
Towards Cloud-Based Enactment of
Safety-Related Processes

Sami Alajrami1, Barbara Gallina2, Irfan Sljivo2, Alexander Romanovsky1, and
Petter Isberg2

1 Newcastle University, Newcastle upon Tyne, UK
{s.h.alajrami,alexander.romanovsky}@newcastle.ac.uk

2 Mälardalen University, Väster̊as, Sweden
{barbara.gallina,irfan.sljivo,petter.isberg}@mdh.se

Abstract. Engineering safety-critical systems is a complex task which
involves multiple stakeholders. It requires shared and scalable compu-
tation to systematically involve geographically distributed teams. The
paper proposes a model-driven cloud-based enactment architecture au-
tomating safety-critical processes. This work adapts our previous work
on cloud-based software engineering by enriching the architecture with
an automatic support for generation of both, product-based safety ar-
guments from failure logic analysis results and process-based arguments
from the process model and the enactment data. The approach is demon-
strated using a fragment of a process adapted from the aerospace domain.

Keywords: Safety Process Enactment, Argumentation, Cloud Computing

1 Introduction

The malfunctioning of safety-critical systems may lead to catastrophic conse-
quences to the environment and people. Safety-critical systems are identified
as complex systems and their engineering has to follow best practices. More
specifically, (safety) standards provide guidance in terms of reference process
models for the development and assessment of such systems. The complexity
of such systems is reflected in their supply chain, which consists of a com-
plex, geographically-distributed and heterogeneous supply network. The sup-
pliers provide software/hardware components or automation of certain activities
during the production. This compositional nature is reflected in software-specific,
hardware-specific, tool qualification-specific, system-specific and method-specific
guidance and/or reference processes recommended by standards. To be released
on the market, the integrated systems must be certified. The certification pro-
cess in various domains is conducted by scrutinizing an argument supporting
system safety [16]. In the automotive and rail domains, such argument is known
as safety case. In the aerospace domain, an explicit safety case is not required
however as discussed by Holloway [13] an implicit safety case request is contained
within the standards. While the considerations listed in this paper hold for sev-
eral complex safety-critical systems, we focus on aircraft as an example of such



2 Towards Cloud-Based Enactment of Safety-Related Processes

systems. In particular, we use the Preliminary System Safety Assessment (PSSA)
from ARP4761 [1] as example which demonstrates safety process-related require-
ments. Aircrafts must be accompanied by a safety case that provides assurance
about their behaviour as well as about the set of processes that were adopted to
develop them. Safety cases can/should also reflect the compositional nature of
the systems under examination. The provision of a safety case may follow a ref-
erence process [3]. The planning and execution of all the recommended reference
processes is a time consuming and costly activity. Moreover, given the compo-
sitional and geographically distributed nature of the supply network, different
interpretations of the processes may coexist resulting in conflicts and ultimately
risk of low-quality products. To reduce time, cost as well as conflicting inter-
pretations we propose to adapt a model-driven, cloud-based process enactment
architecture for safety-critical systems. Using cloud computing not only reduces
cost (through the pay-as-you-go and on-demand acquisition models), but also
provides an accessible platform for the distributed teams involved in the system
engineering process. In addition, artefacts from across the different geographi-
cal locations can be maintained centrally. Along with the use of a standardized
process modelling language, this can reduce the conflicting interpretations. Our
vision is that a manufacturer enforces the execution of the planned safety life-
cycle as well as of the corresponding argumentation process. To achieve that
vision, the paper provides the following contributions: a) an extension of our
cloud-based process enactment architecture from [4] for safety-critical systems
(Section 3.1), b) automation of product-based safety argument generation from
failure logic analysis results and automation of evidence gathering, in particu-
lar, detecting sources of failures (if exist) or finding full and partial mitigators
(Section 3.2), and c) automation of the generation of process-based arguments
directly from the process model and enactment-related provenance data (Sec-
tion 3.2). We demonstrate the usability and effectiveness of this approach on a
portion of a safety process (from PSSA) which we enact on the cloud and gen-
erate product and process based safety arguments fragments. These fragments
are manually integrated within a single safety case.

The paper is structured as follows: Section 2 provides a background founda-
tion. Section 3 describes our approach to enacting safety processes followed by
a case study in Section 4. Section 5 discusses related work and finally, Section 6
draws our conclusions and highlights our future work.

2 Background

In this section, we recall essential information on our previous work and on
safety-critical systems engineering and certification.

2.1 General Architecture on the Cloud

To enact software processes on the cloud and ease global software engineering,
we proposed a model-driven cloud-based architectural solution [4]. Our solution



Towards Cloud-Based Enactment of Safety-Related Processes 3

consists of the three layers: a) the modelling layer where processes along with
their enactment requirements are modelled, b) the enactment service layer which
orchestrates the process enactment on the cloud and c) the workflow engines
which are deployed on the cloud and host the enactment of individual activi-
ties. We implemented a prototype of this architecture consisting of two main
components: The Enactment Service which consists of subcomponents for:
scheduling activities execution, monitoring executions, managing artefacts and
monitoring and registering workflow engines. The enactment service maintains
a document-oriented database where all artefacts, activities and their meta-data
are stored. Interactions with the enactment service are done through a RESTful
API. The Workflow Engine is where the individual process activities are ex-
ecuted. The execution on the workflow engine is black-boxed: a workflow engine
executing an activity of a process does not have information about the rest of
the process execution. These two components of the prototype are decoupled
(they communicate through asynchronous message queues) and are platform-
independent (i.e. they can be deployed on any physical/virtual machine).

2.2 EXE-SPEM

To model the software processes and thier enactment requirements, we proposed
an extension, called EXE-SPEM [5], of the OMG standard Software and Sys-
tems Process Engineering Meta-model (SPEM2.0). EXE-SPEM permits process
engineers to model important information needed for enabling the enactment
such as: control flow of process enactment (i.e., order, conditions and loops),
the responsible person for enacting each activity (task), and the cloud-specific
enactment information such as: the choice of cloud deployment model (private
vs. public) and the amount of computational resources required. Table 1 shows
the icons of a subset of EXE-SPEM concrete syntax, obtained by decorating the
SPEM2.0 icons with the symbol of the cloud. Via model-to-text transformational

Table 1: Subset of EXE-SPEM modelling elements

Process TaskUse Activity WorkProduct

rules, EXE-SPEM models are mapped onto XML-based textual representations,
compliant with our enactment-oriented XML-meta-model.

2.3 Aircraft Engineering and Certification

To engineer and certify safety-critical systems, various standards are at disposal.
Typically, these standards provide requirements that should be followed to define
the process to be used during the development and assessment of the aircraft
and the software and hardware to be integrated within the aircraft. A document
aimed at showing process compliance by providing a process-based argument
is typically required. Besides the process requirements, safety standards also



4 Towards Cloud-Based Enactment of Safety-Related Processes

include product requirements aimed at assessing the level of a product’s safety.
Additional requirements target the assessment process, which, as mentioned, in
many application domains is conducted by scrutinising an explicit or implicit
safety case. A complete safety case as the final output of the assessment process
should contain both the process and the product-based arguments.

ARP4761 [1] defines Airworthiness Safety Assessment Process to handle haz-
ardous events (system and equipment failure or malfunction that may lead to
hazard). This process includes: Functional Hazard Assessment (FHA), Prelimi-
nary Aircraft Safety Assessment (PASA) and PSSA. PSSA consists of a system-
atic examination of a proposed system architecture(s). It takes in input the sys-
tem FHA and the aircraft Fault Tree Analysis. PSSA tasks include: identifying
the derived safety requirements, associating them with Development Assurance
Levels (DALs) and allocating them to architectural elements. For certification
purposes, both process- and product-related behavioural evidence constitute the
basis for supporting safety claims. Thus, additional tasks that should be consid-
ered are: creation of arguments fragments explaining why the safety claim can
be supported. PSSA is conducted according to guidelines contained in Appendix
B3 of ARP4761. In this paper, we use GSN [3] and SACM [15] for represent-
ing safety case arguments. We refer the readers to [3, 15] for details about these
notations.

2.4 Process and Product-Based Arguments Fragments Generation

The product-based argument aims at showing that the product behaves as it
should. To automate the generation of such arguments, the analysis and verifi-
cation results can be exploited. For example, information about the failure be-
haviour of the system, extracted from the Fault Propagation and Transformation
Calculus (FPTC) results, is used to generate an argument that the unacceptable
failures have been successfully mitigated [17]. FPTC is a failure logic analysis
allowing for the calculation of the system level failure behaviour based on the
failure behaviour of the individual components. The propagation of failures from
the inputs to the outputs of a component are captured via FPTC rules.

The process-based argument aims at showing that the process mandated by
the corresponding standard has been followed. To automate the generation of
such arguments, MDSafeCer (Model-driven Safety Certification) [8] is at dis-
posal. Via MDSafeCer, process models compliant with e.g., SPEM 2.0 are trans-
formed into composable process-based argumentation models compliant with
e.g., SACM and presented via e.g., GSN. The top level claim of the MDSafeCer
generated arguments states that “the process is in compliance with the required
standard and integrity level”. This claim is decomposed by showing that all the
activities have been executed and that in turn for each activity all the tasks have
been executed and so on until an atomic work-unit is reached.

3 Cloud-based Engineering of Safety-Critical Systems

Through the introduction and background, we have learnt that safety-critical
systems engineering is a complex task which needs to comply with standards



Towards Cloud-Based Enactment of Safety-Related Processes 5

and involves heterogeneous and geographically-distributed stakeholders. Under-
taking such a complex engineering task requires extensive support. In this paper,
we identify some requirements that a development environment/platform should
satisfy to fit for safety-critical systems engineering. These are: R1. Process en-
forcement and reuse: Despite the dynamicity of safety-critical processes, they
still need to be enforced (including enforcing change as it happens) to maintain
consistency and compliance. To avoid misinterpretations of the process (and its
changes) in a distributed setting, the process should be executable. Process cus-
tomization and reuse across similar projects should also be supported to save
time and cost. R2. Distribution management: The distribution of stakehold-
ers not only bring communication and time difference challenges, but also brings
cultural and language hindrances which might lead to misinterpretations and
lack of trust between collaborating teams. This raises the need for synchroniza-
tion and mutual understanding of the development process in order to minimize
failure propagation between sub-systems built by different teams. R3. Safety
artefacts management: Safety artefacts range from safety requirements to
safety cases and safety arguments. In a dynamic and global environment, man-
ually managing safety artefacts and continuously ensuring their consistency and
compliance is an expensive task. Artefacts can be physically distributed and co-
authored by multiple distributed teams. Capturing artefacts and their meta-data
is also related to capturing safety evidence that is used to support safety cases.

This list is not comprehensive and other necessary requirements may exist.
Therefore, the development platform should be extensible. In this paper we focus
on supporting the ones mentioned above.

3.1 Extended Architecture for Safety-Critical Systems Engineering

In a previous work [4], we focused on supporting global software development
using a model-driven cloud-based architecture. In this work, we extend that ar-
chitecture to fully satisfy the requirements identified in Section 3. The extension
affects the following: Artefacts: we introduce versioning of artefacts in which
each change introduced to an artefact is treated as a new version. The versions
(and meta-data) are kept in a central repository on the cloud. This satisfies
requirement R3 as artefacts are unified and versions capture their change. Ex-
ecution scheduler: we enable parallel execution of activities which are ready
to execute (i.e. their input artefacts are ready). EXE-SPEM: we enable cap-
turing some safety-related elements in the process model. Those elements are:
certification information for roles, the qualification of activities and the guid-
ance and standard each activity adheres to. The executability of models ensures
that a process is enforced, which satisfies requirement R1. As models can be
edited/re-enacted, reuse of processes and activities becomes possible. In addi-
tion, R2 is satisfied since a single process model with its enactment semantics
is centrally shared between stakeholders. This gives each stakeholder a global
awareness of the progress. Argument generation support: we extended the
enactment service to support generating safety arguments from process mod-
els. This is done by capturing artefacts and activities execution meta-data and
extract safety cases content from it.



6 Towards Cloud-Based Enactment of Safety-Related Processes

S: the set of system components; HE: the set of undesired hazardous events
M: list of mitigators; PM: list of partial mitigators
for each he in HE {

if(he.criticality > negligible)
if(he exists on the system output)

trace_failure_to_the_source();
else

for each component s in S
if(he is present on s.input)

if(he is not on s.output){
M.add(s);
find_the_mitigating_rule();
}else

if(the source of he on s.output != s.input)
PM.add(s);}

Fig. 1: The pseudo code for analysing the FPTC results.
R1: Make CLAIM "All causes of hazardous Failure Modes are acceptable"
R2: For each hazardous event {he} in the set HE, apply the following:
R2.1: If {he} is negligible, make a CLAIM "Hazardous Failure Mode {he} is negligible"
R2.2: If {he} is not negligible, make a CLAIM "Hazardous Failure Mode of type {he} absent

in contributory software functionality" and attach CONTEXT "Known causes of {he}
failure mode"

R2.2.1: If {he} is present on the output, make COUNTER-EVIDENCE "The {he} Hazardous
Failure Mode present in the contributory software functionality. Check traces."

R2.2.2: If {he} is not present on the system output, make a STRATEGY "Argument over
failure mechanisms" and attach a JUSTIFICATION "Identified failure mechanisms
describe all known causes of {he} hazardous Failure Mode"

R2.2.2.1: make a CLAIM "The known causes of secondary failures of other components are
acceptably handled" and leave it undeveloped.

R2.2.2.2: make a CLAIM about the mitigators "Hazardous event {he} has been mitigated by
{mitigators}" and attach an EVIDENCE "Mitigation details in the textual argument"

.

Fig. 2: Rules for product-based argument generation.

3.2 Argument Generation
Product-based argument: We generate product-based arguments from FPTC
analysis results. By analysing if certain failures/hazardous events (HEs) occur
or not, we can argue about how the system handles HEs. The analysis starts
by parsing the FPTC results and following the pseudo code in Fig. 1. Then
the argument is formulated by constructing Claims and Strategies and support-
ing them by Evidences/Counter-Evidences following the rules in Fig. 2. These
rules are adapted from [17] where the generation of product-based argument-
fragments is made from contracts translated from FPTC analysis. In this work
we provide rules for generation of argument-fragments directly from the FPTC
analysis, thus skipping the translation of FPTC specification to contracts. More-
over, we provide more fine-grained analysis of how the system handles HE based
on the FPTC specification. If the HE is present in the system, we produce a
counter-evidence in the form of a trace to the source(s) of the HE. If it is not,
we find the component(s) that mitigated it. We distinguish between partial or
full mitigation. Full mitigation is when the failure does not propagate from a
component’s input to its output, while partial mitigation is when the failure is
present on the output, but at least one of the input causes of the output failure
has been mitigated by the component.



Towards Cloud-Based Enactment of Safety-Related Processes 7

System 

Architecture 

Model 

FPTC 

results 

In 

Performed by 

Process-Based 

Argument Generation 

FPTC-based 

Analysis 

Product-Based 

Argument Generation 

Out 

Safety Case 

Argument 

Fragment 

In 

Safety 

Engineer 

In 

Hazardous 

Events 

Product-Based 

SACM Argument 

Out 

Process-Based 

SACM Argument 

Out 

In 

In 

Arguments 

Composition 

Out 
Textual 

Argument 

Out 

Textual 

Argument 

Out 

In 

Process 

 Model 

Fig. 3: PSSA augmented with the argument generation process.

Process-based argument: We use the the rules explained in MDSafe-
Cer [8] to structure a process-based safety argument fragment. As explained
in Section 2.4, the fragment argues about: the tools used, the roles involved,
the guidances/standards followed and the work products generated/consumed
in the process. Information about these aspects is extracted from both the pro-
cess model and provenance data about the process enactment.

Once the product and process-based argument fragments are generated, they
are joined with a top claim arguing about the overall system safety to compose
the overall safety case argument fragment.

4 Case Study

The purpose of this case study is to demonstrate the cloud-based execution of
the augmented PSSA process.

Fig. 3 shows the EXE-SPEM model of the PSSA augmented with the ar-
gument generation process. It consists of four activities and involves creation
of multiple artefacts. The FPTC-based Analysis activity analyses the failure
behaviour of a system. It takes as an input the system architecture model and
generates as an output the failure behaviour of the system. As mentioned in Sec-
tion 3.2 this failure behaviour can be used by the next activity (Product-based
Argument Generation) to verify if the undesired hazardous events (identified
after performing FHA) have been mitigated. The Process-based Argument Gen-
eration activity uses the process model and provenance data about the process
enactment to populate the process-based safety argument. Finally, the Argu-
ments Composition activity combines both the product and the process based
arguments into one safety argument fragment.

In this case study, we used the airplane Wheel Braking System (WBS)
adopted from ARP4761 [1]. The WBS consists of the Brake System Control
Unit (BSCU) and the hydraulics system which is connected to the wheels of the
airplane. We limit our attention to the portion of the architecture that comprises
the BSCU (shown in Fig. 4). Since the FHA process for the WBS system is out of



8 Towards Cloud-Based Enactment of Safety-Related Processes

Fig. 4: The Brake System Control Unit (BSCU)[17].

the scope of this case study, we have randomly selected the undesired hazardous
events that the system should mitigate and provided them as an input to the
Product-based Argument Generation activity.

4.1 Implementation

After modelling the PSSA augmented with the argument generation process
(Fig. 3), the model is mapped onto XML to be enacted on the cloud-based ar-
chitecture. Below, we describe the implementation of each of the activities used in
the safety argument generation process. FPTC-based Analysis: This activity
uses Concerto-FLA (the extended FPTC implementation from the CONCERTO
project 3) to perform the FPTC analysis. The CONCERTO toolset allows: cre-
ating UML-based architectural models of the system; performing FPTC analysis
(using Concerto-FLA) including back-propagation of the results on the models.
The architectural model is transformed to the flamm format (an XML-like for-
mat) on which the analysis takes place. The flamm model consists of composite
components (systems) containing atomic components. The (atomic) components
have input and output ports where failures are attached. In addition, each com-
ponent has a set of rules defining its failure behaviour. For this case study, we
have extracted the FPTC analysis part from Concerto-FLA into this standalone
activity which embed the analysed failure behaviour of the system into the flamm
model. Product-based Argument Generation: This activity uses the FPTC
analysis results to construct the argument concerning the BSCU. Each undesired
HE is accompanied by a definition of its criticality level. These levels are mapped
to a five-level numerical criticality scale ranging from 1 (lowest criticality) to 5
(highest criticality). For instance, in ARP4754A [2], the levels are 1: negligible,
2: minor, 3: major, 4: hazardous, 5: catastrophic. The tracing and mitigation
details are presented in an extended textual argument following the Argument
Outline format [12] and is referenced in the SACM/GSN arguments. Fig. 5 shows
the generated product-based GSN argument for the BSCU while Fig. 6 shows a
snippet of the textual argument. It is worth noting that we use the GSN solution
notation to represent counter evidences (as in S1.2 in Fig. 5).

Process-based Argument Generation: This activity generates the ar-
gument arguing about compliance with PSSA. Fig. 7 shows an argument for

3 www.concerto-project.org/



Towards Cloud-Based Enactment of Safety-Related Processes 9

Fig. 5: GSN representation of the generated product-based argument.

...
CLAIM 1.1: HAZARDOUS FAILURE MODE OF TYPE ’OMISSION ’ IS ABSENT IN

CONTRIBUTORY SOFTWARE FUNCTIONALITY.
CONTEXT 1.1: Known causes of omission failure mode.
COUNTER_EVIDENCE 1.1: The omission Hazardous Failure Mode is present

in the contributory software functionality. Check the traces.
CONTEXT 1.1: omission CAUSED BY:
Failure: ’omission ’ On Output Port: ’cmd ’ of Component: ’selectSwitch

’. CAUSED BY: {Failure: ’omission ’ On Input Port: ’cmd2 ’ of Component: ’
selectSwitch ’. CAUSED BY: Failure: ’omission ’ On Output Port: ’cmd ’ of
Component: ’subBSCU2 ’. CAUSED BY: ...

Fig. 6: The product-based argument represented in text.

FPTC-based Analysis activity from the safety argument generation process we
used in this case study. The tools and roles we used, are not qualified. Therefore,
undeveloped goal is attached for them. The failures list artefact corresponds to
the result of the FTA analysis as required by Appendix B4.1 of ARP4761.

Arguments Composition: This activity combines the process and product-
based arguments into one arguing about the overall system safety.

4.2 Execution
We enacted the safety argument generation process model (shown in Fig. 3) in
the prototype of our extended cloud-based enactment architecture. We deployed
the Enactment Service and one Workflow Engine on two different Amazon EC2
”t2.small” machines. Using a web browser, we were able to enact the process
and retrieve the generated artefacts containing the FPTC analysis results and
the safety arguments (separate and combined) in both SACM/ARM XMI and
text formats. The SACM/ARM XMI formats were then converted into GSN
diagrams (Fig. 5,7) using the Astah GSN editor 4.

4.3 Discussion

By enacting the safety argument generation process on the cloud we demon-
strated the application of our cloud-based enactment architecture for safety-

4 http://astah.net/editions/gsn



10 Towards Cloud-Based Enactment of Safety-Related Processes

Fig. 7: GSN representation of partial process-based argument.

critical processes. While we have used a process from an aerospace domain stan-
dard, processes from other standards can be modelled and enacted similarly.
The enactment architecture is our target platform for modelling/development of
safety processes. It is a service-oriented architecture and can be deployed into
any cloud deployment model (public, private or hybrid). It can also be interfaced
with existing platforms as a service call. This flexibility can address security
and privacy concerns when using the cloud, i.e. one can use a private cloud to
host the process enactment (partially or fully as each activity can be configured
differently) and the generated artefacts. Furthermore, the architecture can be
extended to support new rising requirements other than the three mentioned in
section 3. In this paper we showed how we extended our initial architecture [4] as
detailed in Section 3.1. This involved extending the modelling language (EXE-
SPEM) to model new requirements and extending the architecture components
to incorporate the new required behaviours.

However, there are some limitations to the type of activities that can be sup-
ported. Software processes are often long-running and typically would involve
human-intensive activities. The implemented prototype of the architecture does
not yet support intensive interactions with humans during process execution.
Capturing those interactions provides more data that could be integrated into
safety arguments. Furthermore, a failure/exception during a long-running pro-
cess will break the execution and in the current prototype, the process will need
to be restarted. It is essential to have support to pause/resume processes in such
situations. Since we do not have support to resume process enactment in case of
failures, we recommend splitting processes into short-living sub-processes. Sub-
processing also means better separation of concerns between teams. Finally, not
all activities within a process can be automated and the borders between what
can/cannot be automated is not defined yet. The benefits from automation re-
main, however. The automation of arguments generation saves time and cost
and utilizes the enactment architecture to capture and generate supporting evi-
dences for the arguments. The approach we propose does not address the issue
of completeness of requirements, hazards etc. As Leveson [14] points out, there
will be always hazards that are not considered and that depends on assumptions,
the uncertainties and limitations of the used methods.



Towards Cloud-Based Enactment of Safety-Related Processes 11

5 Related Work

As already pointed out by Sljivo et al [17], there has been extensive research of
safety case argumentation management and argument generation. For example,
Hawkins et al. [11] propose a model-based approach for automated generation
of assurance cases from automatically extracted information from the system
design, analysis and development models. The approach uses model weaving to
capture the dependencies between the reference information models and the as-
surance argument patterns. The Model Based Assurance Case (MBAC) program
is in the heart of the prototype tool that implements the approach [10]. MBAC
takes the argument pattern, reference information and weaving models as its
input together with the corresponding metamodels, and provides an instanti-
ated argument model as the output. While the weaving approach represents a
more generic solution idea, our approach complements that work by looking at
the specific information and argumentation pattern models and providing the
corresponding model transformation rules. Most of the related approaches to
argumentation management (e.g., [6, 7]), however, lack support for distributed
and remote safety case development for distributed teams. Moreover, these ap-
proaches do not address the potential need for scalable computational power
needed for certain tasks in the overall safety certification enactment process.
Our work offers a cloud-based solution that allows integrated coproduction of
the safety case by geographically distributed teams. Furthermore, we do not only
support the product, but also the process-based side of the argument. Gorski et
al. [9] present an evidence-based argument management methodology TRUST-
IT and a cloud-based software-as-a-service platform called NOR-STA support-
ing the application of this methodology. Similarly to GSN-goal structures, the
TRUST-IT argumentation model represents evidence-based arguments in a tree-
like structure. In contrast to NOR-STA, we aim at providing a complete process
enactment service on the cloud where argumentation management is not treated
as an activity separated from the activities mandated by the standards. Pro-
ducing the evidence and managing the argumentation on the same platform
allows us to automate the creation of the argument fragments that can be later
combined in the overall safety case. Furthermore, by generating the argument
fragments in a standardised format we support portability.

6 Conclusion and Future Work

This paper starts with listing a set of requirements for a development envi-
ronment that supports the enactment of safety-critical processes. To meet such
requirements we extend our previous model-driven cloud-based software process
enactment architecture [4] to support the safety critical processes. We present
a fragment of a process adapted from the aerospace domain and demonstrate
its executability on the cloud. While our proposal brings the economical ben-
efits of the cloud to safety-critical systems engineering, empirical studies and
industrial collaborations are still needed to study the impacts of our proposal at



12 Towards Cloud-Based Enactment of Safety-Related Processes

both the organizational and individual levels and on the quality and safety of
the produced systems.

To take this work further, we plan to develop a support for continuous com-
pliance modelling and checking, for enabling extensive human interactions and
off-line activities, as well as for sub-processing to allow long-lived processes typ-
ical for the aerospace domain.

References

1. ARP4761: Guidelines and Methods for Conducting the Safety Assessment process
on Civil Airborne Systems And Equipment. (1996)

2. ARP4754A, Guidelines for Development of Civil Aircraft and Systems. SAE Inter-
national (2010)

3. GSN: Community Standard Version 1. Origin Consulting (York) Limited (2011)
4. Alajrami, S., Gallina, B., Romanovsky, A.: Enabling global software development

via cloud-based software process enactment. Tech. Rep. TR-1494, Newcastle Uni-
versity, School of Computing Science (03 2016)

5. Alajrami, S., Gallina, B., Romanovsky, A.: Exe-spem: Towards cloud-based exe-
cutable software process models. In: Proceedings of the 4th International Confer-
ence on Model-Driven Engineering and Software Development (2016)

6. Armengaud, E.: Automated Safety Case Compilation for Product-based Argumen-
tation. In: Embedded Real Time Software and Systems (2014)

7. Denney, E., Pai, G.J.: Automating the Assembly of Aviation Safety Cases. IEEE
Transactions on Reliability 63(4), 830–849 (2014)

8. Gallina, B.: A Model-driven Safety Certification Method for Process Compliance.
In: 2nd International Workshop on Assurance Cases for Software-intensive Systems.
pp. 204–209. IEEE (2014)

9. Górski, J., Jarzebowicz, A., Miler, J., Witkowicz, M., Czyznikiewicz, J., Jar, P.:
Supporting Assurance by Evidence-Based Argument Services. In: 1st Workshop
on Next Generation of System Assurance Approaches for Safety-Critical Systems.
LNCS, vol. 7613, pp. 417–426. Springer (2012)

10. Hawkins, R., Habli, I., Kelly, T.P.: The Need for a Weaving Model in Assurance
Case Automation. Ada User Journal 36(3), 187–191 (Sep 2015)

11. Hawkins, R., Habli, I., Kolovos, D., Paige, R., Kelly, T.P.: Weaving an Assurance
Case from Design: A Model-Based Approach. In: 16th International Symposium
on High Assurance Systems Engineering. pp. 110–117. IEEE (Jan 2015)

12. Holloway, C.M.: Safety case notations: Alternatives for the non-graphically in-
clined? In: 3rd IET International Conference on System Safety. pp. 1–6 (2008)

13. Holloway, C.M.: Explicate ’78: Uncovering the implicit assurance case in do-178c.
Tech. Rep. 20150009473, NASA Langley Research Center (2015)

14. Leveson, N.: White paper on the use of safety cases in certification and regulation.
Tech. rep., MIT (May 2012)

15. (OMG), O.M.G.: SACM: Structured Assurance Case Metamodel (2013)
16. Rushby, J.: New challenges in certification for aircraft software. In: 9th ACM In-

ternational Conference on Embedded Software. pp. 211–218. EMSOFT (2011)
17. Sljivo, I., Gallina, B., Carlson, J., Hansson, H., Puri, S.: A Method to Generate

Reusable Safety Case Fragments from Compositional Safety Analysis. In: 14th
International Conference on Software Reuse. pp. 253–268. LNCS, Springer (2015)


