
Ontology-based Identification of Commonalities
and Variabilities among Safety Processes

Barbara Gallina1 and Zoltán Szatmári2

1 Mälardalen University, Väster̊as, Sweden barbara.gallina@mdh.se
2 Resiltech Srl, Pontedera, Italy szatmari@mit.bme.hu

Abstract. Safety standards impose requirements on the process used to
develop safety-critical systems. For certification purposes, manufacturers
have to properly interpret and meet these requirements, which exhibit
commonalities and variabilities. However, since different terms are used
to state them, the comparative work aimed at manually identifying and
managing these commonalities and variabilities is hard, time-consuming,
and costly. In this paper, we propose to solve this problem by creating
ontology-based models of safety standards and automate the comparative
work. Then, we show how the result of this comparative study can be
exploited to semi-automate the generation of safety-oriented process line
models. To illustrate our solution, we apply it to portions of ISO 26262
and EN 50126. Finally, we draw our conclusions and future work.

1 Introduction

Safety standards impose requirements on the development process of safety-
critical (software) systems. For certification/conformance purposes, manufactur-
ers have to properly interpret and meet these requirements, which exhibit com-
monalities and variabilities. More specifically, commonalities and variabilities can
be identified when comparing different criticality levels within the same version
of a single standard, different versions of the same standards, or different stan-
dards within the same domain or even within different domains. The time and
cost required for performing the comparative work increases when moving from
one single version to different standards within different domains. This is due to
the usage of different terms, which sometimes do not denote a different seman-
tics. Irrelevant terminological differences are sometimes introduced for political
reasons [1]. These differences slow down not only the provision of deliverables but
also the audit of such deliverables. Identifying commonalities and variabilities is
crucial to enable manufacturers to speed up the creation of process-related deliv-
erables via systematic reuse. At the same time well-defined and managed reuse,
speed up the audit process on the certification authority side. In the context
of security-informed safety [2], irrelevant terminological differences contained
within safety-specific and security-specific standards prevent cross-fertilization
as well as reuse. Authors state: The commonalities between safety and security



2 Barbara Gallina and Zoltán Szatmári

are frequently obscured by the use of different concepts and terminologies. In-
deed, there is considerable variation in terminology both within and between the
safety and security communities. Thus, to achieve a shared understanding of the
key concepts within each domain, there is a need to establish a lingua franca
or even a common ontology [2]. In this paper, to ease the identification and
systematization of commonalities and variabilities, we propose a new method
called OPER, which stands of Ontology-based Process Elements Reuse. In our
method, we propose to provide ontology-based models (given in compliance with
OWL2.0) related to the safety processes mandated within the standards, then
to semi-automate the identification of commonalities and variabilities. Finally,
based on model-driven engineering principles, we propose to semi-automate the
generation of Safety-oriented Process Line (SoPL) [3] models (given in compli-
ance with SPEM (Software Process Engineering Meta-model) 2.0) based on the
calculated commonalities and variabilities. OPER supports the creation of a lin-
gua franca but at the same time allows certification bodies to preserve their
specificities if this is required. The rationale behind OPER is that ontologies are
able to capture domain knowledge in a precise way. Ontologies provide a nat-
ural formalism for representing domain knowledge and capturing constraints.
In this paper, we use ontologies to capture the process (and SoPL) require-
ments. Then, we apply ontology-related reasoning to manipulate, validate the
constructed models or transform them to a required representation. To show
the usage and effectiveness of OPER, we apply it on small portions of safety
standards. The rest of the paper is organized as follows. We present: essential
background, in Section 2; OPER, in Section 3; OPER’s application, in Section 4;
finally, conclusion and future work, in Section 5.

2 Background and related work

Safety standards (focus on ISO 26262 [4] and EN 50126 [5]). Based on Gallina
et al. [3], for both standards, we focus on a specific portion of the process that
includes hazard analysis and risk assessment (HARA) activities. The portion is
named Concept phase in ISO 26262 and Risk Analysis in EN 50126. For the
HARA activities, we recall the required information that is necessary to under-
stand our examples presented in Section 4. ISO 26262-HARA clause is aimed
at: identifying and categorizing the hazards; formulating the safety goals related
to the preventions/mitigations of the hazards. This clause consists of a number
of tasks that need to be performed in a specific order: 1) Initiation of HARA,
2) Situation analysis, 3) Hazard identification, 4) Hazard classification, 5) ASIL
determination, 6) Determination of safety goals, and 7) Verification of hazard
analysis, risk assessment, and safety goals. EN 50126-Risk Analysis Phase is
aimed at: empirically or creatively identifying the hazards associated with the
system; estimating the risk associated with the hazards; developing a process
for risk management. This phase consists of a number of tasks that need to be
performed in a specific order: 1) Hazard identification, 2) Hazard classification,
3) Risk evaluation, 4) Determination and classification of acceptability of the



OPER 3

risk, 5) Establishment of the Hazard Log, 6) Assessment of all phase’s tasks.
Safety-oriented Process Lines-A Safety-oriented Process Line (SoPL) [3] is
a family of highly related safety-oriented processes that are built from a set of
core process assets in a pre-established fashion. Core assets can be classified as
full or partial commonalities or variabilities [3]. A partial commonality denotes
a composite process element (e.g., a task composed of steps) that contains a
subset, which constitutes the commonality among all the composite process ele-
ments of the same type. For instance, two tasks represent a partial commonality
if they contain a subset of equal steps. During the domain engineering phase [3],
safety processes are compared to retrieve core assets: (partial) commonalities
and variabilities. Once the core assets are defined, a safety process can be de-
rived by performing two steps: 1) selection of all the (partial) commonalities plus
the desired variants at variation points; 2) composition of the selected elements.
SPEM 2.0-SPEM 2.0 [6] is the OMG’s standard for systems and software pro-
cess modelling. SPEM 2.0 offers support for modeling reusable process content as
well as process variability. In SPEM 2.0, a process element (e.g. an activity) can
be defined as a variability element and its variability type can be characterized.
The Variability Type enumeration class defines the different types of variabil-
ity. In this paper, we only recall one variability type, namely contributes, which
logically replaces the original element (the base) with an augmented variant. In
SPEM 2.0, the expected work can be broken down hierarchically via a series
of elements (e.g., activities). Ontology-related Concepts-An ontology [7] is
a model that represents a domain and is used to reason about the inter-related
objects in that domain. An ontology generally includes: 1) Individuals (Objects)
that are basic elements of the domain. 2) Classes that are sets of objects sharing
certain characteristics. 3) Relations (properties) that are sets of pairs (tuples)
of objects. Relations define ways in which objects can be associated to each
other. 4) Attributes that are special relations where the class is related to a
concrete domain (e.g. integer, string). To automate the analysis of an ontology
(i.e., inference of logical consequences from a set of asserted facts or axioms and
evaluation of model consistency), reasoners are used. Reasoners are also used to
check whether a class is a subclass of another class(subsumption test). By per-
forming such tests it is possible to compute the inferred ontology class-hierarchy,
i.e., a class-hierarchy. Ontologies can be easily extended and combined. OWL2.0
(Web Ontology Language) [7] is an ontology language. An OWL2.0 ontology
consists of a collection of facts, annotations, and axioms, which describe differ-
ent items (individuals, concepts, relations and attributes). OWL2.0 can operate
with different expression levels, called OWL2.0 profiles, which allow different
sets of axioms. In this paper, we choose OWL2.0 EL, because it allows us to
define: Subclass, Disjoint classes, Disjoint union and Equivalent Classes. A com-
monly used ontology development tool is Protégé [8] since it facilitates the use of
several reasoners and provides application program interfaces (e.g., OWLAPI)
for efficiently querying/manipulating the dataset, generated as the output of
the reasoning. Model-driven Engineering (MDE)-MDE is a model-centric
software development methodology. Model transformations are used to refine



4 Barbara Gallina and Zoltán Szatmári

models. A model transformation (e.g. Model-to-Model), defined as a set of rules,
transforms a source model (compliant with one meta-model) into a target model
compliant with the same or a different meta-model. Related Work-No related
work exists on ontology-based identification of commonalities and variabilities
among processes. As already extensively explained by Gallina et al. [3], SoPL is
an extension of the process line notion.

3 OPER

OPER builds on top of previous work and combines principles related to ontolo-
gies, SoPL engineering, and MDE. OPER is constituted of three chained tasks,
which are: T1 (Ontology-based safety process modeling), T2 (Ontology-based
Commonalities & Variabilities Identification and Merging), and T3 (SPEM2.0-
compliant SoPL model generation). In T1, a process engineer in cooperation
with an ontology and a standards expert is responsible of modeling safety pro-
cesses according to the best practices in ontology modeling (i.e., OWL2.0 EL).
These models are also based on the SPEM 2.0-terminology. For instance, the
structures that represent the breaking down of the work (e.g., process, phases,
activities, tasks, etc.) are aligned. To model the processes, Protégé is used. To
provide such models, we map SPEM 2.0 and OWL2.0 EL concepts. The map-
ping, shown in Table 1, focuses on concepts related to the process structure.

Table 1. Concepts mapping

SPEM2.0 BreakDownElement Variability type Equivalence relation Composition of BreakDownElements

OWL2.0 EL Class ObjectProperty EquivalentClasses Axiom ObjectProperty

This structure describes a hierarchy of process elements, where phases are
hierarchically broken down into activities/tasks/steps. Each process is repre-
sented as a tree (according to the graph theory terminology). We interpret the
full and the partial commonality properties on two process elements in this hi-
erarchy. The process elements are mapped to classes in the ontology, and the
relations are expressed using object properties. For sake of clarity, we point out
that we only consider a two-level hierarchy of work decomposition. In T2, the
experts identify commonalities and variabilities in order to merge them within
a single model representing an ontology-based SoPL. The trivial equivalences
between corresponding process elements are defined. More precisely, an “equiv-
alent of” axiom is added to the model (including the two safety process models)
when two safety process elements are called in a different way in the different
standards but they denote the same concept [9]. Based on the definition of full
(or partial) commonality and the previously defined matching, our bottom-up
algorithm identifies the safety process elements that have some type of common-
ality. Our algorithm is implemented in Java and uses OWLAPI. The first part
of our implementation consists of an algorithm aimed at constructing the com-
mon subtree, where the nodes are the process elements and the edges are the
refinement relations between them. This algorithm traverses the safety process



OPER 5

models (trees) and based on the defined equivalence relations the commonalities
are identified. In order to get the SoPL model, the variabilities should be also
added to the model. In the second phase the algorithm traverses each process
model and identifies the variabilities and adds the required process elements to
the process line model and connects them using the extends relation to the re-
quired model element. In our implementation the safety process-related trees are
defined via a recursive data structure as presented in Table 2, column-1. Each
node in the tree is an object that has a parent and that can be related to other
nodes in the tree, via composes and contributes relations.

Table 2. Pseudo code

Recursice data structure Common subtree construction function

Structure TreeNode { function buildCommonSubTree(TreeNode: A,B,C){

TreeNode: parent foreach (nodeA=A->composes)

TreeNode[]: composes if (hasEquivalent(nodeA,B->composes)

TreeNode[]: contributes } nodeB=getEquivalent(nodeA,B->composes); D = new TreeNode(nodeA,nodeB);

buildCommonSubTree(nodeA,nodeB,D) }

The pseudo code given in in Table 2, column-2, represents a recursive func-
tion that is used to build a common subtree. The function is called with three
process trees as parameters: the root elements (A and B) and a newly created
root element of the common process tree (C). In each recursive call A, B, C
logically represent the same node (same hierarchical level and process element).
For each child tree nodes connected by a composes relation to the tree node rep-
resented by A we identify the equivalent pair in the set of child nodes of B. After
a successful match, we add a new node (D) (based on the two equivalent nodes
(nodeA and nodeB)) as a child node of C to the common subtree and start a new
recursive iteration. In T3, the process engineer jointly with an ontology expert
generates a SPEM2.0-compliant model representing the SoPL by using a model
transformation implemented within a transformation engine. During this task,
we define a transformation aimed at generating a SPEM 2.0-compliant SoPL
model from an OWL2.0-compliant SoPL model. Our transformation (still part
of an ongoing work) includes the following rules: 1) Identify the hierarchical lev-
els of the process tree. The leaves in the ontology-based process tree are mapped
onto the lowest level of the SPEM2.0 process structure. Then, by parsing the tree
bottom-up, each parent node in the process tree is mapped to the next level of
the SPEM2.0-compliant work breakdown structure. 2) Identify the base elements
of the ontology-based SoPL: determine the root process element and by following
the composes relation the common subtree can be identified. 3) Transform the
base into SPEM 2.0 SoPL model: each process element in the common subtree
should be transformed into a SPEM 2.0 work breakdown element based on the
hierarchical level identified in the first rule. 4) Transform the variability-related
part of the SoPL model. To do that, the following steps should be performed:
1) traverse the process tree by starting from the root process element; 2) fol-
low both the composes and contributes relations. Every process element that is



6 Barbara Gallina and Zoltán Szatmári

characterized by a contributes relation should be transformed into a variability
element and its variability type attribute should be set to contributes.

4 Applying OPER

We construct the two ontologies that represent the safety processes. For each
standard, we consider only one clause, see Section 2, (interpreted as SPEM2.0-
task) and we only model one hierarchical level. The two safety process trees are
depicted in Table 3, column-1, on the left-hand side, we can see the model of
the EN 50126-Risk Analysis phase and on the right hand side the ISO 26262-
Concept phase. Before executing the algorithm to create the SoPL model, we
add the (partial) equivalence relations. In Table 3, column-1, these relations are
shown by using dotted lines. After the execution of our algorithm, we obtain
the SoPL ontology, depicted in Table 3, column-2. HARA represents a partial
commonality. The naming of the new nodes is performed semi-automatically.
First, if two nodes are merged into one single node, the names are concatenated
automatically. Then, a manual post-processing performed in order to provide a
human-readable name. For presentation purposes, in Table 3, column-2, we show
the result of post-processing. Simplified names for the common process elements
instead of the generated ones are given. In Table 3, column-2, we present the
commonalities (via composes) and the variabilities (via contributes).

Table 3. Ontologies models

Model of the two safety processes SoPL model

This ontology is built up from three parts using the ontology composition
support: 1) the commonalities, the variabilities that are derived from 2) EN 50126
(marked in green) and from 3) ISO 26262 (marked in orange). By applying the
transformation rules given in Section 3, we can manually create the SoPL model.
Based on the model depicted in Table 3, column-2, the hierarchical level of the
process elements can be specified and afterwards the base (common subtree) can
be mapped to SPEM 2.0 SoPL model. The variabilities (marked in orange and
green) are mapped to work breakdown elements and the contributes relation is
used to connect them to the required place in the model. The base, Base-Task in
Fig. 1, can vary in an additive way via the contributes relationship to distinguish
tasks that are compliant with either EN 50126 or ISO 26262.



OPER 7

Fig. 1. Partial safety-oriented task line.

5 Conclusion and Future Work

To reduce the complexity, cost, and time related to the interpretation and com-
parison of standards, in this paper, we presented OPER, a novel method that
permits users to: 1) refer to a common process-related lingua franca, 2) semi-
automate the standards comparison, and 3) generate SoPL models from safety
process models represented via ontologies. The method was presented in the
context of safety standards. However, more in general, it is applicable to nor-
mative documents that contain process-related requirements. In this paper, we
focused on simple process structures. In a short-term future, we will tackle more
complex structures. In cooperation with industry and assessors, we will properly
define the concepts mapping that underlies the automated comparative work.
In a medium/long-term future, we plan to provide a prototype of tool-chain (in-
cluding THRUST [10]), aimed at providing evidence concerning the effectiveness
in terms of time and cost reduction (manual vs. semi-automatic work).

Acknowledgments. This work is supported by the Swedish Foundation for
Strategic Research (SSF) project SYNOPSIS-SSF-RIT10-0070.

References

1. Ferrell, T., Ferrell, U.: Assuring avionics-updating the approach for the 21st
century. In: Computer Safety, Reliability, and Security. Volume 8696 of LNSC.
Springer (2014) 375–383

2. Bloomfield, R., Netkachova, K., Stroud, R.: Security-informed safety: If it’s not
secure, it’s not safe. In: Software Engineering for Resilient Systems. Volume 8166
of LNSC. Springer (2013) 17–32

3. Gallina, B., Sljivo, I., Jaradat, O.: Towards a safety-oriented process line for en-
abling reuse in safety critical systems development and certification. In: Post-
proceedings of the 35th Software Engineering Workshop (SEW), IEEE (Oct. 2012)

4. ISO26262: Road vehicles Functional safety. International Standard (2011)
5. BS EN50126: Railway applications: The specification and demonstration of Reli-

ability. Availability, Maintainability and Safety (RAMS) (1999)
6. Object Management Group: Software & Systems Process Engineering Meta-Model

(SPEM), v2.0. Full Specification formal/08-04-01. (2008)
7. OWL 2 Web Ontology Language: http://www.w3.org/tr/owl2-syntax/
8. Protégé: http://protege.stanford.edu/
9. Pataricza, A., Gönczy, L., Kövi, A., Szatmári, Z.: A methodology for standards-

driven metamodel fusion. In: Model and Data Engineering. Volume 6918 of LNSC.
Springer (2011) 270–277

10. Gallina, B., Lundqvist, K., Forsberg, K.: THRUST: A Method for Speeding Up
the Creation of Process-related Deliverables. In: Proceedings of the 33rd IEEE
Digital Avionics Systems Conference. DASC (2014)


