [3].

3.5 Back-End

After controls and calculations we know that the con-
figuration is formally correct and the internal repre-
sentation corresponds to it. The remaining work is to
generate source code that initiates the kernel. Typi-
cally that is accomplished by a back-end. The Obelix
configuration tool back-end produces two files. One
C-file and one header file, the C-file consists of decla-
rations and initiations of appropriate data structures,
and the header file of external declarations and defi-
nitions. The back-end traverses the syntax tree, ap-
plication mode by application mode, and writes corre-
sponding C-code to the initiation files. The procedure
is very straight forward and the intermediate represen-
tation contains all necessary information. See [2] for a
more technical description of the back-end.

Chapter 4

Obelix Down-loader Tool Design

PC

RS232
serial-ink

IR-
tower

Figure 4.1: Obelix - Target System Communication

The Obelix Down-loader Tool takes an Asterix sys-
tem file and download it to the target platform and
launch the actual system. Communication with the
target platform was in our case a serial bus over a
IR-link, see figure 4.1.

The Asterix OS is constructed for embedded com-
puter systems. The down-loader tool has therefore a
central role in the development environment. Without
it, the system cannot be started. Further, each time a
change is done in the application or in the kernel the
whole system has to be recompiled and down-loaded.
The down-loader tool is also responsible for the startup
of the kernel and the tool is very platform dependent.

The down-loader tool must take an Asterix system
binary file and download it to the memory of the target
platform. A program at the target platform has to
receive the file and call the ”start”- function of the
down-loaded file.

A down-loader tool thus consist of two programs,
one at the development platform that sends the bi-
nary file, and one that is already placed at the target
platform. The receiver program must then be placed
in memory in the target platform, when turning on the
power to the computer. This could be accomplished

13

in a number of ways, for instance with a ROM mem-
ory that is preprogrammed or a start-technique over a
network. In the latter case, there has to be support in
the hardware on the network card.

The tool will take a binary file as input, and the srec
format were chosed as file format. The srec format is
devided into frames with startaddress where to put the
code along with a check sum for each frame.

When looking at the hardware of our target plat-
form, we see that it has a serial bus over an IR-link.
The original Lego Mindstorm software uses this to
transfer the program to the RCX, and we will do the
same. One aspect that can be taken into account at
this stage of the design is the bandwidth of the serial
bus. One difference from the Lego original system is
that Asterix RTOS is compiled with the application
into one binary file and Lego uses a dynamic task ini-
tiation at the RCX. Therefore we have to download
more data each time a change is done in the appli-
cation, but we get the advantage that we only have
those modules that are in use in the application. So
let us look at the transfer rate versus the size of the
binary file(the load file). Assume that we have a bi-
nary file with maximum size, that is approximate 32
KB and the bandwidth of the serial bus is 2400 BPS.
This gives a transfer rate of approximate 110 seconds,
which is acceptable. Some overhead will be added and
depending on the transfer format the transfer rate may
change, but we assume it still will be reasonable. An
improvement could be to increase the bit rate to, lets
say, 4800 BPS, if that still works fine with the IR-link.

Chapter 5

Obelix Up-loader Tool Design

With the Obelix Up-loader Tool, information from
the target platform can be up-loaded to the develop-
ment environment. It can be debugging- or timing
information.

One of the features that the Obelix development en-
vironment was specifed to support was a possibility to
give a respons from the kernel to the development plat-
form. That could be debugging information or data
from the time measuring mechanism in the kernel. We
decided to design and implement some kind of a proto-
col stack. One important aspect was to make the tool
as small and as simple as possible. We found that it
would be enough to define a package delivery service
from the target platform (RCX) to the development
platform (PC). Our work on this has of course some
relation to the communication protocol called Drakar,
and we found that we had come quite near that part
of the Asterix framework.

The protocol can be split up in a few layers, in-
spired from the OSI reference model [4], illustrated in
figure 5.1. The physical layer is a serial bus over an
IR-link. Read and write serial primitives had to be
written and we choose to make polling versions, see
chapter 7. It would be harder to predict the behavior
of an interrupted serial primitive. Anyway, the up-
loader tool was not created to be used by the tasks,
but rather by the kernel. The protocol was not de-
signed as reentrant, and it must be overlooked again
if someone has intention of using it for the tasks.

The next layer in the protocol-stack is the data-link
layer, it deliver data in frames with a maximum data
size of 16 bytes. It uses the send-and-stop principle for
safe frame transmissions.

To be able to send larger pieces of data than 16
bytes, we let a transport layer split up a data stream
up to 64 KB into 16 bytes frames, and send them in-
dividual, see figure 5.2. On the receiver side we re-
assemble and deliver them to the application. To be
able to decide how big a package is, a frame with the
size of the package is sent in the beginning of each
package.

The last layer from the OSI-model that we have de-
fined is the application layer, that is currently a mem-
ory dump application and a time measuring function.

14

Application layer

Representati on layer

Session layer

Transport layer

Network layer

Datarlink layer

Physical layer

Figure 5

.1: The OSI Reference Model.

48 bytes data stream

'

Trangort layer

P

16 bytes frame

16 bytes frame Frame 16 bytes

Figure 5.2: Transport layer

Chapter 6

Obelix Cross Compiler Design

The cross compiler in the Obelix environment com-
pile all source code that should be running at the tar-
get platform. All compiling is done off-line, before the
system is down-loaded.

An important part of the Obelix development en-
vironment is the cross compiler. The compiler will
run under the development environment (Windows
NT/Linux) and compile the source language, C-code,
into executable machine-code for the target platform.
This means that the cross compiler is target dependent
and the compiler back-end has to be replaced , when
developing Asterix systems for a new target hardware
architecture.

In this, first, version of the Asterix system the target
system is a Lego RCX micro-controller, with a Hitachi
H8 3292 processor [6].

Since the compiler generates code for a different tar-
get system than the development platform, it requires
information about the memory space in the target
platform. This information is fetched from a linker
file that was written by us.

The compiler takes four different types of source
files. First, the kernel source, that is a number of both
C- and assembler-files, next there is the output files
from the configuration tool (OCT). Third, the appli-
cation programmer files that includes global memory,
task- and error-routines to the application, and finally,
optional hardware dependent library files (OHL), see
figure 6.1.

From these files the compiler generates a load-
file/binary-file in srec format. This format is used be-
cause the down-loader tool was designed for those file

types.

15

KERNEL ocCT APP
SOURCE SOURCE SOURCE LIBRARY
(0] 6]¢;
ASTERIX
SYSTEM

Figure 6.1: The Obelix Cross-Compiler

Chapter 7

RCX Library Design

Application
RCX System calls
Lib
Kerne
Hardware

Figure 7.1: The role the RCX library an Asterix sys-
tem.

This part of the Obelix Development Environment
was not specified from the beginning, but rather a part
that became natural when we began to design and im-
plement other tools. We cannot really say that the
library is a part of the Obelix development environ-
ment, but rather a separate support library to access
the hardware of the RCX. The following section de-
scribes each device driver. In figure 7.1 the role of the
RCX library in an Asterix system is illustrated.

The result is a hardware dependent device driver
library that supports most of the devices on the RCX.
The devices can be used to make a application that
communicate with the environment, e.g. make use of
sensors ar motors. When an application programmer
wants to use one or more of the device drivers, he
or she will be able to include the specific header file
for the device and compile the required source code
associated to the device. One device on the RCX that
is not support is the internal speaker.

When specifying the library, one requirement was
to use as little memory as possible, since there is lim-
ited memory on the RCX. Further, the device drivers
should be interruptible, but not reentrant at this level.
If a device driver should be used in multiple tasks it is
the application programmer responsibility to consider
the synchronization problem.

16

7.1 Serial port driver

When looking at the Obelix Up-loader Tool, it is obvi-
ous that read and write serial primitives are necessary
to access the serial port. They were made in a polling
version, because it is easier to predict the behavior of
a polled than an interrupted version. The driver sup-
ports one serial port since the RCX is only equipped
with one [6].

7.2 Sensor driver

Routines to access the sensor input port will certainly
be useful to the application programmer. There are a
number of different sensors present in the LEGO as-
sortment. A few them require quite extensive software
to be useful and we wanted a more general driver. A
simple sampler routine would be enough. With the
sampler routine it is possible to write more sophisti-
cated reader routines for specific sensor types.

7.3 Motor controller
There are also three motor outputs on the RCX. A
routine to control them was specified. The routine
will take two arguments, one to identify which motor
to control, and one to tell what state to put it in.

They can be in the following states:

e running forward

e running backward

e stoped

o floating

The difference between stop and float is that stop holds
the motor fixed and float only turns the power of.

7.4 Console buttons

On the RCX unit there are four digital buttons. A
routine that read the digital value of them was planed.

7.5 Display window

There is also a display on the RCX unit, that may be
very useful to access. A routine that could control all
LCD segment on the display and also a routine that
print decimal values on it was desirable. There is only
space for four digits, so it would be convenient to make
a routine that prints a 16 bits integer in hexadecimal
format.

17

Chapter 8

Implementation

8.1 Obelix Configuration Tool

The implementation of the Configuration Tool is
straight forward. In the front-end [3], the GNU tools
Bison and Flex were utilized to build the scanner and
parser for the configuration file. A package for symbol
analysis [10], was used to make sure that all identi-
tie’s in the configuration file was declared as identi-
ties somewhere, and only used once in an application
mode. A set of data-structures was created to repre-
sent the configuration file internally and some routines
for building a syntax tree was also created, see [7]. A
few routines for semantic analysis were constructed.
The back-end traverses the syntax tree in order to put
C-code into the kernel initiation files. All code were
written i C and a more detailed description of the back-
end is given in [2].

8.2 Obelix Down-loader Tool

The RCX hardware was already programmed with a
down-loader receiver routine that can be used. This
facilitated the implementation, since the platform al-
ready had been used for similar operations. The re-
ceiver routine on the RCX ROM support a serial con-
nection at 2400 BPS. To increase the transfer rate up
to 4800 BPS changes has to be done on the RCX. This
could be accomplished by changing in the serial status
register in the UART at the RCX, and than letting
the ROM receiver routine run as normal.

When we were looking for background information
we soon discovered that there were other groups that
had done some work that we could reuse. This was the
case with the down-loader tool. Kekoa Proudfoot had
implemented a down-loader called firmdl3 that sup-
ported a bit rate up to 4800 BPS, that would satisfy
our specifications [16].

Kekoa Proudfoot’s down-loader tool takes binary
files in srec format, that is a hexadecimal format that
gives addresses and the data but also a checksum for
chucks of 42 bytes, and download them to the RCX.

We had problems when using the read and write
primitives under Windows NT. The down-loader tool
was original written for Linux. We found that it would
be advantageous to reuse it so we ported the tool to
Windows32 API. This means that the routines cre-
ateFile, readFile and writeFile were re-written. This

18

resulted in a stable working, compile-able version for
both Windows NT and Linux.

8.3 Obelix Up-loader Tool

The implementation where initiated by creating the
hardware primitives "read” and ”write” for the RCX.
They are deeper described in RCX library manual [9].
The protocol was implemented layer by layer on the
RCX and the PC. We had to consider the fact that the
Hitachi GNU compiler used little endian and Borland
C++ used big endian representation. Further infor-
mation is given in [8].

At the PC side we used the Windows32 API func-
tions readFile and writeFile, which worked out real
fine. This lead to that this tool only is compile-able
on a windows 32 bits system. We used Borland C++
to compile the tool.

8.4 Obelix Cross Compiler

We used a GNU gcc Hitachi cross compiler [14] that
already was configured for our target platform. We
added a linker script that tells the compiler which
memory areas that are available as RAM. For instance,
there were a ROM memory in the first Hex4000 bytes
of the memory space. The RAM began at Hex8000
and there were also some memory mapped hardware
devices in the RAM space.

8.5 RCX Library

Before any code was written the ROM memory in the
RCX was examined to see if the original LEGO opera-
tion system had any support for the hardware devices.
As expected, a large part of the Lego’s OS was placed
in the ROM memory, and also the device drivers. Un-
fortunately, the device drivers were placed in interrupt
routines that would run with a certain frequency in the
background of the user application. Thus we had to
implement the device drivers of our own, except for
those drivers that access the display and the buttons
on the RCX. These ROM routines accessed the devices
directly.

Some part of the code is influenced by the LegOS
project [12], especially when we worked with the rou-
tine that initialize the serial port.

The C language was used to implement the library
but that was not actual appropriate, due the diligent
use of bit operation when accessing the status registers
in the UART:s and A/D converter. The source code
was compiled into a library, and when an application
programmer wants to use a device on the RCX he, or
she, include the specific header-file for the device. The
accessible header-file for the application programmer
is placed in the /system/lib/include directory in the
project root catalogue.

19

Chapter 9

Summary and conclusions

In this paper the Obelix Development Environment
(ODE) has been described. ODE is a part of the As-
terix frame-work, which for the moment consists of the
Asterix real-time kernel and the Obelix development
environment. The role of Obelix in the compiling real-
time system has been clarified. The main task is to fa-
cilitate software development for the chosen hardware
system. The tools in the environment has been pre-
sented and some design trade-offs have been discussed.
Obelix consists of a configuration tool, a down-loader,
an up-loader and a cross compiler. This Obelix version
aims at the Lego Mindstorm RCX micro-controller,
and a hardware specific library is also included in
Obelix. The final product is a set of tools that ful-
fill the requirements of the specification.

There are a few characteristics that is not yet an-
alyzed and implemented in the environment, for ex-
ample support for multiple modes in the Obelix con-
figuration tool. This requires investigation of how the
system should handle the mode changes semantic and
how this should be implemented without disturbing
the task model. Yet, we have presented two ways of
attacking the problem. The interrupt handling has
not either been defined, but we have presented the se-
mantics and a way to express it in the configuration
file.

Still there are some work to do on the time measur-
ing management. The time measuring function in the
kernel has only supports execution time measuring of
one task at the time. This could be extended to mea-
sure the time of a whole task-set, the system calls and
the OS overhead. Another interesting thing to work
on is the communication protocol Drakar. This work
includes analysis and specification of the protocol as
well as implementation. Integration with the Obelix
configuration tool and the kernel is also needed.

Finaly we would like thank our supervisor Henrik
Thane and Krisitian Sandstrom, at the deparartment
of computer science at the University of Malardalen,
for their support.

20

Bibliography

[1]

[2]

[10]

[11]

[12]

[13]

A. V. Aho, R. Sethi, and J. D. Ullman. Compilers;
principles, techniques and tools. Addison- Wesley,
1986.

A. Davidsson. Obelix configuration tool back-end.
Master Thesis, Malardalens University, Depart-
ment of Computer Engineering, Vasteras June
2000., 2000.

A. Davidsson. Obelix configuration tool front-
end. Master Thesis, Malardalens University,
Department of Computer Engineering, Vasteras
June 2000., 2000.

J.D. Day and H. Zimmermann. The osi referece
model. Proc. of the IEEE, vol. 71, pp. 89-55,
1995.

G. Ragazzini G. Castelli. Eos: a real-time oper-
ating systems adapts to application architecture.
IEEE Micro, vol. 15 5, pp. 41- 49, 1995.

Hitachi. Hitachi single-chip microcomputer
h8/3297 series. Hardware manual, 3rd edition.,
2000.

J. Lindgren. Obelix configuration tool intermedi-
ate representation. Master Thesis, Malardalens
University, Department of Computer Engineer-
ing, Vasteras June 2000., 2000.

J. Lindgren. The obelix up-loader tool. Mas-
ter Thesis, Malardalens University, Department
of Computer Engineering, Vasteras June 2000.,
2000.

J. Lindgren. Rcx library manual. Master Thesis,
Malardalens University, Department of Computer
Engineering, Vasteras June 2000., 2000.

J. Maki-Turja and C. Eriksson. Paket for
enkel symbolhantering. Idt/CUS University of
Malardalen, 1996.

F. Mueller, V. Rustagi, and T. P. Baker. Mihtos, a
real-time micro-kernel threads operating system.

IEEE, 1995.
M.L. Noga.

legos. http://www.informatik.hu-

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

GNU‘s not UNIX. The gcc homepage.
http:/ /www.gnu.org/software/gce/gec.html, 2000.

GNU‘s not UNIX. The gnu homepage.
http:/ /www.gnu.org/software/, 2000.
Kekoa Proudfoot. Rex tools.

http://graphics.stanford. EDU/ kekoa/rcx/tools.htmil,
1998.

L. Sha, R. Rajkumar, and J. P. Lehoczky. Priority
inheritance protocols: An approach to real-time
synchronization. In IEEE Transactions on Com-
puters, vol. 39, pp. 1175-1185, Sep. 1990., 1990.

J. A. Stankovic and K. Ramamritham. The spring
kernel: A new paradigm for real-time systems.
IEEE, 1991.

H. Hansson H. Lawson O. Birdal C. Eriksson S.
Larsson H. Lon M. Stromberg. Basement: An
architecture and methodology for distributed au-
tomotive real-time systems. IEEE Transactions
on Computers, vol. 48 9, 1997.

H. Neugass G. Espin H. Nunoe R. Thomas D.
Wilner. Vxworks: an interactive development en-
vironment and real-time kernel for gmicro. TRON
Symposium, Proc. Eighth, pp. 196-207, 1995.

K. M. Zuberi and K. G. Shin. Emeralds: A mi-
crokernel for embedded real-time systems. IEEE,
1996.

berlin.de/ mueller/rt/mindstorm/www.multimania.com/legos/,

2000.

C. Norstrom, C. Sandstrom, J. Maki-Turja,
H. Hansson, and H. Thane. Robusta realtidssys-
tem. Malardalen Real-Time Research Center,
1999.

Appendix A

Obelix configuration language
specification

This is the context free grammar for the Obelix con-
figuration language. The grammar is a 4-tuple:
(v, T, P, S

e V is syntactic variables, nonterminals, that denote
sets of strings.

V = { file, systemmode, ram, modes, mode, resolution, tasks, hardtasks,
softtasks, task, activator, args, error_routine, resources,
communication, waitfrees, waitfree, num_buf, readers, reader,
synchronization, signals, signal, users, user, semaphores, semaphore }.

e T is terminals, basic symbols from which strings
are formed, The word “token” is a synonym for
“terminal”.

T = { SYSTEMMODE, SYSMODE, RAM, INT_CONST, MODE, ID, RESOLUTION,
HARD_TASK, SOFT_TASK, ACTIVATOR, OFFSET, DEADLINE, PRIORITY,
ROUTINE, ARGUMENTS, ERR_ROUTINE, STRING_CONST, WAITFREE, WRITER,
TYPE, NUM_BUF, READER, SIGNAL, USER, SEMAPHORE, STACK }.

e P is productions which specifies the manner in

which the terminals and nonterminals can be com-
bined to form strings. P = { See figure A.1 }.

e S is the start symbol of the grammar.

S = { file }.

22

file -> systemmode ram modes

systemmode -> SYSTEMMODE = SYSMODE;
ram -> RAM = INT_CONST;
modes -> modes mode
| mode
mode -> MODE ID { resolution tasks resources };
resolution -> RESOLUTION = INT_CONST;
tasks -> hardtasks softtasks
hardtasks -> hardtasks HARD_TASK task
| epsilon
softtasks -> softtasks SOFT_TASK task
| epsilon
task -> ID { ACTIVATOR = activator;
OFFSET = INT_CONST;
DEADLINE = INT_CONST;
PRIORITY = INT_CONST;
STACK = INT_CONST;
ROUTINE = ID;
args
error_routine };
activator -> INT_CONST
| ID
args -> ARGUMENTS = STRING_CONST;
| epsilon
error_routine -> ERR_ROUTINE = ID;
| epsilon
resources -> communication synchronization
communication -> waitfrees
waitfrees -> waitfrees waitfree
| epsilon
waitfree -> WAITFREE ID { WRITER = ID;
readers
num_buf
TYPE = STRING_CONST; };
num_buf -> NUM_BUF = INT_CONST;
| epsilon
readers -> readers reader
| reader
reader -> READER = ID;
synchronization -> signals semaphores
signals -> signals signal
| epsilon
signal -> SIGNAL ID { users };
users -> users user
| user
user -> USER = ID;
semaphores -> semaphores sempahore
| epsilon
semaphore -> SEMAPHORE ID { users };

Figure A.1: Obelix configuration language

23

