
Applying the IEEE 1471-2000 Recommended Practice
to a Software Integration Project

Rikard Land

Department of Computer Science and Engineering
Mälardalen University

PO Box 883, SE-721 23 Västerås, Sweden
+46 21 10 70 35

rikard.land@mdh.se
http://www.idt.mdh.se/~rld

Abstract
This paper describes an application of the

IEEE Standard 1471-2000, “Recommended
practice for architectural description of software-
intensive system” in a software integration
project. The recommended practice was
introduced in a project without affecting its
schedule and adding very little extra costs, but
still providing benefits. Due to this “lightweight”
introduction it is dubious whether it will be
continually used within the organization.

Keywords
Architectural Description, IEEE 1471-2000,
Recommended Practice, Software Architecture,
Software Integration.

1. Introduction
The software field is developing rapidly. New

areas of practice and research are emerging with
an ever-increasing speed. Each one claims to be
crucial to the success of software: web
technologies, security, software processes, or, as
in our case, software architecture. There is clearly
a difficult tradeoff to solve for companies
between making profit in the relative short term
and investing time in the study of new techniques
and practices. To spread awareness of new
concepts and techniques, it is not enough for the
research community to publish results,
researchers must also more actively meet
practitioners in their current situation; if
Mohammed cannot come to the mountain, the
mountain has to come to Mohammed. We believe

that standards and recommended practices are an
important means of bridging this gap between
research and practice.

There are standards a company has to be
aware of concerning the products it produces (e.g.
network protocols or programming languages).
There is also a class of standards named
“recommended practices”, which describe good
work practices that are believed to yield high-
quality products in a cost-effective manner.
Recommended practices are aimed at
practitioners, but to our experience
“recommended practices” are not used as much as
they deserve. With this paper we would like to
increase the interest for recommended practices
in general and the IEEE Standard 1471-2000 [7]
in particular, by describing an application of the
latter. In doing this, we address the following
questions:
• There is typically very little extra time

available for introducing a “recommended
practice”; can it be beneficially introduced at
a very low cost?

• What criteria should be used to evaluate
whether such an application is successful or
not?

With the support of a case study, presented in
section 2, we show in section 3 that a very
lightweight introduction of the recommended
practice can be beneficial using some evaluation
criteria. In section 4 we describe related work. In
section 5 we present our conclusions.

2. The Case Study
The case study concerns Westinghouse, a US-

based industrial enterprise with thousands of
employees operating in the nuclear business
domain, which acquired the Swedish company
ABB Atom (~800 employees) in late 2000. The
software developed in the (formerly) two
organizations overlapped to some extent, and
three systems were identified that should be
integrated. A project was launched with the aim
of arriving at a decision on the architecture for an
integrated system. In this paper, we will focus on
how the use of a recommended practice was used
in this process.

2.1 Background
The project was divided into three phases,

each containing different stakeholders: evaluation
of existing systems, design and analysis of future
system alternatives, and decision of which design
alternative to use. Each phase had to include
people representing the existing systems as well
as the two sites. There were three internal
deliverables defined: a draft requirements
specification, descriptions of the three existing
systems, and one or more alternative descriptions
of a new integrated system. See Figure 1.

Phase 1: Evaluation
Evaluation of existing
systems

Developers

Users

Developers Managers

Requirements
Specification

System
Descriptions

Description,
Analysis and

Recommendation

Phase 2: Design
Produce alternative
designs, analyze
these, and
recommend one

Phase 3: Decision
Decision which
design to use in
future

Figure 1. Project phases.
The role of the author was that of an active

member of the developers group and the
responsibility of documenting the outcome of the
meetings as well as to prepare documentation for
the different project phases. The author believed
it to be beneficial for the project to introduce to
the developers and architects the concepts of
software architecture [1,3,4,5,6,7]. Given very

limited preparation time by the other project
participants, he decided to use the IEEE Standard
1471-2000, “Recommended practice for
architectural description of software-intensive
systems” [7].

Previously, a number of meetings had been
held characterized by “brain-storming”, during
which no decisions were reached. Thus, there is
an indication that the changes made in the project
design (including the use of the recommended
practice) were beneficial. We will in the
following describe the project and argue how the
changes were improvements, which eventually
enabled a well-founded decision on which
architectural alternative to use for an integrated
system.

2.2 The Recommended Practice
The recommended practice contains a

framework of concepts but does not mandate any
particular architectural description language or
set of viewpoints to use. The following key terms
are defined [7]:

• Architecture. “The fundamental organization
of a system embodied in its components, their
relationships to each other, and to the
environment, and the principles guiding its
design and evolution.”

• Architectural Description (AD). “A
collection of products to document an
architecture.”

• View. “A representation of a whole system
from the perspective of a related set of
concerns.”

• Viewpoint. “A specification of the
conventions for constructing and using a
view. A pattern or template from which to
develop individual views by establishing the
purposes and audience for a view and the
techniques for its creation and analysis.”

• System stakeholder. “An individual, team,
or organization (or classes thereof) with
interests in, or concerns relative to, a system.”

• Concern. “Each stakeholder typically has
interests in, or concerns relative to, that
system. Concerns are those interests which
pertain to the system ’s development, its

operation or any other aspects that are critical
or otherwise important to one or more
stakeholders. Concerns include system
considerations such as performance,
reliability, security, distribution, and
evolvability.”

To summarize the terminology: the
architecture of a system should be described (as
an architectural description, AD) in several
views, each of which should adhere to a
viewpoint. The documentation of the AD in each
view must have a rationale; i.e. it must address
the concerns of one (or more) stakeholder.

2.3 Project Preparations
In advance of the first project phase, the

author condensed the most relevant parts of the
recommended practice into a five-page summary,
which was sent together with other project
information to the participants one week in
advance. The summary was focused on two parts
of the recommended practice:

• The technical concepts. Some of the
concepts of software architecture were
explained, to provide a basis for descriptions,
discussions, and analysis. The concepts of
architecture, component, connector, view,
viewpoint, stakeholder, and concern were
used.

• Focus on concerns. According to the
recommended practice, all activities and
artifacts should focus on addressing stake-
holders’ concerns. By using the concept of
“concerns” explicitly, the discussions should
be less likely to drift away too far from the
essentials. A preliminary list of concerns
perceived as important by the author or
communicated in advance was included,
intended to be further refined as new
concerns appeared in the discussions.

The participants were expected to prepare
themselves by spending one day (eight hours)
studying the project documentation. At the time
of the first meeting, only one participant out of
three (apart from the researcher-secretary himself,
who prepared this document) had studied it in
advance. The recommended practice summary
was therefore briefly presented.

2.4 Phase One
In phase one, the task was to understand the

three systems as detailed as time allowed and
forward this information to the second phase. The
existing documentation of the systems was of
quite different kinds. Although all had overall
system descriptions, they were of an informal and
intuitive kind (for example, none of them used
UML [2,14]), and none consisted of an explicit
architectural description using the terminology
established in the software architecture field (e.g.
separated into views), which meant that the
descriptions were not readily comparable. One of
the purposes of the first phase was therefore to
produce an architectural description of each of
the systems, in as similar manner as possible, to
be able to use as an input in the second phase. As
time was limited, the intention was to maintain a
balance between the following elements:

• Addressing concerns. Every important
concern was dealt with to some extent. This
means that sometimes the participants shifted
focus to another concern, although the first
one was not completely addressed – it was
considered better to deal with every concern
on the list at a high level than to analyze only
some at a detailed level (it is better to be
“somewhat” sure about maintainability and
performance than being very sure about only
performance).

• Architectural refinement. Within a view,
based on a concern that needed to be
clarified, the description was refined (a
component “zoomed in”). But at some point,
further refinement was of less practical
interest compared to dealing with another
concern or refinement within another view.

• Annotations of components and
connectors. The components and connectors
were annotated with relevant information
(templates were provided).

As the meeting proceeded, two viewpoints
were found to reveal the most about how the
systems addressed the concerns of the
stakeholders: a code structure view and a runtime
view. UML was used, although in a somewhat
informal manner during the meeting. The
components and connectors were annotated with

information on e.g. programming language and
size. At the end of the meeting, there were three
comparable architectural descriptions.

2.5 Phase Two
In the second phase, the task was to create a

design for the new, integrated system. By having
created the architectural descriptions in the first
phase it was possible to discuss similarities and
differences in a structured way, both at a
structural level and component-by-component. By
having the components separated into two
different views, runtime components (processes
or threads) could not be confused e.g. with code
components (modules such as general libraries or
specific programs). Moreover, the discussion was
guided by the list of stakeholder concerns, which
was extended or modified from time to time as
the discussions revealed additional concerns.

It was relatively easily to use the existing
descriptions and “merge” them into a new system.
The difficulties experienced in this process lay no
longer in the actual analysis but in agreeing on
the best way of solving tradeoffs, given the
estimated properties. After some compromises
two alternatives were left.

2.6 Phase Three
In phase three, the use of the recommended

practice was less apparent. Still, the architectural
descriptions of alternative solutions created in
phase two, and the analyses of them, were used as
a basis for the decision. The managers
participating in the last phase needed some help
from the developers to be able to understand the
architectural descriptions, and when translated to
plain English it was possible to understand it.

The actual decision on which alternative to
use for the integrated system was ultimately
based primarily on organizational concerns rather
than technical ones – but concerns of a
stakeholder nevertheless. This emphasizes the
sense of using the concept of “concerns”
explicitly, both in the project and in the
recommended practice itself.

3. Measurable Benefits
Similar sets of meetings had been carried out

before, without using the recommended practice.

These meetings had a more “brainstorming”
character, and the participants were not able to
agree on an integration solution. There is thus
some scientific support for the hypothesis that the
introduction of the recommended practice was an
improvement (although there were other changes
in the project design as well, which we intend to
publish elsewhere).

3.1 Changes
The use of the recommended practice

changed the way the architectural alternatives
were prepared in several ways, arguably
improvements:

• Similar Descriptions. The existing
documentation was too different from system
to system to be readily compared. The
systems were described in a more uniform
way through the adoption of certain concepts:
views, components, and connectors. When
designing a new, integrated system, it was
easier than during the previous (failed) sets of
meetings to combine components from the
three systems and be confident in the
informal analyses made.

• Relevant discussions. By focusing on
stakeholder concerns, the focus of the
discussions stayed on relevant issues.
Sometimes a discussion had to be interrupted
either because it was digging into some
irrelevant detail or in order for another
concern to be addressed; but sometimes the
discussion was indeed relevant and it was the
list of concerns that had to be modified.

• Less number of alternatives. In the second
phase, the developers were able to agree on
two main alternatives and discard several
alternative architectures that were discussed
in the previous meetings.

• Confidence in analysis. Not only was it
easier than before to merge the systems, the
developers also had greater confidence in
their estimates of its properties than they had
had in the previous series of meetings.

The two parts of the recommended practice
that the researcher had intended to focus on (the
technical concepts and stakeholder concerns) thus

lifted the discussions from the previous
“brainstorming” level to a more structured one.

3.2 How To Evaluate Success
How successful was the implementation of

the recommended practice? The case study
illustrates that the measure of success depends on
the evaluation criteria used – do we mean that a
single project was more efficient than otherwise,
or that it is used throughout an organization in a
consistent manner? The concepts were not the
most prominent during the project discussions;
the concepts of viewpoints and connectors were
not fully understood by all participants; it is
unknown if the recommended practice will be
used in the organization in the future. It could
therefore be argued that the use of the
recommended practice was unsuccessful. But
from the perspective of the outcome of the
project, the concepts provided a tool that
improved the discussions to some degree, which
should be considered a (partial) success: the
discussions were kept more focused, and the
architectural descriptions produced were similar
enough to enable comparison. This made the
participants more confident in the results and
their analysis.

4. Related Work
Our case study emphasizes the importance of

documenting and evaluating the architecture of a
software system. UML [2,14] and the framework
provided by the recommended practice [7] were
used explicitly. Elaboration on documentation
issues in general can be found in [4,6]. Which
views to use are discussed in e.g. [4,6,11]. The
importance of architecture in the software process
is discussed by e.g. [6,13]. The IEEE Architecture
Group’s resource page on the IEEE 1471-2000
[7] may be found at:
http://www.pithecanthropus.com/~awg/public_html,
but this web page currently does not list any
successful applications of the recommended
practice.

While there are processes and methodologies
described that could have been used, none of
them were completely feasible for the task. The
rest of this section will briefly discuss the

arguably most widely known and explain why
none of those were chosen.

The Architecture Trade-off Analysis Method
(ATAM) [5,9] builds on stakeholder-generated
scenarios and has been reported useful in practice
[5,10]. Several of the methods nine steps would
not be possible to carry out within the case study
project: in step 2 the business drivers should be
presented, but these were not well defined (it was
e.g. discussed throughout the project whether the
system would be used only in-house or also
deployed to external customers); in step 5, quality
attributes are to be organized, but these were not
specified in advance but found during the project.
Of course, it would have been possible to
reorganize the project so as to define business
drivers and important quality attributes in a
separate phase beforehand. In many senses, it
would even have been beneficial. But, and this is
our point in this paper, it would require efforts of
an organizational kind that one cannot expect to
be carried out.

The Software Architecture Analysis Method
(SAAM) [1,5,8] is a predecessor of ATAM and
has also been reported useful in practice [1,5,12].
Given an architectural description, it supports the
analysis of virtually any system property, as
defined by scenarios, but is oriented towards
analyzing functionality and maintainability [5]. In
the case study, it would have been too time-
consuming to analyze the concerns in detail.
There were several architectural alternatives, a
large number of concerns to analyze (originally
13), and as said above, the exact properties or
scenarios to analyze were not defined in advance.
Therefore the project relied more on the analysts’
experience and intuition – for good and bad.

The description of the quality attribute-
oriented software architecture design method
(QASAR) [3] includes numerous case studies
where it has been used. According to this
methodology, one should first design an
architecture that fulfills the functional
requirements (which the three existing system do)
and then refine the architecture until the quality
attributes are satisfactory. In the case study, this
was what actually happened to some extent, but
with more intuition than formality in the analyses

(as said, the actual attributes and evaluation
criteria were not fixed in advance, and there was
not enough time for more thorough analyses).
One difference between the case study and the
methodology description was that there were
several alternatives in development
simultaneously, on direct orders from
management.

The Active Reviews for Intermediate Designs
method (ARID) [5] builds on Active Design
Reviews (ADR) and incorporates the idea of
scenarios from SAAM and ATAM. It is intended
for evaluating partial architectural descriptions,
which is exactly what was available during the
project work. However, it is intended as a type of
formal review involving more stakeholders,
which was not possible because the project
schedule was already fixed, and too tight for an
ARID exercise.

The basic reason for not using any of these
methodologies is that when new practices are to
be introduced “on the fly” in an industrial project,
it is not possible to adjust the project. It is the
practices to be introduced that have to be adjusted
so as to make a minimal negative impact on the
project, while having at least some positive
impact.

5. Conclusion
As a participant in the project, it was possible

to introduce new concepts and use them in the
actual work even though there was very little time
for the participants of the project to study and
adopt new concepts. The most important artifact
used was a recommended practice, the IEEE
“Recommended practice for architectural
description of software-intensive systems” [7].
The case study shows how a recommended
practice can be beneficially introduced into a
project without affecting its schedule negatively,
although it is unsure whether the organization has
adopted it and will use it in the future. To make a
long-lasting impact on an organization, the
implementation of these practices requires a
champion within the organization to promote
their use. The practices were used on the
Westinghouse software integration project due to
the efforts of the present author and would likely

be used in the future if a motivated individual
within Westinghouse is indoctrinated in the IEEE
1471-2000 methodology.

Based on the case study, we suggest that a
recommended practice be introduced in the
manner we have described due to its low cost. If
this first, perhaps partial, application to a project
is successful, and the first users gain insight,
experience and confidence in it, it might be more
widely used throughout the organization, thus
making future projects more efficient.

A number of objections can be raised
concerning how the project was performed – the
participants were insufficiently prepared, no
established methodology was used, the evaluation
relied heavily on intuition and experience, the
evaluation criteria were not clear, etc. The
purpose of this paper is not to evaluate the project
or the organization as such, but to describe how a
recommended practice can be used to improve it
without requiring changes to a project that
already has a tight schedule and limited
resources. In this respect, we believe we have
shown that a recommended practice with little
effort can be used to introduce new concepts and
arguably improve the outcome of a project to
some extent. Still, we must bear in mind that our
conclusions are weakened by the fact that there
were other changes in the project design which
we also intend to publish, factors we consider to
be at least equally important factors for the
success of the project (as compared to the
previous meetings).

Although we have argued that the application
of the recommended practice was beneficial in
the project presented, one important remaining
question is whether the recommended practice,
and the concepts embodied in it, will remain in
the minds of the project participants and increase
the state of practice in the organization. Other
ways of introducing it may prove more successful
in making a longer-lasting impact, and we are
looking forward to more reports on applications
of the recommended practice.

6. References
[1] Bass L., Clements P., and Kazman R.,

Software Architecture in Practice, ISBN 0-
201-19930-0, Addison-Wesley, 1998

[2] Booch G., Rumbaugh J., and Jacobson I., The
Unified Modeling Language User Guide,
ISBN 0201571684, Addison-Wesley, 1999

[3] Bosch J., Design & Use of Software
Architectures, ISBN 0201674947, Addison-
Wesley, 2000

[4] Clements P., Bachmann F., Bass L., Garlan
D., Ivers J., Little R., Nord R., Stafford J.,
Documenting Software Architectures: Views
and Beyond, ISBN 0-201-70372-6, Addison-
Wesley, 2002

[5] Clements P., Kazman R., Klein M.,
Evaluating Software Architectures: Methods
and Case Studies, ISBN 0-201-70482-X,
Addison-Wesley, 2002

[6] Hofmeister C., Nord R., and Soni D., Applied
Software Architecture, ISBN 0201325713,
Addison-Wesley, 2000.

[7] IEEE Architecture Working Group, IEEE
Recommended Practice for Architectural
Description of Software-Intensive Systems,
IEEE Std 1471-2000, IEEE, 2000

[8] Kazman R., Bass L., Abowd G., and Webb
M., SAAM: A Method for Analyzing the

Properties of Software Architectures, In
Proceedings of the 16th International
Conference on Software Engineering, 1994

[9] Kazman R., Klein M., Barbacci M., Longstaff
T., Lipson H., and Carriere J., The
Architecture Tradeoff Analysis Method, In
Proceedings of the Fourth IEEE International
Conference on Engineering of Complex
Computer Systems (ICECCS), IEEE, 1998

[10] Kazman R., Barbacci M., Klein M., and
Carriere J., Experience with Performing
Architecture Tradeoff Analysis Method, In
Proceedings of the 21st International
Conference on Software Engineering, New
York, 1999

[11] Kruchten P., The 4+1 View Model of
Architecture, IEEE Software, volume 12,
issue 6, 1995.

[12] Land R., Improving Quality Attributes of a
Complex System Through Architectural
Analysis - A Case Study, In Proceedings of
9th IEEE Conference on Engineering of
Computer-Based Systems (ECBS), IEEE,
2002

[13] Paulish D., Architecture-Centric Software
Project Management: A Practical Guide,
ISBN 0-201-73409-5, Addison-Wesley, 2001

[14] UML Home Page, URL: http://www.uml.org/

