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ABSTRACT
A trend in automotive infotainment software is to create a
separation of components based on different domains (e.g.
Navigation, Radio, etc.). This intends to limit susceptibil-
ity to errors, simplify maintainability and to organize devel-
opment based on domains. Multi-OS environments create
another layer of separation through hardware/software vir-
tualization. Using a hypervisor for virtualization allows the
development of mixed critical systems. However, we see a
contradiction in current architectures, which on one side aim
to separate everything into virtual machines (VMs), while
on the other side allow inter-VM-connectivity. In the end all
applications are composited into one homogeneous UI and
the previous intent of separation is disregarded.
In this paper we investigate current architectures for in-
vehicle infotainment systems (IVIS), i.e. mixed critical sys-
tems for automotive purposes, and show that regulations
and/or requirements break the previous intents of the archi-
tecture.

Categories and Subject Descriptors
D.4.7 [Operating Systems]: Organization and Design—
real-time systems and embedded systems, distributed systems;
H.5.2 [Information Interfaces and Presentation]: User
Interfaces

Keywords
Ubiquitous Interoperability, Heterogeneous Platforms, User
Interface, Composition, Hypervisor, Virtualization

1. INTRODUCTION
Modern vehicles provide many features to the driver and

passengers of a car. Multimedia, navigation, advanced driv-
ing assistance and car safety features are standard in every
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new car. Introducing more and more features raises the com-
plexity of hardware and software in cars. A common car
built in 2015 contains up to 110 interconnected electronic
control units (ECUs), which operate through multiple hun-
dred thousand lines of code [4].

Cluster instruments and IVIS have been separated onto
different ECUs, because of safety critical and non-safety
critical features/requirements. However, current trends like
fully digital cluster instruments (FPKs) create new design
possibilities and combine safety critical applications (e.g.
digital speedometer) and non-safety critical applications (e.g.
navigation) onto a single screen. Early approaches used
hardware layering to composite information on hardware
layer (e.g. by using LVDS) in order to keep both ECUs
separated. Though, there are also approaches in building
mixed critical systems, where one ECU handles both types
of software using virtualization for separation. The term
multi-OS is further on used to describe a hypervisor based
mixed critical system that includes a full IVIS.

Typical scenarios from the industry have been shown in re-
cent automotive presentations. Apple Car Play and Google
Auto provide examples on how Apps from mobile OSs are
seamlessly integrated into IVIS. There, the mobile OS is
remotely connected to the IVIS, which only serves as a pre-
sentation device, whereas all logic and functionality remains
on the mobile phone. In the multi-OS approach the user
does not have to provide a mobile phone, therefore it is pos-
sible to rely on the mobile OS, so that an application for
Navigation can be used, whether or not a mobile phone is
connected.

This approach is interesting for car manufacturers and
original equipment manufacturers (OEMs), because it re-
duces the amount of ECUs, which at the same time saves
weight, energy and space. It also reduces the costs for ex-
pensive hardware components, such as the housing or power
supply. Further on, it enables the use of applications from
other OSs, which therefore can reduce development and en-
gineering costs and time.

Another trend in the automotive industry is to introduce
more adaptive driver assistance systems (ADAS), which leads
to fully autonomous driving vehicles. While a safety criti-
cal system is given full control of the car, the driver can
use another part of the system to enjoy the IVIS. Merging
those two parts into one homogeneous system enhances the
requirements for a clear separation.



Multi-OS environments use a type-one/baremetall hyper-
visor to run different OS types (e.g. real-time OSs (RTOS)
or general purpose OSs (GPOS)) concurrently on a multi-
core hardware. The hypervisor can provide communication
channels between virtual machines (VMs), which i.a. allows
applications from different VMs or even VMs itself (with
mixed criticality) to communicate with each other. In the
end applications or VMs are unified into one homogeneous
UI onto one or more screens, while at the same time a clear
separation through virtualization is supposed to be ensured.

However, the separation through virtualization seems to
be contradictory. A homogeneous UI for the user, which
contains access to functions from different VMs, will conse-
quently require inter-VM-communication as soon as shared
resources (i.e. input/output modalities) exist. Addition-
ally safety regulations, ISO standards or legal requirements
may enforce communication between all parts of the system.
Nevertheless, as soon as a communication between separated
VMs exists, the previous separation is weakened, if not bro-
ken.

In this paper we investigate multi-OS architectures and
current approaches in the automotive industry. We show
the contradiction by comparing approaches and present a
minimalistic approach for a multi-OS. The remainder of the
paper is structured as follows: In section 2 current research
and related work is described. In section 3 different multi-OS
environments are shown and discussed. At last a conclusion
and future work is presented.

2. RELATED WORK
Using multi-OS environments to separate domains have

been covered in various publications, which often describe
communication between domains in various ways.

Software, which uses virtualization mechanisms to run
multiple operating systems on the same hardware platform,
is often referred to as “hypervisor”. A hypervisor can be
classified in two different types: Type one (or native, bare
metal) hypervisors (e.g. “Xen”, “KVM” and “Hyper-V”) run
directly on the host’s hardware to assign the hardware com-
ponents and to manage guest OSs. Type two (or hosted)
hypervisors (e.g. “VMWare”, “Virtual Box” and “Virtual
PC”) run as application and request resources of the host
OS.

While [15] explains the history of virtual machine manager
(VMM) and shows example use case scenarios, [9] discusses
the role of virtualization in embedded systems and states,
that the strongest motivation for virtualization is security.
The latter also mentions the contradiction: “By their very
nature, embedded systems are highly integrated, all their
subsystems need to cooperate in order to contribute to the
overall function of the system. Isolating them from each
other interferes with the functional requirements of the sys-
tem”.

In [8] a display system called “Blink” is presented, that
allows to safely multiplex complex graphical content from
multiple untrusted virtual machines onto a single GPU. In
Blink one VM is given full control of the GPU, while all
other VMs use virtual GPUs. An API is required to be im-
plemented in each application in order to access the virtual
GPU. Therefore all applications are specific to the Blink ar-
chitecture, which makes the use of Apps from popular App
Stores difficult, or even impossible if the application is not
compatible with the wrapper.

A virtualization concept for mixed critically graphic ECUs
and an implementation using a type one hypervisor (i.e.
VMM) is presented in [6]. A bidirectional communication
between VMs is based on a “Isolated Communication Chan-
nel”. This secure communication requires authentication
through an “authentication manager” located in a dedicated
VM called “Virtualization Manager”, which also manages
shared resources.

In [7] an access control mechanism is presented, that al-
lows to manage applications access to certain screen ar-
eas. The mechanism also handles authorization, prioriti-
zation and hierarchies for applications. Advanced protocols
are used to handle communication between applications and
VMM.

In [14] compositing of GUIs from a partitioned IVIS is
shown. Partitions, i.e. multiple OSs, run concurrently on
a type one hypervisor. Applications running on those OSs
are presented in a homogeneous GUI, which is controlled
by a component called “compositor”. Applications have to
provide a GUI that fits into the overall UI concept. The im-
plementation of the inter-VM-communication uses shared
memory and an enhanced Wayland protocol. The later re-
lies on a socket connection to exchange events and request
between client and compositor.

2.1 Use Cases for Virtualization
There are several use cases which make the use of virtual-

ization interesting for automotive embedded systems. The
following list shows the most popular reasons, based on our
literature research:

• In order to protect a safety relevant part of the overall
system, all services and applications that have a high
risk of being compromised are separated on VMs [5,
15, 9, 14].

• The composition of OSs form an overall system. Us-
ing different OSs in order to take advantage of appli-
cations, which are specific to a particular OS [9, 6].

• Limiting hardware resources for a VM in order to en-
sure that a particular VM can never use more resources
(CPU, RAM, etc.) as previously defined [9].

• Dedicate hardware resources (e.g. GPU, CAN-Controller)
to a particular VM in order to isolate them from other
VMs [15, 8].

• Decoupling of development cycles in order to be able
to update applications or the OS itself without having
to verify the rest of system [14, 1].

A communication between the different VMs in particular
is not required to implement those use cases.

2.2 Requirements/Regulations
When developing automotive software, there are regula-

tions, guidelines and demands (e.g. car manufacturer, cus-
tomer), which form requirements for the software. Inter-
connections between VMs are also caused by those require-
ments. Applied software architectures show, that they are
used to

a) enable access to dedicated hardware resources in other
domains/VMs ([6], [8], [11]),



b) provide identification mechanism between distinct sys-
tems ([12, 17.1.5.1], [6]),

c) provide information about the current state of the sys-
tem, which also includes access to domain specific data
sources ([11, 5.2.2.2.4], [14]),

d) handle input/output operations [14, 6] or

e) provide flexibility to or to simplifiy software develop-
ment [6].

3. ARCHITECTURAL APPROACHES
In this section different architectural approaches will be

explained in order to show their differences and correspond-
ing consequences, especially in regard of interconnectivity.

3.1 Clear Separation Approach
In a simple naive approach two or more OSs share a sin-

gle hardware platform through a type-one hypervisor, as
depicted in fig. 1.

App11 App12 App13 App21 App22 App23

OS1 OS2

Hypervisor

Hardware

CPU2CPU1 GPU1 CAN1 GPU2 USB2

Cluster Instruments Infotainment

Figure 1: Clear Separation: Two or more OSs
(VMs) run concurrently (without interconnections)

Devices are dedicated to a certain OS. This approach as-
sumes, that resources do not have to be shared, because
each OS has its own Input/Output components. Therefore
a communication between the different VMs is neither re-
quired nor necessary.

Depending on the hardware architecture and the used
hypervisor the overall system and encapsulation between
VMs can be assumed to be secure. Though, design flaws in
hardware architecture may make attacks based on exploited
hardware components possible [16].

This architecture can be used to save space for hardware,
reduce hardware components and therefore costs. It also
makes use of a multi-core CPU and RAM on a single hard-
ware platform for multiple OSs. Despite that, it is similar
to two separated devices (i.e. ECUs). Standard scenarios,
where FPK and IVIS are clearly separated, will not require
interconnections. An example for this architecture with two
VMs: one VM provides all functions for the FPK and an-
other VM provides all functions of the IVIS. FPK and IVIS

have dedicated input/ouput devices, such as e.g. a touch-
screen for the IVIS and a standard screen for FPK.

However, this approach applies for automotive HMI con-
cepts, where FPK and IVIS are physically separated parts
in a car’s dashboard. Newer scenarios composite FPK and
IVIS functions into one screen [2]. A modern unified UI
may provide access to and information from multiple hun-
dreds of device functions [3]. Therefore it is impossible to
provide context dependent soft keys for all functions in a
cars dashboard. Decisions have to be made to decide which
functions should be directly accessibly [13]. In the end a
few controls provide access to all functions and, in case of
an unified UI in a multi-OS, also to functions in different
VMs.

3.2 Layers of Interconnections
The kind of interconnection between two layers varies as

well as the layer in which compositions take place [10]. Fig.
2 shows an abstract representation of interconnections for
two VMs.

When resources are shared, interconnections are required.
An example could be a touch-screen, which is used as a
shared resource for FPK and IVIS. Both VMs provide graph-
ical output, which have to be composited onto one screen.
The touch-screen will provide input events to one of the
VMs (dedicated device), which might have to be dispatched
to another VM in case both VMs expect those input events.
Applications may be required to authenticate itself to get
access to a certain part of a screen [6, 7, 11]. Whenever
applications share one screen, a synchronisation, i.e. state
exchange, between applications might be required for visual
transitions/composition. For example to hide visual parts
of an application to allow an application on another visual
layer below to be visible. In those cases interconnections are
inevitable.

This indicates, that connections between VMs can exist
on different layers, i.e. a layer in one VM can be connected
to another layer in another VM (fig. 2 (c,d)). Additionally,
connections can be uni- or bidirectional (fig. 2 (a,b)).

A connection on application layers requires both appli-
cations to know each other (fig. 2 (a)). A protocol must
exist, which handles the communication. Usually both ap-
plications have access to inter-VM-communication channels,
such as e.g. a shared memory or a virtual socket connection.

Input events may be received through bus systems (e.g.
CAN) or dedicated input devices. Those events need to
be redirected to a certain application (fig. 2 (b)) or to a
virtual device in OS layer (fig. 2 (c)). The difference can
be application specific events, which cannot be handled by
a generic input device of an OS.

Applications may need a connection to a compositor or
window manager in order to create, position or display win-
dows (fig. 2 (e)). If the OS itself has an own window man-
ager, the output can be used by the compositor. Therefore
applications do not have to be adapted to be used with the
compositor (fig. 2 (d)).

Allowing an application in one VM to access functions
of the hypervisor, e.g. to restart certain VMs, is another
example for a connection on different layers.

A separation of two entities has to be broken, when one
of the entities requires global information, i.e. information
from/access to one or more other entities. This inevitably
requires a connection between those entities.
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Figure 2: Layers of Interconnections
App: Application; OS: Operating System; Input Mgr: Input Manager; Auth Mgr: Authentication Manager;

CAN: Controller Area Network;

3.3 Minimalistic Approach
An approach where communication between VM is kept to

a minimum is depicted in fig. 3 and described further on. In
this scenario the system has two VMs: one with RTOS and
another one with a GPOS. The RTOS contains a composi-
tor component, critical applications (e.g. speedometer) and
has exclusive access to the screen. The GPOS runs applica-
tions (e.g. Navigation, Browser, etc.), has internet access as
well as 3rd party applications. The user can install/change
applications on the GPOS.

App11 App12 Comp. App21 App22 App23

OS1 OS2

Hypervisor

Hardware

CPU2CPU1 GPU1 CAN1 GPU2 USB2

Touch-Screen

DC2 VID2DC1

Input Events

Pixel Buffer

Figure 3: Minimalistic Approach
App: Application; Comp: Compositor; OS: Operating

System; DC: Data Container; VID: Virtual Input Device;
CAN: Controller Area Network;

Each VM has a shared memory partition containing a data
container, which provides information/data to other VMs.
Only the owner of a shared memory partition is allowed to
write data to the data container. Additionally only a trusted

OS (the RTOS) may access those data containers. Therefore
it is protected against manipulation from other VMs. The
communication is one way, based on “fire and forget” event
systems.

While the RTOS has exclusive access to the screen, all
other VMs provide pixel buffers only via data container. A
pixel buffer can be created on application or OS level, and be
used by the compositor to composite the overall GUI. VMs
may or may not use hardware rendering through a dedicated
GPU. Though, the final rendered output is copied into the
data container. The important aspect here is, that only
non-interpretable data is provided.

A GPOS does not know about other existing VMs. It
receives its input events through virtual devices provided
by the hypervisor. Touch events for example have to be
prepared by the compositor to fit the local coordinate system
of the GPOS before it is transfered via hypervisor to the
virtual device of the GPOS.

This approach allows other VMs to be used inside a com-
positor, without using complex protocols. Although our ap-
proach requires only read-only and one-way communication,
there might be requirements that cannot be fulfilled.

Possible Extensions.
In order to provide additional information to each VM,

the data container can be extended to also contain state
information, such as e.g. current applications running, re-
quests to show notifications, etc. Also signing the data in-
side the data container using certificates through “trusted
applications” is a possibility. However, as we assume that
every GPOS can already be compromised, the data has to
be checked through consistency checks, which ensures, that
the RTOS is not compromised.

4. DISCUSSION
In the previous section three different approaches were

introduced. The clear separation approach is fulfilling re-
quirements for a hypervisor. The second approach shows
interconnections between two VMs, which exist because of



requirements and regulations (as mentioned in 2.2). These
two approaches represent two extreme cases: a completely
separated multi-OS and a completely interconnected multi-
OS.

Real world automotive scenarios will use a balanced mix-
ture of those two approaches. The idea is to use function-
ality from all VMs, while at the same time keep the safety
critical systems isolated. However, the amount and level
of interconnections depend on the actual requirements of
the overall system. Especially the UI layer, where different
heterogeneous UIs from different VMs are composited, has
usually many requirements regarding the usability and user
interaction.

The third approach suggests a way of minimizing inter-
connections between two or more VMs by using only certain
interconnections, such as one-way/read-only data container
and virtual input/output devices. This is supposed to re-
duce dependencies and to eliminate the use of complex pro-
tocols, such as the Wayland protocol between different VMs.
Nevertheless, this approach has to be tested to ensure that
actual real world requirements can be fulfilled.

5. CONCLUSION
In this paper an investigation into multi-OS architectures

and current approaches in the automotive industry has been
conducted. Approaches have been compared and it has been
shown, that in order to fulfil certain requirements intercon-
nections are inevitable. Further we showed, that intercon-
nections can be categorized based on layers, which can be
used to confine access to those layers. A suggestion for a
minimalistic approach was shown, in which one way inter-
connections are used to provide data container to a compos-
itor as well as to dispatch events to other VMs. This article
presents work in progress that we plan to continue along the
indicated lines.

6. FUTURE WORK
In order to solidify our research further investigations into

the use of multi-OS environments have to be conducted.
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