
Empirical Validation of the Architecture Quality
Assurance Framework (AQAF): A Technical

Report

Andreas Johnsen1, Kristina Lundqvist1, Kaj Hänninen1, Paul Pettersson1, and
Martin Torelm2

1 School of Innovation, Design and Engineering
Mälardalen University

Väster̊as, Sweden
{andreas.johnsen,kristina.lundqvist,kaj.hanninen,paul.pettersson}@mdh.se

2 Bombardier Transportation Sweden AB
Propulsion & Converter Control Standardization

Väster̊as, Sweden
martin.torelm@se.transport.bombardier.com

Abstract. Architecture engineering is essential to achieve dependabil-
ity of critical embedded systems and affects large parts of the system
life cycle. Architectural faults may consequently cause substantial costs
and devastating harm. Verification in architecture engineering, known
as architecture-based verification, should therefore be holistically and
systematically managed in the development of critical embedded sys-
tems, from requirements analysis and architecture design to implemen-
tation and maintenance. The Architecture Quality Assurance Frame-
work (AQAF) for critical embedded systems modeled in the Architecture
Analysis and Design Language (AADL) has been developed to address
this issue. By means of a standardized representation of system archi-
tectures in AADL, formal methods can be applied to perform rigorous
verification of complex systems. The framework provides a holistic set of
verification techniques with a common formalism and semantic domain,
architecture flow graphs and timed automata, enabling completely formal
and automated verification processes covering a broad area of architec-
ture engineering. More precisely, the framework includes model checking,
model-based testing, and selective regression verification techniques for
the detection of architecture design and implementation faults, as well as
faults introduced at design updates. In this technical report, we present
an empirical validation of AQAF where it is applied to a safety-critical
train control system. The objective of the case study is to assess fault-
finding effectiveness and resource efficiency. The method of fault injec-
tion is used to ensure coverage of fault types and to produce an adequate
data set from which resource consumption statistically can be assessed.
Results suggest an effective fault-finding capacity and an efficient use.

Table of Contents

1 Introduction . 3
2 Background information . 6

2.1 The Architecture Analysis and Design Language 6
2.2 Uppaal timed automata . 11

3 Framework overview . 13
4 Case study design . 15

4.1 A systematic application of AQAF . 16
4.2 Research measures . 16
4.3 Fault injections . 17

5 The Line Trip Relay Interface and Supervision system 18
6 Architecture flow graphs . 28

6.1 Architecture flow graph generation . 29
6.2 Results . 40

7 Verification criteria and sequences . 48
7.1 Results . 50

8 Formal semantics in Uppaal timed automata . 51
8.1 Results . 54
8.2 The scheduler automaton . 56

9 Observers generation and model checking . 61
9.1 Results . 64

10 Model-based testing . 69
10.1 Results . 69

11 Selective regression verification . 75
11.1 Generation of architecture dependence graphs 76

12 Case study stage two: validation through fault injections 79
12.1 Injected faults . 79
12.2 Results . 80

13 Summary and conclusion . 92
A Verification sequences . 95
B Test suite . 112
C Selection . 133
D Independent observers . 140
E Slices . 147

3

1 Introduction

Computer systems are an integral part of the human society and increasingly
used in environments where our safety is dependent on them. For example, com-
puters are embedded in anti-lock braking (ABS) and electronic stability control
(ESC/ESP) systems of cars, in air traffic control (ATC) systems of control tow-
ers, in fly-by-wire and navigation systems of aircraft, and in control systems
of trains, nuclear power plants, and medical equipment. This type of embed-
ded computer system, where the safety of its environment is dependent on it, is
known as a safety-critical system. The main requirement in the development of
safety-critical systems is that they must not cause hazardous failures that are
more frequent and more severe than acceptable [1]. Generally, this is achieved
through a combination of hazard analysis, fault forecasting, verification and val-
idation (V&V), and mechanisms of fault tolerance. However, the utilization and
complexity of safety-critical systems is increasing beyond what current safety-
achieving engineering is able to manage [2, p. 4]. A problem is that failures
emerge in the component interactions when the complexity increases, whereas
current engineering has given most attention to failures of components rather
than their interactions [2, p. 8]. Component interactions is a central concern of
architecture design, which together with requirement analysis typically account
for the majority of faults introduced in the development process [3]. In addi-
tion, the main objective of designing the architecture is to build necessary non-
functional properties, such as safety, reliability, and availability, into the system.
Non-functional properties are achieved by allocating the functionality to cer-
tain software, hardware, and data structures, such as reliability and availability
through redundancy, safety trough hazard avoidance and fail-safe mechanisms,
and deterministic behavior through time-driven and synchronous computation
systems. An architectural design fault may therefore not only cause a failure of
the safety-critical functionality, but also to built-in safety mechanisms that are
supposed to maintain safety in presence of erroneous system states.

The effects of a faulty architecture design also have a significant impact on the
cost and performance of the development process. In [4], a survey quantitatively
presents the return on investment of system engineering based on an analysis
of 161 projects. Results show that 20% of the defects account for 80% of the
rework costs, and that these 20% of defects primarily came from an inadequate
architecture definition and risk resolution. In [5], a survey of projects executed
by defence contractors quantifies the relationship between system engineering
best practices and the performance of the projects in terms of cost, schedule,
and scope goals. Results show that there is a strong positive relationship be-
tween architecture engineering capabilities and the performance of the projects.
For example, only 11% of the projects with lower architecture engineering ca-
pabilities exhibited a good performance compared to 46% of the projects with
higher capabilities. Consequently, improved architecture engineering capabilities
provide the ability to build safer systems at lower costs.

Architecture engineering generally includes the processes of designing the
architecture, documenting the architecture, analyzing the architecture, realiz-

4

ing/implementing the architecture, and maintaining the architecture. The need
for advancement in architecture engineering has led to the development of ar-
chitecture description languages (ADLs). The Architecture Analysis and Design
Language (AADL) [6] is an ADL that has been developed for modeling architec-
tures of critical embedded systems. The use of AADL generates standardized,
computer-readable, and semi-formal models of the system architectures. These
properties contribute to the assurance of quality by facilitating understandabil-
ity, communication, and analysis [7]. In addition, they provide the necessary
prerequisites for developing computerized verification techniques that are effec-
tive and efficient enough in detecting architectural faults that emerge in the
development of complex safety-critical embedded systems.

State of the art architecture-based verification in the domain of AADL inte-
grates formal methods with the standard. The incentive for using formal methods
is threefold: (i) fault avoidance based on mathematics of software is an essential
method for developing dependable systems [8]; (ii) there is a need for verification
evidences based on mathematics in the certification of safety-critical systems [9];
and (iii) formal methods enable automation of verification processes through
powerful computer tools, thereby reducing the cost of labor and the risk of human
error [10]. Since architecture engineering is conducted in various phases of the
system lifecycle [11, 12], a variety of architecture-based verification techniques is
necessary to assure architecture quality. Given that the system requirements are
correct, architectural faults may be introduced during the architecture design
phase, the architecture realization phase, and any time subsequent changes or
updates are made to the design or implementation.

In this technical report, we present the Architecture Quality Assurance Frame-
work (AQAF); a possible solution to the complexity of architecture-based verifi-
cation of critical embedded systems modeled in AADL, and a validation thereof.
The framework has been developed on the hypothesis of combining necessary
formal verification techniques through a common formal underpinning such that
they can be effectively and efficiently used in an integrated manner. AQAF
includes a model checking technique to address architecture design faults, a
model-based testing technique to address architecture implementation faults,
and a selective regression verification technique based on change impact analy-
sis through slicing to address faults introduced in response to design changes.
Through a common formal underpinning, we enable the method of performing
model-based testing based on the results of model checking [10]. The model-
based testing oracle, thereby, is inherently consistent with the model-checked
architecture behavior. Furthermore, a common formal underpinning provides
explicit trace links between the verification runs, the coverage of the AADL
model, and the coverage of the architecture implementation. Regression verifi-
cation, thereby, can efficiently be executed by only selecting verification runs of
the model and implementation that can be traced from the impact analysis.

To validate these propositions, we present an empirical evaluation of AQAF
by means of an industrial case study where the framework is applied to a safety-
critical train control system developed by Bombardier Transportation AB. The
main research objectives are to assess its fault-finding effectiveness and to quan-

5

tify efficiency in terms of resource consumption. The case study design is com-
posed of two stages. The first stage includes an application of AQAF on the
original model of the control system. In the second stage, we use the technique
of fault injection and repeat the application of the framework on mutated ver-
sions of the system to collect data for statistical evaluation of effectiveness and
efficiency.

6

2 Background information

2.1 The Architecture Analysis and Design Language

AADL was initially released and published as a Society of Automotive Engineers
(SAE) Standard AS5506 [13] in 2004, and a second version (AADLv2) [6] was
published in 2009. It is a textual and graphical language used to model, specify,
and analyze software- and hardware-architectures of real-time embedded sys-
tems. AADL is based on a component-connector paradigm that hierarchically
describes components, component interfaces, and the interactions (connections)
among components. Hence, the language captures functional properties of the
system, such as input and output through component interfaces, as well as struc-
tural properties through configurations of components, subcomponents, and con-
nectors. Furthermore, means to describe quality attributes, characteristics, and
constraints, such as timing and reliability, of application software and execution
platform components are also provided through explicit property associations.
Changes to the runtime architecture can be described by modes and transitions
of modes, and behavior of components can be described by state transitions
systems defined in the Behavioral Annex (BA) [14]. AADL defines component
abstractions dividable into three groups:

– Application software components

• Process component: represents a protected address space containing
at least one thread.

• Thread component: represents a schedulable and concurrent unit of
sequentially executed source code.

• Thread group component: represents a single reference to a group
of threads that have common characteristics (and does not represent a
unit of execution).

• Subprogram component: represents a callable piece of sequentially
executed source code that operates on data or provides functions to the
component that calls it.

• Data component: represents a data type to type port and subprogram
parameter interfaces, and static data shareable among components.

– Execution platform components
• Processor component: represents hardware with associated software

that schedules and executes threads.
• Virtual processor component: represents a logical resource that is

able to schedule and execute threads.
• Memory component: represents a storage for executable code and

data.
• Bus component: represents a component that can exchange control

and data between processors, memories, and devices.
• Virtual bus component: represents a logical bus abstraction.
• Device component: represents a dedicated entity within the system,

or an entity in or interfacing with the external environment, such as GPS
systems, counters, timers, sensors, and actuators.

7

– General composite components
• System component: represents a composition of software, hardware,

and/or system components, where the software components can be allo-
cated to the hardware components.

A component is modeled by a component type declaration and a compo-
nent implementation declaration. A component type is declared with an unique
identifier and specifies the external interfaces (known as “features” in AADL)
of the component, externally visible properties, and explicit data and control
flows between the external interfaces. Consequently, a component type provides
a black-box view of the component. Interfaces are declared in a features sub
clause and represent interaction points for the exchange of data and control to
other components. There are three types of features: ports, component accesses,
and parameters. Ports represent interaction points for directional exchange of
data, events, or both. A port can either be declared as a data port, an event
port, or an event data port. A data port communicates typed state data with-
out queuing, such as sensor data streams, where the connection between data
ports can be declared as immediate (transmitted upon completion of a thread)
or delayed (transmitted upon the deadline). An event port communicates events
with queueing, such as dispatch triggers of threads, triggers for mode switches,
and alarms. An event data port communicates messages, i.e., data associated
with events, with queuing. Parameters exclusively represent interaction points
of subprograms for the transmission of call (in parameter) and return (out pa-
rameter) data values. Component access declarations support modeling of static
data shareable among components and modeling of hardware components com-
municating through buses. Access declarations are named and can be declared
with a provides or requires statement. A provides statement denotes that a com-
ponent provides access to a data or bus component internal to it. A requires
statement denotes that a component requires access to a data or bus component
external to it.

Property declarations may be included in a properties sub clause of a com-
ponent type. A property constraints the expression it is associated with, and
in this case, as a sub clause of a component type, constraints the component
type. Examples of other expressions that can be associated with property decla-
rations are: component implementations, subcomponents, features, connections,
flows, modes, mode transitions, and subprogram calls. A property declaration
consists of a name, a type, and a value. The name corresponds to the identifier
of the property. The property type specifies a set of values that is accepted for
a given property, and each property must be assigned a value or a list of values.
There exist built-in predeclared properties in the language, but creation of new
properties is supported.

A component implementation declaration represents the internal component
structure in terms of subcomponents and their connections, component-internal
properties, and modes and the transitions between them. The component imple-
mentation therefore can be viewed as a white box in contrast to its component
type. A component implementation must be coupled with a component type.

8

The component implementation subcomponents sub clause represents a com-
ponent’s internal components. These internal components can themselves have
subcomponents resulting in a hierarchy that eventually describes a whole system.

The connections between interfaces of subcomponents are declared within a
connections sub clause of a component implementation. There are three types
of connections: port connections, component access connections and parameter
connections. Port connections represent directional transfer of data and con-
trol between ports. A component access connection represents the path from
the component providing access to the component requiring access. Parameter
connections represent flows of data into and out of subprograms. Subprogram
components are accessed through call statements. Calls are declared in the com-
ponent implementation calls sub clause or in behavioral models. Finally, compo-
nent implementations may be modeled with mode state machines to specify the
set of components, connections, and properties that are active in a specific mode,
and with behavioral models (automata) by means of the Behavioral Annex to
refine the execution behavior of the component.

Definition 1 Formally, an AADL model is a tuple:

AADLMDL = 〈PROC,COMP, THR,DATA, SUB,C,CALL〉

PROC = {processor1, processor2, . . . , processorn} denotes the set of proces-
sors in the architecture. A processor = 〈B THR,Scheduling Protocol〉 has a
set of threads B THR ⊆ THR bound to it and a scheduling protocol property.
COMP = {comp1, comp2, . . . , compn} denotes the set of software components
in the architecture, where THR denotes the set of thread components, DATA
denotes the set of data components, and SUB denotes the set of subprogram
components. Let thr, data, and sub range over THR, DATA, and SUB respec-
tively. A thread thr = 〈DATA S, SUB S,DP,EP,EDP,DA, SA,MSM,BM,
SCH PROP 〉 has a set of data subcomponents DATA S ⊆ DATA; a set of sub-
program subcomponents SUB S ⊆ SUB; a set of data ports DP = {dp(data) |
dp(data) is an in/out/in out data port of data type data ∈ DATA and of the
form port (see Table 1)}; a set of event ports EP = {ep | ep is an in/out/in out
event port and of the form port}; a set of event data ports EDP = {edp(data) |
edp(data) is an in/out/in out event data port of data type data ∈ DATA and of
the form port}; a set of data accesses DA = {da(data) | da(data) is a data access
to shared data data ∈ DATA and of the form component access}; a set of sub-
program accesses SA = {sa(sub) | sa(sub) is a subprogram access to subprogram
sub ∈ SUB and of the form component access}; a Mode State Machine MSM ;
a Behavioral Model BM ; and a set of scheduling properties SCH PROP =
{Dispatch Protocol, Period, Compute Execution T ime,Compute Deadline,
Priority} of the form Property.

A subprogram sub = 〈DATA S, SP,EP,EDP,DA, SA,MSM,BM〉 has a
set of data subcomponents DATA S ⊆ DATA; a set of subprogram parameters
SP = {sp(data) | sp is an in/out/in out parameter of data type data ∈ DATA
and of the form parameter }; a set of event ports EP = {ep | ep is an out event
port of data type d ∈ DATA}; a set of event data ports EDP = {edp(data) |

9

edp(data) is an out event data port of data type data ∈ DATA}; a set of
data accesses DA = {da(data) | da(data) is a data access to shared data
data ∈ DATA}; a set of subprogram accesses SA = {sa(sub) | sa(sub) is a
subprogram access to subprogram sub ∈ SUB}; a Mode State Machine MSM ;
and a Behavioral Model BM .

Let DP U , EP U , EDP U , SP U , DA U and SA U denote the union of
all sets of component data ports, event ports, event data ports, parameters,
data accesses, and subprogam accesses respectively. C denotes the set of con-
nections in the architecture, C = {c(source, destination) | c is a port con-
nection from source ∈ DP U ∪ EP U ∪ EDP U to destination ∈ DP U ∪
EP U ∪ EDP U of the form port connection; or a data access connection (ac-
cess to shared data) from source ∈ DATA to destination ∈ DA U of the form
data access connection; or a subprogram access connection from source ∈ SUB
to destination ∈ SA U of the form subp access connection; or a parameter con-
nection from source ∈ SP U∪DP U∪EDP U to destination ∈ SP U∪DP U∪
EDP U and 〈source, destination〉 /∈ DP U×DP U∪DP U×EDP U∪EDPU×
DP U of the form parameter connection}.

CALL denotes the set of subprogram calls in the architecture, CALL =
{call(source) | call is a subprogram call of the form subprogram call and source ∈
SUB}.

A Behavioral Model compi.BM = 〈S, so, CPL, FIL, V AR, TR〉 has a set
of states S of the form state; an initial state s0 ∈ S; a set of complete states
CPL ⊆ S; a set of final states FIL ⊆ S; a set of typed variables V AR of the
form variable; and a set of state transitions TR ⊆ S×PRI×G×ACT×S of the
form state transition. A state s /∈ CPL ∪ FIL ∪ s0 is called an execution state.

We shall use the denotation s
pri,g,act−−−−−→ s′ iff 〈s, pri, g, act, s′〉 ∈ TR. pri ∈ N

is the priority of the transition. g is a (possibly empty) set of guards, which
are predicates (also known as execute conditions) over local variables, compo-
nent (compi) in ports, component in parameters, subcomponent (compi.sub sj)
out ports, subcomponent out parameters, data subcomponents, or accesses to
shared data components iff s /∈ CPL ∪ FIL; or predicates (also known as
dispatch conditions) over (dispatch triggered by) event ports or event data
ports (including receipt of a call) iff s ∈ CPL. act is a (possibly empty) set
of actions which are sequences (elements of a sequence are separated by “;”
and executes in that order) and sets (separated by “&” and executes non-
deterministically) of: subprogram calls with arguments of the form sub!(list)
where sub ∈ SUB and list ∈ ARG × ARG∗ where ARG is the union of
local variables, component (compi) in ports and parameters, subcomponent
(compi.sub sj) out ports and parameters, data subcomponents, and accesses
to shared data components; of assignments of the form target := expr where
target ∈ V AR∪compi.DATA∪compi.DA∪compi.DP∪compi.EP∪compi.EDP
where expr is an arithmetic expression over local variables, component in ports
and parameters, subcomponent out ports and parameters, data subcomponents,
and accesses to shared data components; and of timed actions of the form com-

10

putation(min .. max) which represent the use of the bounded CPU in terms
of a duration between min ∈ N and max ∈ N time units.

A Mode State Machine compi.MSM = 〈M,mo,MTR〉 has a set of oper-
ational states (runtime configurations) called modes M of the form mode; an
initial mode m0 ∈ S; and a set of mode transitions MTR ⊆ M × TRI ×M of

the form mode transition. We shall use the denotation m
tri−−→ m′ iff 〈s, tri, s′〉 ∈

MTR. TRI is a set of triggers which is the union of component (compi) in
event and event data ports, and subcomponent (compi.sub sj) out event and
event data ports.

Table 1. AADL grammar in Backus-Naur Form (BNF)

port connection ::= identifier : (data port | event port | event data port)
source port reference (−−− >>> | −−− >>>>>>) destination port reference

data access connection ::= identifier : data access data component reference (−−−>>> |<<<−−−>>>)
access require reference

subp access connection ::= identifier : subprogram access subpro-

gram component reference <<< −−−>>> access require reference

parameter connection ::= identifier : parameter source parameter reference −−−>>> destina-

tion parameter reference

subprogram call ::= identifier : subprogram subprogram reference

port ::= identifier : (in | out | inout) (data port | event data port |
event) data component reference

component access ::= identifier : requires (data access | subprogram access) com-

ponent reference

parameter ::= identifier : (in | out | in out) parameter

[data component reference]

state ::= state identifier : [initial][complete][final] state

variable ::= variable declarator : data component reference

state transition ::= [identifier [priority] :] source state identifier −[−[−[guard]− >]− >]− > desti-

nation state identifier [action]

mode ::= identifier : [initial] mode

mode transition ::= [identifier :] source mode identifier −[−[−[trigger]− >]− >]− > destina-

tion mode identifier

property ::= identifier ===>>> value

11

2.2 Uppaal timed automata

In this study, we use the Uppaal model-checker [15] to model-check AADL
models and to generate test cases. We have chosen Uppaal due to its maturity
and its ability to verify timing constraints. In Uppaal, a system is represented
by a network of timed finite state automata and checked by formulae in Timed
Computational Tree Logic (TCTL) [16]. A timed finite state automaton consists
of locations (nodes), edges (arcs) connecting locations, and labels (alphabet)
associated with these elements. Uppaal extends the automata theory with clock
variables to model time, where all clocks progress synchronously through real
numbers, and with discrete variables that can be read, assigned, or used in
arithmetic operations and propositional formulae. Furthermore, Uppaal allows
coding of functions (in UCode, a subset of C) callable in labels of transitions.

Definition 2 Formally, a network of timed automata NTA = 〈TA, V arG, Ch〉
has a vector of n timed automata TA = 〈TA0, TA1, . . . , TAn−1〉, a set of shared
(global) variables V arG, and a set of synchronization channels Ch. A timed
automaton TA = 〈L, `0, X, V ar, I, E〉 has a set of locations L, an initial location
`0 ∈ L, a set of real-valued variables X called clocks, a set of (bounded) integer-
typed variables V ar, a function assigning invariants to locations I : L → G,
and a set of edges E ⊆ L × G × Act × U × L. G is a set of guards, which
are predicates over variables and clock constraints of the form x expr1 c, where
x ∈ X ∪ V ar ∪ V arG, c ∈ N, and expr1 ∈ {<,≤,=,≥, >}. Act = I ∪O ∪ {τ} is
a set of input (denoted a?) and output (denoted a!) synchronization actions and
the non-synchronization τ . U is a set of updates which are sequences of variable-
assignments of the form v := expr2 and/or clock resets of the form x := 0,
where v ∈ V ar ∪ V arG, x ∈ X, and expr2 is an arithmetic expression over

integers. We shall use the denotation `
g,a,u−−−→ `′ iff 〈`, g, a, u, `′〉 ∈ E. In addition,

locations may be labelled as urgent or committed. In an urgent location, time is
not allowed to progress whereas in a committed location, time is not allowed to
progress and the next transition must involve one of its outgoing edges.

The semantics of a network of timed automata is defined in terms of a timed
transition system over system states. A system state is a triple 〈`, φ, σ〉 where ` is
a location vector over all automata such that `0, `1, . . . , `n−1 denotes the current
location of TA0, TA1, . . . , TAn−1, φ is a clock valuation vector over all automata
such that φ0, φ1, . . . , φn−1 ∈ RX+ and satisfies the invariants of the locations

(φ |= I(`)), and σ is a variable valuation vector that maps variables to values
and σ |= I(`). The initial system state is a state 〈`0, φo, σo〉 where `0 is the initial
location vector, φo maps each clock to zero, and σo maps each variable to its
default value. Progress is made through delay transitions or discrete transitions.

A delay transition is of the form 〈`, φ, σ〉 d−→ 〈`, φ⊕d, σ〉 where φ⊕d is the result
of synchronously adding the delay d to each clock valuation in φ. Let `[`′i/`i]
denote that the ith vector element `i is replaced by `′i. A discrete transition is

of the form 〈`, φ, σ〉 a−→ 〈`[`′i/`i, `′j/`j , `′k/`k, . . .], φ′, σ′〉 such that there are edges

`i/j/k...
gi/j/k...,ai/j/k...,ui/j/k...−−−−−−−−−−−−−−−−→ `′i/j/k... where φ and σ satisfies gi∧gj ∧gk . . ., the

12

result of updating φ and σ according to ui, uj , uk, . . . is φ′ and σ′, and the edges
are synchronous over complementary actions (a? complements a!). A trace is a
sequence of states such that there exist a delay or discrete transition from each
state in the sequence leading to its successor state.

A model is verified by TCTL queries in the form of path formulae and state
formulae, where the Uppaal model-checker searches the state space of the model
to check if it satisfies the formulae. If the model satisfies the expected behavior,
the information gathered during the search may be used to generate test cases.
State formulae are expressions that describe properties of individual states while
path formulae are expressions that describe properties over paths of states. A
state formula is a predicate such as x == 4 or x ≤ 10, where these formulae
are valid in a state whenever x equals four or x is less or equal to ten. State
formulae can be evaluated to valid or invalid for a state without analyzing the
behavior of the model to or from the particular state. Path formulae are classified
into reachability, safety, and liveness property formulae: a reachability property
formula checks whether a predicate can be satisfied by a reachable state along
some path; a safety property formula checks whether a predicate invariantly is
satisfied in each state of a path, or all paths; and a liveness property formula
checks whether a predicate eventually is satisfied by a reachable state in all
paths.

Reachability properties are verified using temporal operators E (pronounced
“for some path” or “exists one path”) and <> (pronounced “eventually”). For
example, in order to verify if a state formula p is reachable, we simple check it
by the formula E <> p (pronounced “for some path eventually p holds”). Safety
properties are verified using temporal operators A (pronounced “for all paths”),
E, and [] (pronounced “always” or “globally”). Formula A[]p (pronounced “for
all paths globally p holds”) is used if the property should hold in all states for
all paths whereas formula E[]p (pronounced “for some path globally p holds”) is
used if the property should hold for all states in at least one path. Liveness prop-
erties are verified by using temporal operators A, <>, and→ (pronounced“leads
to”). Formula A <> p (pronounced “for all paths eventually p holds”) checks
whether p eventually holds in all paths whereas p→ q (pronounced “whenever p
holds eventually q holds”) checks whether q eventually holds whenever p holds.

13

3 Framework overview

The primary focus of evaluation at the architectural level is the integration of
components, including the structure and the resulting emergent behavior and
non-functional properties [17]. General verification objectives are to ensure con-
sistency, completeness, and correctness of component interfaces and the control
and data interactions among them [17, 11]. To obtain these objectives, the qual-
ity assurance framework, illustrated in Fig. 1, is based on architectural control
and data flow verification criteria (c). This is of industrial importance as some
contemporary safety standards (e.g., ISO 26262 [18]) request control- and data-
flow analysis of software architecture designs. The verification criteria essentially
demand all architectural control and data flows of the AADL model to be exer-
cised in the verification of the model and the implementation. The modeled flows
are extracted from the AADL model through the generation of an architecture
flow graph (b). The application of the verification criteria on the flow graph
results in a set of verification sequences (d) that must be run on the model, and
later on the implementation when available. Each verification sequence corre-
sponds to a path of control and data flows through the architecture design and
the requirements (functional and non-functional) that must be achieved when
executing the path.

AADL model (g) AADL to timed
automata transformation

(c) Verification
Criteria (h) Timed

automata

(d) Verification
Sequences

(i) Model checking

Implementation of
AADL model

(m) Model-based testing

(a) AFG generation

(b) AFG

(r) ADG
generation

(t) Specification
slicing

(s) ADG

(x) Selective regression
verification

(e) Verification sequences to
observer automata transformation

(f) Observer
automata

(n) Regression
verification suite

(j) Timed
automata traces

(k) Test suite
generation

(l) Test suite

(p) AFGs comparison

(o)Inter-observer
satisfiability independence

Changed
AADL model

(q) change

(u) change
impact

(v) Selection
criteria

Fig. 1. Flowchart of the verification framework. A black shape denotes a necessary
framework input. A gray shape denotes a formally defined process or rule set (c and
v). A white shape denotes an artifact produced by the framework.

14

Based on the control and data flow verification criteria, model checking (i)
and model-based testing (m) techniques are used to automatically and formally
execute the verification sequences. The semantic domain of AADL, however, is
not based on a mathematical language and cannot be directly explored by a
model-checker. The framework therefore includes a formal semantics of AADL
in timed automata (h) such that the verification processes can be executed by
the Uppaal model checker. Verification sequences are executed on the model by
transforming them to observer automata (f) [19] – a flexible method for specify-
ing coverage criteria for model checking and model-based test case generation.
Satisfied observers indicate a complete, consistent, and correct model. In that
case, the satisfied observers produce a set of traces (k) (one for each observer)
which can be transformed into a test suite (l) that tests the conformance of the
implementation with respect to the model. The implementation conforms to the
model if each path may be executed in the implementation while the expected
functional and non-functional properties are met.

Nevertheless, the design is typically subjected to modifications. The artifacts
must therefore undergo regression verification to verify that no new faults have
been introduced in response to a design change. In addition, architectural vari-
ants may be designed to develop a product line or to analyze trade-offs, or an
architecture may be incrementally designed through iterations of added design
decisions. All these scenarios, where different instances of the architecture design
or implementation are created, are common and challenged with inefficient re-
gression verification if equivalent parts among the artifacts that are not affected
by the changes or variations are unnecessarily re-verified. To efficiently perform
regression verification, the framework includes an approach to selective regres-
sion verification (x). The approach is to trace the impact a change may have
on the residual architecture, and thereby only selecting verification sequences
that are affected by the change. The first step of the approach is to locate the
change by comparing the flow graph of the original model with the flow graph
of the changed model (p). The possibly affected parts of the architecture with
respect to the located change are then traced through static slicing (t). Slicing is
conducted by means of an architecture dependence graph (s) generated from the
architecture flow graph of the changed model. The slice may be further reduced
based on inter-observer coverage data (from which satisfiability independences
between observes can be deduced) of the preceding verification cycle, which con-
straint dependencies in the architecture with additional dynamic information.
The regression verification process is then efficiently executed by only selecting
verification sequences that cover parts of the sliced AADL model.

15

4 Case study design

The case study presented in this report yields an application of AQAF to the
safety-critical train control system presented in Section 5. The objective is to
validate the framework in terms of effectiveness and efficiency. An application of
the complete framework involves the following steps:

1. Generate the architecture flow graph (AFG) of the AADL model.
2. Generate verification sequences by applying the verification criteria to the

AFG.
3. Transform the AADL model to a network of timed automata and each veri-

fication sequence to an observer automaton.
4. Verify the satisfiability of each observer using the Uppaal model-checker.

– The AADL model is complete, consistent, and correct if all observers are
satisfiable. The resulting traces may be used to test the conformance of
an implementation with respect to the AADL model, i.e., go to step 5.

– The AADL model is faulty if not all observers are satisfiable. The model
should be updated where steps 8-11 subsequently may be used to perform
selective regression verification of the updated model.

5. Generate a test suite from the produced timed automata traces – one test
case for each trace.

6. Execute the test suite on the implementation.
– The implementations conforms to the AADL model if each test case

passes.

7. Modify the AADL model.
8. Generate the AFG and architecture dependence graph (ADG) of the modi-

fied model.
9. Compare the AFG of the previously verified AADL model with the AFG of

the modified model to identify the modification.
10. Slice the ADG of the modified model with respect to the identified modifi-

cation. The slice determines which parts of the modified model that may be
impacted by the modification.

11. Perform selective regression verification of the modified model where only
verification sequences that cover parts in the slice are selected.

The faultiness of the AADL model must be controlled in the study to be
able to validate efficiency and effectiveness. Firstly, an AADL model and an
implementation thereof may have different types of faults which the framework
is expected to find. Secondly, the presence of multiple faults may result in a
complex combined error behavior that makes it difficult to determine if the
framework produces any false positives or false negatives, i.e. if the framework
falsely declares presence or absence of faults. Finally, under the assumption that
no false positives or negatives are produced by the model checking technique, a
conformance test suite generation demands a fault-free AADL model (satisfied
observers). In order to apply the complete framework and simultaneously en-
sure validity of the results and coverage of fault types, the framework must be
systematically applied to controlled versions of the model.

16

4.1 A systematic application of AQAF

Our approach to a systematic application involves two stages. The first stage is
to perform steps 1-6 based on the AADL model presented in Section 5, which
we assume to be free from architectural faults. If the steps are valid and the
implementation truly conforms to the model, the result of model checking and
model-based testing must necessarily be satisfied observers and passed test cases.
Since the model certainly conforms to itself, it is treated as the implementation
in step 6. Under the assumption that the premise is true, i.e. that the AADL
model truly is free from faults, these steps inductively support the absence of
false negatives and false positives if the results meet the expectations.

The second stage of the approach is to use the technique of fault injection to
create mutated versions of the AADL model and extend the steps performed in
stage one such that the application covers the complete framework and ranges
over the possible fault types. By means of the steps taken in the first stage,
each fault injection correspond to a modification. If steps 1-4 and 8-11 are valid,
the result of regression verification must necessarily be at least one unsatisfied
observer – since there now definitely exist a fault. Nevertheless, the selective
approach must be contrasted with a re-run all approach to conclude the selection
effectiveness and assess its efficiency. If steps 1-4 and 8-11 are valid, the result
must necessarily be satisfied observers for all non-selected verification sequences
(since the impact analysis is expected to select all verification sequences that
possibly are affected by the modification). The required overhead expense of
conducting the selection in addition to the resource consumption of running the
selection must either not exceed the cost of a re-run all approach to be efficient.

Furthermore, each mutated version may be treated as an implementation to
validate the fault-finding effectiveness of the test suite generated in the first stage.
If steps 1-5 are valid, the result must necessarily be at least one test case which
did not pass for each tested mutation. Each result that meets the expectations
increase the validity of its fault-finding capabilities, which in turn strengthen
the truthfulness of the undertaken premise and soundness of the framework as
a whole. The repeated framework applications also provide a basis from which
efficiency can be statistically quantified.

The outline of this technical report follows the structure of this framework
application.

4.2 Research measures

Effectiveness of model checking and model-based testing is measured in terms
of the ratio of found faults to the number of injected faults. Effectiveness of
selective regression verification is measured in terms of the ratio of unsatisfied
non-selected observers to the number of selected and non-selected unsatisfied
observers. Note that a lower ratio denotes a higher effectiveness in the latter
case. A ratio of zero means that the technique did not exclude any verification
sequence that reveals a fault in the modified architecture. Efficiency is measured
in terms of time and memory consumption. The resource consuming activities

17

of model checking are observers generation (including AFG generation and ver-
ification sequences extraction), AADL to timed automata transformation, and
satisfiability checking. For model-based testing, the resource consuming activi-
ties are identical except that the test data is extracted by searching the resultant
traces. In either case, the bottleneck is satisfiability checking of observers due to
the state space explosion problem, which is the resource consuming activity of
interest in this case study. With respect to efficiency of the selective verification
technique, the resource consumption of slicing is included to make sure that the
overhead the selective regression verification technique brings does not exceed
the savings. All measurements in this study are performed in Windows 7 64-bit
edition running an Intel Core i7-3667U 2.0 GHz CPU with 8 GB RAM.

4.3 Fault injections

In this study, we consider the following fault types:

1. Absent, unachievable, and (logically) incorrect control expressions (guards)
2. Absent and incorrect data assignments, events, and calls (actions)
3. Absent and incorrect connections
4. Absent, incorrect, and incompatible non-functional properties
5. Absent, incorrect, and incompatible protocols of critical sections and shared

resources
6. Absent, incorrect, and incompatible scheduling properties
7. Deadlock, livelock, starvation, and priority inversion of processes and threads

Note that a fault may yield a combination of these fault types.

18

5 The Line Trip Relay Interface and Supervision system

Line trip relay interface and supervision (LTRIS) is a safety-critical train control
sub-system embedded in a system of systems developed by Bombardier Trans-
portation AB. In this section, we present an AADL model of LTRIS that has
been created for the purpose of conducting the case study. The model has been
created by informal means and properties of the operating system and hardware
platform have been abstracted to delimit the workload of the case study. Con-
sequently, analysis of the AADL model cannot be deduced to the source system
without taking these abstractions into consideration. Moreover, LTRIS interacts
with numerous components in the system of systems it is embedded within. A
sound architecture representation of LTRIS should include the architecture of
the surrounding system. However, inclusion of the complete architecture is out of
scope of the study plan. Instead, we abstract the functionality of the software in
the environment into a single process component, denoted LineTripEnvironment
in the model, and assume it executes with LTRIS on a common processing plat-
form, as shown in Table 2. Any required input by the LTRIS software, denoted
LineTripSoftware.Impl, is assumed to be produced by LineTripEnvironment al-
though the specifics of the connections are not modelled. Each of these is referred
to as “some connection” in the model. Non-functional properties of LTRIS have
been adjusted in the model according to the abstraction of the environment.

LineTripSoftware.Impl, presented in Table 3, is essentially composed of two
connected periodic threads: Controller and Tester. The functionality of Con-
troller, presented in Table 4, is to control a critical relay, monitor its status, and
output feedback data. The feedback data is information on the status of the
relay and the status relative to the expected one. Controller controls the relay
according to data on in ports and shared variables assigned by components in the
environment (abstracted to LineTripEnvironment). In this manner, Controller
acts as an interface to the relay.

The behavior of Controller includes two consecutive subprogram calls, first a
call to subprogram LtrInt, presented in Table 5, followed by a call to subprogram
dcu2 line trip, presented in Table 6. The possible opening and closing requests
received at in ports of Controller, together with state information of LineTripEn-
vironment, are given as arguments to LtrInt when called. LtrInt then performs a
sequence of operations on the input, as specified by its behavioral model, to de-
termine whether on opening or closing output (return) signal shall be produced.
The logic has been composed such that an opening request shall be prioritized
over a closing request.

The output signal produced by LtrInt is used as argument in the second call
to dcu2 line trip, which is responsible of controlling the relay and produces feed-
back through out parameters, as specified by its behavioral model. The feedback
is made available for the environment through out ports of Controller (which
are connected to the out parameters of dcu2 line trip).

The input domain of Controller is partly set by Tester, presented in Table 7,
through connection1 and connection2, as specified in LineTripSoftware.Impl (see
Table 3). The functionality of Tester is to execute a test sequence, LtrTsSq pre-

19

sented in Table 8, verifying a correct functioning of the relay. The behavior is
specified in a behavioral model, from which subprogram LtrTsSq is invoked.
LtrTsSq may transmit opening and closing requests to Controller through con-
nection1 and connection2 respectively.

As shown by the behavioral model of subprogram LtrTsSq.Impl in Table 8,
the test sequence exercises the relay in the possible ways it can be exercised:
starting from an unidentified state of the relay, the test sequence signals an
opening request (B OpLtr := true), followed by a closing request (B CdLtr :=
true), which finally is followed by an opening request. The final request is delayed
512 ms in order to make sure that there is enough time for the power supply to
close the relay before it finally is opened. Each request is validated by boolean
conditions, which evaluation is dependent on the data assigned to in parameters
B LtrFl and S LtrCd, before a subsequent request is sent. The data assigned to
in parameters B LtrFl and S LtrCd correspond to feedback produced by Con-
troller. The feedback data assigned to S LtrCd represent the state of the relay
and is transmitted to Tester through connection3 (see Table 3). Data assigned
to B LtrFl, on the other hand, represent the functioning of the relay and is sent
from LineTripEnvironment. The test process is reset to its default state any time
a malfunction signal is transmitted to B LtrFl during the execution of the test
sequence. Whenever the test sequence successfully has been executed, a signal is
assigned to out parameter A LtrTs and made available to LineTripEnvironment
through out port DHSSMG S LtrTsRdy of Tester.

Table 2: LTRIS system component

system LineTripSystem
end LineTripSystem;

system implementation LineTripSystem.Impl
subcomponents
LTSoftware: process LineTripSoftware.Impl;
LTEnvironment: process LineTripEnvironment;
Hardware: processor ProcessorPlatform.Impl;
properties
Actual Processor Binding =>(reference (hardware)) applies to LTSoftware;
Actual Processor Binding =>(reference (hardware)) applies to LTEnvironment;
end LineTripSystem.Impl;

Table 3: LTRIS software component

process LineTripSoftware
features
PRASMZ B RqPrSd: in data port Base Types::Boolean;
APSIMZ B OpLtr: in data port Base Types::Boolean;
SSSCMZ NX MnSqSt: in data port Base Types::Integer;
PCTHMZ A PctMo: in data port Base Types::Boolean;

20

PLTTMG B OpLtr: in data port Base Types::Boolean;
APSIMZ B EnCdLnTrpSlt: in data port Base Types::Boolean;
PARAGP L CnfHpp: in data port Base Types::Boolean;
DHSSMG B LtrHwOpFl: in data port Base Types::Boolean;
DCUIMG C LtrTs: in data port Base Types::Boolean;
DHSSMG B LtrFl: in data port Base Types::Boolean;
DIGIMG S LtrOp: in data port Base Types::Boolean;
DCUIMG S DcuNtRdy: in data port Base Types::Boolean;
PARAGP L LtrSvEn: in data port Base Types::Boolean;
DIGOMG B CdLtr: out data port Base Types::Boolean;
DHWOMG B FpgaLtrOn: out data port Base Types::Boolean;
DHWOMG B DcuLtrFl: out data port Base Types::Boolean;
DHSSMG NX LtrSaSq: out data port Base Types::Integer;
DHSSMG S LtrTsRdy: out data port Base Types::Boolean;
DHSSMG S LtrOpVd: out data port Base Types::Boolean;

GPIO OUT: requires data access GPIO OUT;
LTRIP EN N: requires data access LTRIP EN N;
MCU LT ON: requires data access MCU LT ON;
FPGA LTRCR: requires data access FPGA LTRCR;
FPGA2 LT ON: requires data access FPGA2 LT ON;
LT RELAY FB: requires data access LT RELAY FB;
end LineTripSoftware;

process implementation LineTripSoftware.Impl
subcomponents
relayController: thread Controller;
relayTester: thread Tester;
connections
some connection1: port PRASMZ B RqPrSd ->relayController.PRASMZ B RqPrSd;
some connection2: port APSIMZ B OpLtr ->relayController.APSIMZ B OpLtr;
some connection3: port SSSCMZ NX MnSqSt ->relayController.SSSCMZ NX MnSqSt;
some connection4: port PCTHMZ A PctMo ->relayController.PCTHMZ A PctMo;
some connection5: port PLTTMG B OpLtr ->relayController.PLTTMG B OpLtr;
some connection6: port APSIMZ B EnCdLnTrpSlt ->
relayController.APSIMZ B EnCdLnTrpSlt;
some connection7: port PARAGP L CnfHpp ->relayController.PARAGP L CnfHpp;
some connection8: port DHSSMG B LtrHwOpFl ->
relayController.DHSSMG B LtrHwOpFl;
some connection18: port relayController.DIGOMG B CdLtr ->DIGOMG B CdLtr;
some connection20: port relayController.DHWOMG B FpgaLtrOn ->
DHWOMG B FpgaLtrOn;
some connection21: port relayController.DHWOMG B DcuLtrFl ->
DHWOMG B DcuLtrFl;
some connection9: port DCUIMG C LtrTs ->relayTester.DCUIMG C LtrTs;
some connection10: port DHSSMG B LtrFl ->relayTester.DHSSMG B LtrFl;
some connection12: port DIGIMG S LtrOp ->relayTester.DIGIMG S LtrOp;
some connection13: port DCUIMG S DcuNtRdy ->
relayTester.DCUIMG S DcuNtRdy;
some connection14: port PARAGP L LtrSvEn ->relayTester.PARAGP L LtrSvEn;

21

some connection15: port relayTester.DHSSMG NX LtrSaSq ->
DHSSMG NX LtrSaSq;
some connection16: port relayTester.DHSSMG S LtrTsRdy ->
DHSSMG S LtrTsRdy;
some connection17: port relayTester.DHSSMG S LtrOpVd ->
DHSSMG S LtrOpVd;
connection1:port relayTester.DHSSMG B OpLtr ->
relayController.DHSSMG B OpLtr {Timing =>Immediate; Latency =>0ms .. 1ms;};
connection2: port relayTester.DHSSMG B CdLtr ->
relayController.DHSSMG B CdLtr {Timing =>Immediate; Latency =>0ms .. 1ms;};
connection3: port relayController.DHWOMG S LtrCd ->
relayTester.DHWOMG S LtrCd {Timing =>Immediate; Latency =>0ms .. 3ms;};

data access GPIO OUT ->relayController.GPIO OUT;
data access LTRIP EN N ->relayController.LTRIP EN N;
data access MCU LT ON ->relayController.MCU LT ON;
data access FPGA LTRCR ->relayController.FPGA LTRCR;
data access FPGA2 LT ON ->relayController.FPGA2 LT ON;
data access LT RELAY FB ->relayController.LT RELAY FB;
end LineTripSoftware.Impl;

Table 4: Thread Controller

thread Controller
features
PRASMZ B RqPrSd: in data port Base Types::Boolean;
APSIMZ B OpLtr: in data port Base Types::Boolean;
SSSCMZ NX MnSqSt: in data port Base Types::Integer;
PCTHMZ A PctMo: in data port Base Types::Boolean;
PLTTMG B OpLtr: in data port Base Types::Boolean;
DHSSMG B OpLtr: in data port Base Types::Boolean;
DHSSMG B CdLtr: in data port Base Types::Boolean;
APSIMZ B EnCdLnTrpSlt: in data port Base Types::Boolean;
PARAGP L CnfHpp: in data port Base Types::Boolean;
DHSSMG B LtrHwOpFl: in data port Base Types::Boolean;
DIGOMG B CdLtr: out data port Base Types::Boolean;
DHWOMG S LtrCd: out data port Base Types::Boolean;
DHWOMG B FpgaLtrOn: out data port Base Types::Boolean;
DHWOMG B DcuLtrFl: out data port Base Types::Boolean;

GPIO OUT: requires data access GPIO OUT {Access Right =>read write;};
LTRIP EN N: requires data access LTRIP EN N {Access Right =>read only;};
MCU LT ON: requires data access MCU LT ON {Access Right =>read only;};
FPGA LTRCR: requires data access FPGA LTRCR
{Access Right =>write only;};
FPGA2 LT ON: requires data access FPGA2 LT ON
{Access Right =>read only;};
LT RELAY FB: requires data access LT RELAY FB

22

{Access Right =>read only;};
properties
Dispatch Protocol =>Periodic;
Period =>4 ms;
Priority =>1;
Compute Execution Time =>1 ms .. 2 ms;
Compute Deadline =>2 ms;
end Controller;

thread implementation Controller.Impl
calls call list: {LtrInt: subprogram LtrInt;
dcu2 line trip: subprogram dcu2 line trip;};
connections
B RqPrSd in: parameter PRASMZ B RqPrSd ->LtrInt.B RqPrSd;
B OpLtr AppSpec in: parameter APSIMZ B OpLtr ->LtrInt.B OpLtr AppSpec;
NX SqSt in: parameter SSSCMZ NX MnSqSt ->LtrInt.NX SqSt;
A PctMo in: parameter PCTHMZ A PctMo ->LtrInt.A PctMo;
B LtrTsOpLtr in: parameter PLTTMG B OpLtr ->LtrInt.B LtrTsOpLtr;
B OpLtr LtrTs in: parameter DHSSMG B OpLtr ->LtrInt.B OpLtr LtrTs;
B CdLtr LtrTs in: parameter DHSSMG B CdLtr ->LtrInt.B CdLtr LtrTs;
B EnCdLnTrpSlt in: parameter APSIMZ B EnCdLnTrpSlt ->
LtrInt.B EnCdLnTrpSlt;
L CnfHpp in: parameter PARAGP L CnfHpp ->LtrInt.L CnfHpp;
B ClLtr out: parameter LtrInt.B ClLtr ->DIGOMG B CdLtr;
enable in: parameter DHSSMG B LtrHwOpFl ->dcu2 line trip.enable;
act in: parameter DIGOMG B CdLtr ->dcu2 line trip.act;
fb out: parameter dcu2 line trip.fb ->DHWOMG S LtrCd;
fpga2 on out: parameter dcu2 line trip.fpga2 on ->DHWOMG B FpgaLtrOn;
fb ne out: parameter dcu2 line trip.fb ne ->DHWOMG B DcuLtrFl;

annex behavior specification
{**
variables
temp0 : Baste Types::Boolean;
states
state0 : initial complete final state;
state1 : state;
transitions
state0 -[on dispatch]->state1 { LtrInt(PRASMZ B RqPrSd,APSIMZ B OpLtr,
SSSCMZ NX MnSqSt,PCTHMZ A PctMo,PLTTMG B OpLtr,DHSSMG B OpLtr
DHSSMG B CdLtr,APSIMZ B EnCdLnTrpSlt,PARAGP L CnfHpp,
DIGOMG B CdLtr)};
state1 -[]->state0 { dcu2 line trip(not DHSSMG B LtrHwOpFl,
DIGOMG B CdLtr,DHWOMG S LtrCd,DHWOMG B FpgaLtrOn,DHWOMG B DcuLtrFl)};
**};
end Controller.Impl;

23

Table 5: Subprogram LtrInt

subprogram LtrInt
features
B RqPrSd: in parameter Base Types::Boolean;
B OpLtr AppSpec: in parameter Base Types::Boolean;
NX SqSt: in parameter Base Types::Integer;
A PctMo: in parameter Base Types::Boolean;
B LtrTsOpLtr: in parameter Base Types::Boolean;
B OpLtr LtrTs: in parameter Base Types::Boolean;
B CdLtr LtrTs: in parameter Base Types::Boolean;
B EnCdLnTrpSlt: in parameter Base Types::Boolean;
L CnfHpp: in parameter Base Types::Boolean;
B ClLtr: out parameter Base Types::Boolean;
end LtrInt;

subprogram implementation LtrInt.Impl
annex behavior specification
{**
variables
temp1,temp2,temp3,temp4,temp5,temp6,temp7,temp8,temp9,
temp10,temp11,temp12,temp13,temp14,temp15,temp16,
temp17: Base Types::Boolean;
states
ENTRY : initial state;
state1,state2,state3,state4,state5,state6,state7,state8,
state9,state10,state11,state12,state13,state14,state15,
state16,state17 : state;
EXIT : final state;
transitions
ENTRY -[]->state1 {temp1 := NX SqSt >= 3};
state1 -[]->state2 {WITHIN I(true,NX SqSt,27,4,temp2)};
state2 -[]->state3 {temp3 := NX SqSt >= 38};
state3 -[]->state4 {temp4 := NX SqSt = 30};
state4 -[]->state5 {temp5 := NX SqSt = 31};
state5 -[]->state6 {temp6 := B RqPrSd and temp1};
state6 -[]->state7 {temp7 := temp6 or B OpLtr LtrTs or B OpLtr AppSpec};
state7 -[]->state8 {temp8 := temp2 or temp3};
state8 -[]->state9 {F TRIG(temp4,temp9)};
state9 -[]->state10 {F TRIG(B OpLtr AppSpec,temp10)};
state10 -[]->state11 {R TRIG(temp8,temp11)};
state11 -[]->state12 {temp12 := temp9 or temp5};
state12 -[]->state13 {temp13 := L CnfHpp or B EnCdLnTrpSlt};
state13 -[]->state14 {temp14 := not(A PctMo and B LtrTsOpLtr)};
state14 -[]->state15 {temp15 := temp12 and temp13};
state15 -[]->state16 {temp16 := temp10 or B CdLtr LtrTs or temp11 or temp15};
state15 -[]->state17 {RS(temp7,temp16,temp17)};
state17 -[]->EXIT {B ClLtr := temp14 and temp17};
**};

24

end LtrInt.Impl;

Table 6: Subprogram dcu2 line trip

subprogram dcu2 line trip
features
enable: in parameter Base Types::Boolean;
act: in parameter Base Types::Boolean;
fb: out parameter Base Types::Boolean;
fpga2 on: out parameter Base Types::Boolean;
fb ne: out parameter Base Types::Boolean;
GPIO OUT: requires data access Base Types::Boolean
{Access Right =>read write;};
LTRIP EN N: requires data access Base Types::Boolean
{Access Right =>read only;};
MCU LT ON: requires data access Base Types::Boolean
{Access Right =>read only;};
FPGA LTRCR: requires data access Base Types::Boolean
{Access Right =>write only;};
FPGA2 LT ON: requires data access Base Types::Boolean
{Access Right =>read only;};
LT RELAY FB: requires data access Base Types::Boolean
{Access Right =>read only;};
end dcu2 line trip;

subprogram implementation dcu2 line trip.Impl
annex behavior specification
{**
variables
temp : Base Types::Boolean;
btemp : Base Types::Boolean;
states
ENTRY : initial state;
state0,state1,state2,state3,state4, state5, state6 : state;
EXIT : final state;
transitions
ENTRY -[]->state0 {temp := false; btemp := false};
state0 [2] -[enable]->state1 {GPIO OUT:= GPIO OUT and not LTRIP EN N};
state0 [1] -[]->state1 {GPIO OUT:= GPIO OUT or LTRIP EN N};
state1 [2] -[act]->state2 {temp := temp or MCU LT ON};
state1 [1] -[]->state2 {};
state2 -[]->state3 {FPGA LTRCR := temp; fpga2 on := temp and FPGA2 LT ON;
fb := temp and LT RELAY FB ;};
state3 [2] -[enable and act and fpga2 on]->state4 {};
state3 [1] -[]->state5 {};
state4 [2]-[not fb]->state6 {btemp := true};
state4 [1]-[]->state6 {};
state5 [2]-[fb]->state6 {btemp:= true};

25

state5 [1]-[]->state6 {};
state6 -[]->EXIT {fb ne := btemp};
**};
end dcu2 line trip.Impl;

Table 7: Thread Tester

thread Tester
features
DCUIMG C LtrTs: in data port Base Types::Boolean;
DHSSMG B LtrFl: in data port Base Types::Boolean;
DHWOMG S LtrCd: in data port Base Types::Boolean;
DIGIMG S LtrOp: in data port Base Types::Boolean;
DCUIMG S DcuNtRdy: in data port Base Types::Boolean;
PARAGP L LtrSvEn: in data port Base Types::Boolean;
DHSSMG B OpLtr: out data port Base Types::Boolean;
DHSSMG B CdLtr: out data port Base Types::Boolean;
DHSSMG NX LtrSaSq: out data port Base Types::Integer;
DHSSMG S LtrTsRdy: out data port Base Types::Boolean;
DHSSMG S LtrOpVd: out data port Base Types::Boolean;
properties
Dispatch Protocol =>Periodic;
Period =>64 ms;
Priority =>2;
Compute Execution Time =>1 ms .. 10 ms;
Compute Deadline =>64 ms;
end Tester;

thread implementation Tester.Impl
calls call list: LtrTsSq: subprogram LtrTsSq;;
connections
C LtrTs in: parameter DCUIMG C LtrTs ->LtrTsSq.C LtrTs;
B LtrFl in: parameter DHSSMG B LtrFl ->LtrTsSq.B LtrFl;
S LtrCd in: parameter DHWOMG S LtrCd ->LtrTsSq.S LtrCd;
S LtrOp in: parameter DIGIMG S LtrOp ->LtrTsSq.S LtrOp;
S DCUNtRdy in: parameter DCUIMG S DcuNtRdy ->LtrTsSq.S DCUNtRdy;
L EnLtrSv in: parameter PARAGP L LtrSvEn ->LtrTsSq.L EnLtrSv;
B OpLtr out: parameter LtrTsSq.B OpLtr ->DHSSMG B OpLtr;
B CdLtr out: parameter LtrTsSq.B CdLtr ->DHSSMG B CdLtr;
NX LtrSaSq out: parameter LtrTsSq.NX LtrSaSq ->DHSSMG NX LtrSaSq;

annex behavior specification
{**
variables
temp1,temp2,temp3 : Baste Types::Boolean;
states
state0 : initial complete final state;
state1,state2,state3 : state;

26

transitions
state0 -[on dispatch]->state1 {LtrTsSq(DCUIMG C LtrTs,DHSSMG B LtrFl,
DHWOMG S LtrCd,DIGIMG S LtrOp,DCUIMG S DcuNtRdy,PARAGP L LtrSvEn,
DHSSMG B OpLtr,DHSSMG B CdLtr,DHSSMG NX LtrSaSq,temp1,temp2)};
state1 -[]->state2 {temp3 := temp1 and temp2};
state2 -[]->state3 {SR(temp1,false,DHSSMG S LtrTsRdy)};
state3 -[]->stateo {SR(temp3,false,DHSSMG S LtrOpVd)};
**};
end Tester.Impl;

Table 8: Subprogram LtrTsSq

subprogram LtrTsSq
features
C LtrTs: in parameter Base Types::Boolean;
B LtrFl: in parameter Base Types::Boolean;
S LtrCd: in parameter Base Types::Boolean;
S LtrOp: in parameter Base Types::Boolean;
S DCUNtRdy: in parameter Base Types::Boolean;
L EnLtrSv: in parameter Base Types::Boolean;
B OpLtr: out parameter Base Types::Boolean;
B CdLtr: out parameter Base Types::Boolean;
NX LtrSaSq: out parameter Base Types::Integer;
A LtrTs: out parameter Base Types::Boolean;
A LtrOpVd: out parameter Base Types::Boolean;
state LtrTsSq : requires data access Base Types::String
{Access Right =>read write;};
Dy : requires data access Base types::Boolean {Access Right =>read write;};
end LtrTsSq;

subprogram implementation LtrTsSq.Impl
annex behavior specification
{**
variables
states
CheckState : initial state;
Start,OpenLtr1,CloseLtr,OpenLtr2,Ready : state;
Return : final state;
transitions
CheckState [4]-[state LtrTsSq = Start]->Start {NX LtrSaSq = 0};
CheckState [3]-[state LtrTsSq = OpenLtr1]->OpenLtr1 {NX LtrSaSq = 1};
CheckState [2]-[state LtrTsSq = CloseLtr]->CloseLtr {NX LtrSaSq = 2};
CheckState [1]-[state LtrTsSq = OpenLtr2]->OpenLtr2 {NX LtrSaSq = 3};
CheckState [0]-[state LtrTsSq = Ready]->Ready {NX LtrSaSq = 4};
Start [1]-[(not L EnLtrSv) and C LtrTs]->Return {state LtrTsSq := Ready};
Start [0]-[L EnLtrSv and C LtrTs]->Return {B OpLtr := true; state LtrTsSq :=
OpenLtr1};
OpenLtr1 [1]-[B LtrFl]->Return {state LtrTsSq := Start};

27

OpenLtr1 [0]-[not S LtrCd]->Return {B CdLtr := true; Delay(512ms); Dy := true;
state LtrTsSq := CloseLtr};
CloseLtr [1]-[B LtrFl]->Return {state LtrTsSq := Start};
CloseLtr [0]-[S LtrCd and Dy]->Return {B OpLtr := true; state LtrTsSq :=
OpenLtr2};
OpenLtr2 [1]-[B LtrFl]->Return {state LtrTsSq := Start};
OpenLtr2 [0]-[not S LtrCd]->Return {A LtrTs := true, state LtrTsSq := Ready};
Ready -[S DCUNtRdy]->Return {state LtrTsSq := Start};
**};
end LtrTsSq.Impl;

28

6 Architecture flow graphs

AADL models essentially express control and data flows through the architec-
ture that define the architectural behavior. Control flows refer to the orders in
which software components and their instructions are executed. Data flows refer
to the orders in which data variables (including interfaces and connections) are
assigned by a component and subsequently used, possibly by a different com-
ponent. In AADL, the flows are dependent on how components transfer control
and data through their interfaces – in conjunction with scheduling properties and
communication protocols of shared resources. The possible interactions among
components are represented by: port connections, data access connections, sub-
program calls, and parameter connections. A port connection represents a transfer
of unqueued data, queued control, or queued control with associated data (mes-
sages), depending on the type of interconnected interfaces (data port, event port,
or event data port). A subprogram call represents a transfer of control whereas a
parameter connection and a data access connection represent a transfer of data.
In addition, components may have behavioral models (BMs) describing their
logical executions. A BM therefore both yields internal flows of a component
(between input and output interfaces) and refines flows to other components
as it operates on inter-component connections. All these constructs together
determines the control and data flows of an AADL model. In order to verify
consistency, completeness, and correctness of the system architecture (according
to the criteria presented in Section 7), the control and data flows must be an-
alyzed. A common approach to control and data flow analysis is to extract the
flows into a directed graph. In this section, we define a type of directed graph
that has been developed for the representation of AADL flows, referred to as
architecture flow graphs (AFGs).

Definition 3 An architecture flow graph AFG(M) = 〈V,A〉 of an AADL model
M is a directed graph of a set of vertices V = {v | v ∈ EXPR ∪
〈“ENTRY ”, compi〉∪〈“REENTRY ”, compi〉∪〈“EXIT”, compi〉} representing
AADL expressions and scheduling states, and a set of directed arcs A ⊆ V ×V
describing how control and data flow through the vertices. The possible AADL
expressions are determined by the abstract syntax in Definition 1. v of an arc
〈v, v′〉 ∈ A is the tail and v′ is the head, denoting that the flow is directed from
v to v′, i.e., an execution of v is followed by an execution of v′ if it is a control
flow or a write of a variable in v is followed by a read of the variable in v′ if it is
a data flow. The denotation 〈v, v′〉 is used interchangeably with v → v′. A vertex
v = 〈expr〉 and an arc 〈v, v′〉 may be attributed with a set of AADL properties:
〈v, {prop1, prop2, . . . , propn}〉 and 〈〈v, v′〉, {prop1, prop2, . . . , propn}〉. Further-
more, an arc has one of the following labels to distinguish different types of
control and data flows:

– 〈v, v′〉c: represents a component-internal control flow. A vertex v is called a
direct predecessor of v′ and v′ a direct successor of v iff 〈v, v′〉c ∈ A.
Let outdegree(v) be a function mapping the number of direct successors

29

of v and indegree(v) the number of direct predecessors. A vertex can have
zero, one, or two direct successors. A vertex v with two direct successors
represents a so called control expression constituting a Boolean condition.
The two outgoing arcs of v are attributed with 〈v, vx〉cT for true and 〈v, vy〉cF
for false and correspond to the control flow in response to the condition
evaluation.

– 〈v, v′〉c−inter: represents an interaction-based control flow due to the acti-
vation of a communication protocol. The execution of v′ coincides with the
execution of v according to the protocol.

– 〈v, v′〉call: represents an inter-component control flow due to a raised event
or a call.

– 〈v, v′〉d: represents a component-internal data flow.
– 〈v, v′〉d−in: represents an inter-component data flow due to a data passing by

value or by reference protocol. The arc indicates data flowing from an output
to an input interface. If used together with a function call, the arc indicates
the data flowing from an argument to the corresponding subprogram input
parameter.

– 〈v, v′〉d−out: represents an inter-component data flow due to a data passing
by value protocol activated to return from a call. The arc indicates data
flowing from an output parameter of a subprogram to the variable assigned
by the call.

The 〈“ENTRY ”, comp〉 vertex represents the point of the component comp
through which control enters and outdegree(〈“ENTRY ”, comp〉) = 1.
A 〈“REENTRY ”, comp〉 vertex represents a point of the component comp
through which control suspends, and reenters when the component has been reac-
tivated/dispatched after the suspension and outdegree(〈“REENTRY ”, comp〉) =
1. A component may have any number of reenter vertices. The 〈“EXIT”, comp〉
vertex represents the point of the component comp through which control ex-
its and outdegree(〈“EXIT”, comp〉) = 0. A control path P = v1 →c v2 →c

· · · →c vn of a flow graph is a sequence of n vertices such that n ≥ 2 and
for i = 1, 2, . . . , n − 1, 〈vi, vi+1〉c ∈ A. A control path is called a basic block
if v1 6= ENTRY ∪ REENTRY ; outdegree(v1) = 1; for n > 2 and for i =
2, 3 . . . , n − 1, indegree(vi) = 1, outdegree(vi) = 1, and indegree(vn) = 1; and
outdegree(vn) ≥ 2.

6.1 Architecture flow graph generation

An AADL model is transformed into an AFG through three operations. The
result of applying these operations to LTRI is shown in Fig. 7. The first operation
is to generate an individual control flow graph (CFG) for each AADL component
representing a, possibly concurrent, unit of sequential execution, i.e., for each
thread and subprogam component. This is achieved by analyzing each thread
and subprogram component in isolation to find all possible control flows of type
〈v, v′〉c. The second operation is to compute all component-internal data flows
through def-use pair analysis and annotate them to the CFGs, resulting in graphs

30

referred to as program flow graphs (PFGs). Again, the analysis is performed on
each component in isolation. The third and final step is to integrate the set of
PFGs according to the modeled component connections, resulting in the AFG
of the AADL model.

AFG generation: step 1 The individual control flow of each component is
entirely determined by the BM of the component. A BM essentially consists of

state transitions. A state transition s
pri,g,act−−−−−→ s′, from a state s to a succes-

sor state s′, has a priority pri ∈ N, a (possibly empty) set of predicate guards
g, and a (possibly empty) sequence of actions act. Each state transition cor-
responds to a fixed execution order of operations: the guard of the transition
is first computed and, if evaluated to the Boolean value true, the sequence of
actions is executed. Thus, BM guards and actions are the executable operations

and yield the vertices of the CFG. Consequently, each transition s
pri,g,act−−−−−→ s′,

where act = action1; action2; ...; actionn is a sequence of n actions, maps to a
CFG construct of one vertex v1 = g representing the guard of the state transi-
tion; a basic block of n vertices v2 = action1, v3 = action2, . . . , vn+1 = actionn
representing the actions of the state transition; and n arcs 〈v1, v2〉cT , 〈v2, v3〉c,
. . . , 〈vn, vn+1〉c representing the control flow through the executable operations.
Note that the arc from the guard to the first action is attributed with a “T”.
Let stateTrToV : TR → P(V) be a function mapping a state transition to a
set of vertices and stateTrToA : TR → P(A) to a set of arcs in this fash-

ion, i.e., such that stateTrToV (s
pri,g,act−−−−−→ s′) = {v1, v2, v3, . . . , vn+1} and

stateTrToA(s
pri,g,act−−−−−→ s′) = {〈v1, v2〉T , 〈v2, v3〉, . . . , 〈vn, vn+1〉} where v1 =

g, v2 = action1, v3 = action2, . . . , vn+1 = actionn.
The fixed execution order of operations is repeated throughout the BM (until

a final state is reached), as shown in Fig. 2. If g1 is evaluated to the Boolean
value true, act1 is executed, resulting in the arrival of a new state si where-
upon the transition going out from si with the highest priority is executed
according to the fixed order. On the other hand, if g1 is evaluated to false,
another state transition going out from s1 with the (next) highest priority is
executed in the fixed order (in this case, the transition with priority pri2 is next
in line). Let guardV ertex : TR → V be a function mapping a state transition

s
pri,g,act−−−−−→ s′ to the vertex vx representing the guard of the state transition.

Let lastActionV ertex : TR → V be a function mapping a state transition

s
pri,g,act−−−−−→ s′ to the vertex vx representing the last action of the state transition.

Let guardV ertexPrio : S×N→ V ∪{false} be a function mapping a state s to
the vertex vx representing the guard of the state transition going out from v and
with the highest priority, or with the highest priority but less than n if a natural
number is given as argument, or false if there exist no such vertex. In the case
of an evaluation of a guard to true, the control flow from the last action of the
transition to the guard of the second transition with the highest priority is simply

represented by an arc 〈lastActionV ertex(s
pri,g,act−−−−−→ s′), guardV ertexPrio(s′)〉.

In case of an evaluation to false, the control flow to the guard with the (next)

31

highest priority is represented by an (false-)arc 〈guardV ertex(s
pri,g,act−−−−−→ s′),

guardV ertexPrio(s, pri)〉F .

s1 si

pri1,g1,act1

s1 sj

pri2,g2,act2

si sk

pri3,g3,act3

g1=FALSE

g1=TRUE

Fig. 2. Illustration of behavioral model semantics. Assume s1 is the initial state and
pri1 > pri2.

It should be mentioned that actions may be of if, while and for constructs.
Such an action comprises multiple vertices where control can leave the construct
(action) from several vertices rather than a single one. In such constructs are
predicates and nested actions also represented through distinguished vertices.
Assume that vx represents a control predicate expression of a loop or conditional,
and vy represents an action expression immediately nested within the loop or
condition. If vx is the predicate of a conditional expression the arc 〈vx, vy〉 is
labeled with “T” or “F” according to weather vy exists in the then branch or
else branch. If vx is the predicate of a while- or for-loop, the arc 〈vx, vy〉 is
labeled with “T”. In case a state transition consists of an action sequence where
the last action consists of an if construct, each (nested) action ending the control
flow of the construct, including the current state transition, must be connected
to the subsequent transition guard vertex, REENTRY vertex, or EXIT vertex
by an arc.

The order in which transitions are executed is determined by the possible
orders states can be visited through state transitions (also known as the pos-
sible paths in the BM) and by the priorities of the state transitions, as shown
in Fig. 3. However, a BM has different types of states that must be taken into
consideration when building the CFG. A BM of a subprogram component has:
one initial state representing the starting point of a call; zero or more inter-
mediate execution states representing the logical execution between start and
completion of a call; and one final state representing the completion of a call.
Thus, the initial state of a subprogram maps to an ENTRY vertex whereas
the final state maps to an EXIT vertex. A BM of a thread component, on the
other hand, has: one initial state representing the state of the thread before it
is initialized (halted); zero or more intermediate execution states representing
the initialization steps (such as checking correctness of initial values of input
and output ports) of the thread between the initial state and one, first, com-
plete state (any path from the initial state will reach the same complete state

32

before any other complete state); one or more complete states representing that
the thread has suspended itself and is awaiting dispatch/reactivation (the first
complete state reached from an initial state does also represent completion of
initialization the first time it is reached); zero or more intermediate execution
states representing logical execution between dispatches, that is, from and back
to a complete state or between complete states; and one final state representing
completion of finalization. Moreover, a state may be of a combination of these
types. For example, a complete state may also be a final state.

g1

act1T

F g2

g3

T

F

act2

T

F

act3

Component-internal
control flow

ENTRY

Fig. 3. The control flow graph of the behavioral model example in Figure 2.

Execution of a subprogram component is triggered by incoming calls where
the transition out from the initial state with the highest priority (if several) and
with valid execute conditions is executed. A thread component, on the other
hand, must first be initialized by an initialize action triggered when the process
containing the thread is completely loaded into its virtual address space before
it can be executed. An initialize action triggers the transition out from the
initial state eventually leading to one, first, complete state. A state transition to
a complete state means that the thread is calling an “await dispatch” run-time
service, whereupon the thread is suspended after the action of the state transition
has been executed. A dispatch of the thread component is triggered according
to the dispatch conditions of the transitions out from the current complete state
in conjunction with the specified scheduling properties. Dispatches of a periodic
thread are solely triggered by a clock according to the specified time interval
(period). In this case, the dispatch conditions (guards of transitions out from
complete states) are left empty or labeled “on dispatch”. Dispatches of aperiodic,
sporadic, timed, and hybrid threads are, in essence, triggered by the arrival of
an event or a remote subprogram call arriving to a provides subprogram access
feature of the thread. By default, any arrival of event or subprogram call triggers
a dispatch where dispatch conditions restrict the number of triggers if modeled.

In either case, an input-compute-output model of execution is triggered. In-
put on in ports is frozen at the time of dispatch, where input from each port
connection is read and assigned to a corresponding port variable which value
(by default) is not affected by new arrivals for the remainder of the current dis-
patch. Output on out ports is transmitted through the connections at the time

33

of completion, deadline or at specific output times according to an Output T ime
property. For simplicity, we assume that the output is transmitted at comple-
tion. A state transition to a final state means that the thread completes and is
calling a “finalize” run-time service, whereupon the thread terminates after the
action of the state transition has been executed. Consequently, a BM of a thread
component, in contrast to a BM of a subprogram component, expresses state
transitions which are not relevant to the logical execution (such as initialization
transitions).

Algorithm 1 Algorithm for generating a control flow graph

Input: compi.BM = 〈S, so, CPL, FIL, V AR, TR〉 and TRrel ⊆ TR
Output: CFG(compi) = 〈V,A〉
1: V ← ∅ ∪ {〈”ENTRY ”, compi〉, 〈”EXIT”, compi〉}
2: A← ∅
3: for all s

pri,g,act−−−−−→ s′ ∈ TRrel do . generate vertices and arcs for each relevant
transition

4: V ← V ∪ stateTrToV (s
pri,g,act−−−−−→ s′)

5: A← A ∪ stateTrToA(s
pri,g,act−−−−−→ s′)

6: end for
7: A← A ∪ {〈〈”ENTRY ”, compi〉, guardV ertexPrio(firstState(compi.BM))〉 .

Generate the arc representing control flow from the ENTRY vertex to the guard
vertex with highest priority

8: for all cplj ∈ CPL do . generate possible REENTRY vertices

9: if ∃s pri,g,act−−−−−→ s′ ∈ TRrel[s
′ = cplj] then

10: V ← V ∪ {”REENTRYj”}
11: A← A ∪ {〈”REENTRYj”, guardV ertexPrio(s′)〉} . Any control flow to

”REENTRYj” will successively flow to guardV ertexPrio(s′)
12: end if
13: end for
14: for all s

pri,g,act−−−−−→ s′ ∈ TRrel do . Generate arcs
to connect each transition representation to the subsequent guard, complete state
(reentry) or final state representation

15: if s′ ∈ CPL) then

16: A← A ∪ {〈lastActionV ertex(s
pri,g,act−−−−−→ s′), CPLStateV ertex(s′)〉}

17: else if s′ ∈ FIL then
18: A← A ∪ {〈lastActionV ertex(s

pri,g,act−−−−−→ s′), 〈”EXIT”, compi〉〉}
19: elseA← A ∪ {〈lastActionV ertex(s

pri,g,act−−−−−→ s′), guardV ertexPrio(s′)〉}
20: end if
21: if guardV ertexPrio(s, pri) then . generate a false arc if a subsequent guard

exists
22: A← A ∪ {〈guardV ertex(s

pri,g,act−−−−−→ s′), guardV ertexPrio(s, pri)〉F }
23: end if
24: end for
25: return 〈V,A〉

34

The relevant set of state transitions includes each transition that exists on
every path from every complete state in the BM. Each of these are either from a
complete state to a complete state, execution state, or a final state; or from an
execution state to a complete state, an execution state, or a final state. Thus, the
first complete state reached from an initial state maps to an ENTRY vertex and
any subsequently reachable complete states, including the one first reached from
an initial state, maps to a REENTRY vertex. The final state maps to an EXIT
vertex. Let firstState : P(S)× S ×P(S)×P(S)×P(V AR)×P(TR)→ CPL
be a function mapping a BM to the initial state if the BM is of a subprogram
component, or the first complete state reachable from the initial state if the BM
is of a thread component. Let CPLStateV ertex : CPL → V be a function
mapping a complete state to its corresponding REENTRY vertex. Note that
the first complete state is mapped to both an ENTRY and an REENTRY
vertex if there exist a transition back to the state. However, there exist only
one distinguished ENTRY vertex, so there is no need to define a function to
retrieve it. Let TRrel ⊆ TR be the relevant set of state transitions of a BM. If
the BM is of a subprogram component, then TRrel = TR. The transformation
from a compi.BM to the corresponding CFG(compi.BM) is then be calculated
according to Algorithm 1. As examples, the result of applying the algorithm on
subprogram LtrTsSq.Impl (8) is presented in Figure 5.

35

Component-internal control flow

enable

fb_ne := btemp

ENTRY
dcu2_line_trip.Impl

GPIO_OUT:=
GPIO_OUT and not

LTRIP_EN_N

act

T F

GPIO_OUT:=
GPIO_OUT or
LTRIP_EN_N

temp := temp or
MCU_LT_ON

FPGA_LTRCR :=
temp

fpga2_on := temp and
FPGA2_LT_ON

fb := temp and
LT_RELAY_FB

enable and act and
fpga2_on

btemp := true
btemp := true

fb

F

F

F

T

T

T

EXIT
dcu2_line_trip.

Impl

btemp = false

temp = false

not fb

T F

Fig. 4. The control flow graph of dcu2 line trip.Impl (Table 6).

36

AFG generation: step 2 The second operation is to compute the component-
internal data flows for each component and annotate them to the CFGs to pro-
duce the PFGs. Such flows are computed by performing definition-use pairs anal-
ysis of each CFG. Assume that Vdef is the set of vertices that defines/assigns
variable vari, and Vuse is the set of vertices that uses/reads vari. A component-
internal data flow is defined as:

Definition 4 For each pair of vertices 〈vx, vy〉 ∈ Vdef × Vuse such that there
exists a control path P = v1 →c v2 →c · · · →c vn from vx to vy (where v1 = vx
and vn = vy) and any other vertex vz in P does not define/assign vari, i.e.,
vz 6= Vdef for z = 2, 3, . . . , n − 1, there exist a component-internal data flow
〈vx, vy〉d.

If the principle is applied to all variables for each CFG, all the possible
component-internal data flows are generated. As an example, the PFG of
dcu2 line trip.Impl is presented in Figure 5.

37

Component-internal data flow

Component-internal control flow

enable

fb_ne := btemp

ENTRY
dcu2_line_trip.Impl

GPIO_OUT:=
GPIO_OUT and not

LTRIP_EN_N

act

T F

GPIO_OUT:=
GPIO_OUT or
LTRIP_EN_N

temp := temp or
MCU_LT_ON

FPGA_LTRCR :=
temp

fpga2_on := temp and
FPGA2_LT_ON

fb := temp and
LT_RELAY_FB

enable and act and
fpga2_on

btemp := true
btemp := true

fb

F

F

F

T

T

T

EXIT
dcu2_line_trip.

Impl

btemp = false

temp = false

not fb

T F

Fig. 5. The program flow graph of dcu2 line trip.Impl.

38

AFG generation: step 3 The third and final operation is to integrate the
CFGs according to the component interactions to produce the AFG. Components
of AADL models may both transfer data and control through interfaces, where
ports and parameters are accessible as variables. Control may be transferred to
threads through event ports and event data ports that are included in dispatch
conditions, and to subprograms through subprogram calls. In either case, control
is transferred to the entry point (including reentry points of threads) of the
target component. Data may be transferred through data ports, event data ports,
subprogram parameters, and shared data components.

Following the default input-compute-output semantics of AADL, each thread
dispatch and subprogram invocation includes assignments to input ports and
parameters if the component has such connections. In addition, each thread-
execution completion and subprogram return includes transmission of output
data on output ports and parameters if such connections exist. Consequently,
input assignments coincide with entry vertices of subprograms, and with dis-
patch condition vertices (extensions of entry and reentry vertices to explicitly
represent dispatch conditions) of entry and reentry vertices of threads. Out-
put assignments, on the other hand, coincide with exit vertices of subprograms
whereupon control is returned to the caller. In threads, output assignments co-
incide with exit and reentry vertices of threads as both represent a completion
of the current dispatch when entered.

These inter-component flows are explicitly represented through four distin-
guished types of vertices (similarly to system dependence graphs defined by Hor-
witz et al. [20]): (1) actual-in vertices on the form connection = out interface
representing assignments that copy the values of output interfaces to connec-
tions; (2) formal-in vertices on the form in interface = connection representing
assignments that copy the values of connections to input interfaces; (3) formal-
out vertices on the form connection = out parameter representing assignments
that copy return values of a callee’s output parameters to connections; and (4)
actual-out vertices on the form in interface = connection representing assign-
ments that copy return values of connections to variables assigned by the call.

By using these vertices, inter-component flows are added according to Rule 1-
5. Each vertex of the PFG that operates on an interface must subsequently be
connected to the corresponding distinguished vertex, as illustrated in Figure 6,
to finalize the AFG.

Rule 1 For each data port (dp) connection cx(dpy, dpz), where dpy is the source
and dpz is the sink, generate an actual-in vertex cx = dpy and a formal-in vertex
dpz = cx connected through a data-in arc 〈cx = dpy, dpz = cx〉d−in. To conform
to the transmission of output semantics, an interaction-based control flow arc
shall be created from each reentry vertex and the exit vertex of the sending
thread to the actual-in vertex. Similarly, dispatch conditions of entry and reentry
vertices of the receiving thread must have an interaction-based control flow to
the formal-in vertex.

Rule 2 For each event port (ep) connection cx(epy, epz), generate an actual-in
vertex cx = epy and a formal-in vertex epz = cx connected through a call/event

39

Component-internal data flow

Component-internal control flow

Interaction-based control flow

enable

fb_ne := btemp

ENTRY
dcu2_line_trip.Impl

GPIO_OUT:=
GPIO_OUT and not

LTRIP_EN_N

act

T F

GPIO_OUT:=
GPIO_OUT or
LTRIP_EN_N

temp := temp or
MCU_LT_ON

FPGA_LTRCR :=
temp

fpga2_on := temp and
FPGA2_LT_ON

fb := temp and
LT_RELAY_FB

enable and act and
fpga2_on

btemp := true
btemp := true

fb

F

F

F

T

T

T

EXIT
dcu2_line_trip.

Impl

btemp = false

temp = false

not fb

T F

enable := enable_in act := act_in

fb_out := fb
fpga2_on_out :=

fpga2_on
fb_ne_out := fb_ne

Fig. 6. The program flow graph of dcu2 line trip.Impl with formal-in and formal-out
vertices.

40

and a data-in arc. cx and epy are assumed to be of Boolean type and epz is a
Boolean-typed array implementing a FIFO queue. The index range is defined by
a Queue Size property which by default is one. It is assumed that epy is set to
false immediately after an execution of the actual-in vertex. From each reentry
vertex and the exit vertex of the sending thread, an interaction-based control flow
arc shall be connected to the actual-in vertex. Finally, each dispatch condition of
each entry and reentry vertex of the receiving thread have an interaction-based
control flow arc to the formal-in vertex.

Rule 3 For each event data port (edp) connection cx(edpy, edpz), generate a
construct similar to event port connections, however, where the variables and
array are assumed to be of a complex data type composed of a boolean type
associated with some data type.

Rule 4 For each subprogram (sub) call call(subx), generate a call arc
〈call(subx), 〈“ENTRY ”, subx〉〉. If any parameter connections to the callee are
associated with the call, they are represented similarly to data port connections,
however, where interaction-based control flows to actual-in vertices are flowing
from the call vertex rather than reentry and exit vertices. If any (return) param-
eter connections to the caller is associated with the call, it is represented by a
formal-out and an actual-out vertex connected through a data-out arc. The exit
vertex of the sending subprogram has an interaction-based control flow arc to
the formal-out vertex whereas the call vertex has such an arc to the actual-out
vertex.

Rule 5 Data access connections to a common data component datax may repre-
sent transfers of data (by reference) if there exist both write-right and read-right
access connections. In case this condition holds, and to represent the possible
combinations of data flows with respect to concurrency, the data flow between
the component compy with write-right access and the component compz with
read-right access is represented through an actual-in vertex compy − compz =
datax, representing the write-right connection, and an inverting formal-in ver-
tex datax = compy − compz, representing the read-right connection, connected
through a data-in arc. Given that a thread or a subprogram gets the data source
upon dispatch and releases it upon a completion, each reentry vertex and the
exit vertex of the sending thread, or the exit vertex of the sending subprogram,
have interaction-based control arcs to the actual-in vertex. On the other hand,
the dispatch conditions of entry and reentry vertices of the receiving thread, or
the entry vertex of the receiving subprogram, have interaction-based control arcs
to the formal-in vertex.

6.2 Results

The result of applying these steps to LTRIS is presented in Figure 7 and a
detailed representation of each component part is presented in Figures 8–13.

41

Fig. 7. The architecture flow graph of LTRIS

Controller-some_read2
:= GPIO_OUT

NX_LtrSaSq := 1

Inter-component (call/event) control flow

EXIT
Tester.Impl

LtrTsSq(DCUIMG_C_LtrTs,
DHSSMG_B_LtrFl,
DHWOMG_S_LtrCd,
DIGIMG_S_LtrOp,
DCUIMG_S_DcuNtRdy,
PARAGP_L_LtrSvEn,
DHSSMG_B_OpLtr,
DHSSMG_B_CdLtr,
DHSSMG_NX_LtrSaSq,
temp1,
temp2)

on dispatch

Component-internal data flow

Component-internal control flow

Inter-component data flow

temp3 := temp1 and
temp2

SR(temp1,false,DHS
SMG_S_LtrTsRdy)

SR(temp3,false,DHS
SMG_S_LtrOpVd

on dispatch

EXIT
Controller.Impl

LtrInt(PRASMZ_B_RqPrSd,
APSIMZ_B_OpLtr,
SSSCMZ_NX_MnSqSt,
PCTHMZ_A_PctMo,
PLTTMG_B_OpLtr,
DHSSMG_B_OpLtr,
DHSSMG_B_CdLtr,
APSIMZ_B_EnCdLnTrpSlt,
PARAGP_L_CnfHpp,
DIGOMG_B_CdLtr)

ENTRY
Controller.Impl

DIGOMG_B_CdLtr :=
B_ClLtr_out

dcu2_line_trip(
not DHSSMG_B_LtrHwOpFl,
temp0,
DHWOMG_S_LtrCd,
DHWOMG_B_FpgaLtrOn,
DHWOMG_B_DcuLtrFl)

ENTRY
LtrInt.Impl

EXIT
LtrInt.Impl

temp1 := NX_SqSt >= 3

WITHIN_I(true,NX_S
qSt,27,4,temp2)

temp3 := NX_SqSt >= 38

temp4 := NX_SqSt = 30

temp5 := NX_SqSt = 31

temp6 := B_RqPrSd and
temp1

temp7 := temp6 or
B_OpLtr_LtrTs or

B_OpLtr_AppSpec

temp8 := temp2 or temp3

F_TRIG(temp4,temp9
)

F_TRIG(B_OpLtr_AppSpec,t
emp10)

R_TRIG(temp8,temp11)

temp12 := temp9 or temp5

temp13 := L_CnfHpp or
B_EnCdLnTrpSlt

temp14 := not (A_PctMo
and B_LtrTsOpLtr)

temp15 := temp12 and
temp13

temp16 := temp10 or
B_CdLtr_LtrTs or temp11 or

temp15

RS(temp7,temp16,temp17)

B_ClLtr := temp14 and
temp17

enable

fb_ne := btemp

ENTRY
dcu2_line_trip.Impl

GPIO_OUT:=
GPIO_OUT and not

LTRIP_EN_N

act

T F

GPIO_OUT:=
GPIO_OUT or
LTRIP_EN_N

temp := temp or
MCU_LT_ON

FPGA_LTRCR :=
temp

fpga2_on := temp and
FPGA2_LT_ON

fb := temp and
LT_RELAY_FB

enable and act and
fpga2_on

btemp := true
btemp := true

fb

F

F

F

T

T

T

L_EnLtrSv
and C_LtrTs

ENTRY LtrTsSq.Impl

B_OpLtr := true

T

F
(not L_EnLtrSv) and

C_LtrTs

EXIT
dcu2_line_trip.

Impl

not S_LtrCd

B_CdLtr := true

T

F

B_LtrFl

Dy := true

S_LtrCd and Dy

B_OpLtr := true

T

F

B_LtrFl

T

T

T

not S_LtrCd

A_LtrTs := true

T

F

B_LtrFl

T

S_DCUNtRdy T

EXIT
LtrTsSq.Impl

S_LtrOp_in :=
DIGIMG_S_LtrOp

S_DCUNtRdy_in :=
DCUIMG_S_DcuNtRdy

L_EnLtrSv_in :=
PARAGP_L_LtrSvEn

DHSSMG_B_OpLtr
:= B_OpLtr_out

DHSSMG_B_CdLtr
:= B_CdLtr_out

DHSSMG_NX_LtrSaSq
:= NX_LtrSaSq_out

S_LtrCd_in :=
DHWOMG_S_LtrCd

B_LtrFl_in :=
DHSSMG_B_LtrFl

C_LtrTs_in :=
DCUIMG_C_LtrTs

temp1 :=
A_LtrTs_out

temp2 :=
A_LtrOpVd_out

S_LtrOp :=
S_LtrOp_in

S_DCUNtRdy :=
S_DCUNtRdy_in

L_EnLtrSv :=
L_EnLtrSv_in

S_LtrCd :=
S_LtrCd_in

B_LtrFl :=
B_LtrFl_in

C_LtrTs :=
C_LtrTs_in

B_OpLtr_out :=
B_OpLtr

B_CdLtr_out :=
B_CdLtr

NX_LtrSaSq_out :=
NX_LtrSaSq

A_LtrTs_out :=
A_LtrTs

A_LtrOpVd_out :=
A_LtrOpVd

State_LtrTsSq
= Start

state_LtrTsSq
= OpenLtr1

state_LtrTsSq
= CloseLtr

state_LtrTsSq
= OpenLtr2

state_LtrTsSq
= Ready

state_LtrTsSq :=
OpenLtr1

state_LtrTsSq :=
Ready

state_LtrTsSq :=
CloseLtr

state_LtrTsSq :=
Start

state_LtrTsSq :=
OpenLtr2

state_LtrTsSq :=
Start

state_LtrTsSq :=
Ready

state_LtrTsSq :=
Start

state_LtrTsSq :=
Start

Internal_connection1
:= Dy

Dy :=
internal_connection1

Internal_connection2
:= state

State :=
internal_connection2

DIGIMG_S_LtrOp :=
some_connection12

DCUIMG_S_DcuNtRdy :=
some_connection13

PARAGP_L_LtrSvEn :=
some_connection14

DHWOMG_S_LtrCd :=
connection3

DHSSMG_B_LtrFl :=
some_connection10

DCUIMG_C_LtrTs :=
some_connection9

some_connection16 :=
DHSSMG_S_LtrTsRdy

some_connection17 :=
DHSSMG_S_LtrOpVd

some_connection15 :=
DHSSMG_NX_LtrSaSq

connection2 :=
DHSSMG_B_CdLtr

connection1 :=
DHSSMG_B_OpLtr

SET1_in := temp1 RESET_in := false
DHSSMG_S_LtrTsRdy

:= Q1_out

SR

SET1_in := temp3 RESET_in := false
DHSSMG_S_LtrOpVd

:= Q1_out

SR

PLTTMG_B_OpLtr :=
some_connection5

DHSSMG_B_OpLtr :=
connection1

DHSSMG_B_CdLtr
:= connection2

PCTHMZ_A_PctMo :=
some_connection4

SSSCMZ_NX_MnSqSt
:= some_connection3

APSIMZ_B_OpLtr :=
some_connection2

APSIMZ_B_EnCdLnTrpSlt
:= some_connection6

PRASMZ_B_RqPrSd
:= some_connection1

PARAGP_L_CnfHpp :=
some_connection7

DHSSMG_B_LtrHwOpFl
:= some_connection8

A_PctMo_in :=
PCTHMZ_A_PctMo

B_LtrTsOpLtr_in :=
PLTTMG_B_OpLtr

B_OpLtr_LtrTs_in :=
DHSSMG_B_OpLtr

B_CdLtr_LtrTs_in :=
DHSSMG_B_CdLtr

B_EnCdLnTrpSlt_in :=
APSIMZ_B_EnCdLnTrpSlt

NX_SqSt_in :=
SSSCMZ_NX_MnSqSt

B_OpLtr_AppSpec_in
:= APSIMZ_B_OpLtr

B_RqPrSd_in :=
PRASMZ_B_RqPrSd

L_CnfHpp_in :=
PARAGP_L_CnfHpp

B_CdLtr_LtrTs :=
B_CdLtr_LtrTs_in

B_EnCdLnTrpSlt :=
B_EnCdLnTrpSlt_in

L_CnfHpp :=
L_CnfHpp_in

B_OpLtr_LtrTs :=
B_OpLtr_LtrTs_in

B_LtrTsOpLtr :=
B_LtrTsOpLtr_in

A_PctMo :=
A_PctMo_in

NX_SqSt :=
NX_SqSt_in

B_OpLtr_AppSpec :=
B_OpLtr_AppSpec_in

B_RqPrSd :=
B_RqPrSd_in

B_ClLtr_out :=
B_ClLtr

enable_in := not
DHSSMG_B_LtrHwOpFl

act_in :=
DIGOMG_B_CdLtr

DHWOMG_S_LtrCd
:= fb_out

DHWOMG_B_FpgaLtrOn
:= fpga2_on_out

DHWOMG_B_DcuLtrFl
:= fb_ne_out

enable := enable_in act := act_in

fb_out := fb
fpga2_on_out :=

fpga2_on
fb_ne_out := fb_ne

some_connection21 :=
DHWOMG_B_DcuLtrFl

some_connection20 :=
DHWOMG_B_FpgaLtrOn

connection3 :=
DHWOMG_S_LtrCd

some_connection18
:= DIGOMG_B_CdLtr

INPUT_in := NX_SqSt

MX_in := 27

temp2 :=
OUTPUT_out

WITHIN_I

ENABLE_in := true

MN_in := 4

temp9 := Q_out

F_TRIG

CLK_in := temp4

temp10 := Q_out

F_TRIG

CLK_in :=
B_OpLtr_AppSpec

temp11 := Q_out

R_TRIG

CLK_in := temp8

SET1_in := temp16
RESET_in := temp7

temp17 := Q1_out

RS

btemp = false

temp = false

T

T

T

T

T

F

F

F

F

ENTRY
Tester.Impl

not fb

T
F

GPIO_OUT :=
Controller-Controller

LTRIP_EN_N :=
some_write1-Controller

MCU_LT_ON :=
some_write2-Controller

FPGA2_LT_ON :=
some_write3-Controller

LT_RELAY_FB :=
some_write4-Controller

Controller-some_read1
:= FPGA_LTRCR

Controller-Controller :=
GPIO_OUT

Interaction-based control flow

T

T

Delay(512ms);

NX_LtrSaSq := 0

NX_LtrSaSq := 2

NX_LtrSaSq := 3

NX_LtrSaSq := 4

Timing => Immediate;
Latency => 0ms .. 3ms;

Dispatch_Protocol => Periodic;
Period => 64 ms;
Priority => 2;
Compute_Execution_Time => 1 ms .. 10 ms;
Compute_Deadline => 64 ms;

Dispatch_Protocol => Periodic;
Period => 4 ms;
Priority => 1;
Compute_Execution_Time => 1 ms .. 2 ms;
Compute_Deadline => 2 ms;

Timing => Immediate;
Latency => 0ms .. 1ms;

Timing => Immediate;
Latency => 0ms .. 1ms;

42

Fig. 8. The AFG of LTRIS – part 1.

Controller-some_read2
:= GPIO_OUT

NX_LtrSaSq := 1

Inter-component (call/event) control flow

EXIT
Tester.Impl

LtrTsSq(DCUIMG_C_LtrTs,
DHSSMG_B_LtrFl,
DHWOMG_S_LtrCd,
DIGIMG_S_LtrOp,
DCUIMG_S_DcuNtRdy,
PARAGP_L_LtrSvEn,
DHSSMG_B_OpLtr,
DHSSMG_B_CdLtr,
DHSSMG_NX_LtrSaSq,
temp1,
temp2)

on dispatch

Component-internal data flow

Component-internal control flow

Inter-component data flow

temp3 := temp1 and
temp2

SR(temp1,false,DHS
SMG_S_LtrTsRdy)

SR(temp3,false,DHS
SMG_S_LtrOpVd

on dispatch

EXIT
Controller.Impl

LtrInt(PRASMZ_B_RqPrSd,
APSIMZ_B_OpLtr,
SSSCMZ_NX_MnSqSt,
PCTHMZ_A_PctMo,
PLTTMG_B_OpLtr,
DHSSMG_B_OpLtr,
DHSSMG_B_CdLtr,
APSIMZ_B_EnCdLnTrpSlt,
PARAGP_L_CnfHpp,
DIGOMG_B_CdLtr)

ENTRY
Controller.Impl

DIGOMG_B_CdLtr :=
B_ClLtr_out

dcu2_line_trip(
not DHSSMG_B_LtrHwOpFl,
temp0,
DHWOMG_S_LtrCd,
DHWOMG_B_FpgaLtrOn,
DHWOMG_B_DcuLtrFl)

ENTRY
LtrInt.Impl

EXIT
LtrInt.Impl

temp1 := NX_SqSt >= 3

WITHIN_I(true,NX_S
qSt,27,4,temp2)

temp3 := NX_SqSt >= 38

temp4 := NX_SqSt = 30

temp5 := NX_SqSt = 31

temp6 := B_RqPrSd and
temp1

temp7 := temp6 or
B_OpLtr_LtrTs or

B_OpLtr_AppSpec

temp8 := temp2 or temp3

F_TRIG(temp4,temp9
)

F_TRIG(B_OpLtr_AppSpec,t
emp10)

R_TRIG(temp8,temp11)

temp12 := temp9 or temp5

temp13 := L_CnfHpp or
B_EnCdLnTrpSlt

temp14 := not (A_PctMo
and B_LtrTsOpLtr)

temp15 := temp12 and
temp13

temp16 := temp10 or
B_CdLtr_LtrTs or temp11 or

temp15

RS(temp7,temp16,temp17)

B_ClLtr := temp14 and
temp17

enable

fb_ne := btemp

ENTRY
dcu2_line_trip.Impl

GPIO_OUT:=
GPIO_OUT and not

LTRIP_EN_N

act

T F

GPIO_OUT:=
GPIO_OUT or
LTRIP_EN_N

temp := temp or
MCU_LT_ON

FPGA_LTRCR :=
temp

fpga2_on := temp and
FPGA2_LT_ON

fb := temp and
LT_RELAY_FB

enable and act and
fpga2_on

btemp := true
btemp := true

fb

F

F

F

T

T

T

L_EnLtrSv
and C_LtrTs

ENTRY LtrTsSq.Impl

B_OpLtr := true

T

F
(not L_EnLtrSv) and

C_LtrTs

EXIT
dcu2_line_trip.

Impl

not S_LtrCd

B_CdLtr := true

T

F

B_LtrFl

Dy := true

S_LtrCd and Dy

B_OpLtr := true

T

F

B_LtrFl

T

T

T

not S_LtrCd

A_LtrTs := true

T

F

B_LtrFl

T

S_DCUNtRdy T

EXIT
LtrTsSq.Impl

S_LtrOp_in :=
DIGIMG_S_LtrOp

S_DCUNtRdy_in :=
DCUIMG_S_DcuNtRdy

L_EnLtrSv_in :=
PARAGP_L_LtrSvEn

DHSSMG_B_OpLtr
:= B_OpLtr_out

DHSSMG_B_CdLtr
:= B_CdLtr_out

DHSSMG_NX_LtrSaSq
:= NX_LtrSaSq_out

S_LtrCd_in :=
DHWOMG_S_LtrCd

B_LtrFl_in :=
DHSSMG_B_LtrFl

C_LtrTs_in :=
DCUIMG_C_LtrTs

temp1 :=
A_LtrTs_out

temp2 :=
A_LtrOpVd_out

S_LtrOp :=
S_LtrOp_in

S_DCUNtRdy :=
S_DCUNtRdy_in

L_EnLtrSv :=
L_EnLtrSv_in

S_LtrCd :=
S_LtrCd_in

B_LtrFl :=
B_LtrFl_in

C_LtrTs :=
C_LtrTs_in

B_OpLtr_out :=
B_OpLtr

B_CdLtr_out :=
B_CdLtr

NX_LtrSaSq_out :=
NX_LtrSaSq

A_LtrTs_out :=
A_LtrTs

A_LtrOpVd_out :=
A_LtrOpVd

State_LtrTsSq
= Start

state_LtrTsSq
= OpenLtr1

state_LtrTsSq
= CloseLtr

state_LtrTsSq
= OpenLtr2

state_LtrTsSq
= Ready

state_LtrTsSq :=
OpenLtr1

state_LtrTsSq :=
Ready

state_LtrTsSq :=
CloseLtr

state_LtrTsSq :=
Start

state_LtrTsSq :=
OpenLtr2

state_LtrTsSq :=
Start

state_LtrTsSq :=
Ready

state_LtrTsSq :=
Start

state_LtrTsSq :=
Start

Internal_connection1
:= Dy

Dy :=
internal_connection1

Internal_connection2
:= state

State :=
internal_connection2

DIGIMG_S_LtrOp :=
some_connection12

DCUIMG_S_DcuNtRdy :=
some_connection13

PARAGP_L_LtrSvEn :=
some_connection14

DHWOMG_S_LtrCd :=
connection3

DHSSMG_B_LtrFl :=
some_connection10

DCUIMG_C_LtrTs :=
some_connection9

some_connection16 :=
DHSSMG_S_LtrTsRdy

some_connection17 :=
DHSSMG_S_LtrOpVd

some_connection15 :=
DHSSMG_NX_LtrSaSq

connection2 :=
DHSSMG_B_CdLtr

connection1 :=
DHSSMG_B_OpLtr

SET1_in := temp1 RESET_in := false
DHSSMG_S_LtrTsRdy

:= Q1_out

SR

SET1_in := temp3 RESET_in := false
DHSSMG_S_LtrOpVd

:= Q1_out

SR

PLTTMG_B_OpLtr :=
some_connection5

DHSSMG_B_OpLtr :=
connection1

DHSSMG_B_CdLtr
:= connection2

PCTHMZ_A_PctMo :=
some_connection4

SSSCMZ_NX_MnSqSt
:= some_connection3

APSIMZ_B_OpLtr :=
some_connection2

APSIMZ_B_EnCdLnTrpSlt
:= some_connection6

PRASMZ_B_RqPrSd
:= some_connection1

PARAGP_L_CnfHpp :=
some_connection7

DHSSMG_B_LtrHwOpFl
:= some_connection8

A_PctMo_in :=
PCTHMZ_A_PctMo

B_LtrTsOpLtr_in :=
PLTTMG_B_OpLtr

B_OpLtr_LtrTs_in :=
DHSSMG_B_OpLtr

B_CdLtr_LtrTs_in :=
DHSSMG_B_CdLtr

B_EnCdLnTrpSlt_in :=
APSIMZ_B_EnCdLnTrpSlt

NX_SqSt_in :=
SSSCMZ_NX_MnSqSt

B_OpLtr_AppSpec_in
:= APSIMZ_B_OpLtr

B_RqPrSd_in :=
PRASMZ_B_RqPrSd

L_CnfHpp_in :=
PARAGP_L_CnfHpp

B_CdLtr_LtrTs :=
B_CdLtr_LtrTs_in

B_EnCdLnTrpSlt :=
B_EnCdLnTrpSlt_in

L_CnfHpp :=
L_CnfHpp_in

B_OpLtr_LtrTs :=
B_OpLtr_LtrTs_in

B_LtrTsOpLtr :=
B_LtrTsOpLtr_in

A_PctMo :=
A_PctMo_in

NX_SqSt :=
NX_SqSt_in

B_OpLtr_AppSpec :=
B_OpLtr_AppSpec_in

B_RqPrSd :=
B_RqPrSd_in

B_ClLtr_out :=
B_ClLtr

enable_in := not
DHSSMG_B_LtrHwOpFl

act_in :=
DIGOMG_B_CdLtr

DHWOMG_S_LtrCd
:= fb_out

DHWOMG_B_FpgaLtrOn
:= fpga2_on_out

DHWOMG_B_DcuLtrFl
:= fb_ne_out

enable := enable_in act := act_in

fb_out := fb
fpga2_on_out :=

fpga2_on
fb_ne_out := fb_ne

some_connection21 :=
DHWOMG_B_DcuLtrFl

some_connection20 :=
DHWOMG_B_FpgaLtrOn

connection3 :=
DHWOMG_S_LtrCd

some_connection18
:= DIGOMG_B_CdLtr

INPUT_in := NX_SqSt

MX_in := 27

temp2 :=
OUTPUT_out

WITHIN_I

ENABLE_in := true

MN_in := 4

temp9 := Q_out

F_TRIG

CLK_in := temp4

temp10 := Q_out

F_TRIG

CLK_in :=
B_OpLtr_AppSpec

temp11 := Q_out

R_TRIG

CLK_in := temp8

SET1_in := temp16
RESET_in := temp7

temp17 := Q1_out

RS

btemp = false

temp = false

T

T

T

T

T

F

F

F

F

ENTRY
Tester.Impl

not fb

T
F

GPIO_OUT :=
Controller-Controller

LTRIP_EN_N :=
some_write1-Controller

MCU_LT_ON :=
some_write2-Controller

FPGA2_LT_ON :=
some_write3-Controller

LT_RELAY_FB :=
some_write4-Controller

Controller-some_read1
:= FPGA_LTRCR

Controller-Controller :=
GPIO_OUT

Interaction-based control flow

T

T

Delay(512ms);

NX_LtrSaSq := 0

NX_LtrSaSq := 2

NX_LtrSaSq := 3

NX_LtrSaSq := 4

Timing => Immediate;
Latency => 0ms .. 3ms;

Dispatch_Protocol => Periodic;
Period => 64 ms;
Priority => 2;
Compute_Execution_Time => 1 ms .. 10 ms;
Compute_Deadline => 64 ms;

Dispatch_Protocol => Periodic;
Period => 4 ms;
Priority => 1;
Compute_Execution_Time => 1 ms .. 2 ms;
Compute_Deadline => 2 ms;

Timing => Immediate;
Latency => 0ms .. 1ms;

Timing => Immediate;
Latency => 0ms .. 1ms;

43

Fig. 9. The AFG of LTRIS – part 2.

Controller-some_read2
:= GPIO_OUT

NX_LtrSaSq := 1

EXIT
Tester.Impl

temp3 := temp1 and
temp2

SR(temp1,false,DHS
SMG_S_LtrTsRdy)

SR(temp3,false,DHS
SMG_S_LtrOpVd

on dispatch

EXIT
Controller.Impl

LtrInt(PRASMZ_B_RqPrSd,
APSIMZ_B_OpLtr,
SSSCMZ_NX_MnSqSt,
PCTHMZ_A_PctMo,
PLTTMG_B_OpLtr,
DHSSMG_B_OpLtr,
DHSSMG_B_CdLtr,
APSIMZ_B_EnCdLnTrpSlt,
PARAGP_L_CnfHpp,
DIGOMG_B_CdLtr)

ENTRY
Controller.Impl

DIGOMG_B_CdLtr :=
B_ClLtr_out

dcu2_line_trip(
not DHSSMG_B_LtrHwOpFl,
temp0,
DHWOMG_S_LtrCd,
DHWOMG_B_FpgaLtrOn,
DHWOMG_B_DcuLtrFl)

ENTRY
LtrInt.Impl

EXIT
LtrInt.Impl

temp1 := NX_SqSt >= 3

WITHIN_I(true,NX_S
qSt,27,4,temp2)

temp3 := NX_SqSt >= 38

temp4 := NX_SqSt = 30

temp5 := NX_SqSt = 31

temp6 := B_RqPrSd and
temp1

temp7 := temp6 or
B_OpLtr_LtrTs or

B_OpLtr_AppSpec

temp8 := temp2 or temp3

F_TRIG(temp4,temp9
)

F_TRIG(B_OpLtr_AppSpec,t
emp10)

R_TRIG(temp8,temp11)

temp12 := temp9 or temp5

temp13 := L_CnfHpp or
B_EnCdLnTrpSlt

temp14 := not (A_PctMo
and B_LtrTsOpLtr)

temp15 := temp12 and
temp13

temp16 := temp10 or
B_CdLtr_LtrTs or temp11 or

temp15

RS(temp7,temp16,temp17)

B_ClLtr := temp14 and
temp17

enable

fb_ne := btemp

ENTRY
dcu2_line_trip.Impl

GPIO_OUT:=
GPIO_OUT and not

LTRIP_EN_N

act

T F

GPIO_OUT:=
GPIO_OUT or
LTRIP_EN_N

temp := temp or
MCU_LT_ON

FPGA_LTRCR :=
temp

fpga2_on := temp and
FPGA2_LT_ON

fb := temp and
LT_RELAY_FB

enable and act and
fpga2_on

btemp := true
btemp := true

fb

F

F

F

T

T

T

L_EnLtrSv
and C_LtrTs

ENTRY LtrTsSq.Impl

B_OpLtr := true

T

F
(not L_EnLtrSv) and

C_LtrTs

EXIT
dcu2_line_trip.

Impl

not S_LtrCd

B_CdLtr := true

T

F

B_LtrFl

Dy := true

S_LtrCd and Dy

B_OpLtr := true

T

F

B_LtrFl

T

T

T

not S_LtrCd

A_LtrTs := true

T

F

B_LtrFl

T

S_DCUNtRdy T

EXIT
LtrTsSq.Impl

S_LtrOp_in :=
DIGIMG_S_LtrOp

S_DCUNtRdy_in :=
DCUIMG_S_DcuNtRdy

L_EnLtrSv_in :=
PARAGP_L_LtrSvEn

DHSSMG_B_OpLtr
:= B_OpLtr_out

DHSSMG_B_CdLtr
:= B_CdLtr_out

DHSSMG_NX_LtrSaSq
:= NX_LtrSaSq_out

S_LtrCd_in :=
DHWOMG_S_LtrCd

B_LtrFl_in :=
DHSSMG_B_LtrFl

C_LtrTs_in :=
DCUIMG_C_LtrTs

temp1 :=
A_LtrTs_out

temp2 :=
A_LtrOpVd_out

S_LtrOp :=
S_LtrOp_in

S_DCUNtRdy :=
S_DCUNtRdy_in

L_EnLtrSv :=
L_EnLtrSv_in

S_LtrCd :=
S_LtrCd_in

B_LtrFl :=
B_LtrFl_in

C_LtrTs :=
C_LtrTs_in

B_OpLtr_out :=
B_OpLtr

B_CdLtr_out :=
B_CdLtr

NX_LtrSaSq_out :=
NX_LtrSaSq

A_LtrTs_out :=
A_LtrTs

A_LtrOpVd_out :=
A_LtrOpVd

State_LtrTsSq
= Start

state_LtrTsSq
= OpenLtr1

state_LtrTsSq
= CloseLtr

state_LtrTsSq
= OpenLtr2

state_LtrTsSq
= Ready

state_LtrTsSq :=
OpenLtr1

state_LtrTsSq :=
Ready

state_LtrTsSq :=
CloseLtr

state_LtrTsSq :=
Start

state_LtrTsSq :=
OpenLtr2

state_LtrTsSq :=
Start

state_LtrTsSq :=
Ready

state_LtrTsSq :=
Start

state_LtrTsSq :=
Start

Internal_connection1
:= Dy

Dy :=
internal_connection1

Internal_connection2
:= state

State :=
internal_connection2

some_connection16 :=
DHSSMG_S_LtrTsRdy

some_connection17 :=
DHSSMG_S_LtrOpVd

some_connection15 :=
DHSSMG_NX_LtrSaSq

connection2 :=
DHSSMG_B_CdLtr

connection1 :=
DHSSMG_B_OpLtr

SET1_in := temp1 RESET_in := false
DHSSMG_S_LtrTsRdy

:= Q1_out

SR

SET1_in := temp3 RESET_in := false
DHSSMG_S_LtrOpVd

:= Q1_out

SR

PLTTMG_B_OpLtr :=
some_connection5

DHSSMG_B_OpLtr :=
connection1

DHSSMG_B_CdLtr
:= connection2

PCTHMZ_A_PctMo :=
some_connection4

SSSCMZ_NX_MnSqSt
:= some_connection3

APSIMZ_B_OpLtr :=
some_connection2

APSIMZ_B_EnCdLnTrpSlt
:= some_connection6

PRASMZ_B_RqPrSd
:= some_connection1

PARAGP_L_CnfHpp :=
some_connection7

DHSSMG_B_LtrHwOpFl
:= some_connection8

A_PctMo_in :=
PCTHMZ_A_PctMo

B_LtrTsOpLtr_in :=
PLTTMG_B_OpLtr

B_OpLtr_LtrTs_in :=
DHSSMG_B_OpLtr

B_CdLtr_LtrTs_in :=
DHSSMG_B_CdLtr

B_EnCdLnTrpSlt_in :=
APSIMZ_B_EnCdLnTrpSlt

NX_SqSt_in :=
SSSCMZ_NX_MnSqSt

B_OpLtr_AppSpec_in
:= APSIMZ_B_OpLtr

B_RqPrSd_in :=
PRASMZ_B_RqPrSd

L_CnfHpp_in :=
PARAGP_L_CnfHpp

B_CdLtr_LtrTs :=
B_CdLtr_LtrTs_in

B_EnCdLnTrpSlt :=
B_EnCdLnTrpSlt_in

L_CnfHpp :=
L_CnfHpp_in

B_OpLtr_LtrTs :=
B_OpLtr_LtrTs_in

B_LtrTsOpLtr :=
B_LtrTsOpLtr_in

A_PctMo :=
A_PctMo_in

NX_SqSt :=
NX_SqSt_in

B_OpLtr_AppSpec :=
B_OpLtr_AppSpec_in

B_RqPrSd :=
B_RqPrSd_in

B_ClLtr_out :=
B_ClLtr

enable_in := not
DHSSMG_B_LtrHwOpFl

act_in :=
DIGOMG_B_CdLtr

DHWOMG_S_LtrCd
:= fb_out

DHWOMG_B_FpgaLtrOn
:= fpga2_on_out

DHWOMG_B_DcuLtrFl
:= fb_ne_out

enable := enable_in act := act_in

fb_out := fb
fpga2_on_out :=

fpga2_on
fb_ne_out := fb_ne

some_connection21 :=
DHWOMG_B_DcuLtrFl

some_connection20 :=
DHWOMG_B_FpgaLtrOn

connection3 :=
DHWOMG_S_LtrCd

some_connection18
:= DIGOMG_B_CdLtr

INPUT_in := NX_SqSt

MX_in := 27

temp2 :=
OUTPUT_out

WITHIN_I

ENABLE_in := true

MN_in := 4

temp9 := Q_out

F_TRIG

CLK_in := temp4

temp10 := Q_out

F_TRIG

CLK_in :=
B_OpLtr_AppSpec

temp11 := Q_out

R_TRIG

CLK_in := temp8

SET1_in := temp16
RESET_in := temp7

temp17 := Q1_out

RS

btemp = false

temp = false

T

T

T

T

T

F

F

F

F

not fb

T
F

GPIO_OUT :=
Controller-Controller

LTRIP_EN_N :=
some_write1-Controller

MCU_LT_ON :=
some_write2-Controller

FPGA2_LT_ON :=
some_write3-Controller

LT_RELAY_FB :=
some_write4-Controller

Controller-some_read1
:= FPGA_LTRCR

Controller-Controller :=
GPIO_OUT

T

Delay(512ms);

NX_LtrSaSq := 0

NX_LtrSaSq := 2

NX_LtrSaSq := 3

NX_LtrSaSq := 4

Timing => Immediate;
Latency => 0ms .. 3ms;

Dispatch_Protocol => Periodic;
Period => 4 ms;
Priority => 1;
Compute_Execution_Time => 1 ms .. 2 ms;
Compute_Deadline => 2 ms;

Timing => Immediate;
Latency => 0ms .. 1ms;

Timing => Immediate;
Latency => 0ms .. 1ms;

44

Fig. 10. The AFG of LTRIS – part 3.

Controller-some_read2
:= GPIO_OUT

on dispatch

EXIT
Controller.Impl

LtrInt(PRASMZ_B_RqPrSd,
APSIMZ_B_OpLtr,
SSSCMZ_NX_MnSqSt,
PCTHMZ_A_PctMo,
PLTTMG_B_OpLtr,
DHSSMG_B_OpLtr,
DHSSMG_B_CdLtr,
APSIMZ_B_EnCdLnTrpSlt,
PARAGP_L_CnfHpp,
DIGOMG_B_CdLtr)

ENTRY
Controller.Impl

DIGOMG_B_CdLtr :=
B_ClLtr_out

dcu2_line_trip(
not DHSSMG_B_LtrHwOpFl,
temp0,
DHWOMG_S_LtrCd,
DHWOMG_B_FpgaLtrOn,
DHWOMG_B_DcuLtrFl)

ENTRY
LtrInt.Impl

EXIT
LtrInt.Impl

temp1 := NX_SqSt >= 3

WITHIN_I(true,NX_S
qSt,27,4,temp2)

temp3 := NX_SqSt >= 38

temp4 := NX_SqSt = 30

temp5 := NX_SqSt = 31

temp6 := B_RqPrSd and
temp1

temp7 := temp6 or
B_OpLtr_LtrTs or

B_OpLtr_AppSpec

temp8 := temp2 or temp3

F_TRIG(temp4,temp9
)

F_TRIG(B_OpLtr_AppSpec,t
emp10)

R_TRIG(temp8,temp11)

temp12 := temp9 or temp5

temp13 := L_CnfHpp or
B_EnCdLnTrpSlt

temp14 := not (A_PctMo
and B_LtrTsOpLtr)

temp15 := temp12 and
temp13

temp16 := temp10 or
B_CdLtr_LtrTs or temp11 or

temp15

RS(temp7,temp16,temp17)

B_ClLtr := temp14 and
temp17

enable

fb_ne := btemp

ENTRY
dcu2_line_trip.Impl

GPIO_OUT:=
GPIO_OUT and not

LTRIP_EN_N

act

T F

GPIO_OUT:=
GPIO_OUT or
LTRIP_EN_N

temp := temp or
MCU_LT_ON

FPGA_LTRCR :=
temp

fpga2_on := temp and
FPGA2_LT_ON

fb := temp and
LT_RELAY_FB

enable and act and
fpga2_on

btemp := true
btemp := true

fb

F

F

F

T

T

T

EXIT
dcu2_line_trip.

Impl

B_CdLtr_out :=
B_CdLtr

NX_LtrSaSq_out :=
NX_LtrSaSq

A_LtrTs_out :=
A_LtrTs

A_LtrOpVd_out :=
A_LtrOpVd

PLTTMG_B_OpLtr :=
some_connection5

DHSSMG_B_OpLtr :=
connection1

DHSSMG_B_CdLtr
:= connection2

PCTHMZ_A_PctMo :=
some_connection4

SSSCMZ_NX_MnSqSt
:= some_connection3

APSIMZ_B_OpLtr :=
some_connection2

APSIMZ_B_EnCdLnTrpSlt
:= some_connection6

PRASMZ_B_RqPrSd
:= some_connection1

PARAGP_L_CnfHpp :=
some_connection7

DHSSMG_B_LtrHwOpFl
:= some_connection8

A_PctMo_in :=
PCTHMZ_A_PctMo

B_LtrTsOpLtr_in :=
PLTTMG_B_OpLtr

B_OpLtr_LtrTs_in :=
DHSSMG_B_OpLtr

B_CdLtr_LtrTs_in :=
DHSSMG_B_CdLtr

B_EnCdLnTrpSlt_in :=
APSIMZ_B_EnCdLnTrpSlt

NX_SqSt_in :=
SSSCMZ_NX_MnSqSt

B_OpLtr_AppSpec_in
:= APSIMZ_B_OpLtr

B_RqPrSd_in :=
PRASMZ_B_RqPrSd

L_CnfHpp_in :=
PARAGP_L_CnfHpp

B_CdLtr_LtrTs :=
B_CdLtr_LtrTs_in

B_EnCdLnTrpSlt :=
B_EnCdLnTrpSlt_in

L_CnfHpp :=
L_CnfHpp_in

B_OpLtr_LtrTs :=
B_OpLtr_LtrTs_in

B_LtrTsOpLtr :=
B_LtrTsOpLtr_in

A_PctMo :=
A_PctMo_in

NX_SqSt :=
NX_SqSt_in

B_OpLtr_AppSpec :=
B_OpLtr_AppSpec_in

B_RqPrSd :=
B_RqPrSd_in

B_ClLtr_out :=
B_ClLtr

enable_in := not
DHSSMG_B_LtrHwOpFl

act_in :=
DIGOMG_B_CdLtr

DHWOMG_S_LtrCd
:= fb_out

DHWOMG_B_FpgaLtrOn
:= fpga2_on_out

DHWOMG_B_DcuLtrFl
:= fb_ne_out

enable := enable_in act := act_in

fb_out := fb
fpga2_on_out :=

fpga2_on
fb_ne_out := fb_ne

some_connection21 :=
DHWOMG_B_DcuLtrFl

some_connection20 :=
DHWOMG_B_FpgaLtrOn

connection3 :=
DHWOMG_S_LtrCd

some_connection18
:= DIGOMG_B_CdLtr

INPUT_in := NX_SqSt

MX_in := 27

temp2 :=
OUTPUT_out

WITHIN_I

ENABLE_in := true

MN_in := 4

temp9 := Q_out

F_TRIG

CLK_in := temp4

temp10 := Q_out

F_TRIG

CLK_in :=
B_OpLtr_AppSpec

temp11 := Q_out

R_TRIG

CLK_in := temp8

SET1_in := temp16
RESET_in := temp7

temp17 := Q1_out

RS

btemp = false

temp = false

not fb

T
F

GPIO_OUT :=
Controller-Controller

LTRIP_EN_N :=
some_write1-Controller

MCU_LT_ON :=
some_write2-Controller

FPGA2_LT_ON :=
some_write3-Controller

LT_RELAY_FB :=
some_write4-Controller

Controller-some_read1
:= FPGA_LTRCR

Controller-Controller :=
GPIO_OUT

T

Timing => Immediate;
Latency => 0ms .. 3ms;

Dispatch_Protocol => Periodic;
Period => 4 ms;
Priority => 1;
Compute_Execution_Time => 1 ms .. 2 ms;
Compute_Deadline => 2 ms;

45

Fig. 11. The AFG of LTRIS – part 4.

Controller-some_read2
:= GPIO_OUT

EXIT
Controller.Impl

LtrInt(PRASMZ_B_RqPrSd,
APSIMZ_B_OpLtr,
SSSCMZ_NX_MnSqSt,
PCTHMZ_A_PctMo,
PLTTMG_B_OpLtr,
DHSSMG_B_OpLtr,
DHSSMG_B_CdLtr,
APSIMZ_B_EnCdLnTrpSlt,
PARAGP_L_CnfHpp,
DIGOMG_B_CdLtr)

DIGOMG_B_CdLtr :=
B_ClLtr_out

dcu2_line_trip(
not DHSSMG_B_LtrHwOpFl,
temp0,
DHWOMG_S_LtrCd,
DHWOMG_B_FpgaLtrOn,
DHWOMG_B_DcuLtrFl)

ENTRY
LtrInt.Impl

EXIT
LtrInt.Impl

temp1 := NX_SqSt >= 3

WITHIN_I(true,NX_S
qSt,27,4,temp2)

temp3 := NX_SqSt >= 38

temp4 := NX_SqSt = 30

temp5 := NX_SqSt = 31

temp6 := B_RqPrSd and
temp1

temp7 := temp6 or
B_OpLtr_LtrTs or

B_OpLtr_AppSpec

temp8 := temp2 or temp3

F_TRIG(temp4,temp9
)

F_TRIG(B_OpLtr_AppSpec,t
emp10)

R_TRIG(temp8,temp11)

temp12 := temp9 or temp5

temp13 := L_CnfHpp or
B_EnCdLnTrpSlt

temp14 := not (A_PctMo
and B_LtrTsOpLtr)

temp15 := temp12 and
temp13

temp16 := temp10 or
B_CdLtr_LtrTs or temp11 or

temp15

RS(temp7,temp16,temp17)

B_ClLtr := temp14 and
temp17

A_PctMo_in :=
PCTHMZ_A_PctMo

B_LtrTsOpLtr_in :=
PLTTMG_B_OpLtr

B_OpLtr_LtrTs_in :=
DHSSMG_B_OpLtr

B_CdLtr_LtrTs_in :=
DHSSMG_B_CdLtr

B_EnCdLnTrpSlt_in :=
APSIMZ_B_EnCdLnTrpSlt

NX_SqSt_in :=
SSSCMZ_NX_MnSqSt

B_OpLtr_AppSpec_in
:= APSIMZ_B_OpLtr

B_RqPrSd_in :=
PRASMZ_B_RqPrSd

L_CnfHpp_in :=
PARAGP_L_CnfHpp

B_CdLtr_LtrTs :=
B_CdLtr_LtrTs_in

B_EnCdLnTrpSlt :=
B_EnCdLnTrpSlt_in

L_CnfHpp :=
L_CnfHpp_in

B_OpLtr_LtrTs :=
B_OpLtr_LtrTs_in

B_LtrTsOpLtr :=
B_LtrTsOpLtr_in

A_PctMo :=
A_PctMo_in

NX_SqSt :=
NX_SqSt_in

B_OpLtr_AppSpec :=
B_OpLtr_AppSpec_in

B_RqPrSd :=
B_RqPrSd_in

B_ClLtr_out :=
B_ClLtr

DHWOMG_S_LtrCd
:= fb_out

DHWOMG_B_FpgaLtrOn
:= fpga2_on_out

DHWOMG_B_DcuLtrFl
:= fb_ne_out

fpga2_on_out :=
fpga2_on

fb_ne_out := fb_ne

some_connection21 :=
DHWOMG_B_DcuLtrFl

some_connection20 :=
DHWOMG_B_FpgaLtrOn

connection3 :=
DHWOMG_S_LtrCd

some_connection18
:= DIGOMG_B_CdLtr

INPUT_in := NX_SqSt

MX_in := 27

temp2 :=
OUTPUT_out

WITHIN_I

ENABLE_in := true

MN_in := 4

temp9 := Q_out

F_TRIG

CLK_in := temp4

temp10 := Q_out

F_TRIG

CLK_in :=
B_OpLtr_AppSpec

temp11 := Q_out

R_TRIG

CLK_in := temp8

SET1_in := temp16
RESET_in := temp7

temp17 := Q1_out

RS

Controller-some_read1
:= FPGA_LTRCR

Controller-Controller :=
GPIO_OUT

Timing => Immediate;
Latency => 0ms .. 3ms;

46

Fig. 12. The AFG of LTRIS – part 5.

EXIT
Controller.Impl

DHWOMG_B_DcuLtrFl)

ENTRY
LtrInt.Impl

EXIT
LtrInt.Impl

temp1 := NX_SqSt >= 3

WITHIN_I(true,NX_S
qSt,27,4,temp2)

temp3 := NX_SqSt >= 38

temp4 := NX_SqSt = 30

temp5 := NX_SqSt = 31

temp6 := B_RqPrSd and
temp1

temp7 := temp6 or
B_OpLtr_LtrTs or

B_OpLtr_AppSpec

temp8 := temp2 or temp3

F_TRIG(temp4,temp9
)

F_TRIG(B_OpLtr_AppSpec,t
emp10)

R_TRIG(temp8,temp11)

temp12 := temp9 or temp5

temp13 := L_CnfHpp or
B_EnCdLnTrpSlt

temp14 := not (A_PctMo
and B_LtrTsOpLtr)

temp15 := temp12 and
temp13

temp16 := temp10 or
B_CdLtr_LtrTs or temp11 or

temp15

RS(temp7,temp16,temp17)

B_ClLtr := temp14 and
temp17

B_CdLtr_LtrTs :=
B_CdLtr_LtrTs_in

B_EnCdLnTrpSlt :=
B_EnCdLnTrpSlt_in

L_CnfHpp :=
L_CnfHpp_in

B_OpLtr_LtrTs :=
B_OpLtr_LtrTs_in

B_LtrTsOpLtr :=
B_LtrTsOpLtr_in

A_PctMo :=
A_PctMo_in

NX_SqSt :=
NX_SqSt_in

B_OpLtr_AppSpec :=
B_OpLtr_AppSpec_in

B_RqPrSd :=
B_RqPrSd_in

B_ClLtr_out :=
B_ClLtr

some_connection21 :=
DHWOMG_B_DcuLtrFl

some_connection20 :=
DHWOMG_B_FpgaLtrOn

INPUT_in := NX_SqSt

MX_in := 27

temp2 :=
OUTPUT_out

WITHIN_I

ENABLE_in := true

MN_in := 4

temp9 := Q_out

F_TRIG

CLK_in := temp4

temp10 := Q_out

F_TRIG

CLK_in :=
B_OpLtr_AppSpec

temp11 := Q_out

R_TRIG

CLK_in := temp8

SET1_in := temp16
RESET_in := temp7

temp17 := Q1_out

RS

Controller-some_read1
:= FPGA_LTRCR

Timing => Immediate;
Latency => 0ms .. 3ms;

47

Fig. 13. The AFG of LTRIS – part 6.

Controller-some_read2
:= GPIO_OUT

EXIT
Controller.Impl

DHWOMG_B_DcuLtrFl)

ENTRY
LtrInt.Impl

EXIT
LtrInt.Impl

temp1 := NX_SqSt >= 3

WITHIN_I(true,NX_S
qSt,27,4,temp2)

temp3 := NX_SqSt >= 38

temp4 := NX_SqSt = 30

temp5 := NX_SqSt = 31

temp6 := B_RqPrSd and
temp1

temp7 := temp6 or
B_OpLtr_LtrTs or

B_OpLtr_AppSpec

temp8 := temp2 or temp3

F_TRIG(temp4,temp9
)

F_TRIG(B_OpLtr_AppSpec,t
emp10)

R_TRIG(temp8,temp11)

temp12 := temp9 or temp5

temp13 := L_CnfHpp or
B_EnCdLnTrpSlt

temp14 := not (A_PctMo
and B_LtrTsOpLtr)

temp15 := temp12 and
temp13

temp16 := temp10 or
B_CdLtr_LtrTs or temp11 or

temp15

RS(temp7,temp16,temp17)

B_ClLtr := temp14 and
temp17

enable

fb_ne := btemp

ENTRY
dcu2_line_trip.Impl

GPIO_OUT:=
GPIO_OUT and not

LTRIP_EN_N

act

T F

GPIO_OUT:=
GPIO_OUT or
LTRIP_EN_N

temp := temp or
MCU_LT_ON

FPGA_LTRCR :=
temp

fpga2_on := temp and
FPGA2_LT_ON

fb := temp and
LT_RELAY_FB

enable and act and
fpga2_on

btemp := true
btemp := true

fb

F

F

F

T

T

T

EXIT
dcu2_line_trip.

Impl

B_CdLtr_LtrTs :=
B_CdLtr_LtrTs_in

B_EnCdLnTrpSlt :=
B_EnCdLnTrpSlt_in

L_CnfHpp :=
L_CnfHpp_in

B_OpLtr_LtrTs :=
B_OpLtr_LtrTs_in

B_LtrTsOpLtr :=
B_LtrTsOpLtr_in

A_PctMo :=
A_PctMo_in

NX_SqSt :=
NX_SqSt_in

B_OpLtr_AppSpec :=
B_OpLtr_AppSpec_in

B_RqPrSd :=
B_RqPrSd_in

B_ClLtr_out :=
B_ClLtr

enable_in := not
DHSSMG_B_LtrHwOpFl

act_in :=
DIGOMG_B_CdLtr

DHWOMG_S_LtrCd
:= fb_out

DHWOMG_B_FpgaLtrOn
:= fpga2_on_out

DHWOMG_B_DcuLtrFl
:= fb_ne_out

enable := enable_in act := act_in

fb_out := fb
fpga2_on_out :=

fpga2_on
fb_ne_out := fb_ne

some_connection21 :=
DHWOMG_B_DcuLtrFl

some_connection20 :=
DHWOMG_B_FpgaLtrOn

connection3 :=
DHWOMG_S_LtrCd

some_connection18
:= DIGOMG_B_CdLtr

INPUT_in := NX_SqSt

MX_in := 27

temp2 :=
OUTPUT_out

WITHIN_I

ENABLE_in := true

MN_in := 4

temp9 := Q_out

F_TRIG

CLK_in := temp4

temp10 := Q_out

F_TRIG

CLK_in :=
B_OpLtr_AppSpec

temp11 := Q_out

R_TRIG

CLK_in := temp8

SET1_in := temp16
RESET_in := temp7

temp17 := Q1_out

RS

btemp = false

temp = false

not fb

T
F

Controller-some_read1
:= FPGA_LTRCR

Controller-Controller :=
GPIO_OUT

Timing => Immediate;
Latency => 0ms .. 3ms;

48

7 Verification criteria and sequences

In order to verify consistency, completeness, and correctness, the architecture
flows must be analyzed with respect to requirements and constraints associated
with the model, and in conjunction with the semantic rules of AADL. Each con-
trol and data flow is composed of a sequence of elements. A flow is constrained if
any member in the sequence is associated with a property. A model is consistent
if each control and data flow can be fully executed while not contradicting any
constraints imposed by properties. In other words, the model must be able to be
executed in compliance with the semantic rules such that each flow can be exer-
cised, from the first element to the last according to the order of the sequence,
while each (active) property and requirement is valid in each state of the execu-
tion. Correctness can only be determined if requirements are associated with the
model or if property declarations are considered as requirements. Consistency
implies correctness in the latter case. In the former case, the model is correct
if no flow exceeds any requirement declarations while they are executed. The
model is complete if all flows can be activated by the specified input classes and
a flow will be activated for every class of input.

These objectives can be defined in terms of control- and data-flow reachabil-
ity. Control-flow reachability is the property where each architectural element
in an execution order can reach the subsequent element to be executed without
conflicting any constraints or requirements. Data-flow reachability is the prop-
erty where each data element can reach its target component, where the data is
used, from its source component, where the data is defined, without conflicting
any constraints or requirements. Thus, reachability of each flow imply architec-
ture consistency, correctness, and, if all possible input classes have been covered,
completeness. Note that reachability analysis consider properties such as the
minimum and maximum latencies of connections, or the period, execution time,
and deadline of threads. It therefore implies analysis of aspects such as timing
and schedulability. Consequently, flow reachability cannot be achieved if timing
constraints are not met or the system is not schedulable.

An AFG contains different structural path types including different types of
control and data flows. An AFG path in conjunction with the (possibly empty)
set of path constraints and requirements is referred to as a verification sequence.
Three types of paths exist: (1) component-internal paths including component-
internal flows between interfaces of a component; (2) direct component to com-
ponent paths including inter-component flows between interfaces of two compo-
nents; and (3) indirect component to component paths including flows between
interfaces of two components through one or several intermediate components.

Recall that COMP = {comp1, comp2, . . . , compn} denotes the set of soft-
ware components in the architecture. Let I = {compx.i | compx.i ∈ DP U ∪
EP U∪EDP U∪SP U∪DA U∪SA U} denote the set of component interfaces
(data ports, event ports, event data ports, parameters, data accesses, and sub-
program accesses) in the architecture. The set of interfaces may interact through
connection declarations C = {c(s, d) | source s ∈ I and destination d ∈ I} and
through BMs. A BM refines the interaction of a connection if it operates on either

49

the source or destination interface. Let BMIR = {bmir(i) | bmir(i) is a control
path of a behavioral model that operates on i ∈ I} denote the set of refined inter-
face behaviors. A BM connects an input interface to an output interface if there
is a control path through the BM that operates on the output interface in re-
sponse to an operation on the input interface. Let BMC = {bmc(s, d) | bmc(s, d)
is a control path of a behavioral model that operates on s ∈ I in response to
an operation on d ∈ I} denote the component interface connections connected
through a BM. The possible types of AFG paths are defined by the following
relations between component interfaces.

Definition 5 CIR ⊆ I × I is the set of component internal relations such that
〈comp1.i1, comp1.i2〉 ∈ CIR iff c(comp1.i1, comp1.i2) ∈ C or
bmc(comp1.i1, comp1.i2) ∈ BMC.

Definition 6 DCCR ⊆ I × I is the set of direct component to component
relations such that 〈comp1.i1, comp2.i2〉 ∈ DCCR iff c(comp1.i1, comp2.i2) ∈ C
or c(comp1.i1, comp2.i2) ∈ C and bmir(comp1.i1) ∈ BMIR or
c(comp1.i1, comp2.i2) ∈ C and bmir(comp2.i2) ∈ BMIR.

Definition 7 ICCR ⊆ I × I × I∗ is the set of indirect component to compo-
nent relations and is defined recursively to include any number of components.
The base case is: 〈comp1.i1, comp3.i4, t〉 ∈ ICCR iff 〈comp1.i1, comp2.i2〉 ∈
DCCR and 〈comp2.i2, comp2.i3〉 ∈ CIR and 〈comp2.i3, comp3.i4〉 ∈ DCCR
and t = 〈〈comp1.i1, comp2.i2〉, 〈comp2.i2, comp2.i3〉, 〈comp2.i3, comp3.i4〉〉. The
inductive clause is: 〈comp1.i1, compx.iy, t〉 ∈ ICCR iff 〈comp1.i1, comp2.i2〉 ∈
DCCR and 〈comp2.i2, comp2.i3〉 ∈ CIR and 〈comp2.i3, compx.iy, t′〉 ∈ ICCR
and t = 〈〈comp1.i1, comp2.i2〉, 〈comp2.i2, comp2.i3〉, 〈t′〉〉

These types of relations are illustrated in Figure 14. There is a compo-
nent internal relation between comp2.i1 and comp2.i2 as they are connected
through bmc1: a control path of comp2 which is guarded by comp2.i1 and up-
dates comp2.i2. There are direct component to component relations both be-
tween comp1.i1 and comp2.i1 and between comp2.i2 and comp3.i1, where c1
connects comp1.i1 to comp2.i1 and c2 connects comp2.i2 to comp3.i1. Note that
there exist refined versions of these relations. Finally, there is an indirect compo-
nent to component relation, where c1, bmc1, and c2 indirectly connect comp1.i1
to comp3.i1.

If any of these relations exist between two interfaces, there exist a correspond-
ing – internal, direct, or indirect – path. These also correspond to the possible
coverage criteria that can be applied, where each type provides an increasing
amount of coverage at more cost and time [21].

– Component Internal Coverage: requires coverage of all Component In-
ternal Transfer Paths.

– Direct Component to Component Coverage: requires coverage of all
Direct Component to Component Paths.

50

– Indirect Component to Component Coverage: requires coverage of all
Indirect Component to Component Paths.

Note that each successive type subsumes the preceding types, e.g., indi-
rect paths subsume both direct and internal paths. In the simplest case, only
component-internal flows may be covered. Inter-component flows may be added
to cover the complete AFG. However, covering the complete graph does not
mean that all possible combinations of flows have been covered. Covering all
indirect paths ensures this, which also is a criterion for ensuring completeness,
correctness, and consistency.

act
T

g
T

comp2comp1 comp3

i1 i1 i2 i1
g(i1) act(i2)

c1 c2

g
T

act(i1)
T

bmc(comp2.i1, comp2.i2)1bmir(comp1.i1)1

actg(i1)

bmir(comp2.i1)2

Fig. 14. Illustration of relations between three interconnected components.

7.1 Results

In Appendix A, the verification sequences that are extracted when applying the
coverage criteria are presented. The AFG contains 34 internal paths, 6 direct
paths (three of which are calls with associated parameter data flows), and 17
indirect paths.

51

8 Formal semantics in Uppaal timed automata

In order to execute the verification sequences through formal verification, the
AADL model semantics must be formalized and implemented. This is achieved
through a transformation to Uppaal timed automata. The transformation rules
are defined by means of functions, where a transformation is initiated through
function aadlToNta : AADLMDL → NTA that maps an AADL model to a
network of timed automata. Let processor denote the processor component a
set of threads THR is bound to, Porti = InPorti ∪OutPorti denote the set of
in and out ports of a thread thri, and connect : Port → C be a function which
assigns connections to ports. We further use id(element) to denote the identifier
of an element, val(element) to denote its value, and defV al(element) to denote
its default value. The function, defined in Rule 6, maps a processor component
to a scheduler automaton through function prToTa defined in Rule 7, each
(bounded) thread component to a thread automaton through function thrToTa
defined in Rule 8, and each port connection and shared data component to a
global variable through functions cToV arg and dataCompToV arg defined in
Rule 9 and Rule 10.

Rule 6 aadlToNta : AADLMDL→ NTA where aadlToNta(AADLMDL) =
〈TA, V arG, ∅, Ch〉 such that TA[0] = prToTa(processor) and for 0 ≤ i < |T |,
TA[i+ 1] = thrToTa(ti), V arG = {cToV arg(c) | c ∈ C} ∪
{dataCompToV arg(data s) | data s ∈ DATA} and Ch is as described in Sec-
tion 8.2.

Rule 7 prToTa : P(processor)→ TA where prToTa(processor) = 〈L, `o, X,
V ar, I, E〉 such that L, `o, X, V ar, I and E are as described in Section 8.2.

Rule 8 thrToTa : THR → TA where thrToTa(thri) = 〈L, `o, X, V ar, I, E〉
such that L = {awaiting dispatch, ready, running, awaiting resource}; `0 =
awaiting dispatch;X = {cl}; V ar = {Period, C E T,C D,Priority}∪PortIn∪
PortOut where val(Period) = val(Periodi), val(C E) =
val(Compute Execution T imei), V al(C D) = val(Compute Deadlinei),
val(Priority) = val(Priorityi), PortIn = {portToV ar(inport) | inport ∈
In Porti} and PortOut = {portToV ar(outport) | outport ∈ Out Porti};
I(awaiting dispatch) = {cl <= Period}; and E =

{awaiting dispatch cl>=Period,dispatched[i]!,u1−−−−−−−−−−−−−−−−−−−→ ready, ready
run[i]?−−−−→ running,

running
preempt[i]?−−−−−−−→ ready, running

complete[i]?,u2−−−−−−−−−−→ awaiting dispatch,

running
blocked[i]!−−−−−−→ awaiting resource, awaiting resource

unblocked[i]!−−−−−−−−→ ready}
where u1 = 〈sch info[i][0] := C E T, sch info[i][1] := C D, sch info[i][2] :=
Priority, portin0 = id(connect(in port0)), portin1 = id(connect(in port1)), . . . ,
portinn = id(connect(in portn)), cl := 0〉 and u2 = 〈id(connect(out port0)) =
port out0, id(connect(out port1)) = port out1, . . . , id(connect(out portm)) =
port outm, out port1 = defV al(port out1), out port2 = defV al(port out2), . . . ,
out portm = defV al(port outm)〉.

52

Rule 9 cToV arg : C → V arG × V arG where cToV arg(c) = 〈vG1, vG2〉 such
that id(c) = id(vG1) and vG2 is a semaphore for access of vG1.

Rule 10 dataCompToV arg : DATA→ V arG where dataCompToV arg(data s) =
vG such that id(data s) = id(vG).

Rule 11 portToV ar : Port → V ar where portToV ar(port) = v such that
Id(port) = Id(v).

The mapped scheduling automaton, which details is described in Section 8.2,
controls the transition of thread states, from dispatches to completions, and of
preemptions and context switches. A thread automaton, in its most basic form,
consists of four locations: awaiting dispatch, ready, running, and (if the thread
operates on shared resources) awaiting resource. Each thread is initially in the

awaiting dispatch location. An edge awaiting dispatch
cl>=Period,a,u1−−−−−−−−−−−→ ready is

then taken to the ready location depending on the dispatch protocol. For periodic
threads, the time of dispatch is entirely dependent on the clock in relation to the
period of the thread. At the time of dispatch, data on port connections are as-
signed to input ports of the thread. Ports are mapped to local variables of the cor-
responding thread automaton through function portToV ar defined in Rule 11.
These assignments (u1 = 〈. . . , portin1 = cx, portin2 = cy, . . . , portinn = cz〉)
correspond to actual-in vertices of Rule 1–3. Threads in the ready location are
assigned to be executed by the processor component they are bound to according
to a scheduling policy property. Assuming a scheduler with fixed priority preemp-
tive scheduling policy, the thread with the highest priority is selected to run on
the processor and thus transits to the running location. No more than one thread
(per processing unit) is allowed to be in a running location simultaneously. A
thread that operates on a shared resource access it through a Get Resource()
service call. If the semaphore of the resource already is locked, the thread tran-
sits to the awaiting resource location. Shared resources are released through a
Release Resource service call.

A running thread is preempted and transits back to the ready location if an-
other thread with higher priority enters the ready location. A thread in the run-
ning location that completes its execution transits to the awaiting dispatch lo-

cation through running
g,a,u2−−−−→ awaiting dispatch. Output is simultaneously as-

signed to connections (u2 = 〈cx = portout1, cy = portout2, . . . , cz = portoutn, . . . 〉).
These correspond to formal-in vertices of Rule 1–3. Note that out ports also (as
defined in Rule 8) are set to default values after they have been assigned to con-
nections such that a subsequent dispatch conforms to the initialization settings.

If the thread is specified with a BM, the running location is replaced with
the BM automaton under the assumption that its execution starts from
firstState(thri.BM). Transitions of the BM automaton that are not constrained
by computation time declarations are assumed to be instantaneous. A transition
specified with computation time is mapped to a timed automata transition with
an intermediate location wherein the corresponding time must progress before
the target state is reached. The location in which time may progress must be
integrated with the preemption mechanism if the scheduling policy is preemptive.

53

BMs of subprogram components may be inserted where they are called as
long as the subprogram is local to the calling thread. Similarly to port con-
nections, local state variables are used as temporary in and out variables for
actual-in, formal-in, formal-out, and actual-out assignments associated with the
call. If the AADL model includes remote subprogram calls, the scheduler and
threads servicing remote calls must include the concurrency mechanism defined
by remote subprogram call properties (properties for both synchronous and semi-
synchronous remote calls are supported by AADL).

54

8.1 Results

According to the transformation rules, Tester (Table 7) is transformed into the
automaton presented in Figure 15, Controller (Table 4) into the automaton in
Figure 16, and the environment (Table 2) into the automaton in Figure 17.

Ready2

Halted

Ready3
state0_2_Tester

state3_Tester

state2_Tester

state1_Tester

comp_time <= C_E_T - 1 +
preempt_timer

Return_LtrTsSq

Ready_LtrTsSq

OpenLtr2_LtrTsSq

CloseLtr_LtrTsSq

OpenLtr1_LtrTsSq

Start_LtrTsSq CheckState_LtrTsSq

Initialized

cl<=0

state0_Testerready

awaiting_dispatch

cl <= Period

run[id_tester]? preempt_timer =
preemptedTime()

preempt[id_tester]?

Delay

comp_time = 0,
preempt_timer=0,
B_CdLtr = true

initialization? cl=0

run[id_tester]?

preempt[id_tester]?

comp_time >= C_E_T - 1 +
preempt_timer

complete[id_tester]?

connection1 = DHSSMG_B_OpLtr,
connection2 = DHSSMG_B_CdLtr,
some_connection15 = DHSSMG_NX_LtrSaSq,
some_connection16 = DHSSMG_S_LtrTsRdy,
some_connection17 = DHSSMG_S_LtrOpVd,
DHSSMG_B_OpLtr = false,
DHSSMG_B_CdLtr = false,
DHSSMG_NX_LtrSaSq = false,
DHSSMG_S_LtrTsRdy = false,
DHSSMG_S_LtrOpVd = false,
temp1 = false,
temp2 = false,
temp3 = false

DHSSMG_S_LtrOpVd = SR(temp3,false)

DHSSMG_S_LtrTsRdy = SR(temp1,false)

temp3 = (temp1 and temp2)

DHSSMG_B_OpLtr = B_OpLtr_out,
DHSSMG_B_CdLtr = B_CdLtr_out,
DHSSMG_NX_LtrSaSq = NX_LtrSaSq_out,
temp1 = A_LtrTs_out,
temp2 = A_LtrOpVd_out

B_OpLtr_out = B_OpLtr,
B_CdLtr_out = B_CdLtr,
NX_LtrSaSq_out = NX_LtrSaSq,
A_LtrTs_out = A_LtrTs,
A_LtrOpVd_out = A_LtrOpVd,
B_OpLtr = false,
B_CdLtr = false,
NX_LtrSaSq = false,
A_LtrTs = false,
A_LtrOpVd = false

D>=512 Dy = true,
Delay = false,
state_LtrTsSq
= CloseLtr

(not S_LtrCd) and
(not B_LtrFl) and
(not Delay)

B_CdLtr = true,
Delay = true,
D = 0,
comp_time = 0,
preempt_timer=0

S_DCUNtRdy

state_LtrTsSq = Start

B_LtrFl

state_LtrTsSq := Start

(not B_LtrFl) and not S_LtrCd

A_LtrTs = true,
state_LtrTsSq = Ready

B_LtrFl

state_LtrTsSq
= Start

(not B_LtrFl) and
S_LtrCd and Dy

B_OpLtr = true,
state_LtrTsSq =
OpenLtr2

B_LtrFl and
(not Delay)

state_LtrTsSq
= Start

(not L_EnLtrSv)
and C_LtrTs

state_LtrTsSq = Ready

L_EnLtrSv
and C_LtrTs

B_OpLtr = true,
state_LtrTsSq = OpenLtr1

state_LtrTsSq == Ready

NX_LtrSaSq=4
state_LtrTsSq ==
OpenLtr2

NX_LtrSaSq=3

state_LtrTsSq ==
CloseLtr

NX_LtrSaSq=2

state_LtrTsSq ==
OpenLtr1

NX_LtrSaSq=1

state_LtrTsSq == Start
NX_LtrSaSq=0

C_LtrTs = C_LtrTs_in,
B_LtrFl = B_LtrFl_in,
S_LtrCd = S_LtrCd_in,
S_LtrOp = S_LtrOp_in,
S_DCUNtRdy = S_DCUNtRdy_in,
L_EnLtrSv = L_EnLtrSv_in

C_LtrTs_in = DCUIMG_C_LtrTs,
B_LtrFl_in = DHSSMG_B_LtrFl,
S_LtrCd_in = DHWOMG_S_LtrCd,
S_LtrOp_in = DIGIMG_S_LtrOp,
S_DCUNtRdy_in = DCUIMG_S_DcuNtRdy,
L_EnLtrSv_in = PARAGP_L_LtrSvEn

cl >= 0 dispatched[id_tester]!
DCUIMG_C_LtrTs = some_connection9,
DHSSMG_B_LtrFl = some_connection10,
DHWOMG_S_LtrCd = connection3,
DIGIMG_S_LtrOp = some_connection12,
DCUIMG_S_DcuNtRdy = some_connection13,
PARAGP_L_LtrSvEn = some_connection14,
sch_info[id_tester][0]=C_E_T,
sch_info[id_tester][1]=C_D,
sch_info[id_tester][2]=Priority,
cl=0

run[id_tester]?

cl >= Period
dispatched[id_tester]!

DCUIMG_C_LtrTs = some_connection9,
DHSSMG_B_LtrFl = some_connection10,
DHWOMG_S_LtrCd = connection3,
DIGIMG_S_LtrOp = some_connection12,
DCUIMG_S_DcuNtRdy = some_connection13,
PARAGP_L_LtrSvEn = some_connection14,
sch_info[id_tester][0]=C_E_T,
sch_info[id_tester][1]=C_D,
sch_info[id_tester][2]=Priority,
cl=0

Fig. 15. Timed automata model of Tester.Impl.

55

awaiting_resource

Halted

ready2
state0_2_Controller

state6_dcu2_line_trip

state5_dcu2_line_trip

ENTRY_dcu2_line_trip

EXIT_dcu2_line_trip

state4_dcu2_line_trip

state3_dcu2_line_trip

state2_dcu2_line_trip

state1_dcu2_line_trip

state0_dcu2_line_trip

state1_Controller

EXIT_LtrInt

state17_LtrInt

state16_LtrInt

state15_LtrInt

state14_LtrInt

state13_LtrInt

state12_LtrInt

state11_LtrInt

state10_LtrInt

state9_LtrInt

state8_LtrInt

state7_LtrInt

state6_LtrInt

state5_LtrInt

state4_LtrInt

state3_LtrInt

state2_LtrInt

state1_LtrInt

ENTRY_LtrInt

Initialized

cl<=0

state0_Controller

ready

awaiting_dispatch

cl <= Period

semaphore1 and
semaphore2 and
semaphore3 and
semaphore4 and
semaphore5 and
semaphore6

unblocked[id_controller]!
Release_Resources(GPIO_OUT_ID,semaphore1),
Release_Resources(LTRIP_EN_N_ID,semaphore2),
Release_Resources(MCU_LT_ON_ID,semaphore3),
Release_Resources(FPGA_LTRCR_ID,semaphore4),
Release_Resources(FPGA2_LT_ON_ID,semaphore5),
Release_Resources(LT_RELAY_FB_ID,semaphore6)

not(semaphore1 and
semaphore2 and
semaphore3 and
semaphore4 and
semaphore5 and
semaphore6)

Release_Resources(GPIO_OUT_ID,semaphore1),
Release_Resources(LTRIP_EN_N_ID,semaphore2),
Release_Resources(MCU_LT_ON_ID,semaphore3),
Release_Resources(FPGA_LTRCR_ID,semaphore4),
Release_Resources(FPGA2_LT_ON_ID,semaphore5),
Release_Resources(LT_RELAY_FB_ID,semaphore6)

check_resources?
semaphore1=Get_Resource(GPIO_OUT_ID),
semaphore2=Get_Resource(LTRIP_EN_N_ID),
semaphore3=Get_Resource(MCU_LT_ON_ID),
semaphore4=Get_Resource(FPGA_LTRCR_ID),
semaphore5=Get_Resource(FPGA2_LT_ON_ID),
semaphore6=Get_Resource(LT_RELAY_FB_ID)

not(semaphore1 and
semaphore2 and
semaphore3 and
semaphore4 and
semaphore5 and
semaphore6)

blocked[id_controller]!

Release_Resources(GPIO_OUT_ID,semaphore1),
Release_Resources(LTRIP_EN_N_ID,semaphore2),
Release_Resources(MCU_LT_ON_ID,semaphore3),
Release_Resources(FPGA_LTRCR_ID,semaphore4),
Release_Resources(FPGA2_LT_ON_ID,semaphore5),
Release_Resources(LT_RELAY_FB_ID,semaphore6)

initialization?

cl = 0

run[id_controller]?

preempt[id_controller]?

complete[id_controller]?

some_connection18 = DIGOMG_B_CdLtr,
connection3 = DHWOMG_S_LtrCd,
some_connection20 = DHWOMG_B_FpgaLtrOn,
some_connection21 = DHWOMG_B_DcuLtrFl,
Release_Resource(GPIO_OUT_ID),
Release_Resource(LTRIP_EN_N_ID),
Release_Resource(MCU_LT_ON_ID),
Release_Resource(FPGA_LTRCR_ID),
Release_Resource(FPGA2_LT_ON_ID),
Release_Resource(LT_RELAY_FB_ID),
DIGOMG_B_CdLtr = false,
DHWOMG_S_LtrCd = false,
DHWOMG_B_FpgaLtrOn = false,
DHWOMG_B_DcuLtrFl = false

fpga2_on = (temp and FPGA2_LT_ON),
fb = (temp and LT_RELAY_FB)

FPGA_LTRCR = temp

DHWOMG_S_LtrCd = fb_out,
DHWOMG_B_FpgaLtrOn = fpga2_on_out,
DHWOMG_B_DcuLtrFl = fb_ne_out

fb_out = fb,
fpga2_on_out = fpga2_on,
fb_ne_out = fb_ne

fb_ne = btemp

not fb fb

btemp = true

fb

not fb

btemp = true

not(enable and act and
fpga2_on)enable and act and

fpga2_on

temp = false,
btemp = false

enable = enable_in,
act = act_in

not act

not enable
GPIO_OUT = (GPIO_OUT or
LTRIP_EN_N)

act

temp = (temp or MCU_LT_ON)

enable
GPIO_OUT = (GPIO_OUT and
(not LTRIP_EN_N))

enable_in = not DHSSMG_B_LtrHwOpFl,
act_in = DIGOMG_B_CdLtr

DIGOMG_B_CdLtr = B_ClLtr_out

B_ClLtr_out = B_ClLtr,
B_ClLtr = false,
temp1 = false,
temp2 = false,
temp3 = false,
temp4 = false,
temp5 = false,
temp6 = false,
temp7 = false,
temp8 = false,
temp9 = false,
temp10 = false,
temp11 = false,
temp12 = false,
temp13 = false,
temp14 = false,
temp15 = false,
temp16 = false,
temp17 = false

B_ClLtr = (temp14 and temp17)

temp17 = RS(temp7,temp16)

temp16 = (temp10 or B_CdLtr_LtrTs or temp11 or temp15)

temp15 = (temp12 and temp13)

temp14 = not(A_PctMo and B_LtrTsOpLtr)

temp13 = (L_CnfHpp or B_EnCdLnTrpSlt)

temp12 = (temp9 or temp5)

temp11 = R_TRIG(temp8)

temp10 = F_TRIG(B_OpLtr_AppSpec)

temp9 = F_TRIG(temp4)

temp8 = (temp2 or temp3)

temp7 = (temp6 or B_OpLtr_LtrTs or B_OpLtr_AppSpec)

temp6 = (B_RqPrSd and temp1)

temp5 = (NX_SqSt == 31)

temp4 = (NX_SqSt == 30)

temp3 = (NX_SqSt >= 38)

temp2 = WITHIN_I(true,NX_SqSt,27,4)

temp1 = (NX_SqSt >= 3)

B_RqPrSd = B_RqPrSd_in,
B_OpLtr_AppSpec = B_OpLtr_AppSpec_in,
NX_SqSt = NX_SqSt_in,
A_PctMo = A_PctMo_in,
B_LtrTsOpLtr = B_LtrTsOpLtr_in,
B_OpLtr_LtrTs = B_OpLtr_LtrTs_in,
B_CdLtr_LtrTs = B_CdLtr_LtrTs_in,
B_EnCdLnTrpSlt = B_EnCdLnTrpSlt_in,
L_CnfHpp = L_CnfHpp_in

semaphore1 and
semaphore2 and
semaphore3 and
semaphore4 and
semaphore5 and
semaphore6

B_RqPrSd_in = PRASMZ_B_RqPrSd,
B_OpLtr_AppSpec_in = APSIMZ_B_OpLtr,
NX_SqSt_in = SSSCMZ_NX_MnSqSt,
A_PctMo_in = PCTHMZ_A_PctMo,
B_LtrTsOpLtr_in = PLTTMG_B_OpLtr,
B_OpLtr_LtrTs_in = DHSSMG_B_OpLtr,
B_CdLtr_LtrTs_in = DHSSMG_B_CdLtr,
B_EnCdLnTrpSlt_in = APSIMZ_B_EnCdLnTrpSlt,
L_CnfHpp_in = PARAGP_L_CnfHpp

cl >= 0 dispatched[id_controller]!

PRASMZ_B_RqPrSd = some_connection1,
APSIMZ_B_OpLtr = some_connection2,
SSSCMZ_NX_MnSqSt = some_connection3,
PCTHMZ_A_PctMo = some_connection4,
PLTTMG_B_OpLtr = some_connection5,
DHSSMG_B_OpLtr = connection1,
DHSSMG_B_CdLtr = connection2,
APSIMZ_B_EnCdLnTrpSlt = some_connection6,
PARAGP_L_CnfHpp = some_connection7,
DHSSMG_B_LtrHwOpFl = some_connection8,
sch_info[id_controller][0]=C_E_T,
sch_info[id_controller][1]=C_D,
sch_info[id_controller][2]=Priority,
cl=0,
timer = 0

run[id_controller]?

semaphore1=Get_Resource(GPIO_OUT_ID),
semaphore2=Get_Resource(LTRIP_EN_N_ID),
semaphore3=Get_Resource(MCU_LT_ON_ID),
semaphore4=Get_Resource(FPGA_LTRCR_ID),
semaphore5=Get_Resource(FPGA2_LT_ON_ID),
semaphore6=Get_Resource(LT_RELAY_FB_ID)

cl >= Period

dispatched[id_controller]!

PRASMZ_B_RqPrSd = some_connection1,
APSIMZ_B_OpLtr = some_connection2,
SSSCMZ_NX_MnSqSt = some_connection3,
PCTHMZ_A_PctMo = some_connection4,
PLTTMG_B_OpLtr = some_connection5,
DHSSMG_B_OpLtr = connection1,
DHSSMG_B_CdLtr = connection2,
APSIMZ_B_EnCdLnTrpSlt = some_connection6,
PARAGP_L_CnfHpp = some_connection7,
DHSSMG_B_LtrHwOpFl = some_connection8,
sch_info[id_controller][0]=C_E_T,
sch_info[id_controller][1]=C_D,
sch_info[id_controller][2]=Priority,
cl=0

Fig. 16. Timed automata model of Controller.Impl.

56

Halted

Running

Ready

Awaiting_dispatch

cl <= Period

Initialized

cl<=0
initialization?

cl=0

preempt[id_environment]?

cl >= Period

dispatched[id_environment]!

sch_info[id_environment][0]=C_E_T,
sch_info[id_environment][1]=C_D,
sch_info[id_environment][2]=Priority,
cl=0

complete[id_environment]?

run[id_environment]?
cl >= 0

dispatched[id_environment]!

sch_info[id_environment][0]=C_E_T,
sch_info[id_environment][1]=C_D,
sch_info[id_environment][2]=Priority,
cl=0

Fig. 17. Timed automata model of the abstracted LTRIS environment.

8.2 The scheduler automaton

A processor component is mapped to a scheduler automaton such as the tem-
plate shown in Figure 19. The labels of the scheduling automaton are defined as
follows:

– (int)ready queue[x]: is a sorted queue of currently dispatched threads. The
queue is sorted according to a given scheduling policy where the first element
in the queue (x=0) is the (identifier of the) thread being processed and where
the second element is the next thread to be processed, and so forth.

– (clock)sch clocks[x][2]: is a list of clocks in sets of two, each set referenced
by an identifier x of a currently dispatched thread. Each dispatched thread
has two clocks, the first (sch clocks[x][0] of thread with identifier x) is used
to keep track of a thread’s execution time, and the second (sch clocks[x][1]
of thread with identifier x) is used to keep track of a thread’s deadline.

– (int)sch info[x][3]: is a list of threads’ scheduling properties (integers) in sets
of three, each set referenced by an identifier x of a currently dispatched
thread. Each dispatched thread has three scheduling properties, the first
(sch info[x][0] of thread with identifier x) is the execution time, the sec-
ond (sch info[x][1] of thread with identifier x) is the deadline, and the third
(sch info[x][2] of thread with identifier x) is the priority.

– (int)preempt stack[x][2]: is a stack of sets of currently preempted threads
(integer identifiers) and the amount of time each thread has been preempted.
Given a stack of preempted threads, the first set of elements in the stack
(preempt stack[0][0] is the thread identifier and preempt stack[0][1] is the
amount of time) corresponds to the thread that first was preempted.

– (int)nr preempted: number of currently preempted threads.
– (int)threads: number of currently dispatched threads.
– (int)check preempt: holds the identity of a thread that is dispatched at the

same time as another thread is running. It is used to check if the dispatched
thread preempts the running thread.

57

– (chan)dispatched[(int)x],(chan)run[(int)x],(chan)complete[(int)x],
(chan)preempt[(int)x],(chan)blocked[(int)x],(chan)unblocked[(int)x]: are chan-
nels used to synchronize every thread transition of every thread in the sys-
tem. Synchronization with a particular thread is done through its identity.
For example, run[2] is a synchronization channel with thread having identity
“2”.

– (void)schprotocol((int)x): is a function sorting threads in the ready queue
according to a given scheduling policy. The function is called each time a
thread dispatches where the thread’s identity is given as argument to the
function. In this example, we assume fixed priority scheduling.

– (void)completion((int)x): is a function removing threads from the ready queue.
The function is called each time a thread completes its execution, where the
thread’s identity is given as argument to the function.

– (void)remove((int)x): is a function removing threads from the ready queue.
The function is called when a thread is blocked due to shared resources.

– (void)addTime(): is a function adding preempted time to the threads in the
preempt stack. The function is called when a preemption occurs, whereupon
the execution time of the thread causing the preemption is added to the
preemption time of every preempted thread.

– (void)removeTime(): is a function removing preempted time from the threads
in the preempt stack. The function is called when a block due to shared
resources occurs, whereupon the execution time of the thread is removed
from the preemption time of every preempted thread.

– (void)checkTime((int)x): is a function adding preempted time to the threads
in (int)preempt stack[x][2]. The function is called when a thread dispatch not
causing any preemption occurs, to check if the dispatched thread is prior to
any preempted threads in the ready queue whereupon preemption time is
added.

The automaton includes two clocks per thread, lists and functions with cor-
responding variables to handle thread execution and preemption. The reason for
having two clocks per thread is that the Uppaal language does only allow reset
and comparison of clocks, i.e., clocks cannot be read or assigned. Because of these
constraints, a preempted thread’s time of completion cannot be obtained solely
from its execution time. In order to model thread preemption, a method consid-
ering the execution time of the threads causing preemption is used to calculate
preempted threads’ time of completion.

The method is illustrated in Figure 18. A, B and C are denotations for
threads where priority of A < priority of B < priority of C. CA is the exe-
cution time of A and DA is the deadline for A. cA (sch clocks[i][0]) and dA
(sch clocks[i][1]) are clocks for A, which are used to measure the time of com-
pletion and the time of a missed deadline respectively. rA is a variable used to
summarize the time required to complete thread A and all – during the exe-
cution of A – dispatched threads with priorities higher than A. As shown in
the illustration, the time of completion for thread A is when the comparison
cA = rA evaluates to true. In addition to this comparison, dA > DA should

58

not evaluate to true before or while A’s completion. The comparison is used
for schedulability analysis where an evaluation to true indicates a missed dead-
line. Note that we are illustrating the method explicitly for thread A though
the methodology is applied to each thread. A formal proof of the methodology
is presented in [22]. Furthermore, the behavior of the scheduler assumes imme-
diate switching time of threads. If the processor the threads are bound to is
specified with a Thread Swap Execution Time property, the scheduler has to be
modified with intermediate locations delaying the switching-time according to
the specified property.

The scheduler is initially in the Empty location when the system has been ini-
tialized. When dispatch occurs, the scheduler transits to the Schedule1 location
whereby the corresponding thread is added to the ready queue (via schprotocol())
and its deadline clock is reset (corresponds to dA = 0 in Figure 18). The Sched-
ule1 location is a committed repetition of the Empty location, allowing several
threads to be dispatched simultaneously through the edge labeled with channel
dispatched. The other edge to Schedule1 itself, labeled with channel unblocked,
allows for unblocking of threads. However, the edge can only be fired in response
to a completion of a thread whereupon the availability of resources are checked.
Succeeding to all simultaneous dispatches, the scheduler synchronizes with the
first thread in the ready queue and transits to the Running location through
one of two different edges depending on which action should be executed. If the
number of preempted threads is zero, or if the number is more than zero and the
latest preempted thread is not the first in the ready queue, the execution time
clock of the thread to be run is reset (corresponds to cA = 0). If the number
of preempted threads are more than zero and the latest preempted thread is
the first thread in the ready queue, the scheduler transits to the Running loca-
tion without resetting its execution time clock since it already has been reset
(corresponds to the start of execution of A after preemption by B and C). The

B

C

r
A
= C

A
+C

B

r
A
= C

A
+C

B
+C

C

t

A

c
A
=0

d
A
=0

r
A
=C

A

c
A
=r

A

d
A
>D

A
?

Fig. 18. Thread execution schema for threads A, B and C, where ↑ indicates dispatch
and ↓ indicates completion.

59

scheduler remains in the Running location until the running thread gets blocked
due to shared resources, until the running thread completes its execution, until
another thread is dispatched, or until the running thread misses its deadline.
A running thread that gets blocked due to shared resources synchronizes with
the scheduler back to Schedule1, whereby the blocked thread is removed from
the ready queue and preemption time of possible preempted threads is adjusted
with respect to the execution time of the blocked thread. If a running thread
completes its execution (corresponds to cA = rA), the scheduler transits to the
LookUp location through one of two different edges. Note that the running loca-
tion is modeled with an invariant in order to force a fire of the completion edge
at the time of completion. The two edges have guards for execution time where
additional expressions are used to differentiate between a preempted thread and
a thread which has not been preempted. If the thread has not been preempted,
the thread is simply removed from the ready queue (through the completion()
function). A preempted thread, on the other hand, is not only removed from
the ready queue, but also from the preempt stack. From the LookUp location,
the scheduler transits to the Empty or Schedule1 location depending on whether
there are any dispatched threads left or not. If dispatched threads still exist, the
scheduler synchronizes with possibly blocked threads to check the availability of
shared resources in response to the thread completion. This allows for unblocking
of threads when the scheduler enters Schedule1.

If a dispatch occurs when the scheduler is in the Running location, an edge is
fired to the Schedule2 location, whereupon the thread is added to the ready queue
and the corresponding execution time clock is reset. Three different edges are
available from the Schedule2 location depending on if the recently dispatched
thread was scheduled as the first thread in the ready queue or not. If scheduled
as the first thread in the ready queue, that is, if it preempts the previously
running thread, the scheduler transits to the Preemption location through one
of the two edges depending on whether the preempted thread already exist in
the preempt stack or not. Whereby the edges from the Schedule2 location to
the Preemption location, the preempted thread is added to the preempt stack
if it previously has not been preempted, and preempted time is added – to
all preempted threads – through the addTime() function (corresponds to rA =
CA +CB or rA = CA +CB +CC). On the other hand, if the recently dispatched
thread does not cause a preemption, no further actions are taken other than
adding preempted time – if the thread is scheduled prior to currently preempted
threads – to preempted threads through the checkTime() function. From the
Preemption location, the scheduler synchronizes with the first thread in the
ready queue for execution. Note that the Preemption location has an edge to
itself to allow simultaneous dispatches of threads.

The edge from the Running location to the MissedDeadline location is mod-
eled for schedulability analysis. The Running location is modeled with an invari-
ant that forces a fire of the edge whenever the running thread misses its deadline
(corresponds to dA > DA). Thus, any internal, direct, or indirect path that is
not consistent with the scheduling properties cannot be reached.

60

StartUp

cl<=initializationTime

Preemption

MissedDeadline

Schedule2

LookUp

Running
sch_clocks[ready_queue[0]][0]<=sch_info[ready_queue[0]][0]+preemptedTime() and
sch_clocks[ready_queue[0]][1]<=sch_info[ready_queue[0]][1]+1

Schedule1Empty

i: int[0,N-1]
unblocked[i]?

schprotocol(i),
blocked_threads[i]=false,
checkTime(i)

i: int[0,N-1]
blocked[i]?
blocked_threads[i]=true,
removeTime(i),
remove(i)

cl>=initializationTime
initialization!

timer = 0

i: int[0,N-1]

dispatched[i]?

schprotocol(i),
sch_clocks[i][1]=0,
checkTime(i),
threads++

ready_queue[0]==check_preempt and (nr_preempted==0 or
(nr_preempted>0 and preempt_stack[nr_preempted-1][0]!=ready_queue[1]))

preempt[ready_queue[1]]!
preempt_stack[nr_preempted++][0] = ready_queue[1],
addTime()

ready_queue[0]==check_preempt and nr_preempted>0 and
preempt_stack[nr_preempted-1][0]==ready_queue[1]

preempt[ready_queue[1]]!
addTime()

run[ready_queue[0]]!

sch_clocks[ready_queue[0]][0]=0

sch_clocks[ready_queue[0]][1]>sch_info[ready_queue[0]][1]

((nr_preempted==0) or (nr_preempted>0 and ready_queue[0]!=preempt_stack[nr_preempted-1][0]))
and sch_clocks[ready_queue[0]][0]>=sch_info[ready_queue[0]][0] and sch_clocks[ready_queue[0]][1]<=sch_info[ready_queue[0]][1]

complete[ready_queue[0]]!

completion(ready_queue[0]),
threads--

(nr_preempted>0 and
preempt_stack[nr_preempted-1][0]
!=ready_queue[0]) or nr_preempted==0

run[ready_queue[0]]!
sch_clocks[ready_queue[0]][0]=0

nr_preempted>0 and
preempt_stack[nr_preempted-1][0]
==ready_queue[0]

run[ready_queue[0]]!

nr_preempted>0 and ready_queue[0]==preempt_stack[nr_preempted-1][0] and
sch_clocks[ready_queue[0]][0]>=sch_info[ready_queue[0]][0]+preemptedTime() and sch_clocks[ready_queue[0]][1]<=sch_info[ready_queue[0]][1]
complete[ready_queue[0]]!

completion(ready_queue[0]),
preempt_stack[--nr_preempted][1]=0,
threads--

ready_queue[0]!=check_preempt
checkTime(check_preempt)

i: int[0,N-1]
dispatched[i]?

schprotocol(i),
sch_clocks[i][1]=0,
threads++,
check_preempt = i

threads==0

threads>0
check_resources!

i: int[0,N-1]
dispatched[i]?
schprotocol(i),
sch_clocks[i][1]=0,
checkTime(i),
threads++

i: int[0,N-1]
dispatched[i]?

schprotocol(i),
sch_clocks[i][1]=0,
threads++

Fig. 19. The scheduler automaton template.

61

9 Observers generation and model checking

Once the Uppaal model has been generated, the possible paths of the AFG
can be verified against their constraints (properties), and possibly requirements,
through flow-reachability analysis. Note that properties that have an effect on
the dynamic semantics are transformed into the timed automata model, such
as scheduling properties. They are therefore not explicitly included in verifica-
tion sequences as their validity automatically is verified when the correspond-
ing timed automata paths are exercised. Each verification sequence is executed
through transformation to an observer automaton [19] and auxiliary variables
and clocks (if it is constrained by timing properties). Observers have been de-
veloped to provide a flexible method for specifying coverage criteria for model
checking and model-based test case generation. The execution is formulated as
a reachability problem, which conforms to our verification criteria. An observer
essentially monitors a trace of the timed automata model and reaches an ac-
ceptance state whenever the coverage criterion has been met. With respect to
verification sequences, reaching an acceptance state denotes flow-reachability of
the corresponding AFG path. Thus, reaching all acceptance states imply consis-
tency, completeness (assuming all input classes have been used), and correctness
of the AADL model. Validity is preserved as observers cannot interfere with the
state space.

Formally, an observer 〈O, o0, oaccept, Eobs〉 over a set of auxiliary clocks and
variables has a set of observer locations O, an initial observer location o0 ∈ O,
an accepting location oaccept ∈ O, and a set of observer edges Eobs on the form

o
g,a,u−−−→ o′. A coverage criterion is created by dividing it into atomic timed au-

tomata items that must be covered and, for each item, generate an observer
edge which predicate (g and a) is dependent on that item. An observer edge will
thereby be fired when the item has been covered. If the criterion requires the
items to be covered in a specific sequence, the edges are structured correspond-
ingly. Moreover, locations may be labelled with invariants (including urgent and
committed) and guards, actions, and clocks may be used to specify additional
constraints in which items must be covered. With respect to a verification se-
quence, the coverage criterion is the corresponding timed automata path. Since
each control flow arc in a verification sequence corresponds to an edge in the
timed automata model, and each data flow arc to a sequence of two edges (one
where the variable is defined and one where it is used), the corresponding edges
or sequence of edges are the atomic items to be covered. Thus, an observer au-
tomaton is created for each verification sequence by creating an observer edge
or a sequence of two edges for each arc in the path. In addition, each path con-
straint (property) and requirement is specified through location invariants and
transition guards and actions.

Assuming no existence of data flows, a verification sequence of m vertices
〈v1 → v2 → v3 → · · · → vm, {properties}〉 maps to an observer automa-

ton of m − 1 observer edges 〈{o1, o2, o3, . . . om}, o1, om, {o1
g,a,u−−−→ o2, o2

g,a,u−−−→
o3, . . . , om−1

g,a,u−−−→ om}〉, where an execution of the timed automaton edge that

62

corresponds to v1 → v2 (see correspondence below) is observed by o1
g,a,u−−−→ o2,

v2 → v3 by o2
g,a,u−−−→ o3, etc. If the sequence contains any control flow due to a

true or false evaluation of a control expression, it must be complemented with
an observer edge that resets the observer to its initial location in case the com-
plementing branch is fired instead. For example, a verification sequence 〈v1 →c

v2 →cT v3 →cF v4, {properties}〉 maps to 〈{o1, o2, o3, o4}, o1, {o3}, {o1
g,a,u−−−→

o2, o2
g,a,u−−−→ o3, o2

g,a,u−−−→ o1, o3
g,a,u−−−→ o4, o3

g,a,u−−−→ o1}〉 where the timed au-

tomaton edge that corresponds to v2 →cF vx is observed by o2
g,a,u−−−→ o1 and

v3 →cT vy by o3
g,a,u−−−→ o1.

Given that there exist an automaton that may stimulate the model with the
possible system inputs, the verification sequence is executed by the reachability
formula E <> om (meaning “there exists one path where om eventually holds”).
The verification sequence passes if the model satisfies the formula.

An observer edge primarily observers the coverage item through a broadcast

synchronization channel, i.e., given that an execution of `
g,ax,u−−−−→ `′ corresponds

to v1 → v2, `
g,ax!,u−−−−→ `′ synchronizes with o1

g,ax?,u−−−−−→ o2 through channel ax. By
following the transformation rules from AADL to timed automata, each control
flow arc corresponds to the execution of exactly one edge (coverage item).

– An arc 〈〈“ENTRY ”/“REENTRY ”, threadi〉, v′〉c corresponds to an execu-

tion of the edge awaiting dispatch
cl>=Period,a,u−−−−−−−−−−→ ready in the automaton

of threadi.
– An arc 〈〈“ENTRY ”, subi〉, v′〉c corresponds to an execution of the edge

`
g,a,u−−−→ `′ where u represents formal-in assignments of subi.

– An arc 〈gx, acty〉cT corresponds to an execution of the edge `
g,a,u−−−→ `′ where

g represents gx.

– An arc 〈actx, acty/gy〉c corresponds to an execution of the edge `
g,a,u−−−→ `′

where some assignment uz ∈ u represents actx.
– An arc 〈subi!(argument list), 〈“ENTRY ”, subi〉〉call corresponds to an exe-

cution of the edge `
g,a,u−−−→ `′ where u represents actual-in assignments of the

call to subi.
– An arc 〈〈“EXIT”, subi〉, subi!(argument list)〉call corresponds to an execu-

tion of the edge `
g,a,u−−−→ `′ where u represents formal-out assignments of

subi.
– An arc 〈subi!(argument list), v′〉c corresponds to an execution of the edge

`
g,a,u−−−→ `′ where u represents actual-out assignments of the call to subi.

– An arc 〈gx/acty, 〈“REENTRY ”/“EXIT”, threadi〉〉c corresponds to an ex-

ecution of the edge `
g,a,u−−−→ awaiting dispatch, where g represents gx/some

assignment uz ∈ u represents acty.
– An arc 〈gx/acty, 〈“EXIT”, subi〉〉c corresponds to an execution of the edge

`
g,a,u−−−→ `′, where g represents gx/some assignment uz ∈ u represents acty.

A verification sequence that contains a data-flow arc requires observer edges
that observe at least two successive coverage items: the edge where the data is

63

defined followed by the edge where it is used. In addition, two auxiliary vari-
ables, vaux1 and vaux2, are introduced together with the observer edges to en-
sure that the use edge actually uses the data instance defined by the definition
edge. The data Datadef that is defined at the definition edge, and the data
Datause that is used at the use edge, are additionally stored in the auxiliary
variables. Once the observer edges have observed a definition (through channel
Chandef) followed by a use (through channel Chanuse) of the data compo-

nent, a guard g composed of predicate vaux1 == vaux2 of an edge o
g,a,u−−−→ o′

ensures data flow reachability before the accepting state o′ is reached. Never-
theless, in case of inter-component data flows, threads may be modeled with
under-sampled data communication (the receiving thread has a lower dispatch
frequency than the sending thread) where a fraction of defined data instances
are not supposed to reach the us edge. To prevent false negatives of data flow
reachability, alternative definition-observer edges may synchronize with new defi-
nitions of the data component. Consequently, for sequences that contain an inter-
component data flow arc v1 → v2, i.e. 〈v1, v2〉d−in/d−out, the two coverage items
(def and use) are observed by two sequential observer edges, one for possibly
under-sampled communication, and one for assurance of data-flow reachability:

〈{o1, o2, o3, o4}, o1, o4, {o1
g,Chandef?,〈vaux1:=Datadef 〉−−−−−−−−−−−−−−−−−−−−→ o2,

o2
g,Chandef?,〈vaux1:=Datadef 〉−−−−−−−−−−−−−−−−−−−−→ o2, o2

g,Chanuse?,〈vaux2:=Datause〉−−−−−−−−−−−−−−−−−−−→ o3,

o3
vaux1==vaux2,τ,u−−−−−−−−−−−−→ o4}〉

where Chandef? observes the definition edge that corresponds to v1 and Chanuse?
observes the use edge that corresponds to v2. The correspondence of inter-
component data flow arcs are as follows:

– An arc 〈v, v′〉d−in, where v is an actual-in vertex of threada and v′ a formal-

in vertex of threadb, corresponds to an execution of the edge running
g,a,u−−−→

awaiting dispatch of threada and subsequently an execution of the edge

awaiting dispatch
g,a,u−−−→ ready of threadb.

– An arc 〈v, v′〉d−in, where v is an actual-in vertex of compa (either a thread or
subprogram) and v′ a formal-in vertex of subb, corresponds to an execution

of the edge `
g,a,u−−−→ `′ of compa where an element of u represents the actual-in

assignment v, and subsequently an execution of the edge `
g,a,u−−−→ `′ of subb

where an element of u represents the formal-in assignment v′.
– An arc 〈v, v′〉d−out, where v is an formal-out vertex of suba and v′ a actual-

out vertex of compb, corresponds to an execution of the edge `
g,a,u−−−→ `′ of

suba where an element of u represents formal-out assignment v, and subse-

quently an execution of the edge `′
g,a,u−−−→ `′′ of compb where an element of

u represents actual-out assignment v′.

For example, the direct component to component path P = connection3 :=
DHWOMG S LtrCd → DHWOMG S LtrCd := connection corresponds to
a verification sequence 〈P, {〈〈connection3 := DHWOMG S LtrCd,
DHWOMG S LtrCd := connection3〉d−in, Latency => 0ms..3ms〉}〉. Assum-
ing that the time units in the Uppaal model are milliseconds, the verification

64

sequence generates, according to above rules, an observer automaton

〈{o1, o2, o3(committed), o4}, o1, o4, {o1
g,Chandef?,〈vaux1:=Datadef ,cl=0〉−−−−−−−−−−−−−−−−−−−−−−−→ o2,

o2
g,Chandef?,〈vaux1:=Datadef ,cl=0〉−−−−−−−−−−−−−−−−−−−−−−−→ o2, o2

g,Chanuse?,〈vaux2:=Datause〉−−−−−−−−−−−−−−−−−−−→ o3,

o3
cl>=0 and cl<=3 and vaux1==vaux2,τ,〈〉−−−−−−−−−−−−−−−−−−−−−−−−−−→ o4}〉 where Chandef synchronizes with

running
gctrl,actrl,uctrl−−−−−−−−−−→ awaiting dispatch of the controller automaton; Datadef

is a copy of the value assigned to variable connection3 in uctrl; Chanuse syn-

chronizes with awaiting dispatch
gtst,atst,utst−−−−−−−−→ ready of the tester automaton;

and Datause is a copy of the value assigned to DHWOMG S LtrCd in utst.
Note that a clock cl is used to verify the validity of the latency property; the
data should be received at least after 0 millisecond and at most after 3.

For sequences that contain a component-internal data flow arc, the coverage
item is decomposed to and observed as the underlying control-flow path.

9.1 Results

In order to exercise the architectural paths by every class of input, the input do-
main of LTRIS is divided through equivalence portioning where concrete values
are determined through boundary value analysis. In the LTRIS AADL model,
we assume that any required input is generated by the LineTripEnvironment
process. The abstracted environment is transformed to the automaton presented
in Figure 17, which should be able to stimulate LTRIS with the possible input
classes at completions. In addition, the values of (input) data objects at the
time of LTRIS initialization depends on its environment. The possible stimuli is
added to the timed automata model by creating an automaton for each input
object such that it may assign any of the possible concrete values to the object
in response to LTRIS initialization and LineTripEnvironment completions. A
template for a Boolean-typed data object is presented in Figure 20.

65

initialization?

some_connection = true/
some_shared_data = true

initialization?
some_connection = false/
some_shared_data = false

complete[id_environment]?

some_connection = false/
some_shared_data = false

complete[id_environment]?
some_connection = true/
some_shared_data = true

Fig. 20. Template for input generation of a boolean typed connection/shared variable.

The possible boundary values of each data object are presented in Table 9.
Note that these values are generated based on informal assumptions about the
input domain as the specifics of the environment are unknown.

Table 9. Value sets of each input data object.

Data object Initialization Env. completion

some connection1-2 {0(false),1(true)} {0(false),1(true)}
some connection3 {0,3,4,27,30,31,38} {0,3,4,27,30,31,38}
some connection4-14 {0(false),1(true)} {0(false),1(true)}
GPIO OUT {0(false)}
LTRIP EN N {1(true)}
MCU LT ON {1(true)}
FPGA2 LT ON {0(false),1(true)} {0(false),1(true)}
LT RELAY FB {0(false),1(true)} {0(false),1(true)}

The results of model checking are presented in Table 10 and descriptive
statistics for the data set in Table 11. The results conform to the expectations.
All observers were satisfied by the model. On average, satisfiability checking
consumed 15 seconds and 154 MB per observer. The average trace size is 1.8
MB. In total, it took 855 seconds and 9327 MB to check satisfiability of the 57
observers. The aggregate set of traces yields 105 MB. The distribution of each
unit is positively skewed where occurrences are clustered in the lower end of
the scale. The inter-observer coverage for the traces that satisfied each observer
in this run is listen in Table 12. The information may be used to reduce the
resource consumption of regression verification, as described in Section 11.

66

Table 10. Model checking results

Observer Verdict Time cons.(sec) Memory cons. (MB) Trace size (KB)

InternalTester1 satisfied 1 36 119
InternalLtrTsSq1 satisfied 1 35 29
InternalLtrTsSq2 satisfied 1 36 29
InternalLtrTsSq3 satisfied 1 40 391
InternalLtrTsSq4 satisfied 17 98 3383
InternalLtrTsSq5 satisfied 28 300 3676
InternalLtrTsSq6 satisfied 28 300 3676
InternalLtrTsSq7 satisfied 43 438 4049
InternalLtrTsSq8 satisfied 43 438 4049
InternalLtrTsSq9 satisfied 1 40 391
InternalLtrTsSq10 satisfied 1 39 390
InternalLtrTsSq11 satisfied 1 40 390
InternalLtrTsSq12 satisfied 2 65 756
InternalLtrTsSq13 satisfied 26 283 3675
InternalLtrTsSq14 satisfied 42 417 4047
InternalLtrTsSq15 satisfied 42 417 4047
InternalLtrTsSq16 satisfied 59 649 4420
InternalLtrTsSq17 satisfied 59 649 4420
InternalLtrTsSq18 satisfied 2 78 756
InternalLtrTsSq19 satisfied 27 289 3676
InternalController1 satisfied 1 56 25
InternalLtrInt1 satisfied 1 57 18
Internaldcu2 line trip1 satisfied 1 59 34
Internaldcu2 line trip2 satisfied 1 39 34
Internaldcu2 line trip3 satisfied 1 40 34
Internaldcu2 line trip4 satisfied 1 40 34
Internaldcu2 line trip5 satisfied 1 39 34
Internaldcu2 line trip6 satisfied 1 41 34
Internaldcu2 line trip7 satisfied 1 41 34
Internaldcu2 line trip8 satisfied 1 41 34
Internaldcu2 line trip9 satisfied 1 41 63
Internaldcu2 line trip10 satisfied 1 48 365
Internaldcu2 line trip11 satisfied 1 48 365
Internaldcu2 line trip12 satisfied 1 42 63
Direct1 satisfied 1 38 27
Direct2 satisfied 1 39 7
Direct3 satisfied 1 39 19
Direct4 satisfied 1 40 125
Direct5 satisfied 1 40 125
Direct6 satisfied 1 42 379
Indirect1 satisfied 1 42 145
Indirect2 satisfied 1 42 145
Indirect3 satisfied 29 307 3917
Indirect4 satisfied 29 308 3917
Indirect5 satisfied 17 108 3531
Indirect6 satisfied 17 108 3531
Indirect7 satisfied 17 108 3531
Indirect8 satisfied 17 108 3531
Indirect9 satisfied 17 105 3531
Indirect10 satisfied 18 111 3531
Indirect11 satisfied 23 135 3521
Indirect12 satisfied 18 112 3521
Indirect13 satisfied 30 334 3909
Indirect14 satisfied 30 335 3909
Indirect15 satisfied 30 334 3909
Indirect16 satisfied 66 642 4295
Indirect17 satisfied 50 531 4292

67

Table 11. Descriptive statistics of Table 10

Time cons. (sec) Memory cons. (MB) Trace size (KB)

Mean 15 164 1840
Median 1 59 391
SD 18 178 1853
Minimum 1 35 7
Maximum 66 649 4420
Sum 855 9327 104888
N 57 57 57

68

T
a
b
le

1
2
.

In
ter-o

b
serv

er
cov

era
g
e

InternalTester1

InternalLtrTsSq1

InternalLtrTsSq2

InternalLtrTsSq3

InternalLtrTsSq4

InternalLtrTsSq5

InternalLtrTsSq6

InternalLtrTsSq7

InternalLtrTsSq8

InternalLtrTsSq9

InternalLtrTsSq10

InternalLtrTsSq11

InternalLtrTsSq12

InternalLtrTsSq13

InternalLtrTsSq14

InternalLtrTsSq15

InternalLtrTsSq16

InternalLtrTsSq17

InternalLtrTsSq18

InternalLtrTsSq19

InternalController1

InternalLtrInt1

Internaldcu2_line_trip1

Internaldcu2_line_trip2

Internaldcu2_line_trip3

Internaldcu2_line_trip4

Internaldcu2_line_trip5

Internaldcu2_line_trip6

Internaldcu2_line_trip7

Internaldcu2_line_trip8

Internaldcu2_line_trip9

Internaldcu2_line_trip10

Internaldcu2_line_trip11

Internaldcu2_line_trip12

Direct1 Direct2 Direct3 Direct4 Direct5 Direct6Indirect1
Indirect2
Indirect3
Indirect4
Indirect5Indirect6
Indirect7
Indirect8
Indirect9
Indirect10
Indirect11
Indirect12
Indirect13
Indirect14
Indirect15
Indirect16
Indirect17

In
tern

alTester1
x

x
x

x
x

x
x

x
x

In
tern

alLtrTsSq
1

x
x

x
x

x
x

x

In
tern

alLtrTsSq
2

x

x
x

x
x

x
x

In
tern

alLtrTsSq
3

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

In
tern

alLtrTsSq
4

x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

In
tern

alLtrTsSq
5

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
tern

alLtrTsSq
6

x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

In
tern

alLtrTsSq
7

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
tern

alLtrTsSq
8

x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

In
tern

alLtrTsSq
9

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
tern

alLtrTsSq
1

0
x

x
x

x
x

x
x

x
x

x
x

x
x

In
tern

alLtrTsSq
1

1
x

x
x

x
x

x
x

x
x

x
x

x
x

x

In
tern

alLtrTsSq
1

2
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

In
tern

alLtrTsSq
1

3
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
tern

alLtrTsSq
1

4
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
tern

alLtrTsSq
1

5
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
tern

alLtrTsSq
1

6
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
tern

alLtrTsSq
1

7
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

In
tern

alLtrTsSq
1

8
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
tern

alLtrTsSq
1

9
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
tern

alC
o

n
tro

ller1
x

x
x

x
x

In
tern

alLtrIn
t1

x
x

In
tern

ald
cu

2
_lin

e_trip
1

x

x
x

x

In
tern

ald
cu

2
_lin

e_trip
2

x

x
x

x

In
tern

ald
cu

2
_lin

e_trip
3

x

x
x

x

In
tern

ald
cu

2
_lin

e_trip
4

x

x
x

x

In
tern

ald
cu

2
_lin

e_trip
5

x

x
x

x

In
tern

ald
cu

2
_lin

e_trip
6

x
x

x
x

In
tern

ald
cu

2
_lin

e_trip
7

x

x
x

x

In
tern

ald
cu

2
_lin

e_trip
8

x

x
x

x

In
tern

ald
cu

2
_lin

e_trip
9

x

x
x

x
x

x
x

x

In
tern

ald
cu

2
_lin

e_trip
1

0

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
tern

ald
cu

2
_lin

e_trip
1

1

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

In
tern

ald
cu

2
_lin

e_trip
1

2
x

x
x

x
x

x
x

x

D
irect1

x

x
x

x
x

x

D
irect2

x

D
irect3

x

x
x

D
irect4

x

x
x

x
x

x
x

x
x

x

D
irect5

x

x
x

x
x

x
x

x
x

x

D
irect6

x
x

x
x

x
x

x
x

x
x

x
x

In
d

irect1

x
x

x
x

x
x

x
x

x
x

x
x

In
d

irect2

x
x

x
x

x
x

x
x

x
x

x
x

In
d

irect3

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
d

irect4

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
d

irect5
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

In
d

irect6

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
d

irect7

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
d

irect8

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
d

irect9

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
d

irect1
0

x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

In
d

irect1
1

x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
d

irect1
2

x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
d

irect1
3

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

In
d

irect1
4

x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
d

irect1
5

x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
d

irect1
6

x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

In
d

irect1
7

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

69

10 Model-based testing

To verify an implementation, its conformance to the – complete, consistent,
and correct – model must be tested. A satisfied observer generates a trace

〈`o, φo, σo〉
a1/d1−−−−→ 〈`1, φ1, σ1〉

a2/d2−−−−→ · · · an/dn−−−−→ 〈`n, φn, σn〉 that contains in-
formation about the initial state of the system and its environment before the
path is executed, the input or the sequence of inputs needed to stimulate an
execution of the system according to the expected path, and the expected out-
put or sequence of outputs. In addition, the trace holds information on expected
non-functional properties, including timing of input and output.

Thus, depending on which automata are accredited as an environment E(pi) =
〈TA1, TA2, TA3, . . . 〉 for a specific verification sequence with path pi, an observer
trace over its E(pi) yields a test case. Let MV (pi) and MAct(pi) denote the sets
of variables and actions (on the form a!) in environment E(pi) that are mon-
itored by system under test (SUT). Let CV (pi) and CAct(pi) denote the sets
of variables and actions (on the form a?) in E(pi) that are controlled by SUT.
For end-to-end paths, sensor variables and actions are monitored while actuator
variables and actions are controlled.

Assuming that the SUT at time t = 0 is set according to system state
〈`o, φo, σo〉, depending on the used test harness, the tester, test script, or test
model is responsible of following the sequence such that:

1. for each encountered delay transition〈`, φ, σ〉 d−→ 〈`, φ ⊕ d, σ〉, wait until t =
t+ d.

2. for each encountered discrete transition 〈`, φ, σ〉 a−→ 〈`[`′i/`i, `′j/`j , `′k/`k, . . .],
φ′, σ′〉 where `i/j/k...

gi/j/k...,ai/j/k...,ui/j/k...−−−−−−−−−−−−−−−−→ `′i/j/k... are edges of the environ-

ment E(pi) and ai/j/k... is a member of MAct(pi) and/or any assignment
uxi/j/k... is on the form v := expr such that v ∈ MV (pi), stimulate SUT at
time t with actions ai/j/k... and data updates uxi/j/k....

3. for each encountered discrete transition where `i/j/k...
gi/j/k...,ai/j/k...,ui/j/k...−−−−−−−−−−−−−−−−→

`′i/j/k... are not edges of the environment E(pi) and ai/j/k... is a member of

CAct(pi) and/or any assignment uxi/j/k... is on the form v := expr such that

v ∈ CV (pi), assure at time t that SUT responds with actions ai/j/k... and
data updates uxi/j/k....

The collective set of generated tests creates a test suite that tests the confor-
mance of the implementation with respect to the architecture model.

10.1 Results

The sets of controlled and monitored variables for each path are listed in Ta-
ble 13. All connections from the environment to in ports of LTRIS, and shared
variables which are read by LTRIS, constitute the set of monitored variables
for all paths. The set of controlled variables for each internal path corresponds
to each connection that is connected to an output interface of the component

70

covered by the path. For direct paths, the controlled variables are the involved
input interfaces of the destination component. Finally, each connection from an
out port of LTRIS to the environment, and shared variables which are written
by LTRIS, constitute the set of controlled variables for all indirect paths.

Table 13: Controlled and monitored variables for each path type

Path type p MV (p) CV (p)

InternalTester some connection1 connection1
some connection2 connection2
some connection3 some connection15
some connection4 some connection16
some connection5 some connection17
some connection6
some connection7
some connection8
LTRIP EN N
MCU LT ON
FPGA2 LT ON
LT RELAY FB
some connection9
some connection10
some connection12
some connection13
some connection14

InternalLtrTsSq — ” — Tester.B OpLtr out
Tester.B CdLtr out
Tester.NX LtrSaSq out
Tester.A LtrTs out
Tester.A LtrOpVd out

InternalController — ” — connection3
some connection18
some connection20
some connection21
GPIO OUT
FPGA LTRCR

InternalLtrInt — ” — Controller.B ClLtr out

Internaldcu2 line trip — ” — GPIO OUT
FPGA LTRCR
Controller.fb out
Controller.fpga2 on out
Controller.fb ne out

Direct1 — ” — Tester.C LtrTs in
Tester.B LtrFl in
Tester.S LtrCd in
Tester.S LtrOp in
Tester.S DCUNtRdy in

71

Tester.L EnLtrSv in

Direct2 — ” — Controller.B RqPrSd in
Controller.B OpLtr AppSpec in
Controller.NX SqSt in
Controller.A PctMo in
Controller.B LtrTsOpLtr in
Controller.B OpLtr LtrTs in
Controller.B CdLtr LtrTs in
Controller.B EnCdLnTrpSlt in
Controller.L CnfHpp in

Direct3 — ” — Controller.enable in
Controller.act in

Direct4 — ” — Controller.DHSSMG B OpLtr

Direct5 — ” — Controller.DHSSMG B CdLtr

Direct6 — ” — Tester.DHWOMG S LtrCd

Indirect — ” — connection3
GPIO OUT
FPGA LTRCR
some connection15
some connection16
some connection17
some connection18
some connection20
some connection21

According to this configuration, the results of the test case generation algo-
rithm are presented in Table 28–46 in Appendix B. In the tables, a normal font
denotes a test input, a cursive font denotes a delay, and a bold font denotes
an expected output. For the purpose of the case study, these are scripted in
timed automata. As an example, we consider the test case generated from the
trace that satisfied the verification sequence (observer) verifying indirect path
No. eight:

some connection1 = 0
some connection2 = 0
some connection3 = 0
some connection4 = 0
some connection5 = 0
some connection6 = 0
some connection7 = 0
some connection8 = 1
GPIO OUT = 0
LTRIP EN N = 1
MCU LT ON = 1

72

FPGA2 LT ON = 0
LT RELAY FB = 1
some connection9 = 1
some connection10 = 0
some connection12 = 0
some connection13 = 0
some connection14 = 1
d=60
some connection1 = 0
some connection2 = 0
some connection3 = 0
some connection4 = 0
some connection5 = 0
some connection6 = 0
some connection7 = 0
some connection8 = 0
FPGA2 LT ON = 0
LT RELAY FB = 0
some connection9 = 1
some connection10 = 0
some connection12 = 0
some connection13 = 0
some connection14 = 1
d=536
some connection15 = 1
some connection16 = 0
some connection17 = 0
d=2
connection3 = 0
some connection18 = 1
some connection20 = 0
some connection21 = 0
GPIO OUT = 0
FPGA LTRCR = 1

The test case is scripted in timed automata as shown in Fig. 21. The envi-
ronment component in the LTRIS model is disconnected from the system when
running the test scripts. Similarly to observers, if the test script may reach the
accepted location, the test case passes, i.e., the system reacted as expected with
respect to the input. The result of running all tests on the original LTRIS model
is presented in Table 14. The result conforms to the expectation – all test cases
passed.

73

Accepted

cl<=2cl<=536cl<=60cl<=0

cl==2 and
connection3 == 0 and
some_connection18 == 1 and
some_connection20 == 0 and
some_connection21 == 0 and
GPIO_OUT == 0 and
FPGA_LTRCR == 1initialization?

cl=0

cl==536 and
some_connection15 == 1 and
some_connection16 == 0 and
some_connection17 == 0

cl=0

cl==60

input!

some_connection1 = 0,
some_connection2 = 0,
some_connection3 = 0,
some_connection4 = 0,
some_connection5 = 0,
some_connection6 = 0,
some_connection7 = 0,
some_connection8 = 0,
FPGA2_LT_ON = 0,
LT_RELAY_FB = 0,
some_connection9 = 1,
some_connection10 = 0,
some_connection12 = 0,
some_connection13 = 0,
some_connection14 = 1,
cl=0

cl==0

input!

some_connection1 = 0,
some_connection2 = 0,
some_connection3 = 0,
some_connection4 = 0,
some_connection5 = 0,
some_connection6 = 0,
some_connection7 = 0,
some_connection8 = 1,
GPIO_OUT = 0,
LTRIP_EN_N = 1,
MCU_LT_ON = 1,
FPGA2_LT_ON = 0,
LT_RELAY_FB = 1,
some_connection9 = 1,
some_connection10 = 0,
some_connection12 = 0,
some_connection13 = 0,
some_connection14 = 1,
cl=0

Fig. 21. TestcaseIndirect8 in timed automata.

74

Table 14. Model-based testing results

Test case Verdict

TestcaseInternalTester1 passed
TestcaseInternalLtrTsSq1 passed
TestcaseInternalLtrTsSq2 passed
TestcaseInternalLtrTsSq3 passed
TestcaseInternalLtrTsSq4 passed
TestcaseInternalLtrTsSq5 passed
TestcaseInternalLtrTsSq6 passed
TestcaseInternalLtrTsSq7 passed
TestcaseInternalLtrTsSq8 passed
TestcaseInternalLtrTsSq9 passed
TestcaseInternalLtrTsSq10 passed
TestcaseInternalLtrTsSq11 passed
TestcaseInternalLtrTsSq12 passed
TestcaseInternalLtrTsSq13 passed
TestcaseInternalLtrTsSq14 passed
TestcaseInternalLtrTsSq15 passed
TestcaseInternalLtrTsSq16 passed
TestcaseInternalLtrTsSq17 passed
TestcaseInternalLtrTsSq18 passed
TestcaseInternalLtrTsSq19 passed
TestcaseInternalController1 passed
TestcaseInternalLtrInt1 passed
TestcaseInternaldcu2 line trip1 passed
TestcaseInternaldcu2 line trip2 passed
TestcaseInternaldcu2 line trip3 passed
TestcaseInternaldcu2 line trip4 passed
TestcaseInternaldcu2 line trip5 passed
TestcaseInternaldcu2 line trip6 passed
TestcaseInternaldcu2 line trip7 passed
TestcaseInternaldcu2 line trip8 passed
TestcaseInternaldcu2 line trip9 passed
TestcaseInternaldcu2 line trip10 passed
TestcaseInternaldcu2 line trip11 passed
TestcaseInternaldcu2 line trip12 passed
TestcaseDirect1 passed
TestcaseDirect2 passed
TestcaseDirect3 passed
TestcaseDirect4 passed
TestcaseDirect5 passed
TestcaseDirect6 passed
TestcaseIndirect1 passed
TestcaseIndirect2 passed
TestcaseIndirect3 passed
TestcaseIndirect4 passed
TestcaseIndirect5 passed
TestcaseIndirect6 passed
TestcaseIndirect7 passed
TestcaseIndirect8 passed
TestcaseIndirect9 passed
TestcaseIndirect10 passed
TestcaseIndirect11 passed
TestcaseIndirect12 passed
TestcaseIndirect13 passed
TestcaseIndirect14 passed
TestcaseIndirect15 passed
TestcaseIndirect16 passed
TestcaseIndirect17 passed

75

11 Selective regression verification

Given a model M , and possibly an implementation of the model IMPL, for
which a verification suite V S of verification sequences has been generated and
executed on M as described in Section 9, and on IMPL as described in Sec-
tion 10, it is likely that M eventually is modified into another version M ′, which
later may be modified into another version M ′′, and so forth. A conventional ap-
proach to regression verification would be to ensure that a modification has not
introduced faults in the model M ′ and has not violated the conformance with
the implementation IMPL by (1) re-executing all “old” but still valid verifica-
tion sequences V S′old ⊆ V S on M ′ and IMPL, and, if the modification includes
an added functionality, behavior, or property, (2) generate a new verification
suite V S′new that covers the added part(s) and execute it. A modification cor-
responds to the set of expressions (vertices) and flows (arcs) that are different
among the models, i.e., expressions that exist in one version but not in the other.
Re-execution of all valid verification sequences is inefficient if the modification
does not affect the complete architecture. Moreover, determining which ones
that still are valid and new sequences that are necessary to cover new parts is
difficult. The problem is that the effect of a modification on the remaining archi-
tecture is complex to manually trace. In order to perform regression verification
efficiently, the framework includes a technique that selectively re-executes only
those verification sequences that are affected by the modification and generates
new verification sequences that only cover added parts.

The technique uses the concept of specification slicing [23] through archi-
tecture dependence graphs (ADGs), to exactly identify the parts of a modified
AADL model that directly or indirectly are affected by the modification and
must be covered by verification sequences in the regression verification process.
The concept of slicing is to remove statements that do not have an effect on and
are not affected by the value of a variable at some statement. ADGs provide
these dependencies such that causality can be precisely traced. The approach
is to apply this idea to variables of the changed or added part such that other
parts of the model which behavior now might behave incorrectly are identified
for regression verification.

The first step is to determine what expressions, or flows to an expression,
that have been removed or changed or added. This is simply done by comparing
AFG′ of M ′ with AFG of M to determine the set of removed vertices and arcs
AFG\AFG′ and the set of added or changed vertices and arcs AFG′\AFG.
V S′old is thereby easily computed: any vs ∈ V S that covers a vertex or arc in
(AFG′\AFG) ∪ (AFG\AFG′) is no longer valid. Invalid verification sequences
are discarded in the regression verification process if the corresponding archi-
tectural paths are removed by the modification. If the paths still exist, the ver-
ification sequences are updated according to the modification to become valid.
Nevertheless, valid verification sequences that do not cover the parts that are af-
fected by the modification are unnecessary to re-execute on M ′. Affected vertices
V ′aff are determined through forward-slicing of the ADG′. The ADG′ is gener-
ated from the AFG′ according to Section 11.1. The regression verification suite

76

V S′old is subsequently efficiently executed by only selecting verification sequences
that cover vertices in V ′aff .

The set of affected vertices in relation to old verification sequences may be
further trimmed by means of the inter-observer coverage data (Table 12) from
the preceding verification cycle. Under the assumption that all observers were
satisfied, satisfiability (reachability) independence between observers can be de-
duced from the data, which in turn may provide an even more precise slice with
respect to the regression verification process. Meanwhile a marked intersection
of two observers imply that the trace that satisfied the observer on the vertical
axis also satisfied the observer on the horizontal axis, the absence of a cover-
age mark imply that the vertical axis observer is satisfiable independently from
the satisfaction of the horizontal axis observer. Note that the contrary does not
(necessarily) hold, i.e. that a marked intersection imply that the satisfiability of
the former is dependent on the latter, since the data only represents one out of
possibly several traces. Provided that the data set is generated from full path
coverage, a previously satisfied observer which satisfiability is independent to
each observer that covers the modification will also be satisfiable in the regres-
sion verification process. Thus, the vertices in the corresponding observed path
may be reliably removed from the slice.

Finally, changed and added vertices and arcs must be covered with new verifi-
cation sequences (unless updates of old verification sequences maintain full cover-
age). V S′new is generated by applying the verification criteria to the changed and
added set AFG′\AFG, from which the possible new paths and corresponding
set of verification sequences are extracted. If yet another version M ′′ is devel-
oped, the regression verification process is repeated upon the verification history
V S′ = V S′old ∪ V S′new, instead of V S.

11.1 Generation of architecture dependence graphs

Let EXPR be the set of possible expressions described by the abstract syn-
tax. The slicing algorithm we define builds on the general definition of program
slicing, originally defined by Weiser [24]:

Definition 8 A backward slice of an AADL model with respect to slicing cri-
terion CRI = 〈expr, var〉, where expr ∈ EXPR and var is a variable or data
component defined or used at expr, consists of all control flow and data flow de-
termining expressions of the model that the value of var at expr possibly depend
on. A forward AADL slice with respect to slicing criterion CRI = 〈expr, var〉
consists of all control flow and data flow determining expressions of the model
that possibly are dependent on the value of var at expr.

Consequently, an architecture flow graph provides the necessary information
basis for conducting slicing of AADL models. There exist two types of depen-
dencies: control dependence and data dependence.

Definition 9 An AADL expression expr1 ∈ EXPR is control dependent on an
AADL expression expr2 ∈ EXPR if expr2 possibly decides whether expr1 will

77

be executed or not. expr1 is data dependent on expr2 if expr2 defines a data
variable possibly used by an execution of expr1.

Data dependencies are therefore synonymous to data flows in an AFG. Con-
trol dependencies, on the other hand, are determined by performing post-
domination analysis of the component-internal control flows of the AFG. As-
sume that vx, vy, and vz are non-actual in/out and non-formal in/out vertices
and contained within the same component. A vertex vx is post-dominated by a
vertex vy if every path P = v1 →c v2 →c · · · →c vn from vx to the EXIT vertex
(i.e. v1 = vx and vn is the exit vertex) includes vy. Control dependency is then
defined as:

Definition 10 A vertex vy is control dependent on a vertex vx iff 1) vx is an
ENTRY vertex and vy is not nested within any loop or conditional vertex, or
2) there exists a path P = v1 →c v2 →c · · · →c vn from vx to vy such that any
vertex vz in P is post-dominated by vy, and vx is not post-dominated by vy (vx
must be a control expression).

An algorithm to generate control dependencies based on this definition can
be found in [25]. With respect to component interactions, interaction-based con-
trol flows (on the form v →c−inter v

′) and calls (on the form v →call v
′) are

themselves control dependencies since the source vertex initiates the execution
of the target vertex. The union of data dependencies and control dependen-
cies form the architecture dependence graph, which formally is a directed graph
ADG = 〈V,A〉 where the set of vertices is equal to the AFG and the set of arcs
represent control and data dependencies. An arc v → v′ of an ADG denotes that
v′ is control or data dependent on v. The ADG of LTRIS with data dependencies
excluded is partly presented in Figure 22 and 23.

By means of an ADG, a forward slice fSlice(Cri) with respect to a slicing
criterion Cri = 〈v, var〉, where v is a vertex and var ∈ v is a variable or data
component defined or used at v, consists of all vertices that are forward-reachable
(through arcs) from v. The set of affected vertices V ′aff ⊆ V ′ is thereby deter-
mined by, for each vx ∈ AFG\AFG′∪AFG\AFG′, and for each defined or used
variable vary ∈ vx, compute fSlice(〈vx, vary〉) of ADG′.

78

Fig. 22. Control dependencies of dcu2 line trip.Impl.

enable

fb_ne := btemp

ENTRY
dcu2_line_trip.Impl

GPIO_OUT:=
GPIO_OUT and not

LTRIP_EN_N

act

GPIO_OUT:=
GPIO_OUT or
LTRIP_EN_N

temp := temp or
MCU_LT_ON

FPGA_LTRCR :=
temp

fpga2_on := temp
and FPGA2_LT_ON

fb := temp and
LT_RELAY_FB

enable and act and
fpga2_on

btemp := true btemp := true

fb

EXIT
dcu2_line_tri

p.Impl

enable := enable_in

act := act_in

fb_out := fb

fpga2_on_out :=
fpga2_on

fb_ne_out := fb_ne

btemp = false

temp = false

not fb

Inter-component control dependence

Control dependence

Interaction-based control dependence

Fig. 23. Control dependencies of LtrTsSq.Impl.

Inter-component control dependence

Control dependence

L_EnLtrSv
and C_LtrTs

ENTRY LtrTsSq.Impl

B_OpLtr := true

(not L_EnLtrSv) and
C_LtrTs

not S_LtrCd

B_CdLtr := true

B_LtrFl

Dy := true

S_LtrCd and Dy

B_OpLtr := true

B_LtrFl

not S_LtrCd

A_LtrTs := true

B_LtrFl

S_DCUNtRdy

EXIT
LtrTsSq.Impl

S_LtrOp :=
S_LtrOp_in

S_DCUNtRdy :=
S_DCUNtRdy_in

L_EnLtrSv :=
L_EnLtrSv_in

S_LtrCd :=
S_LtrCd_in

B_LtrFl :=
B_LtrFl_in

C_LtrTs :=
C_LtrTs_in

B_OpLtr_out :=
B_OpLtr

B_CdLtr_out :=
B_CdLtr

NX_LtrSaSq_out :=
NX_LtrSaSq

A_LtrTs_out :=
A_LtrTs

A_LtrOpVd_out :=
A_LtrOpVd State_LtrTsSq

= Start

state_LtrTsSq
= OpenLtr1

state_LtrTsSq
= CloseLtr

state_LtrTsSq
= OpenLtr2

state_LtrTsSq
= Ready

state_LtrTsSq :=
OpenLtr1

state_LtrTsSq :=
Ready

state_LtrTsSq :=
CloseLtr

state_LtrTsSq :=
Start

state_LtrTsSq :=
OpenLtr2

state_LtrTsSq :=
Start

state_LtrTsSq :=
Ready

state_LtrTsSq :=
Start

state_LtrTsSq :=
Start

Internal_connection1
:= Dy

Dy :=
internal_connection1

Internal_connection2
:= state

State :=
internal_connection2

Interaction-based control dependence

NX_LtrSaSq := 0

NX_LtrSaSq := 1

NX_LtrSaSq = 2

NX_LtrSaSq := 3

NX_LtrSaSq := 4

79

12 Case study stage two: validation through fault
injections

In this section, we present the results of applying the framework on mutated
versions of the LTRIS AADL model, each of which contains an injected fault.
By means of the original LTRIS model and the model checking and model-based
testing activities performed in the first stage, each fault injection corresponds
to a modification upon the selective verification technique can be applied. The
expectation is that the result of regression verification is at least one unsatisfied
selected observer per modification. According to the study design, the selec-
tive approach is contrasted with a re-run all approach to assess the selection
effectiveness and efficiency. The expectation is that all non-selected verification
sequences are satisfied when executed against the mutated version since all ver-
ification sequences that possibly reveals a fault in the modified model should
be selected. In other words, the number of unsatisfied observers in the selective
regression verification suite should be equal to a re-run all regression verification
suite (number of unsatisfied selected observers is equal to number of unsatisfied
selected and non-selected observers). Furthermore, the total resource consump-
tion of selective regression verification, including the required overhead expense
of conducting the selection, is expected to not exceed the resource consumption
of a re-run all approach to be efficient. Finally, each mutated version is treated
as an implementation to validate the effectiveness of the test suite generated in
the first stage of the case study. The expectation is at least one failed test case
for each tested mutation.

12.1 Injected faults

In Table 15, the chosen fault injections that cover all considered fault types are
listed. A total of seven mutated versions of the original LTRIS model are cre-
ated by seven different fault injections. The first fault injection is a negation of
a transition guard in the test sequence subprogram component. The negation
changes the predicate condition such that the transition is fired if the relay is
closed rather than opened. In order to reach this guard, a transition which action
sends an opening order to the relay-controller thread must previously have been
executed. However, the controller thread prioritizes an opening order over a clos-
ing order. Thus, the negation renders the guard unachievable. The second fault
injection is a changed value assignment to the variable that determines the test
sequence. The changed, incorrect, value simply makes the test to jump one step
back in the sequence rather than forward, where finalization of the test sequence
cannot be performed. The third fault injection is the removal of connection3.
The connection is crucial for the test sequence as it transmits feedback data of
the relay. The fourth fault injection is the removal of a parameter connection
to the subprogram that controls the relay. Without the connection, larger parts
of the controlling behavior cannot be reached or behaves incorrectly. The fifth
fault injection is a change of the latency constraint of connection2, where the
latency window is changed to a minimum of 1 ms and a maximum of 2 ms. Due

80

to scheduling properties of the system, the minimum latency constraint cannot
be met as Controller will dispatch simultaneously to the completion of Tester.
The sixth fault injection is a change of the period of Controller, which still ren-
ders the system schedulable but contradicts latency properties of connections.
The last fault injection is an added assignment (transition action) in Tester to
a shared data component. Since the data component is not unlocked until the
completion of Tester, the controller thread, which uses the same data component
and which deadline will be met prior to the unlocking of it, will be subjected to
starvation.

Table 15. Fault injections

Fault
injec-
tion

Original model Mutant model Fault location Fault
type(s)

1 OpenLtr2 [0]-[not S LtrCd]->Return { A LtrTs
:= true, state LtrTsSq := Ready} ;

OpenLtr2 [0]-[S LtrCd]->Return { A LtrTs :=
true, state LtrTsSq := Ready} ;

transition guard of
LtrTsSq.Impl

1

2 CloseLtr [0]-[S LtrCd and Dy]->Return
{B OpLtr := true; state LtrTsSq := OpenLtr2};

CloseLtr [0]-[S LtrCd and Dy]->Return
{B OpLtr := true; state LtrTsSq := OpenLtr1};

transition action of
LtrTsSq.Impl

2

3 connection3: port relayCon-
troller.DHWOMG S LtrCd -
>relayTester.DHWOMG S LtrCd{Timing
=>Immediate; Latency =>0ms .. 2ms;};

port connection dec-
laration of LineTrip-
Software.Impl

3

4 parameter DHSSMG B LtrHwOpFl -
>dcu2 line trip.enable;

parameter connec-
tion declaration of
Controller.Impl

3

5 connection2: port relayTester.DHSSMG B CdLtr
->relayController.DHSSMG B CdLtr{Timing
=>Immediate; Latency =>0ms .. 1ms;};

connection2: port relayTester.DHSSMG B CdLtr
->relayController.DHSSMG B CdLtr{Timing
=>Immediate; Latency =>1ms .. 2ms;};

connection property
of LineTripSoft-
ware.Impl

4,6

6 Period =>4 ms; Period =>8 ms; scheduling property
of Controller

6,4

7 state0 -[on dispatch]->state1 { LtrTsSq(...)}; state0 -[on dispatch]->state1 {MCU LT ON :=
true; LtrTsSq(...)};

transition action of
Tester.Impl

5,7

12.2 Results

The results of the selection process of each fault injection are presented in Ta-
ble 47–53 in Appendix C. Illustration of independent observers extraction for
each modification is presented in Table 54–59 in Appendix D. The slices with
respect to each modification are presented in Fig. 24–29 in Appendix E. With
respect to these results, the results of selective regression verification in conjunc-
tion with re-run all regression verification of each fault injection are presented in
Table 16–22. Descriptive statistics for time consumption, memory consumption,
and trace size are listen in Table 23– 25. The overhead in terms of selecting

81

verification sequences through ADG generation and slicing is included for each
change (fault injection). Finally, the results of running the test suite generated
in the first stage of the case study on each mutated version of the model are
presented in Table 26.

82

Table 16. Fault injection 1: model checking results (regression verification selections
bold)

Observer Verdict Time cons. (sec) Memory cons. (MB) Trace size (KB)

InternalTester1 satisfied 1 39 144
InternalLtrTsSq1 satisfied 1 38 35
InternalLtrTsSq2 satisfied 1 40 35
InternalLtrTsSq3 satisfied 1 42 472
InternalLtrTsSq4 satisfied 9 69 4066
InternalLtrTsSq5 satisfied 12 149 4435
InternalLtrTsSq6 satisfied 12 150 4435
InternalLtrTsSq7 satisfied 19 251 4883
InternalLtrTsSq8 updated not satisfied 36 589
InternalLtrTsSq9 satisfied 1 37 471
InternalLtrTsSq10 satisfied 1 38 471
InternalLtrTsSq11 satisfied 1 39 471
InternalLtrTsSq12 satisfied 2 61 913
InternalLtrTsSq13 satisfied 11 151 4434
InternalLtrTsSq14 satisfied 18 252 4881
InternalLtrTsSq15 satisfied 18 225 4881
InternalLtrTsSq16 satisfied 23 350 5329
InternalLtrTsSq17 not satisfied 35 587
InternalLtrTsSq18 satisfied 2 63 913
InternalLtrTsSq19 satisfied 11 147 4434
InternalController1 satisfied 1 38 31
InternalLtrInt1 satisfied 1 40 22
Internaldcu2 line trip1 satisfied 1 44 607
Internaldcu2 line trip2 satisfied 1 44 607
Internaldcu2 line trip3 satisfied 1 45 607
Internaldcu2 line trip4 satisfied 1 46 607
Internaldcu2 line trip5 satisfied 1 45 29
Internaldcu2 line trip6 satisfied 1 47 607
Internaldcu2 line trip7 satisfied 1 47 607
Internaldcu2 line trip8 satisfied 1 47 29
Internaldcu2 line trip9 satisfied 1 47 58
Internaldcu2 line trip10 satisfied 1 48 438
Internaldcu2 line trip11 satisfied 1 48 438
Internaldcu2 line trip12 satisfied 1 48 58
Direct1 satisfied 1 49 33
Direct2 satisfied 1 49 8
Direct3 satisfied 1 49 23
Direct4 satisfied 1 50 150
Direct5 satisfied 1 50 150
Direct6 satisfied 1 52 454
Indirect1 satisfied 1 53 175
Indirect2 satisfied 1 53 175
Indirect3 satisfied 13 160 4699
Indirect4 satisfied 13 166 4699
Indirect5 satisfied 9 89 4237
Indirect6 satisfied 9 88 4237
Indirect7 satisfied 9 89 4237
Indirect8 satisfied 9 89 4237
Indirect9 satisfied 9 90 4237
Indirect10 satisfied 9 91 4237
Indirect11 satisfied 12 117 4223
Indirect12 satisfied 12 116 4223
Indirect13 satisfied 13 192 4686
Indirect14 satisfied 13 193 4686
Indirect15 satisfied 13 190 4686
Indirect16 updated not satisfied 62 1029
Indirect17 updated not satisfied 62 1030

83

Table 17. Fault injection 2: model checking results (regression verification selections
bold)

Observer Verdict Time cons. (sec) Memory cons. (MB) Trace size (KB)

InternalTester1 satisfied 1 36 144
InternalLtrTsSq1 satisfied 1 36 35
InternalLtrTsSq2 satisfied 1 37 35
InternalLtrTsSq3 satisfied 1 40 472
InternalLtrTsSq4 satisfied 8 72 4066
InternalLtrTsSq5 satisfied 11 151 4435
InternalLtrTsSq6 updated satisfied 11 152 4435
InternalLtrTsSq7 not satisfied 35 569
InternalLtrTsSq8 not satisfied 35 570
InternalLtrTsSq9 satisfied 1 49 472
InternalLtrTsSq10 satisfied 1 50 471
InternalLtrTsSq11 satisfied 1 51 471
InternalLtrTsSq12 satisfied 2 72 913
InternalLtrTsSq13 satisfied 11 159 4434
InternalLtrTsSq14 satisfied 18 258 4881
InternalLtrTsSq15 updated not satisfied 34 574
InternalLtrTsSq16 not satisfied 34 575
InternalLtrTsSq17 not satisfied 34 576
InternalLtrTsSq18 satisfied 2 75 913
InternalLtrTsSq19 satisfied 11 164 4434
InternalController1 satisfied 1 55 31
InternalLtrInt1 satisfied 1 55 22
Internaldcu2 line trip1 satisfied 1 57 607
Internaldcu2 line trip2 satisfied 1 58 607
Internaldcu2 line trip3 satisfied 1 60 607
Internaldcu2 line trip4 satisfied 1 60 607
Internaldcu2 line trip5 satisfied 1 60 29
Internaldcu2 line trip6 satisfied 1 61 607
Internaldcu2 line trip7 satisfied 1 62 607
Internaldcu2 line trip8 satisfied 1 38 29
Internaldcu2 line trip9 satisfied 1 39 58
Internaldcu2 line trip10 satisfied 1 41 438
Internaldcu2 line trip11 satisfied 1 42 438
Internaldcu2 line trip12 satisfied 1 42 58
Direct1 satisfied 1 42 33
Direct2 satisfied 1 42 8
Direct3 satisfied 1 43 23
Direct4 satisfied 1 43 150
Direct5 satisfied 1 44 150
Direct6 satisfied 1 46 454
Indirect1 satisfied 1 47 175
Indirect2 satisfied 1 47 175
Indirect3 updated satisfied 12 161 4699
Indirect4 updated satisfied 11 149 4699
Indirect5 satisfied 8 71 4237
Indirect6 satisfied 8 72 4237
Indirect7 satisfied 8 72 4237
Indirect8 satisfied 8 73 4237
Indirect9 satisfied 8 74 4237
Indirect10 satisfied 8 74 4237
Indirect11 satisfied 12 95 4223
Indirect12 satisfied 12 96 4223
Indirect13 updated satisfied 13 173 4686
Indirect14 updated satisfied 13 173 4686
Indirect15 updated satisfied 13 173 4686
Indirect16 not satisfied 59 960
Indirect17 not satisfied 59 962

84

Table 18. Fault injection 3: model checking results (regression verification selections
bold)

Observer Verdict Time cons. (sec) Memory cons. (MB) Trace size (KB)

InternalTester1 satisfied 1 38 144
InternalLtrTsSq1 satisfied 1 39 35
InternalLtrTsSq2 satisfied 1 40 35
InternalLtrTsSq3 satisfied 1 42 471
InternalLtrTsSq4 satisfied 8 68 4054
InternalLtrTsSq5 satisfied 11 130 4422
InternalLtrTsSq6 not satisfied 30 468
InternalLtrTsSq7 not satisfied 30 468
InternalLtrTsSq8 not satisfied 30 469
InternalLtrTsSq9 satisfied 1 44 471
InternalLtrTsSq10 satisfied 1 45 470
InternalLtrTsSq11 satisfied 1 46 470
InternalLtrTsSq12 satisfied 2 67 910
InternalLtrTsSq13 satisfied 11 136 4421
InternalLtrTsSq14 satisfied 16 214 4867
InternalLtrTsSq15 not satisfied 30 474
InternalLtrTsSq16 not satisfied 30 475
InternalLtrTsSq17 not satisfied 30 476
InternalLtrTsSq18 satisfied 2 72 910
InternalLtrTsSq19 not satisfied 30 477
InternalController1 satisfied 1 52 31
InternalLtrInt1 satisfied 1 52 22
Internaldcu2 line trip1 satisfied 1 57 605
Internaldcu2 line trip2 satisfied 1 58 605
Internaldcu2 line trip3 satisfied 1 59 605
Internaldcu2 line trip4 satisfied 1 59 605
Internaldcu2 line trip5 satisfied 1 59 29
Internaldcu2 line trip6 satisfied 1 60 606
Internaldcu2 line trip7 satisfied 1 60 606
Internaldcu2 line trip8 satisfied 1 61 29
Internaldcu2 line trip9 satisfied 1 61 58
Internaldcu2 line trip10 satisfied 1 61 437
Internaldcu2 line trip11 satisfied 1 62 437
Internaldcu2 line trip12 satisfied 1 62 58
Direct1 satisfied 1 62 33
Direct2 satisfied 1 63 8
Direct3 satisfied 1 63 23
Direct4 satisfied 1 63 149
Direct5 satisfied 1 64 149
Direct6 not valid
Indirect1 satisfied 1 64 174
Indirect2 satisfied 1 64 174
Indirect3 not satisfied 30 491
Indirect4 not satisfied 30 491
Indirect5 satisfied 8 97 4225
Indirect6 satisfied 8 97 4225
Indirect7 satisfied 8 98 4225
Indirect8 satisfied 8 99 4225
Indirect9 satisfied 8 100 4225
Indirect10 satisfied 8 100 4225

85

Table 19. Fault injection 4: model checking results (regression verification selections
bold)

Observer Verdict Time cons. (sec) Memory cons. (MB) Trace size (KB)

InternalTester1 satisfied 1 47 144
InternalLtrTsSq1 satisfied 1 47 35
InternalLtrTsSq2 satisfied 1 47 35
InternalLtrTsSq3 satisfied 1 49 471
InternalLtrTsSq4 satisfied 7 67 4054
InternalLtrTsSq5 satisfied 10 109 4422
InternalLtrTsSq6 satisfied 10 110 4422
InternalLtrTsSq7 satisfied 15 172 4869
InternalLtrTsSq8 satisfied 15 173 4869
InternalLtrTsSq9 satisfied 1 44 471
InternalLtrTsSq10 satisfied 1 44 471
InternalLtrTsSq11 satisfied 1 45 470
InternalLtrTsSq12 satisfied 1 50 910
InternalLtrTsSq13 satisfied 10 114 4421
InternalLtrTsSq14 satisfied 15 176 4867
InternalLtrTsSq15 satisfied 15 177 4867
InternalLtrTsSq16 satisfied 20 246 5314
InternalLtrTsSq17 satisfied 20 247 5314
InternalLtrTsSq18 satisfied 1 54 910
InternalLtrTsSq19 satisfied 10 121 4421
InternalController1 satisfied 1 54 31
InternalLtrInt1 satisfied 1 54 22
Internaldcu2 line trip1 not satisfied 53 744
Internaldcu2 line trip2 not satisfied 53 745
Internaldcu2 line trip3 not satisfied 53 745
Internaldcu2 line trip4 not satisfied 53 746
Internaldcu2 line trip5 not satisfied 53 748
Internaldcu2 line trip6 satisfied 1 61 606
Internaldcu2 line trip7 satisfied 1 62 606
Internaldcu2 line trip8 satisfied 1 62 29
Internaldcu2 line trip9 not satisfied 53 767
Internaldcu2 line trip10 not satisfied 53 767
Internaldcu2 line trip11 not satisfied 53 768
Internaldcu2 line trip12 satisfied 1 65 58
Direct1 satisfied 1 65 33
Direct2 satisfied 1 65 8
Direct3 updated satisfied 1 66 23
Direct4 satisfied 1 66 149
Direct5 satisfied 1 66 149
Direct6 satisfied 1 67 452
Indirect1 not satisfied 51 776
Indirect2 satisfied 1 70 174
Indirect3 not satisfied 90 1135
Indirect4 satisfied 11 138 4686
Indirect5 not satisfied 51 776
Indirect6 not satisfied 51 777
Indirect7 not satisfied 51 778
Indirect8 not satisfied 51 778
Indirect9 satisfied 8 104 4225
Indirect10 satisfied 7 103 4225
Indirect11 not satisfied 51 780
Indirect12 satisfied 8 102 4211
Indirect13 not satisfied 52 781
Indirect14 not satisfied 52 781
Indirect15 satisfied 11 148 4676
Indirect16 not satisfied 51 782
Indirect17 satisfied 15 211 5132

86

Table 20. Fault injection 5: model checking results (regression verification selections
bold)

Observer Verdict Time cons. (sec) Memory cons. (MB) Trace size (KB)

InternalTester1 satisfied 1 35 144
InternalLtrTsSq1 satisfied 1 34 35
InternalLtrTsSq2 satisfied 1 36 35
InternalLtrTsSq3 satisfied 1 39 472
InternalLtrTsSq4 satisfied 8 79 4066
InternalLtrTsSq5 satisfied 11 149 4435
InternalLtrTsSq6 satisfied 11 149 4435
InternalLtrTsSq7 satisfied 18 251 4883
InternalLtrTsSq8 satisfied 18 251 4883
InternalLtrTsSq9 satisfied 1 45 472
InternalLtrTsSq10 satisfied 1 45 471
InternalLtrTsSq11 satisfied 1 46 471
InternalLtrTsSq12 satisfied 1 66 913
InternalLtrTsSq13 satisfied 11 150 4434
InternalLtrTsSq14 satisfied 18 266 4881
InternalLtrTsSq15 satisfied 18 256 4881
InternalLtrTsSq16 satisfied 24 380 5329
InternalLtrTsSq17 satisfied 24 380 5329
InternalLtrTsSq18 satisfied 2 74 913
InternalLtrTsSq19 satisfied 11 162 4434
InternalController1 satisfied 1 53 31
InternalLtrInt1 satisfied 1 54 22
Internaldcu2 line trip1 satisfied 1 55 607
Internaldcu2 line trip2 satisfied 1 56 607
Internaldcu2 line trip3 satisfied 1 57 607
Internaldcu2 line trip4 satisfied 1 57 607
Internaldcu2 line trip5 satisfied 1 58 29
Internaldcu2 line trip6 satisfied 1 60 607
Internaldcu2 line trip7 satisfied 1 60 607
Internaldcu2 line trip8 satisfied 1 60 29
Internaldcu2 line trip9 satisfied 1 61 58
Internaldcu2 line trip10 satisfied 1 61 438
Internaldcu2 line trip11 satisfied 1 61 438
Internaldcu2 line trip12 satisfied 1 62 58
Direct1 satisfied 1 62 33
Direct2 satisfied 1 62 8
Direct3 satisfied 1 62 23
Direct4 satisfied 1 63 150
Direct5 updated not satisfied 1 63
Direct6 satisfied 1 65 454
Indirect1 satisfied 1 65 175
Indirect2 satisfied 1 65 175
Indirect3 satisfied 12 175 4699
Indirect4 satisfied 12 174 4699
Indirect5 updated not satisfied 9 91
Indirect6 updated not satisfied 9 90
Indirect7 updated not satisfied 9 92
Indirect8 updated not satisfied 9 92
Indirect9 updated not satisfied 9 93
Indirect10 updated not satisfied 9 94
Indirect11 satisfied 11 120 4223
Indirect12 satisfied 11 122 4223
Indirect13 satisfied 13 197 4686
Indirect14 satisfied 13 198 4686
Indirect15 satisfied 13 198 4686
Indirect16 satisfied 30 440 5149
Indirect17 satisfied 30 441 5146

87

Table 21. Fault injection 6: model checking results (regression verification selections
bold)

Observer Verdict Time cons. (sec) Memory cons. (MB) Trace size (KB)

InternalTester1 satisfied 1 40 65
InternalLtrTsSq1 satisfied 1 40 35
InternalLtrTsSq2 satisfied 1 41 35
InternalLtrTsSq3 satisfied 1 44 258
InternalLtrTsSq4 satisfied 6 46 2079
InternalLtrTsSq5 satisfied 8 86 2267
InternalLtrTsSq6 satisfied 8 87 2267
InternalLtrTsSq7 satisfied 11 109 2495
InternalLtrTsSq8 satisfied 11 110 2495
InternalLtrTsSq9 satisfied 1 41 258
InternalLtrTsSq10 satisfied 1 41 257
InternalLtrTsSq11 satisfied 1 41 257
InternalLtrTsSq12 satisfied 2 46 482
InternalLtrTsSq13 satisfied 8 89 2265
InternalLtrTsSq14 satisfied 11 114 2493
InternalLtrTsSq15 satisfied 11 114 2493
InternalLtrTsSq16 satisfied 14 158 2721
InternalLtrTsSq17 satisfied 14 159 2721
InternalLtrTsSq18 satisfied 2 51 482
InternalLtrTsSq19 satisfied 8 94 2266
InternalController1 satisfied 1 48 31
InternalLtrInt1 satisfied 1 49 22
Internaldcu2 line trip1 satisfied 1 50 314
Internaldcu2 line trip2 satisfied 1 51 314
Internaldcu2 line trip3 satisfied 1 51 314
Internaldcu2 line trip4 satisfied 1 52 314
Internaldcu2 line trip5 satisfied 1 52 29
Internaldcu2 line trip6 satisfied 1 54 314
Internaldcu2 line trip7 satisfied 1 53 314
Internaldcu2 line trip8 satisfied 1 54 29
Internaldcu2 line trip9 satisfied 1 54 58
Internaldcu2 line trip10 satisfied 1 54 171
Internaldcu2 line trip11 satisfied 1 54 171
Internaldcu2 line trip12 satisfied 1 55 58
Direct1 satisfied 1 55 33
Direct2 satisfied 1 55 8
Direct3 satisfied 1 56 23
Direct4 not satisfied 1 57
Direct5 not satisfied 1 57
Direct6 not satisfied 1 62
Indirect1 not satisfied 4 61
Indirect2 not satisfied 4 61
Indirect3 not satisfied 18 231
Indirect4 not satisfied 18 231
Indirect5 not satisfied 8 67
Indirect6 not satisfied 8 68
Indirect7 not satisfied 8 68
Indirect8 not satisfied 8 69
Indirect9 not satisfied 8 69
Indirect10 not satisfied 8 70
Indirect11 not satisfied 43 664
Indirect12 not satisfied 43 665
Indirect13 not satisfied 30 409
Indirect14 not satisfied 30 409
Indirect15 not satisfied 27 369
Indirect16 not satisfied 43 667
Indirect17 not satisfied 43 668

88

Table 22. Fault injection 7: model checking results (regression verification selections
bold)

Observer Verdict Time cons. (sec) Memory cons. (MB) Trace size (KB)

InternalTester1 updated satisfied 1 42 42
InternalLtrTsSq1 satisfied 1 42 35
InternalLtrTsSq2 satisfied 1 43 35
InternalLtrTsSq3 not satisfied 1 44
InternalLtrTsSq4 not satisfied 1 44
InternalLtrTsSq5 not satisfied 1 45
InternalLtrTsSq6 not satisfied 1 45
InternalLtrTsSq7 not satisfied 1 46
InternalLtrTsSq8 not satisfied 1 46
InternalLtrTsSq9 not satisfied 1 47
InternalLtrTsSq10 not satisfied 1 48
InternalLtrTsSq11 not satisfied 1 48
InternalLtrTsSq12 not satisfied 1 49
InternalLtrTsSq13 not satisfied 1 49
InternalLtrTsSq14 not satisfied 1 50
InternalLtrTsSq15 not satisfied 1 50
InternalLtrTsSq16 not satisfied 1 51
InternalLtrTsSq17 not satisfied 1 52
InternalLtrTsSq18 not satisfied 1 52
InternalLtrTsSq19 not satisfied 1 53
InternalController1 satisfied 1 53 31
InternalLtrInt1 satisfied 1 54 22
Internaldcu2 line trip1 satisfied 1 59 34
Internaldcu2 line trip2 satisfied 1 39 34
Internaldcu2 line trip3 satisfied 1 40 34
Internaldcu2 line trip4 satisfied 1 40 34
Internaldcu2 line trip5 satisfied 1 39 34
Internaldcu2 line trip6 satisfied 1 41 34
Internaldcu2 line trip7 satisfied 1 41 34
Internaldcu2 line trip8 satisfied 1 41 34
Internaldcu2 line trip9 not satisfied 1 40
Internaldcu2 line trip10 not satisfied 1 41
Internaldcu2 line trip11 not satisfied 1 41
Internaldcu2 line trip12 not satisfied 1 41
Direct1 satisfied 1 40 33
Direct2 satisfied 1 40 8
Direct3 satisfied 1 41 23
Direct4 not satisfied 1 41
Direct5 not satisfied 1 41
Direct6 not satisfied 1 41
Direct7 not satisfied 1 41
Indirect1 not satisfied 1 40
Indirect2 not satisfied 1 40
Indirect3 not satisfied 1 40
Indirect4 not satisfied 1 41
Indirect5 not satisfied 1 41
Indirect6 not satisfied 1 41
Indirect7 not satisfied 1 42
Indirect8 not satisfied 1 42
Indirect9 not satisfied 1 42
Indirect10 not satisfied 1 42
Indirect11 not satisfied 1 42
Indirect12 not satisfied 1 40
Indirect13 not satisfied 1 42
Indirect14 not satisfied 1 41
Indirect15 not satisfied 1 41
Indirect16 not satisfied 1 42
Indirect17 not satisfied 1 42

89

Table 23. Descriptive statistics for model checking – time consumption

Fault injection Method Mean(sec) Median(sec) SD(sec) Min(sec) Max(sec) Sum(sec) N Overhead(sec)

1 all 9 1 13 1 62 504 57 -
1 sel 49 49 15 35 62 195 4 1
2 all 9 1 14 1 59 527 57 -
2 sel 28 34 17 11 59 363 13 1
3 all 8 1 11 1 30 396 49 -
3 sel 15 8 12 1 30 372 25 1
4 all 21 10 24 1 90 1204 57 -
4 sel 35 51 25 1 90 1041 30 1
5 all 7 1 8 1 30 403 57 -
5 sel 10 9 7 1 24 234 24 1
6 all 9 2 12 1 43 492 57 -
6 sel - - - - - - - -
7 all 1 1 0 1 1 58 58 -
7 sel 1 1 0 1 1 50 50 1

Table 24. Descriptive statistics for model checking – memory consumption

Fault injection Method Mean(MB) Median(MB) SD(MB) Min(MB) Max(MB) Sum(MB) N Overhead(MB)

1 all 142 53 205 37 1030 8085 57 -
1 sel 809 809 255 587 1030 3235 4 1
2 all 153 62 215 36 962 8728 57 -
2 sel 444 569 301 149 962 5767 13 1
3 all 145 63 161 38 491 7127 49 -
3 sel 230 100 192 42 491 5744 25 1
4 all 315 114 331 44 1135 17942 57 -
4 sel 512 746 351 61 1135 15366 30 1
5 all 120 65 102 34 441 6832 57 -
5 sel 142 93 102 39 380 3403 24 1
6 all 131 57 170 40 668 7470 57 -
6 sel - - - - - - - -
7 all 44 42 5 39 59 2542 58 -
7 sel 44 42 4 39 59 2189 50 1

90

Table 25. Descriptive statistics for model checking – trace size

Fault injection Method Mean(KB) Median(KB) SD(KB) Min(KB) Max(KB) Sum(KB) N

1 all 2055 607 2103 8 5329 108940 53
1 sel 0 0 0 0 0 0 0
2 all 1877 607 2029 8 4881 93848 50
2 sel 4649 4686 105 4435 4699 27891 6
3 all 1312 471 1774 8 4867 52473 40
3 sel 2926 4225 1860 470 4867 46816 16
4 all 2186 606 2217 8 5314 85252 39
4 sel 2388 2409 2255 23 5132 28651 12
5 all 2078 607 2193 8 5329 103876 50
5 sel 3277 4434 2052 471 5329 55702 17
6 all 843 314 1049 8 2721 31208 37
6 sel 843 314 1049 8 2721 31208 37
7 all 31 34 8 8 42 501 16
7 sel 35 34 3 33 42 279 8

91

Table 26. Model-based testing results (O=passed and X=failed)

Test case/Fault injection 1 2 3 4 5 6 7

TestcaseInternalTester1 O O O O O O X
TestcaseInternalLtrTsSq1 O O O O O O X
TestcaseInternalLtrTsSq2 O O O O O O X
TestcaseInternalLtrTsSq3 O O O O O O X
TestcaseInternalLtrTsSq4 O O O O O O X
TestcaseInternalLtrTsSq5 O O O O O O X
TestcaseInternalLtrTsSq6 O O X O O O X
TestcaseInternalLtrTsSq7 O X X O O O X
TestcaseInternalLtrTsSq8 X X X O O O X
TestcaseInternalLtrTsSq9 O O O O O O X
TestcaseInternalLtrTsSq10 O O O O O O X
TestcaseInternalLtrTsSq11 O O O O O O X
TestcaseInternalLtrTsSq12 O O O O O O X
TestcaseInternalLtrTsSq13 O O X O O O X
TestcaseInternalLtrTsSq14 O O O O O O X
TestcaseInternalLtrTsSq15 X X X O O O X
TestcaseInternalLtrTsSq16 O O O O O O X
TestcaseInternalLtrTsSq17 X X X O O O X
TestcaseInternalLtrTsSq18 O O O O O O X
TestcaseInternalLtrTsSq19 O O X O O O X
TestcaseInternalController1 O O X O O O O
TestcaseInternalLtrInt1 O O O O O O O
TestcaseInternaldcu2 line trip1 O O O X O O O
TestcaseInternaldcu2 line trip2 O O O X O O O
TestcaseInternaldcu2 line trip3 O O O X O O O
TestcaseInternaldcu2 line trip4 O O O X O O O
TestcaseInternaldcu2 line trip5 O O O X O O O
TestcaseInternaldcu2 line trip6 O O O O O O O
TestcaseInternaldcu2 line trip7 O O O O O O O
TestcaseInternaldcu2 line trip8 O O O O O O O
TestcaseInternaldcu2 line trip9 O O O X O O O
TestcaseInternaldcu2 line trip10 O O O O O X X
TestcaseInternaldcu2 line trip11 O O O X O X X
TestcaseInternaldcu2 line trip12 O O O O O O O
TestcaseDirect1 O O O O O O X
TestcaseDirect2 O O O O O O O
TestcaseDirect3 O O O X O O O
TestcaseDirect4 O O O O O O X
TestcaseDirect5 O O O O O O X
TestcaseDirect6 O O O O O O X
TestcaseIndirect1 O O X X O O X
TestcaseIndirect2 O O X O O O X
TestcaseIndirect3 O O X X O O X
TestcaseIndirect4 O O X O O O X
TestcaseIndirect5 O O X X O O X
TestcaseIndirect6 O O X X O O X
TestcaseIndirect7 O O X X O O X
TestcaseIndirect8 O O X X O O X
TestcaseIndirect9 O O X O O O X
TestcaseIndirect10 O O X O O O X
TestcaseIndirect11 O O X X O X X
TestcaseIndirect12 O O X O O O X
TestcaseIndirect13 O O X X O X X
TestcaseIndirect14 O O X X O X X
TestcaseIndirect15 O O X O O X X
TestcaseIndirect16 X X X X O X X
TestcaseIndirect17 X X X O O O X

92

13 Summary and conclusion

The complete study is summarized in Table 27. The results conform to the
expectations except in two cases. First, fault No. five was not detected by the
test suite. In retrospect, the result is not a surprise as the fault is an inconsistent
latency property, which in the model does not affect the execution but impose
an analysis constraint on it. Thus, it is not sound to treat the faulty model as
a faulty implementation in this case, since the inconsistent property must be
manifested in the execution to be a realistic implementation fault. Second, fault
No. 6 corresponds to a changed scheduling property which has no relation to the
AFG, consequently, no slicing can be performed.

By considering the resource consumption of a re-run all approach, faults
(changes) have the ability to both significantly reduce as well as increase the
resource consumption of observers satisfiability checking. There are mainly two
parameters that determine the outcome. First, a fault (change) may add or re-
move states of the timed automata model, which may exponentially reduce or
increase the state space. Thus, possibly lengthens or shortens the state space
search by a significant amount. Fault No. seven produced the lowest recorded
resource consumption. The cause is a significantly reduced state space since Con-
troller will miss its deadline (whereupon the scheduler deadlocks) shortly after
the dispatch of Tester. Fault No. four produced the highest recorded resource
consumption. This is however not caused by a significantly increased state space.
In fact, the fault reduces the state space by preventing parts of the model to
be reached. Instead, the significant increase of necessary resources is caused by
the unreachable paths. Unreachability can only be determined by searching the
complete state space, which still, in this case, is relatively large.

Table 27. Results summary

model checking and sel. regr. ver. effect. TOT time TOT mem. Sel. efficiency Testing effectiveness

Fault No V-seqs No sel. No unsat. sel. Obs. No unsat. Obs. Sel. All Sel. All Time Mem. No failed TCs (of 57)

n/a 57 n/a n/a 0 n/a 855 n/a 9327 n/a n/a 0
1 57 4 4 4 196 504 3236 8085 61% 60% 5
2 57 13 7 7 364 527 5768 8728 31% 34% 6
3 49 25 9 9 373 396 5745 7127 6% 19% 25
4 57 30 18 18 1042 1204 15367 17942 13% 14% 18
5 57 24 7 7 235 403 3404 6832 42% 50% 0
6 57 n/a n/a 20 n/a 492 n/a 7470 0% 0% 7
7 58 50 42 42 51 58 2190 2542 12% 14% 43

56 555 8507 24% 27%

On average, it took 555 seconds and 8507 MB to check satisfiability of 56
observers. Seven out of seven design faults were detected and, by disregarding
fault five at the implementation-level, six out of six implementation faults. The
selective approach, on average, reduced the time and memory consumption of

93

regression verification by 24% and 27% respectively. The time complexity of
slicing is linear and, in this study, the additional expense slicing brings is close
to negligible with respect to the savings except for time consumption of fault
injection No 7. No verification sequence that reveals a fault in the modified
design was not selected.

Acknowledgments

This research is supported by the Swedish Foundation for Strategic Research
(SSF) project Synopsis.

References

1. A. Avizienis, J.-C. Laprie, and B Randell. Dependability and its threats - A
taxonomy. pages 91–120, 2004. IFIP Congress Topical Sessions.

2. Nancy G. Leveson. Engineering a Safer World: Systems Thinking Applied to Safety
(Engineering Systems). The MIT Press, January 2012.

3. RTI. The Economic Impacts of Inadequate Infrastructure for Software Testing.
NIST Planning report 02-3, Washington, DC, 2002.

4. Barry Boehm, Ricardo Valerdi, and Eric Honour. The roi of systems engineering:
Some quantitative results for software-intensive systems. Syst. Eng., 11(3):221–234,
August 2008.

5. Joseph Elm, Dennis Goldenson, Khaled El Emam, Nichole Donitelli, Angelica
Neisa, and NDIA SE Effectiveness Committee. A Survey of Systems Engineering
Effectiveness: Initial Results (CMU/SEI-2007-SR-014). Technical report, Software
Engineering Institute, Carnegie Mellon University, 2007.

6. As-2 Embedded Computing Systems Committee SAE. Architecture Analysis &
Design Language (AADL). SAE Standards no AS5506A, 2009.

7. Andreas Johnsen and Kristina Lundqvist. Developing Dependable Software-
intensive Systems: AADL vs. EAST-ADL. In Proceedings of the 16th Ada-Europe
International Conference on Reliable Software Technologies, Ada-Europe’11, pages
103–117, Berlin, Heidelberg, 2011. Springer-Verlag.

8. C.M. Holloway. Why engineers should consider formal methods. In Digital Avionics
Systems Conference, 1997. 16th DASC., AIAA/IEEE, volume 1, pages 1.3–16–22
vol.1, Oct 1997.

9. Holger Kienle, Daniel Sundmark, Kristina Lundqvist, and Andreas Johnsen. Lia-
bility for Software in Safety-Critical Mechatronic Systems: An Industrial Question-
naire. In Proceedings of the 2nd International Workshop on Software Engineering
for Embedded Systems, June 2012.

10. Gordon Fraser, Franz Wotawa, and Paul E. Ammann. Testing with Model Check-
ers: A Survey. Softw. Test. Verif. Reliab., 19(3):215–261, September 2009.

11. R.N. Taylor, N. Medvidovic, and E. Dashofy. Software Architecture: Foundations,
Theory, and Practice. Wiley, 2009.

12. Len Bass, Paul Clements, and Rick Kazman. Software architecture in practice.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1998.

13. As-2 Embedded Computing Systems Committee SAE. Architecture Analysis &
Design Language (AADL). SAE Standards no AS5506, November 2004.

94

14. Ricardo Bedin Franca, Jean-Paul Bodeveix, Mamoun Filali, Jean-Francois Rolland,
David Chemouil, and Dave Thomas. The AADL behaviour annex – experiments
and roadmap. In ICECCS ’07: Proceedings of the 12th IEEE International Con-
ference on Engineering Complex Computer Systems, pages 377–382, Washington,
DC, USA, 2007. IEEE Computer Society.

15. UP4ALL International AB. The UPPAAL Model-checking Tool.
http://www.uppaal.com, May 2013.

16. Gerd Behrmann, Alexandre David, and Kim G. Larsen. A tutorial on Uppaal.
pages 200–236. Springer, 2004.

17. Nancy S. Eickelmann and Debra J. Richardson. What makes one software archi-
tecture more testable than another? In ISAW ’96: Joint proceedings of the second
international software architecture workshop (ISAW-2) and international workshop
on multiple perspectives in software development (Viewpoints ’96) on SIGSOFT ’96
workshops, pages 65–67, New York, NY, USA, 1996. ACM.

18. ISO/DIS 26262 - Road vehicles - Functional safety. Technical report, Geneva,
Switzerland.

19. Johan Blom, Anders Hessel, Bengt Jonsson, and Paul Pettersson. Specifying and
Generating Test Cases Using Observer Automata. In Proc. 4 th International
Workshop on Formal Approaches to Testing of Software 2004 (FATES’04), volume
3395 of Lecture Notes in Computer Science, pages 125–139. Springer-Verlag, 2005.

20. S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using dependence
graphs. In Proceedings of the ACM SIGPLAN 1988 conference on Programming
Language design and Implementation, PLDI ’88, pages 35–46, New York, NY, USA,
1988. ACM.

21. Zhenyi Jin and Jeff Offutt. Deriving Tests From Software Architectures. In IS-
SRE ’01: Proceedings of the 12th International Symposium on Software Reliability
Engineering, page 308, Washington, DC, USA, 2001. IEEE Computer Society.

22. Elena Fersman, Leonid Mokrushin, Paul Pettersson, and Wang Yi. Schedulability
analysis of fixed-priority systems using timed automata. Theor. Comput. Sci.,
354:301–317, March 2006.

23. Juei Chang and Debra J. Richardson. Static and dynamic specification slicing. In
In Proceedings of the Fourth Irvine Software Symposium, 1994.

24. Mark Weiser. Program slicing. In Proceedings of the 5th international conference
on Software engineering, ICSE ’81, pages 439–449, Piscataway, NJ, USA, 1981.
IEEE Press.

25. Karl J. Ottenstein and Linda M. Ottenstein. The program dependence graph in a
software development environment. SIGPLAN Not., 19(5):177–184, April 1984.

95

Appendix A Verification sequences

Verification sequences: component internal paths
Tester.Impl:

1. ENTRY Tester.Impl (on dispatch)→cT LtrTsSq(DCUIMG C LtrTs,
DHSSMG B LtrFl,DHWOMG S LtrCd,DIGIMG S LtrOp,
DCUIMG S DcuNtRdy,PARAGP L LtrSvEn,DHSSMG B OpLtr,
DHSSMG B CdLtr,DHSSMG NX LtrSaSq,temp1,temp2)→c temp3 := temp1 and temp2→c

SR(temp1,false,DHSSMG S LtrTsRdy)→c SR(temp3,false,DHSSMG S LtrOpVd→c

EXIT Tester.Impl

LtrTsSq.Impl:

1. ENTRY LtrTsSq.Impl→c State LtrTsSq = Start→cT NX LtrSaSq := 0→c

(not L EnLtrSv) and C LtrTs→cT state LtrTsSq := Ready→c EXIT LtrTsSq.Impl→call

LtrTsSq(DCUIMG C LtrTs,
DHSSMG B LtrFl,DHWOMG S LtrCd,DIGIMG S LtrOp,
DCUIMG S DcuNtRdy,PARAGP L LtrSvEn,DHSSMG B OpLtr,
DHSSMG B CdLtr,DHSSMG NX LtrSaSq,temp1,temp2)

2. ENTRY LtrTsSq.Impl→c State LtrTsSq = Start→cT NX LtrSaSq := 0→c

(not L EnLtrSv) and C LtrTs→cF L EnLtrSv and C LtrTs→cT B OpLtr := true→c

state LtrTsSq := OpenLtr1→c EXIT LtrTsSq.Impl→call LtrTsSq(DCUIMG C LtrTs,
DHSSMG B LtrFl,DHWOMG S LtrCd,DIGIMG S LtrOp,
DCUIMG S DcuNtRdy,PARAGP L LtrSvEn,DHSSMG B OpLtr,
DHSSMG B CdLtr,DHSSMG NX LtrSaSq,temp1,temp2)

3. ENTRY LtrTsSq.Impl→c State LtrTsSq = Start→cF state LtrTsSq = OpenLtr1→cT

NX LtrSaSq := 1→c B LtrFl→cT state LtrTsSq := Start→c EXIT LtrTsSq.Impl→call

LtrTsSq(DCUIMG C LtrTs,
DHSSMG B LtrFl,DHWOMG S LtrCd,DIGIMG S LtrOp,
DCUIMG S DcuNtRdy,PARAGP L LtrSvEn,DHSSMG B OpLtr,
DHSSMG B CdLtr,DHSSMG NX LtrSaSq,temp1,temp2)

4. ENTRY LtrTsSq.Impl→c State LtrTsSq = Start→cF state LtrTsSq = OpenLtr1→cT

NX LtrSaSq := 1 →c B LtrFl →cF not S LtrCd →cT B CdLtr := true →c

Dy := true →c state LtrTsSq := CloseLtr →c EXIT LtrTsSq.Impl →call

LtrTsSq(DCUIMG C LtrTs,
DHSSMG B LtrFl,DHWOMG S LtrCd,DIGIMG S LtrOp,
DCUIMG S DcuNtRdy,PARAGP L LtrSvEn,DHSSMG B OpLtr,
DHSSMG B CdLtr,DHSSMG NX LtrSaSq,temp1,temp2)

– 〈B CdLtr := true→c Dy := true, {Delay(512ms)}〉
5. ENTRY LtrTsSq.Impl→c State LtrTsSq = Start→cF state LtrTsSq = OpenLtr1→cF

state LtrTsSq = CloseLtr→cT NX LtrSaSq := 2→c B LtrFl→cT state LtrTsSq := Start→c

EXIT LtrTsSq.Impl→call LtrTsSq(DCUIMG C LtrTs,
DHSSMG B LtrFl,DHWOMG S LtrCd,DIGIMG S LtrOp,
DCUIMG S DcuNtRdy,PARAGP L LtrSvEn,DHSSMG B OpLtr,
DHSSMG B CdLtr,DHSSMG NX LtrSaSq,temp1,temp2)

96

6. ENTRY LtrTsSq.Impl→c State LtrTsSq = Start→cF state LtrTsSq = OpenLtr1→cF

state LtrTsSq = CloseLtr→cT NX LtrSaSq := 2→c B LtrFl→cF S LtrCd and Dy→cT

B OpLtr := true→c state LtrTsSq := OpenLtr2→c EXIT LtrTsSq.Impl→call

LtrTsSq(DCUIMG C LtrTs,
DHSSMG B LtrFl,DHWOMG S LtrCd,DIGIMG S LtrOp,
DCUIMG S DcuNtRdy,PARAGP L LtrSvEn,DHSSMG B OpLtr,
DHSSMG B CdLtr,DHSSMG NX LtrSaSq,temp1,temp2)

7. ENTRY LtrTsSq.Impl→c State LtrTsSq = Start→cF state LtrTsSq = OpenLtr1→cF

state LtrTsSq = CloseLtr→cF state LtrTsSq = OpenLtr2→cT NX LtrSaSq := 3→c

B LtrFl→cT state LtrTsSq := Start→c EXIT LtrTsSq.Impl→call LtrTsSq(DCUIMG C LtrTs,
DHSSMG B LtrFl,DHWOMG S LtrCd,DIGIMG S LtrOp,
DCUIMG S DcuNtRdy,PARAGP L LtrSvEn,DHSSMG B OpLtr,
DHSSMG B CdLtr,DHSSMG NX LtrSaSq,temp1,temp2)

8. ENTRY LtrTsSq.Impl→c State LtrTsSq = Start→cF state LtrTsSq = OpenLtr1→cF

state LtrTsSq = CloseLtr→cF state LtrTsSq = OpenLtr2→cT NX LtrSaSq := 3→c

B LtrFl→cF not S LtrCd→cT A LtrTs := true→c state LtrTsSq := Ready→c

EXIT LtrTsSq.Impl→call LtrTsSq(DCUIMG C LtrTs,
DHSSMG B LtrFl,DHWOMG S LtrCd,DIGIMG S LtrOp,
DCUIMG S DcuNtRdy,PARAGP L LtrSvEn,DHSSMG B OpLtr,
DHSSMG B CdLtr,DHSSMG NX LtrSaSq,temp1,temp2)

9. ENTRY LtrTsSq.Impl→c State LtrTsSq = Start→cF state LtrTsSq = OpenLtr1→cF

state LtrTsSq = CloseLtr→cF state LtrTsSq = OpenLtr2→cF state LtrTsSq = Ready→cT

NX LtrSaSq := 4→c S DCUNtRdy→cT state LtrTsSq := Start→c EXIT LtrTsSq.Impl→call

LtrTsSq(DCUIMG C LtrTs,
DHSSMG B LtrFl,DHWOMG S LtrCd,DIGIMG S LtrOp,
DCUIMG S DcuNtRdy,PARAGP L LtrSvEn,DHSSMG B OpLtr,
DHSSMG B CdLtr,DHSSMG NX LtrSaSq,temp1,temp2)

10. state LtrTsSq := Ready→d Internal connection2 := state→d−in
State := internal connection2→d state LtrTsSq = Ready

11. state LtrTsSq := OpenLtr1→d Internal connection2 := state→d−in
State := internal connection2→d state LtrTsSq = OpenLtr1

12. state LtrTsSq := Start→d Internal connection2 := state→d−in
State := internal connection2→d state LtrTsSq = Start

13. state LtrTsSq := CloseLtr→d Internal connection2 := state→d−in
State := internal connection2→d state LtrTsSq = CloseLtr

14. state LtrTsSq := Start→d Internal connection2 := state→d−in
State := internal connection2→d state LtrTsSq = Start

15. state LtrTsSq := OpenLtr2→d Internal connection2 := state→d−in
State := internal connection2→d state LtrTsSq = OpenLtr2

16. state LtrTsSq := Start→d Internal connection2 := state→d−in
State := internal connection2→d state LtrTsSq = Start

17. state LtrTsSq := Ready→d Internal connection2 := state→d−in
State := internal connection2→d state LtrTsSq = Ready

18. state LtrTsSq := Start→d Internal connection2 := state→d−in
State := internal connection2→d state LtrTsSq = Start

97

19. Dy := true→d Internal connection1 := Dy→d−in Dy := internal connection1→d

S LtrCd and Dy

Controller.Impl:

1. ENTRY Controller.Impl (on dispatch)→cT LtrInt(. . .)→c dcu2 line trip(. . .)→c

EXIT Controller.Impl

LtrInt.Imp:

1. ENTRY LtrInt.Imp→c temp1 := NX SqSt >= 3→c WITHIN I(true,NX SqSt,27,4,temp2)→c

temp3 := NX SqSt >= 38→c temp4 := NX SqSt = 30→c temp5 := NX SqSt = 31→c

temp6 := B RqPrSd and temp1→c temp7 := temp6 or B OpLtr LtrTs or B OpLtr AppSpec→c

temp8 := temp2 or temp3→c F TRIG(temp4,temp9)→c F TRIG(B OpLtr AppSpec,temp10)→c

R TRIG(temp8,temp11)→c temp12 := temp9 or temp5→c

temp13 := L CnfHpp or B EnCdLnTrpSlt→c temp14 := not (A PctMo and B LtrTsOpLtr)→c

temp15 := temp12 and temp13→c temp16 := temp10 or B CdLtr LtrTs or temp11 or temp15→c

RS(temp7,temp16,temp17)→c B ClLtr := temp14 and temp17→c EXIT LtrInt.Impl→call

LtrInt(. . .)

dcu2 line trip.Impl:

1. ENTRY dcu2 line trip.Impl→c temp = false→c btemp = false→c enable→cT

GPIO OUT:= GPIO OUT and not LTRIP EN N→c act→cT

temp := temp or MCU LT ON→c FPGA LTRCR := temp→c

fpga2 on := temp and FPGA2 LT ON→c fb := temp and LT RELAY FB→c

enable and act and fpga2 on→cT not fb→cT btemp := true→c fb ne := btemp→c

EXIT dcu2 line trip.Impl→call dcu2 line trip(. . .)
2. ENTRY dcu2 line trip.Impl→c temp = false→c btemp = false→c enable→cT

GPIO OUT:= GPIO OUT and not LTRIP EN N→c act→cT

temp := temp or MCU LT ON→c FPGA LTRCR := temp→c

fpga2 on := temp and FPGA2 LT ON→c fb := temp and LT RELAY FB→c

enable and act and fpga2 on→cT not fb→cF fb ne := btemp→c EXIT dcu2 line trip.Impl→call

dcu2 line trip(. . .)
3. ENTRY dcu2 line trip.Impl→c temp = false→c btemp = false→c enable→cT

GPIO OUT:= GPIO OUT and not LTRIP EN N→c act→cT

temp := temp or MCU LT ON→c FPGA LTRCR := temp→c

fpga2 on := temp and FPGA2 LT ON→c fb := temp and LT RELAY FB→c

enable and act and fpga2 on→cF fb→cT btemp := true→c fb ne := btemp→c

EXIT dcu2 line trip.Impl→call dcu2 line trip(. . .)
4. ENTRY dcu2 line trip.Impl→c temp = false→c btemp = false→c enable→cT

GPIO OUT:= GPIO OUT and not LTRIP EN N→c act→cT

temp := temp or MCU LT ON→c FPGA LTRCR := temp→c

fpga2 on := temp and FPGA2 LT ON→c fb := temp and LT RELAY FB→c

enable and act and fpga2 on→cF fb→cF fb ne := btemp→c EXIT dcu2 line trip.Impl→call

dcu2 line trip(. . .)
5. ENTRY dcu2 line trip.Impl→c temp = false→c btemp = false→c enable→cT

GPIO OUT:= GPIO OUT and not LTRIP EN N→c act→cF FPGA LTRCR := temp→c

98

fpga2 on := temp and FPGA2 LT ON→c fb := temp and LT RELAY FB→c

enable and act and fpga2 on→cF fb→cF fb ne := btemp→c EXIT dcu2 line trip.Impl→call

dcu2 line trip(. . .)

6. ENTRY dcu2 line trip.Impl→c temp = false→c btemp = false→c enable→cF

GPIO OUT:= GPIO OUT or LTRIP EN N→c act→cT temp := temp or MCU LT ON→c

FPGA LTRCR := temp→c fpga2 on := temp and FPGA2 LT ON→c

fb := temp and LT RELAY FB→c enable and act and fpga2 on→cF fb→cT

btemp := true→c fb ne := btemp→c EXIT dcu2 line trip.Impl→call dcu2 line trip(. . .)

7. ENTRY dcu2 line trip.Impl→c temp = false→c btemp = false→c enable→cF

GPIO OUT:= GPIO OUT or LTRIP EN N→c act→cF temp := temp or MCU LT ON→c

FPGA LTRCR := temp→c fpga2 on := temp and FPGA2 LT ON→c

fb := temp and LT RELAY FB→c enable and act and fpga2 on→cF fb→cF

fb ne := btemp→c EXIT dcu2 line trip.Impl→call dcu2 line trip(. . .)

8. ENTRY dcu2 line trip.Impl→c temp = false→c btemp = false→c enable→cF

GPIO OUT:= GPIO OUT or LTRIP EN N→c act→cF FPGA LTRCR := temp→c

fpga2 on := temp and FPGA2 LT ON→c fb := temp and LT RELAY FB→c

enable and act and fpga2 on→cF fb→cF fb ne := btemp→c EXIT dcu2 line trip.Impl→call

dcu2 line trip(. . .)

9. GPIO OUT:= GPIO OUT and not LTRIP EN N→d Controller-Controller := GPIO OUT→d−in
GPIO OUT := Controller-Controller→d GPIO OUT:= GPIO OUT and not LTRIP EN N

10. GPIO OUT:= GPIO OUT and not LTRIP EN N→d Controller-Controller := GPIO OUT→d−in
GPIO OUT := Controller-Controller→d GPIO OUT:= GPIO OUT or LTRIP EN N

11. GPIO OUT:= GPIO OUT or LTRIP EN N→d Controller-Controller := GPIO OUT→d−in
GPIO OUT := Controller-Controller→d GPIO OUT:= GPIO OUT and not LTRIP EN N

12. GPIO OUT:= GPIO OUT or LTRIP EN N→d Controller-Controller := GPIO OUT→d−in
GPIO OUT := Controller-Controller→d GPIO OUT:= GPIO OUT or LTRIP EN N

Verification sequences: direct paths

1. LtrTsSq(DCUIMG C LtrTs,DHSSMG B LtrFl,DHWOMG S LtrCd,
DIGIMG S LtrOp,DCUIMG S DcuNtRdy,PARAGP L LtrSvEn,
DHSSMG B OpLtr,DHSSMG B CdLtr,DHSSMG NX LtrSaSq,temp1,
temp2)→call ENTRY LtrTsSq.Impl

(i) C LtrTs in := DCUIMG C LtrTs→d−in C LtrTs := C LtrTs in

(ii) B LtrFl in := DHSSMG B LtrFl→d−in B LtrFl := B LtrFl in

(iii) S LtrCd in := DHWOMG S LtrCd→d−in S LtrCd := S LtrCd in

(iv) S LtrOp in := DIGIMG S LtrOp→d−in S LtrOp := S LtrOp in

(v) S DCUNtRdy in := DCUIMG S DcuNtRdy→d−in S DCUNtRdy := S DCUNtRdy in

(vi) L EnLtrSv in := PARAGP L LtrSvEn→d−in L EnLtrSv := L EnLtrSv in

(vii) B OpLtr out := B OpLtr→d−out DHSSMG B OpLtr := B OpLtr out

(viii) B CdLtr out := B CdLtr→d−out DHSSMG B CdLtr := B CdLtr out

(ix) NX LtrSaSq out := NX LtrSaSq→d−out DHSSMG NX LtrSaSq := NX LtrSaSq out

(x) A LtrTs out := A LtrTs→d−out temp1 := A LtrTs out

(xi) A LtrOpVd out := A LtrOpVd→d−out temp2 := A LtrOpVd out

99

2. LtrInt(PRASMZ B RqPrSd,APSIMZ B OpLtr,SSSCMZ NX MnSqSt,
PCTHMZ A PctMo,PLTTMG B OpLtr,DHSSMG B OpLtr,
DHSSMG B CdLtr,APSIMZ B EnCdLnTrpSlt,PARAGP L CnfHpp,
DIGOMG B CdLtr)→call ENTRY LtrInt.Impl

(i) B RqPrSd in := PRASMZ B RqPrSd→d−in B RqPrSd := B RqPrSd in
(ii) B OpLtr AppSpec in := APSIMZ B OpLtr→d−in

B OpLtr AppSpec := B OpLtr AppSpec in
(iii) NX SqSt in := SSSCMZ NX MnSqSt→d−in NX SqSt := NX SqSt in
(iv) A PctMo in := PCTHMZ A PctMo→d−in A PctMo := A PctMo in
(v) B LtrTsOpLtr in := PLTTMG B OpLtr→d−in B LtrTsOpLtr := B LtrTsOpLtr in
(vi) B OpLtr LtrTs in := DHSSMG B OpLtr→d−in B OpLtr LtrTs := B OpLtr LtrTs in
(vii) B CdLtr LtrTs in := DHSSMG B CdLtr→d−in B CdLtr LtrTs := B CdLtr LtrTs in

(viii) B EnCdLnTrpSlt in := APSIMZ B EnCdLnTrpSlt→d−in
B EnCdLnTrpSlt := B EnCdLnTrpSlt in

(ix) L CnfHpp in := PARAGP L CnfHpp→d−in L CnfHpp := L CnfHpp in
(x) B ClLtr out := B ClLtr→d−out DIGOMG B CdLtr := B ClLtr out

3. dcu2 line trip(not DHSSMG B LtrHwOpFl,temp0,DHWOMG S LtrCd,
DHWOMG B FpgaLtrOn,DHWOMG B DcuLtrFl)→call ENTRY dcu2 line trip.Impl

(i) enable in := not DHSSMG B LtrHwOpFl→d−in enable := enable in
(ii) act in := DIGOMG B CdLtr→d−in act := act in

(iii) fb out := fb→d−out DHWOMG S LtrCd := fb out
(iv) fpga2 on out := fpga2 on→d−out DHWOMG B FpgaLtrOn := fpga2 on out
(v) fb ne out := fb ne→d−out DHWOMG B DcuLtrFl := fb ne out

4. connection1 := DHSSMG B OpLtr→d−in DHSSMG B OpLtr := connection1

– 〈connection1 := DHSSMG B OpLtr→d−in DHSSMG B OpLtr := connection1,
{Latency => Xms..Xms}〉

5. connection2 := DHSSMG B CdLtr→d−in DHSSMG B CdLtr := connection2

– 〈connection2 := DHSSMG B CdLtr→d−in DHSSMG B CdLtr := connection2,
{Latency => Xms..Xms}〉

6. connection3 := DHWOMG S LtrCd→d−in DHWOMG S LtrCd := connection3

– 〈connection3 := DHWOMG S LtrCd→d−in DHWOMG S LtrCd := connection3,
{Latency => Xms..Xms}〉

Verification sequences: indirect paths
LtrTsSq.Impl→ Tester.Impl→ Controller.Impl→ dcu2 line trip.Impl

1. ENTRY LtrTsSq.Impl→c State LtrTsSq = Start→cT NX LtrSaSq := 0→c

(not L EnLtrSv) and C LtrTs→cF L EnLtrSv and C LtrTs→cT B OpLtr := true→c

tate LtrTsSq := OpenLtr1 →c EXIT LtrTsSq.Impl →call LtrTsSq(. . .) →c

temp3 := temp1 and temp2→c SR(temp1,false,DHSSMG S LtrTsRdy)→c

SR(temp3,false,DHSSMG S LtrOpVd→c

EXIT Tester.Impl(connection1 := DHSSMG B OpLtr)→d−in
ENTRY Controller.Impl(on dispatch(DHSSMG B OpLtr := connection1))→cT

LtrInt(. . .)→call ENTRY LtrInt.Imp→c temp1 := NX SqSt >= 3→c

WITHIN I(true,NX SqSt,27,4,temp2)→c temp3 := NX SqSt >= 38→c

100

temp4 := NX SqSt = 30→c temp5 := NX SqSt = 31→c temp6 := B RqPrSd and temp1→c

temp7 := temp6 or B OpLtr LtrTs or B OpLtr AppSpec→c temp8 := temp2 or temp3→c

F TRIG(temp4,temp9)→c F TRIG(B OpLtr AppSpec,temp10)→c R TRIG(temp8,temp11)→c

temp12 := temp9 or temp5→c temp13 := L CnfHpp or B EnCdLnTrpSlt→c

temp14 := not (A PctMo and B LtrTsOpLtr)→c temp15 := temp12 and temp13→c

temp16 := temp10 or B CdLtr LtrTs or temp11 or temp15→c RS(temp7,temp16,temp17)→c

B ClLtr := temp14 and temp17→c EXIT LtrInt.Impl→call LtrInt(. . .)→c

dcu2 line trip(. . .) →call ENTRY dcu2 line trip.Impl →c temp = false →c

btemp = false→c enable→cT GPIO OUT:= GPIO OUT and not LTRIP EN N→c

act→cF FPGA LTRCR := temp→c fpga2 on := temp and FPGA2 LT ON→c

fb := temp and LT RELAY FB→c enable and act and fpga2 on→cF fb→cF

fb ne := btemp →c EXIT dcu2 line trip.Impl →call dcu2 line trip(. . .) →c

EXIT Controller.Impl

(i) B OpLtr := true→d B OpLtr out := B OpLtr
(ii) B OpLtr out := B OpLtr→d−out DHSSMG B OpLtr := B OpLtr out

(iii) DHSSMG B OpLtr := B OpLtr out→d connection1 := DHSSMG B OpLtr
(iv) DHSSMG B OpLtr := connection1→d B OpLtr LtrTs in := DHSSMG B OpLtr
(v) B OpLtr LtrTs in := DHSSMG B OpLtr→d−in B OpLtr LtrTs := B OpLtr LtrTs in
(vi) B OpLtr LtrTs := B OpLtr LtrTs in→d

temp7 := temp6 or B OpLtr LtrTs or B OpLtr AppSpec
(vii) B ClLtr := temp14 and temp17→d B ClLtr out := B ClLtr

(viii) B ClLtr out := B ClLtr→d−out DIGOMG B CdLtr := B ClLtr out
(ix) DIGOMG B CdLtr := B ClLtr out→d act in := DIGOMG B CdLtr
(x) act in := DIGOMG B CdLtr→d−in act := act in
(xi) act := act in→d act
(xii) act := act in→d enable and act and fpga2 on

(xiii) fb := temp and LT RELAY FB→d fb out := fb
(xiv) fb out := fb→d−out DHWOMG S LtrCd := fb out

– 〈connection1 := DHSSMG B OpLtr→d−in DHSSMG B OpLtr := connection1,
{Latency => Xms..Xms}〉

2. ENTRY LtrTsSq.Impl→c State LtrTsSq = Start→cT NX LtrSaSq := 0→c

(not L EnLtrSv) and C LtrTs→cF L EnLtrSv and C LtrTs→cT B OpLtr := true→c

tate LtrTsSq := OpenLtr1 →c EXIT LtrTsSq.Impl →call LtrTsSq(. . .) →c

temp3 := temp1 and temp2→c SR(temp1,false,DHSSMG S LtrTsRdy)→c

SR(temp3,false,DHSSMG S LtrOpVd→c

EXIT Tester.Impl(connection1 := DHSSMG B OpLtr)→d−in
ENTRY Controller.Impl(on dispatch(DHSSMG B OpLtr := connection1))→cT

LtrInt(. . .)→call ENTRY LtrInt.Imp→c temp1 := NX SqSt >= 3→c

WITHIN I(true,NX SqSt,27,4,temp2)→c temp3 := NX SqSt >= 38→c

temp4 := NX SqSt = 30→c temp5 := NX SqSt = 31→c temp6 := B RqPrSd and temp1→c

temp7 := temp6 or B OpLtr LtrTs or B OpLtr AppSpec→c temp8 := temp2 or temp3→c

F TRIG(temp4,temp9)→c F TRIG(B OpLtr AppSpec,temp10)→c R TRIG(temp8,temp11)→c

temp12 := temp9 or temp5→c temp13 := L CnfHpp or B EnCdLnTrpSlt→c

temp14 := not (A PctMo and B LtrTsOpLtr)→c temp15 := temp12 and temp13→c

temp16 := temp10 or B CdLtr LtrTs or temp11 or temp15→c RS(temp7,temp16,temp17)→c

B ClLtr := temp14 and temp17→c EXIT LtrInt.Impl→call LtrInt(. . .)→c

101

dcu2 line trip(. . .) →call ENTRY dcu2 line trip.Impl →c temp = false →c

btemp = false→c enable→cF GPIO OUT:= GPIO OUT or LTRIP EN N→c

act→cF FPGA LTRCR := temp→c fpga2 on := temp and FPGA2 LT ON→c

fb := temp and LT RELAY FB→c enable and act and fpga2 on→cF fb→cF

fb ne := btemp →c EXIT dcu2 line trip.Impl →call dcu2 line trip(. . .) →c

EXIT Controller.Impl

(i) B OpLtr := true→d B OpLtr out := B OpLtr
(ii) B OpLtr out := B OpLtr→d−out DHSSMG B OpLtr := B OpLtr out

(iii) DHSSMG B OpLtr := B OpLtr out→d connection1 := DHSSMG B OpLtr
(iv) DHSSMG B OpLtr := connection1→d B OpLtr LtrTs in := DHSSMG B OpLtr
(v) B OpLtr LtrTs in := DHSSMG B OpLtr→d−in B OpLtr LtrTs := B OpLtr LtrTs in
(vi) B OpLtr LtrTs := B OpLtr LtrTs in

→d temp7 := temp6 or B OpLtr LtrTs or B OpLtr AppSpec
(vii) B ClLtr := temp14 and temp17→d B ClLtr out := B ClLtr

(viii) B ClLtr out := B ClLtr→d−out DIGOMG B CdLtr := B ClLtr out
(ix) DIGOMG B CdLtr := B ClLtr out→d act in := DIGOMG B CdLtr
(x) act in := DIGOMG B CdLtr→d−in act := act in
(xi) act := act in→d act
(xii) act := act in→d enable and act and fpga2 on

(xiii) fb := temp and LT RELAY FB→d fb out := fb
(xiv) fb out := fb→d−out DHWOMG S LtrCd := fb out

– 〈connection1 := DHSSMG B OpLtr→d−in DHSSMG B OpLtr := connection1,
{Latency => Xms..Xms}〉

3. ENTRY LtrTsSq.Impl→c State LtrTsSq = Start→cF state LtrTsSq = OpenLtr1→cF

state LtrTsSq = CloseLtr→cT NX LtrSaSq := 2→c B LtrFl→cF S LtrCd and Dy→cT

B OpLtr := true→c state LtrTsSq := OpenLtr2→c EXIT LtrTsSq.Impl→call

LtrTsSq(. . .)→c temp3 := temp1 and temp2→c SR(temp1,false,DHSSMG S LtrTsRdy)→c

SR(temp3,false,DHSSMG S LtrOpVd→c

EXIT Tester.Impl(connection1 := DHSSMG B OpLtr)→d−in
ENTRY Controller.Impl(on dispatch(DHSSMG B OpLtr := connection1))→cT

LtrInt(. . .)→call ENTRY LtrInt.Imp→c

temp1 := NX SqSt >= 3→c WITHIN I(true,NX SqSt,27,4,temp2)→c

temp3 := NX SqSt >= 38→c temp4 := NX SqSt = 30→c temp5 := NX SqSt = 31→c

temp6 := B RqPrSd and temp1→c temp7 := temp6 or B OpLtr LtrTs or B OpLtr AppSpec→c

temp8 := temp2 or temp3→c F TRIG(temp4,temp9)→c F TRIG(B OpLtr AppSpec,temp10)→c

R TRIG(temp8,temp11)→c temp12 := temp9 or temp5→c

temp13 := L CnfHpp or B EnCdLnTrpSlt→c temp14 := not (A PctMo and B LtrTsOpLtr)→c

temp15 := temp12 and temp13→c temp16 := temp10 or B CdLtr LtrTs or temp11 or temp15→c

RS(temp7,temp16,temp17)→c B ClLtr := temp14 and temp17→c EXIT LtrInt.Impl→call

LtrInt(. . .) →c dcu2 line trip(. . .) →call ENTRY dcu2 line trip.Impl →c

temp = false→c btemp = false→c enable→cT

GPIO OUT:= GPIO OUT and not LTRIP EN N→c act→cF FPGA LTRCR := temp→c

fpga2 on := temp and FPGA2 LT ON→c fb := temp and LT RELAY FB→c

enable and act and fpga2 on→cF fb→cF fb ne := btemp→c EXIT dcu2 line trip.Impl→call

dcu2 line trip(. . .)→c EXIT Controller.Impl

(i) B OpLtr := true→d B OpLtr out := B OpLtr

102

(ii) B OpLtr out := B OpLtr→d−out DHSSMG B OpLtr := B OpLtr out
(iii) DHSSMG B OpLtr := B OpLtr out→d connection1 := DHSSMG B OpLtr
(iv) DHSSMG B OpLtr := connection1→d B OpLtr LtrTs in := DHSSMG B OpLtr
(v) B OpLtr LtrTs in := DHSSMG B OpLtr→d−in B OpLtr LtrTs := B OpLtr LtrTs in
(vi) B OpLtr LtrTs := B OpLtr LtrTs in

→d temp7 := temp6 or B OpLtr LtrTs or B OpLtr AppSpec
(vii) B ClLtr := temp14 and temp17→d B ClLtr out := B ClLtr

(viii) B ClLtr out := B ClLtr→d−out DIGOMG B CdLtr := B ClLtr out
(ix) DIGOMG B CdLtr := B ClLtr out→d act in := DIGOMG B CdLtr
(x) act in := DIGOMG B CdLtr→d−in act := act in
(xi) act := act in→d act
(xii) act := act in→d enable and act and fpga2 on

(xiii) fb := temp and LT RELAY FB→d fb out := fb
(xiv) fb out := fb→d−out DHWOMG S LtrCd := fb out

– 〈connection1 := DHSSMG B OpLtr→d−in DHSSMG B OpLtr := connection1,
{Latency => Xms..Xms}〉

4. ENTRY LtrTsSq.Impl→c State LtrTsSq = Start→cF state LtrTsSq = OpenLtr1→cF

state LtrTsSq = CloseLtr→cT NX LtrSaSq := 2→c B LtrFl→cF S LtrCd and Dy→cT

B OpLtr := true→c state LtrTsSq := OpenLtr2→c EXIT LtrTsSq.Impl→call

LtrTsSq(. . .)→c temp3 := temp1 and temp2→c SR(temp1,false,DHSSMG S LtrTsRdy)→c

SR(temp3,false,DHSSMG S LtrOpVd→c

EXIT Tester.Impl(connection1 := DHSSMG B OpLtr)→d−in
ENTRY Controller.Impl(on dispatch(DHSSMG B OpLtr := connection1))→cT

LtrInt(. . .)→call ENTRY LtrInt.Imp→c temp1 := NX SqSt >= 3→c

WITHIN I(true,NX SqSt,27,4,temp2)→c temp3 := NX SqSt >= 38→c

temp4 := NX SqSt = 30→c temp5 := NX SqSt = 31→c temp6 := B RqPrSd and temp1→c

temp7 := temp6 or B OpLtr LtrTs or B OpLtr AppSpec→c temp8 := temp2 or temp3→c

F TRIG(temp4,temp9)→c F TRIG(B OpLtr AppSpec,temp10)→c R TRIG(temp8,temp11)→c

temp12 := temp9 or temp5→c temp13 := L CnfHpp or B EnCdLnTrpSlt→c

temp14 := not (A PctMo and B LtrTsOpLtr)→c temp15 := temp12 and temp13→c

temp16 := temp10 or B CdLtr LtrTs or temp11 or temp15→c RS(temp7,temp16,temp17)→c

B ClLtr := temp14 and temp17→c EXIT LtrInt.Impl→call LtrInt(. . .)→c

dcu2 line trip(. . .) →call ENTRY dcu2 line trip.Impl →c temp = false →c

btemp = false→c enable→cF GPIO OUT:= GPIO OUT or LTRIP EN N→c

act→cF FPGA LTRCR := temp→c fpga2 on := temp and FPGA2 LT ON→c

fb := temp and LT RELAY FB→c enable and act and fpga2 on→cF fb→cF

fb ne := btemp →c EXIT dcu2 line trip.Impl →call dcu2 line trip(. . .) →c

EXIT Controller.Impl

(i) B OpLtr := true→d B OpLtr out := B OpLtr
(ii) B OpLtr out := B OpLtr→d−out DHSSMG B OpLtr := B OpLtr out

(iii) DHSSMG B OpLtr := B OpLtr out→d connection1 := DHSSMG B OpLtr
(iv) DHSSMG B OpLtr := connection1→d B OpLtr LtrTs in := DHSSMG B OpLtr
(v) B OpLtr LtrTs in := DHSSMG B OpLtr→d−in B OpLtr LtrTs := B OpLtr LtrTs in
(vi) B OpLtr LtrTs := B OpLtr LtrTs in→d

temp7 := temp6 or B OpLtr LtrTs or B OpLtr AppSpec
(vii) B ClLtr := temp14 and temp17→d B ClLtr out := B ClLtr

103

(viii) B ClLtr out := B ClLtr→d−out DIGOMG B CdLtr := B ClLtr out
(ix) DIGOMG B CdLtr := B ClLtr out→d act in := DIGOMG B CdLtr
(x) act in := DIGOMG B CdLtr→d−in act := act in
(xi) act := act in→d act
(xii) act := act in→d enable and act and fpga2 on

(xiii) fb := temp and LT RELAY FB→d fb out := fb
(xiv) fb out := fb→d−out DHWOMG S LtrCd := fb out

– 〈connection1 := DHSSMG B OpLtr→d−in DHSSMG B OpLtr := connection1,
{Latency => Xms..Xms}〉

5. ENTRY LtrTsSq.Impl→c State LtrTsSq = Start→cF state LtrTsSq = OpenLtr1→cT

NX LtrSaSq := 1 →c B LtrFl →cF not S LtrCd →cT B CdLtr := true →c

Dy := true →c state LtrTsSq := CloseLtr →c EXIT LtrTsSq.Impl →call

LtrTsSq(. . .)→c temp3 := temp1 and temp2→c SR(temp1,false,DHSSMG S LtrTsRdy)→c

SR(temp3,false,DHSSMG S LtrOpVd→c

EXIT Tester.Impl(connection2 := DHSSMG B CdLtr)→d−in
ENTRY Controller.Impl(on dispatch(DHSSMG B CdLtr := connection2))→cT

LtrInt(. . .)→call ENTRY LtrInt.Imp→c temp1 := NX SqSt >= 3→c

WITHIN I(true,NX SqSt,27,4,temp2)→c temp3 := NX SqSt >= 38→c

temp4 := NX SqSt = 30→c temp5 := NX SqSt = 31→c temp6 := B RqPrSd and temp1→c

temp7 := temp6 or B OpLtr LtrTs or B OpLtr AppSpec→c temp8 := temp2 or temp3→c

F TRIG(temp4,temp9)→c F TRIG(B OpLtr AppSpec,temp10)→c R TRIG(temp8,temp11)→c

temp12 := temp9 or temp5→c temp13 := L CnfHpp or B EnCdLnTrpSlt→c

temp14 := not (A PctMo and B LtrTsOpLtr)→c temp15 := temp12 and temp13→c

temp16 := temp10 or B CdLtr LtrTs or temp11 or temp15→c RS(temp7,temp16,temp17)→c

B ClLtr := temp14 and temp17→c EXIT LtrInt.Impl→call LtrInt(. . .)→c

dcu2 line trip(. . .) →call ENTRY dcu2 line trip.Impl →c temp = false →c

btemp = false→c enable→cT GPIO OUT:= GPIO OUT and not LTRIP EN N→c

act →cT temp := temp or MCU LT ON →c FPGA LTRCR := temp →c

fpga2 on := temp and FPGA2 LT ON→c fb := temp and LT RELAY FB→c

enable and act and fpga2 on→cT not fb→cT btemp := true→c fb ne := btemp→c

EXIT dcu2 line trip.Impl→call dcu2 line trip(. . .)→c EXIT Controller.Impl

(i) B CdLtr := true→d B CdLtr out := B CdLtr
(ii) B CdLtr out := B CdLtr→d−out DHSSMG B CdLtr := B CdLtr out

(iii) DHSSMG B CdLtr := B CdLtr out→d connection2 := DHSSMG B CdLtr
(iv) DHSSMG B CdLtr := connection2→d B CdLtr LtrTs in := DHSSMG B CdLtr
(v) B CdLtr LtrTs in := DHSSMG B CdLtr→d−in B CdLtr LtrTs := B CdLtr LtrTs in
(vi) B CdLtr LtrTs := B CdLtr LtrTs in→d

temp16 := temp10 or B CdLtr LtrTs or temp11 or temp15
(vii) B ClLtr := temp14 and temp17→d B ClLtr out := B ClLtr

(viii) B ClLtr out := B ClLtr→d−out DIGOMG B CdLtr := B ClLtr out
(ix) DIGOMG B CdLtr := B ClLtr out→d act in := DIGOMG B CdLtr
(x) act in := DIGOMG B CdLtr→d−in act := act in
(xi) act := act in→d act
(xii) act := act in→d enable and act and fpga2 on

(xiii) fb := temp and LT RELAY FB→d fb out := fb
(xiv) fb out := fb→d−out DHWOMG S LtrCd := fb out

104

– 〈B CdLtr := true→c Dy := true, {Delay(512ms)}〉
– 〈connection2 := DHSSMG B CdLtr→d−in DHSSMG B CdLtr := connection2,
{Latency => Xms..Xms}〉

6. ENTRY LtrTsSq.Impl→c State LtrTsSq = Start→cF state LtrTsSq = OpenLtr1→cT

NX LtrSaSq := 1 →c B LtrFl →cF not S LtrCd →cT B CdLtr := true →c

Dy := true →c state LtrTsSq := CloseLtr →c EXIT LtrTsSq.Impl →call

LtrTsSq(. . .)→c temp3 := temp1 and temp2→c SR(temp1,false,DHSSMG S LtrTsRdy)→c

SR(temp3,false,DHSSMG S LtrOpVd→c

EXIT Tester.Impl(connection2 := DHSSMG B CdLtr)→d−in
ENTRY Controller.Impl(on dispatch(DHSSMG B CdLtr := connection2))→cT

LtrInt(. . .)→call ENTRY LtrInt.Imp→c temp1 := NX SqSt >= 3→c

WITHIN I(true,NX SqSt,27,4,temp2)→c temp3 := NX SqSt >= 38→c

temp4 := NX SqSt = 30→c temp5 := NX SqSt = 31→c temp6 := B RqPrSd and temp1→c

temp7 := temp6 or B OpLtr LtrTs or B OpLtr AppSpec→c temp8 := temp2 or temp3→c

F TRIG(temp4,temp9)→c F TRIG(B OpLtr AppSpec,temp10)→c R TRIG(temp8,temp11)→c

temp12 := temp9 or temp5→c temp13 := L CnfHpp or B EnCdLnTrpSlt→c

temp14 := not (A PctMo and B LtrTsOpLtr)→c temp15 := temp12 and temp13→c

temp16 := temp10 or B CdLtr LtrTs or temp11 or temp15→c RS(temp7,temp16,temp17)→c

B ClLtr := temp14 and temp17→c EXIT LtrInt.Impl→call LtrInt(. . .)→c

dcu2 line trip(. . .) →call ENTRY dcu2 line trip.Impl →c temp = false →c

btemp = false→c enable→cT GPIO OUT:= GPIO OUT and not LTRIP EN N→c

act →cT temp := temp or MCU LT ON →c FPGA LTRCR := temp →c

fpga2 on := temp and FPGA2 LT ON→c fb := temp and LT RELAY FB→c

enable and act and fpga2 on→cT not fb→cF fb ne := btemp→c EXIT dcu2 line trip.Impl→call

dcu2 line trip(. . .)→c EXIT Controller.Impl

(i) B CdLtr := true→d B CdLtr out := B CdLtr
(ii) B CdLtr out := B CdLtr→d−out DHSSMG B CdLtr := B CdLtr out

(iii) DHSSMG B CdLtr := B CdLtr out→d connection2 := DHSSMG B CdLtr
(iv) DHSSMG B CdLtr := connection2→d B CdLtr LtrTs in := DHSSMG B CdLtr
(v) B CdLtr LtrTs in := DHSSMG B CdLtr→d−in B CdLtr LtrTs := B CdLtr LtrTs in
(vi) B CdLtr LtrTs := B CdLtr LtrTs in→d

temp16 := temp10 or B CdLtr LtrTs or temp11 or temp15
(vii) B ClLtr := temp14 and temp17→d B ClLtr out := B ClLtr

(viii) B ClLtr out := B ClLtr→d−out DIGOMG B CdLtr := B ClLtr out
(ix) DIGOMG B CdLtr := B ClLtr out→d act in := DIGOMG B CdLtr
(x) act in := DIGOMG B CdLtr→d−in act := act in
(xi) act := act in→d act
(xii) act := act in→d enable and act and fpga2 on

(xiii) fb := temp and LT RELAY FB→d fb out := fb
(xiv) fb out := fb→d−out DHWOMG S LtrCd := fb out

– 〈B CdLtr := true→c Dy := true, {Delay(512ms)}〉
– 〈connection2 := DHSSMG B CdLtr→d−in DHSSMG B CdLtr := connection2,
{Latency => Xms..Xms}〉

7. ENTRY LtrTsSq.Impl→c State LtrTsSq = Start→cF state LtrTsSq = OpenLtr1→cT

NX LtrSaSq := 1 →c B LtrFl →cF not S LtrCd →cT B CdLtr := true →c

105

Dy := true →c state LtrTsSq := CloseLtr →c EXIT LtrTsSq.Impl →call

LtrTsSq(. . .)→c temp3 := temp1 and temp2→c SR(temp1,false,DHSSMG S LtrTsRdy)→c

SR(temp3,false,DHSSMG S LtrOpVd→c

EXIT Tester.Impl(connection2 := DHSSMG B CdLtr)→d−in
ENTRY Controller.Impl(on dispatch(DHSSMG B CdLtr := connection2))→cT

LtrInt(. . .)→call ENTRY LtrInt.Imp→c temp1 := NX SqSt >= 3→c

WITHIN I(true,NX SqSt,27,4,temp2)→c temp3 := NX SqSt >= 38→c

temp4 := NX SqSt = 30→c temp5 := NX SqSt = 31→c temp6 := B RqPrSd and temp1→c

temp7 := temp6 or B OpLtr LtrTs or B OpLtr AppSpec→c temp8 := temp2 or temp3→c

F TRIG(temp4,temp9)→c F TRIG(B OpLtr AppSpec,temp10)→c R TRIG(temp8,temp11)→c

temp12 := temp9 or temp5→c temp13 := L CnfHpp or B EnCdLnTrpSlt→c

temp14 := not (A PctMo and B LtrTsOpLtr)→c temp15 := temp12 and temp13→c

temp16 := temp10 or B CdLtr LtrTs or temp11 or temp15→c RS(temp7,temp16,temp17)→c

B ClLtr := temp14 and temp17→c EXIT LtrInt.Impl→call LtrInt(. . .)→c

dcu2 line trip(. . .) →call ENTRY dcu2 line trip.Impl →c temp = false →c

btemp = false→c enable→cT GPIO OUT:= GPIO OUT and not LTRIP EN N→c

act →cT temp := temp or MCU LT ON →c FPGA LTRCR := temp →c

fpga2 on := temp and FPGA2 LT ON→c fb := temp and LT RELAY FB→c

enable and act and fpga2 on→cF fb→cT btemp := true→c fb ne := btemp→c

EXIT dcu2 line trip.Impl→call dcu2 line trip(. . .)→c EXIT Controller.Impl

(i) B CdLtr := true→d B CdLtr out := B CdLtr
(ii) B CdLtr out := B CdLtr→d−out DHSSMG B CdLtr := B CdLtr out

(iii) DHSSMG B CdLtr := B CdLtr out→d connection2 := DHSSMG B CdLtr
(iv) DHSSMG B CdLtr := connection2→d B CdLtr LtrTs in := DHSSMG B CdLtr
(v) B CdLtr LtrTs in := DHSSMG B CdLtr→d−in B CdLtr LtrTs := B CdLtr LtrTs in
(vi) B CdLtr LtrTs := B CdLtr LtrTs in→d

temp16 := temp10 or B CdLtr LtrTs or temp11 or temp15
(vii) B ClLtr := temp14 and temp17→d B ClLtr out := B ClLtr

(viii) B ClLtr out := B ClLtr→d−out DIGOMG B CdLtr := B ClLtr out
(ix) DIGOMG B CdLtr := B ClLtr out→d act in := DIGOMG B CdLtr
(x) act in := DIGOMG B CdLtr→d−in act := act in
(xi) act := act in→d act
(xii) act := act in→d enable and act and fpga2 on

(xiii) fb := temp and LT RELAY FB→d fb out := fb
(xiv) fb out := fb→d−out DHWOMG S LtrCd := fb out

– 〈B CdLtr := true→c Dy := true, {Delay(512ms)}〉
– 〈connection2 := DHSSMG B CdLtr→d−in DHSSMG B CdLtr := connection2,
{Latency => Xms..Xms}〉

8. ENTRY LtrTsSq.Impl→c State LtrTsSq = Start→cF state LtrTsSq = OpenLtr1→cT

NX LtrSaSq := 1 →c B LtrFl →cF not S LtrCd →cT B CdLtr := true →c

Dy := true →c state LtrTsSq := CloseLtr →c EXIT LtrTsSq.Impl →call

LtrTsSq(. . .)→c temp3 := temp1 and temp2→c SR(temp1,false,DHSSMG S LtrTsRdy)→c

SR(temp3,false,DHSSMG S LtrOpVd
→c EXIT Tester.Impl(connection2 := DHSSMG B CdLtr)→d−in
ENTRY Controller.Impl(on dispatch(DHSSMG B CdLtr := connection2))→cT

LtrInt(. . .)→call ENTRY LtrInt.Imp→c temp1 := NX SqSt >= 3→c

106

WITHIN I(true,NX SqSt,27,4,temp2)→c temp3 := NX SqSt >= 38→c

temp4 := NX SqSt = 30→c temp5 := NX SqSt = 31→c temp6 := B RqPrSd and temp1→c

temp7 := temp6 or B OpLtr LtrTs or B OpLtr AppSpec→c temp8 := temp2 or temp3→c

F TRIG(temp4,temp9)→c F TRIG(B OpLtr AppSpec,temp10)→c R TRIG(temp8,temp11)→c

temp12 := temp9 or temp5→c temp13 := L CnfHpp or B EnCdLnTrpSlt→c

temp14 := not (A PctMo and B LtrTsOpLtr)→c temp15 := temp12 and temp13→c

temp16 := temp10 or B CdLtr LtrTs or temp11 or temp15→c RS(temp7,temp16,temp17)→c

B ClLtr := temp14 and temp17→c EXIT LtrInt.Impl→call LtrInt(. . .)→c

dcu2 line trip(. . .) →call ENTRY dcu2 line trip.Impl →c temp = false →c

btemp = false→c enable→cT GPIO OUT:= GPIO OUT and not LTRIP EN N→c

act →cT temp := temp or MCU LT ON →c FPGA LTRCR := temp →c

fpga2 on := temp and FPGA2 LT ON→c fb := temp and LT RELAY FB→c

enable and act and fpga2 on→cF fb→cF fb ne := btemp→c EXIT dcu2 line trip.Impl→call

dcu2 line trip(. . .)→c EXIT Controller.Impl

(i) B CdLtr := true→d B CdLtr out := B CdLtr
(ii) B CdLtr out := B CdLtr→d−out DHSSMG B CdLtr := B CdLtr out

(iii) DHSSMG B CdLtr := B CdLtr out→d connection2 := DHSSMG B CdLtr
(iv) DHSSMG B CdLtr := connection2→d B CdLtr LtrTs in := DHSSMG B CdLtr
(v) B CdLtr LtrTs in := DHSSMG B CdLtr→d−in B CdLtr LtrTs := B CdLtr LtrTs in
(vi) B CdLtr LtrTs := B CdLtr LtrTs in→d

temp16 := temp10 or B CdLtr LtrTs or temp11 or temp15
(vii) B ClLtr := temp14 and temp17→d B ClLtr out := B ClLtr

(viii) B ClLtr out := B ClLtr→d−out DIGOMG B CdLtr := B ClLtr out
(ix) DIGOMG B CdLtr := B ClLtr out→d act in := DIGOMG B CdLtr
(x) act in := DIGOMG B CdLtr→d−in act := act in
(xi) act := act in→d act
(xii) act := act in→d enable and act and fpga2 on

(xiii) fb := temp and LT RELAY FB→d fb out := fb
(xiv) fb out := fb→d−out DHWOMG S LtrCd := fb out

– 〈B CdLtr := true→c Dy := true, {Delay(512ms)}〉
– 〈connection2 := DHSSMG B CdLtr→d−in DHSSMG B CdLtr := connection2,
{Latency => Xms..Xms}〉

9. ENTRY LtrTsSq.Impl→c State LtrTsSq = Start→cF state LtrTsSq = OpenLtr1→cT

NX LtrSaSq := 1 →c B LtrFl →cF not S LtrCd →cT B CdLtr := true →c

Dy := true →c state LtrTsSq := CloseLtr →c EXIT LtrTsSq.Impl →call

LtrTsSq(. . .)→c temp3 := temp1 and temp2→c SR(temp1,false,DHSSMG S LtrTsRdy)→c

SR(temp3,false,DHSSMG S LtrOpVd→c

EXIT Tester.Impl(connection2 := DHSSMG B CdLtr)→d−in
ENTRY Controller.Impl(on dispatch(DHSSMG B CdLtr := connection2))→cT

LtrInt(. . .)→call ENTRY LtrInt.Imp→c temp1 := NX SqSt >= 3→c

WITHIN I(true,NX SqSt,27,4,temp2)→c temp3 := NX SqSt >= 38→c

temp4 := NX SqSt = 30→c temp5 := NX SqSt = 31→c temp6 := B RqPrSd and temp1→c

temp7 := temp6 or B OpLtr LtrTs or B OpLtr AppSpec→c temp8 := temp2 or temp3→c

F TRIG(temp4,temp9)→c F TRIG(B OpLtr AppSpec,temp10)→c R TRIG(temp8,temp11)→c

temp12 := temp9 or temp5→c temp13 := L CnfHpp or B EnCdLnTrpSlt→c

temp14 := not (A PctMo and B LtrTsOpLtr)→c temp15 := temp12 and temp13→c

107

temp16 := temp10 or B CdLtr LtrTs or temp11 or temp15→c RS(temp7,temp16,temp17)→c

B ClLtr := temp14 and temp17→c EXIT LtrInt.Impl→call LtrInt(. . .)→c

dcu2 line trip(. . .) →call ENTRY dcu2 line trip.Impl →c temp = false →c

btemp = false→c enable→cF GPIO OUT:= GPIO OUT or LTRIP EN N→c

act →cT temp := temp or MCU LT ON →c FPGA LTRCR := temp →c

fpga2 on := temp and FPGA2 LT ON→c fb := temp and LT RELAY FB→c

enable and act and fpga2 on→cF fb→cT btemp := true→c fb ne := btemp→c

EXIT dcu2 line trip.Impl→call dcu2 line trip(. . .)→c EXIT Controller.Impl

(i) B CdLtr := true→d B CdLtr out := B CdLtr
(ii) B CdLtr out := B CdLtr→d−out DHSSMG B CdLtr := B CdLtr out

(iii) DHSSMG B CdLtr := B CdLtr out→d connection2 := DHSSMG B CdLtr
(iv) DHSSMG B CdLtr := connection2→d B CdLtr LtrTs in := DHSSMG B CdLtr
(v) B CdLtr LtrTs in := DHSSMG B CdLtr→d−in B CdLtr LtrTs := B CdLtr LtrTs in
(vi) B CdLtr LtrTs := B CdLtr LtrTs in→d

temp16 := temp10 or B CdLtr LtrTs or temp11 or temp15
(vii) B ClLtr := temp14 and temp17→d B ClLtr out := B ClLtr

(viii) B ClLtr out := B ClLtr→d−out DIGOMG B CdLtr := B ClLtr out
(ix) DIGOMG B CdLtr := B ClLtr out→d act in := DIGOMG B CdLtr
(x) act in := DIGOMG B CdLtr→d−in act := act in
(xi) act := act in→d act
(xii) act := act in→d enable and act and fpga2 on

(xiii) fb := temp and LT RELAY FB→d fb out := fb
(xiv) fb out := fb→d−out DHWOMG S LtrCd := fb out

– 〈B CdLtr := true→c Dy := true, {Delay(512ms)}〉
– 〈connection2 := DHSSMG B CdLtr→d−in DHSSMG B CdLtr := connection2,
{Latency => Xms..Xms}〉

10. ENTRY LtrTsSq.Impl→c State LtrTsSq = Start→cF state LtrTsSq = OpenLtr1→cT

NX LtrSaSq := 1 →c B LtrFl →cF not S LtrCd →cT B CdLtr := true →c

Dy := true →c state LtrTsSq := CloseLtr →c EXIT LtrTsSq.Impl →call

LtrTsSq(. . .)→c temp3 := temp1 and temp2→c SR(temp1,false,DHSSMG S LtrTsRdy)→c

SR(temp3,false,DHSSMG S LtrOpVd→c

EXIT Tester.Impl(connection2 := DHSSMG B CdLtr)→d−in
ENTRY Controller.Impl(on dispatch(DHSSMG B CdLtr := connection2))→cT

LtrInt(. . .)→call ENTRY LtrInt.Imp→c temp1 := NX SqSt >= 3→c

WITHIN I(true,NX SqSt,27,4,temp2)→c temp3 := NX SqSt >= 38→c

temp4 := NX SqSt = 30→c temp5 := NX SqSt = 31→c temp6 := B RqPrSd and temp1→c

temp7 := temp6 or B OpLtr LtrTs or B OpLtr AppSpec→c temp8 := temp2 or temp3→c

F TRIG(temp4,temp9)→c F TRIG(B OpLtr AppSpec,temp10)→c R TRIG(temp8,temp11)→c

temp12 := temp9 or temp5→c temp13 := L CnfHpp or B EnCdLnTrpSlt→c

temp14 := not (A PctMo and B LtrTsOpLtr)→c temp15 := temp12 and temp13→c

temp16 := temp10 or B CdLtr LtrTs or temp11 or temp15→c RS(temp7,temp16,temp17)→c

B ClLtr := temp14 and temp17→c EXIT LtrInt.Impl→call LtrInt(. . .)→c

dcu2 line trip(. . .) →call ENTRY dcu2 line trip.Impl →c temp = false →c

btemp = false→c enable→cF GPIO OUT:= GPIO OUT or LTRIP EN N→c

act →cT temp := temp or MCU LT ON →c FPGA LTRCR := temp →c

fpga2 on := temp and FPGA2 LT ON→c fb := temp and LT RELAY FB→c

108

enable and act and fpga2 on→cF fb→cF fb ne := btemp→c EXIT dcu2 line trip.Impl→call

dcu2 line trip(. . .)→c EXIT Controller.Impl

(i) B CdLtr := true→d B CdLtr out := B CdLtr
(ii) B CdLtr out := B CdLtr→d−out DHSSMG B CdLtr := B CdLtr out

(iii) DHSSMG B CdLtr := B CdLtr out→d connection2 := DHSSMG B CdLtr
(iv) DHSSMG B CdLtr := connection2→d B CdLtr LtrTs in := DHSSMG B CdLtr
(v) B CdLtr LtrTs in := DHSSMG B CdLtr→d−in B CdLtr LtrTs := B CdLtr LtrTs in
(vi) B CdLtr LtrTs := B CdLtr LtrTs in→d

temp16 := temp10 or B CdLtr LtrTs or temp11 or temp15
(vii) B ClLtr := temp14 and temp17→d B ClLtr out := B ClLtr

(viii) B ClLtr out := B ClLtr→d−out DIGOMG B CdLtr := B ClLtr out
(ix) DIGOMG B CdLtr := B ClLtr out→d act in := DIGOMG B CdLtr
(x) act in := DIGOMG B CdLtr→d−in act := act in
(xi) act := act in→d act
(xii) act := act in→d enable and act and fpga2 on

(xiii) fb := temp and LT RELAY FB→d fb out := fb
(xiv) fb out := fb→d−out DHWOMG S LtrCd := fb out

– 〈B CdLtr := true→c Dy := true, {Delay(512ms)}〉
– 〈connection2 := DHSSMG B CdLtr→d−in DHSSMG B CdLtr := connection2,
{Latency => Xms..Xms}〉

dcu2 line trip.Impl→ Controller.Impl→ Tester.Impl→ LtrTsSq.Impl
11. ENTRY dcu2 line trip.Impl→c temp = false→c btemp = false→c enable→cT

GPIO OUT:= GPIO OUT and not LTRIP EN N→c act→cF FPGA LTRCR := temp→c

fpga2 on := temp and FPGA2 LT ON→c fb := temp and LT RELAY FB→c

enable and act and fpga2 on→cF fb→cF fb ne := btemp→c EXIT dcu2 line trip.Impl→call

dcu2 line trip(. . .)→c EXIT Controller.Impl (connection3 := DHWOMG S LtrCd)→d−in
ENTRY Tester.Impl(DHWOMG S LtrCd := connection3)→c LtrTsSq(. . .)→call

ENTRY LtrTsSq.Impl→c State LtrTsSq = Start→cF state LtrTsSq = OpenLtr1→cT

NX LtrSaSq := 1 →c B LtrFl →cF not S LtrCd →cT B CdLtr := true →c

Dy := true →c state LtrTsSq := CloseLtr →c EXIT LtrTsSq.Impl →call

LtrTsSq(. . .)→c temp3 := temp1 and temp2→c SR(temp1,false,DHSSMG S LtrTsRdy)→c

SR(temp3,false,DHSSMG S LtrOpVd→c EXIT Tester.Impl

(i) fb := temp and LT RELAY FB→d fb out := fb
(ii) fb out := fb→d−out DHWOMG S LtrCd := fb out

(iii) DHWOMG S LtrCd := fb out→d connection3 := DHWOMG S LtrCd
(iv) DHWOMG S LtrCd := connection3→d S LtrCd in := DHWOMG S LtrCd
(v) S LtrCd in := DHWOMG S LtrCd→d−in S LtrCd := S LtrCd in
(vi) S LtrCd := S LtrCd in→d not S LtrCd

– 〈B CdLtr := true→c Dy := true, {Delay(512ms)}〉
– 〈connection3 := DHWOMG S LtrCd→d−in DHWOMG S LtrCd := connection3,
{Latency => Xms..Xms}〉

12. ENTRY dcu2 line trip.Impl→c temp = false→c btemp = false→c enable→cF

GPIO OUT:= GPIO OUT or LTRIP EN N→c act→cF FPGA LTRCR := temp→c

fpga2 on := temp and FPGA2 LT ON→c fb := temp and LT RELAY FB→c

enable and act and fpga2 on→cF fb→cF fb ne := btemp→c EXIT dcu2 line trip.Impl→call

109

dcu2 line trip(. . .)→c EXIT Controller.Impl (connection3 := DHWOMG S LtrCd)→d−in
ENTRY Tester.Impl(DHWOMG S LtrCd := connection3)→c LtrTsSq(. . .)→call

ENTRY LtrTsSq.Impl→c State LtrTsSq = Start→cF state LtrTsSq = OpenLtr1→cT

NX LtrSaSq := 1 →c B LtrFl →cF not S LtrCd →cT B CdLtr := true →c

Dy := true →c state LtrTsSq := CloseLtr →c EXIT LtrTsSq.Impl →call

LtrTsSq(. . .)→c temp3 := temp1 and temp2→c SR(temp1,false,DHSSMG S LtrTsRdy)→c

SR(temp3,false,DHSSMG S LtrOpVd→c EXIT Tester.Impl

(i) fb := temp and LT RELAY FB→d fb out := fb
(ii) fb out := fb→d−out DHWOMG S LtrCd := fb out

(iii) DHWOMG S LtrCd := fb out→d connection3 := DHWOMG S LtrCd
(iv) DHWOMG S LtrCd := connection3→d S LtrCd in := DHWOMG S LtrCd
(v) S LtrCd in := DHWOMG S LtrCd→d−in S LtrCd := S LtrCd in
(vi) S LtrCd := S LtrCd in→d not S LtrCd

– 〈B CdLtr := true→c Dy := true, {Delay(512ms)}〉
– 〈connection3 := DHWOMG S LtrCd→d−in DHWOMG S LtrCd := connection3,
{Latency => Xms..Xms}〉

13. ENTRY dcu2 line trip.Impl→c temp = false→c btemp = false→c enable→cT

GPIO OUT:= GPIO OUT and not LTRIP EN N→c act→cT temp := temp or MCU LT ON→c

FPGA LTRCR := temp→c fpga2 on := temp and FPGA2 LT ON→c

fb := temp and LT RELAY FB→c enable and act and fpga2 on→cT not fb→cF

fb ne := btemp →c EXIT dcu2 line trip.Impl →call dcu2 line trip(. . .) →c

EXIT Controller.Impl (connection3 := DHWOMG S LtrCd)→d−in
ENTRY Tester.Impl(DHWOMG S LtrCd := connection3)→c LtrTsSq(. . .)→call

ENTRY LtrTsSq.Impl→c State LtrTsSq = Start→cF state LtrTsSq = OpenLtr1→cF

state LtrTsSq = CloseLtr→cT NX LtrSaSq := 2→c B LtrFl→cF S LtrCd and Dy→cT

B OpLtr := true→c state LtrTsSq := OpenLtr2→c EXIT LtrTsSq.Impl→call

LtrTsSq(. . .)→c temp3 := temp1 and temp2→c SR(temp1,false,DHSSMG S LtrTsRdy)→c

SR(temp3,false,DHSSMG S LtrOpVd→c EXIT Tester.Impl

(i) fb := temp and LT RELAY FB→d fb out := fb
(ii) fb out := fb→d−out DHWOMG S LtrCd := fb out

(iii) DHWOMG S LtrCd := fb out→d connection3 := DHWOMG S LtrCd
(iv) DHWOMG S LtrCd := connection3→d S LtrCd in := DHWOMG S LtrCd
(v) S LtrCd in := DHWOMG S LtrCd→d−in S LtrCd := S LtrCd in
(vi) S LtrCd := S LtrCd in→d S LtrCd and Dy

– 〈connection3 := DHWOMG S LtrCd→d−in DHWOMG S LtrCd := connection3,
{Latency => Xms..Xms}〉

14. ENTRY dcu2 line trip.Impl→c temp = false→c btemp = false→c enable→cT

GPIO OUT:= GPIO OUT and not LTRIP EN N→c act→cT temp := temp or MCU LT ON→c

FPGA LTRCR := temp→c fpga2 on := temp and FPGA2 LT ON→c

fb := temp and LT RELAY FB→c enable and act and fpga2 on→cF fb→cT

btemp := true→c fb ne := btemp→c EXIT dcu2 line trip.Impl→call dcu2 line trip(. . .)→c

EXIT Controller.Impl (connection3 := DHWOMG S LtrCd)→d−in
ENTRY Tester.Impl(DHWOMG S LtrCd := connection3)→c LtrTsSq(. . .)→call

ENTRY LtrTsSq.Impl→c State LtrTsSq = Start→cF state LtrTsSq = OpenLtr1→cF

state LtrTsSq = CloseLtr→cT NX LtrSaSq := 2→c B LtrFl→cF S LtrCd and Dy→cT

110

B OpLtr := true→c state LtrTsSq := OpenLtr2→c EXIT LtrTsSq.Impl→call

LtrTsSq(. . .)→c temp3 := temp1 and temp2→c SR(temp1,false,DHSSMG S LtrTsRdy)→c

SR(temp3,false,DHSSMG S LtrOpVd→c EXIT Tester.Impl

(i) fb := temp and LT RELAY FB→d fb out := fb
(ii) fb out := fb→d−out DHWOMG S LtrCd := fb out

(iii) DHWOMG S LtrCd := fb out→d connection3 := DHWOMG S LtrCd
(iv) DHWOMG S LtrCd := connection3→d S LtrCd in := DHWOMG S LtrCd
(v) S LtrCd in := DHWOMG S LtrCd→d−in S LtrCd := S LtrCd in
(vi) S LtrCd := S LtrCd in→d S LtrCd and Dy

– 〈connection3 := DHWOMG S LtrCd→d−in DHWOMG S LtrCd := connection3,
{Latency => Xms..Xms}〉

15. ENTRY dcu2 line trip.Impl→c temp = false→c btemp = false→c enable→cF

GPIO OUT:= GPIO OUT or LTRIP EN N→c act→cT temp := temp or MCU LT ON→c

FPGA LTRCR := temp→c fpga2 on := temp and FPGA2 LT ON→c

fb := temp and LT RELAY FB→c enable and act and fpga2 on→cF fb→cT

btemp := true→c fb ne := btemp→c EXIT dcu2 line trip.Impl→call dcu2 line trip(. . .)→c

EXIT Controller.Impl (connection3 := DHWOMG S LtrCd)→d−in
ENTRY Tester.Impl(DHWOMG S LtrCd := connection3)→c LtrTsSq(. . .)→call

ENTRY LtrTsSq.Impl→c State LtrTsSq = Start→cF state LtrTsSq = OpenLtr1→cF

state LtrTsSq = CloseLtr→cT NX LtrSaSq := 2→c B LtrFl→cF S LtrCd and Dy→cT

B OpLtr := true→c state LtrTsSq := OpenLtr2→c EXIT LtrTsSq.Impl→call

LtrTsSq(. . .)→c temp3 := temp1 and temp2→c SR(temp1,false,DHSSMG S LtrTsRdy)→c

SR(temp3,false,DHSSMG S LtrOpVd→c EXIT Tester.Impl

(i) fb := temp and LT RELAY FB→d fb out := fb
(ii) fb out := fb→d−out DHWOMG S LtrCd := fb out

(iii) DHWOMG S LtrCd := fb out→d connection3 := DHWOMG S LtrCd
(iv) DHWOMG S LtrCd := connection3→d S LtrCd in := DHWOMG S LtrCd
(v) S LtrCd in := DHWOMG S LtrCd→d−in S LtrCd := S LtrCd in
(vi) S LtrCd := S LtrCd in→d S LtrCd and Dy

– 〈connection3 := DHWOMG S LtrCd→d−in DHWOMG S LtrCd := connection3,
{Latency => Xms..Xms}〉

16. ENTRY dcu2 line trip.Impl→c temp = false→c btemp = false→c enable→cT

GPIO OUT:= GPIO OUT and not LTRIP EN N→c act→cF FPGA LTRCR := temp→c

fpga2 on := temp and FPGA2 LT ON→c fb := temp and LT RELAY FB→c

enable and act and fpga2 on→cF fb→cF fb ne := btemp→c EXIT dcu2 line trip.Impl→call

dcu2 line trip(. . .)→c EXIT Controller.Impl (connection3 := DHWOMG S LtrCd)→d−in
ENTRY Tester.Impl(DHWOMG S LtrCd := connection3)→c LtrTsSq(. . .)→call

ENTRY LtrTsSq.Impl→c State LtrTsSq = Start→cF state LtrTsSq = OpenLtr1→cF

state LtrTsSq = CloseLtr→cF state LtrTsSq = OpenLtr2→cT NX LtrSaSq := 3→c

B LtrFl→cF not S LtrCd→cT A LtrTs := true→c state LtrTsSq := Ready→c

EXIT LtrTsSq.Impl→call LtrTsSq(. . .)→c temp3 := temp1 and temp2→c

SR(temp1,false,DHSSMG S LtrTsRdy)→c SR(temp3,false,DHSSMG S LtrOpVd→c

EXIT Tester.Impl

(i) fb := temp and LT RELAY FB→d fb out := fb
(ii) fb out := fb→d−out DHWOMG S LtrCd := fb out

111

(iii) DHWOMG S LtrCd := fb out→d connection3 := DHWOMG S LtrCd
(iv) DHWOMG S LtrCd := connection3→d S LtrCd in := DHWOMG S LtrCd
(v) S LtrCd in := DHWOMG S LtrCd→d−in S LtrCd := S LtrCd in
(vi) S LtrCd := S LtrCd in→d not S LtrCd

– 〈connection3 := DHWOMG S LtrCd→d−in DHWOMG S LtrCd := connection3,
{Latency => Xms..Xms}〉

17. ENTRY dcu2 line trip.Impl→c temp = false→c btemp = false→c enable→cF

GPIO OUT:= GPIO OUT or LTRIP EN N→c act→cF FPGA LTRCR := temp→c

fpga2 on := temp and FPGA2 LT ON→c fb := temp and LT RELAY FB→c

enable and act and fpga2 on→cF fb→cF fb ne := btemp→c EXIT dcu2 line trip.Impl→call

dcu2 line trip(. . .)→c EXIT Controller.Impl (connection3 := DHWOMG S LtrCd)→d−in
ENTRY Tester.Impl(DHWOMG S LtrCd := connection3)→c LtrTsSq(. . .)→call

ENTRY LtrTsSq.Impl→c State LtrTsSq = Start→cF state LtrTsSq = OpenLtr1→cF

state LtrTsSq = CloseLtr→cF state LtrTsSq = OpenLtr2→cT NX LtrSaSq := 3→c

B LtrFl→cF not S LtrCd→cT A LtrTs := true→c state LtrTsSq := Ready→c

EXIT LtrTsSq.Impl→call LtrTsSq(. . .)→c temp3 := temp1 and temp2→c

SR(temp1,false,DHSSMG S LtrTsRdy)→c SR(temp3,false,DHSSMG S LtrOpVd→c

EXIT Tester.Impl

(i) fb := temp and LT RELAY FB→d fb out := fb
(ii) fb out := fb→d−out DHWOMG S LtrCd := fb out

(iii) DHWOMG S LtrCd := fb out→d connection3 := DHWOMG S LtrCd
(iv) DHWOMG S LtrCd := connection3→d S LtrCd in := DHWOMG S LtrCd
(v) S LtrCd in := DHWOMG S LtrCd→d−in S LtrCd := S LtrCd in
(vi) S LtrCd := S LtrCd in→d not S LtrCd

– 〈connection3 := DHWOMG S LtrCd→d−in DHWOMG S LtrCd := connection3,
{Latency => Xms..Xms}〉

112

Appendix B Test suite

Table 28: Generated test cases

InternalTester1 InternalLtrTsSq1 InternalLtrTsSq2

some connection1 = 0 some connection1 = 0 some connection1 = 0
some connection2 = 0 some connection2 = 0 some connection2 = 0
some connection3 = 0 some connection3 = 0 some connection3 = 0
some connection4 = 0 some connection4 = 0 some connection4 = 0
some connection5 = 0 some connection5 = 0 some connection5 = 0
some connection6 = 0 some connection6 = 0 some connection6 = 0
some connection7 = 0 some connection7 = 0 some connection7 = 0
some connection8 = 1 some connection8 = 1 some connection8 = 1
GPIO OUT = 0 GPIO OUT = 0 GPIO OUT = 0
LTRIP EN N = 1 LTRIP EN N = 1 LTRIP EN N = 1
MCU LT ON = 1 MCU LT ON = 1 MCU LT ON = 1
FPGA2 LT ON = 0 FPGA2 LT ON = 0 FPGA2 LT ON = 0
LT RELAY FB = 1 LT RELAY FB = 1 LT RELAY FB = 1
some connection9 = 1 some connection9 = 1 some connection9 = 1
some connection10 = 0 some connection10 = 0 some connection10 = 1
some connection12 = 0 some connection12 = 0 some connection12 = 0
some connection13 = 0 some connection13 = 1 some connection13 = 1
some connection14 = 1 some connection14 = 0 some connection14 = 1
d=20 d=20 d=20
connection1 = 1 B OpLtr out = 0 B OpLtr out = 1
connection2 = 0 B CdLtr out = 0 B CdLtr out = 0
some connection15 = 0 NX LtrSaSq out = 0 NX LtrSaSq out = 0
some connection16 = 0 A LtrTs out = 0 A LtrTs out = 0
some connection17 = 0 A LtrOpVd out = 0 A LtrOpVd out = 0

Table 29: Generated test cases

InternalLtrTsSq3 InternalLtrTsSq4 InternalLtrTsSq5

some connection1 = 0 some connection1 = 0 some connection1 = 0
some connection2 = 0 some connection2 = 0 some connection2 = 0
some connection3 = 0 some connection3 = 0 some connection3 = 0
some connection4 = 0 some connection4 = 0 some connection4 = 0
some connection5 = 0 some connection5 = 0 some connection5 = 0
some connection6 = 0 some connection6 = 0 some connection6 = 0
some connection7 = 0 some connection7 = 0 some connection7 = 0
some connection8 = 1 some connection8 = 1 some connection8 = 1
GPIO OUT = 0 GPIO OUT = 0 GPIO OUT = 0
LTRIP EN N = 1 LTRIP EN N = 1 LTRIP EN N = 1
MCU LT ON = 1 MCU LT ON = 1 MCU LT ON = 1
FPGA2 LT ON = 0 FPGA2 LT ON = 0 FPGA2 LT ON = 0
LT RELAY FB = 1 LT RELAY FB = 1 LT RELAY FB = 1

113

some connection9 = 1 some connection9 = 1 some connection9 = 1
some connection10 = 0 some connection10 = 0 some connection10 = 0
some connection12 = 0 some connection12 = 0 some connection12 = 0
some connection13 = 0 some connection13 = 0 some connection13 = 0
some connection14 = 1 some connection14 = 1 some connection14 = 1
d=60 d=60 d=60
some connection1 = 0 some connection1 = 0 some connection1 = 0
some connection2 = 0 some connection2 = 0 some connection2 = 0
some connection3 = 0 some connection3 = 0 some connection3 = 0
some connection4 = 0 some connection4 = 0 some connection4 = 0
some connection5 = 0 some connection5 = 0 some connection5 = 0
some connection6 = 0 some connection6 = 0 some connection6 = 0
some connection7 = 0 some connection7 = 0 some connection7 = 0
some connection8 = 1 some connection8 = 1 some connection8 = 1
FPGA2 LT ON = 0 FPGA2 LT ON = 0 FPGA2 LT ON = 0
LT RELAY FB = 1 LT RELAY FB = 1 LT RELAY FB = 1
some connection9 = 1 some connection9 = 1 some connection9 = 1
some connection10 = 1 some connection10 = 0 some connection10 = 0
some connection12 = 0 some connection12 = 0 some connection12 = 0
some connection13 = 1 some connection13 = 0 some connection13 = 0
some connection14 = 1 some connection14 = 1 some connection14 = 1
d=24 d=536 d=576
B OpLtr out = 0 B OpLtr out = 0 some connection1 = 0
B CdLtr out = 0 B CdLtr out = 1 some connection2 = 0
NX LtrSaSq out = 1 NX LtrSaSq out = 1 some connection3 = 0
A LtrTs out = 0 A LtrTs out = 0 some connection4 = 0
A LtrOpVd out = 0 A LtrOpVd out = 0 some connection5 = 0

some connection6 = 0
some connection7 = 0
some connection8 = 1
FPGA2 LT ON = 0
LT RELAY FB = 1
some connection9 = 1
some connection10 = 1
some connection12 = 0
some connection13 = 1
some connection14 = 1
d=24
B OpLtr out = 0
B CdLtr out = 0
NX LtrSaSq out = 2
A LtrTs out = 0
A LtrOpVd out = 0

Table 30: Generated test cases

InternalLtrTsSq6 InternalLtrTsSq7 InternalLtrTsSq8

114

some connection1 = 0 some connection1 = 0 some connection1 = 0
some connection2 = 0 some connection2 = 0 some connection2 = 0
some connection3 = 0 some connection3 = 0 some connection3 = 0
some connection4 = 0 some connection4 = 0 some connection4 = 0
some connection5 = 0 some connection5 = 0 some connection5 = 0
some connection6 = 0 some connection6 = 0 some connection6 = 0
some connection7 = 0 some connection7 = 0 some connection7 = 0
some connection8 = 1 some connection8 = 1 some connection8 = 1
GPIO OUT = 0 GPIO OUT = 0 GPIO OUT = 0
LTRIP EN N = 1 LTRIP EN N = 1 LTRIP EN N = 1
MCU LT ON = 1 MCU LT ON = 1 MCU LT ON = 1
FPGA2 LT ON = 0 FPGA2 LT ON = 0 FPGA2 LT ON = 0
LT RELAY FB = 1 LT RELAY FB = 1 LT RELAY FB = 1
some connection9 = 1 some connection9 = 1 some connection9 = 1
some connection10 = 0 some connection10 = 0 some connection10 = 0
some connection12 = 0 some connection12 = 0 some connection12 = 0
some connection13 = 0 some connection13 = 0 some connection13 = 0
some connection14 = 1 some connection14 = 1 some connection14 = 1
d=60 d=60 d=60
some connection1 = 0 some connection1 = 0 some connection1 = 0
some connection2 = 0 some connection2 = 0 some connection2 = 0
some connection3 = 0 some connection3 = 0 some connection3 = 0
some connection4 = 0 some connection4 = 0 some connection4 = 0
some connection5 = 0 some connection5 = 0 some connection5 = 0
some connection6 = 0 some connection6 = 0 some connection6 = 0
some connection7 = 0 some connection7 = 0 some connection7 = 0
some connection8 = 1 some connection8 = 1 some connection8 = 1
FPGA2 LT ON = 0 FPGA2 LT ON = 0 FPGA2 LT ON = 0
LT RELAY FB = 1 LT RELAY FB = 1 LT RELAY FB = 1
some connection9 = 1 some connection9 = 1 some connection9 = 1
some connection10 = 0 some connection10 = 0 some connection10 = 0
some connection12 = 0 some connection12 = 0 some connection12 = 0
some connection13 = 0 some connection13 = 0 some connection13 = 0
some connection14 = 1 some connection14 = 1 some connection14 = 1
d=576 d=576 d=576
some connection1 = 0 some connection1 = 0 some connection1 = 0
some connection2 = 0 some connection2 = 0 some connection2 = 0
some connection3 = 0 some connection3 = 0 some connection3 = 0
some connection4 = 0 some connection4 = 0 some connection4 = 0
some connection5 = 0 some connection5 = 0 some connection5 = 0
some connection6 = 0 some connection6 = 0 some connection6 = 0
some connection7 = 0 some connection7 = 0 some connection7 = 0
some connection8 = 1 some connection8 = 1 some connection8 = 1
FPGA2 LT ON = 0 FPGA2 LT ON = 0 FPGA2 LT ON = 0
LT RELAY FB = 1 LT RELAY FB = 1 LT RELAY FB = 1
some connection9 = 1 some connection9 = 1 some connection9 = 1
some connection10 = 0 some connection10 = 0 some connection10 = 0
some connection12 = 0 some connection12 = 0 some connection12 = 0
some connection13 = 0 some connection13 = 0 some connection13 = 0
some connection14 = 1 some connection14 = 1 some connection14 = 1

115

d=24 d=64 d=64
B OpLtr out = 1 some connection1 = 0 some connection1 = 0
B CdLtr out = 0 some connection2 = 0 some connection2 = 0
NX LtrSaSq out = 2 some connection3 = 0 some connection3 = 0
A LtrTs out = 0 some connection4 = 0 some connection4 = 0
A LtrOpVd out = 0 some connection5 = 0 some connection5 = 0

some connection6 = 0 some connection6 = 0
some connection7 = 0 some connection7 = 0
some connection8 = 1 some connection8 = 1
FPGA2 LT ON = 0 FPGA2 LT ON = 0
LT RELAY FB = 1 LT RELAY FB = 1
some connection9 = 1 some connection9 = 1
some connection10 = 1 some connection10 = 0
some connection12 = 0 some connection12 = 0
some connection13 = 1 some connection13 = 0
some connection14 = 1 some connection14 = 1
d=24 d=24
B OpLtr out = 0 B OpLtr out = 0
B CdLtr out = 0 B CdLtr out = 0
NX LtrSaSq out = 3 NX LtrSaSq out = 3
A LtrTs out = 0 A LtrTs out = 1
A LtrOpVd out = 0 A LtrOpVd out = 0

Table 31: Generated test cases

InternalLtrTsSq9 InternalLtrTsSq10 InternalLtrTsSq11

some connection1 = 0 some connection1 = 0 some connection1 = 0
some connection2 = 0 some connection2 = 0 some connection2 = 0
some connection3 = 0 some connection3 = 0 some connection3 = 0
some connection4 = 0 some connection4 = 0 some connection4 = 0
some connection5 = 0 some connection5 = 0 some connection5 = 0
some connection6 = 0 some connection6 = 0 some connection6 = 0
some connection7 = 0 some connection7 = 0 some connection7 = 0
some connection8 = 1 some connection8 = 1 some connection8 = 1
GPIO OUT = 0 GPIO OUT = 0 GPIO OUT = 0
LTRIP EN N = 1 LTRIP EN N = 1 LTRIP EN N = 1
MCU LT ON = 1 MCU LT ON = 1 MCU LT ON = 1
FPGA2 LT ON = 0 FPGA2 LT ON = 0 FPGA2 LT ON = 0
LT RELAY FB = 1 LT RELAY FB = 1 LT RELAY FB = 1
some connection9 = 1 some connection9 = 1 some connection9 = 1
some connection10 = 0 some connection10 = 0 some connection10 = 0
some connection12 = 0 some connection12 = 0 some connection12 = 0
some connection13 = 1 some connection13 = 1 some connection13 = 0
some connection14 = 0 some connection14 = 0 some connection14 = 1
d=60 d=60 d=60
some connection1 = 0 some connection1 = 0 some connection1 = 0
some connection2 = 0 some connection2 = 0 some connection2 = 0

116

some connection3 = 0 some connection3 = 0 some connection3 = 0
some connection4 = 0 some connection4 = 0 some connection4 = 0
some connection5 = 0 some connection5 = 0 some connection5 = 0
some connection6 = 0 some connection6 = 0 some connection6 = 0
some connection7 = 0 some connection7 = 0 some connection7 = 0
some connection8 = 1 some connection8 = 1 some connection8 = 1
FPGA2 LT ON = 0 FPGA2 LT ON = 0 FPGA2 LT ON = 0
LT RELAY FB = 1 LT RELAY FB = 1 LT RELAY FB = 1
some connection9 = 1 some connection9 = 1 some connection9 = 1
some connection10 = 1 some connection10 = 1 some connection10 = 1
some connection12 = 0 some connection12 = 0 some connection12 = 0
some connection13 = 1 some connection13 = 1 some connection13 = 1
some connection14 = 1 some connection14 = 1 some connection14 = 1
d=24 d=24 d=24
B OpLtr out = 0 B OpLtr out = 0 B OpLtr out = 0
B CdLtr out = 0 B CdLtr out = 0 B CdLtr out = 0
NX LtrSaSq out = 4 NX LtrSaSq out = 4 NX LtrSaSq out = 1
A LtrTs out = 0 A LtrTs out = 0 A LtrTs out = 0
A LtrOpVd out = 0 A LtrOpVd out = 0 A LtrOpVd out = 0

Table 32: Generated test cases

InternalLtrTsSq12 InternalLtrTsSq13 InternalLtrTsSq14

some connection1 = 0 some connection1 = 0 some connection1 = 0
some connection2 = 0 some connection2 = 0 some connection2 = 0
some connection3 = 0 some connection3 = 0 some connection3 = 0
some connection4 = 0 some connection4 = 0 some connection4 = 0
some connection5 = 0 some connection5 = 0 some connection5 = 0
some connection6 = 0 some connection6 = 0 some connection6 = 0
some connection7 = 0 some connection7 = 0 some connection7 = 0
some connection8 = 1 some connection8 = 1 some connection8 = 1
GPIO OUT = 0 GPIO OUT = 0 GPIO OUT = 0
LTRIP EN N = 1 LTRIP EN N = 1 LTRIP EN N = 1
MCU LT ON = 1 MCU LT ON = 1 MCU LT ON = 1
FPGA2 LT ON = 0 FPGA2 LT ON = 0 FPGA2 LT ON = 0
LT RELAY FB = 1 LT RELAY FB = 1 LT RELAY FB = 1
some connection9 = 1 some connection9 = 1 some connection9 = 1
some connection10 = 0 some connection10 = 0 some connection10 = 0
some connection12 = 0 some connection12 = 0 some connection12 = 0
some connection13 = 0 some connection13 = 0 some connection13 = 0
some connection14 = 1 some connection14 = 1 some connection14 = 1
d=60 d=60 d=60
some connection1 = 0 some connection1 = 0 some connection1 = 0
some connection2 = 0 some connection2 = 0 some connection2 = 0
some connection3 = 0 some connection3 = 0 some connection3 = 0
some connection4 = 0 some connection4 = 0 some connection4 = 0
some connection5 = 0 some connection5 = 0 some connection5 = 0

117

some connection6 = 0 some connection6 = 0 some connection6 = 0
some connection7 = 0 some connection7 = 0 some connection7 = 0
some connection8 = 1 some connection8 = 1 some connection8 = 1
FPGA2 LT ON = 0 FPGA2 LT ON = 0 FPGA2 LT ON = 0
LT RELAY FB = 1 LT RELAY FB = 1 LT RELAY FB = 1
some connection9 = 1 some connection9 = 1 some connection9 = 1
some connection10 = 1 some connection10 = 0 some connection10 = 0
some connection12 = 0 some connection12 = 0 some connection12 = 0
some connection13 = 1 some connection13 = 0 some connection13 = 0
some connection14 = 1 some connection14 = 1 some connection14 = 1
d=64 d=576 d=576
some connection1 = 0 some connection1 = 0 some connection1 = 0
some connection2 = 0 some connection2 = 0 some connection2 = 0
some connection3 = 0 some connection3 = 0 some connection3 = 0
some connection4 = 0 some connection4 = 0 some connection4 = 0
some connection5 = 0 some connection5 = 0 some connection5 = 0
some connection6 = 0 some connection6 = 0 some connection6 = 0
some connection7 = 0 some connection7 = 0 some connection7 = 0
some connection8 = 1 some connection8 = 1 some connection8 = 1
FPGA2 LT ON = 0 FPGA2 LT ON = 0 FPGA2 LT ON = 0
LT RELAY FB = 1 LT RELAY FB = 1 LT RELAY FB = 1
some connection9 = 1 some connection9 = 1 some connection9 = 1
some connection10 = 0 some connection10 = 0 some connection10 = 1
some connection12 = 0 some connection12 = 0 some connection12 = 0
some connection13 = 0 some connection13 = 0 some connection13 = 1
some connection14 = 1 some connection14 = 1 some connection14 = 1
d=24 d=24 d=64
B OpLtr out = 1 B OpLtr out = 1 some connection1 = 0
B CdLtr out = 0 B CdLtr out = 0 some connection2 = 0
NX LtrSaSq out = 0 NX LtrSaSq out = 2 some connection3 = 0
A LtrTs out = 0 A LtrTs out = 0 some connection4 = 0
A LtrOpVd out = 0 A LtrOpVd out = 0 some connection5 = 0

some connection6 = 0
some connection7 = 0
some connection8 = 1
FPGA2 LT ON = 0
LT RELAY FB = 1
some connection9 = 1
some connection10 = 0
some connection12 = 0
some connection13 = 0
some connection14 = 1
d=24
B OpLtr out = 1
B CdLtr out = 0
NX LtrSaSq out = 0
A LtrTs out = 0
A LtrOpVd out = 0

118

Table 33: Generated test cases

InternalLtrTsSq15 InternalLtrTsSq16 InternalLtrTsSq17

some connection1 = 0 some connection1 = 0 some connection1 = 0
some connection2 = 0 some connection2 = 0 some connection2 = 0
some connection3 = 0 some connection3 = 0 some connection3 = 0
some connection4 = 0 some connection4 = 0 some connection4 = 0
some connection5 = 0 some connection5 = 0 some connection5 = 0
some connection6 = 0 some connection6 = 0 some connection6 = 0
some connection7 = 0 some connection7 = 0 some connection7 = 0
some connection8 = 1 some connection8 = 1 some connection8 = 1
GPIO OUT = 0 GPIO OUT = 0 GPIO OUT = 0
LTRIP EN N = 1 LTRIP EN N = 1 LTRIP EN N = 1
MCU LT ON = 1 MCU LT ON = 1 MCU LT ON = 1
FPGA2 LT ON = 0 FPGA2 LT ON = 0 FPGA2 LT ON = 0
LT RELAY FB = 1 LT RELAY FB = 1 LT RELAY FB = 1
some connection9 = 1 some connection9 = 1 some connection9 = 1
some connection10 = 0 some connection10 = 0 some connection10 = 0
some connection12 = 0 some connection12 = 0 some connection12 = 0
some connection13 = 0 some connection13 = 0 some connection13 = 0
some connection14 = 1 some connection14 = 1 some connection14 = 1
d=60 d=60 d=60
some connection1 = 0 some connection1 = 0 some connection1 = 0
some connection2 = 0 some connection2 = 0 some connection2 = 0
some connection3 = 0 some connection3 = 0 some connection3 = 0
some connection4 = 0 some connection4 = 0 some connection4 = 0
some connection5 = 0 some connection5 = 0 some connection5 = 0
some connection6 = 0 some connection6 = 0 some connection6 = 0
some connection7 = 0 some connection7 = 0 some connection7 = 0
some connection8 = 1 some connection8 = 1 some connection8 = 1
FPGA2 LT ON = 0 FPGA2 LT ON = 0 FPGA2 LT ON = 0
LT RELAY FB = 1 LT RELAY FB = 1 LT RELAY FB = 1
some connection9 = 1 some connection9 = 1 some connection9 = 1
some connection10 = 0 some connection10 = 0 some connection10 = 0
some connection12 = 0 some connection12 = 0 some connection12 = 0
some connection13 = 0 some connection13 = 0 some connection13 = 0
some connection14 = 1 some connection14 = 1 some connection14 = 1
d=576 d=576 d=576
some connection1 = 0 some connection1 = 0 some connection1 = 0
some connection2 = 0 some connection2 = 0 some connection2 = 0
some connection3 = 0 some connection3 = 0 some connection3 = 0
some connection4 = 0 some connection4 = 0 some connection4 = 0
some connection5 = 0 some connection5 = 0 some connection5 = 0
some connection6 = 0 some connection6 = 0 some connection6 = 0
some connection7 = 0 some connection7 = 0 some connection7 = 0
some connection8 = 1 some connection8 = 1 some connection8 = 1
FPGA2 LT ON = 0 FPGA2 LT ON = 0 FPGA2 LT ON = 0
LT RELAY FB = 1 LT RELAY FB = 1 LT RELAY FB = 1
some connection9 = 1 some connection9 = 1 some connection9 = 1

119

some connection10 = 0 some connection10 = 0 some connection10 = 0
some connection12 = 0 some connection12 = 0 some connection12 = 0
some connection13 = 0 some connection13 = 0 some connection13 = 0
some connection14 = 1 some connection14 = 1 some connection14 = 1
d=64 d=64 d=64
some connection1 = 0 some connection1 = 0 some connection1 = 0
some connection2 = 0 some connection2 = 0 some connection2 = 0
some connection3 = 0 some connection3 = 0 some connection3 = 0
some connection4 = 0 some connection4 = 0 some connection4 = 0
some connection5 = 0 some connection5 = 0 some connection5 = 0
some connection6 = 0 some connection6 = 0 some connection6 = 0
some connection7 = 0 some connection7 = 0 some connection7 = 0
some connection8 = 1 some connection8 = 1 some connection8 = 1
FPGA2 LT ON = 0 FPGA2 LT ON = 0 FPGA2 LT ON = 0
LT RELAY FB = 1 LT RELAY FB = 1 LT RELAY FB = 1
some connection9 = 1 some connection9 = 1 some connection9 = 1
some connection10 = 0 some connection10 = 1 some connection10 = 0
some connection12 = 0 some connection12 = 0 some connection12 = 0
some connection13 = 0 some connection13 = 1 some connection13 = 0
some connection14 = 1 some connection14 = 1 some connection14 = 1
d=24 d=64 d=64
B OpLtr out = 0 some connection1 = 0 some connection1 = 0
B CdLtr out = 0 some connection2 = 0 some connection2 = 0
NX LtrSaSq out = 3 some connection3 = 0 some connection3 = 0
A LtrTs out = 1 some connection4 = 0 some connection4 = 0
A LtrOpVd out = 0 some connection5 = 0 some connection5 = 0

some connection6 = 0 some connection6 = 0
some connection7 = 0 some connection7 = 0
some connection8 = 1 some connection8 = 1
FPGA2 LT ON = 0 FPGA2 LT ON = 0
LT RELAY FB = 1 LT RELAY FB = 1
some connection9 = 1 some connection9 = 1
some connection10 = 0 some connection10 = 1
some connection12 = 0 some connection12 = 0
some connection13 = 0 some connection13 = 1
some connection14 = 1 some connection14 = 1
d=24 d=24
B OpLtr out = 1 B OpLtr out = 0
B CdLtr out = 0 B CdLtr out = 0
NX LtrSaSq out = 0 NX LtrSaSq out = 4
A LtrTs out = 0 A LtrTs out = 0
A LtrOpVd out = 0 A LtrOpVd out = 0

Table 34: Generated test cases

InternalLtrTsSq18 InternalLtrTsSq19 InternalController1

some connection1 = 0 some connection1 = 0 some connection1 = 0

120

some connection2 = 0 some connection2 = 0 some connection2 = 0
some connection3 = 0 some connection3 = 0 some connection3 = 0
some connection4 = 0 some connection4 = 0 some connection4 = 0
some connection5 = 0 some connection5 = 0 some connection5 = 0
some connection6 = 0 some connection6 = 0 some connection6 = 0
some connection7 = 0 some connection7 = 0 some connection7 = 0
some connection8 = 1 some connection8 = 1 some connection8 = 1
GPIO OUT = 0 GPIO OUT = 0 GPIO OUT = 0
LTRIP EN N = 1 LTRIP EN N = 1 LTRIP EN N = 1
MCU LT ON = 1 MCU LT ON = 1 MCU LT ON = 1
FPGA2 LT ON = 0 FPGA2 LT ON = 0 FPGA2 LT ON = 0
LT RELAY FB = 1 LT RELAY FB = 1 LT RELAY FB = 1
some connection9 = 1 some connection9 = 1 some connection9 = 1
some connection10 = 0 some connection10 = 0 some connection10 = 0
some connection12 = 0 some connection12 = 0 some connection12 = 0
some connection13 = 1 some connection13 = 0 some connection13 = 0
some connection14 = 0 some connection14 = 1 some connection14 = 1
d=60 d=60 d=2
some connection1 = 0 some connection1 = 0 connection3 = 0
some connection2 = 0 some connection2 = 0 some connection18 = 0
some connection3 = 0 some connection3 = 0 some connection20 = 0
some connection4 = 0 some connection4 = 0 some connection21 = 0
some connection5 = 0 some connection5 = 0 GPIO OUT = 1
some connection6 = 0 some connection6 = 0 FPGA LTRCR = 0
some connection7 = 0 some connection7 = 0
some connection8 = 1 some connection8 = 1
FPGA2 LT ON = 0 FPGA2 LT ON = 0
LT RELAY FB = 1 LT RELAY FB = 1
some connection9 = 1 some connection9 = 1
some connection10 = 1 some connection10 = 0
some connection12 = 0 some connection12 = 0
some connection13 = 1 some connection13 = 0
some connection14 = 1 some connection14 = 1
d=64 d=576
some connection1 = 0 some connection1 = 0
some connection2 = 0 some connection2 = 0
some connection3 = 0 some connection3 = 0
some connection4 = 0 some connection4 = 0
some connection5 = 0 some connection5 = 0
some connection6 = 0 some connection6 = 0
some connection7 = 0 some connection7 = 0
some connection8 = 1 some connection8 = 1
FPGA2 LT ON = 0 FPGA2 LT ON = 0
LT RELAY FB = 1 LT RELAY FB = 1
some connection9 = 1 some connection9 = 1
some connection10 = 0 some connection10 = 0
some connection12 = 0 some connection12 = 0
some connection13 = 0 some connection13 = 0
some connection14 = 1 some connection14 = 1
d=24 d=24

121

B OpLtr out = 1 B OpLtr out = 1
B CdLtr out = 0 B CdLtr out = 0
NX LtrSaSq out = 0 NX LtrSaSq out = 2
A LtrTs out = 0 A LtrTs out = 0
A LtrOpVd out = 0 A LtrOpVd out = 0

Table 35: Generated test cases

InternalLtrInt1 Internaldcu2 line trip1 Internaldcu2 line trip2

some connection1 = 0 some connection1 = 0 some connection1 = 0
some connection2 = 0 some connection2 = 0 some connection2 = 0
some connection3 = 0 some connection3 = 31 some connection3 = 31
some connection4 = 0 some connection4 = 1 some connection4 = 1
some connection5 = 0 some connection5 = 0 some connection5 = 0
some connection6 = 0 some connection6 = 1 some connection6 = 1
some connection7 = 0 some connection7 = 1 some connection7 = 1
some connection8 = 1 some connection8 = 0 some connection8 = 0
GPIO OUT = 0 GPIO OUT = 0 GPIO OUT = 0
LTRIP EN N = 1 LTRIP EN N = 1 LTRIP EN N = 1
MCU LT ON = 1 MCU LT ON = 1 MCU LT ON = 1
FPGA2 LT ON = 0 FPGA2 LT ON = 1 FPGA2 LT ON = 1
LT RELAY FB = 1 LT RELAY FB = 0 LT RELAY FB = 1
some connection9 = 1 some connection9 = 1 some connection9 = 1
some connection10 = 0 some connection10 = 1 some connection10 = 1
some connection12 = 0 some connection12 = 0 some connection12 = 0
some connection13 = 0 some connection13 = 1 some connection13 = 1
some connection14 = 1 some connection14 = 1 some connection14 = 1
d=2 d=2 d=2
B ClLtr out = 0 GPIO OUT = 0 GPIO OUT = 0

FPGA LTRCR = 1 FPGA LTRCR = 1
fb out = 0 fb out = 1
fpga2 on out = 1 fpga2 on out = 1
fb ne out = 1 fb ne out = 0

Table 36: Generated test cases

Internaldcu2 line trip3 Internaldcu2 line trip4 Internaldcu2 line trip5

some connection1 = 0 some connection1 = 0 some connection1 = 1
some connection2 = 0 some connection2 = 0 some connection2 = 1
some connection3 = 31 some connection3 = 31 some connection3 = 31
some connection4 = 1 some connection4 = 1 some connection4 = 1
some connection5 = 0 some connection5 = 0 some connection5 = 1
some connection6 = 1 some connection6 = 1 some connection6 = 1
some connection7 = 1 some connection7 = 1 some connection7 = 1

122

some connection8 = 0 some connection8 = 0 some connection8 = 0
GPIO OUT = 0 GPIO OUT = 0 GPIO OUT = 0
LTRIP EN N = 1 LTRIP EN N = 1 LTRIP EN N = 1
MCU LT ON = 1 MCU LT ON = 1 MCU LT ON = 1
FPGA2 LT ON = 0 FPGA2 LT ON = 0 FPGA2 LT ON = 1
LT RELAY FB = 1 LT RELAY FB = 0 LT RELAY FB = 0
some connection9 = 1 some connection9 = 1 some connection9 = 1
some connection10 = 1 some connection10 = 1 some connection10 = 1
some connection12 = 0 some connection12 = 0 some connection12 = 0
some connection13 = 1 some connection13 = 1 some connection13 = 1
some connection14 = 1 some connection14 = 1 some connection14 = 1
d=2 d=2 d=2
GPIO OUT = 0 GPIO OUT = 0 GPIO OUT = 0
FPGA LTRCR = 1 FPGA LTRCR = 1 FPGA LTRCR = 0
fb out = 1 fb out = 0 fb out = 0
fpga2 on out = 0 fpga2 on out = 0 fpga2 on out = 0
fb ne out = 1 fb ne out = 0 fb ne out = 0

Table 37: Generated test cases

Internaldcu2 line trip6 Internaldcu2 line trip7 Internaldcu2 line trip8

some connection1 = 0 some connection1 = 0 some connection1 = 1
some connection2 = 0 some connection2 = 0 some connection2 = 1
some connection3 = 31 some connection3 = 31 some connection3 = 31
some connection4 = 1 some connection4 = 1 some connection4 = 1
some connection5 = 0 some connection5 = 0 some connection5 = 1
some connection6 = 1 some connection6 = 1 some connection6 = 1
some connection7 = 1 some connection7 = 1 some connection7 = 1
some connection8 = 1 some connection8 = 1 some connection8 = 1
GPIO OUT = 0 GPIO OUT = 0 GPIO OUT = 0
LTRIP EN N = 1 LTRIP EN N = 1 LTRIP EN N = 1
MCU LT ON = 1 MCU LT ON = 1 MCU LT ON = 1
FPGA2 LT ON = 1 FPGA2 LT ON = 1 FPGA2 LT ON = 1
LT RELAY FB = 1 LT RELAY FB = 0 LT RELAY FB = 0
some connection9 = 1 some connection9 = 1 some connection9 = 1
some connection10 = 1 some connection10 = 1 some connection10 = 1
some connection12 = 0 some connection12 = 0 some connection12 = 0
some connection13 = 1 some connection13 = 1 some connection13 = 1
some connection14 = 1 some connection14 = 1 some connection14 = 1
d=2 d=2 d=2
GPIO OUT = 1 GPIO OUT = 1 GPIO OUT = 1
FPGA LTRCR = 1 FPGA LTRCR = 1 FPGA LTRCR = 0
fb out = 1 fb out = 0 fb out = 0
fpga2 on out = 1 fpga2 on out = 1 fpga2 on out = 0
fb ne out = 1 fb ne out = 0 fb ne out = 0

123

Table 38: Generated test cases

Internaldcu2 line trip9 Internaldcu2 line trip10 Internaldcu2 line trip11

some connection1 = 1 some connection1 = 0 some connection1 = 0
some connection2 = 1 some connection2 = 0 some connection2 = 0
some connection3 = 31 some connection3 = 0 some connection3 = 0
some connection4 = 1 some connection4 = 0 some connection4 = 0
some connection5 = 1 some connection5 = 0 some connection5 = 0
some connection6 = 1 some connection6 = 0 some connection6 = 0
some connection7 = 1 some connection7 = 0 some connection7 = 0
some connection8 = 0 some connection8 = 1 some connection8 = 1
GPIO OUT = 0 GPIO OUT = 0 GPIO OUT = 0
LTRIP EN N = 1 LTRIP EN N = 1 LTRIP EN N = 1
MCU LT ON = 1 MCU LT ON = 1 MCU LT ON = 1
FPGA2 LT ON = 1 FPGA2 LT ON = 0 FPGA2 LT ON = 0
LT RELAY FB = 0 LT RELAY FB = 1 LT RELAY FB = 1
some connection9 = 1 some connection9 = 1 some connection9 = 1
some connection10 = 1 some connection10 = 0 some connection10 = 0
some connection12 = 0 some connection12 = 0 some connection12 = 0
some connection13 = 1 some connection13 = 0 some connection13 = 0
some connection14 = 1 some connection14 = 1 some connection14 = 1
d=6 d=60 d=60
GPIO OUT = 0 some connection1 = 0 some connection1 = 0
FPGA LTRCR = 0 some connection2 = 0 some connection2 = 0
fb out = 0 some connection3 = 0 some connection3 = 0
fpga2 on out = 0 some connection4 = 0 some connection4 = 0
fb ne out = 0 some connection5 = 0 some connection5 = 0

some connection6 = 0 some connection6 = 0
some connection7 = 0 some connection7 = 0
some connection8 = 0 some connection8 = 0
FPGA2 LT ON = 0 FPGA2 LT ON = 0
LT RELAY FB = 1 LT RELAY FB = 1
some connection9 = 1 some connection9 = 1
some connection10 = 1 some connection10 = 0
some connection12 = 0 some connection12 = 0
some connection13 = 1 some connection13 = 0
some connection14 = 1 some connection14 = 1
d=64 d=2
some connection1 = 0 GPIO OUT = 0
some connection2 = 0 FPGA LTRCR = 0
some connection3 = 0 fb out = 0
some connection4 = 0 fpga2 on out = 0
some connection5 = 0 fb ne out = 0
some connection6 = 0
some connection7 = 0
some connection8 = 1
FPGA2 LT ON = 0
LT RELAY FB = 1
some connection9 = 1

124

some connection10 = 0
some connection12 = 0
some connection13 = 0
some connection14 = 1
d=2
GPIO OUT = 1
FPGA LTRCR = 0
fb out = 0
fpga2 on out = 0
fb ne out = 0

Table 39: Generated test cases

Internaldcu2 line trip12 Direct1 Direct2

some connection1 = 1 some connection1 = 0 some connection1 = 0
some connection2 = 1 some connection2 = 0 some connection2 = 0
some connection3 = 31 some connection3 = 0 some connection3 = 0
some connection4 = 1 some connection4 = 0 some connection4 = 0
some connection5 = 1 some connection5 = 0 some connection5 = 0
some connection6 = 1 some connection6 = 0 some connection6 = 0
some connection7 = 1 some connection7 = 0 some connection7 = 0
some connection8 = 1 some connection8 = 1 some connection8 = 1
GPIO OUT = 0 GPIO OUT = 0 GPIO OUT = 0
LTRIP EN N = 1 LTRIP EN N = 1 LTRIP EN N = 1
MCU LT ON = 1 MCU LT ON = 1 MCU LT ON = 1
FPGA2 LT ON = 1 FPGA2 LT ON = 0 FPGA2 LT ON = 0
LT RELAY FB = 0 LT RELAY FB = 1 LT RELAY FB = 1
some connection9 = 1 some connection9 = 1 some connection9 = 1
some connection10 = 1 some connection10 = 0 some connection10 = 0
some connection12 = 0 some connection12 = 0 some connection12 = 0
some connection13 = 1 some connection13 = 0 some connection13 = 0
some connection14 = 1 some connection14 = 1 some connection14 = 1
d=6 d=20 d=2
GPIO OUT = 1 C LtrTs in = 1 B RqPrSd in = 0
FPGA LTRCR = 0 B LtrFl in = 0 B OpLtr AppSpec in = 0
fb out = 0 S LtrCd in = 0 NX SqSt in = 0
fpga2 on out = 0 S LtrOp in = 0 A PctMo in = 0
fb ne out = 0 S DCUNtRdy in = 0 B LtrTsOpLtr in = 0

L EnLtrSv in = 1 B OpLtr LtrTs in = 0
B CdLtr LtrTs in = 0
B EnCdLnTrpSlt in = 0
L CnfHpp in = 0

Table 40: Generated test cases

125

Direct3 Direct4 Direct5

some connection1 = 0 some connection1 = 0 some connection1 = 0
some connection2 = 0 some connection2 = 0 some connection2 = 0
some connection3 = 0 some connection3 = 0 some connection3 = 0
some connection4 = 0 some connection4 = 0 some connection4 = 0
some connection5 = 0 some connection5 = 0 some connection5 = 0
some connection6 = 0 some connection6 = 0 some connection6 = 0
some connection7 = 0 some connection7 = 0 some connection7 = 0
some connection8 = 1 some connection8 = 1 some connection8 = 1
GPIO OUT = 0 GPIO OUT = 0 GPIO OUT = 0
LTRIP EN N = 1 LTRIP EN N = 1 LTRIP EN N = 1
MCU LT ON = 1 MCU LT ON = 1 MCU LT ON = 1
FPGA2 LT ON = 0 FPGA2 LT ON = 0 FPGA2 LT ON = 0
LT RELAY FB = 1 LT RELAY FB = 1 LT RELAY FB = 1
some connection9 = 1 some connection9 = 1 some connection9 = 1
some connection10 = 0 some connection10 = 0 some connection10 = 0
some connection12 = 0 some connection12 = 0 some connection12 = 0
some connection13 = 0 some connection13 = 0 some connection13 = 0
some connection14 = 1 some connection14 = 1 some connection14 = 1
d=2 d=20 d=20
enable in = 0 DHSSMG B OpLtr = 1 DHSSMG B CdLtr = 0
act in = 0

Table 41: Generated test cases

Direct6 Indirect1 Indirect2

some connection1 = 0 some connection1 = 0 some connection1 = 0
some connection2 = 0 some connection2 = 0 some connection2 = 0
some connection3 = 0 some connection3 = 0 some connection3 = 0
some connection4 = 0 some connection4 = 0 some connection4 = 0
some connection5 = 0 some connection5 = 0 some connection5 = 0
some connection6 = 0 some connection6 = 0 some connection6 = 0
some connection7 = 0 some connection7 = 0 some connection7 = 0
some connection8 = 1 some connection8 = 0 some connection8 = 1
GPIO OUT = 0 GPIO OUT = 0 GPIO OUT = 0
LTRIP EN N = 1 LTRIP EN N = 1 LTRIP EN N = 1
MCU LT ON = 1 MCU LT ON = 1 MCU LT ON = 1
FPGA2 LT ON = 0 FPGA2 LT ON = 0 FPGA2 LT ON = 0
LT RELAY FB = 1 LT RELAY FB = 1 LT RELAY FB = 1
some connection9 = 1 some connection9 = 1 some connection9 = 1
some connection10 = 0 some connection10 = 0 some connection10 = 0
some connection12 = 0 some connection12 = 0 some connection12 = 0
some connection13 = 0 some connection13 = 1 some connection13 = 0
some connection14 = 1 some connection14 = 1 some connection14 = 1
d=60 d=20 d=20
some connection1 = 0 some connection15 = 0 some connection15 = 0

126

some connection2 = 0 some connection16 = 0 some connection16 = 0
some connection3 = 0 some connection17 = 0 some connection17 = 0
some connection4 = 0 d=2 d=2
some connection5 = 0 connection3 = 0 connection3 = 0
some connection6 = 0 some connection18 = 0 some connection18 = 0
some connection7 = 0 some connection20 = 0 some connection20 = 0
some connection8 = 1 some connection21 = 0 some connection21 = 0
FPGA2 LT ON = 0 GPIO OUT = 0 GPIO OUT = 1
LT RELAY FB = 1 FPGA LTRCR = 0 FPGA LTRCR = 0
some connection9 = 1
some connection10 = 0
some connection12 = 0
some connection13 = 0
some connection14 = 1
d=4
DHWOMG S LtrCd = 0

Table 42: Generated test cases

Indirect3 Indirect4 Indirect5

some connection1 = 0 some connection1 = 0 some connection1 = 0
some connection2 = 0 some connection2 = 0 some connection2 = 0
some connection3 = 0 some connection3 = 0 some connection3 = 0
some connection4 = 0 some connection4 = 0 some connection4 = 0
some connection5 = 0 some connection5 = 0 some connection5 = 0
some connection6 = 0 some connection6 = 0 some connection6 = 0
some connection7 = 0 some connection7 = 0 some connection7 = 0
some connection8 = 1 some connection8 = 1 some connection8 = 1
GPIO OUT = 0 GPIO OUT = 0 GPIO OUT = 0
LTRIP EN N = 1 LTRIP EN N = 1 LTRIP EN N = 1
MCU LT ON = 1 MCU LT ON = 1 MCU LT ON = 1
FPGA2 LT ON = 0 FPGA2 LT ON = 0 FPGA2 LT ON = 0
LT RELAY FB = 1 LT RELAY FB = 1 LT RELAY FB = 1
some connection9 = 1 some connection9 = 1 some connection9 = 1
some connection10 = 0 some connection10 = 0 some connection10 = 0
some connection12 = 0 some connection12 = 0 some connection12 = 0
some connection13 = 0 some connection13 = 0 some connection13 = 0
some connection14 = 1 some connection14 = 1 some connection14 = 1
d=60 d=60 d=60
some connection1 = 0 some connection1 = 0 some connection1 = 0
some connection2 = 0 some connection2 = 0 some connection2 = 0
some connection3 = 0 some connection3 = 0 some connection3 = 0
some connection4 = 0 some connection4 = 0 some connection4 = 0
some connection5 = 0 some connection5 = 0 some connection5 = 0
some connection6 = 0 some connection6 = 0 some connection6 = 0
some connection7 = 0 some connection7 = 0 some connection7 = 0
some connection8 = 1 some connection8 = 1 some connection8 = 0

127

FPGA2 LT ON = 0 FPGA2 LT ON = 0 FPGA2 LT ON = 1
LT RELAY FB = 1 LT RELAY FB = 1 LT RELAY FB = 0
some connection9 = 1 some connection9 = 1 some connection9 = 1
some connection10 = 0 some connection10 = 0 some connection10 = 0
some connection12 = 0 some connection12 = 0 some connection12 = 0
some connection13 = 0 some connection13 = 0 some connection13 = 0
some connection14 = 1 some connection14 = 1 some connection14 = 1
d=576 d=576 d=536
some connection1 = 0 some connection1 = 0 some connection15 = 1
some connection2 = 0 some connection2 = 0 some connection16 = 0
some connection3 = 0 some connection3 = 0 some connection17 = 0
some connection4 = 0 some connection4 = 0 d=2
some connection5 = 0 some connection5 = 0 connection3 = 0
some connection6 = 0 some connection6 = 0 some connection18 = 1
some connection7 = 0 some connection7 = 0 some connection20 = 1
some connection8 = 0 some connection8 = 1 some connection21 = 1
FPGA2 LT ON = 0 FPGA2 LT ON = 0 GPIO OUT = 0
LT RELAY FB = 1 LT RELAY FB = 1 FPGA LTRCR = 1
some connection9 = 1 some connection9 = 1
some connection10 = 0 some connection10 = 0
some connection12 = 0 some connection12 = 0
some connection13 = 0 some connection13 = 0
some connection14 = 1 some connection14 = 1
d=24 d=24
some connection15 = 2 some connection15 = 2
some connection16 = 0 some connection16 = 0
some connection17 = 0 some connection17 = 0
d=2 d=2
connection3 = 0 connection3 = 0
some connection18 = 0 some connection18 = 0
some connection20 = 0 some connection20 = 0
some connection21 = 0 some connection21 = 0
GPIO OUT = 0 GPIO OUT = 1
FPGA LTRCR = 0 FPGA LTRCR = 0

Table 43: Generated test cases

Indirect6 Indirect7 Indirect8

some connection1 = 0 some connection1 = 0 some connection1 = 0
some connection2 = 0 some connection2 = 0 some connection2 = 0
some connection3 = 0 some connection3 = 0 some connection3 = 0
some connection4 = 0 some connection4 = 0 some connection4 = 0
some connection5 = 0 some connection5 = 0 some connection5 = 0
some connection6 = 0 some connection6 = 0 some connection6 = 0
some connection7 = 0 some connection7 = 0 some connection7 = 0
some connection8 = 1 some connection8 = 1 some connection8 = 1
GPIO OUT = 0 GPIO OUT = 0 GPIO OUT = 0

128

LTRIP EN N = 1 LTRIP EN N = 1 LTRIP EN N = 1
MCU LT ON = 1 MCU LT ON = 1 MCU LT ON = 1
FPGA2 LT ON = 0 FPGA2 LT ON = 0 FPGA2 LT ON = 0
LT RELAY FB = 1 LT RELAY FB = 1 LT RELAY FB = 1
some connection9 = 1 some connection9 = 1 some connection9 = 1
some connection10 = 0 some connection10 = 0 some connection10 = 0
some connection12 = 0 some connection12 = 0 some connection12 = 0
some connection13 = 0 some connection13 = 0 some connection13 = 0
some connection14 = 1 some connection14 = 1 some connection14 = 1
d=60 d=60 d=60
some connection1 = 0 some connection1 = 0 some connection1 = 0
some connection2 = 0 some connection2 = 0 some connection2 = 0
some connection3 = 0 some connection3 = 0 some connection3 = 0
some connection4 = 0 some connection4 = 0 some connection4 = 0
some connection5 = 0 some connection5 = 0 some connection5 = 0
some connection6 = 0 some connection6 = 0 some connection6 = 0
some connection7 = 0 some connection7 = 0 some connection7 = 0
some connection8 = 0 some connection8 = 0 some connection8 = 0
FPGA2 LT ON = 1 FPGA2 LT ON = 0 FPGA2 LT ON = 0
LT RELAY FB = 1 LT RELAY FB = 1 LT RELAY FB = 0
some connection9 = 1 some connection9 = 1 some connection9 = 1
some connection10 = 0 some connection10 = 0 some connection10 = 0
some connection12 = 0 some connection12 = 0 some connection12 = 0
some connection13 = 0 some connection13 = 0 some connection13 = 0
some connection14 = 1 some connection14 = 1 some connection14 = 1
d=536 d=536 d=536
some connection15 = 1 some connection15 = 1 some connection15 = 1
some connection16 = 0 some connection16 = 0 some connection16 = 0
some connection17 = 0 some connection17 = 0 some connection17 = 0
d=2 d=2 d=2
connection3 = 1 connection3 = 1 connection3 = 0
some connection18 = 1 some connection18 = 1 some connection18 = 1
some connection20 = 1 some connection20 = 0 some connection20 = 0
some connection21 = 0 some connection21 = 1 some connection21 = 0
GPIO OUT = 0 GPIO OUT = 0 GPIO OUT = 0
FPGA LTRCR = 1 FPGA LTRCR = 1 FPGA LTRCR = 1

Table 44: Generated test cases

Indirect9 Indirect10 Indirect11

some connection1 = 0 some connection1 = 0 some connection1 = 0
some connection2 = 0 some connection2 = 0 some connection2 = 0
some connection3 = 0 some connection3 = 0 some connection3 = 0
some connection4 = 0 some connection4 = 0 some connection4 = 0
some connection5 = 0 some connection5 = 0 some connection5 = 0
some connection6 = 0 some connection6 = 0 some connection6 = 0
some connection7 = 0 some connection7 = 0 some connection7 = 0

129

some connection8 = 1 some connection8 = 1 some connection8 = 1
GPIO OUT = 0 GPIO OUT = 0 GPIO OUT = 0
LTRIP EN N = 1 LTRIP EN N = 1 LTRIP EN N = 1
MCU LT ON = 1 MCU LT ON = 1 MCU LT ON = 1
FPGA2 LT ON = 0 FPGA2 LT ON = 0 FPGA2 LT ON = 0
LT RELAY FB = 1 LT RELAY FB = 1 LT RELAY FB = 1
some connection9 = 1 some connection9 = 1 some connection9 = 1
some connection10 = 0 some connection10 = 0 some connection10 = 0
some connection12 = 0 some connection12 = 0 some connection12 = 0
some connection13 = 0 some connection13 = 0 some connection13 = 0
some connection14 = 1 some connection14 = 1 some connection14 = 1
d=60 d=60 d=60
some connection1 = 0 some connection1 = 0 some connection1 = 0
some connection2 = 0 some connection2 = 0 some connection2 = 0
some connection3 = 0 some connection3 = 0 some connection3 = 0
some connection4 = 0 some connection4 = 0 some connection4 = 0
some connection5 = 0 some connection5 = 0 some connection5 = 0
some connection6 = 0 some connection6 = 0 some connection6 = 0
some connection7 = 0 some connection7 = 0 some connection7 = 0
some connection8 = 1 some connection8 = 1 some connection8 = 0
FPGA2 LT ON = 0 FPGA2 LT ON = 0 FPGA2 LT ON = 0
LT RELAY FB = 1 LT RELAY FB = 0 LT RELAY FB = 1
some connection9 = 1 some connection9 = 1 some connection9 = 1
some connection10 = 0 some connection10 = 0 some connection10 = 0
some connection12 = 0 some connection12 = 0 some connection12 = 0
some connection13 = 0 some connection13 = 0 some connection13 = 0
some connection14 = 1 some connection14 = 1 some connection14 = 1
d=536 d=536 d=2
some connection15 = 1 some connection15 = 1 connection3 = 0
some connection16 = 0 some connection16 = 0 some connection18 = 0
some connection17 = 0 some connection17 = 0 some connection20 = 0
d=2 d=2 some connection21 = 0
connection3 = 1 connection3 = 0 GPIO OUT = 0
some connection18 = 1 some connection18 = 1 FPGA LTRCR = 0
some connection20 = 0 some connection20 = 0 d=534
some connection21 = 1 some connection21 = 0 some connection15 = 1
GPIO OUT = 1 GPIO OUT = 1 some connection16 = 0
FPGA LTRCR = 1 FPGA LTRCR = 1 some connection17 = 0

Table 45: Generated test cases

Indirect12 Indirect13 Indirect14

some connection1 = 0 some connection1 = 0 some connection1 = 0
some connection2 = 0 some connection2 = 0 some connection2 = 0
some connection3 = 0 some connection3 = 0 some connection3 = 0
some connection4 = 0 some connection4 = 0 some connection4 = 0
some connection5 = 0 some connection5 = 0 some connection5 = 0

130

some connection6 = 0 some connection6 = 0 some connection6 = 0
some connection7 = 0 some connection7 = 0 some connection7 = 0
some connection8 = 1 some connection8 = 1 some connection8 = 1
GPIO OUT = 0 GPIO OUT = 0 GPIO OUT = 0
LTRIP EN N = 1 LTRIP EN N = 1 LTRIP EN N = 1
MCU LT ON = 1 MCU LT ON = 1 MCU LT ON = 1
FPGA2 LT ON = 0 FPGA2 LT ON = 0 FPGA2 LT ON = 0
LT RELAY FB = 1 LT RELAY FB = 1 LT RELAY FB = 1
some connection9 = 1 some connection9 = 1 some connection9 = 1
some connection10 = 0 some connection10 = 0 some connection10 = 0
some connection12 = 0 some connection12 = 0 some connection12 = 0
some connection13 = 0 some connection13 = 0 some connection13 = 0
some connection14 = 1 some connection14 = 1 some connection14 = 1
d=60 d=60 d=60
some connection1 = 0 some connection1 = 0 some connection1 = 0
some connection2 = 0 some connection2 = 0 some connection2 = 0
some connection3 = 0 some connection3 = 0 some connection3 = 0
some connection4 = 0 some connection4 = 0 some connection4 = 0
some connection5 = 0 some connection5 = 0 some connection5 = 0
some connection6 = 0 some connection6 = 0 some connection6 = 0
some connection7 = 0 some connection7 = 0 some connection7 = 0
some connection8 = 1 some connection8 = 1 some connection8 = 1
FPGA2 LT ON = 0 FPGA2 LT ON = 0 FPGA2 LT ON = 0
LT RELAY FB = 1 LT RELAY FB = 1 LT RELAY FB = 1
some connection9 = 1 some connection9 = 1 some connection9 = 1
some connection10 = 0 some connection10 = 0 some connection10 = 0
some connection12 = 0 some connection12 = 0 some connection12 = 0
some connection13 = 0 some connection13 = 0 some connection13 = 0
some connection14 = 1 some connection14 = 1 some connection14 = 1
d=2 d=576 d=576
connection3 = 0 some connection1 = 0 some connection1 = 0
some connection18 = 0 some connection2 = 0 some connection2 = 0
some connection20 = 0 some connection3 = 0 some connection3 = 0
some connection21 = 0 some connection4 = 0 some connection4 = 0
GPIO OUT = 1 some connection5 = 0 some connection5 = 0
FPGA LTRCR = 0 some connection6 = 0 some connection6 = 0
d=534 some connection7 = 0 some connection7 = 0
some connection15 = 1 some connection8 = 0 some connection8 = 0
some connection16 = 0 FPGA2 LT ON = 1 FPGA2 LT ON = 0
some connection17 = 0 LT RELAY FB = 1 LT RELAY FB = 1

some connection9 = 1 some connection9 = 1
some connection10 = 0 some connection10 = 0
some connection12 = 0 some connection12 = 0
some connection13 = 0 some connection13 = 0
some connection14 = 1 some connection14 = 1
d=2 d=2
connection3 = 1 connection3 = 1
some connection18 = 1 some connection18 = 1
some connection20 = 1 some connection20 = 0
some connection21 = 0 some connection21 = 1

131

GPIO OUT = 0 GPIO OUT = 0
FPGA LTRCR = 1 FPGA LTRCR = 1
d=22 d=22
some connection15 = 2 some connection15 = 2
some connection16 = 0 some connection16 = 0
some connection17 = 0 some connection17 = 0

Table 46: Generated test cases

Indirect15 Indirect16 Indirect17

some connection1 = 0 some connection1 = 0 some connection1 = 0
some connection2 = 0 some connection2 = 0 some connection2 = 0
some connection3 = 0 some connection3 = 0 some connection3 = 0
some connection4 = 0 some connection4 = 0 some connection4 = 0
some connection5 = 0 some connection5 = 0 some connection5 = 0
some connection6 = 0 some connection6 = 0 some connection6 = 0
some connection7 = 0 some connection7 = 0 some connection7 = 0
some connection8 = 1 some connection8 = 1 some connection8 = 1
GPIO OUT = 0 GPIO OUT = 0 GPIO OUT = 0
LTRIP EN N = 1 LTRIP EN N = 1 LTRIP EN N = 1
MCU LT ON = 1 MCU LT ON = 1 MCU LT ON = 1
FPGA2 LT ON = 0 FPGA2 LT ON = 0 FPGA2 LT ON = 0
LT RELAY FB = 1 LT RELAY FB = 1 LT RELAY FB = 1
some connection9 = 1 some connection9 = 1 some connection9 = 1
some connection10 = 0 some connection10 = 0 some connection10 = 0
some connection12 = 0 some connection12 = 0 some connection12 = 0
some connection13 = 0 some connection13 = 0 some connection13 = 0
some connection14 = 1 some connection14 = 1 some connection14 = 1
d=60 d=60 d=60
some connection1 = 0 some connection1 = 0 some connection1 = 0
some connection2 = 0 some connection2 = 0 some connection2 = 0
some connection3 = 0 some connection3 = 0 some connection3 = 0
some connection4 = 0 some connection4 = 0 some connection4 = 0
some connection5 = 0 some connection5 = 0 some connection5 = 0
some connection6 = 0 some connection6 = 0 some connection6 = 0
some connection7 = 0 some connection7 = 0 some connection7 = 0
some connection8 = 0 some connection8 = 1 some connection8 = 0
FPGA2 LT ON = 0 FPGA2 LT ON = 0 FPGA2 LT ON = 0
LT RELAY FB = 1 LT RELAY FB = 1 LT RELAY FB = 1
some connection9 = 1 some connection9 = 1 some connection9 = 1
some connection10 = 0 some connection10 = 0 some connection10 = 0
some connection12 = 0 some connection12 = 0 some connection12 = 0
some connection13 = 0 some connection13 = 0 some connection13 = 0
some connection14 = 1 some connection14 = 1 some connection14 = 1
d=576 d=576 d=576
some connection1 = 0 some connection1 = 0 some connection1 = 0
some connection2 = 0 some connection2 = 0 some connection2 = 0

132

some connection3 = 0 some connection3 = 0 some connection3 = 0
some connection4 = 0 some connection4 = 0 some connection4 = 0
some connection5 = 0 some connection5 = 0 some connection5 = 0
some connection6 = 0 some connection6 = 0 some connection6 = 0
some connection7 = 0 some connection7 = 0 some connection7 = 0
some connection8 = 1 some connection8 = 1 some connection8 = 1
FPGA2 LT ON = 0 FPGA2 LT ON = 0 FPGA2 LT ON = 0
LT RELAY FB = 1 LT RELAY FB = 1 LT RELAY FB = 1
some connection9 = 1 some connection9 = 1 some connection9 = 1
some connection10 = 0 some connection10 = 0 some connection10 = 0
some connection12 = 0 some connection12 = 0 some connection12 = 0
some connection13 = 0 some connection13 = 0 some connection13 = 0
some connection14 = 1 some connection14 = 1 some connection14 = 1
d=2 d=64 d=64
connection3 = 1 some connection1 = 0 some connection1 = 0
some connection18 = 1 some connection2 = 0 some connection2 = 0
some connection20 = 0 some connection3 = 0 some connection3 = 0
some connection21 = 1 some connection4 = 0 some connection4 = 0
GPIO OUT = 1 some connection5 = 0 some connection5 = 0
FPGA LTRCR = 1 some connection6 = 0 some connection6 = 0
d=22 some connection7 = 0 some connection7 = 0
some connection15 = 2 some connection8 = 0 some connection8 = 1
some connection16 = 0 FPGA2 LT ON = 0 FPGA2 LT ON = 0
some connection17 = 0 LT RELAY FB = 1 LT RELAY FB = 1

some connection9 = 1 some connection9 = 1
some connection10 = 0 some connection10 = 0
some connection12 = 0 some connection12 = 0
some connection13 = 0 some connection13 = 0
some connection14 = 1 some connection14 = 1
d=2 d=2
connection3 = 0 connection3 = 0
some connection18 = 0 some connection18 = 0
some connection20 = 0 some connection20 = 0
some connection21 = 0 some connection21 = 0
GPIO OUT = 0 GPIO OUT = 1
FPGA LTRCR = 0 FPGA LTRCR = 0
d=22 d=22
some connection15 = 3 some connection15 = 3
some connection16 = 1 some connection16 = 1
some connection17 = 1 some connection17 = 1

133

Appendix C Selection

Table 47. Fault injection 1: Selection results

Modification V A

AFG’\AFG {S LtrCd} {}

VS’old vs cov. mod. Indep. VS’old V’aff VS’old cov. V’aff VS’new

InternalTester1 InternalLtrTsSq8 InternalTester1 Fig. 24 InternalLtrTsSq8 updated
InternalLtrTsSq1 Indirect16 InternalLtrTsSq1 InternalLtrTsSq17
InternalLtrTsSq2 Indirect17 InternalLtrTsSq2 Indirect16 updated
InternalLtrTsSq3 InternalLtrTsSq3 Indirect17 updated
InternalLtrTsSq4 InternalLtrTsSq4
InternalLtrTsSq5 InternalLtrTsSq5
InternalLtrTsSq6 InternalLtrTsSq6
InternalLtrTsSq7 InternalLtrTsSq7
InternalLtrTsSq8 updated InternalLtrTsSq9
InternalLtrTsSq9 InternalLtrTsSq10
InternalLtrTsSq10 InternalLtrTsSq11
InternalLtrTsSq11 InternalLtrTsSq12
InternalLtrTsSq12 InternalLtrTsSq13
InternalLtrTsSq13 InternalLtrTsSq14
InternalLtrTsSq14 InternalLtrTsSq15
InternalLtrTsSq15 InternalLtrTsSq16
InternalLtrTsSq16 InternalLtrTsSq18
InternalLtrTsSq17 InternalLtrTsSq19
InternalLtrTsSq18 InternalController1
InternalLtrTsSq19 InternalLtrInt1
InternalController1 Internaldcu2 line trip1
InternalLtrInt1 Internaldcu2 line trip2
Internaldcu2 line trip1 Internaldcu2 line trip3
Internaldcu2 line trip2 Internaldcu2 line trip4
Internaldcu2 line trip3 Internaldcu2 line trip5
Internaldcu2 line trip4 Internaldcu2 line trip6
Internaldcu2 line trip5 Internaldcu2 line trip7
Internaldcu2 line trip6 Internaldcu2 line trip8
Internaldcu2 line trip7 Internaldcu2 line trip9
Internaldcu2 line trip8 Internaldcu2 line trip10
Internaldcu2 line trip9 Internaldcu2 line trip11
Internaldcu2 line trip10 Internaldcu2 line trip12
Internaldcu2 line trip11 Direct1
Internaldcu2 line trip12 Direct2
Direct1 Direct3
Direct2 Direct4
Direct3 Direct5
Direct4 Direct6
Direct5 Indirect1
Direct6 Indirect2
Indirect1 Indirect3
Indirect2 Indirect4
Indirect3 Indirect5
Indirect4 Indirect6
Indirect5 Indirect7
Indirect6 Indirect8
Indirect7 Indirect9
Indirect8 Indirect10
Indirect9 Indirect11
Indirect10 Indirect12
Indirect11 Indirect13
Indirect12 Indirect14
Indirect13 Indirect15
Indirect14 (Table 54)
Indirect15
Indirect16 updated
Indirect17 updated

134

Table 48. Fault injection 2: Selection results

Modification V A

AFG’\AFG {state LtrTsSq := OpenLtr1} {}

VS’old vs cov. mod. Indep. VS’old V’aff VS’old cov. V’aff VS’new

InternalTester1 InternalLtrTsSq6 InternalTester1 Fig. 25 InternalLtrTsSq6 updated
InternalLtrTsSq1 InternalLtrTsSq15 InternalLtrTsSq1 InternalLtrTsSq7
InternalLtrTsSq2 Indirect3 InternalLtrTsSq2 InternalLtrTsSq8
InternalLtrTsSq3 Indirect4 InternalLtrTsSq3 InternalLtrTsSq15 updated
InternalLtrTsSq4 Indirect13 InternalLtrTsSq4 InternalLtrTsSq16
InternalLtrTsSq5 Indirect14 InternalLtrTsSq5 InternalLtrTsSq17
InternalLtrTsSq6 updated Indirect15 InternalLtrTsSq9 Indirect3 updated
InternalLtrTsSq7 InternalLtrTsSq10 Indirect4 updated
InternalLtrTsSq8 InternalLtrTsSq11 Indirect13 updated
InternalLtrTsSq9 InternalLtrTsSq12 Indirect14 updated
InternalLtrTsSq10 InternalLtrTsSq13 Indirect15 updated
InternalLtrTsSq11 InternalLtrTsSq14 Indirect16
InternalLtrTsSq12 InternalLtrTsSq18 Indirect17
InternalLtrTsSq13 InternalLtrTsSq19
InternalLtrTsSq14 InternalController1
InternalLtrTsSq15 updated InternalLtrInt1
InternalLtrTsSq16 Internaldcu2 line trip1
InternalLtrTsSq17 Internaldcu2 line trip2
InternalLtrTsSq18 Internaldcu2 line trip3
InternalLtrTsSq19 Internaldcu2 line trip4
InternalController1 Internaldcu2 line trip5
InternalLtrInt1 Internaldcu2 line trip6
Internaldcu2 line trip1 Internaldcu2 line trip7
Internaldcu2 line trip2 Internaldcu2 line trip8
Internaldcu2 line trip3 Internaldcu2 line trip9
Internaldcu2 line trip4 Internaldcu2 line trip10
Internaldcu2 line trip5 Internaldcu2 line trip11
Internaldcu2 line trip6 Internaldcu2 line trip12
Internaldcu2 line trip7 Direct1
Internaldcu2 line trip8 Direct2
Internaldcu2 line trip9 Direct3
Internaldcu2 line trip10 Direct4
Internaldcu2 line trip11 Direct5
Internaldcu2 line trip12 Direct6
Direct1 Indirect1
Direct2 Indirect2
Direct3 Indirect5
Direct4 Indirect6
Direct5 Indirect7
Direct6 Indirect8
Indirect1 Indirect9
Indirect2 Indirect10
Indirect3 updated Indirect11
Indirect4 updated Indirect12
Indirect5 (Table 55)
Indirect6
Indirect7
Indirect8
Indirect9
Indirect10
Indirect11
Indirect12
Indirect13 updated
Indirect14 updated
Indirect15 updated
Indirect16
Indirect17

135

Table 49. Fault injection 3: Selection results

Modification V A

AFG\AFG’ {connection3 := DHWOMG S LtrCd(v1)} {v1→d−inDHWOMG S LtrCd := connection3}

AFG’\AFG {DHWOMG S LtrCd := DHWOMG S LtrCd} {}

VS’old vs cov. mod. Indep. VS’old V’aff VS’old cov. V’aff VS’new

InternalTester1 Direct6 InternalTester1 Fig. 26 InternalLtrTsSq3
InternalLtrTsSq1 Indirect11 InternalLtrTsSq1 InternalLtrTsSq4
InternalLtrTsSq2 Indirect12 InternalLtrTsSq2 InternalLtrTsSq5
InternalLtrTsSq3 Indirect13 InternalController1 InternalLtrTsSq6
InternalLtrTsSq4 Indirect14 InternalLtrInt1 InternalLtrTsSq7
InternalLtrTsSq5 Indirect15 Internaldcu2 line trip1 InternalLtrTsSq8
InternalLtrTsSq6 Indirect16 Internaldcu2 line trip2 InternalLtrTsSq9
InternalLtrTsSq7 Indirect17 Internaldcu2 line trip3 InternalLtrTsSq10
InternalLtrTsSq8 Internaldcu2 line trip4 InternalLtrTsSq11
InternalLtrTsSq9 Internaldcu2 line trip5 InternalLtrTsSq12
InternalLtrTsSq10 Internaldcu2 line trip6 InternalLtrTsSq13
InternalLtrTsSq11 Internaldcu2 line trip7 InternalLtrTsSq14
InternalLtrTsSq12 Internaldcu2 line trip8 InternalLtrTsSq15
InternalLtrTsSq13 Internaldcu2 line trip9 InternalLtrTsSq16
InternalLtrTsSq14 Internaldcu2 line trip12 InternalLtrTsSq17
InternalLtrTsSq15 Direct1 InternalLtrTsSq18
InternalLtrTsSq16 Direct2 InternalLtrTsSq19
InternalLtrTsSq17 Direct3 Indirect3
InternalLtrTsSq18 Direct4 Indirect4
InternalLtrTsSq19 Direct5 Indirect5
InternalController1 Indirect1 Indirect6
InternalLtrInt1 Indirect2 Indirect7
Internaldcu2 line trip1 (Table 56) Indirect8
Internaldcu2 line trip2 Indirect9
Internaldcu2 line trip3 Indirect10
Internaldcu2 line trip4
Internaldcu2 line trip5
Internaldcu2 line trip6
Internaldcu2 line trip7
Internaldcu2 line trip8
Internaldcu2 line trip9
Internaldcu2 line trip10
Internaldcu2 line trip11
Internaldcu2 line trip12
Direct1
Direct2
Direct3
Direct4
Direct5
Indirect1
Indirect2
Indirect3
Indirect4
Indirect5
Indirect6
Indirect7
Indirect8
Indirect9
Indirect10

136

Table 50. Fault injection 4: Selection results

Modification V A

AFG\AFG’ {enable in := not DHSSMG B LtrHwOpFl(v1)} {v1→d−inenable := enable in}

AFG’\AFG {enable := enable} {}

VS’old vs cov. mod. Indep. VS’old V’aff VS’old cov. V’aff VS’new

InternalTester1 Internaldcu2 line trip1 InternalLtrInt1 Fig. 27 Internaldcu2 line trip1
InternalLtrTsSq1 Internaldcu2 line trip2 Direct2 Internaldcu2 line trip2
InternalLtrTsSq2 Internaldcu2 line trip3 (Table 57) Internaldcu2 line trip3
InternalLtrTsSq3 Internaldcu2 line trip4 Internaldcu2 line trip4
InternalLtrTsSq4 Internaldcu2 line trip5 Internaldcu2 line trip5
InternalLtrTsSq5 Internaldcu2 line trip6 Internaldcu2 line trip6
InternalLtrTsSq6 Internaldcu2 line trip7 Internaldcu2 line trip7
InternalLtrTsSq7 Internaldcu2 line trip8 Internaldcu2 line trip8
InternalLtrTsSq8 Direct3 updated Internaldcu2 line trip9
InternalLtrTsSq9 Internaldcu2 line trip10
InternalLtrTsSq10 Internaldcu2 line trip11
InternalLtrTsSq11 Internaldcu2 line trip12
InternalLtrTsSq12 Direct3 updated
InternalLtrTsSq13 Indirect1
InternalLtrTsSq14 Indirect2
InternalLtrTsSq15 Indirect3
InternalLtrTsSq16 Indirect4
InternalLtrTsSq17 Indirect5
InternalLtrTsSq18 Indirect6
InternalLtrTsSq19 Indirect7
InternalController1 Indirect8
InternalLtrInt1 Indirect9
Internaldcu2 line trip1 Indirect10
Internaldcu2 line trip2 Indirect11
Internaldcu2 line trip3 Indirect12
Internaldcu2 line trip4 Indirect13
Internaldcu2 line trip5 Indirect14
Internaldcu2 line trip6 Indirect15
Internaldcu2 line trip7 Indirect16
Internaldcu2 line trip8 Indirect17
Internaldcu2 line trip9
Internaldcu2 line trip10
Internaldcu2 line trip11
Internaldcu2 line trip12
Direct1
Direct2
Direct3 updated
Direct4
Direct5
Direct6
Indirect1
Indirect2
Indirect3
Indirect4
Indirect5
Indirect6
Indirect7
Indirect8
Indirect9
Indirect10
Indirect11
Indirect12
Indirect13
Indirect14
Indirect15
Indirect16
Indirect17

137

Table 51. Fault injection 5: Selection results

Modification V A

AFG’\AFG {DHSSMG B CdLtr := connection2(v1)} {connection2 := DHSSMG B CdLtr→d−inv1

VS’old vs cov. mod. Indep. VS’old V’aff VS’old cov. V’aff VS’new

InternalTester1 Direct5 InternalTester1 Fig. 28 InternalLtrTsSq3
InternalLtrTsSq1 Indirect5 InternalLtrTsSq1 InternalLtrTsSq4
InternalLtrTsSq2 Indirect6 InternalLtrTsSq2 InternalLtrTsSq5
InternalLtrTsSq3 Indirect7 InternalController1 InternalLtrTsSq6
InternalLtrTsSq4 Indirect8 InternalLtrInt1 InternalLtrTsSq7
InternalLtrTsSq5 Indirect9 Internaldcu2 line trip1 InternalLtrTsSq8
InternalLtrTsSq6 Indirect10 Internaldcu2 line trip2 InternalLtrTsSq9
InternalLtrTsSq7 Internaldcu2 line trip3 InternalLtrTsSq10
InternalLtrTsSq8 Internaldcu2 line trip4 InternalLtrTsSq11
InternalLtrTsSq9 Internaldcu2 line trip5 InternalLtrTsSq12
InternalLtrTsSq10 Internaldcu2 line trip6 InternalLtrTsSq13
InternalLtrTsSq11 Internaldcu2 line trip7 InternalLtrTsSq14
InternalLtrTsSq12 Internaldcu2 line trip8 InternalLtrTsSq15
InternalLtrTsSq13 Internaldcu2 line trip9 InternalLtrTsSq16
InternalLtrTsSq14 Internaldcu2 line trip12 InternalLtrTsSq17
InternalLtrTsSq15 Direct1 InternalLtrTsSq18
InternalLtrTsSq16 Direct2 InternalLtrTsSq19
InternalLtrTsSq17 Direct3 Direct5 updated
InternalLtrTsSq18 Direct4 Indirect5 updated
InternalLtrTsSq19 (Table 58) Indirect6 updated
InternalController1 Indirect7 updated
InternalLtrInt1 Indirect8 updated
Internaldcu2 line trip1 Indirect9 updated
Internaldcu2 line trip2 Indirect10 updated
Internaldcu2 line trip3
Internaldcu2 line trip4
Internaldcu2 line trip5
Internaldcu2 line trip6
Internaldcu2 line trip7
Internaldcu2 line trip8
Internaldcu2 line trip9
Internaldcu2 line trip10
Internaldcu2 line trip11
Internaldcu2 line trip12
Direct1
Direct2
Direct3
Direct4
Direct5 updated
Direct6
Indirect1
Indirect2
Indirect3
Indirect4
Indirect5 updated
Indirect6 updated
Indirect7 updated
Indirect8 updated
Indirect9 updated
Indirect10 updated
Indirect11
Indirect12
Indirect13
Indirect14
Indirect15
Indirect16
Indirect17

138

Table 52. Fault injection 6: Selection results

Modification V A

N/A N/A

VS’old vs cov. mod. Indep. VS’old V’aff VS’old cov. V’aff VS’new
InternalTester1 N/A N/A N/A N/A
InternalLtrTsSq1
InternalLtrTsSq2
InternalLtrTsSq3
InternalLtrTsSq4
InternalLtrTsSq5
InternalLtrTsSq6
InternalLtrTsSq7
InternalLtrTsSq8
InternalLtrTsSq9
InternalLtrTsSq10
InternalLtrTsSq11
InternalLtrTsSq12
InternalLtrTsSq13
InternalLtrTsSq14
InternalLtrTsSq15
InternalLtrTsSq16
InternalLtrTsSq17
InternalLtrTsSq18
InternalLtrTsSq19
InternalController1
InternalLtrInt1
Internaldcu2 line trip1
Internaldcu2 line trip2
Internaldcu2 line trip3
Internaldcu2 line trip4
Internaldcu2 line trip5
Internaldcu2 line trip6
Internaldcu2 line trip7
Internaldcu2 line trip8
Internaldcu2 line trip9
Internaldcu2 line trip10
Internaldcu2 line trip11
Internaldcu2 line trip12
Direct1
Direct2
Direct3
Direct4
Direct5
Direct6
Indirect1
Indirect2
Indirect3
Indirect4
Indirect5
Indirect6
Indirect7
Indirect8
Indirect9
Indirect10
Indirect11
Indirect12
Indirect13
Indirect14
Indirect15
Indirect16
Indirect17

139

Table 53. Fault injection 7: Selection results

Modification V A

AFG’\AFG {MCU LT ON :=s w5(v1),MCU LT ON := true (v2), LtrTsSq()(v3), {v1→dv2 ,v2→cv3,v2→dv4,
T-C := MCU LT ON(v4),T-C := MCU LT ON(v5), v4→d−inv5,v5→dv6}

temp := temp or MCU LT ON(v6)}

VS’old vs cov. mod. Indep. VS’old V’aff VS’old cov. V’aff VS’new

InternalTester1 updated InternalTester1 InternalLtrTsSq1 Fig. 29 InternalTester1 updated Direct7
InternalLtrTsSq1 Indirect11 InternalLtrTsSq2 InternalLtrTsSq3
InternalLtrTsSq2 Indirect12 InternalController1 InternalLtrTsSq4
InternalLtrTsSq3 Indirect13 InternalLtrInt1 InternalLtrTsSq5
InternalLtrTsSq4 Indirect14 Internaldcu2 line trip5 InternalLtrTsSq6
InternalLtrTsSq5 Indirect15 Internaldcu2 line trip8 InternalLtrTsSq7
InternalLtrTsSq6 Indirect16 Direct2 InternalLtrTsSq8
InternalLtrTsSq7 Indirect17 Direct3 InternalLtrTsSq9
InternalLtrTsSq8 (Table 59) InternalLtrTsSq10
InternalLtrTsSq9 InternalLtrTsSq11
InternalLtrTsSq10 InternalLtrTsSq12
InternalLtrTsSq11 InternalLtrTsSq13
InternalLtrTsSq12 InternalLtrTsSq14
InternalLtrTsSq13 InternalLtrTsSq15
InternalLtrTsSq14 InternalLtrTsSq16
InternalLtrTsSq15 InternalLtrTsSq17
InternalLtrTsSq16 InternalLtrTsSq18
InternalLtrTsSq17 InternalLtrTsSq19
InternalLtrTsSq18 Internaldcu2 line trip1
InternalLtrTsSq19 Internaldcu2 line trip2
InternalController1 Internaldcu2 line trip3
InternalLtrInt1 Internaldcu2 line trip4
Internaldcu2 line trip1 Internaldcu2 line trip6
Internaldcu2 line trip2 Internaldcu2 line trip7
Internaldcu2 line trip3 Internaldcu2 line trip9
Internaldcu2 line trip4 Internaldcu2 line trip10
Internaldcu2 line trip5 Internaldcu2 line trip11
Internaldcu2 line trip6 Internaldcu2 line trip12
Internaldcu2 line trip7 Direct1
Internaldcu2 line trip8 Direct4
Internaldcu2 line trip9 Direct5
Internaldcu2 line trip10 Direct6
Internaldcu2 line trip11 Indirect1
Internaldcu2 line trip12 Indirect2
Direct1 Indirect3
Direct2 Indirect4
Direct3 Indirect5
Direct4 Indirect6
Direct5 Indirect7
Direct6 Indirect8
Indirect1 Indirect9
Indirect2 Indirect10
Indirect3 Indirect11 updated
Indirect4 Indirect12 updated
Indirect5 Indirect13 updated
Indirect6 Indirect14 updated
Indirect7 Indirect15 updated
Indirect8 Indirect16 updated
Indirect9 Indirect17 updated
Indirect10
Indirect11 updated
Indirect12 updated
Indirect13 updated
Indirect14 updated
Indirect15 updated
Indirect16 updated
Indirect17 updated

140

Appendix D Independent observers

141

T
a
b
le

5
4
.

F
a
u
lt

in
je

ct
io

n
1
:

In
d
ep

en
d
en

t
o
b
se

rv
er

s
(g

ra
y
)

In
te

rn
alT

est
er1

In
te

rn
alL

trT
sS

q1

In
te

rn
alL

trT
sS

q2

In
te

rn
alL

trT
sS

q3

In
te

rn
alL

trT
sS

q4

In
te

rn
alL

trT
sS

q5

In
te

rn
alL

trT
sS

q6

In
te

rn
alL

trT
sS

q7

In
te

rn
alLt

rT
sS

q8

In
te

rn
alL

trT
sS

q9

In
te

rn
alL

trT
sS

q10

In
te

rn
alL

trT
sS

q11

In
te

rn
alL

trT
sS

q12

In
te

rn
alL

trT
sS

q13

In
te

rn
alL

trT
sS

q14

In
te

rn
alL

trT
sS

q15

In
te

rn
alL

trT
sS

q16

In
te

rn
alL

trT
sS

q17

In
te

rn
alL

trT
sS

q18

In
te

rn
alL

trT
sS

q19

In
te

rn
alC

ontro
lle

r1

In
te

rn
alL

trI
nt1

In
te

rn
ald

cu
2_lin

e_tri
p1

In
te

rn
ald

cu
2_lin

e_tri
p2

In
te

rn
ald

cu
2_lin

e_tri
p3

In
te

rn
ald

cu
2_lin

e_tri
p4

In
te

rn
ald

cu
2_lin

e_tri
p5

In
te

rn
ald

cu
2_lin

e_tri
p6

In
te

rn
ald

cu
2_lin

e_tri
p7

In
te

rn
ald

cu
2_lin

e_tri
p8

In
te

rn
ald

cu
2_lin

e_tri
p9

In
te

rn
ald

cu
2_lin

e_tri
p10

In
te

rn
ald

cu
2_lin

e_tri
p11

In
te

rn
ald

cu
2_lin

e_tri
p12

Dire
ct

1 Dire
ct

2 Dire
ct

3 Dire
ct

4 Dire
ct

5 Dire
ct

6 In
dire

ct
1

In
dire

ct
2

In
dire

ct
3

In
dire

ct
4

In
dire

ct
5 In

dire
ct

6
In

dire
ct

7
In

dire
ct

8
In

dire
ct

9
In

dire
ct

10
In

dire
ct

11
In

dire
ct

12
In

dire
ct

13
In

dire
ct

14
In

dire
ct

15
In

dire
ct

16
In

dire
ct

17

In
te

rn
al

Te
st

er
1

x
x

x
x

x
x

x
x

x

In
te

rn
al

Lt
rT

sS
q

1
x

x
x

x
x

x
x

In
te

rn
al

Lt
rT

sS
q

2

x
x

x
x

x
x

x

In
te

rn
al

Lt
rT

sS
q

3
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
te

rn
al

Lt
rT

sS
q

4

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
te

rn
al

Lt
rT

sS
q

5
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

In
te

rn
al

Lt
rT

sS
q

6

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
te

rn
al

Lt
rT

sS
q

7
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

In
te

rn
al

Lt
rT

sS
q

8

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
te

rn
al

Lt
rT

sS
q

9
x

x
x

x
x

x
x

x
x

x
x

x
x

x

In
te

rn
al

Lt
rT

sS
q

1
0

x
x

x
x

x
x

x
x

x
x

x
x

x

In
te

rn
al

Lt
rT

sS
q

1
1

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
te

rn
al

Lt
rT

sS
q

1
2

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
te

rn
al

Lt
rT

sS
q

1
3

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

In
te

rn
al

Lt
rT

sS
q

1
4

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

In
te

rn
al

Lt
rT

sS
q

1
5

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

In
te

rn
al

Lt
rT

sS
q

1
6

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

In
te

rn
al

Lt
rT

sS
q

1
7

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
te

rn
al

Lt
rT

sS
q

1
8

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

In
te

rn
al

Lt
rT

sS
q

1
9

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

In
te

rn
al

C
o

n
tr

o
lle

r1
x

x
x

x
x

In
te

rn
al

Lt
rI

n
t1

x
x

In
te

rn
al

d
cu

2
_l

in
e_

tr
ip

1

x
x

x
x

In
te

rn
al

d
cu

2
_l

in
e_

tr
ip

2

x
x

x
x

In
te

rn
al

d
cu

2
_l

in
e_

tr
ip

3

x
x

x
x

In
te

rn
al

d
cu

2
_l

in
e_

tr
ip

4

x
x

x
x

In
te

rn
al

d
cu

2
_l

in
e_

tr
ip

5

x
x

x
x

In
te

rn
al

d
cu

2
_l

in
e_

tr
ip

6
x

x
x

x

In
te

rn
al

d
cu

2
_l

in
e_

tr
ip

7

x
x

x
x

In
te

rn
al

d
cu

2
_l

in
e_

tr
ip

8

x
x

x
x

In
te

rn
al

d
cu

2
_l

in
e_

tr
ip

9

x
x

x
x

x
x

x
x

In
te

rn
al

d
cu

2
_l

in
e_

tr
ip

1
0

x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

In
te

rn
al

d
cu

2
_l

in
e_

tr
ip

1
1

x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
te

rn
al

d
cu

2
_l

in
e_

tr
ip

1
2

x
x

x
x

x
x

x
x

D
ir

ec
t1

x

x
x

x
x

x

D
ir

ec
t2

x

D
ir

ec
t3

x

x
x

D
ir

ec
t4

x

x
x

x
x

x
x

x
x

x

D
ir

ec
t5

x

x
x

x
x

x
x

x
x

x

D
ir

ec
t6

x
x

x
x

x
x

x
x

x
x

x
x

In
d

ir
ec

t1

x
x

x
x

x
x

x
x

x
x

x
x

In
d

ir
ec

t2

x
x

x
x

x
x

x
x

x
x

x
x

In
d

ir
ec

t3

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
d

ir
ec

t4

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
d

ir
ec

t5
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

In
d

ir
ec

t6

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
d

ir
ec

t7

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
d

ir
ec

t8

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
d

ir
ec

t9

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
d

ir
ec

t1
0

x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

In
d

ir
ec

t1
1

x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
d

ir
ec

t1
2

x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
d

ir
ec

t1
3

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

In
d

ir
ec

t1
4

x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
d

ir
ec

t1
5

x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
d

ir
ec

t1
6

x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

In
d

ir
ec

t1
7

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

142

T
a
b
le

5
5
.

F
a
u
lt

in
jectio

n
2
:

In
d
ep

en
d
en

t
o
b
serv

ers
(g

ray
)

InternalTester1

InternalLtrTsSq1

InternalLtrTsSq2

InternalLtrTsSq3

InternalLtrTsSq4

InternalLtrTsSq5

InternalLtrTsSq6

InternalLtrTsSq7

InternalLtrTsSq8

InternalLtrTsSq9

InternalLtrTsSq10

InternalLtrTsSq11

InternalLtrTsSq12

InternalLtrTsSq13

InternalLtrTsSq14

InternalLtrTsSq15

InternalLtrTsSq16

InternalLtrTsSq17

InternalLtrTsSq18

InternalLtrTsSq19

InternalController1

InternalLtrInt1

Internaldcu2_line_trip1

Internaldcu2_line_trip2

Internaldcu2_line_trip3

Internaldcu2_line_trip4

Internaldcu2_line_trip5

Internaldcu2_line_trip6

Internaldcu2_line_trip7

Internaldcu2_line_trip8

Internaldcu2_line_trip9

Internaldcu2_line_trip10

Internaldcu2_line_trip11

Internaldcu2_line_trip12

Direct1 Direct2 Direct3 Direct4 Direct5 Direct6Indirect1
Indirect2
Indirect3
Indirect4
Indirect5Indirect6
Indirect7
Indirect8
Indirect9
Indirect10
Indirect11
Indirect12
Indirect13
Indirect14
Indirect15
Indirect16
Indirect17

In
tern

alTester1
x

x
x

x
x

x
x

x
x

In
tern

alLtrTsSq
1

x
x

x
x

x
x

x

In
tern

alLtrTsSq
2

x

x
x

x
x

x
x

In
tern

alLtrTsSq
3

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

In
tern

alLtrTsSq
4

x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

In
tern

alLtrTsSq
5

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
tern

alLtrTsSq
6

x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

In
tern

alLtrTsSq
7

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
tern

alLtrTsSq
8

x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

In
tern

alLtrTsSq
9

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
tern

alLtrTsSq
1

0
x

x
x

x
x

x
x

x
x

x
x

x
x

In
tern

alLtrTsSq
1

1
x

x
x

x
x

x
x

x
x

x
x

x
x

x

In
tern

alLtrTsSq
1

2
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

In
tern

alLtrTsSq
1

3
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
tern

alLtrTsSq
1

4
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
tern

alLtrTsSq
1

5
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
tern

alLtrTsSq
1

6
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
tern

alLtrTsSq
1

7
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

In
tern

alLtrTsSq
1

8
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
tern

alLtrTsSq
1

9
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
tern

alC
o

n
tro

ller1
x

x
x

x
x

In
tern

alLtrIn
t1

x
x

In
tern

ald
cu

2
_lin

e_trip
1

x

x
x

x

In
tern

ald
cu

2
_lin

e_trip
2

x

x
x

x

In
tern

ald
cu

2
_lin

e_trip
3

x

x
x

x

In
tern

ald
cu

2
_lin

e_trip
4

x

x
x

x

In
tern

ald
cu

2
_lin

e_trip
5

x

x
x

x

In
tern

ald
cu

2
_lin

e_trip
6

x
x

x
x

In
tern

ald
cu

2
_lin

e_trip
7

x

x
x

x

In
tern

ald
cu

2
_lin

e_trip
8

x

x
x

x

In
tern

ald
cu

2
_lin

e_trip
9

x

x
x

x
x

x
x

x

In
tern

ald
cu

2
_lin

e_trip
1

0

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
tern

ald
cu

2
_lin

e_trip
1

1

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

In
tern

ald
cu

2
_lin

e_trip
1

2
x

x
x

x
x

x
x

x

D
irect1

x

x
x

x
x

x

D
irect2

x

D
irect3

x

x
x

D
irect4

x

x
x

x
x

x
x

x
x

x

D
irect5

x

x
x

x
x

x
x

x
x

x

D
irect6

x
x

x
x

x
x

x
x

x
x

x
x

In
d

irect1

x
x

x
x

x
x

x
x

x
x

x
x

In
d

irect2

x
x

x
x

x
x

x
x

x
x

x
x

In
d

irect3

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
d

irect4

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
d

irect5
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

In
d

irect6

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
d

irect7

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
d

irect8

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
d

irect9

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
d

irect1
0

x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

In
d

irect1
1

x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
d

irect1
2

x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
d

irect1
3

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

In
d

irect1
4

x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
d

irect1
5

x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
d

irect1
6

x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

In
d

irect1
7

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

143

T
a
b
le

5
6
.

F
a
u
lt

in
je

ct
io

n
3
:

In
d
ep

en
d
en

t
o
b
se

rv
er

s
(g

ra
y
)

In
te

rn
alT

est
er1

In
te

rn
alL

trT
sS

q1

In
te

rn
alL

trT
sS

q2

In
te

rn
alL

trT
sS

q3

In
te

rn
alL

trT
sS

q4

In
te

rn
alL

trT
sS

q5

In
te

rn
alL

trT
sS

q6

In
te

rn
alL

trT
sS

q7

In
te

rn
alL

trT
sS

q8

In
te

rn
alL

trT
sS

q9

In
te

rn
alL

trT
sS

q10

In
te

rn
alL

trT
sS

q11

In
te

rn
alL

trT
sS

q12

In
te

rn
alL

trT
sS

q13

In
te

rn
alL

trT
sS

q14

In
te

rn
alL

trT
sS

q15

In
te

rn
alL

trT
sS

q16

In
te

rn
alL

trT
sS

q17

In
te

rn
alL

trT
sS

q18

In
te

rn
alL

trT
sS

q19

In
te

rn
alC

ontro
lle

r1

In
te

rn
alL

trI
nt1

In
te

rn
ald

cu
2_lin

e_tri
p1

In
te

rn
ald

cu
2_lin

e_tri
p2

In
te

rn
ald

cu
2_lin

e_tri
p3

In
te

rn
ald

cu
2_lin

e_tri
p4

In
te

rn
ald

cu
2_lin

e_tri
p5

In
te

rn
ald

cu
2_lin

e_tri
p6

In
te

rn
ald

cu
2_lin

e_tri
p7

In
te

rn
ald

cu
2_lin

e_tri
p8

In
te

rn
ald

cu
2_lin

e_tri
p9

In
te

rn
ald

cu
2_lin

e_tri
p10

In
te

rn
ald

cu
2_lin

e_tri
p11

In
te

rn
ald

cu
2_lin

e_tri
p12

Dire
ct

1 Dire
ct

2 Dire
ct

3 Dire
ct

4 Dire
ct

5 Dire
ct

6 In
dire

ct
1

In
dire

ct
2

In
dire

ct
3

In
dire

ct
4

In
dire

ct
5 In

dire
ct

6
In

dire
ct

7
In

dire
ct

8
In

dire
ct

9
In

dire
ct

10
In

dire
ct

11
In

dire
ct

12
In

dire
ct

13
In

dire
ct

14
In

dire
ct

15
In

dire
ct

16
In

dire
ct

17

In
te

rn
al

Te
st

er
1

x
x

x
x

x
x

x
x

x

In
te

rn
al

Lt
rT

sS
q

1
x

x
x

x
x

x
x

In
te

rn
al

Lt
rT

sS
q

2

x
x

x
x

x
x

x

In
te

rn
al

Lt
rT

sS
q

3
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
te

rn
al

Lt
rT

sS
q

4

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
te

rn
al

Lt
rT

sS
q

5
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

In
te

rn
al

Lt
rT

sS
q

6

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
te

rn
al

Lt
rT

sS
q

7
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

In
te

rn
al

Lt
rT

sS
q

8

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
te

rn
al

Lt
rT

sS
q

9
x

x
x

x
x

x
x

x
x

x
x

x
x

x

In
te

rn
al

Lt
rT

sS
q

1
0

x
x

x
x

x
x

x
x

x
x

x
x

x

In
te

rn
al

Lt
rT

sS
q

1
1

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
te

rn
al

Lt
rT

sS
q

1
2

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
te

rn
al

Lt
rT

sS
q

1
3

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

In
te

rn
al

Lt
rT

sS
q

1
4

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

In
te

rn
al

Lt
rT

sS
q

1
5

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

In
te

rn
al

Lt
rT

sS
q

1
6

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

In
te

rn
al

Lt
rT

sS
q

1
7

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
te

rn
al

Lt
rT

sS
q

1
8

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

In
te

rn
al

Lt
rT

sS
q

1
9

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

In
te

rn
al

C
o

n
tr

o
lle

r1
x

x
x

x
x

In
te

rn
al

Lt
rI

n
t1

x
x

In
te

rn
al

d
cu

2
_l

in
e_

tr
ip

1

x
x

x
x

In
te

rn
al

d
cu

2
_l

in
e_

tr
ip

2

x
x

x
x

In
te

rn
al

d
cu

2
_l

in
e_

tr
ip

3

x
x

x
x

In
te

rn
al

d
cu

2
_l

in
e_

tr
ip

4

x
x

x
x

In
te

rn
al

d
cu

2
_l

in
e_

tr
ip

5

x
x

x
x

In
te

rn
al

d
cu

2
_l

in
e_

tr
ip

6
x

x
x

x

In
te

rn
al

d
cu

2
_l

in
e_

tr
ip

7

x
x

x
x

In
te

rn
al

d
cu

2
_l

in
e_

tr
ip

8

x
x

x
x

In
te

rn
al

d
cu

2
_l

in
e_

tr
ip

9

x
x

x
x

x
x

x
x

In
te

rn
al

d
cu

2
_l

in
e_

tr
ip

1
0

x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

In
te

rn
al

d
cu

2
_l

in
e_

tr
ip

1
1

x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
te

rn
al

d
cu

2
_l

in
e_

tr
ip

1
2

x
x

x
x

x
x

x
x

D
ir

ec
t1

x

x
x

x
x

x

D
ir

ec
t2

x

D
ir

ec
t3

x

x
x

D
ir

ec
t4

x

x
x

x
x

x
x

x
x

x

D
ir

ec
t5

x

x
x

x
x

x
x

x
x

x

D
ir

ec
t6

x
x

x
x

x
x

x
x

x
x

x
x

In
d

ir
ec

t1

x
x

x
x

x
x

x
x

x
x

x
x

In
d

ir
ec

t2

x
x

x
x

x
x

x
x

x
x

x
x

In
d

ir
ec

t3

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
d

ir
ec

t4

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
d

ir
ec

t5
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

In
d

ir
ec

t6

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
d

ir
ec

t7

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
d

ir
ec

t8

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
d

ir
ec

t9

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
d

ir
ec

t1
0

x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

In
d

ir
ec

t1
1

x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
d

ir
ec

t1
2

x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
d

ir
ec

t1
3

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

In
d

ir
ec

t1
4

x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
d

ir
ec

t1
5

x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
d

ir
ec

t1
6

x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

In
d

ir
ec

t1
7

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

144

T
a
b
le

5
7
.

F
a
u
lt

in
jectio

n
4
:

In
d
ep

en
d
en

t
o
b
serv

ers
(g

ray
)

InternalTester1

InternalLtrTsSq1

InternalLtrTsSq2

InternalLtrTsSq3

InternalLtrTsSq4

InternalLtrTsSq5

InternalLtrTsSq6

InternalLtrTsSq7

InternalLtrTsSq8

InternalLtrTsSq9

InternalLtrTsSq10

InternalLtrTsSq11

InternalLtrTsSq12

InternalLtrTsSq13

InternalLtrTsSq14

InternalLtrTsSq15

InternalLtrTsSq16

InternalLtrTsSq17

InternalLtrTsSq18

InternalLtrTsSq19

InternalController1

InternalLtrInt1

Internaldcu2_line_trip1

Internaldcu2_line_trip2

Internaldcu2_line_trip3

Internaldcu2_line_trip4

Internaldcu2_line_trip5

Internaldcu2_line_trip6

Internaldcu2_line_trip7

Internaldcu2_line_trip8

Internaldcu2_line_trip9

Internaldcu2_line_trip10

Internaldcu2_line_trip11

Internaldcu2_line_trip12

Direct1 Direct2 Direct3 Direct4 Direct5 Direct6Indirect1
Indirect2
Indirect3
Indirect4
Indirect5Indirect6
Indirect7
Indirect8
Indirect9
Indirect10
Indirect11
Indirect12
Indirect13
Indirect14
Indirect15
Indirect16
Indirect17

In
tern

alTester1
x

x
x

x
x

x
x

x
x

In
tern

alLtrTsSq
1

x
x

x
x

x
x

x

In
tern

alLtrTsSq
2

x

x
x

x
x

x
x

In
tern

alLtrTsSq
3

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

In
tern

alLtrTsSq
4

x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

In
tern

alLtrTsSq
5

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
tern

alLtrTsSq
6

x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

In
tern

alLtrTsSq
7

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
tern

alLtrTsSq
8

x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

In
tern

alLtrTsSq
9

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
tern

alLtrTsSq
1

0
x

x
x

x
x

x
x

x
x

x
x

x
x

In
tern

alLtrTsSq
1

1
x

x
x

x
x

x
x

x
x

x
x

x
x

x

In
tern

alLtrTsSq
1

2
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

In
tern

alLtrTsSq
1

3
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
tern

alLtrTsSq
1

4
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
tern

alLtrTsSq
1

5
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
tern

alLtrTsSq
1

6
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
tern

alLtrTsSq
1

7
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

In
tern

alLtrTsSq
1

8
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
tern

alLtrTsSq
1

9
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
tern

alC
o

n
tro

ller1
x

x
x

x
x

In
tern

alLtrIn
t1

x
x

In
tern

ald
cu

2
_lin

e_trip
1

x

x
x

x

In
tern

ald
cu

2
_lin

e_trip
2

x

x
x

x

In
tern

ald
cu

2
_lin

e_trip
3

x

x
x

x

In
tern

ald
cu

2
_lin

e_trip
4

x

x
x

x

In
tern

ald
cu

2
_lin

e_trip
5

x

x
x

x

In
tern

ald
cu

2
_lin

e_trip
6

x
x

x
x

In
tern

ald
cu

2
_lin

e_trip
7

x

x
x

x

In
tern

ald
cu

2
_lin

e_trip
8

x

x
x

x

In
tern

ald
cu

2
_lin

e_trip
9

x

x
x

x
x

x
x

x

In
tern

ald
cu

2
_lin

e_trip
1

0

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
tern

ald
cu

2
_lin

e_trip
1

1

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

In
tern

ald
cu

2
_lin

e_trip
1

2
x

x
x

x
x

x
x

x

D
irect1

x

x
x

x
x

x

D
irect2

x

D
irect3

x

x
x

D
irect4

x

x
x

x
x

x
x

x
x

x

D
irect5

x

x
x

x
x

x
x

x
x

x

D
irect6

x
x

x
x

x
x

x
x

x
x

x
x

In
d

irect1

x
x

x
x

x
x

x
x

x
x

x
x

In
d

irect2

x
x

x
x

x
x

x
x

x
x

x
x

In
d

irect3

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
d

irect4

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
d

irect5
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

In
d

irect6

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
d

irect7

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
d

irect8

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
d

irect9

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
d

irect1
0

x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

In
d

irect1
1

x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
d

irect1
2

x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
d

irect1
3

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

In
d

irect1
4

x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
d

irect1
5

x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
d

irect1
6

x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

In
d

irect1
7

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

145

T
a
b
le

5
8
.

F
a
u
lt

in
je

ct
io

n
5
:

In
d
ep

en
d
en

t
o
b
se

rv
er

s
(g

ra
y
)

In
te

rn
alT

est
er1

In
te

rn
alL

trT
sS

q1

In
te

rn
alL

trT
sS

q2

In
te

rn
alL

trT
sS

q3

In
te

rn
alL

trT
sS

q4

In
te

rn
alL

trT
sS

q5

In
te

rn
alL

trT
sS

q6

In
te

rn
alL

trT
sS

q7

In
te

rn
alL

trT
sS

q8

In
te

rn
alL

trT
sS

q9

In
te

rn
alL

trT
sS

q10

In
te

rn
alL

trT
sS

q11

In
te

rn
alL

trT
sS

q12

In
te

rn
alL

trT
sS

q13

In
te

rn
alL

trT
sS

q14

In
te

rn
alL

trT
sS

q15

In
te

rn
alL

trT
sS

q16

In
te

rn
alL

trT
sS

q17

In
te

rn
alL

trT
sS

q18

In
te

rn
alL

trT
sS

q19

In
te

rn
alC

ontro
lle

r1

In
te

rn
alL

trI
nt1

In
te

rn
ald

cu
2_lin

e_tri
p1

In
te

rn
ald

cu
2_lin

e_tri
p2

In
te

rn
ald

cu
2_lin

e_tri
p3

In
te

rn
ald

cu
2_lin

e_tri
p4

In
te

rn
ald

cu
2_lin

e_tri
p5

In
te

rn
ald

cu
2_lin

e_tri
p6

In
te

rn
ald

cu
2_lin

e_tri
p7

In
te

rn
ald

cu
2_lin

e_tri
p8

In
te

rn
ald

cu
2_lin

e_tri
p9

In
te

rn
ald

cu
2_lin

e_tri
p10

In
te

rn
ald

cu
2_lin

e_tri
p11

In
te

rn
ald

cu
2_lin

e_tri
p12

Dire
ct

1 Dire
ct

2 Dire
ct

3 Dire
ct

4 Dire
ct

5 Dire
ct

6 In
dire

ct
1

In
dire

ct
2

In
dire

ct
3

In
dire

ct
4

In
dire

ct
5 In

dire
ct

6
In

dire
ct

7
In

dire
ct

8
In

dire
ct

9
In

dire
ct

10
In

dire
ct

11
In

dire
ct

12
In

dire
ct

13
In

dire
ct

14
In

dire
ct

15
In

dire
ct

16
In

dire
ct

17

In
te

rn
al

Te
st

er
1

x
x

x
x

x
x

x
x

x

In
te

rn
al

Lt
rT

sS
q

1
x

x
x

x
x

x
x

In
te

rn
al

Lt
rT

sS
q

2

x
x

x
x

x
x

x

In
te

rn
al

Lt
rT

sS
q

3
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
te

rn
al

Lt
rT

sS
q

4

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
te

rn
al

Lt
rT

sS
q

5
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

In
te

rn
al

Lt
rT

sS
q

6

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
te

rn
al

Lt
rT

sS
q

7
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

In
te

rn
al

Lt
rT

sS
q

8

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
te

rn
al

Lt
rT

sS
q

9
x

x
x

x
x

x
x

x
x

x
x

x
x

x

In
te

rn
al

Lt
rT

sS
q

1
0

x
x

x
x

x
x

x
x

x
x

x
x

x

In
te

rn
al

Lt
rT

sS
q

1
1

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
te

rn
al

Lt
rT

sS
q

1
2

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
te

rn
al

Lt
rT

sS
q

1
3

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

In
te

rn
al

Lt
rT

sS
q

1
4

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

In
te

rn
al

Lt
rT

sS
q

1
5

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

In
te

rn
al

Lt
rT

sS
q

1
6

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

In
te

rn
al

Lt
rT

sS
q

1
7

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
te

rn
al

Lt
rT

sS
q

1
8

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

In
te

rn
al

Lt
rT

sS
q

1
9

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

In
te

rn
al

C
o

n
tr

o
lle

r1
x

x
x

x
x

In
te

rn
al

Lt
rI

n
t1

x
x

In
te

rn
al

d
cu

2
_l

in
e_

tr
ip

1

x
x

x
x

In
te

rn
al

d
cu

2
_l

in
e_

tr
ip

2

x
x

x
x

In
te

rn
al

d
cu

2
_l

in
e_

tr
ip

3

x
x

x
x

In
te

rn
al

d
cu

2
_l

in
e_

tr
ip

4

x
x

x
x

In
te

rn
al

d
cu

2
_l

in
e_

tr
ip

5

x
x

x
x

In
te

rn
al

d
cu

2
_l

in
e_

tr
ip

6
x

x
x

x

In
te

rn
al

d
cu

2
_l

in
e_

tr
ip

7

x
x

x
x

In
te

rn
al

d
cu

2
_l

in
e_

tr
ip

8

x
x

x
x

In
te

rn
al

d
cu

2
_l

in
e_

tr
ip

9

x
x

x
x

x
x

x
x

In
te

rn
al

d
cu

2
_l

in
e_

tr
ip

1
0

x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

In
te

rn
al

d
cu

2
_l

in
e_

tr
ip

1
1

x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
te

rn
al

d
cu

2
_l

in
e_

tr
ip

1
2

x
x

x
x

x
x

x
x

D
ir

ec
t1

x

x
x

x
x

x

D
ir

ec
t2

x

D
ir

ec
t3

x

x
x

D
ir

ec
t4

x

x
x

x
x

x
x

x
x

x

D
ir

ec
t5

x

x
x

x
x

x
x

x
x

x

D
ir

ec
t6

x
x

x
x

x
x

x
x

x
x

x
x

In
d

ir
ec

t1

x
x

x
x

x
x

x
x

x
x

x
x

In
d

ir
ec

t2

x
x

x
x

x
x

x
x

x
x

x
x

In
d

ir
ec

t3

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
d

ir
ec

t4

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
d

ir
ec

t5
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

In
d

ir
ec

t6

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
d

ir
ec

t7

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
d

ir
ec

t8

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
d

ir
ec

t9

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
d

ir
ec

t1
0

x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

In
d

ir
ec

t1
1

x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
d

ir
ec

t1
2

x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
d

ir
ec

t1
3

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

In
d

ir
ec

t1
4

x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
d

ir
ec

t1
5

x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
d

ir
ec

t1
6

x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

In
d

ir
ec

t1
7

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

146

T
a
b
le

5
9
.

F
a
u
lt

in
jectio

n
7
:

In
d
ep

en
d
en

t
o
b
serv

ers
(g

ray
)

InternalTester1

InternalLtrTsSq1

InternalLtrTsSq2

InternalLtrTsSq3

InternalLtrTsSq4

InternalLtrTsSq5

InternalLtrTsSq6

InternalLtrTsSq7

InternalLtrTsSq8

InternalLtrTsSq9

InternalLtrTsSq10

InternalLtrTsSq11

InternalLtrTsSq12

InternalLtrTsSq13

InternalLtrTsSq14

InternalLtrTsSq15

InternalLtrTsSq16

InternalLtrTsSq17

InternalLtrTsSq18

InternalLtrTsSq19

InternalController1

InternalLtrInt1

Internaldcu2_line_trip1

Internaldcu2_line_trip2

Internaldcu2_line_trip3

Internaldcu2_line_trip4

Internaldcu2_line_trip5

Internaldcu2_line_trip6

Internaldcu2_line_trip7

Internaldcu2_line_trip8

Internaldcu2_line_trip9

Internaldcu2_line_trip10

Internaldcu2_line_trip11

Internaldcu2_line_trip12

Direct1 Direct2 Direct3 Direct4 Direct5 Direct6Indirect1
Indirect2
Indirect3
Indirect4
Indirect5Indirect6
Indirect7
Indirect8
Indirect9
Indirect10
Indirect11
Indirect12
Indirect13
Indirect14
Indirect15
Indirect16
Indirect17

In
tern

alTester1
x

x
x

x
x

x
x

x
x

In
tern

alLtrTsSq
1

x
x

x
x

x
x

x

In
tern

alLtrTsSq
2

x

x
x

x
x

x
x

In
tern

alLtrTsSq
3

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

In
tern

alLtrTsSq
4

x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

In
tern

alLtrTsSq
5

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
tern

alLtrTsSq
6

x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

In
tern

alLtrTsSq
7

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
tern

alLtrTsSq
8

x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

In
tern

alLtrTsSq
9

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
tern

alLtrTsSq
1

0
x

x
x

x
x

x
x

x
x

x
x

x
x

In
tern

alLtrTsSq
1

1
x

x
x

x
x

x
x

x
x

x
x

x
x

x

In
tern

alLtrTsSq
1

2
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

In
tern

alLtrTsSq
1

3
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
tern

alLtrTsSq
1

4
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
tern

alLtrTsSq
1

5
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
tern

alLtrTsSq
1

6
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
tern

alLtrTsSq
1

7
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

In
tern

alLtrTsSq
1

8
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
tern

alLtrTsSq
1

9
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
tern

alC
o

n
tro

ller1
x

x
x

x
x

In
tern

alLtrIn
t1

x
x

In
tern

ald
cu

2
_lin

e_trip
1

x

x
x

x

In
tern

ald
cu

2
_lin

e_trip
2

x

x
x

x

In
tern

ald
cu

2
_lin

e_trip
3

x

x
x

x

In
tern

ald
cu

2
_lin

e_trip
4

x

x
x

x

In
tern

ald
cu

2
_lin

e_trip
5

x

x
x

x

In
tern

ald
cu

2
_lin

e_trip
6

x
x

x
x

In
tern

ald
cu

2
_lin

e_trip
7

x

x
x

x

In
tern

ald
cu

2
_lin

e_trip
8

x

x
x

x

In
tern

ald
cu

2
_lin

e_trip
9

x

x
x

x
x

x
x

x

In
tern

ald
cu

2
_lin

e_trip
1

0

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
tern

ald
cu

2
_lin

e_trip
1

1

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

In
tern

ald
cu

2
_lin

e_trip
1

2
x

x
x

x
x

x
x

x

D
irect1

x

x
x

x
x

x

D
irect2

x

D
irect3

x

x
x

D
irect4

x

x
x

x
x

x
x

x
x

x

D
irect5

x

x
x

x
x

x
x

x
x

x

D
irect6

x
x

x
x

x
x

x
x

x
x

x
x

In
d

irect1

x
x

x
x

x
x

x
x

x
x

x
x

In
d

irect2

x
x

x
x

x
x

x
x

x
x

x
x

In
d

irect3

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
d

irect4

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
d

irect5
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

In
d

irect6

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
d

irect7

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
d

irect8

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
d

irect9

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
d

irect1
0

x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

In
d

irect1
1

x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
d

irect1
2

x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
d

irect1
3

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

In
d

irect1
4

x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
d

irect1
5

x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

In
d

irect1
6

x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

In
d

irect1
7

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x
x

x

147

Appendix E Slices

148

Fig. 24. Fault injection 1: Slice

Controller-some_read2
:= GPIO_OUT

NX_LtrSaSq := 1

Inter-component (call/event) control flow

EXIT
Tester.Impl

LtrTsSq(DCUIMG_C_LtrTs,
DHSSMG_B_LtrFl,
DHWOMG_S_LtrCd,
DIGIMG_S_LtrOp,
DCUIMG_S_DcuNtRdy,
PARAGP_L_LtrSvEn,
DHSSMG_B_OpLtr,
DHSSMG_B_CdLtr,
DHSSMG_NX_LtrSaSq,
temp1,
temp2)

on dispatch

Component-internal data flow

Component-internal control flow

Inter-component data flow

temp3 := temp1 and
temp2

SR(temp1,false,DHS
SMG_S_LtrTsRdy)

SR(temp3,false,DHS
SMG_S_LtrOpVd

on dispatch

EXIT
Controller.Impl

LtrInt(PRASMZ_B_RqPrSd,
APSIMZ_B_OpLtr,
SSSCMZ_NX_MnSqSt,
PCTHMZ_A_PctMo,
PLTTMG_B_OpLtr,
DHSSMG_B_OpLtr,
DHSSMG_B_CdLtr,
APSIMZ_B_EnCdLnTrpSlt,
PARAGP_L_CnfHpp,
DIGOMG_B_CdLtr)

ENTRY
Controller.Impl

DIGOMG_B_CdLtr :=
B_ClLtr_out

dcu2_line_trip(
not DHSSMG_B_LtrHwOpFl,
temp0,
DHWOMG_S_LtrCd,
DHWOMG_B_FpgaLtrOn,
DHWOMG_B_DcuLtrFl)

ENTRY
LtrInt.Impl

EXIT
LtrInt.Impl

temp1 := NX_SqSt >= 3

WITHIN_I(true,NX_S
qSt,27,4,temp2)

temp3 := NX_SqSt >= 38

temp4 := NX_SqSt = 30

temp5 := NX_SqSt = 31

temp6 := B_RqPrSd and
temp1

temp7 := temp6 or
B_OpLtr_LtrTs or

B_OpLtr_AppSpec

temp8 := temp2 or temp3

F_TRIG(temp4,temp9
)

F_TRIG(B_OpLtr_AppSpec,t
emp10)

R_TRIG(temp8,temp11)

temp12 := temp9 or temp5

temp13 := L_CnfHpp or
B_EnCdLnTrpSlt

temp14 := not (A_PctMo
and B_LtrTsOpLtr)

temp15 := temp12 and
temp13

temp16 := temp10 or
B_CdLtr_LtrTs or temp11 or

temp15

RS(temp7,temp16,temp17)

B_ClLtr := temp14 and
temp17

enable

fb_ne := btemp

ENTRY
dcu2_line_trip.Impl

GPIO_OUT:=
GPIO_OUT and not

LTRIP_EN_N

act

T F

GPIO_OUT:=
GPIO_OUT or
LTRIP_EN_N

temp := temp or
MCU_LT_ON

FPGA_LTRCR :=
temp

fpga2_on := temp and
FPGA2_LT_ON

fb := temp and
LT_RELAY_FB

enable and act and
fpga2_on

btemp := true
btemp := true

fb

F

F

F

T

T

T

L_EnLtrSv
and C_LtrTs

ENTRY LtrTsSq.Impl

B_OpLtr := true

T

F
(not L_EnLtrSv) and

C_LtrTs

EXIT
dcu2_line_trip.

Impl

not S_LtrCd

B_CdLtr := true

T

F

B_LtrFl

Dy := true

S_LtrCd and Dy

B_OpLtr := true

T

F

B_LtrFl

T

T

T

S_LtrCd

A_LtrTs := true

T

F

B_LtrFl

T

S_DCUNtRdy T

EXIT
LtrTsSq.Impl

S_LtrOp_in :=
DIGIMG_S_LtrOp

S_DCUNtRdy_in :=
DCUIMG_S_DcuNtRdy

L_EnLtrSv_in :=
PARAGP_L_LtrSvEn

DHSSMG_B_OpLtr
:= B_OpLtr_out

DHSSMG_B_CdLtr
:= B_CdLtr_out

DHSSMG_NX_LtrSaSq
:= NX_LtrSaSq_out

S_LtrCd_in :=
DHWOMG_S_LtrCd

B_LtrFl_in :=
DHSSMG_B_LtrFl

C_LtrTs_in :=
DCUIMG_C_LtrTs

temp1 :=
A_LtrTs_out

temp2 :=
A_LtrOpVd_out

S_LtrOp :=
S_LtrOp_in

S_DCUNtRdy :=
S_DCUNtRdy_in

L_EnLtrSv :=
L_EnLtrSv_in

S_LtrCd :=
S_LtrCd_in

B_LtrFl :=
B_LtrFl_in

C_LtrTs :=
C_LtrTs_in

B_OpLtr_out :=
B_OpLtr

B_CdLtr_out :=
B_CdLtr

NX_LtrSaSq_out :=
NX_LtrSaSq

A_LtrTs_out :=
A_LtrTs

A_LtrOpVd_out :=
A_LtrOpVd

State_LtrTsSq
= Start

state_LtrTsSq
= OpenLtr1

state_LtrTsSq
= CloseLtr

state_LtrTsSq
= OpenLtr2

state_LtrTsSq
= Ready

state_LtrTsSq :=
OpenLtr1

state_LtrTsSq :=
Ready

state_LtrTsSq :=
CloseLtr

state_LtrTsSq :=
Start

state_LtrTsSq :=
OpenLtr2

state_LtrTsSq :=
Start

state_LtrTsSq :=
Ready

state_LtrTsSq :=
Start

state_LtrTsSq :=
Start

Internal_connection1
:= Dy

Dy :=
internal_connection1

Internal_connection2
:= state

State :=
internal_connection2

DIGIMG_S_LtrOp :=
some_connection12

DCUIMG_S_DcuNtRdy :=
some_connection13

PARAGP_L_LtrSvEn :=
some_connection14

DHWOMG_S_LtrCd :=
connection3

DHSSMG_B_LtrFl :=
some_connection10

DCUIMG_C_LtrTs :=
some_connection9

some_connection16 :=
DHSSMG_S_LtrTsRdy

some_connection17 :=
DHSSMG_S_LtrOpVd

some_connection15 :=
DHSSMG_NX_LtrSaSq

connection2 :=
DHSSMG_B_CdLtr

connection1 :=
DHSSMG_B_OpLtr

SET1_in := temp1 RESET_in := false
DHSSMG_S_LtrTsRdy

:= Q1_out

SR

SET1_in := temp3 RESET_in := false
DHSSMG_S_LtrOpVd

:= Q1_out

SR

PLTTMG_B_OpLtr :=
some_connection5

DHSSMG_B_OpLtr :=
connection1

DHSSMG_B_CdLtr
:= connection2

PCTHMZ_A_PctMo :=
some_connection4

SSSCMZ_NX_MnSqSt
:= some_connection3

APSIMZ_B_OpLtr :=
some_connection2

APSIMZ_B_EnCdLnTrpSlt
:= some_connection6

PRASMZ_B_RqPrSd
:= some_connection1

PARAGP_L_CnfHpp :=
some_connection7

DHSSMG_B_LtrHwOpFl
:= some_connection8

A_PctMo_in :=
PCTHMZ_A_PctMo

B_LtrTsOpLtr_in :=
PLTTMG_B_OpLtr

B_OpLtr_LtrTs_in :=
DHSSMG_B_OpLtr

B_CdLtr_LtrTs_in :=
DHSSMG_B_CdLtr

B_EnCdLnTrpSlt_in :=
APSIMZ_B_EnCdLnTrpSlt

NX_SqSt_in :=
SSSCMZ_NX_MnSqSt

B_OpLtr_AppSpec_in
:= APSIMZ_B_OpLtr

B_RqPrSd_in :=
PRASMZ_B_RqPrSd

L_CnfHpp_in :=
PARAGP_L_CnfHpp

B_CdLtr_LtrTs :=
B_CdLtr_LtrTs_in

B_EnCdLnTrpSlt :=
B_EnCdLnTrpSlt_in

L_CnfHpp :=
L_CnfHpp_in

B_OpLtr_LtrTs :=
B_OpLtr_LtrTs_in

B_LtrTsOpLtr :=
B_LtrTsOpLtr_in

A_PctMo :=
A_PctMo_in

NX_SqSt :=
NX_SqSt_in

B_OpLtr_AppSpec :=
B_OpLtr_AppSpec_in

B_RqPrSd :=
B_RqPrSd_in

B_ClLtr_out :=
B_ClLtr

enable_in := not
DHSSMG_B_LtrHwOpFl

act_in :=
DIGOMG_B_CdLtr

DHWOMG_S_LtrCd
:= fb_out

DHWOMG_B_FpgaLtrOn
:= fpga2_on_out

DHWOMG_B_DcuLtrFl
:= fb_ne_out

enable := enable_in act := act_in

fb_out := fb
fpga2_on_out :=

fpga2_on
fb_ne_out := fb_ne

some_connection21 :=
DHWOMG_B_DcuLtrFl

some_connection20 :=
DHWOMG_B_FpgaLtrOn

connection3 :=
DHWOMG_S_LtrCd

some_connection18
:= DIGOMG_B_CdLtr

INPUT_in := NX_SqSt

MX_in := 27

temp2 :=
OUTPUT_out

WITHIN_I

ENABLE_in := true

MN_in := 4

temp9 := Q_out

F_TRIG

CLK_in := temp4

temp10 := Q_out

F_TRIG

CLK_in :=
B_OpLtr_AppSpec

temp11 := Q_out

R_TRIG

CLK_in := temp8

SET1_in := temp16
RESET_in := temp7

temp17 := Q1_out

RS

btemp = false

temp = false

T

T

T

T

T

F

F

F

F

ENTRY
Tester.Impl

not fb

T
F

GPIO_OUT :=
Controller-Controller

LTRIP_EN_N :=
some_write1-Controller

MCU_LT_ON :=
some_write2-Controller

FPGA2_LT_ON :=
some_write3-Controller

LT_RELAY_FB :=
some_write4-Controller

Controller-some_read1
:= FPGA_LTRCR

Controller-Controller :=
GPIO_OUT

Interaction-based control flow

T

T

Delay(512ms);

NX_LtrSaSq := 0

NX_LtrSaSq := 2

NX_LtrSaSq := 3

NX_LtrSaSq := 4

Timing => Immediate;
Latency => 0ms .. 3ms;

Dispatch_Protocol => Periodic;
Period => 64 ms;
Priority => 2;
Compute_Execution_Time => 1 ms .. 10 ms;
Compute_Deadline => 64 ms;

Dispatch_Protocol => Periodic;
Period => 4 ms;
Priority => 1;
Compute_Execution_Time => 1 ms .. 2 ms;
Compute_Deadline => 2 ms;

Timing => Immediate;
Latency => 0ms .. 1ms;

Timing => Immediate;
Latency => 0ms .. 1ms;

149

Fig. 25. Fault injection 2: Slice

Controller-some_read2
:= GPIO_OUT

NX_LtrSaSq := 1

Inter-component (call/event) control flow

EXIT
Tester.Impl

LtrTsSq(DCUIMG_C_LtrTs,
DHSSMG_B_LtrFl,
DHWOMG_S_LtrCd,
DIGIMG_S_LtrOp,
DCUIMG_S_DcuNtRdy,
PARAGP_L_LtrSvEn,
DHSSMG_B_OpLtr,
DHSSMG_B_CdLtr,
DHSSMG_NX_LtrSaSq,
temp1,
temp2)

on dispatch

Component-internal data flow

Component-internal control flow

Inter-component data flow

temp3 := temp1 and
temp2

SR(temp1,false,DHS
SMG_S_LtrTsRdy)

SR(temp3,false,DHS
SMG_S_LtrOpVd

on dispatch

EXIT
Controller.Impl

LtrInt(PRASMZ_B_RqPrSd,
APSIMZ_B_OpLtr,
SSSCMZ_NX_MnSqSt,
PCTHMZ_A_PctMo,
PLTTMG_B_OpLtr,
DHSSMG_B_OpLtr,
DHSSMG_B_CdLtr,
APSIMZ_B_EnCdLnTrpSlt,
PARAGP_L_CnfHpp,
DIGOMG_B_CdLtr)

ENTRY
Controller.Impl

DIGOMG_B_CdLtr :=
B_ClLtr_out

dcu2_line_trip(
not DHSSMG_B_LtrHwOpFl,
temp0,
DHWOMG_S_LtrCd,
DHWOMG_B_FpgaLtrOn,
DHWOMG_B_DcuLtrFl)

ENTRY
LtrInt.Impl

EXIT
LtrInt.Impl

temp1 := NX_SqSt >= 3

WITHIN_I(true,NX_S
qSt,27,4,temp2)

temp3 := NX_SqSt >= 38

temp4 := NX_SqSt = 30

temp5 := NX_SqSt = 31

temp6 := B_RqPrSd and
temp1

temp7 := temp6 or
B_OpLtr_LtrTs or

B_OpLtr_AppSpec

temp8 := temp2 or temp3

F_TRIG(temp4,temp9
)

F_TRIG(B_OpLtr_AppSpec,t
emp10)

R_TRIG(temp8,temp11)

temp12 := temp9 or temp5

temp13 := L_CnfHpp or
B_EnCdLnTrpSlt

temp14 := not (A_PctMo
and B_LtrTsOpLtr)

temp15 := temp12 and
temp13

temp16 := temp10 or
B_CdLtr_LtrTs or temp11 or

temp15

RS(temp7,temp16,temp17)

B_ClLtr := temp14 and
temp17

enable

fb_ne := btemp

ENTRY
dcu2_line_trip.Impl

GPIO_OUT:=
GPIO_OUT and not

LTRIP_EN_N

act

T F

GPIO_OUT:=
GPIO_OUT or
LTRIP_EN_N

temp := temp or
MCU_LT_ON

FPGA_LTRCR :=
temp

fpga2_on := temp and
FPGA2_LT_ON

fb := temp and
LT_RELAY_FB

enable and act and
fpga2_on

btemp := true
btemp := true

fb

F

F

F

T

T

T

L_EnLtrSv
and C_LtrTs

ENTRY LtrTsSq.Impl

B_OpLtr := true

T

F
(not L_EnLtrSv) and

C_LtrTs

EXIT
dcu2_line_trip.

Impl

not S_LtrCd

B_CdLtr := true

T

F

B_LtrFl

Dy := true

S_LtrCd and Dy

B_OpLtr := true

T

F

B_LtrFl

T

T

T

not S_LtrCd

A_LtrTs := true

T

F

B_LtrFl

T

S_DCUNtRdy T

EXIT
LtrTsSq.Impl

S_LtrOp_in :=
DIGIMG_S_LtrOp

S_DCUNtRdy_in :=
DCUIMG_S_DcuNtRdy

L_EnLtrSv_in :=
PARAGP_L_LtrSvEn

DHSSMG_B_OpLtr
:= B_OpLtr_out

DHSSMG_B_CdLtr
:= B_CdLtr_out

DHSSMG_NX_LtrSaSq
:= NX_LtrSaSq_out

S_LtrCd_in :=
DHWOMG_S_LtrCd

B_LtrFl_in :=
DHSSMG_B_LtrFl

C_LtrTs_in :=
DCUIMG_C_LtrTs

temp1 :=
A_LtrTs_out

temp2 :=
A_LtrOpVd_out

S_LtrOp :=
S_LtrOp_in

S_DCUNtRdy :=
S_DCUNtRdy_in

L_EnLtrSv :=
L_EnLtrSv_in

S_LtrCd :=
S_LtrCd_in

B_LtrFl :=
B_LtrFl_in

C_LtrTs :=
C_LtrTs_in

B_OpLtr_out :=
B_OpLtr

B_CdLtr_out :=
B_CdLtr

NX_LtrSaSq_out :=
NX_LtrSaSq

A_LtrTs_out :=
A_LtrTs

A_LtrOpVd_out :=
A_LtrOpVd

State_LtrTsSq
= Start

state_LtrTsSq
= OpenLtr1

state_LtrTsSq
= CloseLtr

state_LtrTsSq
= OpenLtr2

state_LtrTsSq
= Ready

state_LtrTsSq :=
OpenLtr1

state_LtrTsSq :=
Ready

state_LtrTsSq :=
CloseLtr

state_LtrTsSq :=
Start

state_LtrTsSq :=
OpenLtr1

state_LtrTsSq :=
Start

state_LtrTsSq :=
Ready

state_LtrTsSq :=
Start

state_LtrTsSq :=
Start

Internal_connection1
:= Dy

Dy :=
internal_connection1

Internal_connection2
:= state

State :=
internal_connection2

DIGIMG_S_LtrOp :=
some_connection12

DCUIMG_S_DcuNtRdy :=
some_connection13

PARAGP_L_LtrSvEn :=
some_connection14

DHWOMG_S_LtrCd :=
connection3

DHSSMG_B_LtrFl :=
some_connection10

DCUIMG_C_LtrTs :=
some_connection9

some_connection16 :=
DHSSMG_S_LtrTsRdy

some_connection17 :=
DHSSMG_S_LtrOpVd

some_connection15 :=
DHSSMG_NX_LtrSaSq

connection2 :=
DHSSMG_B_CdLtr

connection1 :=
DHSSMG_B_OpLtr

SET1_in := temp1 RESET_in := false
DHSSMG_S_LtrTsRdy

:= Q1_out

SR

SET1_in := temp3 RESET_in := false
DHSSMG_S_LtrOpVd

:= Q1_out

SR

PLTTMG_B_OpLtr :=
some_connection5

DHSSMG_B_OpLtr :=
connection1

DHSSMG_B_CdLtr
:= connection2

PCTHMZ_A_PctMo :=
some_connection4

SSSCMZ_NX_MnSqSt
:= some_connection3

APSIMZ_B_OpLtr :=
some_connection2

APSIMZ_B_EnCdLnTrpSlt
:= some_connection6

PRASMZ_B_RqPrSd
:= some_connection1

PARAGP_L_CnfHpp :=
some_connection7

DHSSMG_B_LtrHwOpFl
:= some_connection8

A_PctMo_in :=
PCTHMZ_A_PctMo

B_LtrTsOpLtr_in :=
PLTTMG_B_OpLtr

B_OpLtr_LtrTs_in :=
DHSSMG_B_OpLtr

B_CdLtr_LtrTs_in :=
DHSSMG_B_CdLtr

B_EnCdLnTrpSlt_in :=
APSIMZ_B_EnCdLnTrpSlt

NX_SqSt_in :=
SSSCMZ_NX_MnSqSt

B_OpLtr_AppSpec_in
:= APSIMZ_B_OpLtr

B_RqPrSd_in :=
PRASMZ_B_RqPrSd

L_CnfHpp_in :=
PARAGP_L_CnfHpp

B_CdLtr_LtrTs :=
B_CdLtr_LtrTs_in

B_EnCdLnTrpSlt :=
B_EnCdLnTrpSlt_in

L_CnfHpp :=
L_CnfHpp_in

B_OpLtr_LtrTs :=
B_OpLtr_LtrTs_in

B_LtrTsOpLtr :=
B_LtrTsOpLtr_in

A_PctMo :=
A_PctMo_in

NX_SqSt :=
NX_SqSt_in

B_OpLtr_AppSpec :=
B_OpLtr_AppSpec_in

B_RqPrSd :=
B_RqPrSd_in

B_ClLtr_out :=
B_ClLtr

enable_in := not
DHSSMG_B_LtrHwOpFl

act_in :=
DIGOMG_B_CdLtr

DHWOMG_S_LtrCd
:= fb_out

DHWOMG_B_FpgaLtrOn
:= fpga2_on_out

DHWOMG_B_DcuLtrFl
:= fb_ne_out

enable := enable_in act := act_in

fb_out := fb
fpga2_on_out :=

fpga2_on
fb_ne_out := fb_ne

some_connection21 :=
DHWOMG_B_DcuLtrFl

some_connection20 :=
DHWOMG_B_FpgaLtrOn

connection3 :=
DHWOMG_S_LtrCd

some_connection18
:= DIGOMG_B_CdLtr

INPUT_in := NX_SqSt

MX_in := 27

temp2 :=
OUTPUT_out

WITHIN_I

ENABLE_in := true

MN_in := 4

temp9 := Q_out

F_TRIG

CLK_in := temp4

temp10 := Q_out

F_TRIG

CLK_in :=
B_OpLtr_AppSpec

temp11 := Q_out

R_TRIG

CLK_in := temp8

SET1_in := temp16
RESET_in := temp7

temp17 := Q1_out

RS

btemp = false

temp = false

T

T

T

T

T

F

F

F

F

ENTRY
Tester.Impl

not fb

T
F

GPIO_OUT :=
Controller-Controller

LTRIP_EN_N :=
some_write1-Controller

MCU_LT_ON :=
some_write2-Controller

FPGA2_LT_ON :=
some_write3-Controller

LT_RELAY_FB :=
some_write4-Controller

Controller-some_read1
:= FPGA_LTRCR

Controller-Controller :=
GPIO_OUT

Interaction-based control flow

T

T

Delay(512ms);

NX_LtrSaSq := 0

NX_LtrSaSq := 2

NX_LtrSaSq := 3

NX_LtrSaSq := 4

Timing => Immediate;
Latency => 0ms .. 3ms;

Dispatch_Protocol => Periodic;
Period => 64 ms;
Priority => 2;
Compute_Execution_Time => 1 ms .. 10 ms;
Compute_Deadline => 64 ms;

Dispatch_Protocol => Periodic;
Period => 4 ms;
Priority => 1;
Compute_Execution_Time => 1 ms .. 2 ms;
Compute_Deadline => 2 ms;

Timing => Immediate;
Latency => 0ms .. 1ms;

Timing => Immediate;
Latency => 0ms .. 1ms;

150

Fig. 26. Fault injection 3: Slice

Controller-some_read2
:= GPIO_OUT

NX_LtrSaSq := 1

Inter-component (call/event) control flow

EXIT
Tester.Impl

LtrTsSq(DCUIMG_C_LtrTs,
DHSSMG_B_LtrFl,
DHWOMG_S_LtrCd,
DIGIMG_S_LtrOp,
DCUIMG_S_DcuNtRdy,
PARAGP_L_LtrSvEn,
DHSSMG_B_OpLtr,
DHSSMG_B_CdLtr,
DHSSMG_NX_LtrSaSq,
temp1,
temp2)

on dispatch

Component-internal data flow

Component-internal control flow

Inter-component data flow

temp3 := temp1 and
temp2

SR(temp1,false,DHS
SMG_S_LtrTsRdy)

SR(temp3,false,DHS
SMG_S_LtrOpVd

on dispatch

EXIT
Controller.Impl

LtrInt(PRASMZ_B_RqPrSd,
APSIMZ_B_OpLtr,
SSSCMZ_NX_MnSqSt,
PCTHMZ_A_PctMo,
PLTTMG_B_OpLtr,
DHSSMG_B_OpLtr,
DHSSMG_B_CdLtr,
APSIMZ_B_EnCdLnTrpSlt,
PARAGP_L_CnfHpp,
DIGOMG_B_CdLtr)

ENTRY
Controller.Impl

DIGOMG_B_CdLtr :=
B_ClLtr_out

dcu2_line_trip(
not DHSSMG_B_LtrHwOpFl,
temp0,
DHWOMG_S_LtrCd,
DHWOMG_B_FpgaLtrOn,
DHWOMG_B_DcuLtrFl)

ENTRY
LtrInt.Impl

EXIT
LtrInt.Impl

temp1 := NX_SqSt >= 3

WITHIN_I(true,NX_S
qSt,27,4,temp2)

temp3 := NX_SqSt >= 38

temp4 := NX_SqSt = 30

temp5 := NX_SqSt = 31

temp6 := B_RqPrSd and
temp1

temp7 := temp6 or
B_OpLtr_LtrTs or

B_OpLtr_AppSpec

temp8 := temp2 or temp3

F_TRIG(temp4,temp9
)

F_TRIG(B_OpLtr_AppSpec,t
emp10)

R_TRIG(temp8,temp11)

temp12 := temp9 or temp5

temp13 := L_CnfHpp or
B_EnCdLnTrpSlt

temp14 := not (A_PctMo
and B_LtrTsOpLtr)

temp15 := temp12 and
temp13

temp16 := temp10 or
B_CdLtr_LtrTs or temp11 or

temp15

RS(temp7,temp16,temp17)

B_ClLtr := temp14 and
temp17

enable

fb_ne := btemp

ENTRY
dcu2_line_trip.Impl

GPIO_OUT:=
GPIO_OUT and not

LTRIP_EN_N

act

T F

GPIO_OUT:=
GPIO_OUT or
LTRIP_EN_N

temp := temp or
MCU_LT_ON

FPGA_LTRCR :=
temp

fpga2_on := temp and
FPGA2_LT_ON

fb := temp and
LT_RELAY_FB

enable and act and
fpga2_on

btemp := true
btemp := true

fb

F

F

F

T

T

T

L_EnLtrSv
and C_LtrTs

ENTRY LtrTsSq.Impl

B_OpLtr := true

T

F
(not L_EnLtrSv) and

C_LtrTs

EXIT
dcu2_line_trip.

Impl

not S_LtrCd

B_CdLtr := true

T

F

B_LtrFl

Dy := true

S_LtrCd and Dy

B_OpLtr := true

T

F

B_LtrFl

T

T

T

not S_LtrCd

A_LtrTs := true

T

F

B_LtrFl

T

S_DCUNtRdy T

EXIT
LtrTsSq.Impl

S_LtrOp_in :=
DIGIMG_S_LtrOp

S_DCUNtRdy_in :=
DCUIMG_S_DcuNtRdy

L_EnLtrSv_in :=
PARAGP_L_LtrSvEn

DHSSMG_B_OpLtr
:= B_OpLtr_out

DHSSMG_B_CdLtr
:= B_CdLtr_out

DHSSMG_NX_LtrSaSq
:= NX_LtrSaSq_out

S_LtrCd_in :=
DHWOMG_S_LtrCd

B_LtrFl_in :=
DHSSMG_B_LtrFl

C_LtrTs_in :=
DCUIMG_C_LtrTs

temp1 :=
A_LtrTs_out

temp2 :=
A_LtrOpVd_out

S_LtrOp :=
S_LtrOp_in

S_DCUNtRdy :=
S_DCUNtRdy_in

L_EnLtrSv :=
L_EnLtrSv_in

S_LtrCd :=
S_LtrCd_in

B_LtrFl :=
B_LtrFl_in

C_LtrTs :=
C_LtrTs_in

B_OpLtr_out :=
B_OpLtr

B_CdLtr_out :=
B_CdLtr

NX_LtrSaSq_out :=
NX_LtrSaSq

A_LtrTs_out :=
A_LtrTs

A_LtrOpVd_out :=
A_LtrOpVd

State_LtrTsSq
= Start

state_LtrTsSq
= OpenLtr1

state_LtrTsSq
= CloseLtr

state_LtrTsSq
= OpenLtr2

state_LtrTsSq
= Ready

state_LtrTsSq :=
OpenLtr1

state_LtrTsSq :=
Ready

state_LtrTsSq :=
CloseLtr

state_LtrTsSq :=
Start

state_LtrTsSq :=
OpenLtr2

state_LtrTsSq :=
Start

state_LtrTsSq :=
Ready

state_LtrTsSq :=
Start

state_LtrTsSq :=
Start

Internal_connection1
:= Dy

Dy :=
internal_connection1

Internal_connection2
:= state

State :=
internal_connection2

DIGIMG_S_LtrOp :=
some_connection12

DCUIMG_S_DcuNtRdy :=
some_connection13

PARAGP_L_LtrSvEn :=
some_connection14

DHWOMG_S_LtrCd :=
DHWOMG_S_LtrCd

DHSSMG_B_LtrFl :=
some_connection10

DCUIMG_C_LtrTs :=
some_connection9

some_connection16 :=
DHSSMG_S_LtrTsRdy

some_connection17 :=
DHSSMG_S_LtrOpVd

some_connection15 :=
DHSSMG_NX_LtrSaSq

connection2 :=
DHSSMG_B_CdLtr

connection1 :=
DHSSMG_B_OpLtr

SET1_in := temp1 RESET_in := false
DHSSMG_S_LtrTsRdy

:= Q1_out

SR

SET1_in := temp3 RESET_in := false
DHSSMG_S_LtrOpVd

:= Q1_out

SR

PLTTMG_B_OpLtr :=
some_connection5

DHSSMG_B_OpLtr :=
connection1

DHSSMG_B_CdLtr
:= connection2

PCTHMZ_A_PctMo :=
some_connection4

SSSCMZ_NX_MnSqSt
:= some_connection3

APSIMZ_B_OpLtr :=
some_connection2

APSIMZ_B_EnCdLnTrpSlt
:= some_connection6

PRASMZ_B_RqPrSd
:= some_connection1

PARAGP_L_CnfHpp :=
some_connection7

DHSSMG_B_LtrHwOpFl
:= some_connection8

A_PctMo_in :=
PCTHMZ_A_PctMo

B_LtrTsOpLtr_in :=
PLTTMG_B_OpLtr

B_OpLtr_LtrTs_in :=
DHSSMG_B_OpLtr

B_CdLtr_LtrTs_in :=
DHSSMG_B_CdLtr

B_EnCdLnTrpSlt_in :=
APSIMZ_B_EnCdLnTrpSlt

NX_SqSt_in :=
SSSCMZ_NX_MnSqSt

B_OpLtr_AppSpec_in
:= APSIMZ_B_OpLtr

B_RqPrSd_in :=
PRASMZ_B_RqPrSd

L_CnfHpp_in :=
PARAGP_L_CnfHpp

B_CdLtr_LtrTs :=
B_CdLtr_LtrTs_in

B_EnCdLnTrpSlt :=
B_EnCdLnTrpSlt_in

L_CnfHpp :=
L_CnfHpp_in

B_OpLtr_LtrTs :=
B_OpLtr_LtrTs_in

B_LtrTsOpLtr :=
B_LtrTsOpLtr_in

A_PctMo :=
A_PctMo_in

NX_SqSt :=
NX_SqSt_in

B_OpLtr_AppSpec :=
B_OpLtr_AppSpec_in

B_RqPrSd :=
B_RqPrSd_in

B_ClLtr_out :=
B_ClLtr

enable_in := not
DHSSMG_B_LtrHwOpFl

act_in :=
DIGOMG_B_CdLtr

DHWOMG_S_LtrCd
:= fb_out

DHWOMG_B_FpgaLtrOn
:= fpga2_on_out

DHWOMG_B_DcuLtrFl
:= fb_ne_out

enable := enable_in act := act_in

fb_out := fb
fpga2_on_out :=

fpga2_on
fb_ne_out := fb_ne

some_connection21 :=
DHWOMG_B_DcuLtrFl

some_connection20 :=
DHWOMG_B_FpgaLtrOn

some_connection18
:= DIGOMG_B_CdLtr

INPUT_in := NX_SqSt

MX_in := 27

temp2 :=
OUTPUT_out

WITHIN_I

ENABLE_in := true

MN_in := 4

temp9 := Q_out

F_TRIG

CLK_in := temp4

temp10 := Q_out

F_TRIG

CLK_in :=
B_OpLtr_AppSpec

temp11 := Q_out

R_TRIG

CLK_in := temp8

SET1_in := temp16
RESET_in := temp7

temp17 := Q1_out

RS

btemp = false

temp = false

T

T

T

T

T

F

F

F

F

ENTRY
Tester.Impl

not fb

T
F

GPIO_OUT :=
Controller-Controller

LTRIP_EN_N :=
some_write1-Controller

MCU_LT_ON :=
some_write2-Controller

FPGA2_LT_ON :=
some_write3-Controller

LT_RELAY_FB :=
some_write4-Controller

Controller-some_read1
:= FPGA_LTRCR

Controller-Controller :=
GPIO_OUT

Interaction-based control flow

T

T

Delay(512ms);

NX_LtrSaSq := 0

NX_LtrSaSq := 2

NX_LtrSaSq := 3

NX_LtrSaSq := 4

Dispatch_Protocol => Periodic;
Period => 64 ms;
Priority => 2;
Compute_Execution_Time => 1 ms .. 10 ms;
Compute_Deadline => 64 ms;

Dispatch_Protocol => Periodic;
Period => 4 ms;
Priority => 1;
Compute_Execution_Time => 1 ms .. 2 ms;
Compute_Deadline => 2 ms;

Timing => Immediate;
Latency => 0ms .. 1ms;

Timing => Immediate;
Latency => 0ms .. 1ms;

151

Fig. 27. Fault injection 4: Slice

Controller-some_read2
:= GPIO_OUT

NX_LtrSaSq := 1

Inter-component (call/event) control flow

EXIT
Tester.Impl

LtrTsSq(DCUIMG_C_LtrTs,
DHSSMG_B_LtrFl,
DHWOMG_S_LtrCd,
DIGIMG_S_LtrOp,
DCUIMG_S_DcuNtRdy,
PARAGP_L_LtrSvEn,
DHSSMG_B_OpLtr,
DHSSMG_B_CdLtr,
DHSSMG_NX_LtrSaSq,
temp1,
temp2)

on dispatch

Component-internal data flow

Component-internal control flow

Inter-component data flow

temp3 := temp1 and
temp2

SR(temp1,false,DHS
SMG_S_LtrTsRdy)

SR(temp3,false,DHS
SMG_S_LtrOpVd

on dispatch

EXIT
Controller.Impl

LtrInt(PRASMZ_B_RqPrSd,
APSIMZ_B_OpLtr,
SSSCMZ_NX_MnSqSt,
PCTHMZ_A_PctMo,
PLTTMG_B_OpLtr,
DHSSMG_B_OpLtr,
DHSSMG_B_CdLtr,
APSIMZ_B_EnCdLnTrpSlt,
PARAGP_L_CnfHpp,
DIGOMG_B_CdLtr)

ENTRY
Controller.Impl

DIGOMG_B_CdLtr :=
B_ClLtr_out

dcu2_line_trip(
not DHSSMG_B_LtrHwOpFl,
temp0,
DHWOMG_S_LtrCd,
DHWOMG_B_FpgaLtrOn,
DHWOMG_B_DcuLtrFl)

ENTRY
LtrInt.Impl

EXIT
LtrInt.Impl

temp1 := NX_SqSt >= 3

WITHIN_I(true,NX_S
qSt,27,4,temp2)

temp3 := NX_SqSt >= 38

temp4 := NX_SqSt = 30

temp5 := NX_SqSt = 31

temp6 := B_RqPrSd and
temp1

temp7 := temp6 or
B_OpLtr_LtrTs or

B_OpLtr_AppSpec

temp8 := temp2 or temp3

F_TRIG(temp4,temp9
)

F_TRIG(B_OpLtr_AppSpec,t
emp10)

R_TRIG(temp8,temp11)

temp12 := temp9 or temp5

temp13 := L_CnfHpp or
B_EnCdLnTrpSlt

temp14 := not (A_PctMo
and B_LtrTsOpLtr)

temp15 := temp12 and
temp13

temp16 := temp10 or
B_CdLtr_LtrTs or temp11 or

temp15

RS(temp7,temp16,temp17)

B_ClLtr := temp14 and
temp17

enable

fb_ne := btemp

ENTRY
dcu2_line_trip.Impl

GPIO_OUT:=
GPIO_OUT and not

LTRIP_EN_N

act

T F

GPIO_OUT:=
GPIO_OUT or
LTRIP_EN_N

temp := temp or
MCU_LT_ON

FPGA_LTRCR :=
temp

fpga2_on := temp and
FPGA2_LT_ON

fb := temp and
LT_RELAY_FB

enable and act and
fpga2_on

btemp := true
btemp := true

fb

F

F

F

T

T

T

L_EnLtrSv
and C_LtrTs

ENTRY LtrTsSq.Impl

B_OpLtr := true

T

F
(not L_EnLtrSv) and

C_LtrTs

EXIT
dcu2_line_trip.

Impl

not S_LtrCd

B_CdLtr := true

T

F

B_LtrFl

Dy := true

S_LtrCd and Dy

B_OpLtr := true

T

F

B_LtrFl

T

T

T

not S_LtrCd

A_LtrTs := true

T

F

B_LtrFl

T

S_DCUNtRdy T

EXIT
LtrTsSq.Impl

S_LtrOp_in :=
DIGIMG_S_LtrOp

S_DCUNtRdy_in :=
DCUIMG_S_DcuNtRdy

L_EnLtrSv_in :=
PARAGP_L_LtrSvEn

DHSSMG_B_OpLtr
:= B_OpLtr_out

DHSSMG_B_CdLtr
:= B_CdLtr_out

DHSSMG_NX_LtrSaSq
:= NX_LtrSaSq_out

S_LtrCd_in :=
DHWOMG_S_LtrCd

B_LtrFl_in :=
DHSSMG_B_LtrFl

C_LtrTs_in :=
DCUIMG_C_LtrTs

temp1 :=
A_LtrTs_out

temp2 :=
A_LtrOpVd_out

S_LtrOp :=
S_LtrOp_in

S_DCUNtRdy :=
S_DCUNtRdy_in

L_EnLtrSv :=
L_EnLtrSv_in

S_LtrCd :=
S_LtrCd_in

B_LtrFl :=
B_LtrFl_in

C_LtrTs :=
C_LtrTs_in

B_OpLtr_out :=
B_OpLtr

B_CdLtr_out :=
B_CdLtr

NX_LtrSaSq_out :=
NX_LtrSaSq

A_LtrTs_out :=
A_LtrTs

A_LtrOpVd_out :=
A_LtrOpVd

State_LtrTsSq
= Start

state_LtrTsSq
= OpenLtr1

state_LtrTsSq
= CloseLtr

state_LtrTsSq
= OpenLtr2

state_LtrTsSq
= Ready

state_LtrTsSq :=
OpenLtr1

state_LtrTsSq :=
Ready

state_LtrTsSq :=
CloseLtr

state_LtrTsSq :=
Start

state_LtrTsSq :=
OpenLtr2

state_LtrTsSq :=
Start

state_LtrTsSq :=
Ready

state_LtrTsSq :=
Start

state_LtrTsSq :=
Start

Internal_connection1
:= Dy

Dy :=
internal_connection1

Internal_connection2
:= state

State :=
internal_connection2

DIGIMG_S_LtrOp :=
some_connection12

DCUIMG_S_DcuNtRdy :=
some_connection13

PARAGP_L_LtrSvEn :=
some_connection14

DHWOMG_S_LtrCd :=
connection3

DHSSMG_B_LtrFl :=
some_connection10

DCUIMG_C_LtrTs :=
some_connection9

some_connection16 :=
DHSSMG_S_LtrTsRdy

some_connection17 :=
DHSSMG_S_LtrOpVd

some_connection15 :=
DHSSMG_NX_LtrSaSq

connection2 :=
DHSSMG_B_CdLtr

connection1 :=
DHSSMG_B_OpLtr

SET1_in := temp1 RESET_in := false
DHSSMG_S_LtrTsRdy

:= Q1_out

SR

SET1_in := temp3 RESET_in := false
DHSSMG_S_LtrOpVd

:= Q1_out

SR

PLTTMG_B_OpLtr :=
some_connection5

DHSSMG_B_OpLtr :=
connection1

DHSSMG_B_CdLtr
:= connection2

PCTHMZ_A_PctMo :=
some_connection4

SSSCMZ_NX_MnSqSt
:= some_connection3

APSIMZ_B_OpLtr :=
some_connection2

APSIMZ_B_EnCdLnTrpSlt
:= some_connection6

PRASMZ_B_RqPrSd
:= some_connection1

PARAGP_L_CnfHpp :=
some_connection7

DHSSMG_B_LtrHwOpFl
:= some_connection8

A_PctMo_in :=
PCTHMZ_A_PctMo

B_LtrTsOpLtr_in :=
PLTTMG_B_OpLtr

B_OpLtr_LtrTs_in :=
DHSSMG_B_OpLtr

B_CdLtr_LtrTs_in :=
DHSSMG_B_CdLtr

B_EnCdLnTrpSlt_in :=
APSIMZ_B_EnCdLnTrpSlt

NX_SqSt_in :=
SSSCMZ_NX_MnSqSt

B_OpLtr_AppSpec_in
:= APSIMZ_B_OpLtr

B_RqPrSd_in :=
PRASMZ_B_RqPrSd

L_CnfHpp_in :=
PARAGP_L_CnfHpp

B_CdLtr_LtrTs :=
B_CdLtr_LtrTs_in

B_EnCdLnTrpSlt :=
B_EnCdLnTrpSlt_in

L_CnfHpp :=
L_CnfHpp_in

B_OpLtr_LtrTs :=
B_OpLtr_LtrTs_in

B_LtrTsOpLtr :=
B_LtrTsOpLtr_in

A_PctMo :=
A_PctMo_in

NX_SqSt :=
NX_SqSt_in

B_OpLtr_AppSpec :=
B_OpLtr_AppSpec_in

B_RqPrSd :=
B_RqPrSd_in

B_ClLtr_out :=
B_ClLtr

act_in :=
DIGOMG_B_CdLtr

DHWOMG_S_LtrCd
:= fb_out

DHWOMG_B_FpgaLtrOn
:= fpga2_on_out

DHWOMG_B_DcuLtrFl
:= fb_ne_out

enable := enable act := act_in

fb_out := fb
fpga2_on_out :=

fpga2_on
fb_ne_out := fb_ne

some_connection21 :=
DHWOMG_B_DcuLtrFl

some_connection20 :=
DHWOMG_B_FpgaLtrOn

connection3 :=
DHWOMG_S_LtrCd

some_connection18
:= DIGOMG_B_CdLtr

INPUT_in := NX_SqSt

MX_in := 27

temp2 :=
OUTPUT_out

WITHIN_I

ENABLE_in := true

MN_in := 4

temp9 := Q_out

F_TRIG

CLK_in := temp4

temp10 := Q_out

F_TRIG

CLK_in :=
B_OpLtr_AppSpec

temp11 := Q_out

R_TRIG

CLK_in := temp8

SET1_in := temp16
RESET_in := temp7

temp17 := Q1_out

RS

btemp = false

temp = false

T

T

T

T

T

F

F

F

F

ENTRY
Tester.Impl

not fb

T
F

GPIO_OUT :=
Controller-Controller

LTRIP_EN_N :=
some_write1-Controller

MCU_LT_ON :=
some_write2-Controller

FPGA2_LT_ON :=
some_write3-Controller

LT_RELAY_FB :=
some_write4-Controller

Controller-some_read1
:= FPGA_LTRCR

Controller-Controller :=
GPIO_OUT

Interaction-based control flow

T

T

Delay(512ms);

NX_LtrSaSq := 0

NX_LtrSaSq := 2

NX_LtrSaSq := 3

NX_LtrSaSq := 4

Timing => Immediate;
Latency => 0ms .. 3ms;

Dispatch_Protocol => Periodic;
Period => 64 ms;
Priority => 2;
Compute_Execution_Time => 1 ms .. 10 ms;
Compute_Deadline => 64 ms;

Dispatch_Protocol => Periodic;
Period => 4 ms;
Priority => 1;
Compute_Execution_Time => 1 ms .. 2 ms;
Compute_Deadline => 2 ms;

Timing => Immediate;
Latency => 0ms .. 1ms;

Timing => Immediate;
Latency => 0ms .. 1ms;

152

Fig. 28. Fault injection 5: Slice

Controller-some_read2
:= GPIO_OUT

NX_LtrSaSq := 1

Inter-component (call/event) control flow

EXIT
Tester.Impl

LtrTsSq(DCUIMG_C_LtrTs,
DHSSMG_B_LtrFl,
DHWOMG_S_LtrCd,
DIGIMG_S_LtrOp,
DCUIMG_S_DcuNtRdy,
PARAGP_L_LtrSvEn,
DHSSMG_B_OpLtr,
DHSSMG_B_CdLtr,
DHSSMG_NX_LtrSaSq,
temp1,
temp2)

on dispatch

Component-internal data flow

Component-internal control flow

Inter-component data flow

temp3 := temp1 and
temp2

SR(temp1,false,DHS
SMG_S_LtrTsRdy)

SR(temp3,false,DHS
SMG_S_LtrOpVd

on dispatch

EXIT
Controller.Impl

LtrInt(PRASMZ_B_RqPrSd,
APSIMZ_B_OpLtr,
SSSCMZ_NX_MnSqSt,
PCTHMZ_A_PctMo,
PLTTMG_B_OpLtr,
DHSSMG_B_OpLtr,
DHSSMG_B_CdLtr,
APSIMZ_B_EnCdLnTrpSlt,
PARAGP_L_CnfHpp,
DIGOMG_B_CdLtr)

ENTRY
Controller.Impl

DIGOMG_B_CdLtr :=
B_ClLtr_out

dcu2_line_trip(
not DHSSMG_B_LtrHwOpFl,
temp0,
DHWOMG_S_LtrCd,
DHWOMG_B_FpgaLtrOn,
DHWOMG_B_DcuLtrFl)

ENTRY
LtrInt.Impl

EXIT
LtrInt.Impl

temp1 := NX_SqSt >= 3

WITHIN_I(true,NX_S
qSt,27,4,temp2)

temp3 := NX_SqSt >= 38

temp4 := NX_SqSt = 30

temp5 := NX_SqSt = 31

temp6 := B_RqPrSd and
temp1

temp7 := temp6 or
B_OpLtr_LtrTs or

B_OpLtr_AppSpec

temp8 := temp2 or temp3

F_TRIG(temp4,temp9
)

F_TRIG(B_OpLtr_AppSpec,t
emp10)

R_TRIG(temp8,temp11)

temp12 := temp9 or temp5

temp13 := L_CnfHpp or
B_EnCdLnTrpSlt

temp14 := not (A_PctMo
and B_LtrTsOpLtr)

temp15 := temp12 and
temp13

temp16 := temp10 or
B_CdLtr_LtrTs or temp11 or

temp15

RS(temp7,temp16,temp17)

B_ClLtr := temp14 and
temp17

enable

fb_ne := btemp

ENTRY
dcu2_line_trip.Impl

GPIO_OUT:=
GPIO_OUT and not

LTRIP_EN_N

act

T F

GPIO_OUT:=
GPIO_OUT or
LTRIP_EN_N

temp := temp or
MCU_LT_ON

FPGA_LTRCR :=
temp

fpga2_on := temp and
FPGA2_LT_ON

fb := temp and
LT_RELAY_FB

enable and act and
fpga2_on

btemp := true
btemp := true

fb

F

F

F

T

T

T

L_EnLtrSv
and C_LtrTs

ENTRY LtrTsSq.Impl

B_OpLtr := true

T

F
(not L_EnLtrSv) and

C_LtrTs

EXIT
dcu2_line_trip.

Impl

not S_LtrCd

B_CdLtr := true

T

F

B_LtrFl

Dy := true

S_LtrCd and Dy

B_OpLtr := true

T

F

B_LtrFl

T

T

T

not S_LtrCd

A_LtrTs := true

T

F

B_LtrFl

T

S_DCUNtRdy T

EXIT
LtrTsSq.Impl

S_LtrOp_in :=
DIGIMG_S_LtrOp

S_DCUNtRdy_in :=
DCUIMG_S_DcuNtRdy

L_EnLtrSv_in :=
PARAGP_L_LtrSvEn

DHSSMG_B_OpLtr
:= B_OpLtr_out

DHSSMG_B_CdLtr
:= B_CdLtr_out

DHSSMG_NX_LtrSaSq
:= NX_LtrSaSq_out

S_LtrCd_in :=
DHWOMG_S_LtrCd

B_LtrFl_in :=
DHSSMG_B_LtrFl

C_LtrTs_in :=
DCUIMG_C_LtrTs

temp1 :=
A_LtrTs_out

temp2 :=
A_LtrOpVd_out

S_LtrOp :=
S_LtrOp_in

S_DCUNtRdy :=
S_DCUNtRdy_in

L_EnLtrSv :=
L_EnLtrSv_in

S_LtrCd :=
S_LtrCd_in

B_LtrFl :=
B_LtrFl_in

C_LtrTs :=
C_LtrTs_in

B_OpLtr_out :=
B_OpLtr

B_CdLtr_out :=
B_CdLtr

NX_LtrSaSq_out :=
NX_LtrSaSq

A_LtrTs_out :=
A_LtrTs

A_LtrOpVd_out :=
A_LtrOpVd

State_LtrTsSq
= Start

state_LtrTsSq
= OpenLtr1

state_LtrTsSq
= CloseLtr

state_LtrTsSq
= OpenLtr2

state_LtrTsSq
= Ready

state_LtrTsSq :=
OpenLtr1

state_LtrTsSq :=
Ready

state_LtrTsSq :=
CloseLtr

state_LtrTsSq :=
Start

state_LtrTsSq :=
OpenLtr2

state_LtrTsSq :=
Start

state_LtrTsSq :=
Ready

state_LtrTsSq :=
Start

state_LtrTsSq :=
Start

Internal_connection1
:= Dy

Dy :=
internal_connection1

Internal_connection2
:= state

State :=
internal_connection2

DIGIMG_S_LtrOp :=
some_connection12

DCUIMG_S_DcuNtRdy :=
some_connection13

PARAGP_L_LtrSvEn :=
some_connection14

DHWOMG_S_LtrCd :=
connection3

DHSSMG_B_LtrFl :=
some_connection10

DCUIMG_C_LtrTs :=
some_connection9

some_connection16 :=
DHSSMG_S_LtrTsRdy

some_connection17 :=
DHSSMG_S_LtrOpVd

some_connection15 :=
DHSSMG_NX_LtrSaSq

connection2 :=
DHSSMG_B_CdLtr

connection1 :=
DHSSMG_B_OpLtr

SET1_in := temp1 RESET_in := false
DHSSMG_S_LtrTsRdy

:= Q1_out

SR

SET1_in := temp3 RESET_in := false
DHSSMG_S_LtrOpVd

:= Q1_out

SR

PLTTMG_B_OpLtr :=
some_connection5

DHSSMG_B_OpLtr :=
connection1

DHSSMG_B_CdLtr
:= connection2

PCTHMZ_A_PctMo :=
some_connection4

SSSCMZ_NX_MnSqSt
:= some_connection3

APSIMZ_B_OpLtr :=
some_connection2

APSIMZ_B_EnCdLnTrpSlt
:= some_connection6

PRASMZ_B_RqPrSd
:= some_connection1

PARAGP_L_CnfHpp :=
some_connection7

DHSSMG_B_LtrHwOpFl
:= some_connection8

A_PctMo_in :=
PCTHMZ_A_PctMo

B_LtrTsOpLtr_in :=
PLTTMG_B_OpLtr

B_OpLtr_LtrTs_in :=
DHSSMG_B_OpLtr

B_CdLtr_LtrTs_in :=
DHSSMG_B_CdLtr

B_EnCdLnTrpSlt_in :=
APSIMZ_B_EnCdLnTrpSlt

NX_SqSt_in :=
SSSCMZ_NX_MnSqSt

B_OpLtr_AppSpec_in
:= APSIMZ_B_OpLtr

B_RqPrSd_in :=
PRASMZ_B_RqPrSd

L_CnfHpp_in :=
PARAGP_L_CnfHpp

B_CdLtr_LtrTs :=
B_CdLtr_LtrTs_in

B_EnCdLnTrpSlt :=
B_EnCdLnTrpSlt_in

L_CnfHpp :=
L_CnfHpp_in

B_OpLtr_LtrTs :=
B_OpLtr_LtrTs_in

B_LtrTsOpLtr :=
B_LtrTsOpLtr_in

A_PctMo :=
A_PctMo_in

NX_SqSt :=
NX_SqSt_in

B_OpLtr_AppSpec :=
B_OpLtr_AppSpec_in

B_RqPrSd :=
B_RqPrSd_in

B_ClLtr_out :=
B_ClLtr

enable_in := not
DHSSMG_B_LtrHwOpFl

act_in :=
DIGOMG_B_CdLtr

DHWOMG_S_LtrCd
:= fb_out

DHWOMG_B_FpgaLtrOn
:= fpga2_on_out

DHWOMG_B_DcuLtrFl
:= fb_ne_out

enable := enable_in act := act_in

fb_out := fb
fpga2_on_out :=

fpga2_on
fb_ne_out := fb_ne

some_connection21 :=
DHWOMG_B_DcuLtrFl

some_connection20 :=
DHWOMG_B_FpgaLtrOn

connection3 :=
DHWOMG_S_LtrCd

some_connection18
:= DIGOMG_B_CdLtr

INPUT_in := NX_SqSt

MX_in := 27

temp2 :=
OUTPUT_out

WITHIN_I

ENABLE_in := true

MN_in := 4

temp9 := Q_out

F_TRIG

CLK_in := temp4

temp10 := Q_out

F_TRIG

CLK_in :=
B_OpLtr_AppSpec

temp11 := Q_out

R_TRIG

CLK_in := temp8

SET1_in := temp16
RESET_in := temp7

temp17 := Q1_out

RS

btemp = false

temp = false

T

T

T

T

T

F

F

F

F

ENTRY
Tester.Impl

not fb

T
F

GPIO_OUT :=
Controller-Controller

LTRIP_EN_N :=
some_write1-Controller

MCU_LT_ON :=
some_write2-Controller

FPGA2_LT_ON :=
some_write3-Controller

LT_RELAY_FB :=
some_write4-Controller

Controller-some_read1
:= FPGA_LTRCR

Controller-Controller :=
GPIO_OUT

Interaction-based control flow

T

T

Delay(512ms);

NX_LtrSaSq := 0

NX_LtrSaSq := 2

NX_LtrSaSq := 3

NX_LtrSaSq := 4

Timing => Immediate;
Latency => 0ms .. 3ms;

Dispatch_Protocol => Periodic;
Period => 64 ms;
Priority => 2;
Compute_Execution_Time => 1 ms .. 10 ms;
Compute_Deadline => 64 ms;

Dispatch_Protocol => Periodic;
Period => 4 ms;
Priority => 1;
Compute_Execution_Time => 1 ms .. 2 ms;
Compute_Deadline => 2 ms;

Timing => Immediate;
Latency => 0ms .. 1ms;

Timing => Immediate;
Latency => 1ms .. 2ms;

153

Fig. 29. Fault injection 7: Slice

Controller-some_read2
:= GPIO_OUT

NX_LtrSaSq := 1

Inter-component (call/event) control flow

EXIT
Tester.Impl

LtrTsSq(DCUIMG_C_LtrTs,
DHSSMG_B_LtrFl,
DHWOMG_S_LtrCd,
DIGIMG_S_LtrOp,
DCUIMG_S_DcuNtRdy,
PARAGP_L_LtrSvEn,
DHSSMG_B_OpLtr,
DHSSMG_B_CdLtr,
DHSSMG_NX_LtrSaSq,
temp1,
temp2)

on dispatch

Component-internal data flow

Component-internal control flow

Inter-component data flow

temp3 := temp1 and
temp2

SR(temp1,false,DHS
SMG_S_LtrTsRdy)

SR(temp3,false,DHS
SMG_S_LtrOpVd

on dispatch

EXIT
Controller.Impl

LtrInt(PRASMZ_B_RqPrSd,
APSIMZ_B_OpLtr,
SSSCMZ_NX_MnSqSt,
PCTHMZ_A_PctMo,
PLTTMG_B_OpLtr,
DHSSMG_B_OpLtr,
DHSSMG_B_CdLtr,
APSIMZ_B_EnCdLnTrpSlt,
PARAGP_L_CnfHpp,
DIGOMG_B_CdLtr)

ENTRY
Controller.Impl

DIGOMG_B_CdLtr :=
B_ClLtr_out

dcu2_line_trip(
not DHSSMG_B_LtrHwOpFl,
temp0,
DHWOMG_S_LtrCd,
DHWOMG_B_FpgaLtrOn,
DHWOMG_B_DcuLtrFl)

ENTRY
LtrInt.Impl

EXIT
LtrInt.Impl

temp1 := NX_SqSt >= 3

WITHIN_I(true,NX_S
qSt,27,4,temp2)

temp3 := NX_SqSt >= 38

temp4 := NX_SqSt = 30

temp5 := NX_SqSt = 31

temp6 := B_RqPrSd and
temp1

temp7 := temp6 or
B_OpLtr_LtrTs or

B_OpLtr_AppSpec

temp8 := temp2 or temp3

F_TRIG(temp4,temp9
)

F_TRIG(B_OpLtr_AppSpec,t
emp10)

R_TRIG(temp8,temp11)

temp12 := temp9 or temp5

temp13 := L_CnfHpp or
B_EnCdLnTrpSlt

temp14 := not (A_PctMo
and B_LtrTsOpLtr)

temp15 := temp12 and
temp13

temp16 := temp10 or
B_CdLtr_LtrTs or temp11 or

temp15

RS(temp7,temp16,temp17)

B_ClLtr := temp14 and
temp17

enable

fb_ne := btemp

ENTRY
dcu2_line_trip.Impl

GPIO_OUT:=
GPIO_OUT and not

LTRIP_EN_N

act

T F

GPIO_OUT:=
GPIO_OUT or
LTRIP_EN_N

temp := temp or
MCU_LT_ON

FPGA_LTRCR :=
temp

fpga2_on := temp and
FPGA2_LT_ON

fb := temp and
LT_RELAY_FB

enable and act and
fpga2_on

btemp := true
btemp := true

fb

F

F

F

T

T

T

L_EnLtrSv
and C_LtrTs

ENTRY LtrTsSq.Impl

B_OpLtr := true

T

F
(not L_EnLtrSv) and

C_LtrTs

EXIT
dcu2_line_trip.

Impl

not S_LtrCd

B_CdLtr := true

T

F

B_LtrFl

Dy := true

S_LtrCd and Dy

B_OpLtr := true

T

F

B_LtrFl

T

T

T

not S_LtrCd

A_LtrTs := true

T

F

B_LtrFl

T

S_DCUNtRdy T

EXIT
LtrTsSq.Impl

S_LtrOp_in :=
DIGIMG_S_LtrOp

S_DCUNtRdy_in :=
DCUIMG_S_DcuNtRdy

L_EnLtrSv_in :=
PARAGP_L_LtrSvEn

DHSSMG_B_OpLtr
:= B_OpLtr_out

DHSSMG_B_CdLtr
:= B_CdLtr_out

DHSSMG_NX_LtrSaSq
:= NX_LtrSaSq_out

S_LtrCd_in :=
DHWOMG_S_LtrCd

B_LtrFl_in :=
DHSSMG_B_LtrFl

C_LtrTs_in :=
DCUIMG_C_LtrTs

temp1 :=
A_LtrTs_out

temp2 :=
A_LtrOpVd_out

S_LtrOp :=
S_LtrOp_in

S_DCUNtRdy :=
S_DCUNtRdy_in

L_EnLtrSv :=
L_EnLtrSv_in

S_LtrCd :=
S_LtrCd_in

B_LtrFl :=
B_LtrFl_in

C_LtrTs :=
C_LtrTs_in

B_OpLtr_out :=
B_OpLtr

B_CdLtr_out :=
B_CdLtr

NX_LtrSaSq_out :=
NX_LtrSaSq

A_LtrTs_out :=
A_LtrTs

A_LtrOpVd_out :=
A_LtrOpVd

State_LtrTsSq
= Start

state_LtrTsSq
= OpenLtr1

state_LtrTsSq
= CloseLtr

state_LtrTsSq
= OpenLtr2

state_LtrTsSq
= Ready

state_LtrTsSq :=
OpenLtr1

state_LtrTsSq :=
Ready

state_LtrTsSq :=
CloseLtr

state_LtrTsSq :=
Start

state_LtrTsSq :=
OpenLtr2

state_LtrTsSq :=
Start

state_LtrTsSq :=
Ready

state_LtrTsSq :=
Start

state_LtrTsSq :=
Start

Internal_connection1
:= Dy

Dy :=
internal_connection1

Internal_connection2
:= state

State :=
internal_connection2

DIGIMG_S_LtrOp :=
some_connection12

DCUIMG_S_DcuNtRdy :=
some_connection13

PARAGP_L_LtrSvEn :=
some_connection14

DHWOMG_S_LtrCd :=
connection3

DHSSMG_B_LtrFl :=
some_connection10

DCUIMG_C_LtrTs :=
some_connection9

some_connection16 :=
DHSSMG_S_LtrTsRdy

some_connection17 :=
DHSSMG_S_LtrOpVd

some_connection15 :=
DHSSMG_NX_LtrSaSq

connection2 :=
DHSSMG_B_CdLtr

connection1 :=
DHSSMG_B_OpLtr

SET1_in := temp1 RESET_in := false
DHSSMG_S_LtrTsRdy

:= Q1_out

SR

SET1_in := temp3 RESET_in := false
DHSSMG_S_LtrOpVd

:= Q1_out

SR

PLTTMG_B_OpLtr :=
some_connection5

DHSSMG_B_OpLtr :=
connection1

DHSSMG_B_CdLtr
:= connection2

PCTHMZ_A_PctMo :=
some_connection4

SSSCMZ_NX_MnSqSt
:= some_connection3

APSIMZ_B_OpLtr :=
some_connection2

APSIMZ_B_EnCdLnTrpSlt
:= some_connection6

PRASMZ_B_RqPrSd
:= some_connection1

PARAGP_L_CnfHpp :=
some_connection7

DHSSMG_B_LtrHwOpFl
:= some_connection8

A_PctMo_in :=
PCTHMZ_A_PctMo

B_LtrTsOpLtr_in :=
PLTTMG_B_OpLtr

B_OpLtr_LtrTs_in :=
DHSSMG_B_OpLtr

B_CdLtr_LtrTs_in :=
DHSSMG_B_CdLtr

B_EnCdLnTrpSlt_in :=
APSIMZ_B_EnCdLnTrpSlt

NX_SqSt_in :=
SSSCMZ_NX_MnSqSt

B_OpLtr_AppSpec_in
:= APSIMZ_B_OpLtr

B_RqPrSd_in :=
PRASMZ_B_RqPrSd

L_CnfHpp_in :=
PARAGP_L_CnfHpp

B_CdLtr_LtrTs :=
B_CdLtr_LtrTs_in

B_EnCdLnTrpSlt :=
B_EnCdLnTrpSlt_in

L_CnfHpp :=
L_CnfHpp_in

B_OpLtr_LtrTs :=
B_OpLtr_LtrTs_in

B_LtrTsOpLtr :=
B_LtrTsOpLtr_in

A_PctMo :=
A_PctMo_in

NX_SqSt :=
NX_SqSt_in

B_OpLtr_AppSpec :=
B_OpLtr_AppSpec_in

B_RqPrSd :=
B_RqPrSd_in

B_ClLtr_out :=
B_ClLtr

enable_in := not
DHSSMG_B_LtrHwOpFl

act_in :=
DIGOMG_B_CdLtr

DHWOMG_S_LtrCd
:= fb_out

DHWOMG_B_FpgaLtrOn
:= fpga2_on_out

DHWOMG_B_DcuLtrFl
:= fb_ne_out

enable := enable_in act := act_in

fb_out := fb
fpga2_on_out :=

fpga2_on
fb_ne_out := fb_ne

some_connection21 :=
DHWOMG_B_DcuLtrFl

some_connection20 :=
DHWOMG_B_FpgaLtrOn

connection3 :=
DHWOMG_S_LtrCd

some_connection18
:= DIGOMG_B_CdLtr

INPUT_in := NX_SqSt

MX_in := 27

temp2 :=
OUTPUT_out

WITHIN_I

ENABLE_in := true

MN_in := 4

temp9 := Q_out

F_TRIG

CLK_in := temp4

temp10 := Q_out

F_TRIG

CLK_in :=
B_OpLtr_AppSpec

temp11 := Q_out

R_TRIG

CLK_in := temp8

SET1_in := temp16
RESET_in := temp7

temp17 := Q1_out

RS

btemp = false

temp = false

T

T

T

T

T

F

F

F

F

ENTRY
Tester.Impl

not fb

T
F

GPIO_OUT :=
Controller-Controller

LTRIP_EN_N :=
some_write1-Controller

MCU_LT_ON :=
some_write2-Controller

FPGA2_LT_ON :=
some_write3-Controller

LT_RELAY_FB :=
some_write4-Controller

Controller-some_read1
:= FPGA_LTRCR

Controller-Controller :=
GPIO_OUT

Interaction-based control flow

T

T

Delay(512ms);

NX_LtrSaSq := 0

NX_LtrSaSq := 2

NX_LtrSaSq := 3

NX_LtrSaSq := 4

Timing => Immediate;
Latency => 0ms .. 3ms;

Dispatch_Protocol => Periodic;
Period => 64 ms;
Priority => 2;
Compute_Execution_Time => 1 ms .. 10 ms;
Compute_Deadline => 64 ms;

Dispatch_Protocol => Periodic;
Period => 4 ms;
Priority => 1;
Compute_Execution_Time => 1 ms .. 2 ms;
Compute_Deadline => 2 ms;

Timing => Immediate;
Latency => 0ms .. 1ms;

Timing => Immediate;
Latency => 0ms .. 1ms;

MCU_LT_ON := true

Tester-Controller :=
MCU_LT_ON

Tester-Controller :=
MCU_LT_ON

