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Abstract—The growing complexity of modern automotive em-
bedded systems requires new techniques for model-based design
that take into consideration both software and hardware con-
straints, and enable verification at early stages of development.
In this context, EAST-ADL has been developed as a domain-
specific language dedicated to modeling functional-, software-,
and hardware- architecture of automotive systems. This language
offers convenient abstractions that support modeling of function,
as well as relevant extra-functional properties, like timing and
resource usage. These features make it a suitable framework for
reasoning about the system’s behavior. By providing formal se-
mantics to the EAST-ADL language, as a network of priced timed
automata, it becomes possible to reason about feasibility and
worst-case resource consumption of the embedded components.
In this paper, we show how to analyze such embedded systems
modeled in EAST-ADL by using statistical model-checking. We re-
port our experience from applying this approach to an industrial
Brake-by-Wire system prototype.

Index Terms—embedded systems, EAST-ADL, statistical model-
checking, resource usage.

I. INTRODUCTION

As modern embedded systems contain an increasing number
of software and hardware features, significant problems [1]
arise in the integration of new sub-systems due to the emergent
behavior of the whole system. It is not enough to have
correct sub-systems, they must also be properly integrated in
a system that meets both its functional and extra-functional
requirements, such as real-time performance and resource
consumption.

Integration and analysis of extra-functional requirements
have been tackled in several domains [2], [3], [4]. Consider, for
instance, the automotive domain where a change to a software
sub-system or the substitution of a hardware component can
affect the system’s latency, energy and memory utilization.
The modus operandi in industrial practice [1] shows that
analyzing resource usage attributes is often done ad-hoc by
industrial engineers, by using disjoint specifications. This trend
could result in a costly and risky integration phase during the
development of embedded systems.

In this context, architectural models that can be introduced
earlier in the development process provide a holistic system
description that captures the structure of the system, as well
as related extra-functional information, e.g., timing properties,
triggering annotations, and resource annotations. EAST-ADL
[5] is a domain-specific language for modeling software and
hardware specifications in the automotive domain. The ap-
proach supports modeling of resource usage, which enables the

early analysis of extra-functional requirements like feasibility
and worst-case resource consumption of components.

In this paper, we show how efficient verification techniques,
like statistical model-checking, can be applied on high-level
design artifacts, such as EAST-ADL models, to provide early
information on the resource consumption of an automotive
embedded system. To achieve this, we propose a methodology
that uses our existing tool VITAL [6], in which it is possible
to obtain formal models in form of networks of timed au-
tomata [7] from EAST-ADL architectural models. Here, we
extend such networks with resource annotations based on the
information provided in the architectural model, thus creating
networks of priced timed automata, which are extensions of
timed automata with costs. Consequently, we can employ
UPPAAL SMC [8], the UPPAAL extension for statistical model-
checking, to analyze the resource usage of automotive systems
described in EAST-ADL. The results of the analysis, which
we apply on a Brake-by-Wire industrial prototype, provide
valuable information on the system’s resource-usage prior to
the actual implementation.

This paper is structured as follows. We start by briefly
presenting the EAST-ADL architectural language and the tools
involved in the verification process (i.e., the VITAL tool
and the UPPAAL SMC model-checker) in Section II. Our
resource usage analysis methodology is described in Section
III. In Section IV we show how EAST-ADL functions can be
analyzed in terms of resource-usage. Next, in Section V we
introduce our case-study, the Brake-by-Wire (BBW) system,
and we show how the proposed methodology is applied on
this industrial system. We end the paper by discussing related
works in Section VI, and by presenting our conclusions in
Section VII.

II. PRELIMINARIES

In this section, we present the tools and frameworks used
in our analysis methodology.

A. EAST-ADL Language

EAST-ADL [5] is an AUTOSAR1[9] compatible architec-
tural description language dedicated to the development of
automotive embedded systems. The functionality of the system
is defined at four levels of abstraction, as follows: (i) the
Vehicle Level, the highest level of abstraction, describes the
electronic features as they are perceived externally, (ii) the

1AUTOSAR stands for AUTomotive Open System ARchitecture developed
by manufactures as a standard in the automotive domain.
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Fig. 1: The ViTAL transformation.

Analysis Level provides an abstract functional representation
of the architecture, (iii) the Design Level provides a detailed
functional representation of the architecture, together with the
allocation of these elements onto the hardware platform, and
(iv) the Implementation Level provides the implementation of
the system using AUTOSAR elements.

At each abstraction level, the system model uses compo-
nents, each a FunctionType, which describe the functional
elements of the system. The FunctionType has: (i) ports that
receive and provide data, respectively, (ii) a trigger, either
time-based or event-based, and (iii) an associated behavior.
Each of these components is instantiated as one or more of
type FunctionPrototype, which are connected to provide the
system model. The execution of each FunctionPrototype is
based on the “read-execute-write” semantics, and the associ-
ated behavior can be defined using different notations and tools
(e.g., Simulink or UPPAAL PORT timed automata [10]). The
model can be extended with a GenericConstraint annotation,
which allows the system designer to specify various extra-
functional properties, such as energy consumption or memory
utilization.

B. The ViTAL tool

VITAL [6] is an analysis tool that enables formal verification
of EAST-ADL models based on model-checking techniques.
To achieve this, the tool provides a transformation from an
architectural model to: (i) UPPAAL PORT timed automata
(for component-based verification with the UPPAAL PORT
model-checker) [10], and (ii) UPPAAL timed automata (for
verification with the UPPAAL model-checker) [6]. In this
paper, we will use the latter formalism. Further information
on timed automata theory can be found elsewhere [7].

To formally verify that the EAST-ADL model meets its
requirements, we represent the architectural elements as UP-
PAAL timed automata, by an automatic transformation within
VITAL. Each FunctionPrototype (see Figure 1a) is transformed
into a network of two synchronized automata: (i) an interface
timed automaton (Figure 1b), dedicated to the elements of
the EAST-ADL component interface, and (ii) a behavior timed
automaton (Figure 1c), dedicated to the behavior of the EAST-
ADL component. For more details we refer the reader to our
previous work [6].

The result of this transformation is a network of timed
automata that can be analyzed with the UPPAAL model-
checker. In this paper, we extend this transformation to also
include resource annotations.

C. UPPAAL SMC

UPPAAL SMC [8] is an extension of UPPAAL that enables
the analysis of different performance properties of networks
of priced timed automata with stochastic semantics. Statistical
model-checking generates stochastic simulations to estimate
probabilities and probability distributions over time with given
confidence levels, so the technique scales better than exact
symbolic model-checking.

Priced timed automata (PTA) are extensions of timed au-
tomata with cost variables that can evolve at integer rates
(also 6= 1) and are used in this paper to capture the re-
source usage. The resource usage is modeled via a function
P : (L ∪ E)→ N, where L is a finite set of locations and E
is the set of edges of the PTA model, which assigns costs to
both locations and edges. A network of PTA (NPTA) can be
expressed as a composition of n PTA over clocks and actions;
the PTA synchronize on send-receive actions (i.e., send b! is
complementary to receive b?) and can use shared variables in
guards (boolean conditions that enable the execution of edges).

UPPAAL SMC uses an extension of WMTL [11] to verify
properties like:
• Hypothesis testing: check if the probability to reach state
φ within cost x ≤ C is greater or equal to a certain
threshold p (Pr(♦x≤Cφ) ≥ p),

• Probability evaluation: calculate the probability
Pr(♦x≤Cφ) for a given NPTA,

• Probability comparison: is P (♦x≤Cφ1) > P (♦y≤Dφ2)?

III. METHODOLOGY OVERVIEW OF RESOURCE ANALYSIS

In this section, we propose an approach to resource usage
analysis for EAST-ADL with UPPAAL SMC. The methodology
presented in this paper is tailored to EAST-ADL, and it contains
the following steps (also mirrored in Figure 2):

1) Model Transformation. To analyze the EAST-ADL
model, we map it to a finite-state formal model suitable
for model-checking. For this, we use VITAL to automat-
ically obtain a network of timed automata (see Section
II-B).

2) Resource Annotation. We annotate the resulting model
such that the resource usage information in the EAST-
ADL model (as GenericConstraint) is expressed in the
PTA formalism.

3) Requirement Formalization. We formalize the extra-
functional properties such that they can be verified with
the UPPAAL SMC model-checker.
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Fig. 2: Methodology overview.

4) Analysis Results Generation. We use UPPAAL SMC to
generate analysis results. This model-checker requires
as input the resulting model of Step 1 and 2, and the
properties expressed in Step 3. Currently, UPPAAL SMC
supports queries related to the stochastic interpretation
of PTA including the visualization of expressions along
the simulated runs.

While UPPAAL SMC is a viable tool for statistical model-
checking, it is not directly tailored to analyzing resource
usage in EAST-ADL. We demonstrate our solution to this, by
discussing the above steps in the following section.

IV. ANALYZING RESOURCE-USAGE OF EAST-ADL
FUNCTIONS

A GenericConstraint allows the EAST-ADL model to be
annotated with different types of resources, like memoryCon-
sumption, powerConsumption, weight, developmentCost, etc.
Resources have different properties that impact the model and
the resource analysis. The consumption of a resource c is
the accumulated resource usage up to some point in time,
calculated based on the rate of consumption over time c′.
Based on this, resources can be classified [3] as: (i) continuous
( c′ = n, with n ∈ Z−{∞}), and (ii) discrete (c′ = 0 or
c′ =∞).

In this paper we focus on two types of EAST-ADL resource
usage: energyConsumption, of a continuous resource, and
memoryConsumption, of a discrete resource.

A. The Priced Timed Automata Model

To be able to analyze the resource usage of continuous
and discrete resources of systems modeled in EAST-ADL, one
needs to create the corresponding formal model as a network
of PTA. For this, we use the VITAL tool, which provides
automatic transformation from the EAST-ADL model to a
timed automata model. We extend the resulting formal model
with the corresponding resource annotations, to obtain the PTA
model that can be used by UPPAAL SMC. Concretely, we
extend the timed automata network with a monitor automaton
that contains all the resource annotations of the EAST-ADL
model, including energy consumption and memory usage.

(a) Energy annotations.

(b) Memory annotations.

Fig. 3: The resource annotations.

The monitor is a loop-free PTA that follows the execution
of the system, which is achieved through the already ex-
isting synchronization channels FunctionPrototype_beh_start
and FunctionPrototype_beh_stop. Assuming an architectural
model consisting of only one FunctionPrototype, we annotate
the monitor as follows:
• With a continuous resource, that is, energy, whose con-

sumption is increasing with time and, in our case, is
consumed in the FunctionPrototype_Exec location. The
rate of consumption is energy′ == value (see Figure
3a), where value is provided in the EAST-ADL model;

• With a discrete resource, that is, static memory, which is
used instantaneously, so its usage does not depend on
time. We encode the memory allocation via the edge
assignment memory+=value, and memory deallocation
via the edge assignment memory-=value (see Figure 3b).

B. Resource Analysis

In the following section, we present four types of resource
analysis performed on EAST-ADL, using our methodology.

1) Simulation: This technique provides graphical visual-
ization of behavior over a predefined number of runs of the
system model. Simulation can be formulated as the property:

simulate n[bound]{E1, .., Ek}

where n is the number of simulations to be performed, bound
is the time bound on the simulations, and E1, .., Ek are the
expressions to be monitored.

2) Resource Feasibility Analysis: Feasibility analysis is
used to verify if a certain resource usage stays within the
available resource amounts provided by the platform. The ver-
ification is achieved by examining the probability distribution
of a particular resource, which is formulated as a probability
evaluation, as follows:

Pr[bound](ψ)

where bound defines the time bound for the runs, and ψ is
either of the form <> q (eventually q), or [] q (always q),
where q is a state predicate.

3) Worst-case Resource Consumption Analysis: The worst-
case resource consumption analysis returns a path that will
eventually reach a certain behavior at a maximal cost. This
problem is reduced to maximizing the resource cost function
such that the following property is satisfied:

E[bound;n](max : expr)



where bound is the time bound, n gives the number of runs,
and expr is the expression to be evaluated.

4) Resource Leakage: A resource leak, in our case a
memory leak, occurs when the system uses a resource that
is unable to be released back for later usage (even though it
should do so). To this end, we perform a probability evaluation
using UPPAAL SMC to detect possible memory leakage.

V. APPLYING SMC ON THE BRAKE-BY-WIRE SYSTEM

In this section, we apply our methodology to provide
resource analysis for an industrial prototype system used
previously in our research [6], [10], namely the Brake-by-Wire
system.
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Fig. 4: The EAST-ADL model of the BBW system.

A. Brake-by-Wire System

The Brake-by-Wire (BBW) system is a braking system
equipped with an Anti-Lock Braking (ABS) function, and
without any mechanical connectors between the brake pedal
and the brake actuators. A sensor attached to the brake pedal
reads its position, which is used to compute the desired global
brake torque. At each wheel, a sensor measures the speed of
the wheel, which is used by the ABS algorithm together with
the brake torque and the estimated vehicle speed to compute
the actual brake torque that will be sent to the actuator. The
ABS algorithm computes the slip rate s based on the following
equation:

s = (v − w ×R)/v

where v is the speed of the vehicle, w is the speed of the
wheel, and R is the radius of the wheel. The friction coefficient
has a nonlinear relationship with the slip rate: when s starts
increasing, the friction coefficient also increases, and its value
reaches the peak when s is around 0.2. After that, further
increase in s reduces the friction coefficient of the wheel. For
this reason, if s is greater than 0.2 the brake actuator is released

and no brake is applied, otherwise the requested brake torque
is used. Figure 4 presents a part of the BBW system modeled
in EAST-ADL, at Design Level, which is allocated to the pedal
ECU. This model is extended with annotations for energy and
memory consumptions, respectively, as a GenericConstraint
each.

B. Applying ViTAL on the Brake-By-Wire System

In this section, we apply the proposed methodology and
its tool support on the BBW system. We use the VITAL
tool to automatically transform the EAST-ADL model of the
BBW system into a network of timed automata. The timed
automaton modeling the interface behavior of one of the
BBW components, the pBrakePedalLDM FunctionPrototype,
is depicted in Figure 5.

Fig. 5: The interface automaton of the pBrakePedalLDM.

C. The Monitor

Being equipped with the formal model of the BBW system,
we can focus on the hardware elements of the platform, and
their available resources, as they are represented in EAST-ADL.
For the BBW system, we are interested in the pECU_Central
component shown in the Hardware Design Architecture. This
ECU is dedicated to the following pedal computational el-
ements (depicted in Figure 4): pBrakePedalLDM, pBrake-
TorqueMap, pGlobalBrakeController, and pVehicleSpeedEsti-
mator, which are allocated to this ECU.

To analyze the resource consumption of the pECU_Central
component (actually of the four allocated components), we
have implemented a resource monitor depicted in Figure 6.
The energy is consumed during the execution of the ECU. For
the pBrakePedalLDM component, the model is annotated with
energy’==6.3+random(1.4), which represents the consumption
rate inherited from EAST-ADL ± 10% tolerance. In a similar
manner, the monitor is annotated with its memory usage. Since
memory is a static, discrete resource, it is allocated before the
component is executed, and it is deallocated at the end of the
execution.

D. Analysis of Energy Consumption

Figure 7 depicts the simulation of the energy consumption
of the four components allocated on the pECU_Central hard-
ware component. Concretely, the plot shows one stochastic
simulation carried out for 50 time units, obtained by using
the following query on the model: simulate 1[<=50]{energy,
memory, t}.

We are also interested in the mean energy consumption and
its distribution over runs bounded by a certain value. To obtain



Fig. 6: Allocation of the software elements on the hardware platform.

Fig. 7: Simulation of the energy consumption and memory
utilization on pECU_Central.

Fig. 8: Estimated energy probability distribution.

this, we check the query Pr[energy<=100](<> Monitor.End),
where we assume that the bound of the actual energy is a
realistic value that covers the reachable range for all runs.
This value is based on the previous simulation of the model.
Using UPPAAL SMC, we record the distribution of the energy
consumption over 1843 runs, as shown in Figure 8. For
increased accuracy, the energy consumption is checked with
α = 0.05 (the default value) and ε = 0.001, which are
parameters that improve the precision of the assessed runs.
The mean value of the energy consumption is estimated at
about 89 energy units, with the minimum value of the energy
being approximated at 88.3532 and the maximum value of the
energy being 89.6653 for the pECU_Central component.

In addition, we evaluate the maximum expected value for
the energy. For this, we simulate the system over 2000 runs,
trying to maximize the energy consumption, with the query
E[t<=50, 2000](max : energy). The mean value provided by
UPPAAL SMC for the maximum consumption is 89.0019.
We note here that 89.0001 is the mean value of the energy
distribution.

E. Analysis of Memory Usage

In addition to the energy analysis, in Figure 7 we depict
the simulation of the memory usage of the four components
allocated onto pECU_Central. As observed on the plot, not
all the memory is deallocated by the pGlobalBrakeController,
meaning that we encounter a memory leak. In order to check
this with UPPAAL SMC, we use the following query against
the model: Pr[ t<=50] (<>Monitor.End and memory==0.0). The
verifier returns the probability that the system will not suffer
from a memory leak, in our case this being between 0 and
0.0019.

F. Discussion

In Table I, we present the overall results of our resource
analysis methodology applied to the BBW system. This ta-
ble lists–for each resource, analysis type and property to
be checked–the number of states explored during model-
checking, together with the time and memory used, as well
as the number of simulation runs. Regarding energy analysis,
UPPAAL SMC is able to find a solution by exploring 5068
states in 31 ms, using 27164 KB, within a single simulation of
the model. We can observe that energy feasibility analysis and
worst-case energy consumption analysis are computationally
very expensive compared to the other properties. Nevertheless,
this shows how capable UPPAAL SMC is in analyzing a
realistic industrial system. Our observations could allow an in-
dustrial designer to gain deeper understanding in the system’s
resource behavior, and consequently adjust and optimize both
software and hardware designs accordingly.

VI. RELATED WORK

Recently, there has been a growing interest in developing
analysis and testing techniques to enhance the adoption of
architectural description languages into industrial practice.
Related work has also been carried out with respect to the
analysis of embedded resources [12], using UML notations
intended to complement architecture description languages.
For instance, the work of Mallet et al. [13] can been seen



Resource Analysis Type Property States
Explored

Time (ms) Memory
(KiB)

Runs

Energy
Simulation simulate 1[<=50]{energy} 5068 31 27164 1
Feasibility Analysis Pr[energy<=100](<> Monitor.End) 7841965 51995 27372 1843
Worst-Case Energy
Consumption

E[t<=50,2000](max : energy) 10136000 71277 27364 2000

Memory Simulation simulate n[<=50]{memory} 5068 47 27064 1
Memory Leak Pr[ t<=50](<>Monitor.End and

memory==0.0)
182448 1170 27356 36

TABLE I: Overall Results for Resource Analysis

as one of the major efforts in modeling of embedded systems
and their resource usage. Targeting a similar goal, we have
already implemented a methodology for formal analysis and
verification of EAST-ADL [10]. In addition, in a recent paper
we have proposed an extension of EAST-ADL for modeling
and analysis of a system’s resource-usage [14], which we
have analyzed exhaustively with UPPAAL. In this paper, we
have improved our previous work by proposing a method
that employs statistical model checking for resource usage
analysis of EAST-ADL models, in an attempt to increase the
verification’s scalability. To illustrate our approach, we have
applied the proposed methodology on an industrial Brake-By-
Wire system.

Other researchers have tried to address the problem of estab-
lishing a generic formal foundation for modeling and analysis
of resources in embedded systems [15], from low-level code
resource estimates [16] to higher level UML and formal
approaches [17]. To continue this trend, we have focused
on using abstract resource usage information at architectural
levels of EAST-ADL, in order to provide to industrial systems
designers analysis means for simulating and optimizing the
system’s overall resource usage.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a methodology for an-
alyzing resource usage for EAST-ADL, using the UPPAAL
SMC model-checker. We presented a case-study on which our
methodology is applied to transform and analyze an industrial
Brake-By-Wire system prototype. We have shown how the
initial system can be transformed and annotated using the
priced-timed automata formalism, and how the resource-wise
behavior is semantically translated and statistically model-
checked using UPPAAL SMC.

Regarding the analysis, we have shown how to analyze the
usage of resources expressed in EAST-ADL within the priced-
timed automata framework. In this setting, we have simulated
the energy and memory usage of various BBW components,
and have also performed resource feasibility analysis, as well
as derive analysis results for worst-case energy consumption
and memory leakage. Such results can help a system designer
to gain a deeper understanding of the resource behavior of
embedded systems modeled in EAST-ADL. As future work,
we plan to implement this methodology in the VITAL tool
and apply it to other real-world embedded systems.
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