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Abstract—The Multi-Resource Server (MRS) technique has
been proposed to enable predictable execution of memory in-
tensive real-time applications on COTS multi-core platforms. It
uses resource reservation approaches in the context of CPU-
bandwidth and memory-bus bandwidth reservations to bound
the interference between the applications running on the same
core as well as between the applications running on different
cores. In this paper we present a complete composable local
and global schedulability analysis for the Multi-Resource Server
technique. Based on the proposed analysis,we further provide an
experimental study that investigates the behaviour of the MRS
and identifies the factors that contribute mostly on the overall
system performance.

Keywords-Hierarchical scheduling, compositional analysis,
CPU-bandwidth partitioning, memory-bandwidth partitioning.

I. INTRODUCTION

With the advent of highly efficient multicore architectures,
multiple real-time applications are integrated together and are
executed concurrently on multicore platforms. As a result,
these applications share not only the CPU with each other,
but also other physical resources of the multicore architecture
(like shared caches, memory-bus bandwidth, and memory).
Contention for the shared physical resources is a natural con-
sequence of sharing [1], [2]. It does not only reduce throughput
but also affects the predictability of real-time applications.

On unicore platforms, the server-based scheduling has been
developed to achieve predictable integration by successfully
bounding the interference between integrated applications [3],
[4], [5], [6]. However, this approach is CPU centric and is lim-
ited in managing the CPU-resource only. It does not account
for activities that are located on different cores and thus still
allow interference amongst applications in an unpredictable
manner. For multicore platforms, a solution has been proposed
to solve these problems through updating the traditional server-
based scheduling approach with a novel memory aware Multi-
Resource Server (MRS) technology [7], [8] for Commercial
Off-The-Shelf (COTS) multicore hardware.

MRS enables predictable execution of real-time applica-
tions on multicore platforms through resource reservation
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approaches in the context of CPU-bandwidth reservation and
memory-bus bandwidth reservation. The MRS provides tem-
poral isolation, both between tasks running on the same
core (through CPU partitioning), as well as between tasks
running on different cores (through memory-bus bandwidth
partitioning). The latter could, without MRS, cause interfere
due to contention on the shared memory bus. A local analysis
for tasks executing in an MRS considering a constant memory
access time has been presented in [7].
Contributions: In this paper we update the local analysis by
relaxing this assumption and considering the worst case delay
for accessing memory requests in our analysis. We present a
complete and composable global schedulability analysis for
both resources (CPU- and memory-bandwidth) of the MRS.
Further, we provide a study that brings insight on how these
both resources relate to each other. In addition, the evaluation
shows the effect of changing the priority of a memory-
intensive task on both of these resources.

The preliminary work [7] focused on just the presentation
of the general idea of the MRS and described its initial
local schedulability analysis. It did not address the global
schedulability analysis and lacked an investigation study. In
this paper we complete the local and the global analysis and
perform an experimental study to investigate the behavior of
the MRS and the factors effecting its behavior.
Paper Outline: Section II presents the related work on server-
based and memory access techniques for multicore systems.
Section III explains our system model. The local and global
schedulability analysis is described in Section IV. The cor-
relation between (1) CPU and memory budgets, (2) private
and shared memory banks, and the impacts of (1) the period
of memory-intensive task and (2) the period of the MRS
on server-budgets is investigated in Section V, and finally
Section VI concludes the paper.

II. RELATED WORK

The problem of contention of shared resources has gained
a significant importance in the context of multicore embedded
systems. Hierarchical scheduling is one technique to provide
predictable execution on unicore platforms [5], [9], [10].
Solutions for multi-core architectures are based on strong
(often unrealistic) assumptions on no interference originating978-1-4673-7929-8/15/$31.00 c© 2015 IEEE



from the shared hardware [11]. For multicore architectures,
the assumption no longer remains valid.

Some highly predictable Time Division Multiple Access
(TDMA) based techniques are used for memory bus arbitra-
tion. Rosen et al. [12] measured the effects of cache misses on
the shared bus traffic where the memory accesses are confined
at the beginning and at the end of the tasks. Schranzhofer
et al. [13] relaxed this assumption of fixed positions. They
divide tasks into sets of superblocks that are specified with a
maximum execution time and a maximum number of memory
accesses. Another work that guaranteed a minimum bandwidth
and a maximum latency for each memory access was proposed
by Akesson et al. [14] using a two-step approach to share a
predictable SDRAM controller. These techniques eliminate the
interference of other tasks through isolation; however, they are
limited in the usage of only a specified (non-COTS) hardware.

Schliecker et al. [15] have bounded the shared resource
load by computing the maximum number of consecutive cache
misses generated during a specified time interval. The joint
bound is presented for a set of tasks executing on the same core
covering the effects of both intrinsic and pre-emption related
cache misses. A tighter upper bound on the number of requests
is presented by Dasari et al. [16] by using non-preemptive task
scheduling. However, these works lack the consideration of
independently developed subsystems and the use of memory
servers to limit the access to memory bandwidth. The main
focus of our work is on both aspects (compositionality and
independent development) w.r.t. server-based methods. Pelliz-
zoni et al. [17] proposed the division of tasks into superblock
sets by managing most of the memory request either at the start
or at the end of the execution blocks. This idea of superblocks
was later used in TDMA arbitration [13]. All these techniques
assume a constant access time for each memory request and do
not consider the reordering of requests. Bak et al. presented a
memory aware scheduling for multi-core systems in [18]. They
used PRedictable Execution Model (PREM) [19] compliant
task sets for their simulation-based evaluations. However, they
do not consider a server-based method. Further the usage
of PREM requires modifications in the existing code (tasks),
hence this approach is not compliant with our goal to execute
legacy systems on the multi-core platform.

Recent works [20], [21] considered variable access time of
memory requests for tasks executing concurrently on different
cores and contending for memory accesses. Wu et al. [20]
considered private banks for each requestor, using a FIFO
ordering for serving requests, by considering one queue for
each bank and a global queue to accumulate requests from
each bank. The work in [21] provided analysis for both private
and shared DRAM banks and considered the First Ready First
Come First Serve (FR-FCFS) scheduling policy to account
the reordering effect. However, these works considered the
task-level schedulability only and lack the consideration of
independently developed subsystems and the use of memory
servers to limit the access to memory bandwidth, which is our
main focus.

A server-based approach to bound the memory load of

low priority non-critical tasks executing on non-critical cores
was presented in [22]. Memory servers are used to limit
memory requests generated by tasks of non-critical cores. A
response time analysis is proposed for tasks that are located on
critical cores, including the interference that can be generated
from non-critical cores, considering a constant access time for
memory requests. We propose a more general approach to
support both composability and independent development of
subsystems by using servers on all cores. The analysis in [22]
only considers one memory server on each non-critical core
while we present analysis for both time and memory aspects
of the servers executing on all cores and consider multiple
servers per core. An analysis for variable DRAM access time
to serve memory requests is presented in [23], and it is used
in the schedulability analysis of our MRS in Section IV.

III. SYSTEM MODEL

Here we present our hardware platform, the system model
and the assumptions we follow.

A. Architecture

We assume a single-chip multicore processor with a set
of identical cores. Each core has a set of local resources;
primarily a set of caches for instructions and/or data and
busses to access these from the cores. The system has a set of
resources that are shared amongst all cores: this is typically
a Last-Level Cache (LLC), a main-memory (DRAM) and a
shared memory bus. The architectures like Intel core 2 CPU
6700, Intel i5 3550, etc. comply to these assumptions.

In this work we assume that a local cache miss is stalling,
which means whenever there is a miss in a LLC, the core
is stalling until the cache-line is fetched from memory. We
assume that all memory requests from the LLC to the shared
DRAM go through the same bus, and that the bus serves one
request at a time.

DRAM: We assume that the multicore processor uses
Double Data Rate Dynamic RAM (DDR DRAM) as their
main memory resource [24], which is shared amongst all
of the cores. The controller employs First-Ready First Come
First Served (FR-FCFS) scheduling policy [25], that prioritizes
the ready DRAM commands (row-hit memory requests) over
others and for ties, it prioritizes older requests in order to
improve row-hit ratio and maximize the overall throughput.
DRAM bank partitioning (or private banks) is considered to
divide the banks into partitions where memory request can
access one bank in DRAM. Many COTS architectures do not
support private banks, but it can be achieved through operating
system bank partitioning [26]. We assume both private banks
and interleaved or shared banks (where memory request can
access all banks in DRAM) are available and only one type
can be used at a time similar to [21]. The DRAM model is
used to compute the worst case delay for a DRAM memory
request. More details on DRAM background, DRAM model,
and memory interference delay analysis can be found in [23].

Worst case delay for a DRAM memory request: D`
presents worst case delay to fetch the data for a single memory



request from DRAM into cache. The D` analysis depends on
the hardware architecture and on the number of cores in the
system, private or shared banks, along with the scheduling
policy of memory controller used to serve parallel requests.
It is independent of the maximum number of requests that
can be generated in all the other servers. D` is a sum of
(1) worst case service time for a single memory request and
(2) worst case delay this request can be delayed by other
simultaneous requests (generated by other tasks executing on
other cores) served by the memory controller. D` is computed
for worst cases for both private (denoted as D`p) and shared
DRAM banks (denoted as D`s). A brief overview about
the computations of memory interference delay analysis is
presented in Section IV-A2 and its complete details can be
found in [23].

B. Server model

Our scheduling model for the multicore platform can be
viewed as a set of trees, with one parent node and many
leaf nodes per core, as illustrated in Figure 1. The parent
node is a node scheduler and leaf nodes are the subsystems
(servers). Each subsystem contains its own internal set of tasks
that are scheduled by a local scheduler. The node scheduler
is responsible for dispatching the servers according to their
bandwidth reservations (both CPU- and memory-bandwidth).
The local scheduler then schedules its task set according to a
server-internal scheduling policy.
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Fig. 1: A multi-resource server model

We follow the same model for the MRS. Each MRS Ss
is allocated a period and two different budgets, according to
〈Ps, Qs,Ms〉, where Ps is the period of the server, a CPU
budget Qs is the amount of CPU-time allocated each period,
and a memory-bandwidth budget Ms is the number of memory
requests in each period. The CPU-bandwidth of a server is
thus Qs/Ps and we assume that the total CPU-bandwidth is
not more than 100%.

During run-time, each MRS is associated with two dynamic
attributes qs and ms which represent the amount of available
CPU- and memory-budgets respectively. For both levels of
schedulers, including the node and server-level, the Fixed Pri-
ority Pre-emptive Scheduling (FPPS) policy is implemented.

We assume that each server is assigned to one core and that

its associated tasks will always execute only on that core, i.e.,
task or server migration is not allowed.

The MRS is of periodic type, i.e., it replenishes both CPU-
and memory-budgets to the maximum values periodically. At
the beginning of each server period its dynamic attributes are
set as qs := Qs,ms := Ms. In each core, the node scheduler
is responsible to schedule all ready servers and it selects a
highest priority ready server for execution. A server is ready
to execute if it possesses both remaining CPU- and memory-
budgets, formally: (qs > 0 ∧ ms > 0). A higher priority
server can pre-empt the execution of lower priority servers.
During the server’s execution, its CPU-capacity, qs, decreases
with the progression of time, while its memory-bandwidth
capacity, ms, decreases when a task in the server issues a
memory request. A server which depletes any of its resources
is suspended from execution and waits for its replenishment
at the beginning of the next server-period. Thus, if any of the
budgets is depleted then the other remaining budget will be
discarded, i.e., if ms = 0 or qs = 0 then ms = qs = 0

The idling periodic server strategy [27] is used for CPU
reservation, i.e., if the scheduled server has remaining budget
but there is no task ready then it simply idles away its CPU-
budget until a task becomes ready or one of the server’s
budgets depletes. A scheduled server uses its local scheduler
to select a task to be executed. A higher priority task can pre-
empt the execution of lower priority tasks but not while the
core is stalling. The details of the implementation of MRS and
its execution can be found in [28], [8].

C. Task model

We are considering a simple sporadic task model in which
each task τi is represented as τi(Ti, Ci, Di, CMi) where Ti
denotes the minimum inter-arrival time of task τi with worst-
case execution time Ci excluding the memory interference
delay, so Ci is the worst case execution time to execute the
task code without including the time to fetch the required data
from memory into the cache. Di denotes the deadline of the
task where Di ≤ Ti. The tasks are indexed in reverse priority
order, i.e. τi has priority higher than that of τi+1.
CMi denotes the maximum number of cache miss requests

and the time of issuing a cache miss request is arbitrary during
the task’s execution time. Similar to [22], [21] we assume
that each task τi has its own private partition in the cache
that is sufficient to store one row of a DRAM bank. This
assumption can be satisfied by implementing operating system
based cache coloring [29]. Further, we assume that cache-
related preemption delays (CRPD) [30], [31] are zero due to
partitioned cache, and the value of CMi does not change due
to preemption.

IV. SCHEDULABILITY ANALYSIS

We use the compositional hierarchical schedulability anal-
ysis techniques to check the system schedulability by com-
posing the subsystems interfaces which abstract the resource
demands of the subsystems [5]. The analysis is performed
in two levels; the first is called the local schedulability



analysis where for each subsystem its interface parameters are
validated locally based on the resource demand of its local
tasks. The second level is called the integration or the global
schedulability level, where the subsystems interfaces are used
to validate the composability of the subsystems.

A. Local schedulability analysis

First, we present the local schedulability analysis without
considering the effect of the memory bandwidth part of the
multi-resource server, i.e., assuming a simple periodic server,
and then we extend the analysis to include the effect of
the memory requests. Note that, at this level, the analysis is
independent of the type of the server as long as the server
follows the periodic model, i.e., both budgets are guaranteed
every server period. We assume that the server’s period, CPU-
budget, and memory-budget are all given for each server.

1) Considering only CPU-budget : The local schedulabil-
ity analysis under FPPS is given by [5]:

∀τi ∃t : 0 < t ≤ Di, rbfs(i, t) ≤ sbfs(t), (1)

where sbfs(t) is the supply bound function that computes
the minimum possible CPU supply to Ss for every time
interval length t, and rbfs(i, t) denotes the request bound
function of a task τi which computes the maximum cumulative
execution requests that could be generated from the time that
τi is released up to time t. sbfs(t) is based on the periodic
resource model presented in [5] and is calculated as follows:

sbfs(t) =

{
t− (k − 1)(Ps −Qs)−BDs if t ∈W (k)

(k − 1)Qs otherwise,
(2)

where k = max
(⌈(

t+(Ps−Qs)−BDs

)
/Ps
⌉
, 1
)

and W (k)

denotes an interval [(k−1)Ps+BDs, (k−1)Ps+BDs+Qs].
Blackout Duration BD is the longest time interval that the
server cannot provide any CPU resource to its internal tasks
and it is computed as BDs = 2(Ps−Qs). The computation of
BD guarantees a minimum CPU supply, in which the worst-
case budget provision is considered, assuming that tasks are
released at the same time when the subsystem budget has
depleted, the budget has been served at the beginning of the
server period, and the following budget is supplied at the end
of the server period due to interference from other higher
priority servers.

For the request bound function rbfs(i, t) of a task τi,
to compute the maximum execution requests up to time
t, we assume that τi and all its higher priority tasks are
simultaneously released. rbfs(i, t) is calculated as follows:

rbfs(i, t) = Ci +
∑

τk∈HP(i)

⌈
t

Tk

⌉
× Ck, (3)

where HP(i) is a set of tasks with priority higher than that
of τi. Looking at (3), it is clear that rbfs(i, t) is a discrete
step function that changes its value at certain time points (t =
a× Tk where a is an integer number). Then for (1), t can be
selected from a finite set of scheduling points {SPi}.

2) Computing worst case delay for a single DRAM
memory request: depends upon few characteristics that influ-
ence the memory access time of DRAM, i.e., row-conflicts,
a change in the data bus direction for each request, and
rescheduling algorithm. Row-conflict means that the currently
opened row is different than the requested row. In this case,
first the opened row is saved and then the requested row
is fetched into the row-buffer. A row-conflict consists of
three DRAM commands: ACT (activate command loads the
requested row into the row-buffer), PRE (precharge command
writes back the currently opened row) and CAS (RD/WR)
(read/write command reads or writes the required data from/to
the row-buffer). Thus D` is a sum of latencies for ACT, PRE
and CAS commands plus the DRAM timing constraints to
meet these three commands.

When the current command is different than the previous
command (e.g. current command is read while the previous
was write) then the direction of the data bus needs to be
changed. It implies additional timing constraints on the ex-
ecution of the request, and increases the time to execute the
memory request. DRAM controller performs internal schedul-
ing algorithms (i.e. First-Ready First Come First Served)
to maximize the overall throughput [25]. Since the row-hit
latency is much less than the row-conflict latency, the DRAM
controller prefers the row-hit requests over the row-conflict
requests. These timing constraints are taken account into the
analysis [23].

D` = (DlPRE +DlACT +max(TCPRE , TCACT ) +

DlCAS + TCCAS)× tCK (4)

where DlPRE , DlACT , DlCAS present latencies (or delays)
for ACT, PRE and CAS commands respectively, while
TCPRE , TCACT , TCCAS present the timing constraints for
these commands respectively. The above mentioned charac-
teristics that influence the memory access time of DRAM
are taken care into these timing constraints. tCK is DRAM
clock cycle equals to 1.5 nanoseconds for the DRAM DDR3-
1333MHz device.

The latency values for DRAM commands and timing con-
straints are different for private and shared banks. The analysis
for both D`p and D`s is presented in [23]. Since only one,
either private or shared, bank can be used at a time, we only
use the term D` in the analysis. For experiments, we compute
values for both D`p and D`s, and use them accordingly.

3) Considering CPU- and memory-budget : In [15], [16],
[22], the effect of the memory bandwidth access has been
included in the calculations of the response times of tasks.
The basic idea in all these works is the computation of
the maximum interference MI(t) caused by the memory-
bandwidth contention on tasks during time interval t. The
new request bound function including the memory-bandwidth
contention is provided in (5).

rbf∗s(i, t) = Ci +
∑

τk∈HP(i)

⌈
t

Tk

⌉
× Ck +MI(t). (5)



MI(t) is computed by multiplying the time needed for a
request to be completed by the upper bound of memory-
bandwidth requests in t, issued by all the other tasks (executed
by all the other servers) located on cores other than the one
hosting the analyzed task [22]. However, this method cannot
be used in our case since we assume that the subsystems
are developed independently hence the tasks’ parameters that
belong to the other cores are not known in advance. In
addition, the effect of both budgets (CPU- and memory-)
should be accounted for in the MRS, which has not been
considered in the previous works.

To solve this problem, we focus on the memory-bandwidth
requests that can be generated by the tasks running inside a
MRS. Considering the behaviour of MRS, we can distinguish
two cases that can affect its tasks’ execution.

1) When a task τi, executing in Ss, issues a memory request
that causes a miss in a local cache, the associated core
is stalling until the cache-line is fetched from memory.
The maximum time that the task can be delayed due to
the core stalling is presented as D` and this delay should
be considered in the analysis.

2) CPU-budget depletion due to memory-budget depletion.
When tasks belonging to the same server issue Ms

memory requests, the memory-budget will deplete which
will force the CPU-budget to be depleted as well. In the
worst case, Ms memory requests can be issued from
tasks of the same server Ss sequentially, i.e. tasks send
a new request directly after serving the current one. If
this happens at the beginning of the server execution, a
complete CPU-budget will be dropped and the server’s
internal tasks will not be able to execute during this
server period (this case is shown in the first server period
in Figure 2).

NR(i, t) denotes the maximum number of memory requests
that can be generated during a time interval t. During the
execution of τi, it can be delayed by at most one memory
request sent from a lower priority task and by the number
of requests that the task itself sends and finally by the higher
priority tasks that can preempt its execution. (6) is used to find
NR(i, t). Note that we include the delay due to a memory
request sent from a lower priority task in the equation by
adding one in CMi + 1.

NR(i, t) = CMi + 1 +
∑

τk∈HP(i)

⌈
t

Tk

⌉
× CMk, (6)

Finally, MI(t) in (5) is calculated using (6)

MI(t) = NR(i, t)×D` (7)

The second case that should be considered in the analysis
is when the server CPU-budget depletes after sending Ms

requests. This can happen when a task issues a memory-
bandwidth request and then directly gets preempted after
serving the request by a higher priority task that also issues
a memory-bandwidth request and gets preempted by a third
higher priority task and so on. This case affects the CPU
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resource supply that can be provided to the tasks. The basic
assumption for computing sbfs(t) is that the tasks are released
when the CPU budget has been fully consumed and the
budget was served at the beginning of the server period.
However, as explained in the second case, the CPU-budget
can deplete at the beginning of the server period (after serving
Ms memory requests) because of the depletion of memory
bandwidth budget. At any time t and for any task τi the upper
bound of server periods that the server budget depletes due
to the memory budget depletion, can be computed using the
following function.

A(i, t) = min
( ⌊NR(i, t)

Ms

⌋
,

⌈
t

Ps

⌉
− 1
)

(8)

Note that the first part of the min function in (8) provides
the upper bound of server periods when the CPU-budget can
deplete due to the memory-budget depletion during the time
interval t. It can be calculated by dividing the total number
of memory request generated (by the task τi) during time
interval t by the memory-budget of the server. However, it
cannot exceed the number of server periods up to t, which is
bounded in the second part of the function.

By computing A(i, t), we can consider the effect of the
memory budget part on the sbfs(t) by assuming that A(i, t)
CPU budgets will not be provided up to t, i.e., the server
budget Qs = 0 whenever memory budget depletes. This
can be achieved by increasing BD in (2) by A(i, t) × Ps
which is equivalent to removing A(i, t) CPU budgets, i.e.,
A(i, t) × Qs from the supply bound function. However, the
CPU budget will be depleted due to the depletion of memory
budget only after serving Ms requests which is equivalent



to providing Ms × D` CPU resource every server period as
shown in Figure 3 (remember that each memory request delay
D` is modeled as an extra CPU demand in the rbf∗s(i, t)).
To decrease the pessimism in the analysis, we assume that
A(i, t) × Ms × D` will be added in the calculation of
sbfs(t) which makes this function different for different tasks.
However, it will be correct only if Ms×D` ≤ Qs. The supply
bound function sbf∗s(i, t) for τi is computed as follows.

sbf∗s(i, t) =


t− (k(i, t)− 1)(Ps −Qs)−
BDs(i, t) +A(i, t)×Ms ×D` if t ∈W (k)(i, t)
(k(i, t)− 1)Qs
+A(i, t)×Ms ×D` otherwise,

(9)
where k(i, t) = max

(⌈(
t + (Ps − Qs) − BDs(i, t)

)
/P
⌉
, 1
)

and W (k)(i, t) denotes an interval:
[(k(i, t)−1)Ps+BDs(i, t), (k(i, t)−1)Ps+BDs(i, t)+Qs]
and BDs(i, t) = 2Ps −Qs +A(i, t)× Ps.

B. System integration

During the integration phase of MRSes, all servers should be
guaranteed to receive the required CPU and memory budgets
specified in their interfaces. To validate this, two different tests
should be applied. The first test is performed on the CPU part
to make sure that the required CPU budget will be provided.
The second test is performed to make sure that the total
memory bandwidth usage by all servers in the system is lower
than the maximum available bandwidth of the memory bus.
Both tests can be performed independently and should succeed
to guarantee that all tasks meet their deadlines. Therefore the
parameters that are provided in the interface of each subsystem
Ss to apply both tests are Ps, Qs,Ms, D`.

As described earlier, the value of D` depends on the hard-
ware architecture. This keeps our local analysis independent of
other servers in the system. As a simple example and assuming
the FR-FCFS policy and knowing that only one request can
be sent from each core at a time (since a core is stalling when
a request is sent), then the upper bound value of D` equals to
the number of cores multiplied by the time taken to serve each
request, plus adding the reordering effect of FR-FCFS policy,
as presented in [23]. The reason is that for each core when it
tries to send a memory request, as a worst case all other cores
send one request just before the core under analysis, and one
request from a lower priority task on executing on the same
core, which bounds the number of requests.
Global schedulability test for CPU-budget: Since the CPU
part of the server is of periodic type, each subsystem can be
modeled as a simple periodic task where the subsystem period
is equivalent to the task period and the subsystem budget is
equivalent to the worst case execution time of a task. Then
the schedulability analysis used for simple periodic tasks can
be applied on all servers that share the same core for this
test [5]. Rk+1

i = Qi +Bi +
∑
Sj∈HEP(i)

⌈
Rk

i

Pj

⌉
×Qj . The test

starts with R0
i is Qi. The test is stopped when Rk+1

i = Rki and
Rk+1
i ≤ Pi. If Rk+1

i > Pi, then system is not schedulable.
Note that since for each memory request, the associated core

is stalling then a higher priority server may be blocked by a
lower priority server at most once with maximum blocking
time equals to Bi = D`. This blocking time is considered in
the analysis.
Global schedulability test for memory-budget: The max-
imum memory-bus bandwidth used by all servers on all
cores (denoted by Bmax) should be less than the minimum
bandwidth of the memory-bus. The practical minimum bus
bandwidth rate (Bavail) that can be used to access data from
DRAM has some practical limits and is less than the maximum
bandwidth of the bus. It is difficult to obtain this bound from
documentation, therefore, it is experimentally measured. The
practical minimum bus bandwidth rate measured for Intel
Core2Quad Q8400 processor is Bavail = 1198MB/s [32].
We experimentally measured it Bavail = 1022MB/s for our
Intel core 2 CPU 6700 architecture.

For global schedulability test, the maximum bandwidth
(Bmax) used by all servers on all cores should not exceed
this limit Bmax ≤ Bavail. As the memory-bus is shared
among all cores, therefore, we sum up all requests from
all servers from all cores. Bmax is computed as Bmax =∑
∀Si

(
Mi

Pi
× 64 × 1000/(1024 × 1024)

)
. The number of

memory requests are converted to the bandwidth by dividing
with server period Pi, multiplying it with the size of cache
line (i.e. 64 bytes). To convert the service rate to MB/s, it
is multiplied with 1000 and divided by (1024 × 1024). The
server period is given in ms, thats why it is multiplied with
1000.

V. INVESTIGATING CPU- AND MEMORY-BUDGETS

In this section we investigate the relationship of CPU-
and memory-budgets and the effect of increase/decrease of
memory-budget Ms on CPU-budget Qs of a MRS Ss using
synthetic experiments. We look into the effects of private and
shared memory banks on the server.

A. Evaluation setup

We consider a multicore system using quad-processors,
and DDR3-DRAM 1333H memory controller with 8 banks
per rank. COTS architectures with these specifications are
available (e.g. Intel Core i5). The upper bound of D` is
computed for both private (D`p) and shared banks (D`s) in
nano seconds (ns) and the value of D`s is almost double than
that of D`p.

1) Two different task behaviours: Two different synthetic
task-types are used in our synthetic evaluations, namely nor-
mal task, and memory intensive task. The normal task gen-
erates a relatively low number of memory requests (CMi =
1000) per task period as compared to the memory intensive
task. The memory intensive task generates higher number of
memory requests (CMi = 20000) per task period. Thus this
task will heavily affect the memory budget requirements of the
server and will also effect the CPU-budget of the associated
MRS indirectly.



2) Timing properties of a MRS and its task set: Since we
have previously shown the composition of MRSes in [8], in
this paper we focus on the individual behaviour of a single
server and how a server’s parameters are affected from its
tasks.

A single MRS is considered for the experiments with a
period of 60 ms, and consisting of three tasks: two normal
tasks and one memory-intensive task. A normal task generates
1000 memory requests per task period, while a memory-
intensive task generates 20000 requests per task period. The
timing properties of the three tasks are presented in Table I.

Tasks τ1 τ2 τ3
Priority H M L

Period (ms) 160 320 640
WCET (ms) 3 4 9

CM 1000 1000 20000

TABLE I: Task properties.

3) Calculating minimum and maximum memory-budgets:
We assume that the server period is given similar to [5],
which is required to evaluate both CPU and memory budgets.
We first calculate a range of minimum and maximum values
for the memory-budget, and then for each value within the
range, we evaluate the minimum CPU-budget so that the
system remains schedulable using equations 1, 5, 9. The
minimum and maximum values (Mmin and Mmax) represent
minimum and maximum bounds for the memory-budget of
the server respectively. From the memory perspective, each
task should be able to issue all its memory requests CMi

within its period Ti and its server should serve these requests
within Ti, otherwise, the task will miss its deadline. Thus
Mmin = max∀τi(CMi/

⌊
Ti−Ps

Ps

⌋
) and Ms ≥ Mmin con-

dition should be satisfied. Mmax is computed as Mmax =
max(∀τiNR(i, Ti)). NR(i, Ti) represent the maximum num-
ber of generated requests till the deadline of task τi, and for
Mmax we consider that all these requests are generated in
one server period Ms. More than these requests cannot be
generated during this period.

B. Synthetic experiments

The main focus of performing synthetic experiments is
to investigate the behaviour of MRS by changing different
parameters, like: (1) changing the value of memory-budget and
exploring its affect on the CPU-budget’s value; (2) checking
the effect of private and shared memory banks; (3) changing
the priority of memory-intensive tasks and investigating its
effect on both budgets; and (4) increasing memory request of
a task and observing its effect on both budgets of the server.
Mmin and Mmax values are computed and the experiments
are conducted for that range of Ms. The upper bound values
for D`p and D`s are used for private and shared memory
banks respectively.

1) Experiment 1: Correlation between CPU- and memory-
budgets: The purpose of this experiment is to investigate the
correlation between both budgets Ms and Qs. The timing

properties of the MRS and its tasks set used for this experiment
are presented in Table I. The results are presented in Figure 4
where the x-axis denotes the range of Ms, and the y-axis
shows the minimum CPU-budget Qs for which the server is
schedulable. Note that for better presentation of the graph, we
shortened the shown range of Ms values.
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Fig. 4: Correlation between Ms and Qs considering private
and shared memory banks.

This graph shows a stair-function, the value of Qs decreases
at certain points with the increase of Ms. The reason is that
when the value of Ms is minimum, and memory requests are
generated at the start of the server period, then Ms depletes
after Ms × D` time and all the remaining CPU-budget for
that period is simply discarded (as shown in second and third
server period in Figure 3). The demand of Qs is high as more
server periods are needed to execute the tasks. Conversely, the
increase of Ms decreases the value of A(i, t) in equation 8.
This results in a decrease BDs(i, t) (see equation 9), and an
increase in sbf∗s(i, t), thus requiring less Qs.

2) The Effect of private and shared memory banks: Figure 4
presents the results of using both private and shared memory
banks using D`p and D`s respectively. We note in this
experiment that the choice of private or shared banks does not
affect the needed CPU-allocation, Qs, much. Often the needed
allocation is the same regardless which memory organization
is used. And in the rather few cases when private banks allow a
smaller allocation of Qs, the decrease in Qs is negligible. It is
mainly due to a big difference between time unit of memory-
interference delay (nano sec) and the time unit of server period
and CPU-budget (ms).

3) Experiment 2: Impact of the period of memory-intensive
task on server budgets: We performed this experiment by
changing the number of memory requests of the tasks in
the previous experiment, i.e., first the high priority task τ1
in Table I generates 20K requests, τ2 and τ3 generate 1000
requests each. It means that the period of memory-intensive
task is 160. Second, the medium priority task τ2 generates
20K (i.e. the period of memory-intensive task is 320) and τ1
and τ3 generate 1000 requests each. Third, the low priority task
τ3 generates 20K other tasks generate 1000 requests (i.e. the
period of memory-intensive task is 640 now). Other properties
of tasks remain the same as presented in Table I.

We see in Figure 5, the need for memory-budget increases
a lot when the memory-intensive task is executed with a
higher priority. There are two reasons for this effect. First, as



rate monotonic is used for priority assignment, therefore, the
shorter period task is activated more often than other longer
period tasks, that leads to an increase in the total number of
generated requests during a time interval (t). It increases the
memory-budget Ms of the server period (obvious from the
graph of τ1 = 20K in Figure 5 where MRS is schedulable
for a higher Ms value). The increase in the number of requests
increases the value of A(i, t) in (8), consequently BDs(i, t)
increases as well (see eq. 9). Second, the higher priority task
affects the request bound function of all the lower priority tasks
by adding the memory interference delay MI(t) to their rbfs
(see eq. 5), thus increasing their rbfs. If the memory-intensive
task has lowest priority, then its MI(t) does not effect other
tasks in the server.

4) Experiment 3: Impact of different server periods on
server-budgets: This experiment is performed for different
server periods (ranging from 20ms till 80ms) for the task
set presented in Table I. The results are presented in Figure 6,
where x-axis presents the server’s memory-bandwidth utiliza-
tion (Ms/Ps× 64× 1000/(1024 ∗ 1024) in MB/s), and y-axis
presents CPU utilization% (Qs/Ps × 100).

In our results, sometimes the longer server period has a
smaller CPU utilization when memory utilization is small
as compared to the shorter server periods (i.e. in Figure 6,
Ps = 80ms has smaller CPU utilization at point 2.5MB/s
than for Ps = 40ms, and for Ps = 20ms at point 2.5MB/s
the system needs more than 100% CPU utilization and is
thus not schedulable). However, when the memory utilization
is increased, the shorter server periods need a smaller CPU
utilization.

In general using traditional server-based scheduling, a
longer server period results in an increase in the blackout
duration that requires bigger CPU budget to schedule the
server [5]. However, from the memory perspective of the MRS,
looking at equation 8, the increase of memory budget has a
big impact on A(i, t) function. Bigger value of Ms, due to the
floor function, decreases the value of A(i, t) in equation 8,
which in turn decreases the CPU budget requirement to
schedule the server. We observe in Figure 6 that at smaller
values of memory utilization (i.e. 2.5MB/s), the longer server
period (Ps = 80ms) brings smaller CPU utilization because
the impact of equation 8 dominates. In other cases where
memory utilization has increased, the blackout duration effect
is dominating. Thus we conclude that the behaviour of MRS
differs from the behaviour of traditional servers.

5) Candidate interfaces for the MRS: An interface of a
MRS specifies the timing properties of the subsystem pre-
cisely. A candidate interface represents the parameters from
some range of valid interface parameters that increase sys-
tem composability while simultaneously ensuring subsystem
schedulability. For a MRS, the problem is to determine both
parameters (CPU-bandwidth and memory-bandwidth) while
keeping the server period fixed (usually half of its shortest
task period [5]).

We present an example consisting of four servers executing
on two different cores with task sets presented in Table II.
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Fig. 6: Impact of different server periods on budgets

We present results of using only 2 cores because of the space
limitations. We find all possible candidate interfaces, including
the minimum subsystem (CPU-)bandwidth and the (memory-
)bandwidth, that have a potential to constitutes an optimal
solution to system load. The server periods is given (assigned
as half of its shortest task period [5]). These candidate inter-
faces for CPU and memory budgets are computed using local
analysis as presented in Table III. It is up to the designer to
select a suitable candidate interface depending on both global
schedulability tests. The global schedulability tests for CPU-
and memory budgets can be performed using equations of
Section IV-B.

During the subsystem development phase, selecting the
optimal interface including both budgets is not feasible without
providing the details of the other subsystems’ interfaces, which
is not possible. To overcome this problem, we propose a
similar solution as presented in [28], i.e., using a finite set of
CPU and memory budgets values (called candidate interfaces).
A candidate interface is chosen when the CPU budget changes
as a function of changing the memory budget (see Table III).
These candidate interfaces can be used later in the subsystems
integration phase. It is not straightforward to find an optimal
interface for the MRS, since a decrease in one budget value
results in an increase in the second budget value. Finding
optimal candidate interface selection for the MRS is left for
the future.

Tasks τ0 τ1 τ2 τ3 τ4 τ5 τ6
Server S0 S0 S1 S2 S2 S3 S3
Prio H L H H L H L
T 40 80 160 80 160 240 240

WCET 2 4 8 4 10 8 8
CM 20K 40K 80K 40K 60K 60K 60K

TABLE II: Task properties.
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Fig. 5: Effect of High- and low-priority memory-intensive task on Ms and Qs using private banks only

Core 0 Core 1
S0 S1 S2 S3

Priority P Q M Priority P Q M Priority P Q M Priority P Q M

High 20

17 20001

Low 80

50 40001

High 40

35 35001

Low 120

77 60001
16 22132 49 45988 34 35330 76 65580
15 24400 48 52791 33 37597 75 72382
14 26667 47 59593 32 39865 74 79185
12 26668 46 66396 31 42132 73 85988
11 31498 45 73199 30 44400 72 92791

29 46667 71 99593
24 46668 70 106396
23 51294 69 113199

TABLE III: Multiple candidate interfaces for global schedulability analysis. Empty cell means not schedulable

6) Discussion: From experiment 1, we observe that Qs
decreases significantly at the start with the increase of memory
budget Ms. And after a certain value, more increase in Ms

does not affect the value of Qs much. This helps in selecting
the suitable values for Qs and Ms. We also observe (see Exp.
3) that the behaviour of MRS is not similar to the traditional
server. The change in server period has different impacts on
CPU and memory budgets.

The presented analysis in this paper is pessimistic. We can
identify some factors that contribute to the pessimism. The
biggest reason of pessimism is our consideration of worst case
Ms depletion where all memory requests are generated at the
start of the server period. As a result Ms depletes and the
remaining Qs is discarded (see Figure 3). However, it could
not be the case in reality. To improve the analysis, we should
look at the start of task periods. We leave this improvement
as a future work.

Over-provisioning the budget: typically in server based
scheduling, if possible, we can over-provision the resource to
get the shorter response times of the tasks. We calculated Qs
without considering memory requests (CMi is 0 for all tasks).
We get a constant value for Qs which can be considered as a
reference point. By adding memory requests CMi, the value
of Qs will increase slightly. In order to get the shorter response
times for the tasks, the value of Qs can be increased (budgets
can be over-provisioned), as long as the global schedulability
of the system is satisfied.

VI. CONCLUSION

We have proposed a multi-resource server (MRS) approach
to address composability of independently developed real-time
subsystems executed on a multicore platform. The memory-
bandwidth is added as an additional server-resource to bound
memory interference from other servers executing concur-
rently on other cores thus to provide predictable performance
of multiple subsystems. Consequently, tasks within a multi-
resource server execute provided with both CPU- and memory-
budgets. In this paper, we have presented a compositional
analysis framework for MRS including a complete and com-
posable local and global analysis. For memory interference,
we have safely bounded the memory contention for DDR
DRAM memory controller that are commonly used in COTS
multicore architectures. Further, we have performed an experi-
mental study to investigate the relationship between the server
parameters including memory-budget and CPU-budget of the
server and gives indications to evaluate the optimal parameters.
Finding optimal interfaces for the MRS is an open issue.

We have explored the source of pessimism in our analysis
and in future we intend to improve the analysis. It would
be interesting to find an algorithm to calculate the optimum
budgets for both resources of the MRS and to find smart
online algorithms to assign the unused capacity of one resource
to another server to improve overall average response times.
Another direction is to transcend the boundaries of software
engineering and real-time systems by embedding the MRS



within the software components [33], [34] running on multi-
core platforms.
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[2] R. Inam and M. Sjödin. Combating unpredictability in multicores
through the multi-resource server. In Workshop on Virtualization for
Real-Time Embedded Systems (VtRES). IEEE, September 2014.

[3] J. P. Lehoczky, L. Sha, and J.K. Strosnider. Enhanced aperiodic
responsiveness in hard real-time environments. In Proc. 8th IEEE Real-
Time Systems Symposium (RTSS), pages 261–270, December 1987.

[4] B. Sprunt, L. Sha, and J. P. Lehoczky. Aperiodic task scheduling for
hard real-time systems. Real-Time Systems, 1(1):27–60, June 1989.

[5] I. Shin and I. Lee. Periodic resource model for compositional real-time
guarantees. In Proc. 24th IEEE Real-Time Systems Symposium (RTSS),
pages 2–13, December 2003.
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