Configuration-aware Contracts

Irfan Sljivo, Barbara Gallina, Jan Carlson, and Hans Hansson

Malardalen Real-Time Research Centre, Malardalen University,
Vasteras, Sweden
{irfan.sljivo, barbara.gallina, jan.carlson, hans.hansson}@mdh.se

Abstract. Assumption/guarantee contracts represent the basis for in-
dependent development of reusable components and their safety assur-
ance within contract-based design. In the context of safety-critical sys-
tems, their use for reuse of safety assurance efforts has encountered some
challenges: the need for evidence supporting the confidence in the con-
tracts; and the challenge of context, where contracts need to impose
different requirements on different systems.

In this paper we propose the notion of configuration-aware contracts to
address the challenge contract-based design faces with multiple contexts.
Since reusable components are often developed with a set of configuration
parameters that need to be configured in each context, we extend the no-
tion of contract to distinguish between the configuration parameters and
the other variables. Moreover, we define a multi-context reusable compo-
nent based on the configuration-aware contracts. Finally, we demonstrate
the usefulness of the multi-context components on a motivating case.

1 Introduction

Software intensive safety-critical systems are nowadays rarely developed from
scratch or by a single company. Instead, parts of the system are usually either
reused or developed independently of the system [11]. To move towards compo-
nents with pedigree and thus to fully benefit from reuse within safety-critical
systems, the integrator companies need to reuse not only the components them-
selves, but also the accompanying safety artefacts [7]. The difficulty with reusing
safety artefacts is that they are often context-specific. To enable out-of-context
development, the notion of Safety Element out-of-Context (SEooC) was intro-
duced within ISO26262 [5] as well as a corresponding life-cycle. This SEooC-
related life-cycle requires that a set of context assumptions is identified for the
reusable component and validated when the component is reused in the context
of a particular system. These assumptions represent a way for the supplier of the
reusable component to impose certain requirements on the usage of the provided
component, in order to guarantee the specified behaviour of the component.
The term context is usually described as any information that can be used
to characterise the situation of an entity [4]. In terms of SEooC, in-context is
defined as all the information about the particular system, while out-of-context
means that very little or no information is known about the environment in which



the component will execute. Moving a SEooC to a particular context means that
we are gradually increasing the knowledge about the environment in which the
component will execute until we gain the full knowledge about the environment.

Component contracts in software engineering represent a way to support in-
dependent development of reusable components by specifying behaviours of the
components in assumption/guarantee pairs [1]. The guarantees state the be-
haviours of the component, provided that the environment behaves according
to the assumptions. By supporting such contracts with evidence and relating
them to the safety requirements allocated to the component, they can be used
to semi-automatically generate assurance case argument-fragments [10]. A char-
acteristic of the assumptions and guarantees is that they represent properties
of entire traces, unlike assertions in program analysis that constrain the state
space of a program at a particular point. In the traditional assumption/guarantee
contracts [1] this means that the assumptions cannot include detailed informa-
tion about different contexts, which are often contradictory. The distinction on
strong and weak contracts allows for capturing those context-specific proper-
ties within the weak contracts [9], while the strong contracts capture properties
of behaviours in all the different contexts. The weak contract assumptions are
not required to be satisfied, while the strong contract assumptions, just as the
traditional ones, are required to be satisfied.

Contract assumptions allow the developer of the component to impose re-
quirements on the environment in which the component is used. But currently
this imposing of requirements can be done only for all contexts, and since not
all requirements are safety relevant in every context, an approach is needed to
facilitate imposing requirements on only some contexts where they are actually
safety-relevant. For example, an integrator company asks one of its suppliers
for a reusable component and provides the specification on how this component
should behave. These specifications should be addressed by the guarantees of the
contracts of the reusable component. The supplier develops the component and
in that process identifies assumptions under which the component exhibits the
guaranteed behaviours. For such a component to be used in a particular system,
all of the assumptions stated in the component contracts need to be satisfied by
the system. The contract assumptions thus represent a way in which the supplier
can constrain the set of environments in which the component can be used. Such
reusable components are often developed with a set of usage profiles in mind that
are characterised by different configuration parameters of the component. The
different configuration parameters imply different behaviour of the component,
and may require different constraints on different environments to guarantee the
same safety requirement. Since the assumptions need to be consistent, otherwise
no environment could fulfil them, the suppliers of reusable components are forced
to weaken the assumptions of the contracts for the sake of specifying behaviour
of the component under different configuration parameters. One way of achiev-
ing this weakening is by specifying the context-specific information in the weak
contracts. But weak contracts do not impose any constraints on the component
environment, since its assumptions are not required to be satisfied.



In this work, we extend the notion of contract to handle the multi-context
setting of reusable components by explicitly distinguishing between assump-
tions on configuration parameters and operational variables. We introduce the
configuration-aware contracts and demonstrate how they can be used to achieve
similar flexibility as the strong and weak contracts, while providing the possi-
bility to the supplier to explicitly impose requirements on only some contexts.
Finally, we demonstrate the usefulness and the applicability of the configuration-
aware contracts on a motivating case where a safety-relevant component is de-
veloped for reuse within a family of wheel-loaders.

The rest of the paper is structured as follows: In Section 2 we recall essential
background information. We present the configuration-aware contracts and the
related reasoning in Section 3. In Section 4 we present the application of the
proposed extensions on a motivating case. We present related work in Section 5.
Finally, we bring conclusions and future work in Section 6.

2 Background

In this section we recall the essential information on contracts. Moreover, we
introduce the motivating case we use for illustrative purposes as well as demon-
stration of usefulness of the configuration-aware contracts.

2.1 The Assumption/Guarantee Contracts

The component model of the assumption/guarantee contract theory is based
on a set V of variables, where each variable represents some relevant informa-
tion about a component (e.g., input and output ports) [1]. A contract C is
defined over the set of variables V' as a pair C = (A, G) of assertions, called the
assumptions (A4), and the guarantees (G).

We denote the strong contracts with (A, G) and the weak contracts with
(B, H) [9]. The strong assumptions (A) need to be met by the environment of
the component, and in return the component provides the guarantees (G). In
contrast, the weak guarantees (B) are not necessarily offered in every environ-
ment.Only when both the strong and the weak assumptions are met, the corre-
sponding weak guarantees(H) are offered. Such strong and weak contracts can
be represented as traditional contracts by transforming the weak contracts into
implications stated in the guarantees. The resulting contract is in conjuncted
form where only the strong assumptions remain as the contract assumptions,
while the guarantees represent the conjuncted strong guarantees and the im-
plications from weak contracts, i.e., (4,G) and (B, H) can be represented as a
single traditional contract (A,G A (B = H)).

Just as the contracts, the environment E and implementation I are also
defined in terms of the assertions over the set of variables V. When dealing with
distinct sets of variables an environment is defined as a tuple E=(Vg,Pg)
and implementation is defined as I=(V;,Py), where Vg and V; are the sets
of variables of the environment and implementation respectively, and Pgr and



recordedPositionStatic
groundSpeedThreshold ,l,l
LAAP

groundSpeed

controlLever
autoPositionReq
recordedPosition
angleSensor

Fig. 1. The assumed structure of the lifting arm unit context

P; are the sets of behaviours over the corresponding set of variables for the
environments and implementations respectively. An implementation I is said
to implement a contract C' = (A, G) if it provides the contract guarantees G,
subject to the assumptions A, i.e., PN A C G. An environment F satisfies the
contract C' if it fulfils its assumptions, i.e., Pz C A. A component S is defined
as a tuple S = (V, Cg, I) where Cg is a set of contracts over the set of variables
V', while I is a possibly empty set of implementations of the contracts [1].

2.2 Motivating Case

In this section we present the motivating case based on a real-world scenario
where a single component Loading Arm Automatic Positioning (LAAP) is de-
veloped for reuse in different wheel-loaders.

Wheel-loaders are usually equipped with a loading arm, which can perform
up and down movements. The software controller Loading Arm Controller Unit
(LACU) handles both manual and automated arm movement. LACU calculates
the arm movement commands based on the sensory data and user input, and
then issues them to a hydraulic controller that moves the arm physically. The
assumed structure of a representative LACU is shown in Fig. 1.

LACU is composed of two main subcomponents: the LAAP component that
handles automatic arm positioning; and the Arm Controller component that is-
sues the final command for both automatic and manual arm positioning. LAAP
monitors the control lever that is used to lift/lower the arm manually and an
automatic position request button that positions the arm in a predefined posi-
tion. LAAP is activated by pressing the automatic positioning button, and it
can be stopped by moving the control lever, as LAAP gets deactivated on de-
tection of any movement of the control lever. When active, LAAP uses an arm
angle sensor to determine the current arm position, while the target position is
indicated by the recorded position port. The recorded position port is related
to the recordedPositionStatic configuration parameter, which indicates whether
the recorded position is predefined and constant, or if it can be set to a custom
value. The ground speed port indicates the current ground speed of the vehicle
and is used together with the groundSpeedThreshold configuration parameter
such that the component deactivates if the current speed is greater than the
specified threshold. Moreover, LAAP uses mazGroundSpeed that indicates the
maximum ground speed of the vehicle to determine whether a faulty ground
speed sensor can influence LAAP to move the arm when not supposed to.



3 The configuration-aware contracts

In this section we define the context and the configuration-aware contracts. More-
over, we define the reusable component for the multi-context based on the notion
of the configuration-aware contracts. Finally, we discuss the differences between
the configuration-aware contracts and the corresponding traditional contracts.

3.1 A component configuration context

As mentioned in Section 1, the context represents all information about a par-
ticular system. The fact that a component is developed out-of-context does not
mean that no information about the system is known. Reusable components are
usually developed with a set of usages in mind that are characterised by different
configuration parameters of the component. We refer to the set of such parame-
ters as the configuration context of the component. To define the configuration
context, we first partition the set V' of variables of the reusable component S:
V' = Viop W Vseonr; such that we distinguish between the operational (Vs,p) and
the configuration (Vseonr) variables. The distinction between the two types of
variables is that the configuration variables, also referred to as parameters, can
have only one value in a particular environment. The parameters allow compo-
nent implementations to be prepared for use in different environments.

For each environment where the component may be used, there is a cor-
responding set of parameter values, which is why they can be viewed as con-
stants when the component is used in a specific configuration context. We define
a configuration context of a component as an assignment of a value to each
variable from the set of configuration parameters Vgeonr. For example, ground-
SpeedThreshold and recordedPositionStatic in our motivating example are con-
figuration variables that are constant in the context of a particular vehicle. Based
on the values of these two parameters we can distinguish between different con-
figuration contexts of the LAAP component. The recorded position can be fixed
and the ground speed threshold set to zero, which represents the environment
where likelihood of propagation of failures through LAAP is minimal. Another
configuration context could be when the recorded position is dynamic and the
ground speed threshold is at a higher vehicle speed e.g., 20 kilometres per hour.
To reduce the likelihood of failures propagating through LAAP in environments
that fit this context, requirements on the failure behaviours of the components
providing recorded position and ground speed need to be imposed.

3.2 Configuration-aware contracts

As discussed in Section 1, using traditional contract assumptions to capture both
the configuration and operational variables can lead to unwanted weakening of
the assumptions. To overcome this problem we define the notion of configuration-
aware contract to clearly distinguish between the assumptions on the configura-
tion parameters and those over the operational variables. A configuration-aware
contract is defined as a tuple C = (A, Ao, G) where:



— A, represent assumptions over the configuration variables, and is defined as
an assertion over the set of configuration variables Vscons;

— A, represent assumptions over the operational variables, and is defined as
an assertion over the set of operational variables Vgop;

— G represent the contract guarantees defined as an assertion over V.

The contract C states that the assertion A, needs to be satisfied in all contexts
satisfying A., and under these conditions G is guaranteed. While we model
assertions over operational variables as sets of traces, assertions over the set of
configuration variables can be simply modelled as sets of configuration contexts.

A correct implementation of a configuration-aware contract behaves accord-
ing to the specified guarantees, provided that the corresponding assumptions on
both types of variables are met. We define a configuration-aware implementation
over the set of variables V as I = (V, Py, Pj,) where:

— Pj. represent a set of configuration contexts over the set of configuration
variables Vseonr;
— Py, represent an assertion over the set of operational variables Vg,p.

While an implementation considers the different values of the configuration
parameters, an environment establishes a single configuration context, i.e., it
considers only a single value for each configuration parameter. We define an
environment over the set of variables V as F = (V, pg., Pg,) where:

— pgc represent the configuration context of the environment E over the set of
configuration variables Vgcon;
— Pg, represent an assertion over the set of operational variables Vs,p.

3.3 A multi-context component

As mentioned earlier, a reusable component can exhibit different behaviours in
different configuration contexts. This makes the configuration context interest-
ing for contract-based development because once a configuration context of a
component is determined by a particular environment, then only behaviours of
the component exhibited in that particular configuration need to be analysed.
Hence, the configuration context information of an environment allow us to filter
out the contracts relevant for the particular environment.

We define a multi-context component by considering its configuration con-
texts and the corresponding configuration-aware contracts. Formally, we define
multi-context component as S = (V, Ps.,Cg, Is) such that

— V is the set of variables composed of the sets of operational and configuration
variables V' = Vgop W Vseonf;

Ps. is the set of configuration contexts over Vsconf;

— (g is the set of configuration-aware contracts over V such that the set of
configuration contexts of each of the contracts is a subset of Ps;

Ig is a possibly empty set of implementations over V.



As a multi-context component S is moved to the context of a particular
system, it needs to be instantiated to an in-context component. We define an
in-context component as a special case of a multi-context component where the
set of configuration contexts Ps. contains only one configuration context. Con-
sequently, the set of contracts is reduced to only those matching the particular
context. Given an environment E; = (V,pgi., Pg1) such that pgi. € Ps., we
define an instantiation of an in-context component from the component S as
S1 = (V,psic, Cs1, 1), where:

— PSic = PE1lc
- Cg1 = {C €Cs ‘ Cc= (AmAOaG) APsic € A(,}

3.4 From configuration-aware contracts to traditional contracts

To transform a set of configuration-aware contracts to a traditional contract, we
conjunct them such that the assumptions that need to hold for all configuration
contexts are preserved, while other operational assumptions together with the
assumptions on configuration variables are transferred to the traditional con-
tract guarantees. The latter is done by implications in guarantees, expressing
that if the transferred assumptions are satisfied they imply the corresponding
configuration-aware contract guarantees. This is similar to how the strong and
weak contracts are conjuncted into traditional contracts. This way the assump-
tions and guarantees transferred as implications behave as the weak contracts,
while the assumptions and guarantees that hold in all configuration contexts
behave as assumptions and guarantees of strong contracts.

The traditional conjuncted form does not distinguish between the different
configuration contexts. While the two types of contracts are the same in terms
of implementations, i.e., implementations of the conjuncted contract are the
same as the implementations of the configuration-aware contracts, they differ in
terms of environments. A correct environment of a contract in conjuncted form is
every environment that satisfies only the overall contract assumptions, while the
configuration-aware contracts of an in-context component offer the possibility for
a more fine-grained constraining of the different environments without weakening
the assumptions to only the assumptions that hold in all configuration contexts.

For example, if we consider groundSpeed Threshold configuration parameter
in our motivating case from Section 2.2. LAAP is disabled when the ground
speed value is greater than the threshold parameter. For contexts where the
threshold value is lower than the maximum speed of the vehicle, the groundSpeed
port failure can contribute to LAAP running when not supposed to, e.g., when
groundSpeed is faulty and shows that the vehicle is moving slower than it actually
is. For such contexts it is important to impose a requirement on the groundSpeed
port value to be highly reliable. But when the threshold value is equal or greater
than the maximum speed of the vehicle, then even if the groundSpeed port
reports faulty value it cannot lead to LAAP running when not supposed to.
Hence for the first set of contexts, it is important to impose the requirement on
reliability of the groundSpeed port, while for the second case such requirement



is not necessary and in fact is too strong. For traditional contracts, this can be
expressed only in the conjuncted form where no requirements on the environment
would be made regarding the reliability of groundSpeed, or if such requirement
would be made for all contexts, it would be too strong for certain cases.

The concept of configuration-aware contracts can be used to facilitate cap-
turing optional behaviours in terms of weak contracts by defining a boolean
parameter and using it only for the particular configuration-aware contract that
is intended to be optional. This concept facilitates similar flexibility of the weak
contracts, although it may result in a large number of configuration parameters
for the different weak contracts.

4 Tlustrative case

In this section we demonstrate, using the motivating case introduced in Sec-
tion 2.2, how capturing of the contracts as configuration-aware can influence the
constraints imposed by the contract assumptions in a specific environment. Since
the component is intended for a family of wheel-loaders, the requirement that
needs to be satisfied in all the systems of the family is that the LAAP does not
move the loading arm when not supposed to. Hence, the property that the LAAP
outputs are not faulty needs to be satisfied in all the different systems. We model
LAAP as a multi-context component and demonstrate how configuration-aware
contracts can provide the mechanism for ensuring that the LAAP is not faulty in
the different configuration contexts without making the assumptions too strong.

To compare the configuration-aware and traditional way of capturing the
contracts, we consider how would capturing the same information using the two
contract approaches influence the strength of the assumptions that a particular
environment needs to fulfil. We first capture the configuration-aware contracts,
shown in Table 1. The example shows five configuration-aware contracts where
the first LAAP1 contract is valid for all the configuration contexts, since it
checks whether the received values on the input ports are in the specified range.
If not, then it disables the component outputs. The LAAP2-LAAPS5 contracts are
specific to the four different configuration contexts described in Section 2.2. The
LAAP2 contract specifies the LAAP component behaviour when the maximum
ground speed is greater than the ground speed threshold and the predefined
arm position does not change. In this configuration context, for the component
not to propagate any failures, the assumptions need to be made so that the
ground speed value will not be faulty, while any faults of the recorded position
do not influence the LAAP output. In contrast to this configuration context,
when ground speed threshold is greater or equal to the maximum ground speed,
as specified in the LAAP4 contract, the environment does not need to fulfil the
requirement that the ground speed value is not faulty.

Since the traditional way of specifying contracts cannot capture the con-
figuration variables in the contract assumptions, the assumptions need to be
weakened to exclude the configuration variables. As described in Section 3.4, we
transform the set of configuration-aware contracts to a traditional contract (Ta-



Table 1. A set of LAAP configuration-aware contracts

A._raapi:l;
Ao_raapi:|groundSpeed within [0, 200] km/h AND angleSensor within [0,3] rad AND
controlLever within + 1 rad AND recordedPosition within [0,3] rad;
Graapri: |(groundSpeed not within [0, 200] km/h OR angleSensor not within [0,3]
rad OR controlLever not 0 rad OR recordedPosition not within [0,3] rad;)
implies (Active = false and Flow = 0);

A._rpaap2:|groundSpeed Threshold < maxGroundSpeed AND recordedPositionStatic;
A,_raap2:|not faultAngleSensor AND not faultAutoPositionReq AND not fault-
ControlLever AND not faultGroundSpeed;

Graap2: |not faultFlow AND not faultActive;

A._r1aaps:|groundSpeed Threshold < mazGroundSpeed AND not recordedPosition-
Static;

A,_raaps:|not faultAngleSensor AND not faultRecordedPosition AND not faultAu-
toPositionReq AND not faultControlLever AND not faultGroundSpeed;
Graaps: |not faultFlow AND not faultActive;

A._raapa:|groundSpeed Threshold > maxGroundSpeed AND recordedPositionStatic;
A,_raaps:|not faultAngleSensor AND not faultAutoPositionReq AND not fault-
ControlLever;

Graapsa: |not faultFlow AND not faultActive;

A._raaps:|groundSpeed Threshold > marGroundSpeed AND not recordedPosition-
Static;

A,_raaps:|not faultAngleSensor AND not faultRecordedPosition AND not faultAu-
toPositionReq AND not faultControlLever AND not faultGroundSpeed;
Graaps: |not faultFlow AND not faultActive;

Table 2. The corresponding LAAP traditional contract

Acr—raap:|Ao—raap1 AND not faultAngleSensor AND not faultAutoPositionReq
AND not faultControlLever ;

Ges-raapr:|Graapi AND (((AchAApl AND not faultGroundSpeed) OR (AchAAPQ
AND not faultRecordedPosition AND mnot faultGroundSpeed) OR
(Ac—raaprs) OR (Ac—raaps AND not faultRecordedPosition)) implies

(not faultFlow AND not faultActive));

ble 2) and also to the resulting in-context component overall contracts (Table 3).
By comparing the assumptions of the traditional contract and the specific in-
context overall contracts derived from the multi-context LAAP component, we
notice that the assumptions for the different configuration contexts are in-general
stronger than the assumptions of the traditional contract. This can for instance
be seen on the in-context overall contract LAAP-C1 (Table 3), which besides the
assumptions included in the traditional contract and the context-specific config-
uration parameters, also assumes that the ground speed value is not faulty. The
strengthening of the in-context overall contract assumptions is done not only in
terms of configuration parameters, but also in terms of assumptions over opera-
tional parameters. This way of deriving an in-context overall contract based on
the configuration-aware contracts allows us to impose additional requirements
in terms of assumptions that the corresponding environment of the particular
in-context component needs to fulfil.



Table 3. The in-context LAAP overall contracts of the LAAP configuration contexts

Acs_raap—ci:|Ao—raap1 AND not faultAngleSensor AND not faultAutoPosition-
Req AND not faultControlLever AND not faultGroundSpeed AND
Ac_rLaap2;

Gef_raap—c1:|Graapri AND not faultFlow AND not faultActive;
Acr_raap—c2:|Ao—raapr1 AND not faultAngleSensor AND not faultAutoPosition-
Req AND not faultControlLever AND not faultGroundSpeed AND
not faultRecordedPosition AND A._raaps3;
Gef_rpaap—c2:|Graapi AND not faultFlow AND not faultActive;
Aci—raap—c3:|Ao—rLaapr1 AND not faultAngleSensor AND not faultAutoPosition-
Req AND not faultControlLever AND A._1aapa;
Gef—raap—c3:|Graapi AND not faultFlow AND not faultActive;
Acr_raap—ca:|Ao—raapr1 AND not faultAngleSensor AND not faultAutoPosition-
Req AND not faultControlLever AND not faultRecordedPosition
AND A._raaps;

Gef_raap—ca:|Graapi AND not faultFlow AND not faultActive;

5 Related Work

Contract-based design has emerged as an interesting approach that facilitates a
range of activities such as independent development, requirements structuring,
compositional verification, and safety assurance argument generation, all useful
for the development of safety-critical systems. Westman et al. [12] generalises
the established contract theory [1] to environment-centric contracts to provide
support for practical engineering and expressing of safety requirements using con-
tracts. The environment-centric contracts relax the constrains on the scope of the
assumptions and guarantees beyond the interface of the corresponding compo-
nent. While environment-centric contracts theory does not distinguish explicitly
between the rigid variables such as configuration parameters and other opera-
tional variables, Cimatti et al. [2] present a tool-supported contracts-refinement
proof system that distinguishes between the two types of variables. Although
they can be separately specified, they are treated equally within the contract
assumptions, and hence the explicit distinction does not alleviate the challenge
contracts have with the different context.

Schneider et al. [8] introduce the Digital Dependability Identities (DDIs) as
a way to assure dependability of cyber-physical systems. DDIs represent modu-
lar, composable and possibly executable specification. One of the main goals of
DDIs is to provide the basis for run-time certification for the dynamically recon-
figurable systems. Conditional Safety Certification (ConSert) represent an initial
implementation of DDIs. The conditions in ConSerts are captured between the
potentially guaranteed safety requirements (guarantees), and the corresponding
demanded safety requirements (demands). In contrast, in our work we use con-
tracts to capture the safety-relevant behaviours needed for satisfaction of safety
requirements. Similarly to the conditions in ConSert, we extend the notion of
contracts to act as conditions based on the configuration parameters and identify
which component behaviours are relevant for a particular system. Since contracts



can be used for generation of argument-fragments [10], the configuration-aware
contracts can be viewed as means to achieve conditional safety arguments offline.
Although configuration-aware contracts have potential for run-time certification
for reconfigurable systems, that work is out of the scope of this paper.

Oliveira et al. [3] present a method for automatic allocation of safety re-
quirements to components of a Software Product-line (SPL) by building upon
HiP-HOPS (Hierarchically Performed Hazard Origin & Propagation Studies) [6].
The proposed method enumerates the SPL products enriched with hazard and
failure information, and then uses HiP-HOPS for automatic allocation of ASILs
(Automotive Safety Integrity Levels). Based on the ASIL allocations for each of
the products, the proposed method identifies the most stringent allocation for
each of the SPL components across the entire product family. In contrast, the
configuration-aware contracts of a component can be used to verify that the SPL
products in which the component is reused meet the minimum needed require-
ments to ensure that the requirements allocated to the reusable component are
met. By using configuration-aware contracts, we alleviate the need for all the
neighbouring components of the reusable component to be allocated with the
most stringent ASIL in all configuration contexts.

6 Conclusions and Future Work

Contract-based design is a promising approach to facilitate independent devel-
opment of components and their safety assurance within safety-critical systems.
One of the challenges it faces is the troublesome issue of context when deal-
ing with safety requirements. While one requirement can be safety-relevant in
the context of a particular system, it may not be relevant in the context of
some other system. In this paper we have argued that there is a need for more
fine-grained handling of the context within the contracts. We have proposed to
clearly distinguish between assumptions on configuration parameters and other
operational variables. Unlike the operational variables, the configuration param-
eters have constant values within a particular system, and this makes them a
useful source of information when developing a reusable component for a set
of different contexts. We have proposed extended configuration-aware contracts
that use the configuration parameters to filter out the assumptions over the
operational parameters for the different configuration contexts. We have demon-
strated on a real-world example how the multi-context components enriched with
configuration-aware contracts provide a mechanism for imposing requirements
on only those environments where actually needed.

As our future work, we intend to align this work with product-line engineer-
ing for safety-critical systems. While product-line feature modelling is done at a
higher level, the configuration-aware contracts allow for tailoring the safety be-
haviour and the corresponding safety assurance case. We plan to investigate the
usefulness of configuration-aware contracts for systems where cloud-computing
is used to provide service to safety functions. We also plan to explore how



configuration-aware contracts can be used to assist reuse of safety assurance
artefacts across different system concerns such as safety and security.

Acknowledgements

This work is supported by the Swedish Foundation for Strategic Research (SSF)
via project SYNOPSIS and FIC, as well as EU and VINNOVA via the ECSEL
Joint Undertaking projects AMASS (No 692474) and SAFECOP (No 692529).

References

1.

10.

11.

12.

A. Benveniste, B. Caillaud, D. Nickovic, R. Passerone, J.-B. Raclet, P. Reinkemeier,
A. Sangiovanni-Vincentelli, W. Damm, T. Henzinger, and K. G. Larsen. Contracts
for System Design. Research Report RR-8147, Inria, November 2012.

A. Cimatti and S. Tonetta. Contracts-refinement proof system for component-
based embedded systems. Science of Computer Programming, 97(3):333-348, 2014.
A. L. de Oliveira, Y. Papadopoulos, L. Azevedo, D. Parker, R. Braga, P. C. Masiero,
I. Habli, and T. Kelly. Automatic allocation of safety requirements to components
of a software product line. IFAC-PapersOnLine, 48(21):1309 — 1314, 2015.

A. K. Dey. Understanding and Using Context. Personal Ubiquitous Computing,
5(1):4-7, 2001.

ISO 26262-10. Road vehicles — Functional safety — Part 10: Guideline on ISO
26262. International Organization for Standardization, 2011.

. Y. Papadopoulos, M. Walker, D. Parker, E. Riide, R. Hamann, A. Uhlig, U. Grétz,

and R. Lien. Engineering Failure Analysis and Design Optimisation With HiP-
HOPS. Engineering Failure Analysis, 18(2):590-608, 2011.

F. Redmill. The COTS Debate in Perspective. In 20th International Conference
on Computer Safety, Reliability, and Security, Lecture Notes in Computer Science,
pages 119-129, London, UK, 2001. Springer.

D. Schneider, M. Trapp, Y. Papadopoulos, E. Armengaud, M. Zeller, and K. Hofig.
WAP: Digital dependability identities. In 26th International Symposium on Soft-
ware Reliability Engineering, pages 324-329. IEEE, 2015.

I. Sljivo, B. Gallina, J. Carlson, and H. Hansson. Strong and Weak Contract
Formalism for Third-Party Component Reuse. In 8rd International Workshop on
Software Certification, International Symposium on Software Reliability Engineer-
ing Workshops (ISSREW), pages 359-364. IEEE, November 2013.

I. Sljivo, B. Gallina, J. Carlson, and H. Hansson. Generation of Safety Case
Argument-Fragments from Safety Contracts. In 33rd International Conference
on Computer Safety, Reliability, and Security, volume 8666 of Lecture Notes in
Computer Science, pages 170-185. Springer, September 2014.

J. Varnell-Sarjeant, A. A. Andrews, and A. Stefik. Comparing Reuse Strategies:
An Empirical Evaluation of Developer Views. In 8th International Workshop on
Quality Oriented Reuse of Software, pages 498-503. IEEE, 2014.

J. Westman and M. Nyberg. Environment-Centric Contracts for Design of Cyber-
Physical Systems. In Model-Driven Engineering Languages and Systems - 17th
International Conference, MODELS 2014, volume 8767 of Lecture Notes in Com-
puter Science, pages 218-234. Springer, 2014.



