
Mälardalen University
School of Innovation Design and Engineering

Väster̊as, Sweden

Thesis for the Degree of Master of Science (120 credits) in Computer
Science with specialization in Software Engineering

INVESTIGATION OF AN
OSLC-DOMAIN TARGETING

ISO 26262
Focus on the left side of the Software V-model

Julieth Patricia Castellanos Ardila
jca13001@student.mdh.se

Examiner: Kristina Lundqvist
Mälardalen University, Väster̊as, Sweden

Supervisor: Barbara Gallina
Mälardalen University, Väster̊as, Sweden

Company supervisor: Barbara Gallina,
Scania, SE-151 87 Södertälje

September 27, 2016

Mälardalen University Master Thesis

Abstract

Industries have adopted a standardized set of practices for developing their products. In the
automotive domain, the provision of safety-compliant systems is guided by ISO 26262, a standard
that specifies a set of requirements and recommendations for developing automotive safety-critical
systems. For being in compliance with ISO 26262, the safety lifecycle proposed by the standard
must be included in the development process of a vehicle. Besides, a safety case that shows that the
system is acceptably safe has to be provided. The provision of a safety case implies the execution
of a precise documentation process. This process makes sure that the work products are available
and traceable. Further, the documentation management is defined in the standard as a mandatory
activity and guidelines are proposed/imposed for its elaboration. It would be appropriate to point
out that a well-documented safety lifecycle will provide the necessary inputs for the generation of an
ISO 26262-compliant safety case. The OSLC (Open Services for Lifecycle Collaboration) standard
and the maturing stack of semantic web technologies represent a promising integration platform
for enabling semantic interoperability between the tools involved in the safety lifecycle. Tools for
requirements, architecture, development management, among others, are expected to interact and
shared data with the help of domains specifications created in OSLC.

This thesis proposes the creation of an OSLC tool-chain infrastructure for sharing safety-related
information, where fragments of safety information can be generated. The steps carried out during
the elaboration of this master thesis consist in the identification, representation, and shaping of
the RDF resources needed for the creation of a safety case. The focus of the thesis is limited to a
tiny portion of the ISO 26262 left-hand side of the V-model, more exactly part 6 clause 8 of the
standard: Software unit design and implementation. Regardless of the use of a restricted portion
of the standard during the execution of this thesis, the findings can be extended to other parts, and
the conclusions can be generalize.

This master thesis is considered one of the first steps towards the provision of an OSLC-based
and ISO 26262-compliant methodological approach for representing and shaping the work products
resulting from the execution of the safety lifecycle, documentation required in the conformation of
an ISO-compliant safety case.

1

Mälardalen University Master Thesis

Acknowledgements

I would first like to thank my supervisor at the company and the University, Barbara Gallina,
for her continuous support during the thesis research, her patience, motivation, and knowledge. Her
guidance has helped me in the consecution of the best results and my own personal development.

I am grateful for having the opportunity to perform my master thesis as an industrial project at
Scania AB. Being in this company gave me the practical knowledge that I have not experimented
before.

Special thanks to Mattias Nyberg, ESPRESSO project leader, for giving me the opportunity to
participate and contribute to the project.

I am thankful with Kathyayani Padira, student/colleague at Scania. We participated in inter-
esting discussions and worked together during the learning process. Her thesis outcomes and her
experiences helped in the consecution of my thesis results.

Furthermore, I would like to acknowledge and mention the two projects within which this master
thesis was conceived, ESPRESSO [1] and Gen&ReuseSafetyCases [2].

I also want to give special thanks to my mother Mercedes for always believe in me, offering her
most caring support and enthusiasm.

Finally, and most important, I would like to express my gratitude and love to my husband Ola
and my little son Gabriel. Their company, hugs, and unconditional support have strengthened me
through this challenging experience.

2

Mälardalen University Master Thesis

Table of Contents

1 Introduction 8
1.1 Motivation . 8
1.2 Context . 8
1.3 Contribution . 9
1.4 Document outline . 9

2 Background and related work 10
2.1 System safety . 10

2.1.1 Basic terms . 10
2.1.2 Safety critical systems . 10
2.1.3 Functional Safety . 11

2.2 Fuel Level Display System (FLDS) . 11
2.2.1 Basic terms . 11
2.2.2 FLDS overview . 11
2.2.3 Fuel level estimation algorithm . 12

2.3 ISO 26262 . 14
2.3.1 Basic terms . 14
2.3.2 ISO 26262:2011 overview . 15
2.3.3 Software unit design and implementation 16

2.4 Documentation management . 18
2.4.1 A safety case in the context of ISO 26262 18
2.4.2 Documentation management in the context of ISO 26262 19

2.5 Traceability and interoperability . 19
2.6 Semantic knowledge representation . 20

2.6.1 Basic terms . 20
2.6.2 Knowledge representation . 20
2.6.3 Knowledge domain . 21
2.6.4 UML Profile . 22

2.7 Semantic Web fundamentals . 23
2.7.1 Basic terms . 23
2.7.2 The Semantic Web . 24
2.7.3 Resource Description Framework (RDF) . 24
2.7.4 Resource Description Language Schema (RDFS) 26
2.7.5 Protocol and RDF Query Language (SPARQL) 27

2.8 RDF data shapes . 27
2.8.1 Basic terms . 27
2.8.2 RDF data shapes layer overview . 27
2.8.3 Resource Shape (ReSh) . 28
2.8.4 Shape Expressions (ShEx) . 30
2.8.5 Shapes Constraint Language (SHACL) . 30

2.9 Open Services for Lifecycle Collaboration (OSLC) 32
2.9.1 Linked Data . 32
2.9.2 Open Services for Lifecycle Collaboration (OSLC) overview 33
2.9.3 Open Services for Lifecycle Collaboration (OSLC) core specification 33
2.9.4 OSLC property constraints . 33

2.10 Related work . 34

3 Scientific research method 36

4 Problem formulation and analysis 37
4.1 Problem formulation . 37
4.2 Problem analysis . 37

3

Mälardalen University Master Thesis

5 Methods to solve the problem 39
5.1 OSLC domain specification development . 39

5.1.1 What are the elements involved in the definition of the domain specification? 39
5.1.2 What is the existing OSLC domain specification that better suits the needs

for the creation of ISO 26262-compliant resources? 39
5.1.3 What are the existing vocabularies that can be used in the definition of a

the domain specification? . 41
5.1.4 Which approach should be used for modeling the domain specification? . . 42

5.2 Comparative study on existing Resource Description Framework (RDF) constraint
languages . 43
5.2.1 What are the options available for shaping OSLC resources? 43
5.2.2 What are the technical characteristics of the RDF constraint languages se-

lected? . 44

6 Solution 46
6.1 Creating a metamodel structure . 46

6.1.1 Modelling regulatory requirements . 46
6.1.2 Modelling Scania practices . 49

6.2 Attaching constraints to the metamodel . 52
6.3 Adding context to the domain . 55

6.3.1 Domain name, mission and internal structure 55
6.3.2 Relationships with other domains . 56

6.4 Defining OSLC domain specification . 56
6.5 Shaping the RDF resources . 61

6.5.1 Defining the requirements for a RDF constraint language 61
6.5.2 Mapping requirements for RDF constraints to RDF data shapes languages 62
6.5.3 Summary of the comparative study related to constraint languages 71

6.6 Discussion . 71

7 Case study 73
7.1 Modeling the case study . 73

7.1.1 The structure of the software unit . 73
7.1.2 ASIL definition . 73
7.1.3 Other ISO 26262-related information . 73

7.2 Case study model . 74
7.2.1 UML Object diagram . 75
7.2.2 Case study data constrained with SHACL 79

7.3 Model Validation . 83
7.3.1 ISO 26262 requirements validation . 83
7.3.2 Constraints validation . 84

8 Conclusions 85
8.1 Summary . 85
8.2 Future work . 85

References 92

4

Mälardalen University Master Thesis

List of Figures

1 Electronic Control Units (ECUs) configuration for variant 1 ([3]). 12
2 A representation of the Coordinator (COO) system model (adapted from [4]). . . . 12
3 Details of the Software unit Fuel Level Estimation Algorithm. 13
4 Software unit Function CalculatCurrentVolumeLevels. 13
5 Overall structure of ISO 26262 [5]. 16
6 V-model for product development at the software level (adapted form [5]). 16
7 Example of an information space. 21
8 Simple representation of a domain chart. 22
9 Simple representation of a Unified Modeling Language (UML) profile. 22
10 Semantic Web Stack (2015) [6]. 24
11 RDF graphs representation [7]. 25
12 RDF graph of the XML/RDF example described in Listing 1. 25
13 Diagram of main concepts and relations in Resource Shape (ReSh) [8]. 28
14 Illustration of some relationships between classes of Shapes Constraint Language

(SHACL), RDF and Resource Description Language Schema (RDFS) [9]. 31
15 OSLC Core Specification concepts and relationships [10]. 33
16 The research methodology used in the context of this thesis (adaptation from [11]). 36
17 Link Open Vocabularies (LOV)[12]. 41
18 Representation of SoftwareUnitDesignSpecification and SoftwareUnitImplementation. 46
19 Classes SoftwareUnitDesignSpecification and SoftwareUnitImplementation. 47
20 ASIL, Implementation Type, and Programming Language. 47
21 Enumerations ASIL and ImplementationType. 48
22 Design Notation Type and Design Notation Rationale. 48
23 Enumeration softwareUnitDesignNotation. 48
24 Representation of Functional Behavior and Description. 49
25 Representation of Design Principle Selected and Design Principle Selected Rationale. 49
26 Enumeration SoftwareUnitDesignPrinciple. 50
27 Relationships implements and isRelatedTo. 50
28 Software unit function class, relationships hasFunction and hasSubFunction. 51
29 Class variable and the related relationships. 51
30 Definition of constraints and parameters. 52
31 Enumeration ConstraintType. 52
32 Constraint ASIL propagation. 53
33 Bidirectional constraint implements and isImplementedBy. 53
34 Conditional constraint for design notations. 53
35 Enumeration RecommenationLevel. 53
36 Conditional constraint for design principles selected. 54
37 Disjoint constraint for input and output ports. 54
38 Disjoint constraint for input arguments and return values. 54
39 Profile diagram: SoftwareUnitRelatedConcepts. 55
40 Domain chart. 56
41 Hazard Analysis using adapted HAZOP [13]. 74
42 Safety goals for FLEDS [13]. 74
43 SoftwareUnitDesignSpecification instance: Fuel Level Estimation Algorithm. 75
44 SoftwareUnitImplementation instance: Fuel Level Estimation Algorithm. 76
45 SoftwareUnitFunction instance: CalculatCurrentVolumeLevels. 76
46 Variable instances: Input port objects. 77
47 Representation of a the software unit design and implementation information. . . 78
48 Enumeration ASIL in SHACL (created in TopBraid Composer). 79
49 Software Unit Design Specification shape in SHACL (created in TopBraid Composer). 79
50 Data for Fuel Level Estimation Algorithm in SHACL (created in TopBraid Composer). 80
51 RDF graphs representation of XML/RDF fragment presented in Listing 30. . . . 82
52 Constraint Verification (defined in TopBraid Composer). 84
53 Validation Message (defined in TopBraid Composer). 84

5

Mälardalen University Master Thesis

List of Tables

1 Configuration Parameters for variant 1. 14
2 Notations for software unit design (adapted form [5]). 17
3 Design principles for software unit design and implementation (adapted form [5]). . 18
4 Cardinalities expressions for ShEx resources [14]. 30
5 Properties defined in OSLC for the software unit. 34
6 OSLC domain specification with final and World Wide Web Consortium (W3C)

recommendation status. 40
7 Vocabularies selected form Metadata category [15]. 42
8 Stakeholders and tools that support the three selected RDF constraint languages. . 45
9 Technical characteristics of the RDF constraint languages. 45
10 OSLC definition for the resource SoftwareUnitDesignSpecification. 58
11 OSLC definition for the resource SoftwareUnitImplementation. 59
12 OSLC definition for the resource Constraint. 59
13 OSLC definition for the resource ParameterValue. 59
14 OSLC definition for the resource Variable. 60
15 OSLC definition for the resource ConfigurationParameter. 60
16 OSLC definition for the resource SoftwareUnitFunction. 60
17 Requirements for RDF constraints mapped to three different RDF data shapes lan-

guages. 71
18 Data required for instantiate the class SoftwareUnitDesignSpecification. 75
19 Data required for instantiate the class SoftwareUnitImplementation. 76
20 Data required for instantiate the class SoftwareUnitFunction. 76
21 Data for the input and output ports. 77
22 Questions related with the ISO 26262 requirements for software unit design specifi-

cation. 83

6

Mälardalen University Master Thesis

Acronyms

AE Allocation Element.

AM Architectural Management.

ASIL Automotive Safety Integrity Level.

COO Coordinator.

dcterms Dublin Core Metadata Initiative Terms.

E/E system electrical and/or electronic system.

ECU Electronic Control Unit.

FLDS Fuel level Display System.

FLEDS Fuel Level Estimation and Display System.

HTML HyperText Markup Language.

HTTP Hypertext Transfer Protocol.

IRI Internationalized Resource Identifier.

ISO International Standarization Organization.

LOV Link Open Vocabularies.

OSLC Open Services for Lifecycle Collaboration.

OWL Web Ontology Language.

QM Quality Management.

RDF Resource Description Framework.

RDFS Resource Description Language Schema.

ReSh Resource Shape.

RM Requirements Management.

SHACL Shapes Constraint Language.

ShEx Shape Expressions.

SPARQL Protocol and RDF Query Language.

SPIN SPARQL Inference language.

UML Unified Modeling Language.

URI Uniform Resource Identifier.

URL Uniform Resource Locator.

W3C World Wide Web Consortium.

WWW World Wide Web.

XML eXtensible Markup Language.

XSD XML Schema.

7

Mälardalen University Master Thesis

1 Introduction

This chapter represent the thesis introduction and is organized as follows: Section 1.1 presents the
motivation for the thesis, section 1.2 presents the context in which this thesis is defined, section
1.3 presents the contributions of the thesis, and the section 1.4 presents the thesis outline.

1.1 Motivation

ISO 26262 [5] is a standard that addresses the functional safety of road vehicles. The current
version (ISO 26262:2011) applies to cars with a maximum gross vehicle mass up to 3500 kg, which
does not include the kind of vehicles produced at Scania. So, the compliance with the standard
is currently not carried out at the company. However, it is likely that by 2018, Scania will adopt
the regulations prescribed by the norm [13, 3], since a new version (ISO 26262-Edition 2) is, at
present, extending the coverage to other kinds of vehicles e.g. motorcycles, trucks, and buses [16].
ISO 26262 ”defines a safety lifecycle to be adopted during the development of automotive safety-
critical systems” [17], and one of the requirements to be in compliance with the standard is the
provision of a safety case. A safety case is ”a structured argument, which inter-relates evidence and
claims, needed to show that safety-critical systems are acceptably safe” [18]. Traceability, which
is defined as ”the degree to which a relationship can be established between two or more products
of the development process” [19], becomes an essential property with the application of ISO 26262
since its role in providing evidence is crucial for the creation of a safety case. The safety case and
the safety lifecycle are tightly coupled, as the evidence required to be collected in the safety case
is produced during the safety lifecycle activities. A well-performed documentation process would
lead to the creation of a consistent safety case, and thus, the safety assessment would not be at
risk.

The adoption of ISO 26262 in a company like Scania would be exceedingly time-consuming
for the personnel in charge of its application, ”where hundreds of documents are expected to be
the result of the safety lifecycle activities” [20]. Performing the documentation process manually
would also be chaotic, because safety information will come from different sources and involve var-
ious stakeholders. For this reason, the use of software tools is considered necessary for supporting
the documentation process. However, in most of the cases, these tools do not have standardized
methods for sharing data. The semantic web technologies and specifically the Open Services for
Lifecycle Collaboration (OSLC) standard represent a promising integration platform for enabling
the capacity of tools for working together. OSLC is defined as ”an open community creating spec-
ifications for integrating tools” [21], offering the opportunity to use domains already created or
participate in the formulation of domain specifications for lifecycle interactions. Domains specifi-
cations formulated in OSLC will enhance the data exchange between lifecycle tools.

The aim of this thesis is to offer an OSLC-based infrastructure enabling the automatic gener-
ation of safety case fragments. More specifically, the purpose of this thesis is the identification,
representation, and shaping of resources needed to create a safety case. The focus is limited to a
tiny portion of the ISO 26262 left-hand side of the V-model: the software unit design specification.
For reaching the purpose of this thesis, the following questions will be addressed:

1. What are the ISO 26262 requirements for the selected tiny portion of the standard required
to be modeled as metadata elements?

2. How can an OSLC domain specification be reused or built to incorporate the metadata
elements defined?

3. How can OSLC resources be shaped, so the data provided to the metadata elements is also
correctly specified?

1.2 Context

This master thesis is carried out at Scania in Södertlje, Sweden. Scania [22] is an international
automotive industry manufacturer of commercial vehicles, specialized in heavy trucks and buses.
Scania, as a global company, has operations in Europe, Latin America, Asia, Africa and Australia,
and its sales and service organizations are present in more than 100 countries.

8

Mälardalen University Master Thesis

Solutions for documentation management are currently being investigated at Scania. Part
of these research initiatives are Gen&ReuseSafetyCases project [2] and the Vinnova ESPRESSO
project [1]. ESPRESSO’s aim is to contribute in converting Scania documentation into machine-
readable formats, so documentation management is more efficient and more aligned to ISO 26262,
while Gen&ReuseSafetyCases’ purpose is the creation of the safety case based upon model-based
safety certification ideas, in compliance with ISO 26262 [20]. This master thesis is conceived in
the context of these two interrelated projects and, also, has benefited from discussions held in the
context of the EU ECSEL AMASS (Architecture-driven, Multi-concern and Seamless Assurance
and Certification of Cyber-Physical Systems) project [23].

1.3 Contribution

The present master thesis will contribute to enabling the semi-automation of the creation of a safety
case, investigating how a portion of the safety lifecycle proposed by ISO 26262 can be semantically
interconnected adopting the OSLC standard. The main outcome of this thesis is a report that
includes:

1. An analysis of a portion of ISO 26262 safety lifecycle for defining the terms and relationships
required to build metadata elements.

2. The identification of an approach for building OSLC domains.

3. A comparative study targeting three existing RDF constraint languages for validating RDF
data.

4. A tiny but self-contained OSLC-domain targeting ISO 26262 part 6 and Scania needs, shaped
according to the findings stemming from 3.

As a result of early work of this thesis, a scientific article [17] was presented and accepted at the
workshop on Critical Automotive applications: Robustness & Safety (CARS 2016) in Gothenburg,
Sweden.

1.4 Document outline

Chapter 2 presents the background and related work where principles and terminologies related
to ISO 26262 and semantic web, among others, are explained in the level of detailed required for
the understanding of the rest of the thesis.

Chapter 3 presents the scientific research method in which this master thesis is based. The
methodology used is based on qualitative research approaches and the application of a case study.

Chapter 4 presents the problem formulation and analysis. In this chapter, the main problem is
described in detail and then divided into smaller subproblems, where each of them is covering a
certain aspect of the main problem.

Chapter 5 presents the methods used in this thesis to solve the problem. These methods are
related to the definition of OSLC domain specification development, and the identification of
constraint languages for shaping data

Chapter 6 presents the solution reached by addressing this thesis. This solution includes a
metamodel, which includes the elements and relationships found in the clause 8 of ISO 26262:6
and the Scania practices, an OSLC 26262-compliant specification, and a SHACL schema for shaping
the ISO 26262-compliant resources.

Chapter 7 presents the applicability of the solution, using the software unit safety case on Fuel
Level Estimation Algorithm.

Chapter 8 presents the conclusions reached by performing this master thesis and gives indications
of what future work can be done to improve the results.

9

Mälardalen University Master Thesis

2 Background and related work

This chapter introduces the background underpinning the current research, helping in the under-
standing of its content. The chapter is organized as follows: Section 2.1 presents an overview of the
concepts and terms related to system safety, Section 2.2 presents an overview of the fuel level esti-
mation system and the software unit fuel level estimation algorithm, Section 2.3 presents ISO 26262
related concepts, Section 2.4 presents documentation management, Section 2.5 presents traceability
and interoperability, Section 2.6 presents semantic knowledge representation, Section 2.7 presents
semantic web fundamentals, Section 2.8 presents RDF data shapes, Section 2.9 presents the main
characteristics of OSLC, and Section 2.10 presents the related work.

2.1 System safety

This section presents the concepts related to safety systems. It is structured in the following way:
Subsection 2.1.1 provides the basic terms required for the understanding of rest of the section,
Subsection 2.1.2 presents an overview of safety-critical systems, and Subsection 2.1.3 presents an
overview of functional safety.

2.1.1 Basic terms

This subsection recalls some terms required in the understanding of system safety. The terms are
organized alphabetically.

Correct service is delivered when the service implements the system function [24].

Failure or service failure, is a transition from correct service to incorrect service (not implemen-
tation of the system function) [24].

Function is what the system is intended to do and it is described in the functional specification
in terms of functionality and performance [24].

Hazard is an unsafe condition, which can cause harm [3].

Residual risk is the risk remaining after the deployment of safety measures [5].

Risk is the combination of the probability or occurrence of harm and the severity of that harm
[5].

Safety is the absence of catastrophic consequences on the user(s) and the environment [24].

Safety-related is any equipment (with or without software) whose failure contribute to a hazard
[25].

System is an entity that interact with other entities [24].

2.1.2 Safety critical systems

Safety and mission-critical systems, like those found in automotive, nuclear and chemical plants
or aerospace domains, are systems that in principle should never fail [26], since a failure might
result in the loss of human life, damage environment or property, or cause of severe injury [27].
In general, a system is safety-critical ”when we depend on it for our well-being” [28]. In practice,
hundred percentage of safety is an unreachable goal, so critical domains are subjected to meticulous
assurance process to guarantee that the system is safe enough in a determined context [29]. Safe
enough or acceptably safe is a condition that is reached when the residual risk is reduced to its
maximum and the risk is acceptable. So, when acceptably safe is claimed, the system can operate
safe in a specified environment [3].

Safety critical systems (and their specifications) are based on very complex software systems,
and the determination of possible causes or consequences of failures is extremely difficult [30], even

10

Mälardalen University Master Thesis

though there is a landscape of software failure cause models that can be applied [31]. Safety critical
systems carry out high-risk functions and for this, they normally need to be qualified, certified, and
follow rigorous development methodologies to assure their integrity. These methodologies, accord-
ing to [32], must ensure the understanding of the requirements, the precision of the specifications,
and the existence of adequate metrics to validate and verify their quality.

2.1.3 Functional Safety

Functional safety [33] is the part of the overall safety of a system, where the system functions
are addressed to ensure that they work correctly in response to their inputs. Functional safety
focuses on electronic systems, their related software, and their related hardware. The goal of the
functional safety is to minimize the risks associated to the system’s functionalities, reducing them
to a tolerable level and minimizing their negative impact [25]. A safety analysis, which includes a
comprehensive and systematic examination of the system [34], is carried out to identify risks. Once
the risks are identified, the functional safety process establishes a maximum tolerable frequency for
each failure mode. This rate leads to the generation of safety integrity levels that are assigned to
the safety-related items. Safety-related items must carried out corrective and/or preventive actions
[25].

The functional safety assurance is guided by the application of safety standards. Safety stan-
dards specify, in a precise way, the kind of activities that must be followed for guarantying an
acceptable level of safety. Safety critical automotive systems, which is the focus of this thesis,
count on activities defined by the standard ISO 26262, to reach functional safety [3]. Details of
ISO 26262 can be found in Section 2.3.2.

2.2 Fuel Level Display System (FLDS)

This section aims to provide information about the case study used in the context of this thesis,
Fuel Level Display System (FLDS), with the focus on the specific parts of the system that are
related to the thesis, the fuel level estimation algorithm. The information will be mainly taken
from [4] and technical product data reports from Scania. This section is structured in the fol-
lowing way: Subsection 2.2.1 presents the basic terms required for understanding the rest of the
section, Subsection 2.2.2 presents an overview of FLDS, and Subsection 2.2.3 presents the fuel level
estimation algorithm.

2.2.1 Basic terms

This subsection presents a lists of terms required for the understanding of the overall section. The
terms are organized alphabetically.

Kalman algorithm is a data fusion algorithm. Typical uses of the Kalman algorithm include
smoothing noisy data and providing estimates of parameters of interest [35].

Simulink is a block diagram environment for multidomain simulation and Model-Based Design.
It supports simulation, automatic code generation, and continuous test and verification of
embedded systems1.

2.2.2 FLDS overview

FLDS is one of the systems required for manufacturing the trucks and buses at Scania. The
system’s purpose is to distribute fuel level information so that the fuel level can be monitored [36].
Additionally, the system shows the fuel level to the driver and activates an alarm when the fuel
level is low so that the driver can plan the refueling on time. FLDS is used in both buses and trucks
functioning with liquid or gas fuel engine. There are four versions of the system (called variants)
configured according to the needs of different kind of vehicles. FLDS-variant one is composed by
four ECUs (See Figure 1).

1http://se.mathworks.com/products/simulink/

11

http://se.mathworks.com/products/simulink/

Mälardalen University Master Thesis

Figure 1: ECUs configuration for variant 1 ([3]).

COO, the ECU highlighted with a red-dotted line in Figure 1, is in charge of calculating the
fuel level estimation using a Kalman algorithm. Its design and implementation are carried out as
a model in Simulink. This model is considered ”as user defined blocks that store signals on both
input and output sides [4]. A representation of the COO model is depicted in Figure 2, where the
software unit fuel level estimation algorithm (the software unit that is the focus of this thesis) is
highlighted with a red-dotted line. The fuel level estimation algorithm is studied in subsection
2.2.3.

Figure 2: A representation of the COO system model (adapted from [4]).

2.2.3 Fuel level estimation algorithm

Fuel level estimation algorithm is a software unit in charge of the calculation of the fuel level. The
entire block is defined by input ports, output ports, unit functions, subfunctions, input arguments
and return values for the functions, configuration parameters, parameters values and constraints.
For respecting the Scania’s privacy policy, just the required elements to built a complete case
will be shown in this section. First, the software unit is fed by three input port signals, namely
fuel params InputBus str, fuel InputBus str and tank Capactity str. The unit produces as a result
three output signals fuel Volume str, fuel LevelTot str and reset str. Inside the software unit, five
software unit functions are present. One of the units is detailed, e.g., CalculatCurrentVolumeLevels.
The input and output ports mentioned are presented in figure 3, and the software unit function
considered is highlighted by a dotted-red line for being detailed later.

12

Mälardalen University Master Thesis

Figure 3: Details of the Software unit Fuel Level Estimation Algorithm.

The names of the variables finish in str. This is a conventional way used at Scania for defining
the data type of the variables. In this case, the ending str means that the datatype of the variables
is String. The software unit function selected for the modelling (and highlighted in Figure 3 with
a red-dotted line) is called CalculatCurrentVolumeLevels (see Figure 4)

Figure 4: Software unit Function CalculatCurrentVolumeLevels.

CalculatCurrentVolumeLevels is a software unit function in charge of mapping the fuel level
sensor depending on the tank variant, and defining the x0 state, which is the startup state of the
Kalman filter. The unit receives three input arguments, namely tankCapacity str, fuel inputBus str
and reset str. The first two input arguments are derived from the input ports of the software unit
that have the same names. The last one is calculated inside the unit by other software unit function.
The returned value of the function is called measuredLevels str. This return values corresponds to
the fuel current level calculated by the function. There are two subfunctions inside the function
CalculatCurrentVolumeLevels, namely Precalculations, which is in charge of doing some calcula-
tions required for finding the measured levels, and calculateX0 the subfunction in charge of the
startup state for the Kalman filter algorithm. The first subfunction receive two input arguments,
namely tank Capacity str and fuel inputBus str. The processing in the software unit subfunction
has a result the return value called levelInMainPartRawLitre Val F32 str. The second subfunction
has as input arguments tank Capacity str, fuel inputBus str, reset str and levelInMainPartRawL-
itre Val F32 str, and the return value is measuredLevel str.

Fuel Level estimation algorithm corresponds to the software unit that realizes the specifications
presented in the allocation element document called AE201 (an internal document at Scania). This
document has more detailed information about the software unit, for example, configuration pa-
rameters are defined and the signals (which in the document are called variables) are accompanied

13

Mälardalen University Master Thesis

with information like constraints. For this variant, the detailed information of the signals shown
in Figure 3 are the following:

• fuel params inputBus str: This variable is required to storage the fuel parameters values
retrieved from the Real-time Database.

• fuel inputBus str: Fuel values obtained from the fuel level sensors and stored in the Real-
time Database.

• tankCapacity str: Read the capacity of the fuel tank. Tank capacity has a required range
from 0 to 2500, and a required accuracy of 1 and unit L (liters).

• fuelVolume str: Estimated total fuel level converted to liters.

• fuelLevelTot str: Estimated total fuel level in the tank. The fuelLevelTot str has a required
range from 0 to 100, required accuracy of 0.4 and unit is %.

• reset str: It is a variable that provides information about the good status of the signals, so
loose connector do no affect the calculations of the algorithm.

Two Configuration Parameters are also present in the document. They are called fuelLevelSen-
sorParam and fuelLevelTotalParam. Both Configuration parameters have parameter values, but
it is only presented here the parameter values for fuelLevelTotalParam (see Table 1).

Table 1: Configuration Parameters for variant 1.

Name Description
Possible
values

Value descrip-
tion

fuelLevelTotalParam
Describes the source of the value, con-
trolling if the total fuel estimation is
done in CMS or received via CAN

10
Total fuel level
calculated by
COO

2.3 ISO 26262

This section aims to provide information about the ISO 26262:2011-compliant lifecycle, with the
focus on the parts of the standard that will be treated in this thesis. The information will mainly be
taken from the standard ISO 26262 [5]. This section is structured in the following way: Subsection
2.3.1 presents a list of essential terms required for the understanding of the ISO 26262, Subsection
2.3.2 presents an overview of ISO 26262:2011, and Subsection 2.3.3 presents the software unit
design and implementation, the part of the standard in which this thesis is interested.

2.3.1 Basic terms

This subsection recalls some terms required for the understanding of the standard ISO 26262
and the specific sections that are part of this thesis. The terms are provided by the standard
ISO 26262-1: Vocabulary [37], and they are organized alphabetically.

ASIL which means Automotive Safety Integrity Level, is one of four levels to specify the items or
elements necessary requirements of ISO 26262 and Safety measures to apply for avoiding an
unreasonable residual risk, with D representing the most stringent and A the least stringent
level.

ASIL decomposition is the apportioning of safety requirements redundantly to sufficiently in-
dependent elements, with the objective of reducing the ASIL of the redundant safety require-
ments that are allocated to the corresponding elements.

Item is a system or array of systems to implement a function at the vehicle level, to which
ISO 26262 is applied.

14

Mälardalen University Master Thesis

Lifecycle is the entirety of phases from concept through decommissioning of an item.

Safety goal is the top-level safety requirement as a result of the hazard analysis and risk assess-
ment.

Safety measure is an activity or technical solution to avoid or control systematic failures and
to detect random hardware failures or control random hardware failures, or mitigate their
harmful effects.

Software unit is the atomic level software component of the software architecture that can be
subjected to stand-alone testing.

Unreasonable risk is the risk judged to be unacceptable in a certain context according to valid
societal moral concepts.

Work product is the result of one or more associated requirements of ISO 26262.

2.3.2 ISO 26262:2011 overview

ISO 26262 [5] is a standard that addresses the functional safety of the electrical and/or electronic
systems (E/E systems) included in road vehicles with a maximum gross mass up to 3500 kg. Addi-
tionally, ISO 26262 ensures the safety of safety-related elements based on other technologies e.g. the
vehicle’s software systems. ISO 26262 is an adaptation of the standard IEC 61508 (IEC stands for
International Electrotechnical Commission) and provides a framework where an automotive safety
lifecycle is defined. ISO 26262 safety lifecycle pays special attention to the automotive-specific
risks and formulates precise procedures to avoid unreasonable risk. Procedures are applicable re-
quirements of ISO 26262 defined according to the ASIL. ASIL values are determined during the
hazard analysis (”a process of recognizing hazards that may arise from a system or its environment,
documenting their unwanted consequences and analyzing their potential causes” 2) and assigned to
the safety goals of an item under development. If no ASIL decomposition is performed, ASIL
values are propagated throughout the items lifecycle so, subsequent safety requirements, architec-
tural elements, hardware and software inherit the ASIL. For claiming compliance with ISO 26262
each requirement provided by the standard shall be complied with unless tailoring (omitted or
performed in a different manner) of the safety activities in accordance with ISO 26262 has been
planned, or a rationale where an explanation of non-compliance is available. The rationale, if ex-
ists, has to be assessed in accordance with ISO 26262. ASIL values can change if ASIL tailoring is
applied during the lifecycle. ASIL tailoring is called ASIL decomposition, and it is allowed under
certain conditions. Recalling from the standard:

”If ASIL decomposition is applied at the software level, sufficient independence between the elements
implementing the decomposed requirements shall be checked at the system level and appropriate
measures shall be taken at the software level, or hardware level, or system level to achieve sufficient
independence.”

ISO 26262 comprises ten parts that provide an automotive safety assurance and supporting activ-
ities. The parts, shown in Figure 5, are the following: the vocabulary, part 1; the management
of functional safety, part 2; the concept phase, part 3; the product development at the system
level, part 4; the product development at the hardware level, part 5; the product development at
the software level, part 6; the production and operation, part 7; the supporting activities, part 8,
ASIL-oriented and safety-oriented analysis, part 9; and the guidelines on ISO 26262, part 10. The
results of safety activities are known as work products. The work products that are required at
the beginning of every stage of the lifecycle are known as prerequisites. The lifecycle is defined
in ISO 26262 from the part 3 to the part 7 and the activities are distributed in a V-shape model,
which is followed from the left side of the V to the right.

2http://www.chambers.com.au/glossary/hazard_analysis.php

15

http://www.chambers.com.au/glossary/hazard_analysis.php

Mälardalen University Master Thesis

The main portion of the standard ISO 26262 that will be studied in this thesis (further expla-
nation in section 2.3.3) is highlighted with a red-dotted line in Figure 5. Other portions of the
standard ISO 26262 that are considered in this thesis are part 2 and part 8 (See Section [?]). The
remaining parts of the safety automotive lifecycle are out of the scope of this master thesis.

Figure 5: Overall structure of ISO 26262 [5].

2.3.3 Software unit design and implementation

Part 6 of ISO 26262 is entirely devoted to the specification of requirements for product development
at the software level for automotive applications. The product development at the software level
follows a process that recalls the V-model for software development (see Figure 6), where the
activities on the left-hand side of the V-model pertain to the design phases and activities in the
right-hand side of the V-model define the test phases of the software development. The software
unit design and implementation is the bottom phase defined in the left-hand side of the V-model
and is the object of the study of this present thesis. This phase is highlighted with a red-dotted
line in Figure 6.

Figure 6: V-model for product development at the software level (adapted form [5]).

The software unit design and implementation phase aims at specifying the software units in

16

Mälardalen University Master Thesis

accordance with the architectural design (which is the resulting work product of the software archi-
tectural design phase) and the associated software safety requirements (work product defined in the
specification of software safety requirements phase). This phase also addresses the implementation
of the software units as specified. There are two work products resulting from this phase, namely
software unit design specification and software unit implementation. These two work products are
closely related, since for implementing a software unit, its design must be available. Additionally,
these two work products are prerequisites of the software unit testing phase and subsequent phases
of the ISO 26262 safety lifecycle.

ISO 26262-6 is very specific when describes the applicable requirements. The definition of
the two work products of this phase is the result of the requirements specified in numerals 8.4.2
to 8.4.4 for the software unit design specification, and requirement 8.4.4 for the software unit
implementation. These requirements can be summarized as follows: the internal design of software
units in the software unit design specification has to be described to the level of detail required for
its implementation. The specification of the software units shall describe the functional behavior
as well. The software units can be implemented as a model or directly as source code, where
prescribed modeling or coding guidelines are used. When implementing a software unit, both
software safety requirements and non-safety-related requirements has to be included, so all the
requirements are handled within one development process. Safety-related software units shall be
complied with the software safety requirements. Besides, the software unit shall be described using
the notations listed in Table 2.

Table 2: Notations for software unit design (adapted form [5]).

Notation A B C D

Natural language ++ ++ ++ ++

Informal notations ++ ++ + +

Semi-formal notations + ++ ++ ++

Formal notations + + + +

The notations listed in Table 2 are alternative notations, which means that an appropriate
combination of these notations, in accordance with the ASIL indicated, can be applied. The
notations in the table are also listed with different degrees of recommendation according to the
ASIL. The levels of recommendation are marked as ”++” and ”+” in the table. There is a third
recommendation level marked as ”o”, that is not presented in this table, but that is used in
other requirements. So, the three recommendation levels are explained, according to the standard
ISO 26262 [5], in the following way:

• ”++” indicates that the method is highly recommended for the identified ASIL;

• ”+” indicates that the method is recommended for the identified ASIL;

• ”o” indicates that the method has no recommendation for or against its usage for the identified
ASIL.

In Table 2 the column Notation is what in the standard is called method. Notations with
higher recommendation e.g. ”++”, must be preferred during the description of the software units.
If notations with lower recommendation are selected, e.g. those marked with ”+”, a rationale shall
be given for explaining the decisions behind the selected combinations of notations. This rationale
should demonstrate that the decisions comply with the corresponding requirement.

Source and object code are part of the implementation of the software units. Design and
implementation related properties are achievable at the source code level, but if model-based
development with automatic code generation is used, these properties apply to the model and are
not necessary to be demonstrated at the source code level. The properties that shall be reached
by the design and implementation of the software units are the following [5]:

1. correct order of execution of subprograms and functions within the software units, based on
the software architectural design;

17

Mälardalen University Master Thesis

2. consistency of the interfaces between the software units;

3. correctness of data flow and control flow between and within the software units;

4. simplicity;

5. readability and comprehensibility;

6. robustness;

7. suitability for software modification; and

8. testability.

To achieve the properties previously listed, design principles for software unit design and im-
plementation should be applied. The design principles are given in Table 3.

Table 3: Design principles for software unit design and implementation (adapted form [5]).

Principle A B C D

One entry and one exit point in subprograms and functions ++ ++ ++ ++

No dynamic objects or variables, or else online test during their cre-
ation

+ ++ ++ ++

Initialization of variables ++ ++ ++ ++

No multiple use of variable names + ++ ++ ++

Avoid global variables or else justify their usage + + ++ ++

Limited use of pointers o + + ++

No implicit type conversions + ++ ++ ++

No hidden data flow or control flow + ++ ++ ++

No unconditional jumps ++ ++ ++ ++

No recursions + + ++ ++

The design principles listed in Table 3 have to be taken into consideration in the design of a
software unit, and a correct combination of them must be selected. Additionally, they have to
be selected according to the highest level of recommendation for the ASIL stated, or otherwise, a
rationale should be provided.

2.4 Documentation management

Documents are considered some of the major milestones in a project, because they drive the
project, organize it, standardize it, and provide communication means between those implied in
the project [38]. Documentation in software engineering captures in-depth knowledge about the
software project and plays an important role in knowledge transition [39]. Therefore, documenta-
tion management is a critical activity in the realization of any project. When adopting ISO 26262,
documentation management is very crucial, since one of the requirements is the creation of a safety
case. This section presents information related to the documentation process when ISO 26262 is
applied. The section is structured in the following way: Subsection 2.4.1 presents a safety case in
the context of ISO 26262, and Subsection 2.4.2 presents the documentation management in the
context of ISO 26262.

2.4.1 A safety case in the context of ISO 26262

In the context of ISO 26262, a safety case represents a significant work product. This work product
is essential as it ”should progressively compile the work products that are generated during the safety
lifecycle” [5]. A safety case is composed of three main elements: requirements, which describe
the objectives to obtain; arguments, that can be used to show the relation between different
requirements; and evidence, which is used to support the requirements [3]. In a safety case,
it is possible to find process-based or/and product-based arguments. When the argumentation
relies on the development techniques, it is considered a process-based argumentation, and when

18

Mälardalen University Master Thesis

the arguments are prescribed by the generation and assurance of product-specific evidence that
meets the safety requirements, it is seen as product-based argumentation [40]. Safety evidence,
according to [41], can also take tree forms: immediate evidence, evidence which is itself evaluated
like source code, direct evidence, which presents properties of the candidate, like test results, and
indirect evidence, which describes the circumstances relevant to the creation of the candidate, like
development process. The immediate evidence in ISO 26262 is provided by the left-hand side work
products of the V-model (See Figure 6), direct safety evidence is provided by the right-hand side
work products of the V-model [20], and indirect evidence is provided by the information compiled
of the general process. The aim of this thesis is to make the foundations for a product-based safety
argumentation with the compilation of immediate safety evidence for the development of software
units.

2.4.2 Documentation management in the context of ISO 26262

When adopting ISO 26262, work products are generated during the lifecycle. Organizing work
products require a careful documentation management for avoiding inconsistencies between them,
or nonconformity with the standard requirements. Likewise, a strict documentation process helps
in the construction of a flawless safety case. So, the documentation process is an important part for
showing compliance, and it is closely related to the safety lifecycle [20]. Each stage of the lifecycle
generates work products that are linked to work products created in previous stages. The work
products are also prerequisites for later activities. In conclusion, many work products are resulting
from the activities of the lifecycle, and all of them are connected in some way. Changes in one work
product may affect others. For example, the generation of work products may create the need to go
back in the process for updating work products created in previous stages. It is difficult to analyze
work products state individually at any given time, especially when decomposition hierarchy of
the overall product, the different phases of the development, or organizational responsibilities
are implied [42]. This feature makes the documentation process an arduous and complicated
activity [20]. Additionally, the documentation process is prescribed in the standard, which means
that special requirements must be considered when documentation is presented for assessment
purposes. For example the purpose of the documentation process, according to ISO 26262 is to
make documentation available:

• during each phase of the entire lifecycle for the effective completion of the phases and verifi-
cation activities

• for the management of functional safety, and

• as an input to the functional safety assessment.

The standard presents requirements, but ”flexibility is allowed if properly introduced” [20].
Regarding documentation management, organizations can decide how this documentation man-
agement should be carried out, since the standard does not prescribe the methods or tools that
should be used.

2.5 Traceability and interoperability

Traceability [19] is defined, in the context of system and software engineering, as ”the degree to
which a relationship can be established between two or more products of the development process”.
The relationship between the work products in the safety lifecycle proposed by ISO 26262 is
evident, since work products are prescribed as prerequisites of other work products. Additionally,
the completion and maturity of the work products, as well as their quality is monitored through
tracking process [42]. The need to establish traces between the work products provided during the
stages of the safety lifecycle plays an important role in gaining confidence in the safe operation
of the system under development. Moreover, the lack of understanding of the safety evidence
traceability can result in improper evidence management and therefore certification risks [29], or
negative safety assessment results.

19

Mälardalen University Master Thesis

A recent study made in [39] demonstrates that some of the documentation issues that are
persistent through the software lifecycle are related to traceability problems, e.g. documents are
not traceable to the changes made in code, or documents are out of date. The study also found
that the significance of software documentation is determined by, among others, tools that enhance
navigation, searching, and traceability of documents. The inclusion of software tools generates a
new challenge: the interoperability between the tools (”the ability of a system or a product to
work with other systems” [43]). Interoperability can be reached using semantic web techniques
(more explanation in Section 2.7), the so-called semantic interoperability. Beyond the ability of
two or more computer systems to exchange information, semantic interoperability is ”the ability
to automatically interpret the information exchanged meaningfully and accurately to produce useful
results as defined by the end users of both systems” [44].

2.6 Semantic knowledge representation

Semantic knowledge representation [45] corresponds to the assumption that knowledge represen-
tation systems use semantic techniques to represent information in a machine-readable form. Se-
mantic knowledge representation is used for computer systems to solve complex tasks. This section
aims to give an overview of the aspects related to semantic knowledge representation, so the reader
is familiar with this techniques. This section is structured in the following way: Subsection 2.6.1
presents essential terms required in the understanding of this section, Subsection 2.6.2 presents a
basic approach to knowledge representation, Subsection 2.6.3 presents an overview of knowledge
domain, and Subsection 2.6.4 presents the generalities of UML profile.

2.6.1 Basic terms

This subsection recalls some terms required for the understanding of the topic treated in this
section. The terms are organized alphabetically.

Aboutness is the information of what something is about [45].

Bridge is a layering dependency between two domains, where one domain makes assumptions and
other domains take those assumptions as requirements [46].

Concept is a representation of abstract, real-life or fictive things, or aspect of things [45].

Domain is an autonomous, real, hypothetical, or abstract world inhabited by a set of conceptual
entities that behave according to characteristic rules and policies [47].

Metadata is data about data. Metadata can be also defined as structured data about an object
that supports functions associated with the designated object [46].

Term linguistic representation of concepts, strings respectively [45].

2.6.2 Knowledge representation

There is not an agreement about the definition of knowledge representation [48]. However, one
assumption of what knowledge representation is taken from [45], where it is defined as ”the sub-
sumption of methods and techniques to represent the aboutness of information resources”. The
concept is better understood if the term information space is recalled. Information space is a
collection of information resources that can take two forms: first, when information is homoge-
neous (in form and content) and stored in a centralized way (for example, library resources), and
second, when information is heterogeneous and distributed over several repositories (the Internet
is one example). When carrying out searches, an information space must provide the aboutness
of a resource. Normally, the aboutness of an information resources is represented by one or more
subject headings (also called descriptors). These descriptors are linked to the information about
the resource, which is called entities of knowledge representation. In Figure 7 the descriptors are

20

Mälardalen University Master Thesis

the round circles that have names like resource type, name or document related and the entities of
knowledge representation are the gray circles, namely Software unit, Fuel Level Estimation Algo-
rithm or AE201. An information space that has a network-like structure (like in Figure 7) is called
knowledge structure since the concepts are somehow related. Different knowledge structures can
have different representations, making them heterogeneous. The heterogeneity can be addressed,
creating intersystem relations. Intersystem relations are established when two or more structures
can talk using the same vocabulary. These vocabularies are commonly known as metadata. With
metadata defined to control de information, the knowledge structures have now a knowledge rep-
resentation.

Figure 7: Example of an information space.

For exemplification purposes, a semantic information space is presented in Figure 7. Data used
in this example is taken from Section 2.2.3, where it is stated that a software unit function, in the
context of Scania, is called Fuel Level Estimation Algorithm and that a document related is called
AE201.

2.6.3 Knowledge domain

To structure an information space, metadata can be used. This structure entails that information
is organized systematically [46] and it is used to describe a property or a set of useful properties
of an information resource [46]. To create a metadata structure, it is necessary to built restricted
knowledge domains. A domain [47] is a semantically autonomous unit, i.e. they do not need the
presence of other domains to be able to exist and to have meaning. However a domain is something
that is part of a whole system. The main characteristics of a domains are [46]:

• Domain mission: every domain has to have defined a purpose for existing. To be able to
support this purpose (or mission) a set of related conceptual entities have to coexist.

• Domain autonomy: Each domain is autonomous. A conceptual item is defined once in each
domain and relate to other conceptual items in the same domain. However, a conceptual item
in one domain do not require the existence of other conceptual entities in other domains.

• Domain replacement: Being autonomous gives the opportunity to be replaceable.

Domains are interconnected via bridges. The graphical representation of a domain and its
bridges is called domain chart. In Figure 8 is depicted and example of a domain chart, where three
domains called Architecture, Requirements and Test are related to their corresponding bridges.

In a domain chart, the domains are represented using the UML package and the bridges are
dotted dependencies. Domain charts can be more formally represented by using UML Profile
(explained in section 2.6.4). A domain chart only provides a name for each domain. For this, it

21

Mälardalen University Master Thesis

Figure 8: Simple representation of a domain chart.

is necessary to build a mission statement for each domain. Domain missions are very short, and
their objective is to communicate the most relevant information. Assumptions to the appropriate
bridge can also be defined. Every knowledge domain is composed of entities and terms, which are
elements that come from the concepts we created about the ”things of the world”. The elements
of a knowledge domain are part of a metadata model. When the metadata models are encoded
in a standardized machine-readable markup language, like RDF (explained in Section 2.7.3), they
are considered metadata schemas.

2.6.4 UML Profile

A UML profile [49] is a set of elements that collectively specialise and tailor the UML meta-
model for a specific domain or process. A UML profile is a set of extension mechanisms grouped
in a UML package, stereotyped as <<profile>>. The UML metamodel defines classes as meta-
classes. A stereotype is a special metaclass, stereotyped <<stereotype>>, that allows the ex-
tension of any metaclass with any meta-attributes, and make it more accurate using additional
constraints. The constraints can be specified in two ways: after the meta-attributes or as a note.
In Figure 9, there is a portion of a domain defined in a UML package called SoftwareUnitRelat-
edConcepts and stereotyped <<profile>>. One stereotype was defined and called SoftwareUnit.
This stereotype has three meta-attributes: resourceType, name and documentRelated. There are
four constraints defined, three of them are defined after the meta-attributes, and one is defined
in a note. One constraint, for example, states that there is just one possible value for the of
the meta-attribute resourceType, this value has to be a string, and it has to be SoftwareUnit
(resourceType: String[1] = SoftwareUnit).

Figure 9: Simple representation of a UML profile.

22

Mälardalen University Master Thesis

2.7 Semantic Web fundamentals

This section aims to introduce basic information about Semantic Web and the languages associated.
The languages are not recalled exhaustively, but simple examples concerning the purpose of the
languages are provided and explained. The section is structured in the following way: Subsection
2.7.1 present the basic terms required for the comprehension of the overall Section, Subsection 2.7.2
presents the Semantic Web concept, subsection 2.7.3 presents the Resource Description Framework
(RDF), Subsection 2.7.4 presents the RDF Schema, and Subsection 2.7.5 presents SPARQL.

2.7.1 Basic terms

Some terms that are important for the understanding of the overall semantic web concepts are
recalled in this section. The terms are organized alphabetically.

IRI is a new protocol element, a complement to URIs. An IRI is a sequence of characters from
the Universal Character Set (Unicode/ISO10646). There is a mapping from IRIs to URIs,
which means that IRIs can be used instead of URIs where appropriate to identify resources
[50].

Resource is anything that can have a URI [51].

Semantic reasoners are tools that can perform reasoning tasks, typically based on RDFS, OWL,
or some rule engine. It is a subcategory of ”Tool” [52].

Semantics represents, in the context of semantic web, the meaning of the web resources[53].

Serialization is the process of converting an object into a stream of bytes in order to store the
object or transmit it to memory, a database, or a file. Its main purpose is to save the state
of an object in order to be able to recreate it when needed [54].

Syntax represents, in the context of semantic web, the structure of the web resources, in other
words, the data model [7].

TURTLE syntax means Terse RDF Triple Language and it is a format for expressing data in
the Resource Description Framework (RDF) data model with a syntax that follows a triple
patterns structure [55].

URI is a compact sequence of characters that identifies an abstract or physical resource [56].
URIs are used to access a specific object given a unique name or identifier. They provide a
common syntax for naming a resource regardless of the protocol used to access the resource.
URIs can include either a complete or a partial location. It can optionally include a fragment
identifier separated from the URI by a pound sign (#).

Web browser is a software program that permits one to access the internet via web addresses.

Well-formed XML is an XML document with correct syntax. There are five syntax rules for
a well-formed XML document: first, an XML document must have a root element; second,
XML elements must have a closing tag; third, XML tags are case sensitive; fourth, XML
elements must be properly nested; and fifth, XML attribute values must be quoted [57].

XML is a language designed to stored and transport data. Data defined in XML is both human-
and machine-readable [57] and its structure is based on tags (definitions embraced in <>).

XML namespace is a collection of names, identified by a URI reference, which are used in
XML documents as element types and attribute names [58]. A eXtensible Markup Language
(XML) namespace is declared using the reserve XML attribute xmlns. A namespace has two
attributes, the name and prefix. The namespace name is a URI reference which should be
unique and persistent. The namespace prefix is used to associate elements and attributes
names with the namespace name.

XML/RDF is a serialization type where XML language is used encode RDF information [59].

23

Mälardalen University Master Thesis

2.7.2 The Semantic Web

The Semantic Web [60], a Web mainly designed for automatic processing, is an extension of the
conventional World Wide Web (WWW) (called simply Web) techniques, where machine-readable
capabilities are designed and exploited. It is built using the principles and technologies of the Web,
but enriched with the syntax provided by XML, and the semantics provided by RDF and RDF
related languages [61]. The Semantic Web provides an environment where applications can, among
other things, query data and draw inferences using vocabularies [62]. Semantic web reuses Web’s
global indexing to search and localize data, as well as naming scheme to represent every semantics
concept (or resource). So, standard Web browser, as well as semantically aware applications (called
semantic reasoners) can access the information provided by the semantic documents following
their unique identifier (URI) [63]. The Semantic Web provides a common framework, where a
collection of technologies and standards allows data to be shared and reused. Figure 10 shows
the Semantic Web stack depicted during 2015, where a new layer called RDF Data Shapes is
presented (highlighted in the figure with a red-dotted line). This layer will be explained in section
2.8. Following, RDF Model & Syntax, a layer where RDF language is located, RDF schema and
SPARQL are briefly explained. The mentioned four layers are the main the focus of this thesis.

Figure 10: Semantic Web Stack (2015) [6].

2.7.3 Resource Description Framework (RDF)

RDF [7] is a framework for expressing information about resources on the Web. RDF provides
”means of recording data in a machine-understandable format, allowing for more efficient and so-
phisticated data interchange, searching, cataloging, navigation, classification and so on” [64]. RDF
resources are identified using web identifiers (URIs) and described in terms of simple properties
and values [65]. The first recommended RDF specification was released in 1999 and a candidate
recommendation for RDFS specification, which provides a data modeling vocabulary for RDF data
[66], appeared in 2000. The RDF model is composed of two fundamental data structures [7]:

• RDF graph: also called RDF triple. It is the minimum structure used to express descriptions
of resources. It documents three pieces of information in a consistent manner, allowing both
human and machine consumption of the same data. Figure 11 shows an RDF directed graph,
a method used to describe RDF data models.

• RDF dataset: represents multiple RDF graphs. They allow working with multiple RDF graphs
while keeping their content separate.

24

Mälardalen University Master Thesis

Figure 11: RDF graphs representation [7].

In RDF terms [7], the subject is the thing being described (a resource identified by a URI), the
predicate is a property type of the resource, and the object is equivalent to the value of the resource
property type for the specific subject. The core RDF vocabulary is defined in an XML namespace,
commonly called rdf, where the URI is http://www.w3.org/1999/02/22-rdf-syntax-ns#.

The following commented XML/RDF-based fragment shows an example of an RDF resource,
where a software unit resource is described.

<?xml v e r s i o n=” 1 .0 ”?>
< !−−rd f document that used the p r e f i x rd f and ex (namespace s e l e c t e d f o r the

example)−−>
<rdf:RDF

xmlns : rd f=” h t t p : //www. w3 . org /1999/02/22− rdf−syntax−ns#”
xmlns:ex=” ht t p : // example . com/ elements /1 .0/ ”>

< !−−D e f i n i t i o n o f the r e sou r c e so f tware un i t−−>
<ex :So f twareUni t>

< !−−property i d e n t i f i e r−−>
<ex:documentRelated>AE201</ ex:documentRelated>
< !−−property name−−>
<ex:name>Fuel Leve l Est imation Algorithm </ex:name>

</ ex :So f twareUni t>

</rdf:RDF>

Listing 1: software unit resource described in XML/RDF serialization.

There are RDF validation services (or tools), like the validator provided by W3C 3. These kind
of tools check that the XML/RDF documents have well-formed XML structure, and in some cases,
provide the graphical structure of the RDF graphs. Figure 12 shows the graph of the piece of
XML/RDF code presented in Listing 1. The graph is provided by the W3C validator.

Figure 12: RDF graph of the XML/RDF example described in Listing 1.

The RDF dataset of the example is composed by four nodes. RDF nodes can have the following
types [7]:

• IRI: provides a specific identifier unique to the node and it is drawn in the graph with
a ellipse around the identifier. In the example, the IRI is http://http://example.com/

elements/1.0/SoftwareUnit.

3https://www.w3.org/RDF/Validator/

25

http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://http://example.com/elements/1.0/SoftwareUnit
http://http://example.com/elements/1.0/SoftwareUnit

Mälardalen University Master Thesis

• Blank nodes: are nodes that do not have any web identifier. In the graphs, they are shown
as empty circles, but most RDF parsers and building tools generate a unique identifier for
each blank node with the form genid(unique identifier). In Figure 12, the blank node is
generated by the RDF parser (a software application that can process RDF information) and
labeled genid:A510188

• Literals: consist of three parts: a character string, and an optional language tag and data
type. They represent RDF objects only, never subjects nor predicates. RDF literals are
drawn with rectangles around them. In Figure 12, there are two literals: ”AE201” and ”Fuel
Level Estimation Algorithm”.

The arcs in the RDF graphs represents the predicates. Predicates connect information, so
they also have the form of an IRI. In Figure 12, the predicates are http://www.w3.org/1999/02/

22-rdf-syntax-ns#type, http://example.com/elements/1.0/identifier and http://example.

com/elements/1.0/name

2.7.4 Resource Description Language Schema (RDFS)

RDF Schema [66], also called RDFS, is a semantic extension of RDF that ”provides a data-modeling
vocabulary for RDF data” [67]. RDFS is not required for an RDF document, but the schema
approach ”guarantees that a particular RDF document is semantically and syntactically consistent
across implementations”[64]. RDFS defines which vocabulary elements are classes and which are
properties. RDFS matches a property with a specific element as well as defines the range for each
property. The type of literal that each property refers (string, number, and so on) can also be
documented with RDFS. The RDFS class and property system are similar to those used in the
Object Oriented Paradigm. The core vocabulary ”is defined in a namespace” [66], commonly called
rdfs, where the Uniform Resource Identifier (URI) is http://www.w3.org/2000/01/rdf-schema#.

Listing 2 shows a commented XML/RDF fragment with the RDFS vocabulary definition that
appropriately matches the XML/RDF serialization shown in Listing 1.

<?xml v e r s i o n=” 1 .0 ”?>
< !−−rd f document that used the p r e f i x rdf , r d f s and ex (namespace s e l e c t e d

f o r the example)−−>
<rdf:RDF

xmlns : rd f=” h t t p : //www. w3 . org /1999/02/22− rdf−syntax−ns#”
xmlns : rd f s=” h t t p : //www. w3 . org /2000/01/ rdf−schema#”
xmlns:ex=” ht t p : // example . com/ elements /1 .0/ ”>

< !−−Vocabulary d e f i n i t i o n : r e s ou r c e so f tware un i t−−>
<r d f s : C l a s s rd f : abou t=” h t t p : // example . com/ elements /1 .0/ SoftwareUnit ”>

<rd f s : subC la s sO f r d f : r e s o u r c e=” h t tp : //www. w3 . org /2000/01/ rdf−schema#
Resource ”/>

</ r d f s : C l a s s>

< !−−Vocabulary d e f i n i t i o n : property documentRelated−−>
<rd f :P rope r ty rd f : abou t=” h t t p : // example . com/ elements /1 .0/ documentRelated”>

<rd f s : subC la s sO f r d f : r e s o u r c e=” h t tp : // example . com/ elements /1 .0/
SoftwareUnit ”/>

</ rd f :P rope r ty>

< !−−Vocabulary d e f i n i t i o n : property name−−>
<rd f :P rope r ty rd f : abou t=” h t t p : // example . com/ elements /1 .0/name”>

<rd f s : subC la s sO f r d f : r e s o u r c e=” h t tp : // example . com/ elements /1 .0/
SoftwareUnit ”/>

</ rd f :P rope r ty>

</rdf:RDF>

Listing 2: RDFS model in standard XML/RDF notation.

26

http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://example.com/elements/1.0/identifier
http://example.com/elements/1.0/name
http://example.com/elements/1.0/name
http://www.w3.org/2000/01/rdf-schema#

Mälardalen University Master Thesis

2.7.5 SPARQL

SPARQL [68] is a query language used to define queries on RDF data. The name is ”a recursive
acronym for SPARQL protocol and RDF query language, which is described by a set of specifications
from the W3C” [69]. To extract data using SPARQL queries, conditions that reach the required
information need to be defined. These conditions follow a triple pattern, which is similar to
TURTLE syntax. Additionally, variables (defined using the symbol ?) are used in the queries to
make them more flexible.

In Listing 3, an example of an SPARQL query is presented. This query is applied to the RDF
information presented in Listing 1 and it aims to extract the name of the resource that has iden-
tifier AE201. The query gives as a result Fuel Level Estimation, which is the correct name stored
in the software unit identified as AE201. The variables defined in this example are ?SoftwareUnit
and ?name.

#D e f i n i t i o n o f the RDF data source
@pref ix ex : <h t t p : // example . com/ elements /1 .0/> .

#D e f i n i t i o n o f the in fo rmat ion r equ i r ed
SELECT ?name

#Def in t i on o f the cond i t i on
WHERE {

? SoftwareUnit a ex :So f twareUni t .
? SoftwareUnit ex:documentRelated ”AE201” .
? SoftwareUnit ex:name ?name .

}

Listing 3: RDF model in standard XML notation.

2.8 RDF data shapes

This section presents the information related to the RDF data shapes layer presented in figure 10.
It is structured in the following way: Subsection 2.8.1 presents the basic terms required for the
understanding of this section, Subsection 2.8.2 presents an overview of the RDF data shapes layer,
Subsection 2.8.3 presents Resource Shape (ReSh), Subsection 2.8.4 presents Shape Expressions
(ShEx), and subsection 2.8.5 presents Shapes Constraint Language (SHACL).

2.8.1 Basic terms

Constraint is a rule, expressed as a calculation in terms of other classes, attributes, and associ-
ations, that restricts the values of the attributes and/or associations in a model [47].

Constraint language is a declarative language for describing and applying constraints in data
models [9].

RDF property is a relation between subject resources and object resources [7].

SHEXc is a serialization structured as a triple, similar to RelaxNG4, and schema language for
XML [70].

2.8.2 RDF data shapes layer overview

The RDF Data Shapes layer (see Figure 10) constitutes an effort of the W3C RDF Data Shapes
Working Group5 to produce a W3C recommendation ”for describing structural constraints and
validate RDF instance data against those” [71]. The W3C RDF Data Shapes Working Group,

4http://relaxng.org/
5https://www.w3.org/2014/data-shapes/charter

27

Mälardalen University Master Thesis

a group that was created after the RDF Validation Workshop6 organized by W3C in 2013, aims
at finding a proper way for validating RDF data according to specified patterns. These patterns
correspond to the requirements and uses cases collected in a purposely created database of RDF
validation requirements7. There are already several constraint languages that can be used for
validating RDF data. However, semantic web projects still lack common tools and methodologies
to describe and validate data [72]. Therefore, there is not a favorite constraint language that can be
used for this purpose. In the following sections the constraint languages ReSh, ShEx and SHACL,
are studied. These languages have been developed to describe rules that apply to RDF models.
One reason for using those languages in the context of this thesis is that they have been covered
by the W3C umbrella in one or other way. Additionally, these languages are popular among data
practitioners, so reliable sources of documentation exist.

2.8.3 Resource Shape (ReSh)

Resource Shape (ReSh) [8] is an RDF representation of a resource that describes and constraints
the RDF representation of other resources. ReSh uses the terms defined by the OSLC vocabulary
(OSLC is explained in section 2.9), as well as RDF vocabulary terms. Resource shapes, according to
[73], ”provide a way for servers to programmatically communicate with clients the types of resources
they handle and to validate the content they receive from clients”. A resource shape describes the
RDF resource with the set of RDF properties that are expected or required. A RDF property is
represented as a triple, ”whose subject is the resource, the predicate is the property and the object
is the value” [74]. The value of a property may be constrained to take one of a group of allowed
values. When the value is another resource, this resource may be provided with another resource
shape. Figure 13 presents the main concepts and relations related to ReSh [8]. The two boxes on
the left (and colored in blue) represent external resource types that use shapes. The three boxes
that are more to the right (and colored in pink) are the specification of the resource shape.

Figure 13: Diagram of main concepts and relations in ReSh [8].

An example of a resource shape is present Listing 4. The example shows the resource shape
representation of the resource described in Listing 1, with one property: identifier. The property
name can be defined in a similar way. The resource Shape uses OSLC definitions are further ex-
plained in section 2.9.

<?xml v e r s i o n=” 1 .0 ”?>
< !−−rd f document that used the p r e f i x rdf , dcterms (namespace f o r Dublin

Core vocabulary) and o s l c (namespace de f ined f o r OSLC core)−−>
<rdf:RDF

xmlns : rd f=” h t t p : //www. w3 . org /1999/02/22− rdf−syntax−ns#”
xmlns:dcterms=” h t t p : // pur l . org /dc/ terms /”

6https://www.w3.org/2012/12/rdf-val/
7http://lelystad.informatik.uni-mannheim.de/rdf-validation/

28

Mälardalen University Master Thesis

xmln s : o s l c=” h t t p : //open−s e r v i c e s . net /ns/ core#”>

< !−−Resource Shape f o r Software Unit−−>
<os l c :ResourceShape

rd f : about=” h t t p : // example . com/ prov ide r / shapes / SoftwareUnitShape ”>
< !−−Name o f the r e sou r c e shape c reated−−>
<d c t e r m s : t i t l e>Software Unit Shape</ d c t e r m s : t i t l e>
< !−−D e f i n i t i o n o f the r e sou r c e that i s be ing de s c r ibed−−>
<o s l c : d e s c r i b e s r d f : r e s o u r c e=” h t t p : //open−s e r v i c e s . net /ns/example#

SoftwareUnit ”/>

< !−−D e f i n i t i o n o f the property i d e n t i f i e r−−>
<o s l c : p r o p e r t y>

<o s l c : P r o p e r t y>
< !−−Name o f the property−−>
<os lc :name>documentRelated</ os lc :name>
< !−−Card ina l i t y o f the property−−>
<o s l c : o c c u r s r d f : r e s o u r c e=” ht t p : //open−s e r v i c e s . net /ns/ core#Exactly

−one”/>
< !−−Vocabulary d e f i n i t i o n−−>
<o s l c : p r o p e r t y D e f i n i t i o n r d f : r e s o u r c e=” h t t p : // pur l . org /dc/ terms /

i d e n t i f i e r ”/>
< !−−Data Type d e f i n i t i o n−−>
<os l c : va lueType r d f : r e s o u r c e=” h t tp : //www. w3 . org /2001/XMLSchema#

s t r i n g ”/>
< !−−readOnly true , means that the property can be only change by

the author−−>
<o s l c : r eadOn ly>t rue</ o s l c : r eadOn ly>

</ o s l c : P r o p e r t y>
</ o s l c : p r o p e r t y>

. . .
</ os l c :ResourceShape>
</rdf:RDF>

Listing 4: Resource Shape example.

To express relationships between different resources, the recommendation given by [75] is ”to
express a link as a property with a value-type of Resource and representation of Reference”. For
example a property isRelatedTo that may define the connection between two software units can be
expressed in the way described in Listing 5.

< !−−r e l a t i o n s h i p isRelatedTo−−>
<o s l c : p r o p e r t y>

<o s l c : P r o p e r t y>
< !−−Name o f the property (in t h i s case , name o f the r e l a t i o n s h i p)

−−>
<os lc :name>i sRelatedTo</ os lc :name>
< !−−Card ina l i t y o f the r e l a t i o n s h i p−>
<o s l c : o c c u r s r d f : r e s o u r c e=” ht t p : //open−s e r v i c e s . net /ns/ core#Zero−or

−many”/>
< !−−Vocabulary d e f i n i t i o n o f the property−−>
<o s l c : p r o p e r t y D e f i n i t i o n r d f : r e s o u r c e=” h t t p : //open−s e r v i c e s . net /ns/

example#isRelatedTo ”/>
< !−−To be ab le to connect two re source s , valueType must be r e sou r c e

−−>
<os l c : va lueType r d f : r e s o u r c e=” h t tp : //open−s e r v i c e s . net /ns/ core#

Resource ”/>
< !−−To be ab le to connect two re source s , r e p r e s e n t a t i o n must be

r e f e r e n c e−−>

29

Mälardalen University Master Thesis

<o s l c : r e p r e s e n t a t i o n r d f : r e s o u r c e=” h t tp : //open−s e r v i c e s . net /ns/ core
#Reference ”/>

< !−−The range i s the r e sou r c e that i s connected with the
r e l a t i o n s h i p de f ined −−>

<o s l c : r a n g e r d f : r e s o u r c e=” h t t p : //open−s e r v i c e s . net /ns/example#
SoftwareUnit ”/>

<o s l c : r eadOn ly>t rue</ o s l c : r eadOn ly>
</ o s l c : P r o p e r t y>

</ o s l c : p r o p e r t y>

Listing 5: Relationship expressed with Resource Shape.

2.8.4 Shape Expressions (ShEx)

Shape Expressions (ShEx) [14] is a language that describes RDF graph structures, through a series
of constraint rules (set of properties), written with a syntax called SHEXc. Rules described in
Shape Expressions (ShEx) are used to identify predicates, their cardinalities, and datatypes, and
they are useful for evaluating the nodes that are referred to the instance data. The rules can
be formulated as conjunctions of constraints separated by commas and enclosed in brackets. For
exemplification purposes, a piece of SHEXc notation is presented in Listing 6.

p r e f i x o s l c : <h t tp : //open−s e r v i c e s . net /ns/ core#>
p r e f i x dcterms :<h t t p : // pur l . org /dc/ terms />
p r e f i x xsd : <h t t p : //www. w3 . org /2001/XMLSchema#>

s t a r t = <SoftwareUnitShape>

Software Unit Shape
<SoftwareUnitShape> {

dcterms:documentRelated x s d : s t r i n g ,
os lc :name x s d : s t r i n g ,

}

Listing 6: Shape Expression of a software unit using SHEXc serialization.

The example in Listing 6 states that the properties identifier and name can be defined exactly
once. If the cardinality of a property is defined differently, the expression cited in Table 4 has to
be used. For example, if we would like that the resource described in the Listing 6 has more than
one name, we should write the ShEx expression in the way described in Listing 7.

os lc :name x s d : s t r i n g +,

Listing 7: Property defined One-or-many times, using ShEx.

Expression Meaning

Exactly-one
? Zero-or-one
+ One-or-many
* Zero-or-many
{y,z} x occurs minimum y and maximum z

Table 4: Cardinalities expressions for ShEx resources [14].

2.8.5 Shapes Constraint Language (SHACL)

Shapes Constraint Language (SHACL) [9] describes and constraints the content of RDF graphs
(called here nodes), grouping constraints into ”shapes”. The shapes specify conditions that an RDF

30

Mälardalen University Master Thesis

node must follow. SHACL has its vocabulary, but it uses RDF and RDFS vocabulary, specially
to define types, classes, subclasses, properties, lists, and resources. Some relationships between
SHACL, RDF and RDFS are illustrated in Figure 14.

Figure 14: Illustration of some relationships between classes of SHACL, RDF and RDFS [9].

The core features of SHACL are the following [9] :

• Shapes: a group of constraints used to validate a node. Shapes are instances or the class
sh:shape.

• Scopes: are used to linking nodes. There are three kinds of scopes: node scopes (sh:scopeNode)
that link a shape with a specific node, class-based scopes (sh:scopeClass) which links all in-
stances of a class with a shape, and general scopes (sh:scope) which is a flexible mechanism
to link nodes in an arbitrary way.

• Filter Shapes: is a concept, sh:filterShape used to support use cases, acting as a pre-
condition to the nodes before they are validated.

• Constraints: are different kind of restrictions that can be specified to resources. There
are three types: properties (sh:property) which are constraints that define the restrictions
on the values of a given property in the context of the focus node; inverse properties
(sh:inverseProperty) that links a shape with constraints about a given property traversed
in the inverse direction of the focus node; and constraints (sh:constraint) that link a shape
with constraints that do not involve just a single dedicated property.

Listing 8 shows an SHACL shape fragment (serialized using TURTLE syntax) that expresses
the properties formulated in XML/RDF serialization shown in Listing 1.

baseURI
@pref ix : <h t tp : //open−s e r v i c e s . net /ns/ iso26262am#> .

p r e f i x e s
@pref ix dcterms : <h t tp : // pur l . org /dc/ terms /> .
@pre f ix o s l c : <h t t p : //open−s e r v i c e s . net /ns/ core#> .
@pre f ix ex : <h t t p : //open−s e r v i c e s . net /ns/example#> .
@pre f ix r d f : <h t tp : //www. w3 . org /1999/02/22− rdf−syntax−ns#> .
@pre f ix r d f s : <h t t p : //www. w3 . org /2000/01/ rdf−schema#> .
@pre f ix s h : <h t t p : //www. w3 . org /ns/ shac l#> .
@pre f ix xsd : <h t tp : //www. w3 . org /2001/XMLSchema#> .

d e f i n i t i o n o f the r e sou r c e
ex :So f twareUni t

r d f : t y p e r d f s : C l a s s ;
r d f : t y p e sh:Shape ;
r d f s : l a b e l ” Software un i t ”ˆˆ x s d : s t r i n g ;

31

Mälardalen University Master Thesis

d e f i n i t i o n o f the property i d e n t i f i e r
sh :p rope r ty [

sh :datatype x s d : s t r i n g ;
s h : d e s c r i p t i o n ”Document that i s r e l a t e d to the so f tware un i t ”ˆˆ

x s d : s t r i n g ;
sh:maxCount 1 ;
sh:minCount 1 ;
sh:name ”documentRelated”ˆˆ x s d : s t r i n g ;
s h : p r e d i c a t e d c t e r m s : i d e n t i f i e r ;

d e f i n i t i o n o f the property name
sh :p rope r ty [

sh :datatype x s d : s t r i n g ;
s h : d e s c r i p t i o n ” Local Name o f the so f tware un i t ”ˆˆ x s d : s t r i n g ;
sh:maxCount 1 ;
sh:minCount 1 ;
sh:name ”name”ˆˆ x s d : s t r i n g ;
s h : p r e d i c a t e os lc :name ;

] ;
.

Listing 8: Example of a SHACL shape.

In the XML/RDF fragment presented in Listing 8 a resource is defined with the types rdf:Class
and sh:Shape. Every property is defined with constraints, like sh:datatype that constraint the data
type of the property, sh:description that gives information about the property, sh:maxCount and
sh:minCount which define the boundaries of the cardinality of the property, sh:name which is
used to define the name of the property, and sh:predicate that describes the provenance of the
vocabulary used for defining the property.

2.9 Open Services for Lifecycle Collaboration (OSLC)

This section presents general aspects related to OSLC, the principles in which it is based, and
specific information required for the development of this thesis. This section is divided into four
subsections: Subsection 2.9.1 presents Linked Data, Subsection 2.9.2 presents an overview of OSLC,
Subsection 2.9.3 presents the OSLC Core specification, and Subsection 2.9.4 presents the OSLC
property constraints. This section is mainly based on [10].

2.9.1 Linked Data

Linked Data [76] is a Semantic Web technique that recommends best practices for exposing, sharing
and connecting resources, using Web technologies. With the use of Linked Data, the conventional
Web (also called by Tim Berners-Lee, the Web of hypertext), can be configured in a different
manner, allowing the discovery of new information (this new configuration is called the Web of
Data). The principles of Linked data [60], are:

• Use URIs as names for things.

• Use HTTP URIs so that people can look up those names.

• When someone looks up a URI, provide useful information, using the standards (RDF,
SPARQL).

• Include links to other URIs, so that they can discover more things.

The use of Linked Data principles allows the discovery of resources on The Web. When a
resource is discovered by another resource, a representation of the resource (like a copy of it) is
retrieved using internet protocols. This mechanism for retrieving information from the Web is
called dereferencing URIs. A dereferenceable URI represents a resource (written in HTML or
XML), describing the resource that the URI identifies.

32

Mälardalen University Master Thesis

2.9.2 Open Services for Lifecycle Collaboration (OSLC) overview

OSLC [77] is ”an open and scalable approach to lifecycles integration, that simplifies key integration
scenarios across heterogeneous tools” [78]. OSLC allows interoperability between independent
software and product lifecycle tools, integrating their data and workflows in supporting end-to-end
lifecycle processes, using standard methods. OSLC key features are:

• adoption of Linked Data principles (see Section 2.9.1) for linking lifecycle data.

• adoption of RDF standards and key concepts: Graph data model, URI-based vocabulary and
the serialization syntaxes,

• definition of standard rules and patterns for integrating lifecycle tools,

• definition of a common approach to performing resource creation, queries, and so on,

• definition of common resource properties and domain specifications.

2.9.3 OSLC core specification

OSLC Core specification [10] specifies standard rules and patterns that all domain workgroups
must adopt in their specification. The current version of an specification for OSLC Core, approved
by OSLC community, is the version 2.0. The namespace defined for the OSLC Core specification is
xmlns:oslc="http://open-services.net/ns/core#" and the prefix is oslc. The OSLC structure
is represented in Figure 15. Two particular concepts, Resource Shape (explained in section 2.8.3)
and Resource (an RDF resource that may have properties and may link to other resources) are
highlighted in the figure with a red-dotted line since these elements are the main focus of this
thesis.

Figure 15: OSLC Core Specification concepts and relationships [10].

The core specification is used to create OSLC domains. An OSLC domain, according to [10], is
a specific lifecycle topic that has its OSLC specification that complies with the Core Specification.
Examples of lifecycle topics are change management or requirements management.

2.9.4 OSLC property constraints

An OSLC domain specification should provide a list of properties and their specific constraints.
The elements required to formulate properties are [10]:

• Name: Name of the property.

• Uniform Resource Locator (URL): The URI that identifies the property.

33

xmlns:oslc="http://open-services.net/ns/core#"

Mälardalen University Master Thesis

• Description: Description of the property.

• Occurs: Predefined values like Exactly-one, Zero-or-one, Zero-or-many or One-or-many.

• Value-types: Literal value types like Boolean, Date Time, Decimal, Double, Float, Integer,
String, XML Literal or Resource value types like Resource, Local Resource, Any Resource.

• Representation: Properties with a Resource value type should also specify how the resource
will be represented. The value can be reference, Inline or Either.

• Range: Used for properties with a resource-value type.

• Read-only: This value indicates whether or not clients are permitted to replace the property’s
value. Values can be true, false or unspecified.

Table 5 shows the definition of the properties required by OSLC for the software unit specified
in Listing 4 and Listing 5 .

Table 5: Properties defined in OSLC for the software unit.

Prefixed Name Occurs
Value
Types

Rep. Range Description

Properties: meta-attributes

ex: documentRe-
lated

Exactly
one

String n/a n/a
Document that is related to the
software unit.

oslc: name
Exactly
one

String n/a n/a Local name of the software unit.

Properties: relationships

ex: isRelatedTo
Zero
or
many

Resource Reference ex: SoftwareUnit
Express a relationship between
two software units.

Proposed IRI: http://open-services.net/ns/ex#SoftwareUnit

2.10 Related work

The modeling of ISO 26262-compliant OSLC resources, where resources identification, representa-
tion, and shaping are presented together, is rather a new area of research. Not related work was
found about the topic. However, approaches and methodologies, which cover the steps that are
taken into account in the context of this master thesis, are not new in the research world. So the
literature review carried out in this section is divided into three main streams: metamodels for
safety standards, tool integration frameworks, and RDF resource shaping.

The idea of modeling standards is not new since models for safety standards are widely used
for understanding and communication among engineers and software developers. So, in the group
of research works related to metamodels for safety standards aimed at facilitating safety
compliance is found SafetyMet [79]. SafetyMet is a unified metamodel in which all the models
related to safety standards compliance must conform. The metamodel also includes concepts and
relationships necessary for modeling and managing project-specific information. The metamodel
presents several benefits, like the possibility of instantiation of all kind of safety models, the
integration between them, and reuse of models. However is too generic, and, as the authors claim,
it is necessary to specify more detailed attributes for the classes and further support in areas
not addressed by the actual metamodel. This approach is valid and interesting, but can lead
to confusion to those that do not have so much experience in safety assurance, because of the
generality of the terms used in the metamodel. The approach presented in this current master
thesis is towards the creation of a metamodel that suits the actual, specific domain terms of
the standard ISO 26262, where the names of the classes presented in the metamodel are more
closely related to the specific requirements presented in the standard. The approach presented in
[80] presents a modeling approach for process process-based evidence, using specific terms from
ISO 26262. The part of the standard used is the part 3, and traceability links between model

34

http://open-services.net/ns/ex#SoftwareUnit

Mälardalen University Master Thesis

artifacts are clearly depicted. However, the product-based evidence is not modeled. The present
master thesis is, instead, intended for targeting the product-based evidence metamodel. Specific
product-based metamodels related to the standard ISO 26262 can be found in [81]. In this job,
traceable work products for the software clauses corresponding to the right-hand side of the V-
model in part 6 of ISO 26262 are represented as a collection of classes, attributes and relationship
types. The modeling approach used in this master thesis is closely related to the job presented by
[81] as it is its counterpart (the present thesis is creating a metamodel for the left-hand side of the
V-model). The three works recalled aimed at creating metamodels for safety standards, where a
plain collection of classes, attributes, and relationships, are depicted. They cover, in one or other
way, the description of the domains in which they were conceived. However, the interest of the
approach presented in the current master thesis is to propose the enrichment of the metamodel
(created in the form of a UML profile) with the addition of constraints that guarantee the quality
of the data annotated.

Tool integration frameworks using OSLC domain specification are also widely investigated.
In [82] OSLC is used to integrate a smart production lifecycle. In this job, the integration scenarios
created with OSLC could prove bidirectional interoperability. The project CRYSTAL (CRitical
sYSTem engineering AcceLeration) is working on an interoperability specification based on OSLC,
which aims at being an open European standard for the development of safety-critical embedded
systems [83]. This specification should allow the interlinking of different kind of data across mul-
tiple tools, where work products related to the requirements management and the architecture
management are defined. The adopting of lean enablers in systems engineering is proposed by
[84], also using OSLC. This approach covers requirement, quality analysis, model-based systems
engineering, model-based testing, product family engineering and safety analysis. The project’s
idea lies on fourth goals: improvement of the quality of system specifications, standardization
of the development of variants that share commonalities, integration of the model-based system
engineering with functional safety analysis, and the establishment of a tightly integrated systems
engineering environment. In [6], a knowledge management specification for OSLC resources is
introduced. Data tools are described and shared using also OSLC specifications in [85]. All these
approaches made use of OSLC, generating specifications and tools chain for integrating environ-
ments. However, any of the approaches address, specifically, ISO 26262 safety lifecycle, which is
the purpose of this master thesis. Besides, the OSLC domain specifications created by the OSLC
community does not present domain-specific terms that tackle the granularity required for the def-
inition of ISO 26262-compliant resources. This thesis aims at creating and proposing a fine-grain
OSLC specification, that can be adopted by other ISO 26262 users.

OSLC approach relies on RDF standard for reaching a common interoperability framework.
With RDF and XML in general, flexibility in the definition of resources can be achieved. This
flexibility that can be a problem when integration activities are carried out, since the data quality,
in most of the cases, is not evaluated. The use of ReSh, as the OSLC standardized data shap-
ing specification, ”allows collaborating tools to check each other’s expectations on resources” [86].
However, the use of OSLC ReSh has its limitations. So, evaluations that tackle RDF resource
shaping have been carried out. For this, a list of RDF constraints has been defined in [87] and
[72], among others, to be evaluated by several RDF constraint languages. In [88] RDF constraints
are evaluated in ReSh, ShEx, Web Ontology Language (OWL) and Description Set Profiles (DSP),
giving not a favorite language for constraint the RDF resources, but outlining the idea of a better
framework for supporting the mapping of high-level constraint languages. In [89], a survey of
RDF constraint languages was done. This comparative study involved four RDF languages e.g.
SPARQL Inference language (SPIN), ShEx, Stardog ICV and ReSh. The work presented in the
current thesis aims at reviewing, in the first place, if the amount of RDF constraints already de-
fined in [87] and [72] are enough for representing the ISO 26262 requirements or if this list has to
be enhanced with more accurate ISO 26262-like requirements. On the other hand, there is a new
RDF constraint language, called SHACL that has to be evaluated. In [90], there is a comparative
study between SHACL and ShEx, where expressiveness of both languages is assessed, and possible
translation between the two languages is analyzed. There is not a comparative study that includes
the languages ReSh, ShEx, and SHACL, and the current thesis proposes this comparison, using
the constraints found in ISO 26262.

35

Mälardalen University Master Thesis

3 Scientific research method

The research addressed by this thesis had as objective the establishment of an OSLC domain that
targets ISO 26262 standard in an industrial context, specifically Scania AB. For reaching this
goal was necessary to identify several elements. The first elements were related to the normative
parts of ISO 26262, other elements were connected with the OSLC specification characteristics,
and the last elements were affiliated with the understanding of the practices carried out at Scania.
As part of the research, the study of how these three elements could be mixed to get a common
interoperability schema was performed. Based on the nature of the research problem, the research
methodology selected for carrying out this study was the qualitative research approach. This
method, which according to [11] ”has a process that involves emerging questions and procedures,
data typically collected in the participant’s setting, data analysis inductively building from particular
to general themes, and the researcher making interpretations of the meaning of the data”, presents
characteristics that suited better with the needs and the objectives of this thesis. In the context of
the qualitative research, a case study was also conducted, so real data from the industrial setting
were modeled. In Scania, safety process in the sense proposed by ISO 26262 are not carried out
yet, since the current version of the standard (the one released in 2011) is not covering the kind of
vehicles the company developed. However, the traditional methodologies used in the company for
designing and implementing software units were used in the context of this thesis. The research
method selected is based on Creswell’s approach [11] and adapted according to the needs of the
project (see Figure 16).

Figure 16: The research methodology used in the context of this thesis (adaptation from [11]).

The first part of the research corresponded with the understanding of the project’s problem.
Initially this step included the understanding of the context of the project, involving the OSLC
specification, the ISO 26262 standard and Scania processes. The data collection was based on
documents and previous experiences gathered in master thesis carried out at Scania. The written
material mainly included in this research are standards, research papers, and Web pages. During
the analysis phase, the interoperability of several OSLC domains was reviewed to identify their
features. A comparative study of three RDF constraint languages was also carried out, so one
could be selected in the final solution. The identification of the correct resources to be modeled
and the constraints for guarantying the quality of data were also performed during the analysis
phase. The key features of the standard ISO 26262, as well as the Scania practices, were included
in this analysis. Partial solutions for the problem were regularly provided, during the solution
proposal. These solutions were evaluated on a regular basis in order to refine the final solution.
Once the final solution was found, A case study was applied, so the feasibility of the final solution
could be established. The data obtained during the execution of the case study was subjected to
a validation process that involves requirements engineering validation methodologies. The overall
process was documented in the form of a thesis report.

36

Mälardalen University Master Thesis

4 Problem formulation and analysis

In this chapter, the problem to be solved is described in detail and analyzed in order to identify
sub-problems. This chapter is organized as follows: In Section 4.1 the problem to be solved is
presented in detail; and in Section 4.2 the problem is analyzed and decomposed into sub-problems.

4.1 Problem formulation

In Section 1.1 it was stated that to develop products in compliance with the standard ISO 26262,
a safety case must be provided [20]. For creating a safety case, the safety process proposed by the
standard must be adopted, and the safety evidence should be compiled [17]. The safety evidence, as
recalled in Section 2.4.1, is composed of the work products resulting from every stage of the safety
lifecyle [5]. The work products have to show, in a traceable way, that during the lifecycle, hazards
have been identified, classified and appropriately mitigated. To be able to collect all the information
presented in the work products, a careful documentation management, which is prescribed by the
standard, has to be carried out. This prescription establishes requirements that have to be followed
when the documentation management is performed. Requirements state that the documentation
process should be planned in a way that the evidence is compiled progressively, the documents are
clear and available when they are needed, and the search for relevant information is facilitated. All
these characteristics make the documentation management an important but challenging activity,
in the context of ISO 26262.

It is likely that Scania soon will be involved in the process of compliance with ISO 26262
[3, 13], a process that can contribute to the quality of the products elaborated, but also with
the workload of the company [91], due to documentation process. The safety process can be
softly introduced in the development process, to minimize this workload, if tools that help in the
documentation management are included. These tools have two goals: first, they should take care
of the information that is expected to be generated in the process of compliance with the standard,
and second, they should address the traceability between all the documents so this information can
be shared between those involved in the process. The introduction of tools can generate two new
problems that have to be solved: first, tools are not actually adapted for managing ISO 26262-
compliant-information, and second the information information generated by the tools can be
inconsistent, due to lack of standard methods for sharing data. In other words, there is an absence
of ISO 26262-compliant seamless interoperability.

4.2 Problem analysis

The main problem formulated in Section 4.1 is decomposed in small subproblems:

1. OSLC domain specification development: Every work product in the ISO 26262 lifecy-
cle has specifically related information so that specific knowledge domains can be modeled.
Every knowledge domain will be the base for building the controlled vocabulary required for
the OSLC domain specification required. To address the creation of the domain specification,
the following questions has been addressed:

• What are the elements involved in the definition of the OSLC domain specifi-
cation? The first step in the creation of an OSLC domain specification is the definition
of the elements that should be included in the modeling of the domain.

• What is the existing OSLC domain specification that better suits the needs
for the creation of ISO 26262-compliant resources? There are already several do-
main specifications created in the OSLC community. These domains have been created
with similar purposes to the one (or ones) required to be specified in this thesis. For
this, an investigation of the existing OSLC domains specifications is needed, so domains
with similar characteristics are extended, avoiding the creation of redundant domains.
However, it can be possible that existing domains do not fulfill the needs of the domain
required, so a new domain must be introduced.

• What are the existing vocabularies that can be used in the definition of an
OSLC domain specification? For creating an OSLC domain specification, metadata

37

Mälardalen University Master Thesis

vocabularies are reused. So, it is needed to recall terms already created in other vocab-
ularies, to reuse them and make the domain created interoperable with other sources of
information.

• Which approach should be used for modeling the OSLC domain specifica-
tion? To support the modelling and ensure its repeatability, the approach to use has
to be established.

2. Comparative study on existing RDF data shapes languages. OSLC resources are
based on RDF. There are several RDF data shapes languages that can be used to constrain
the data recorded as RDF resources. For defining the best option to use, the following
questions have to be answered:

• What are the most common options available for shaping OSLC resources?
The OSLC community has defined OSLC ReSh for shaping OSLC resources. However,
OSLC resources are defined in RDF, so other options for shaping the resources can be
explored. These other options are called RDF data shapes languages and there many
of them at a disposal.

• What are the technical characteristics of the RDF constraint languages se-
lected? Investigate the most important characteristics provided by the most common
RDF data shapes languages are required in the definition of a language candidate for
shaping the OSLC resources.

38

Mälardalen University Master Thesis

5 Methods to solve the problem

This chapter presents methods to solve the problem. These methods are found after answering
the questions raised in Section 4.2. The methods defined in the current Chapter are then used for
searching the solution in Chapter 6. The chapter is organized as follows: Section 5.1 presents the
OSLC domain specification development, and Section 5.2 presents a comparative study of existing
RDF constraint languages.

5.1 OSLC domain specification development

This section answers questions related to the OSLC domain specification development. It is or-
ganized in the following way: Subsection 5.1.1 presents the elements that are involved in the
definition of the domain specification, Subsection 5.1.2 defines if the domain specification can be
supported with the use of already defined specifications in OSLC, Subsection 5.1.3 presents the
RDF vocabularies that are needed to support the development of the domain specification, and
Subsection 5.1.4 presents the approach to use for modeling the domain specification in OSLC.

5.1.1 What are the elements involved in the definition of the domain specification?

Three fundamental elements are involved in the definition of an OSLC domain specification for soft-
ware unit design and specification according to International Standarization Organization (ISO)
26262 and Scania context. The first element corresponds with the portion of the standard ISO
26262 that was selected for the study: part 6 - clause 8 (ISO 26262:6-clause 8 is explained in
section 2.3.3). The purpose of this part of the standard is to guide the detailed design of the soft-
ware unit and its subsequent implementation. The second element corresponds with the Scania
practices related to the software unit design and implementation (the case study was introduced
in Section 2.2.3). These practices are critical in the definition of the domain since the industrial
context provided by Scania will contribute with the determination of the suitability of the appli-
cation of the standard in the company and the appropriation of the solution provided. The last
element corresponds with the understanding of the framework that was selected as a potential
solution for addressing the traceability of the work products generated in this phase of the ISO
26262: OSLC (OSLC is explained in Section 2.9). OSLC has defined, with the help of specialized
workgroups, several domain specifications that can be used for integrating lifecycle tools. There
are three possibilities for integrating lifecycles using OSLC: The fist one consists in using the do-
main specifications that are already defined in the community without making any change in the
specification. The second one consists in extending a domain specification, adding new terms. The
last one consists in proposing a new domain specification that addresses lifecycles, or portions of
lifecycles, that have not been defined yet. Subsection 5.1.2 clarifies the option that better suits the
objectives of this thesis.

5.1.2 What is the existing OSLC domain specification that better suits the needs for
the creation of ISO 26262-compliant resources?

To define the OSLC domain specification that better suits the needs for the creation of ISO 26262-compliant
resources requires an analysis of the OSLC domains provided by the OSLC community. For this
analysis, a study of the development status of the mentioned domains is required. The list of
available status for the OSLC domain specifications, and their explanations is presented below
[77]:

• Inactive: there is no further development planned.

• Scope: the workgroup proposes, documents and prioritizes the scenarios and technical objec-
tives that will be addressed in the current version.

• Draft: workgroup members comment on a contribute to a proposed specification through a
series of drafts.

• Candidate recommendation: the specification is under review and open for comments.

39

Mälardalen University Master Thesis

• Converge: the broader community reviews and comments on the draft specification. Mean-
while, implementation and prototypes are initiated.

• Finalize: the steering committee reviews the specification and the specification undergoes a
final polish to correct errors an unclear language.

• Final: the steering committee approves the final form of the specification. A final specification
must have a working implementation and a test suite.

• W3C recommendation: the W3C fully endorses the specification.

The domain specifications marked with the status final and W3C recommendation, listed in
Table 6, are the ones that can be used in the creation of integrated scenarios.

Table 6: OSLC domain specification with final and W3C recommendation status.

Domain Name Coverage

Core 2.0
Sets out the common features that every OSLC Service
can be expected to support using terminology from the
World Wide Web Consortium (W3C).

Architecture Management 2.0
Modeling, diagrams, and use cases for software develop-
ment.

Assess Management 2.0
Reusable components, documentation, and representa-
tions.

Automation 2.0 Plans, requests, and results for builds and deployments.

Change Management 2.0 Defects, enhancements, changes, and tasks.

Performance monitoring 2.0 Availability, performance, and capacity.

Quality Management 2.0 Test plans, cases, and results.

Reconciliation 2.0

Refers to the case where there exists a need to understand
if multiple providers are referring to the same resource,
particularly when there is not already a common identifier
that all providers populate.

Requirements Management
2.0

Stakeholder needs and how to meet them.

Linked data platform 1.0
Simple read-write Linked Data architecture using HTTP
access and RDF data.

The domain specification Core 2.0 contains the basis for defining OSLC specifications. More-
over, OSLC domain specifications are expected to be built on top of this specification, since it
”establishes terminology and rules for defining resources in terms of the property names and value-
types that are allowed and required” [10]. So this specification will be present in the definition of
the domain that is the focus of this thesis.

The name and the coverage of the domain specifications clearly explain what lifecycles are
addressed. From subsection 5.1.2 it was understood that the phases of the lifecycle required to be
studied correspond with one of the design phases of the V-model. There is not a domain in OSLC
which name is equivalent to design phase (a domain called, for example, design management).
However, design phases in software development are typically addressed, using modeling, diagrams
and uses cases. These elements are covered by the domain specification called Architecture Man-
agement 2.0, so this specification becomes a good candidate to be used or to be extended. The
other domain specifications can not provide elements for the domain specification that is the focus
of this thesis.

The terminology of the domain specification Architecture Management 2.0 is reduced to eight
concepts, namely: resource, architecture management resource, link, link type, link type resource,
service provider, service description resource and service description document. This approach
was taken by the creators of the domain for avoiding the re-definition of ”model storage formats
or even model or other architecture management resource notations” [92]. However, the general
overview of the software unit design specification given in Section 2.3.3, shows that a more precise
terminology is required for modeling the ISO 26262-compliant work products. So, the candidate
domain specification Architecture Management 2.0 is not suitable to be used or extended in the

40

Mälardalen University Master Thesis

case required in the context of this thesis. For this reason, a new domain specification, that tackles
Architecture Management (AM) in the ISO 26262, has to be created from scratch.

5.1.3 What are the existing vocabularies that can be used in the definition of a the
domain specification?

For creating new domain specifications in OSLC, and in general, when Linked Data new deploy-
ments are ongoing, one of the most difficult tasks is the determination of the RDF vocabularies
that better suit the needs for describing the semantics of data. RDF vocabularies are themselves
expressed and published using the Linked Data and Semantic Web principles, and there is already
a well-documented ecosystem of Linked Data vocabularies managed by the Link Open Vocabular-
ies (LOV) initiative [15]. These vocabularies are a collection of classes, properties, and data types
that define the meaning of data, in specific contexts, giving humans and machines access to the
terms used to qualify the data. The LOV dataset consists of 560 vocabularies as of July 2016,
and it is constantly growing. A graphical representation of the vocabularies managed in LOV is
presented in Figure 17.

Figure 17: Link Open Vocabularies (LOV)[12].

The Vocabulary catalog provided by LOV is extensive, and even though is well organized (cat-
egories are explicitly presented in the diagram as they are marked as category tags), a profound
study of the vocabularies provided there requires time. So, an in-depth investigation of the vocab-
ularies, their purposes, and their terms is proposed as a future work. So far, a search of terms,

41

Mälardalen University Master Thesis

using the search engine defined in the LOV web page was used, to look for terms related with
ISO 26262. There were no vocabularies or terms specifically related to the standard so, for the
purpose of this thesis, it is assumed that new terminology is required. However, there are basic
vocabularies that are mandatory in the definition of RDF vocabularies. Those, as well as the ones
characterized in other OSLC domain specifications, are listed in Table 7. These vocabularies are
the ones selected in the definition of the namespace declaration of the domain specification for
software unit design and specification.

Table 7: Vocabularies selected form Metadata category [15].

Vocabulary Prefix URI Description

Resource
Description
Framework

rdf
http://www.w3.org/1999/02/

22-rdf-syntax-ns#

Contains the elements required for
defininf RDF resources.

Dublin Core
Metadata
metadata
terms

dcterms http://purl.org/dc/terms/

Metadata terms maintained by the
Dublin Core Metadata Initiative,
used for describing resources.

Friend of a
friend

foaf
http://http://xmlns.com/

foaf/0.1/

Based schema to describe persons
and their social network in a seman-
tic way.

RDF schema rdfs
http://www.w3.org/2000/01/

rdf-schema#

Provides a data-modelling vocabu-
lary for RDF data. RDF Schema is
an extension of the basic RDF vocab-
ulary.

OSLC Core oslc
http://open-services.net/

ns/core#

The basic patterns and protocols
that any OSLC software must imple-
ment.

5.1.4 Which approach should be used for modeling the domain specification?

The approach defined in [81] which aims at representing the compilation of traceable work products
for the software testing clauses in part 6 of ISO 26262 was adapted and used for modeling the
work products of this master thesis. The approach is summarized in the following steps: the
work products required to be represented are analyzed and depicted in a metamodel, which is also
instantiated (in the form of RDF resources) with specific information collected in an industrial
setting, by the application of a case study. The case study was conducted at Scania, in three
consecutive cycles. The first cycle was the definition of the conceptual metamodel, by analyzing
documents e.g. ISO 26262 standard and related documents. The second cycle aimed to extend
the metamodel with the information gathered in interviews with the people involved in the testing
process at Scania. The third cycle addresses the validation of the extended metamodel. This
methodology is adapted for the formulation of a metamodel that addresses the work products
required by the clause software unit design and specification. Additional steps are added to the
methodology since constraints required for enhancing the quality of data are also part of the present
master thesis. This approach is summarized as follows:

1. Gathering the domain-related data: Information related to the domain of the interest is
collected and organized. This data can be found in the form of documents or through informal
interviews. The objective of this phase is to prepare the ground for the identification of the
terms used in the domain. In other words, to gain an understanding of the requirements for
the domain. The main sources of information are the latest published version of the standard
ISO 26262 available at the company, classified internal documents, and other master thesis
works carried out at Scania.

2. Creating the metamodel structure: The objective of this phase is to begin the abstrac-
tion of the information gathered into a model. This model should formalize the knowledge
about the domain and should express the solution that meets the requirements of the portion

42

http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://purl.org/dc/terms/
http://http://xmlns.com/foaf/0.1/
http://http://xmlns.com/foaf/0.1/
http://www.w3.org/2000/01/rdf-schema#
http://www.w3.org/2000/01/rdf-schema#
http://open-services.net/ns/core#
http://open-services.net/ns/core#

Mälardalen University Master Thesis

of the standard selected. Many formalisms that can be used to model the domain. However,
the one selected is the UML profile, since this is the modeling approach followed in Scania,
and this model should be aligned with the practices carried out by the company. UML pro-
file, as explained in section 2.6.4, is an abstract, object-oriented formalism, which employs
meta-classes, meta-attributes, and other object-oriented constructs as a way to organize ab-
stractions. The identification of the elements required for the profile is performed in two
ways:

(a) Modeling regulatory requirements: Elements are gathered from the standard ISO 26262-
2011 (The current version available).

(b) Modeling company practices: The company practices are investigated, through the
reading of documents.

3. Attaching constraints to the metamodel: Constraints enhance the semantics of the
domain. They may be used to direct and optimize the structure of the implementation. To
find constraints that can increase the quality of the data, a second review of the standard
and documents related is carried out.

4. Adding context to the domain specified: According to [47], domains are determined
for being part of a bigger context. So, the definition of information that gives context to the
domain is carried out in this section.

5.2 Comparative study on existing RDF constraint languages

A domain specification can be materialized in a standardized data model, like RDF. RDF, as
explained in Section 2.7.3, has the required flexibility for allowing the definition of the terms
needed in a data model, and it is supported by the stack of maturing Semantic Web technologies
(see Figure 10). However, ways for verification of the data are not as standardized as is desired.
Verification of the data is required in a data model, so ambiguity in the information is avoided. This
verification can be reached by the definition and delimitation of acceptable RDF data structure
and content. Several RDF constraint languages have been created for this purpose, but there is a
lack of agreement on which of them is more or less adequate. This section seeks to find options
for constraint the RDF graphs, through the selection of RDF data shapes languages that better
suits the needs of the domains specification that is the focus of this master thesis. This section
is organized in the following way: Subsection 5.2.1 presents an explanation of what are the RDF
shape constraint languages available for shaping resources, and Subsection 5.2.2 recalls in some
technical characteristics that are presented in the RDF shape constraint languages selected.

5.2.1 What are the options available for shaping OSLC resources?

Data models like XML and RDF have already defined standardized schema languages (XML schema
and RDFS, respectively). However, XML schema only provides syntactic interoperability but not
semantic, and RDFS is just a vocabulary for describing resources [89]. So, these languages have
limited capacity for restricting the possible values that an RDF graphs can admit. OWL, is an
ontology language designed to represent knowledge about things, constrain this knowledge, and
infer new knowledge based on predefined rules [93]. However, the use of OWL is limited because
of the existence of two underlying assumptions: Open World Assumption (OWA) and Non-Unique
Name Assumption (NUNA). OWA refers the assumption that the truth-value of a statement may
be true irrespective of whether or not it is known to be true. NUNA refers to the assumption that
different names always refer to different entities in the world [89]. Based on OWL, Stardog ICV
is a system for validating Semantic Web and Linked Data [94]. Stardog ICV proposes integrity
constraints modeled as OWL axioms, validating constraints, similar to checking database integrity
constraints. It enables an OWL ontology to be interpreted as a set of integrity constraints checks
that must be satisfied by the information explicitly presented or the information that may be
inferred. The special characteristic provided by this language is that ”explicit information is
needed to satisfy the integrity constraint” [95]. So, the validation is closely related to the type
of information given by the data. This feature makes the Stardog ICV a language not suitable

43

Mälardalen University Master Thesis

for constraint RDF graphs. SPARQL and SPIN are widely used for constraint formulation and
validation, but constraints formulated in SPARQL ”are not as understandable as one wished them
to be” [87]. Moreover, SPIN is considered a low-level language in contrast to other constraint
languages ”where specific language constructs exist to define constraints in a declarative and in
comparison, more intuitive way” [72].

According to [53], RDF and RDFS are ”unsophisticated and inexpressive”, so ”there are not
reasoning difficulties if all information comes in the form of RDF triples interpreted under RDFS
semantics” [95]. RDF triples can be treated as complete descriptors of the world where if a
triple is not presented, then it is false (Close World assumption - CWA) and that different IRIs
denote different individuals (Unique Name Assumption UNA) [95]. However, when users can
understand the content of RDF datasets, SPARQL queries are less complicated to formulate. So,
a description of the RDF datasets is needed. The Semantic Web community is aware of this
shortcoming, and efforts for defining better RDF constraint languages have been carried out, since
the realization of the RDF validation workshop in 20138. For the purpose of this thesis three
RDF data shapes languages are selected for being studied: Resource Shape (ReSh), introduced
in Section 2.8.3; Shape Expressions (ShEx), introduced in Section 2.8.4; and Shapes Constraint
Language (SHACL), introduced in Section 2.8.5. The reasons underlying the selection of these
three languages is explained as follows: ReSh is selected because is the official language for shaping
OSLC resources, ShEx is chosen because there are many research works (some examples are [89],
[88], [96] and [70]) that endorse its expressivity, and SHACL is selected because is the latest RDF
data shapes language released under the W3C recommendation umbrella. Section 5.2.2 recalls
some technical characteristics presented in these three languages, since a more detailed analysis,
regarding the expressiveness of the RDF constraint languages for shaping specific constraints, is
carried out in section 6.5.2, where the dataset description for the RDF resources required in this
thesis is available.

5.2.2 What are the technical characteristics of the RDF constraint languages se-
lected?

The technical characteristics of the RDF constraint languages selected for shaping the OSLC
resources, namely ReSh, ShEx and SHACL are presented below:

1. Technical support: The three languages are supported by stakeholders, and tools have
been created for facilitating the creation of specifications. ReSh is endorsed by OSLC9 and
OSLC working group at OASIS10, which its foundational sponsor is IBM11. The specifications
created under the OSLC umbrella are supposed to be free, and software tools, to help in the
implementation, extension, and testing for OSLC integrations have been released. These
tools are called Eclipse Lyo12 and OSLC4NET13. ReSh is a W3C recommendation since
2014. ShEx, according to [89], is not a W3C recommendation, but it has been a major
influence on the ongoing work of the W3C RDF shapes working group. W3C experts, as well
as individual researchers (that will be called others) have been working in this specification.
The online tools created for working with ShEx are RDFShape14 and the fancy ShExDemo15.
SHACL is a new specification supported by W3C that is still a working draft specification, but
available to be used. The stakeholders are SHACL W3C working group and TopQuadrant.
TopQuadrant has updated its tool TopBraid Composer 5.116 with some of the characteristics
presented in SHACL, and even though this tool lacks some of the features required for creating
SHACL specification (due to ongoing development process of the tool) it is a good starting
point for the verification of SHACL specifications. TopBraid Composer is not a free tool,
but a there is an open version of the TopBraid Composer, which can be used for free. The

8https://www.w3.org/2012/12/rdf-val/
9http://open-services.net/

10http://www.oasis-oslc.org/members
11http://www-01.ibm.com/software/
12http://www.eclipse.org/lyo/
13http://oslc4net.codeplex.com/
14http://rdfshape.herokuapp.com/
15https://www.w3.org/2013/ShEx/FancyShExDemo
16http://www.topquadrant.com/technology/shacl/tutorial/

44

https://www.w3.org/2012/12/rdf-val/
http://open-services.net/
http://www.oasis-oslc.org/members
http://www-01.ibm.com/software/
http://www.eclipse.org/lyo/
http://oslc4net.codeplex.com/
http://rdfshape.herokuapp.com/
https://www.w3.org/2013/ShEx/FancyShExDemo
http://www.topquadrant.com/technology/shacl/tutorial/

Mälardalen University Master Thesis

details mentioned before about the three RDF constraint languages are summarized in Table
8.

Table 8: Stakeholders and tools that support the three selected RDF constraint languages.

Language ReSh ShEx SHACL

Stakeholder(s)
OASIS W3C experts W3C experts
OSLC Others TopQuadrant
Others

Tools
Eclipse Lyo Fancy ShExDemo

TopBraid Composer
version 5.1

OSLC4Net RDFShape

W3C
recommendation

Yes No Working draft

2. Technical details: The RDF constraint languages have specific characteristics. ReSh shapes
can be serialized in three different forms: TURTLE syntax, XML/RDF, and JSON. The last
working version is the ReSh 2.0, submitted to W3C in 2014. The vocabulary used by ReSh
is the one specified for OSLC and its namespace URI is http://open-services.net/ns/

core#, and commonly referred using the prefix oslc. For shaping resources using OSLC ReSh,
RDF representations of the resources have to be made. ShEx shapes can be serialized in two
different ways: SHEXc and JSON. There is just one working version (for practicality will
be called 1.0, released in 2013 and ShEx it was not created a specific vocabulary to work
with this constraint language. SHACL can be serialized in different ways: TURTLE syntax,
XML/RDF and JSON. There are other serializations provided by the TobBraid Composer:
XML/RDF-abbrev and N-triple. SHACL has defined its vocabulary which namespace is
http://www.w3.org/ns/shacl# and is commonly referred using the prefix sh. Constraints
can be defined using RDF triples and SPARQL constructs. The technical characteristics
mentioned are summarized in Table 9.

Table 9: Technical characteristics of the RDF constraint languages.

Language ReSh ShEx SHACL

Last version
OSLC ReSh 2.0 (2014) Version 1.0 (2013)

Working draft (August
2016)

Syntax
Turtle SHEXc Turtle
RDF/XML RDF/XML
JSON JSON JSON

RDF/XML-abbrev
N-triple

Constraint
specification

RDF triples RDF triples RDF triples
SPARQL

Vocabulary
ReSh vocabulary

There is not specific
vocabulary created for
ShEx

SHACL vocabulary

namespace URI
http://

open-services.

net/ns/core#

No namespace
http://www.w3.org/

ns/shacl#

45

http://open-services.net/ns/core#
http://open-services.net/ns/core#
http://www.w3.org/ns/shacl#
http://open-services.net/ns/core#
http://open-services.net/ns/core#
http://open-services.net/ns/core#
http://www.w3.org/ns/shacl#
http://www.w3.org/ns/shacl#

Mälardalen University Master Thesis

6 Solution

This chapter presents a solution that targets the creation of an OSLC domain targeting ISO 26262,
with the focus on software unit design and implementation. The methods used for proposing this
solution were defined in Chapter 5 and the solution is used for generating a particular resource
in chapter 7. This Chapter is structured in the following way: Subsection 6.1 presents the steps
taken for creating the metamodel structure, Subsection 6.2 presents the steps taken for enriching
the metamodel with constraints, Subsection 6.3 presents the steps for adding context to the domain,
Subsection 6.4 presents the definition of the OSLC domain specification, Subsection 6.5 presents the
definition of the shapes for the resources of the domain specification, and Subsection 6.6 presents
a discussion related to the solution.

6.1 Creating a metamodel structure

For creating the metamodel structure, UML profile (explained in section 2.6.4) is used. To identify
some of the elements required for the UML profile, regulatory requirements from the standard
ISO 26262 are taking into account. Standard requirements were explained in Section 2.3.3. The
standard gives some degree of freedom, so the aspects of the metamodel that are not modeled
taking into account the standard, are taken from Scania practices. Scania practices were found
in documents like those mention in Section 2.2. This section is structured in the following way:
Subsection 6.1.1 presents the modeling elements of the metamodel that are taken from the standard,
and Subsection 6.1.2 presents the modeling elements of the metamodel that are taken from Scania
practices.

6.1.1 Modelling regulatory requirements

As mentioned in Section 2.3, ISO 26262 provides appropriate requirements and process to address
risks derived from systematic failures. The requirements of the standard presented in part 6 -
clause 8 (explained in Section 2.3.3) should be applied to develop a software unit in compliance
with ISO 26262. The information is summarized and analyzed step by step (the following five
items), so the stereotypes required for building the profile can be found.

1. Two are the work products of this phase that corresponds to the left-hand side of the V-model:
software unit design specification and software unit implementation. The software units have
to be implemented as specified. The stereotypes resulting from this requirement are:

• software unit design specification

• software unit implementation

The metaclass to extend is OSLC resource, as explained in Section 5.1. The two stereotypes
extend this metaclass to represent the two work products mentioned (see Figure 18). To
define them as OSLC resources is adequate since these work products are characterized by
many attributes, as we will see in the rest of the section.

Figure 18: Representation of SoftwareUnitDesignSpecification and SoftwareUnitImplementation.

Since the software units have to be implemented as specified, a relationship between the two
classes is created. Applying the profile and adding the connection, the diagram resulting is
the one in Figure 19.

46

Mälardalen University Master Thesis

Figure 19: Classes SoftwareUnitDesignSpecification and SoftwareUnitImplementation.

2. The detailed design will be implemented as a model or directly as source code, and the require-
ments shall be complied with if the software unit is safety-related. The implementation include
the generation of source code. Analysing this requirement, it is found that information of how
the units are implemented (model or code) must be provided, as well as the programming
language. This requirement also prescribes the need to define whether the software units are
safety-related or not. As we describe in Section 2.3.2, for defining the safety measures that
has to be applied to an item, the item requires an ASIL. So, ASIL is the indicator if a unit
is safety related (when the values A, B, C or D are assigned) or not (when the value QM is
assigned). The stereotypes resulting from this requirement are:

• ASIL

• Implementation Type

• Programming Language

These stereotypes are added to the diagram as the meta-attributes asil, implementationType
and programmingLanguage in the following way: the stereotype asil is added in both classes,
since the standard prescribes that ASIL values propagate through the items of the lifecycle
(ASIL decomposition is not considered in this analysis); the stereotype implementaitonType
is added to the class softwareUnitDesignImplementation, taking into account that the deci-
sion of what kind of implementation would be carried out is tipically taken during design
phases; and the stereotype programmingLanguage is added in the class softwareUnitImple-
mentation, because the programming language is part of the implementation. When talking
about cardinality (the amount of values that a meta-attribute is allowed to have), the analysis
is the following: every software unit has assigned just one ASIL value and it is mandatory,
so the cardinality is [1..1]. In the same way, the implementation type and the programming
language used are just one in every software unit, and this information is also mandatory to
have. So, their cardinality is also [1..1]. The result of this analysis is depicted in Figure 20.

Figure 20: ASIL, Implementation Type, and Programming Language.

It is possible to define a list of programming languages that can be used in the implementation
of the software units, but this list can be as long as the number of programming languages that
exist. For this reason, a String was defined as the data type of this meta-attribute, leaving
the opportunity to write one or other language. Moreover, the allowed values of the meta-
attributes asil and implementationType are predefined, and this is the reason why the value
types of these meta-attributes were defined as ASIL and ImplementationType respectively.
This value types are designed as enumerations in the profile (see Figure 21).

3. The software unit design shall be described using the notations listed in Table 2 (see Section
2.3.3). When analyzing this requirement, it is found that information about the type of
notation used to describe the design must be available. The notations listed in the Table 2
are ”Natural Language, Informal notations, Semi-formal notations and Formal Notations”.
The standard also says that other notations or a combination of the ones listed in the table
can be used. For this reason, a new element in this list is proposed: ”Tailored Notations”.
Moreover, the notations in the table are accompanied with a degree of recommendation, where

47

Mälardalen University Master Thesis

Figure 21: Enumerations ASIL and ImplementationType.

the recommendation marked as ”++” (meaning ”highly recommended”) must be preferred.
If a notation with this recommendation level is not selected, a rationale must be provided.
The previous analysis results in the definition of the following stereotypes:

• Design Notation Type

• Design Notation Rationale

The software unit design can be described with several notations, and at least one must
be available. So, the stereotype Design Notation Type is added to the profile as the meta-
attribute designNotationType with cardinality [1..*]. The stereotype Design Notation Ratio-
nale, which is a description of the decisions taken in selecting the design notations, and it
is not mandatory when the highly recommended notations are selected, is presented a the
meta-attribute designNotationRationale with cardinality [0..1]. The class is modified in the
way presented Figure 22.

Figure 22: Design Notation Type and Design Notation Rationale.

The Design Notation Rationale is a description (in natural language) of the decisions for
using the selected notations. For this reason, the data type is String. On the other hand,
the allowed values of the meta-attribute softwareUnitDesignNotation are listed in Table 2.
So, an enumeration is derived from this requirement (see Figure 23).

Figure 23: Enumeration softwareUnitDesignNotation.

4. The specification of the software units shall describe the functional behavior and the inter-
nal design required for their implementation. When analyzing this requirement, it is found
that information about the functional behavior shall be available. The functional behavior
represents what the software unit does. A description is also required for the understanding
of the unit, so this stereotype is added. Other element suggested in this requirement is the
detailed description of the internal design. However, the standard does not explicitly ad-
dress the internal design (the standard just said that ”shall be described to the level of detail
necessary for their implementation”). For this reason, the internal design required for the
implementation of the software unit will be addressed in the section 6.1.2, where the Scania
practices will be reviewed. From this requirement, the stereotype resulting is:

• Functional Behavior

48

Mälardalen University Master Thesis

• Description

Functional Behavior and the Description are written in natural language, and one value
for each must be available for making these values meaningful in a unit design. So, the
stereotypes are defined in the profile as two meta-attributes with data type String and car-
dinality [1..1]. These stereotypes are added to the class SoftwareUnitDesignSpecification as
is depicted in Figure 24.

Figure 24: Representation of Functional Behavior and Description.

5. The design principles listed in Table 3 should be applied to the design and the implementation
of software units, to achieve required design properties (More information about the design
properties in section 2.3.3). This requirement is analyzed in the same way that the design
notations since it corresponds to a list of properties that have to be selected according to a
degree of recommendation. So, the stereotypes resulting form this requirement are:

• Design Principle Selected

• Design Principle Selected Rationale

Many design principles can be selected in a design of a software unit (selected from the Table
3), and at least one must be available. So, this stereotype is added to the profile with a
data type DesginPrincipleMethod (defined as an enumeration) and cardinality [1..*]. The
rationale is a description (in natural language) of the decisions taken for using the selected
principles. One rationale is enough for this description, and it is not necessary when the
principles correspond with the highly recommended ones according to the ASIL. So, the
stereotype Design Principle Selected Rationale is added to the profile with data type String
and cardinality [0..1]. The meta-attributes are added to both classes SoftwareUnitDesign-
Specification and SoftwareUnitImplementation, since the properties have to be reached in
both stages of the lifecycle. The resulting diagram is depicted in Figure 25.

Figure 25: Representation of Design Principle Selected and Design Principle Selected Rationale.

The enumeration SoftwareUnitDesignPrinciple have the values taken from Table 3, and it is
depicted in figure 26.

6.1.2 Modelling Scania practices

Practices at Scania elucidate the detailed level at what the software units are designed and im-
plemented. The design is made as a model in Simulink (a model-based design program), and the
implementation of the software units is generated from this model in the programming language
C (as explained in 2.2). This information is summarized and analyzed step by step (the following
four steps), so the stereotypes required for completing the profile can be found.

49

Mälardalen University Master Thesis

Figure 26: Enumeration SoftwareUnitDesignPrinciple.

1. A Simulink model represents several software units. So, the generation of the code implements
several software units at the time, and it shows how these units are interrelated. When
analyzing this information, a relationship between software units is found where one software
unit can be related to one or more software units. In Scania, moreover, several software
units are implemented together. Therefore, the relationship implements can be detailed
with the cardinality [1..*]. The names of the classes softwareUnitDesignSpecification and
SoftwareUnitImplementation can be enriched with the names found in Scania for those work
products. The first one is called Simulink Model and the second one is called Application
Software. The result of this analysis is depicted in Figure 27

Figure 27: Relationships implements and isRelatedTo.

2. According to ISO 26262, a software unit is the smallest software representation that can
have independent testing. In Scania is found that software units that have standalone testing
are composed of functions, and those functions consist of subfunctions. This characteristic
defines the stereotype Software Unit Function, which is defined as an OSLC resource with
the meta-attribute description. One description is enough for every software unit function
and is written in natural language. So, the cardinality of the meta-attribute description is
[1..1], and the data type is String. Two relationships are also resulting from the definition
of the software unit functions: a relationship called containFunction, which connects the
class SoftwareUnitDesignSpecification, and the relationship containSubFunction, which is
a self-reflective relationship in the class softwareUnitFunction. The first relationship has
cardinality [1..*] since one software unit can have at least one, but also several software
functions. The second relationship has cardinality [0..*] considering that a function can have
several subfunctions, but also any subfunction. The result of this analysis is depicted in
Figure 28.

3. The software unit and the software unit functions have inputs and outputs. This inputs
and outputs are treated as variables. In requirements specifications, the inputs and outputs
variables of the software units are called input and output ports respectively. In the software
unit functions, they are also defined as inputs and outputs variables and are called input
argument and return value respectively. All variable types have the same kind of information:
description and data type. The analysis of these characteristics results in an OSLC resource
called Variable. This resource contains the meta-attributes description, a string value for

50

Mälardalen University Master Thesis

Figure 28: Software unit function class, relationships hasFunction and hasSubFunction.

allowing the definition of the variable, and data type, a value that can have one of the following
predetermined values: string, integer, boolean, double, float, dateTime and decimal (built-
in data types of XMLschema17]. Both, the softwareDesignUnitSpecification class and the
software unitFunctionClass have defined relationships for connecting the class variable in the
way depicted in Figure 29.

Figure 29: Class variable and the related relationships.

4. In the document specification AE201, detailed information of the variables is written. One
element found in this document is that the variables are expressed with units (they can be %,
volt, state and so on). Another element found is that there are constraints on the variables. A
constraint for a variable can have one of the types: required range or required accuracy. Addi-
tionally, configuration parameters are defined. Every configuration parameter has a name, a
description, and several parameter values. The parameter values are accompanied by a value
and a description. The analysis of the previous characteristics results in the definition of an
OSLC resource for defining the variable’s constraints. The class Constraint has a description
and a constraintType (required range or required accuracy). To relate the OSLC resource
Variable, with the OSLC resource Constraint, a relationship called isConstrainedBy is de-
fined. One variable can have several constraints. Two more OSLC resources result from this
analysis: ConfigurationParameter (with meta-attributes name and description) and Param-
eterValue (with meta-attributes value and description). The class ConfigurationParameter
is related directly with the class SoftwareUnitDesignSpecification (through the relationship
hasConfigurationParameter), and the class ParameterValue is related with the class Con-
figurationParameter (through the relationship hasParameterValue). The class Variable is
enriched with the meta-attribute unit, which has value type String. Figure 30 presents the
new elements added to the profile.

In addition, the enumeration ConstraintType(see Figure 31) is required.

17http://www.w3schools.com/xml/schema simple.asp

51

Mälardalen University Master Thesis

Figure 30: Definition of constraints and parameters.

Figure 31: Enumeration ConstraintType.

6.2 Attaching constraints to the metamodel

So far, the metamodel was structured with some constraints, for example, the cardinality of the
meta-attributes and relationships, as well as the allowed values (listed in enumerations) and the
data types. However, other kinds of constraints should be attached to the metamodel, so proper
validation of RDF data can be carried out. Following, information from the standard ISO 26262
that has to be included with the metamodel, as well as structural constraints resulting from the
metamodel itself, are presented .

1. The standard says that ”ASIL values are propagated throughout the items lifecycle”. In
the metamodel created, two items of the lifecycle are modeled: SoftwareUnitDesignSpecifica-
tion and SoftwareUnitImplementation. SoftwareUnitDesignSpecification inherits ASIL values
from the architecture and the safety requirements (not modeled in the context of this thesis).
This values must propagate to the SoftwareUnitImplementation. In the metamodel, it was
decided that several SoftwareUnitDesignSpecifications instances are implemented together
(given by the relationship [1..*] defined). So, a problem with the ASIL values propagation
appear, since there are several values coming from several instances of the SoftwareUnitDe-
signSpecification, but just one can be stored in the attribute asil of the SoftwareUnitIm-
plementation. To solve the ASIL inheritance problem, the highest ASIL of the instances
of SoftwareUnitDesignSpecification that are implemented together is selected and stored in
the ASIL attribute of the SoftwareUnitImplementation. The selection of the highest ASIL
is supported by the standard, since this condition is prescribed there. ASIL decomposition
is not evaluated in this constraint. The constraint is added to the metamodel as a note and
related with the class softwareUnitImplementation (see Figure 32).

2. The software units are implemented as specified. A bidirectional relationship between the
software unit design specification and the software unit implementation can provide a better
traceability between these two work products. This constraint does not require a note, since
can be defined with a structural element provided by the UML language: the two relationships
implements and isImplemented (see Figure 33).

3. Notations for software unit must be selected according to the ASIL and the recommendation

52

Mälardalen University Master Thesis

Figure 32: Constraint ASIL propagation.

Figure 33: Bidirectional constraint implements and isImplementedBy.

level (see Table 2). If these suggestions are not followed, a rationale must be provided. This
constraint represents a conditional property, that affects several meta-attributes in the meta-
model. The constraint should evaluate first the ASIL assigned to the software unit design
specification. With this ASIL, provide a list of design notations with the different recommen-
dations levels (++, + and o). If design notations with recommendations levels different to
”++” are selected, the meta-attribute designNotationRationale becomes mandatory (which
means that its cardinality change from [0..1] to [1..1]). The constraint is added as a note to
the OSLC resource softwareUnitDesignSpecficiation (see Figure 34).

Figure 34: Conditional constraint for design notations.

An enumeration with the recommendation levels is now required for implementing the previ-
ous constraint. The values in Table 2 are presented in the following way: Highly Recommended
corresponds with the value ++, Recommended corresponds with + and No recommendation,
corresponds with o. The enumeration is depicted in Figure 35.

Figure 35: Enumeration RecommenationLevel.

53

Mälardalen University Master Thesis

4. Design principles have to be also selected according to the ASIL and the recommendation
level. This constraint represents also a conditional property, with similar characteristics
like the one applied to the design notations in the previous item. This constraint is added
to the OSLC resources: softwareUnitDesignSpecification and softwareUnitImplementation,
since these two work products require to follow the design principles. Figure 36 presents the
addition of the constraint in the metamodel.

Figure 36: Conditional constraint for design principles selected.

5. In the metamodel, the SoftwareUnitDesignSpecification has two relationships that go to the
OSLC resource called Variable. These relationships are named: hasInputPort and hasOut-
putPort. In the Scania practices were found that and input port can not be and output port of
the same software unit, so these two relationships must be disjoint. A note with the disjoint
constraint is added to the relationships mentioned before (see Figure 37).

Figure 37: Disjoint constraint for input and output ports.

6. The class SoftwareUnitFunction as the class SoftwareUnitDesignSpecification are related to
variables twice. These relationships are called: hasInputArgument and hasReturnValue. An
input argument can not also be a return value. One note more, with a disjoint constraint, is
added to the OSLC resource variable (see Figure 38).

Figure 38: Disjoint constraint for input arguments and return values.

54

Mälardalen University Master Thesis

6.3 Adding context to the domain

As studied in Section 2.6.3, domains have an internal structure, but they are represented by
the UML package symbols. These packages are linked to other domains with dotted lines called
dependencies. Every domain also has a name and mission. This section presents the definition
of this elements in the following way: Subsection 6.3.1 presents the definition of the domain
name, mission and the arrangement of the internal structure, and Subsection 6.3.2 presents the
relationship of the domain modeled with other domains.

6.3.1 Domain name, mission and internal structure

A knowledge domain should have a name and a clear mission. These two components provide
context to the domain. From Section 5.1.1 it is recalled that one part required in the modeling is
the standard ISO 26262 part 6, item 8: Software unit design and implementation. A software unit
design belongs to the architectural management. From 5.1.2 is recalled that the profile created
is an extension of OSLC resource domain. Taking these premises into account, the domain name
should include words like OSLC, ISO 26262 and Architectural Management (AM). Since not all
the Architectural Management is included, the specific parts that are involved in the domain must
be specified. So, the name selected for the domain, the domain mission, as well as the elements
included in the domain are presented in Figure 39. Elements in the figure were colored so they can
be identified easier: elements colored in green are the OSLC resources, elements colored in pink
are constraints, and elements colored in yellow are enumerations.

Figure 39: Profile diagram: SoftwareUnitRelatedConcepts.

55

Mälardalen University Master Thesis

6.3.2 Relationships with other domains

Each domain provides services and makes use of other domains. Since this knowledge domain is
an element of the ISO 26262 lifecycle, the standard is taken again to search traces between the
domain created and others. The standard parts and its analysis are presented as follows:

1. ”The first objective of this sub-phase is to specify the software units in accordance with soft-
ware architectural design and the associated software safety requirements”. This requirement
suggests a relationship between the software architectural design related concepts, the soft-
ware safety requirements related concepts and the software unit related concepts. As its
name suggest, software architectural design belongs also to the AM domain, but the software
safety requirements related concepts belong to a domain called Requirements Management.

2. ”The third objective of this sub-phase is the static verification of the design of the software
units and their implementation”. This requirements suggests a relationship between the
verification related concepts and the software unit related concepts. According to [81], veri-
fication related concepts belongs to a domain called Quality Management.

As was mention in Section 2.6.2, a bridge exists between the domains, where a domain makes
assumptions, and the other domain takes those assumptions as requirements. For representing the
bridge, a dotted dependency is drawn. The result of the addition of domains and bridges is the
domain chart presented in Figure 40.

Figure 40: Domain chart.

6.4 Defining OSLC domain specification

For defining the OSLC resources, an OSLC domain specification must be provided. This domain
specification provides the vocabulary terms required for the creation of OSLC resources. It is
built taken into account the elements provided by the domain chart created in section 6.1 and
the definition of OSLC property constraints explained in Section 2.9.4. One of the first elements
required for the definition of a domain specification is to determine the XML namespace (which is
composed of a URI and a prefix). The idea of this thesis is that the domains specified here become
candidate for OSLC specifications, so the XML namespace proposed follows the standard defined
by OSLC community. For this, a proposal XML namespace is:

• URI: http://open-services.net/ns/iso26262am#

• Prefix: oslc iso26262am

Once the XML namespace is determined, the OSLC property constraints are defined for each
OSLC resource specified in the knowledge domain (see Figure 40). In Section 5.1.3 it was specified
the vocabularies that would be part of the definition of the OSLC resources. The vocabularies are:

56

http://open-services.net/ns/iso26262am#

Mälardalen University Master Thesis

• Dublin Core Metadata Initiative Terms, which has URI http://purl.org/dc/terms/ and
prefix dcterms.

• OSLC core, which has URI http://open-services.net/ns/core# and prefix oslc.

• XML Schema which has URI http://www.w3.org/2001/XMLSchema and prefix xsd.

Seven OSLC resources are defined, and they are presented as follows:

1. OSLC resource SoftwareUnitDesignSpecification: This OSLC resource is composed of eight
meta-attributes and five relationships. Table 10, presents the properties defined for this
resource.

2. OSLC resource SoftwareUnitImplementation: This OSLC resource is composed by four meta-
attributes and one relationship. Table 11 presents the definition of the properties for this
resource.

3. OSLC resource Variable: This OSLC resource is composed of three meta-attributes and one
relationship. Table 14 presents the definition of the properties for this resource.

4. OSLC resource Constraint : This OSLC resource is composed of two meta-attributes. It does
not have relationships. Table 12 presents the definitions of the properties for this resource.

5. OSLC resource ParameterValue: This OSLC resource is composed by two meta-attributes.
Table ?? presents the definition of the properties for this resource.

6. OSLC resource ConfigurationParameter : This OSLC resource is composed by two meta-
attributes and one relationship. Table 15 presents the definition of the properties for this
resource.

7. OSLC resource SoftwareUnitFunction: This OSLC resource is composed of one meta-attribute
and three relationships. The meta-attribute is called description, and its property definitions
is taken from dcterms. The two relationships define two new terms in the domain vocabulary.
Table 16 presents the definition of the properties for this resource.

57

http://purl.org/dc/terms/
http://open-services.net/ns/core#
http://www.w3.org/2001/XMLSchema

Mälardalen University Master Thesis

Table 10: OSLC definition for the resource SoftwareUnitDesignSpecification.

Prefixed Name Occurs
Value
Types

Rep. Range Description

Properties: meta-attributes

oslc iso26262am:
asil

Exactly
one

Local
resource

Inline Any
Defines the level to specify the
items necessary requirements of
ISO 26262.

oslc iso26262am:
implementation-
Type

Exactly
one

Local
resource

Inline Any
Describes the type of implemen-
tation type used to create the
software.

oslc iso26262am:
designNotation-
Type

One or
many

Local
resource

Inline Any
Describes the type of design no-
tation used to specify the unit.

oslc iso26262am:
designNotation-
Rationale

Zero
or one

String n/a n/a
Describes the rationale behind
the design notation method se-
lected.

oslc iso26262am:
functionalBehav-
ior

Exactly
one

String n/a n/a
Describes the functional be-
haviour of the software unit.

dcterms: de-
scription

Exactly
one

String n/a n/a
Descriptive text of the software
unit that is specified.

oslc iso26262am:
designPrincipleSe-
lected

One or
many

Local
resource

Inline Any
Describes the design principle
selected.

oslc iso26262am:
designPrincipleSe-
lectedRationale

Zero
or one

String n/a n/a
Describes the rationale behind
the design principle method se-
lected.

Properties: relationships

oslc iso26262am:
isRelatedTo

One or
many

Resource Reference
oslc iso26262am:
softwareUnitde-
signSpecification

A relationship that describes
the connection between a soft-
ware unit design specification
and other software unit design
specifications.

oslc iso26262am:
hasFunction

One or
many

Resource Reference
oslc iso26262am:
softwareUnit-
Function

A relationship that describes the
connection between a software
unit design specification and its
functions.

oslc iso26262am:
hasInputPort

One or
many

Resource Reference
oslc iso26262am:
Variable

A relationship that describes the
connection between a software
unit design specification and its
input ports.

oslc iso26262am:
hasOutputPort

One or
many

Resource Reference
oslc iso26262am:
Variable

A relationship that describes the
connection between a software
unit design specification and its
output ports.

oslc iso26262am:
hasConfigura-
tionParameter

One or
many

Resource Reference
oslc iso26262am:
ConfigurationPa-
rameter

A relationship that describes the
connection between a software
unit design specification and its
configuration parameters.

oslc iso26262am:
isImplementedBy

Exactly
one

Resource Reference
oslc iso26262am:
SoftwareUnitIm-
plementation

A relationship that describes the
connection between a software
unit design specification and the
software unit implementation.

Proposed IRI: http://open-services.net/ns/iso26262am#softwareUnitDesignSpecification

58

http://open-services.net/ns/iso26262am#softwareUnitDesignSpecification

Mälardalen University Master Thesis

Table 11: OSLC definition for the resource SoftwareUnitImplementation.

Prefixed Name Occurs
Value
Types

Rep. Range Description

Properties: meta-attributes

oslc iso26262am:
asil

Exactly
one

Local
resource

Inline Any

Defines the level to specify the
items necessary requirements of
ISO 26262. Allowed values are:
A, B, C,D, or QM.

oslc iso26262am:
programmingLan-
guage

Exactly
one

String n/a n/a
Defines the programming lan-
guage used to generate source
code of the software units.

oslc iso26262am:
designPrincipleSe-
lected

One or
many

Local
resource

Inline Any
Describes the design principle
selected. Allowed values in Ta-
ble 3

oslc iso26262am:
designPrincipleSe-
lectedRationale

Zero
or one

String n/a n/a
Describes the rationale behind
the design principle method se-
lected.

Properties: relationships

oslc iso26262am:
implements

One or
many

Resource Reference
oslc iso26262am:
softwareUnitde-
signSpecification

A relationship that describes
the connection between a soft-
ware unit implementation and
its software unit design specifi-
cations.

Proposed IRI: http://open-services.net/ns/iso26262am#softwareUnitDesignImplementation

Table 12: OSLC definition for the resource Constraint.

Prefixed Name Occurs
Value
Types

Rep. Range Description

Properties: meta-attributes

dcterms: de-
scription

Exactly
one

String n/a n/a
Descriptive text of the con-
straint that is specified.

oslc iso26262am:
constraintType

Exactly
one

Local
resource

Inline Any

Describes the type of the con-
straint. Allowed values are: Re-
quired range or Required accu-
racy.

Properties: relationships

No relationships

Proposed IRI: http://open-services.net/ns/iso26262am#Constraint

Table 13: OSLC definition for the resource ParameterValue.

Prefixed Name Occurs
Value
Types

Rep. Range Description

Properties: meta-attributes

oslc: name
Exactly
one

String n/a n/a
Represent the name of the Con-
figurationParameter.

dcterms: de-
scription

Exactly
one

String n/a n/a
Descriptive text of the parame-
ter value that is specified.

Properties: relationships

No relationships

Proposed IRI: http://open-services.net/ns/iso26262am#ParameterValue

59

http://open-services.net/ns/iso26262am#softwareUnitDesignImplementation
http://open-services.net/ns/iso26262am#Constraint
http://open-services.net/ns/iso26262am#ParameterValue

Mälardalen University Master Thesis

Table 14: OSLC definition for the resource Variable.

Prefixed Name Occurs
Value
Types

Rep. Range Description

Properties: meta-attributes

dcterms: de-
scription

Exactly
one

String n/a n/a
Descriptive text of the variable
that is specified.

oslc iso26262am:
dataType

Exactly
one

Resource Reference xsd: valueType

Describes the data type of the
variable. Allowed values are:
boolean, dateTime, decimal,
double, float,integer, string.

oslc iso26262am:
unit

Exactly
one

String n/a n/a
Describes the unit in which the
variable is expressed.

Properties: relationships

oslc iso26262am:
isConstrainedBy

Zero
or
many

Resource Reference
oslc iso26262am:
Constraint

A relationship that describes the
connection between a variable
and its constraints.

Proposed IRI: http://open-services.net/ns/iso26262am#Variable

Table 15: OSLC definition for the resource ConfigurationParameter.

Prefixed Name Occurs
Value
Types

Rep. Range Description

Properties: meta-attributes

oslc: name
Exactly
one

String n/a n/a
Represent the name of the Con-
figurationParameter.

dcterms: de-
scription

Exactly
one

String n/a n/a
Descriptive text of the configu-
ration parameter that is speci-
fied.

Properties: relationships

oslc iso26262am:
hasParameter-
Value

One or
many

Resource Reference
oslc iso26262am:
ParameterValue

A relationship that describes the
connection between a configura-
tion paramenter and its values.

Proposed IRI: http://open-services.net/ns/iso26262am#ConfigurationParameter

Table 16: OSLC definition for the resource SoftwareUnitFunction.

Prefixed Name Occurs
Value
Types

Rep. Range Description

Properties: meta-attributes

dcterms: de-
scription

Exactly
one

String n/a n/a
Descriptive text of the software
unit that is specified.

Properties: relationships

oslc iso26262am:
hasSubFunction

One or
many

Resource Reference
oslc iso26262am:
softwareUnit-
Function

A relationship that describes the
connection between a software
unit function and its subfunc-
tions.

oslc iso26262am:
hasInputArgu-
ment

One or
many

Resource Reference
oslc iso26262am:
Variable

A relationship that describes the
connection between a software
unit function and its input ar-
guments.

oslc iso26262am:
hasReturnValue

One or
many

Resource Reference
oslc iso26262am:
Variable

A relationship that describes the
connection between a software
unit function and its return val-
ues.

Proposed IRI: http://open-services.net/ns/iso26262am#SoftwareUnitFunction

60

http://open-services.net/ns/iso26262am#Variable
http://open-services.net/ns/iso26262am#ConfigurationParameter
http://open-services.net/ns/iso26262am#SoftwareUnitFunction

Mälardalen University Master Thesis

6.5 Shaping the RDF resources

This section is created for exploring the constraints found on the knowledge domain presented in
Figure 39 and classify them according to certain criteria. Once the constraints of RDF data are
listed, they are mapped to the RDF data shapes languages selected (ReSh, ShEx and SHACL),
in order to find a RDF data shape language candidate for the definition of the shapes for the
domain oslc iso26262am: SoftwareUnitRelatedConcepts. This section is structured in the following
way: Subsection 6.5.1 presents the definition of the requirements for a RDF constraint language;
Subsection 6.5.2 presents the mapping of the requirements for a RDF constraint language to RDF
data shapes languages; and Subsection 6.5.3 presents the summary of the comparative study related
to constraint languages.

6.5.1 Defining the requirements for a RDF constraint language

As mention in Section 2.8.2, the W3C RDF Data Shapes working group is aiming for finding
a proper validation for RDF data. One of its contributions is the creation of a database of re-
quirements on RDF constraints validation and formulation18. This database is a space were data
practitioners can contribute with their own RDF data constraints needs. Recently, an evaluation
of RDF validation requirements presented in this database were made by Bosch et al. [88]. This
last job describes in detail each requirement within the RDF validation requirements database.
For this reason, it is taken into account for naming and describing the validation constraints found
in the knowledge domain presented in Figure 39. The next list, which have in total ten constraints,
presents the classification of the requirements for RDF constraint languages.

1. Requirement 1 - Disjoint properties. This requirement is defined in the following way:
”A disjoint property states that all the properties are pairwise disjoint. It means that an
individual x can not be connected to an individual y by these property”. In the domain
specification for software unit related concepts, this requirement is found in the following
properties:

• The properties hasInputPort and hasOutputPort are disjoint. It is expressed as dis-
joint(hasInputPort, hasOutputPort).

• The properties hasInputArgument and hasReturnValue are disjoint. It is expressed as
disjoint(hasInputArgument, hasReturnValue).

2. Requirement 2 - Minimum qualified cardinality restrictions. This requirement is
defined in the following way: ”it contains all those individuals that are connected by a prop-
erty to at least n different individuals of a particular class or data range”. In the domain
specification for software unit related concepts, this requirement is found in all the properties,
and it corresponds with the number written in the left side of the pair [min..max] which ac-
company all the properties in Figure 39. For example, property designNotationType in the
OSLC resource SoftwareUnitDesignSpecification which is presented with cardinality [1..*],
has minimum qualified cardinality 1.

3. Requirement 3 - Maximum qualified cardinality restrictions. This requirement is
defined in the following way: ”it contains all those individuals that are connected by a prop-
erty to at most n different individuals/literals that are instances of a particular class or data
range”. In the domain specification for software unit related concepts, this requirement is
found in all the properties, and it corresponds with the number written in the right side of the
pair [min..max] which accompany all the properties in Figure 39. For example, property de-
signNotationType in the OSLC resource SoftwareUnitDesignSpecification which is presented
with cardinality [1..*], has maximum qualified cardinality *, which means ”many”.

4. Requirement 4 - Exact qualified cardinality restrictions. This requirement is defined
in the following way ”An exact cardinality restriction contains all those individuals that are
connected by a property to exactly n different individuals that are instances of a particular

18http://lelystad.informatik.uni-mannheim.de/rdf-validation/

61

Mälardalen University Master Thesis

class or data range.”. In the domain specification for software unit related concepts, this
requirement is found in those properties that are described in the Figure 39 with [1..1].

5. Requirement 5 - Cardinality shortcuts. Requirements 2, 3 and 4 can be grouped and
defined together in a requirement called cardinality shortcuts. This requirement is defined in
the following war: ”pair of values that establish maximum and minimum cardinality”. The
list of shortcuts is the following:

• Optional and non-repeatable [0..1]

• Optional and repeatable [0..*]

• Mandatory and non-repeatable [1..1]

• Mandatory and repeatable[1..*]

6. Requirement 6 - Inverse object property. This requirement is defined in the following
way ”properties are used bidirectionally and then accessed in the inverse direction”. In the
domain specification for software unit related concepts, this requirement is found in the pair
of properties: implements and isImplementedBy

7. Requirement 7 - Context-specific Exclusive Or of properties groups. This require-
ment is defined in the following way: ”inclusive OR is a logical connective joining two or more
predicates that yields the logical value true when at least one of the predicates is true”. In the
domain specification for software unit related concepts, for example, this requirement is found
when there is one value for asil and a designNotationType (with a highly recommended value)
OR asil and designNotationType (with a recommended value) and designNotationRationale.

8. Requirement 8 - Allowed values. This requirement is defined in the following way: ”it
is an exhaustive enumeration of the valid values”. Allowed values can be:

• literals of a list of allowed literals, for example, the allowed values for the asil property
are ”A”,”B”, ”C”, ”D”, ”QM”.

• types literals of specific types, for example, a description has to be a string or a value
has to be a float.

9. Requirement 9 - Conditional properties. This requirement is defined in the following
way: ”if specific properties are present, then specific other properties have to be present”.
In the domain specification for software unit related concepts, for example, if the value for
designNotationType do not corresponds with a highly recommended value then the design-
NotationRationale property is mandatory.

10. Requirement 10 - Handle RDF collections. This requirement is defined in the following
way: ”it is a requirement that handles different types of RDF requirements in the collections,
like the comparison of elements in a collection”. In the domain specification for software unit
related concepts, for example, the asil property of the software units that are implemented
together, have to be compared, so the highest ASIL is inherited by the property asil of the
softwareUnitImplementation. This property may permit the generation of the constraint
name in Figure 39 ASIL propagation.

6.5.2 Mapping requirements for RDF constraints to RDF data shapes languages

In this section, a mapping of the requirements for RDF constraints to the RDF data shapes lan-
guages is presented. For this, the list of requirements presented in section 6.5.1 is recalled and
developed in the languages that support it. To distinguish the language used in the mapping, a pre-
fix, that shows the name of the language is selected, i.g. for ReSh, the prefix is oslc iso26262am;
for ShEx, the prefix is shex iso26262am; and for SHACL, the prefix is shacl iso26262am.

62

Mälardalen University Master Thesis

1. Requirement 1 - Disjoint properties. ReSh and ShEx do not provide a construct for
making properties disjoint, but SHACL provides the construct sh:disjoint, which ”constraints
a pair of properties so that the set of values of both properties at a given focus node must not
share any nodes” [9]. The fragment of SHACL program presented in Listing 9, shows how
the construct sh:disjoint is used.

sh :p rope r ty [
s h : c l a s s shac l i s o26262am:Var i ab l e ;
s h : d i s j o i n t shac l i so26262am:has InputPort ;
sh:minCount 1 ;
sh:name ”has output port ”ˆˆ x s d : s t r i n g ;
s h : p r e d i c a t e shac l i so26262am:hasOutputPort ;

] ;

Listing 9: Disjoint properties in SHACL.

Listing 9, presents the definition of the property hasOutputPort (this definition is made with
the construct sh:predicate shacl iso26262am:hasOutputPort. For disjoining this property from
the property hasInputPort, the element sh:disjoint shacl iso26262am:hasInputPort is added
in the definition of the property.

2. Requirement 2 - Minimum qualified cardinality restrictions. ReSh and ShEx do not
provide a constructor for defining minimum qualified cardinality. In SHACL the construct
sh:minCount is used for defining this requirement. When the minimum cardinality is defined
in SHACL, but not the maximum, it means that the property have at least 1 instance, but
also can have many. The property isRelatedTo is presented in Listing 10, where a minimum
cardinality restriction is defined.

sh :p rope r ty [
s h : c l a s s shac l i s o26262am:So f twar eUn i tDe s i gnSpec i f i c a t i on ;
s h : d e s c r i p t i o n ”””A r e l a t i o n s h i p that d e s c r i b e s the connect ion

between a so f tware un i t des ign s p e c i f i c a t i o n and other
so f tware un i t des ign s p e c i f i c a t i o n s . ”””ˆˆ x s d : s t r i n g ;

sh:minCount 1 ;
sh:name ” i s r e l a t e d to ”ˆˆ x s d : s t r i n g ;
sh:nodeKind sh : IRI ;
s h : p r e d i c a t e shac l i so26262am: i sRe la t edTo ;

] ;

Listing 10: Definition of minimum qualified cardinality restrictions in SHACL.

3. Requirement 3 - Maximum qualified cardinality restrictions. ReSh and ShEx do not
provide a constructor for defining maximum qualified cardinality. In SHACL the construct
sh:maxCount is used for defining this requirement. In the initial definition of the domain
softwareUnitRelatedConcepts, the property designNotationRationale is created as optional.
It means that the maximum cardinality is one, but it is not mandatory, so the minimum
cardinality is zero. This is expressed in SHACL, using the construct sh:maxCount, but it
does not need the construct sh:minCount to define that zero is the minimun. Listing 11,
shows the definition of the property mentioned.

sh :p rope r ty [
sh :datatype x s d : s t r i n g ;
s h : d e s c r i p t i o n ” Desc r ibe s the r a t i o n a l e behind the des ign notat ion

method s e l e c t e d . ”ˆˆ x s d : s t r i n g ;
sh:maxCount 1 ;
sh:name ” des ign notat ion r a t i o n a l e ”ˆˆ x s d : s t r i n g ;
s h : p r e d i c a t e shac l i s o26262am:de s i gnNota t i onRat i ona l e ;

] ;

Listing 11: Definition of minimum qualified cardinality restrictions in SHACL.

63

Mälardalen University Master Thesis

4. Requirement 4 - Exact qualified cardinality restrictions. ReSh and ShEx can express
exact cardinality restrictions when it is [1..1] or [0..1] (this is cover by the requirement 5 -
cardinality shortcuts) but can not define other kind of limits. In SHACL the limits of the
cardinality can be defined, using the constructs sh:minCount and sh:maxCount together.
The property designNotationType, is a property have maximum five allowed values, defined
in the enumeration SoftwareUnitDesignNotations. Since it does not have meaning if there
are more that five values selected for this property, it can be defined with exact qualified
cardinality [1..5]. The property is presented in Listing 12, where maximum and minimum
cardinality are defined.

sh :p rope r ty [
s h : c l a s s shac l i so26262am:So f twareUni tDes ignNotat ion ;
s h : d e s c r i p t i o n ” Desc r ibe s the type des ign notat ion method used to

s p e c i f y the un i t . The value can be : Natural language ,
In formal notat ions , Semiformal Notations , Formal Notat ions or
Ta i lo red Notation . ”ˆˆ x s d : s t r i n g ;

sh:maxCount 5 ;
sh:minCount 1 ;
sh:name ” des ign notat ion type ”ˆˆ x s d : s t r i n g ;
sh:nodeKind sh : IRI ;
s h : p r e d i c a t e shac l i so26262am:des ignNotat ionType ;

] ;

Listing 12: Definition of the exact cardinality in SHACL.

5. Requirement 5 - Cardinality shortcuts. This implementation covers the requirements
2 and 3 defined in section 6.5.1. The requirement 4 is partially covered, when the exact
cardinality is [0..1] or [1..1]. Cardinality shortcuts are present in ReSh and ShEx, but not in
SHACL (but they can be expressed with the construct sh:minCount and sh:maxCount used
together). In ReSh, the construct oslc:occurs is used to define the cardinality of the property.
The shortcut available in ReSh are:

• http://open-services.net/ns/core#Exactly-one

• http://open-services.net/ns/core#Zero-or-one

• http://open-services.net/ns/core#Zero-or-many

• http://open-services.net/ns/core#One-or-many

The definition of the property functionalBehavior, with cardinality shortcut Exactly-One in
ReSh is presented in Listing 13.

< !−−Property 3 : func t i ona lBehav io r−−>
<o s l c : p r o p e r t y>

<o s l c : P r o p e r t y>
<os lc :name>f unc t i ona lBehav io r</ os lc :name>
<o s l c : o c c u r s r d f : r e s o u r c e=”ht t p : //open−s e r v i c e s . net /ns/ core#

Exactly−one”/>
<o s l c : p r o p e r t y D e f i n i t i o n r d f : r e s o u r c e=” h t t p : //open−s e r v i c e s . net

/ns/ i so26262#func t i ona lBehav io r ”/>
<os l c : va lueType r d f : r e s o u r c e=” h t t p : //www. w3 . org /2001/XMLSchema#

s t r i n g ”/>
<o s l c : r eadOn ly>t rue</ o s l c : r eadOn ly>

</ o s l c : P r o p e r t y>
</ o s l c : p r o p e r t y>

Listing 13: Definition of cardinality shortcuts in ReSh.

In ShEx, cardinality constraints are expressed with the signs ?, +, *, {y,z} or any symbol,
as it is explained in Table 4. The property functionalBehavior defined in ShEx is presented
in Listing 14. The property does not have any symbol after the assignation of the data type
xsd:string, which means that the cardinality is Exactly-one.

64

http://open-services.net/ns/core#Exactly-one
http://open-services.net/ns/core#Zero-or-one
http://open-services.net/ns/core#Zero-or-many
http://open-services.net/ns/core#One-or-many

Mälardalen University Master Thesis

#Property : f u n c t i o n a l Behaviour
shex i so26262am: funct iona lBehav iour x s d : s t r i n g ,

Listing 14: Definition of cardinality shortcuts in ShEx.

As explained before, cardinality shortcuts do not exists in SHACL, but cardinality can be
expressed expressed separately with the constructs sh:minCount and sh:maxCount used to-
gether. The property functionalBehavior is expressed in SHACL, in Listing 15.

sh :p rope r ty [
sh :datatype x s d : s t r i n g ;
s h : d e s c r i p t i o n ””” Desc r ibe s the f u n c t i o n a l behaviour o f the

so f tware un i t . ”””ˆˆ x s d : s t r i n g ;
sh:maxCount 1 ;
sh:minCount 1 ;
sh:name ” f u n c t i o n a l behavior ”ˆˆ x s d : s t r i n g ;
s h : p r e d i c a t e shac l i s o26262am: func t i ona lBehav i o r ;

] ;

Listing 15: Definition of cardinality shortcuts in SHACL.

6. Requirement 6 - Inverse object property. This requirement can be fulfilled in ShEx
and SHACL directly. In ReSh the definition of two properties - relationships should partially
cover the bidirectionality of them. In ShEx, the direction of the relationship is changed
by prefixing the triple constraint with the symbol ˆ. The property isImplementedBy is the
inverse of the property implements (see Figure 39) and it is expressed in ShEx in Listing 16.

#Shape: Software un i t des ign S p e c i f i c a t i o n
<So f twareUni tDes ignSpec i f i ca t i onShape>{
.
. #other p r o p e r t i e s
.
#R e l a t i o n s h i p : isImplementdBy

ˆ shex iso26262am: implements @<SoftwareUnitImplementationShape>+
}

#Shape: Software un i t Implementation
<SoftwareUnitImplementationShape>{

.

. #d e f i n i t i o n o f the p r o p e r t i e s

.
#R e l a t i o n s h i p : implements

ˆ shex iso26262am:isImplementsBy @<So f twareUn i tDes i gnSpec i f i c a t i on>
}

Listing 16: Definition of Inverse property in ShEx.

In Listing 16 the relationship isImplementedBy is defined as an inverse property in the shape
SoftwareUnitImplementation and the the relationship implements is defined as an inverse
property in the shape SoftwareUnitDesignSpecification. With exemplification purposes, both
relationships were defined, but just one is required.

In SHACL is applied the same principle that is used in ShEx. In listing 17, the class defined
is softwareUnitDesignSpecification and the property-relationship implements, is defined as an
inverse property in this class, using the construct sh:inverseProperty.

shac l i s o26262am:So f twar eUn i tDe s i gnSpec i f i c a t i on
r d f : t y p e r d f s : C l a s s ;
r d f : t y p e sh:Shape ;

65

Mälardalen University Master Thesis

r d f s : l a b e l ” Software un i t des ign s p e c i f i c a t i o n ”ˆˆ x s d : s t r i n g ;
s h : i n v e r s e P r o p e r t y [

s h : c l a s s shac l i so26262am:Sof twareUnit Implementat ion ;
s h : d e s c r i p t i o n ” i t i s an i n v e r s e property were the r e l a t i o n s h i p

d e s c r i b e s the connect ion between a so f tware un i t
implementation and i t s so f tware un i t des ign s p e c i f i c a t i o n s ”ˆˆ
x s d : s t r i n g ;

sh:minCount 1 ;
sh:name ” implements ”ˆˆ x s d : s t r i n g ;
sh:nodeKind sh : IRI ;
s h : p r e d i c a t e shac l i so26262am: implements ;

] ;

Listing 17: Definition of Inverse property in SHACL.

Inverse properties are not possible to define in ReSh. However, some kind of bidirectional-
ity can be expressed, defining both relationships. Listing 18 presents the definition of the
properties isImplementBy, where the range is SoftwareUnitImplementation (this marks the
direction of the relationship). Listing 19 presents the definition of the properties imple-
ments, where the range is SoftwareUnitDesignSpecification (this marks the direction of the
relationship).

< !−−Proper ty : r e l a t i o n s h i p ” isImplementedBy”−−>
<o s l c : p r o p e r t y>

<o s l c : P r o p e r t y>
<os lc :name>isImplementedBy</ os lc :name>
<o s l c : o c c u r s r d f : r e s o u r c e=” ht t p : //open−s e r v i c e s . net /ns/ core#

Exaclty one ”/>
<o s l c : p r o p e r t y D e f i n i t i o n r d f : r e s o u r c e=”h t t p : //open−s e r v i c e s . net

/ns/ i so26262#isImplementedBy”/>
<os l c : va lueType r d f : r e s o u r c e=” h t t p : //open−s e r v i c e s . net /ns/ core#

Resource ”/>
<o s l c : r e p r e s e n t a t i o n r d f : r e s o u r c e=” h t tp : //open−s e r v i c e s . net /ns/

core#Reference ”/>
<o s l c : r a n g e r d f : r e s o u r c e=”h t t p : //open−s e r v i c e s . net /ns/ i so26262#

SoftwareUnitImplementat ion”/>
<o s l c : r eadOn ly>t rue</ o s l c : r eadOn ly>

</ o s l c : P r o p e r t y>
</ o s l c : p r o p e r t y>

Listing 18: Definition of the property isImplementedby in ReSh.

< !−−Proper ty : r e l a t i o n s h i p ” implements ”−−>
<o s l c : p r o p e r t y>

<o s l c : P r o p e r t y>
<os lc :name>implements</ os lc :name>
<o s l c : o c c u r s r d f : r e s o u r c e=” ht t p : //open−s e r v i c e s . net /ns/ core#One

−or−many”/>
<o s l c : p r o p e r t y D e f i n i t i o n r d f : r e s o u r c e=”h t t p : //open−s e r v i c e s . net

/ns/ i so26262#implements”/>
<os l c : va lueType r d f : r e s o u r c e=” h t t p : //open−s e r v i c e s . net /ns/ core#

Resource ”/>
<o s l c : r e p r e s e n t a t i o n r d f : r e s o u r c e=” h t tp : //open−s e r v i c e s . net /ns/

core#Reference ”/>
<o s l c : r a n g e r d f : r e s o u r c e=”h t t p : //open−s e r v i c e s . net /ns/ i so26262#

So f twar eUn i tDes i gnSpec i f i c a t i on ”/>
<o s l c : r eadOn ly>t rue</ o s l c : r eadOn ly>

</ o s l c : P r o p e r t y>
</ o s l c : p r o p e r t y>

Listing 19: Definition of the property implements in ReSh.

66

Mälardalen University Master Thesis

7. Requirement 7 - Context-specific Exclusive Or of properties groups. This property
can not be implemented in ReSh. In ShEx the vertical bar is used for implementing Exclusive
Or, so properties can be grouped together. Listing 20 shows the following condition: When
it is selected ASIL A, the value of the property havingAsilA has to be true. When Rec-
ommendationLevel is assigned highlyRecommended, the designNotationType is restricted to
natural language and informal notations. In case that the recommendationLevel assigned
is recommended, the designNotationType property is restricted to the values semiformalNo-
tations, formalNotations and TailoredNotations, and the property designNotationRationale
becomes mandatory.

<So f twar eUn i tDes i gnSpec i f i c a t i on> {
Ass igns ASIL A to the so f tware un i t
(shex iso26262am:havingAsi lA (shex i so26262am:t rue) ,
Ass igns h igh ly Recommended type to the so f tware un i t
shex iso26262am:recommendationLevel (shex iso26262am:highlyRecommended

) ,
R e s t r i c t s the s e l e c t i o n o f des ign notat ion type to those a l lowed

f o r h igh ly recommended
shex iso26262am:des ignNotat ionType (shex iso26262am:natura lLanguage

shex i so26262am: in fo rma lNotat ions) | Operator Exc lus ive Or (|)
Ass igns ASIL A to the so f tware un i t
shex iso26262am:havingAsi lA (shex i so26262am:t rue) ,
Ass igns Recommended type to the so f tware un i t
shex iso26262am:recommendationLevel (shex iso26262am:recommended) ,
R e s t r i c t s the s e l e c t i o n o f des ign notat ion type to those a l lowed

f o r recommended type
shex iso26262am:des ignNotat ionType (

shex i so26262am:semi formalNotat ions
shex i so26262am: formalNotat ions shex i so26262am:Ta i lo redNotat ions
) ,

#Makes the property des ignNotat ionRat iona l e mandatory
shex i so26262am:des ignNotat ionRat iona l e x s d : s t r i n g |

(. . . Same kind o f c o n s t r a i n t s f o r ASIL B,C and D are de f ined here , QM
r e s t r i c t s only to h igh ly recommended l e v e l)

}

Listing 20: Grouping properties using ShEx.

In SHACL exists the construct sh:or which provides a similar function that the OR in ShEx.
Listing 21 shows the similar functionality reached in ShEx in Listing 20, but using a shape
in SHACL.

shacl iso26262am:Asi lAHighlyRecommendedLevels
r d f : t y p e sh:Shape ;
r d f s : l a b e l ” A s i l A Highly Recommended l e v e l s ”ˆˆ x s d : s t r i n g ;
s h : c o n s t r a i n t [

s h : o r (
[

sh :p rope r ty [
sh :hasValue shac l i so26262am:A ;
sh:minCount 1 ;
s h : p r e d i c a t e s h a c l i s o 2 6 2 6 2 a m : a s i l ;

] ;
]
[

s h :p rope r ty [
sh :hasValue shacl iso26262am:Highly Recommended ;
sh:minCount 1 ;
s h : p r e d i c a t e shac l i so26262am:recommendat ionLeve l ;

] ;
]

67

Mälardalen University Master Thesis

[
s h :p rope r ty [

s h : i n (
shac l i so26262am:Natura lLanguage
shac l i s o26262am: In fo rma lNota t i ons

) ;
sh:minCount 1 ;
s h : p r e d i c a t e shac l i so26262am:des ignNotat ionType ;

] ;
]

) ;
] ;

s h : s c op e C l a s s shac l i s o26262am:So f twar eUn i tDe s i gnSpec i f i c a t i on ;
.

Listing 21: Grouping properties using SHACL.

8. Requirement 8 - Allowed values. Allowed values is a requirement that can be imple-
mented in the three languages. In ReSh, it is implemented using the construct oslc:allowedValue.
Listing 22 presents the definition of the property implementationType, and the allowed values
Code and Model.

< !−−Proper ty : implementationType−−>
<o s l c : p r o p e r t y>

<o s l c : P r o p e r t y>
<os lc :name>implementationType</ os lc :name>
<o s l c : o c c u r s r d f : r e s o u r c e=” ht t p : //open−s e r v i c e . net /ns/ core#

Exactly−one”/>
<o s l c : p r o p e r t y D e f i n i t i o n r d f : r e s o u r c e=” h t t p : //open−s e r v i c e s . net

/ns/ i so26262#implementationType ”/>
<os l c : va lueType r d f : r e s o u r c e=” h t t p : //open−s e r v i c e s . net /ns/ core#

LocalResource ”/>
<o s l c : r e p r e s e n t a t i o n r d f : r e s o u r c e=” h t tp : //open−s e r v i c e s . net /ns/

core#I n l i n e ”/>
<o s l c : r a n g e r d f : r e s o u r c e=” h t t p : //open−s e r v i c e s . net /ns/ core#Any”

/>
<o s l c : a l l ow e d Va l ue r d f : r e s o u r c e=”h t t p : //open−s e r v i c e s . net /ns/

i so26262#Code”/>
<o s l c : a l l ow e d Va l ue r d f : r e s o u r c e=”h t t p : //open−s e r v i c e s . net /ns/

i so26262#Model”/>
<o s l c : r eadOn ly>t rue</ o s l c : r eadOn ly>

</ o s l c : P r o p e r t y>
</ o s l c : p r o p e r t y>

Listing 22: Allowed values in ReSh.

In ShEx, allowed values are place in parenthesis after the definition of the property. Listing
23 presents the definition of the property implementationType.

#A t t r i b u t e : implementation type
shex iso26262am:implementationType (shex i so26262am:code

shex iso26262am:model) ,

Listing 23: Allowed values in ReSh.

In SHACL, the allowed values can be defined in two ways. One way is defining a class
without properties but with instances. This class is see as an enumeration. The instances
of this class are used the values of the enumeration, and the allowed values for the property
that use the enumeration. For example, the class ImplementationType (which is defined
in Listing 24) corresponds with the enumeration that have the same name in the domain
SoftwareUnitRealtedConcepts.

68

Mälardalen University Master Thesis

shac l i so26262am:Implementat ionType
r d f : t y p e r d f s : C l a s s ;
r d f : t y p e sh:Shape ;
r d f s : l a b e l ” Implementation type ”ˆˆ x s d : s t r i n g ;

.

Listing 24: Enumeration ImplementationType, defined as a class in SHACL.

Then, instances of the class Implementation Type (defined in Listing 25), which are the
values Model and Code, become in the allowed values for the property implementationType
(defined in Listing 27)

shac l i so26262am:Code
r d f : t y p e shacl i so26262am:Implementat ionType ;
r d f s : l a b e l ”Code”ˆˆ x s d : s t r i n g ;

.

shac l i so26262am:Model
r d f : t y p e shacl i so26262am:Implementat ionType ;
r d f s : l a b e l ”Model”ˆˆ x s d : s t r i n g ;

.

Listing 25: Instances of the class ImplementationType SHACL.

sh :p rope r ty [
s h : c l a s s shacl i so26262am:Implementat ionType ;
s h : d e s c r i p t i o n ” Desc r ibe s the type o f implementation type used to

c r e a t e the so f tware . Allowed va lue s a r e : Model or Code . ”ˆˆ
x s d : s t r i n g ;

sh:maxCount 1 ;
sh:minCount 1 ;
sh:name ” implementation type ”ˆˆ x s d : s t r i n g ;
sh:nodeKind sh : IRI ;
s h : p r e d i c a t e shac l i so26262am: implementat ionType ;

] ;

Listing 26: property implementation type in SHACL.

This way to define enumerations gives flexibility to the implementation, since the values of
the enumeration are not codified. However, the allowed values can be burned in the code
using the constructor sh:in. Listing ?? shows the SHACL fragment where the elements are
defined using sh:in.

sh :p rope r ty [
s h : d e s c r i p t i o n ” Desc r ibe s the type o f implementation type used to

c r e a t e the so f tware . Allowed va lue s a r e : Model or Code . ”ˆˆ
x s d : s t r i n g ;

s h : i n (
shac l i so26262am:Code
shac l i so26262am:mode l

) ;
sh:maxCount 1 ;
sh:minCount 1 ;
sh:name ” implementation type ”ˆˆ x s d : s t r i n g ;
s h : p r e d i c a t e shac l i so26262am: implementat ionType ;

] ;

Listing 27: Implementing allowed values in SHACL using sh:in.

9. Requirement 9 - Conditional properties. SHACL provides the construct sh:filterShape,
that can be used to limit the scopes of the nodes that are required to be validated. This

69

Mälardalen University Master Thesis

characteristic allows the creation filters that meet the requirements defined, like conditionals
created with case. The Turtle snippet below (Listing 28), shows the shape for a software
unit design specification in SHACL, where the ASIL is A, recommended design notation is
selected, and thus the design notation rationale becomes mandatory.

shacl iso26262am:DesignNotationShape Asi lARecommendedLevel
r d f : t y p e sh:Shape ;
r d f s : l a b e l ”DesignNotationShape AsilARecommendedLevel ”ˆˆ x s d : s t r i n g ;
s h : d e s c r i p t i o n ”ASIL A, recommended nota t i on s and r a t i o n a l e must be

provided ” ;
s h : f i l t e r S h a p e [

r d f : t y p e sh:Shape ;
sh :p rope r ty [

sh :hasValue shac l i so26262am:A ;
s h : p r e d i c a t e s h a c l i s o 2 6 2 6 2 a m : a s i l ;

] ;
s h :p rope r ty [

sh :hasValue shacl iso26262am:Recommended ;
s h : p r e d i c a t e shac l i so26262am:recommendat ionLeve l ;

] ;
] ;

s h :p rope r ty [
sh :datatype x s d : s t r i n g ;
sh:minCount 1 ;
s h : p r e d i c a t e shac l i s o26262am:de s i gnNota t i onRat i ona l e ;

] ;
sh :p rope r ty [

s h : i n (
shac l i so26262am:Semi formalNotat ions
shac l i so26262am:FormalNotat ions
shac l i s o26262am:Ta i l o r edNota t i on s

) ;
sh:minCount 1 ;
s h : p r e d i c a t e shac l i so26262am:des ignNotat ionType ;

] ;
s h : s c op e C l a s s shac l i s o26262am:So f twar eUn i tDe s i gnSpec i f i c a t i on ;

.

Listing 28: Defining groups of properties in SHACL using sh:filterShape.

Define shapes or conditional properties is not possible in ShEx or ReSh

Requirement 10 - Handle RDF collections. This requirement is not possible to imple-
ment in ReSh or ShEx. However, SHACL allows for using SPARQL, and the property can be
implemented. According to the documentation, one way to define this kind of properties is
using the construct sh:derivedValues. Unfortunately, the environment used for implementing
SHACL specifications does not have execution language ready for this kind of properties.
However, it is presented the definition of the property, following documentation principles in
Listing 29.

shac l i s o26262am:As s i gnAs i l
r d f : t y p e sh:Shape ;
r d f s : l a b e l ” Assign a s i l ”ˆˆ x s d : s t r i n g ;
sh :p rope r ty [

sh :de r i vedVa lue s [
r d f : t y p e sh:SPARQLValuesDeriver ;
s h : s e l e c t ”””

SELECT ? as i l Imp lementat ion
WHERE {

? t h i s r d f : t y p e shac l i so26262am:Sof twareUnit Implementat ion .
? so f twareUnit shac l i so26262am: is ImplementedBy ? t h i s .

70

Mälardalen University Master Thesis

? so f twareUnit s h a c l i s o 2 6 2 6 2 a m : a s i l ? a s i l .
BIND (? a s i l AS ? as i l Imp lementat ion) .
}
””” ;

] ;
sh:maxCount 1 ;
sh:minCount 1 ;
s h : p r e d i c a t e s h a c l i s o 2 6 2 6 2 a m : a s s i g n e d A s i l ;

] ;
s h : s c op e C l a s s shac l i so26262am:Sof twareUnit Implementat ion ;

.

Listing 29: Deriving values of properties in SHACL.

6.5.3 Summary of the comparative study related to constraint languages

The constraints defined in Section 6.5.1 where mapped to different three RDF constraint languages
(ReSh, ShEx and SHACL) in Section 6.5.2. The result of this mapping is summarized in Table 17.

Table 17: Requirements for RDF constraints mapped to three different RDF data shapes languages.

Requirement ReSh ShEx SHACL

Disjoint properties No No Yes(sh:disjoint)

Minimum qualified cardinality re-
strictions

No No Yes (sh:minCount)

Maximum qualified cardinality re-
strictions

No No Yes (sh:maxCount)

Exact qualified cardinality restric-
tions

Just exactly-one No
Yes (using sh:min and
sh:max

Cardinality shortcuts

Yes(exactly-one,
zero-or-many,
zero-or-one, one-
or-may)

Yes(using
,?,+,{y,z})

No(but can be reached
using sh:min and
sh:max)

Inverse object property No Yes (using ˆ) Yes(sh:inverseProperty)

Context-specific Exclusive Or of
properties groups

No
Ye(using operator
or)

Yes(sh:or)

Allowed values
Yes
(oslc:allowedValues)

Yes(with the val-
ues defined in ()

Yes(sh:in)

Conditional properties No
No(but can be
reacher using
Exclusive-OR)

Yes(Using SPARQL
or using filter shapes
sh:filterShape)

Handle RDF collections No No
Yes (using SPARQL
queries)

6.6 Discussion

The definition of ISO 26262-compliant OSLC resources shaped with SHACL has required an in-
tense and careful analysis process. Initially, this process involved the identification of the domain,
domains terms and domain relationships that address the knowledge needed for the development
of this thesis. As it is explained in Section 5.1.1, the elements found in the standard ISO 26262
(specifically the part 6: Software unit design and specification), the OSLC standard (especially
the core specification), and Scania practices were considered for the formulation of this domain.
Scania practices, in particular, have enriched and given relevance to the domain since industrial
best practices are also embraced by the standard ISO 26262, as well as the tailored decisions. As
presented in Section 5.1.2, the OSLC domain specifications provided by the OSLC community does
not support the needs for the creation of ISO 26262-related resources. The available OSLC domain
specifications were created for purposes different to the ones that ISO 26262 is focused on. For this
reason, an entirely new OSCL domain that addresses specific vocabulary terms required by ISO

71

Mälardalen University Master Thesis

26262:2011 part 6 was created from scratch. This new OSLC domain, which has AM (Architecture
Management)-OSLC appearance, but tackles specifically the design and implementation of soft-
ware units, is called OSLC ISO26262AM-SoftwareUnitRelatedConcepts. The domain specification
created also required the use of existing RDF vocabularies. To find the most suitable vocabularies,
an analysis on the RDF vocabularies provided by LOV was performed. This analysis, even though
was not exhaustive, provides the basic list of vocabularies that were used in the construction of
the domain. A more in-depth analysis of RDF languages must be performed in the future, so
vocabulary items are not defined again, and the information of the resources is better connected
with other information on the Web. Having defined the type of elements required for building the
domain, the characteristics of the OSLC domain type required, and the vocabularies to be reused,
the next step was the establishment of an approach for converting ISO 26262 elements into OSLC
domain specification. The approach used for building the domain specification took elements from
the method used in [81]. The purpose of the approach is the translation of the normative parts
of the standard into OSLC resources and the addition of the Scania practices. The result ob-
tained after applying the approach was the depiction of the UML-like profile developed in Section
6.1. Once the core domain was sketched, additional constraints (those different to the structural
constraints) identified primarily in the standard ISO 26262, were also included. The represented
constraints were then mapped to three different but prominent RDF constraint languages namely
ReSh, ShEx, and SHACL (see Section 6.5). Other RDF constraint languages could be used for
constraining the OSLC resources identified for ISO 26262:2011 part 6. However, the selected ones
have precise features that made them good candidates for this study. First, ReSh is the constraint
language created specifically for shaping OSLC resources; second, ShEx is a language that has
demonstrate, in several comparative studies, its high degree of expressiveness; and third SHACL
is a language that compiles the best features found in other constraint languages. Also, SHACL
is a new W3C specification from 2016, and it has not been part of other comparative studies,
so far. The mapping of the constraints found with the RDF constraint languages selected shows
that shapes composed of separately-defined properties in ReSh, make this language limited in its
expressiveness. Instead, ShEx and specially SHACL present structures and constructs that allow
for defining properties in a more flexible way. ShEx is a language that has its syntax, where the
definition of elements requires the use of fewer constructs. This syntax makes the language less
verbose, but at the same time, less intuitive. In ReSh, for example, groups of property-values that
depend on other property-values can not be specified since ReSh is a language where the shapes
are defined as a list of properties. In ShEx, this same property can be expressed using particular
operators (exclusive-or, for example), so many properties are linked together inside one shape.
SHACL handle this property defining separate constraints, using a construct called filterShape.
Also, SHACL has specialized constructs that permit the definition of constraint using SPARQL.
All these characteristics, as well as remarkable technical features are presented in the tables 8, 9
and 17. In these tables, the information related to the three languages is presented as comparison
charts. The observations of these tables allow for understanding the outstanding advantages of
using SHACL. So, given this, SHACL is presented as the language that should be preferred for
shaping OSLC resources.

A case study is conducted in Chapter 7, to explore the applicability of the domain designed in
OSLC and shaped with SHACL. The information presented in this case study is taken from Scania
documents and is recalled in Section 2.2.3. The case study aims at providing a model derived form
the metadata developed in SHACL.

72

Mälardalen University Master Thesis

7 Case study

The solution found in chapter 6 is used in this chapter for conducting the case study. The example
used is the software unit Fuel Level Estimation Algorithm, recalled in Section 2.2.3. This section
is structured in the following way: Section 7.1 presents the elements required for modelling the
information of a software unit, Section 7.2 presents the instance of the software unit model, and
Section 7.3 provides the validation of the model for the case study.

7.1 Modeling the case study

In this section, the elements required for the case study are identified. Information comes from
three different sources. Specific information is recalled from data that is available at Scania. Other
information is selected from previous works done at Scania like [13, 3, 18, 97]. Information not
recalled from documents is assumed by the author of this thesis. These assumptions are based
on documents observations. This subsection is organized as follows: Subsection 7.1.1 presents the
data related to the structure of the software unit, Subsection 7.1.2 presents the gathering of ASIL
information, and Subsection 7.1.3 presents the gathering of other ISO 26262-related information.

7.1.1 The structure of the software unit

Scania practices are not in compliance with the standard ISO 26262 yet. It means that the
information about a software unit, used in this section, is not necessarily safety-related, or at least,
not in the sense that is mandated by ISO 26262. However, this information will be used in the
creation of the case study, taking into account this limitation. The software unit used is called fuel
level estimation algorithm and it is recalled in Section 2.2.3.

7.1.2 ASIL definition

Various research efforts for aligning the safety lifecycle proposed by ISO 26262 to the current
practices carried out at Scania, have been done during the last few years. The creation of a safety
in compliance with ISO 26262 can be found in [13] and [3]. In order to align the Scania practices,
when creating a software unit, with the requirements of the standard, we take a look in these two
thesis and recall from them the safety-related information associated with the software unit fuel
level estimation algorithm. In [13], is stated that ”no hazard analysis and no ASIL classification
have been made in Scania, since the standard is not adopted. However, this evidence was provided
by the author of [13], where HAZOP (Hazard and Operability study) was used for hazard analysis
and a mapping of the User Functional Requirements (UFRs) found at Scania to the Safety Goals
(SGs) required by ISO 26262 was made. For the purpose of this thesis the hazard analysis and
Safety goals presented are the ones related with the unit studied in the previous section. This unit
is defined in the document AE201 and the HAZOP is presented in Figure 41.

The safety goals defined for the software unit are presented in Figure 42. The ASIL value for
both is D. Since ASIL values are propagated during the safety lifecycle and no ASIL decomposition
was carried out in [13], the value taken for the purpose of the modeling of this thesis is D.

7.1.3 Other ISO 26262-related information

Other ISO 26262-related elements are required for building the case study. This information is
gathered through the observation of the documents already studied. Following it is explained how
this information is found.

• Implementation type: In Scania, the software design and implementation is carried out
in Simulink, using models.

• Programming Language: The models created using Simulink are then converted to C
code automatically.

• Design notation type: According to [98], notations for architecture documentation are the
following:

73

Mälardalen University Master Thesis

Figure 41: Hazard Analysis using adapted HAZOP [13].

Figure 42: Safety goals for FLEDS [13].

– Informal notations: Views are depicted using general purpose diagramming and the
semantics is characterized in natural language.

– Semiformal notations: Views are expressed in a standardized notation that prescribes
graphical elements and rules of construction, like UML.

– Formal notations: Views are described in a notation that has a precise semantics.
Formal analysis and generation of code is possible.

Taking [98] into account, it is found that the software unit design at Scania uses informal
notation (the information presented in the documents AE201 and AER 201), and Formal
notations (the block diagrams created in Simulink, used then for obtaining code in C).

• Design principles used: The design principles required for being in compliance with the
standard are listed in Table 3. Pure observations of the models lets us to see that the principle
used are the following:

– No multiple use of variable names: The names of the variables are maintained during
the creation of the software unit and inside the software functions.

– No recursion. There are not recursive functions in the model.

7.2 Case study model

This section is organized in the following way: Subsection 7.2.1 presents the case study information,
organized in an UML Object diagram, and Subsection 7.2.2 presents the information of the case

74

Mälardalen University Master Thesis

study in an RDF model constrained by SHACL.

7.2.1 UML Object diagram

The elements identified in Section 7.1 are modeled in a UML object diagram. This modeling
elements are presented in the following five items.

1. Software unit design specification object : To instantiate the SoftwareUnitDesignSpecfication
class the information required is the ASIL, which was defined in Subsection 7.1.2 as ”D”.
Other information, defined in Subsection 7.1.3, are: implementationType: ”Model”, design-
Notationtype: ”Informal notations” and ”Formal notations”, and DesignPrincipleSelected:
”No multiple use of variable names” and ”No recursion”. Since the design notation types
and the design notation principles corresponds with the ASIL selected for the software unit
design, the attributes designNotationRationale and designPrincipleSelectedRationale are not
mandatory. Information about functionalBehavior and description were found in Section
7.1.2 and they are defined as ”Software unit in charge of calculating the current percentage
level in the fuel tank” for the first attribute, and ”Software unit composed of several functions
and implemented as a defined user block in Simulink” for the second attribute. A summarize
of the instance information is presented in Table 18. The instance of the class is presented
in Figure 43.

Table 18: Data required for instantiate the class SoftwareUnitDesignSpecification.

Attribute Data

asil D

implementationType Model

designNotationType Informal Notations
designNotationType Formal Notations

functionalBehaviour
Software unit in charge of calculating the current percentage level in
the fuel tank.

description
Software unit composed of several functions and implemented as a
defined user block in Simulink.

designPrincipleSelected No multiple use of variable names.

designPrincipleSelected No recursion

Figure 43: SoftwareUnitDesignSpecification instance: Fuel Level Estimation Algorithm.

2. Software unit implementation object : To instantiate the SoftwareUnitImplementation class,
the information required is the ASIL, which is inherited from the ASIL of the corresponding
software unit design specification, and its value is ”D”; programmingLanguage, which was
defined in Section 7.1.3 as ”C”; and the designPrinciple selected, the same used in the cor-
responding software unit design specification, since the model, at Scania, represent both the
design and the implementation. A summarize of this information is presented in Table 19
and the object instantiation is presented in Figure 44.

3. Software unit function object : The software unit function instantiated in this model is Calcu-
latCurrentVolumeLevels. The information required for doing this instance is the description,

75

Mälardalen University Master Thesis

Table 19: Data required for instantiate the class SoftwareUnitImplementation.

Attribute Data

asil D

programmingLanguage C
designPrincipleSelected No multiple use of variable names.

designPrincipleSelected No recursion

Figure 44: SoftwareUnitImplementation instance: Fuel Level Estimation Algorithm.

which is found in Section 7.1.1. This software Unit function has two subfunctions. The infor-
mation required for the instantiate is summarized in Table 20, and the instance is depicted
in Figure 45.

Table 20: Data required for instantiate the class SoftwareUnitFunction.

Attribute Data

function: CalculatCurrentVolumeLevels

description
This software unit function is in charge of mapping the fuel level
sensor depending on the tank variant, and defining the x0 state which
is the startup state of the Kalman filter.

subfunction: Precalculations

description
In charge of doing some precalculations required for finding the mea-
sured levels

subfunction: CalculateX0
description In charge of the startup state for the Kalman filter algorithm.

Figure 45: SoftwareUnitFunction instance: CalculatCurrentVolumeLevels.

4. Variables The variables related with the software unit design specification are described in
Section 7.1.1. A summarize of the information required for the instance is presented in Table
21, and the instantiation of this variables is presented in Figure 46. The complete object
diagram elements, including configuration parameters and parameter values is depicted in
figure 47.

76

Mälardalen University Master Thesis

Table 21: Data for the input and output ports.

Attribute Data

input port: fuel params inputBus str
description required to storage the fuel parameters values stored in the RTD

dataType String

unit Not specified

input port: fuel inputBus str
description Fuel values obtained from the fuel level sensors and stored in the RTD.

dataType String

unit Not specified

input port: tankCapacity str
description Read the capacity of the fuel tank.

dataType String

unit L

Required range 0 to 2500

Required accuracy 1

output port: fuelVolume str
description Estimated total fuel level converted to liters

dataType String

unit L

output port: fuelLevelTot str
description Estimated total fuel level in the tank
dataType String

unit %

Required range 0 to 100

Required accuracy 0.4

output port: reset str
description It is a variable that provide information about the good status of the signals.

dataType String

unit Not specified

Figure 46: Variable instances: Input port objects.

77

Mälardalen University Master Thesis

F
ig

u
re

47
:

R
ep

re
se

n
ta

ti
on

o
f

a
th

e
so

ft
w

a
re

u
n

it
d

es
ig

n
a
n

d
im

p
le

m
en

ta
ti

o
n

in
fo

rm
a
ti

o
n

.

78

Mälardalen University Master Thesis

7.2.2 Case study data constrained with SHACL

Using the editor TopBraid Composer, the instances objects presented in Section 7.2.1 are easily
adhered to a RDF model that is being constrained by SHACL.

1. Creating the enumerations: For the modeling, six enumerations (depicted in Figure 39)
are required, namely ASIL, SoftwareUnitDesignPrinciple, RecommendationLevel, Software-
UnitDesignNotation, ConstraintType and ImplementationType. For exemplification purposes,
the methodology to add the enumerations used in this project is explained with the ASIL
enumeration. In the composer, a shape with the name ASIL is created. No constraints,
scopes or properties are added to this shape. The created shape is populated with the in-
stances, namely A, B, C, D and QM. Figure 48 shows the composer with the shape ASIL
created and populated with the instances.

Figure 48: Enumeration ASIL in SHACL (created in TopBraid Composer).

2. Adding data to the classes: In Figure 49 is presented the specification for the class
SoftwareUnitDesignSpecification, in SHACL, using the tool TopBraid Composer.

Figure 49: Software Unit Design Specification shape in SHACL (created in TopBraid Composer).

Seven classes have been modeled in Figure 39, namely SoftwareUnitDesignSpecification, Soft-
wareUnitImplementation, SoftwareUnitFunction, Variable, Constraint, ConfigurationParam-

79

Mälardalen University Master Thesis

eter and ParameterValue. All this classes has also been created using the tool TopBraid
composer. Once the classes are created, the instances can also be added. TopBraid connects
all the information and shows if the constraints are violated. The form that contains the
data for Fuel Level Estimation Algorithm is presented in Figure 50.

Figure 50: Data for Fuel Level Estimation Algorithm in SHACL (created in TopBraid Composer).

The RDF (serialized with XML/RDF) generated by TopBraid is presented in Listing 30.

<?xml v e r s i o n=” 1 .0 ” encoding=” utf−8”?>
<rdf:RDF

xmlns : rd f=” h t t p : //www. w3 . org /1999/02/22− rdf−syntax−ns#”
xmlns : shac l i so26262am=” h t t p : // h t t p : //open−s e r v i c e s . net /ns/

shac l i so26262am#”
xmlns:dcterms=” h t t p : // pur l . org /dc/ terms /”
xmlns : rd f s=” h t t p : //www. w3 . org /2000/01/ rdf−schema#”>

<r d f : D e s c r i p t i o n rd f : about=” h t t p : // h t t p : //open−s e r v i c e s . net /ns/
shac l i so26262am#FuelLeve lEst imat ionAlgor i thm ”>

< r d f s : l a b e l r d f : d a t a ty p e=” h t tp : //www. w3 . org /2001/XMLSchema#s t r i n g ”>
Fuel l e v e l e s t imat ion a lgor i thm</ r d f s : l a b e l>

<shac l i so26262am:hasConf igurat ionParameter r d f : r e s o u r c e=” h t t p : //
h t tp : //open−s e r v i c e s . net /ns/ shac l i so26262am#
Conf igurat ionParameter 2 ”/>

80

Mälardalen University Master Thesis

<shac l i so26262am: is ImplementedBy r d f : r e s o u r c e=” h t t p : // h t t p : //open−
s e r v i c e s . net /ns/ shac l i so26262am#
FuelLevelAlgor ithmImplementat ion ”/>

<s h a c l i s o 2 6 2 6 2 a m : a s i l r d f : r e s o u r c e=” h t tp : // h t t p : //open−s e r v i c e s . net
/ns/ shac l i so26262am#D”/>

<shac l i so26262am:has InputPort r d f : r e s o u r c e=” h t t p : // h t t p : //open−
s e r v i c e s . net /ns/ shac l i so26262am#fue l pa rams inputBus s t r ”/>

<shac l i so26262am:has InputPort r d f : r e s o u r c e=” h t t p : // h t t p : //open−
s e r v i c e s . net /ns/ shac l i so26262am#tankCapac i ty s t r ”/>

<shac l i so26262am:has InputPort r d f : r e s o u r c e=” h t t p : // h t t p : //open−
s e r v i c e s . net /ns/ shac l i so26262am#f u e l i n p u t B u s s t r ”/>

<shac l i so26262am:hasOutputPort r d f : r e s o u r c e=” h t t p : // h t t p : //open−
s e r v i c e s . net /ns/ shac l i so26262am#r e s e t s t r ”/>

<d c t e r m s : d e s c r i p t i o n r d f : d a t a t y p e=” ht t p : //www. w3 . org /2001/XMLSchema#
s t r i n g ”>Software un i t composed o f s e v e r a l f u n c t i o n s and
implemented as a de f ined user b lock in Simulink .</
d c t e r m s : d e s c r i p t i o n>

<shac l i so26262am:des ignNotat ionType r d f : r e s o u r c e=” ht t p : // h t t p : //
open−s e r v i c e s . net /ns/ shac l i so26262am#InformalNotat ions ”/>

<shac l i so26262am: implementat ionType r d f : r e s o u r c e=” ht t p : // h t t p : //
open−s e r v i c e s . net /ns/ shac l i so26262am#Model”/>

<shac l i so26262am:hasFunct ion r d f : r e s o u r c e=” h t t p : // h t tp : //open−
s e r v i c e s . net /ns/ shac l i so26262am#CalculatCurrentVolumeLevels ”/>

<shac l i so26262am:hasOutputPort r d f : r e s o u r c e=” h t t p : // h t t p : //open−
s e r v i c e s . net /ns/ shac l i so26262am#f u e l L e v e l T o t s t r ”/>

<shac l i so26262am:hasConf igurat ionParameter r d f : r e s o u r c e=” h t t p : //
h t tp : //open−s e r v i c e s . net /ns/ shac l i so26262am#
Conf igurat ionParameter 1 ”/>

<s h a c l i s o 2 6 2 6 2 a m : d e s i g n P r i n c i p l e S e l e c t e d r d f : r e s o u r c e=” h t tp : // h t tp :
//open−s e r v i c e s . net /ns/ shac l i so26262am#
N o m u l t i p l e u s e o f v a r i a b l e n a m e s ”/>

<r d f : t y p e r d f : r e s o u r c e=” h t t p : // h t t p : //open−s e r v i c e s . net /ns/
shac l i so26262am#So f twar eUn i tDes i gnSpec i f i c a t i on ”/>

<shac l i so26262am:recommendat ionLeve l r d f : r e s o u r c e=” ht t p : // h t t p : //
open−s e r v i c e s . net /ns/ shac l i so26262am#Recommended”/>

<shac l i so26262am:des ignNotat ionType r d f : r e s o u r c e=” ht t p : // h t t p : //
open−s e r v i c e s . net /ns/ shac l i so26262am#FormalNotations ”/>

<s h a c l i s o 2 6 2 6 2 a m : d e s i g n P r i n c i p l e S e l e c t e d r d f : r e s o u r c e=” h t tp : // h t tp :
//open−s e r v i c e s . net /ns/ shac l i so26262am#No recur s i ons ”/>

<shac l i so26262am:hasOutputPort r d f : r e s o u r c e=” h t t p : // h t t p : //open−
s e r v i c e s . net /ns/ shac l i so26262am#fue lVo lume st r ”/>

<shac l i s o26262am: func t i ona lBehav i o r r d f : d a t a t y p e=” h t t p : //www. w3 . org
/2001/XMLSchema#s t r i n g ”>Software un i t in charge o f c a l c u l a t i n g
the cur rent percentage l e v e l in the f u e l tank .</
shac l i s o26262am: func t i ona lBehav i o r>

</ r d f : D e s c r i p t i o n>

</rdf:RDF>

Listing 30: RDF data for the Software Unit Fuel Level Estimation Algorithm.

Figure 51 presents the RDF graphs that corresponds with the XML/RDF fragment presented
in Listing 30. This graph is created with the W3C RDF validation service19.

19https://www.w3.org/RDF/Validator/

81

https://www.w3.org/RDF/Validator/

Mälardalen University Master Thesis

F
ig

u
re

51
:

R
D

F
gr

ap
h

s
re

p
re

se
n
ta

ti
o
n

o
f

X
M

L
/
R

D
F

fr
a
g
m

en
t

p
re

se
n
te

d
in

L
is

ti
n

g
3
0
.

82

Mälardalen University Master Thesis

7.3 Model Validation

The model generated in Figure 51 presents the safety-related information for the software unit
Fuel Level Estimation Algorithm. This model was automatically generated from a SHACL-defined
metamodel. This section is presenting validation mechanisms, so the information generated cor-
responds with the ISO 26262 requirements for software unit design specification. This section is
structured in the following way: Subsection 7.3.1 presents the validation of the ISO 26262 require-
ments in the model, and Subsection 7.3.2 presents the method used for the constraints validation.

7.3.1 ISO 26262 requirements validation

To verify the completeness of the model generated, a set of questions, based on the standard
ISO 26262, have to be answered. These questions are formulated, taking into account the re-
quirements for software unit design specification presented in the standard (these requirements, as
recalled in Section 2.3.3 corresponds with the numerals 8.4.2 to 8.4.4). The questions are presented
in Table 22.

Table 22: Questions related with the ISO 26262 requirements for software unit design specification.

Requirement Question

8.4.2
Is there information that express if the software unit specified is
safety-related?
Is there information that communicate the design notations used for
describing the software unit?

8.4.3
Is the functional behavior of the software unit described?
Is the internal design of the software units described?

8.4.4
Are there design principles associated with the software unit design
specification?

The questions are answered as follows:

1. Is there information that express if the software unit specified is safety-related?

Yes, there is information that specify if the software unit design specification is safety-related.
This information is defined in the model as shacl iso26262am:asil, which value in the instance
is http: // open-services. net/ ns/ shacl_ iso26262am# D

2. Is there information that communicate the design notations used for describing
the software unit?

Yes, There is information that communicate the design notations used for describing the soft-
ware units. This information is defined in the model as shacl iso26262am:designNotationType,
which values in the instance are: http: // open-services. net/ ns/ shacl_ iso26262am#

InformalNotations and http: // open-services. net/ ns/ shacl_ iso26262am# FormalNotations

3. Is the functional behavior of the software unit described?

Yes, the functional behavior of the software unit is described. This information is defined in
the model as shacl iso26262am:functionalBehavior, which value in the instance is the string
”Software unit in charge of calculating the current percentage level in the fuel tank.”

4. Is the internal design of the software units described?

Yes, there are characteristics of software unit that describe its internal design. These char-
acteristics and their values are:

• rdfs:label :Fuel level estimation algorithm.

• dcterms:description:Software unit composed of several functions and implemented as a
defined user block in Simulink.

• shacl iso26262am:hasInputPort : http://open-services.net/ns/shacl_iso26262am#
fuel_params_inputBus_str

83

http://open-services.net/ns/shacl_iso26262am#D
http://open-services.net/ns/shacl_iso26262am#InformalNotations
http://open-services.net/ns/shacl_iso26262am#InformalNotations
http://open-services.net/ns/shacl_iso26262am#FormalNotations
http://open-services.net/ns/shacl_iso26262am#fuel_params_inputBus_str
http://open-services.net/ns/shacl_iso26262am#fuel_params_inputBus_str

Mälardalen University Master Thesis

• shacl iso26262am:hasInputPort : http://open-services.net/ns/shacl_iso26262am#
fuel_inputBus_str

• shacl iso26262am:hasInputPort : http://open-services.net/ns/shacl_iso26262am#
tankCapacity_str

• shacl iso26262am:hasOutputPort : http://open-services.net/ns/shacl_iso26262am#
fuelVolume_str

• shacl iso26262am:hasOutputPort : http://open-services.net/ns/shacl_iso26262am#
reset_str

• shacl iso26262am:hasOutputPort : http://open-services.net/ns/shacl_iso26262am#
fuelLevelTot_str

• shacl iso26262am:hasFunction: http://open-services.net/ns/shacl_iso26262am#

CalculatCurrentVolumeLevels

• shacl iso26262am:hasConfigurationParameter : http://open-services.net/ns/shacl_
iso26262am#ConfigurationParameter_1

5. Are there design principles associated with the software unit design specification?

Yes, there are design principles associated with the software unit specified. This information
is defined in the model as http: // http: // open-services. net/ ns/ shacl_ iso26262am#
No_ multiple_ use_ of_ variable_ names and http://http://open-services.net/ns/shacl_

iso26262am#No_recursions

7.3.2 Constraints validation

To verify the constraint formulated in Section 6.5 is required tool support. Since the tool used to
generate the SHACL specification was TopBraid Composer, this same tool is in charge of verifying
the constraints. It helped in the verification of the majority of the constraint in an automatic way.
Just one constraint, defined in Section 6.5 as Disjoint properties did not have yet support in this
tool. An example of this verification can be seen in Figure 52 where a ! symbol is placed at the
end of the property that is missing a value. Other way in which TopBraid shows error messages is
in its SHACL validation box with messages like the one in Figure 53.

Figure 52: Constraint Verification (defined in TopBraid Composer).

Figure 53: Validation Message (defined in TopBraid Composer).

The software unit modeled did not required the association of ”rationale” fields, like designNo-
tationRationale or designPrincipleSelectedRationale since all the information directly complaint
with the ASIL assigned. However, if ASIL and other fields, like designNotationType or implemen-
tationType did not correspond, the field designNotationRationale must be activated as mandatory,
with the help of the tool TopBraid Composer.

84

http://open-services.net/ns/shacl_iso26262am#fuel_inputBus_str
http://open-services.net/ns/shacl_iso26262am#fuel_inputBus_str
http://open-services.net/ns/shacl_iso26262am#tankCapacity_str
http://open-services.net/ns/shacl_iso26262am#tankCapacity_str
http://open-services.net/ns/shacl_iso26262am#fuelVolume_str
http://open-services.net/ns/shacl_iso26262am#fuelVolume_str
http://open-services.net/ns/shacl_iso26262am#reset_str
http://open-services.net/ns/shacl_iso26262am#reset_str
http://open-services.net/ns/shacl_iso26262am#fuelLevelTot_str
http://open-services.net/ns/shacl_iso26262am#fuelLevelTot_str
http://open-services.net/ns/shacl_iso26262am#CalculatCurrentVolumeLevels
http://open-services.net/ns/shacl_iso26262am#CalculatCurrentVolumeLevels
http://open-services.net/ns/shacl_iso26262am#ConfigurationParameter_1
http://open-services.net/ns/shacl_iso26262am#ConfigurationParameter_1
http://http://open-services.net/ns/shacl_iso26262am#No_multiple_use_of_variable_names
http://http://open-services.net/ns/shacl_iso26262am#No_multiple_use_of_variable_names
http://http://open-services.net/ns/shacl_iso26262am#No_recursions
http://http://open-services.net/ns/shacl_iso26262am#No_recursions

Mälardalen University Master Thesis

8 Conclusions

This chapter present the final thoughts of the job elaborated in this master thesis. It is organized
as follows: In Section 8.1 the summary of the outcomes of the thesis work is presented, and in
Section 8.2 directions for future actions are described.

8.1 Summary

This thesis has explored means to mitigate the process of creating an ISO 26262-compliant safety
case, where product-based evidence is provided. The data management is supported by the def-
inition of an OSLC domain specification that addresses a tiny portion of the standard. This
infrastructure aims at providing the traceability required when different tools are used for the doc-
umentation of the safety lifecycle. So, tools that addresses requirements specification, architecture
specification, among others, can cooperate in a seamless way. Specifically, this thesis consisted in
the identification, representation, and shaping of resources needed to create ISO 26262-compliant
safety case, with the provision of software unit design and implementation information. The focus
was limited to a small portion of ISO 26262, but the results can be extended to other parts of the
standard. The portion corresponds to the left-hand side of the V-model for product development
at the software level (ISO 26262-6:2011): software unit design and specification.

To enable the creation of the OSLC domain, the first step was the identification of the right
resources to be exchanged. During the identification stage, elements required for building a do-
main are analyzed. For this, the approach discussed by [99] was also adopted in this thesis. This
approach included a careful analysis of the standard, as well as the documentation provided by Sca-
nia. The second step was the representation of these resources. For the resources representation,
elements identified are characterized and depicted in a UML-like model. UML profile was selected
for modeling, since Scania practices have adopted this modeling support technique, and the results
of this thesis have to be aligned with the practices carried out by the company. For representing the
already identified resources was necessary to determine if an OSLC existing specification domain
could be use or extended. It was found that the current versions of the OSLC domain specifi-
cation could not support the requirements of the ISO 26262-related resources. So, in the UML
profile was included the definition of a new AM-like OSLC-domain called OSLC ISO26262AM-
SoftwareUnitRelatedConcepts that targets ISO 26262-6. Finally, throughout the shaping stage,
the constraints found for describing and enhancing the quality of the resources, are specified and
developed in three prominent languages. Shaping domains specification ease the process of col-
lecting information since it guides the user in the addition of the correct information. These
constraints came from a second reading and more profound analysis of the standard ISO 26262.
Once the constraints were established, a comparative study of three prominent RDF constraint
languages (ReSh, ShEx and SHACL) was performed in order to find a good candidate for shaping
the ISO 26262-related work products. The RDF constraint language that shows more expressivity
and better technical support was SHACL. So, in the framework of this thesis, SHACL is considered
the best alternative for shaping the RDF resources required. Taking this into account, metadata in
SHACL was specified, and an instance from a case study extracted from Scania, the software unit:
fuel level estimation algorithm, was generated. The metadata specification in SHACL was created
using the tool Top Braid Composer, which successfully produce well-formed XML resources, and
could validate the majority of the constraints defined. The information represented in the resource
originated have shown compliance with the requirements of the ISO 26262 for software unit design
specification.

8.2 Future work

For certification purposes, or in the case of ISO 26262-compliant assessment, it is important to
provide process-based arguments [91] and product-based arguments [100] that shows that ISO
26262-compliant process activities have been performed (or tailored appropriately). The provision
of these arguments can be done in a (semi)automatic way, so the human reasoning can be supported.
This (semi)automatic generation of argument-fragments enables the reduction of the efforts done
by safety engineers when creating safety arguments. The work presented in this thesis enables part

85

Mälardalen University Master Thesis

of the generation of the argument-fragments, but more more steps are needed, so the provision of
an ISO 26262-compliant safety case can be completely supported. The steps that are though as
future job are the following:

• As proposed by [81], similar knowledge representation for product-based evidence, with the
definition of constraints to validate and guarantee the quality of data provided by the models,
can be extended to other parts of the standard ISO 26262.

• Process-based evidence can also be analyzed, so metamodels for supporting this king of
argumentation can be defined.

• The provision of traceability between both sides of the V-model can be analyzed, merging
the results of this work (centered on the left side of the V-model) with the work [81] centered
on the right-hand side of the V-model.

• Further, query mechanisms for retrieving information from resources, and the creation of an
argument-fragment from the resources retrieved, can be exploited.

86

Mälardalen University Master Thesis

References

[1] “VINNOVA.” [Online]. Available: http://www.vinnova.se/sv/resultat/projekt/effekta/
espresso/

[2] “Gen&ReuseSafetyCases-SSF.” [Online]. Available: http://www.es.mdh.se/projects/
393-genreusesafetycases

[3] A. Gallucci, “Building a safety case for a small sized product line of Fuel Level Display
Systems,” Master thesis, Mälardalen University, 2013.

[4] R. Agrawal, “Semi-Automated Formalization and Verification of Automotive Requirements
using Simulink Design Verifier,” Master Thesis, KTH, 2015.

[5] “ISO 26262. Road vehicles Functional safety.” 2011.

[6] J. M. Alvarez-rodŕıguez, J. Llorens, M. Alejandres, and J. Miguel, “OSLC - KM : A knowl-
edge management specification for OSLC based resources,” 2015.

[7] W3C, “RDF 1.1 Concepts and Abstract Syntax,” 2014. [Online]. Available: https:
//www.w3.org/TR/2014/REC-rdf11-concepts-20140225/

[8] A. Ryman, “Resource Shape 2.0,” 2014. [Online]. Available: https://www.w3.org/
Submission/shapes/

[9] H. Knublauch and A. Ryman, “Shapes Constraint Language (SHACL),” 2016. [Online].
Available: https://www.w3.org/TR/2016/WD-shacl-20160128/

[10] D. Johnson and S. Speicher, “Open Services for Lifecycle Collaboration Core
Specification Version 2.0,” 2013. [Online]. Available: http://open-services.net/bin/view/
Main/OslcCoreSpecification

[11] J. W. Creswell, Research Design: Qualitative, Quantitative and Mixed Methods Approach,
4th ed. Lincoln, USA: Sage Publications Inc, 2014.

[12] “Linked Open Vocabularies (LOV),” 2016. [Online]. Available: http://lov.okfn.org/dataset/
lov

[13] R. Dardar, “Building a Safety Case in Compliance with ISO 26262,” Master Thesis,
Mälardalen University, 2013.

[14] E. Prudhommeaux, “Shape Expressions (ShEx) Primer,” 2016. [Online]. Available:
http://shexspec.github.io/primer/

[15] P.-y. Vandenbussche, G. A. Atemezing, B. Vatant, and M. Poveda-Villalón, “Linked Open
Vocabularies (LOV): a gateway to reusable semantic vocabularies on the Web,” Semantic
web journal ’16, vol. 1, p. 17, 2016.

[16] D. Ward, “ISO 26262 Update on development of the standard,” no. January, pp. 1–11, 2016.

[17] B. Gallina, J. P. Castellanos Ardila, and M. Nyberg, “Towards Shaping ISO 26262-compliant
Resources for OSLC-based Safety Case Creation,” in Critical Automotive applications: Ro-
bustness & Safety (CARS), Göteborg, Sweden, 2016, p. 4.

[18] R. Dardar, B. Gallina, A. Johnsen, K. Lundqvist, and M. Nyberg, “Industrial experiences of
building a safety case in compliance with ISO 26262,” Proceedings - 23rd IEEE International
Symposium on Software Reliability Engineering Workshops, ISSREW 2012, pp. 349–354,
2012.

[19] ISO, “Systems and software engineering Vocabulary,” 2010. [Online]. Available:
https://www.iso.org/obp/ui/

87

http://www.vinnova.se/sv/resultat/projekt/effekta/espresso/
http://www.vinnova.se/sv/resultat/projekt/effekta/espresso/
http://www.es.mdh.se/projects/393-genreusesafetycases
http://www.es.mdh.se/projects/393-genreusesafetycases
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
https://www.w3.org/Submission/shapes/
https://www.w3.org/Submission/shapes/
https://www.w3.org/TR/2016/WD-shacl-20160128/
http://open-services.net/bin/view/Main/OslcCoreSpecification
http://open-services.net/bin/view/Main/OslcCoreSpecification
http://lov.okfn.org/dataset/lov
http://lov.okfn.org/dataset/lov
http://shexspec.github.io/primer/
https://www.iso.org/obp/ui/

Mälardalen University Master Thesis

[20] B. Gallina and M. Nyberg, “Reconciling the ISO 26262-compliant and the Agile Documenta-
tion Management in the Swedish Context.” in Proceedings of the third Workshop on Critical
Automotive applications: Robustness & Safety, joint event of EDCC-2015, Paris, 2015.

[21] “Open Services for Lifecycle Collaboration,” 2013. [Online]. Available: http://open-services.
net/wiki/core/specification-3.0

[22] Scania, “About Scania,” 2015. [Online]. Available: http://scania.se/om-scania/

[23] “ECSEL AMASS project.” [Online]. Available: http://www.amass-ecsel.eu/

[24] L. C. Avizienis Algirdas, Laprie Jean-Claude, Randell Brian, “Basic Concepts and Taxon-
omy of Dependable and Secure Computing,” IEEE Transactions on Dependable and Secure
Computing, vol. 1, no. 1, pp. 11–33, 2004.

[25] D. Smith and K. Simpson, Safety Critical Systems Handbook. Butterworth-Heinemann,
2010.

[26] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and
X. Rival, “A Static Analyzer for Large Safety-Critical Software,” Pldi, pp. 196–207, 2003.

[27] N. Silva and M. Vieira, “Towards Making Safety-Critical Systems Safer : Learning from
Mistakes,” 2014.

[28] J. C. Knight, “Safety critical systems: challenges and directions,” Proceedings of the 24rd
International Conference on Software Engineering (ICSE), 2002. IEEE., pp. 547 – 550, 2002.

[29] S. Nair, J. L. De La Vara, A. Melzi, G. Tagliaferri, L. De-La-Beaujardiere, and F. Belmonte,
“Safety evidence traceability: Problem analysis and model,” Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), vol. 8396 LNCS, pp. 309–324, 2014.

[30] A. Algirdas, L. Jean-Claude, R. Brian, and L. Carl, “Basic Concepts and Taxonomy of De-
pendable and Secure Computing,” IEEE Transactions on Dependable and Secure Computing,
vol. 1, no. 1, pp. 11–33, 2004.

[31] L. Feinbube, P. Tröger, and A. Polze, “The landscape of software failure cause models,”
arXiv:1603.04335, 2016.

[32] E. S. Grant, V. K. Jackson, and S. A. Clachar, “Towards a Formal Approach to Validating
and Verifying Functional Design for Complex Safety Critical Systems,” GSTF Journal on
Computing, vol. 2, no. 1, pp. 202–207, 2012.

[33] IEC, “Functional safety - Essential to overall safety,” IEC Functional safety 2015-03, p. 12,
2015.

[34] N. J. Bahr, System Safety Engineering and Risk Assessment A Practical Approach. CRC
Press, 2015.

[35] R. Faragher, “Understanding the Basis of the Kalman Filter via a Simple and Ituitive Deriva-
tion,” IEEE Signal Processing Magazine, no. September, pp. 128–132, 2012.

[36] F. Sundberg, “Function Allocation Description FAD-UF18 Fuel Level Display,” SCANIA,
Tech. Rep., 2015.

[37] ISO, “Road vehicles Functional safety Part 1: Vocabulary,” 2011. [Online]. Available:
https://www.iso.org/obp/ui/

[38] J. Rakos, K. Dhanraj, S. Kennedy, L. Fleck, S. Jackson, and J. Harris, The Practical Guide
to Project Management Documentation. John Wiley & Sons, 2015.

[39] C. J. Satish and M. Anand, “Software Documentation Management Issues and Practices: A
Survey,” Indian Journal of Science and Technology, vol. 9, no. 20, 2016.

88

http://open-services.net/wiki/core/specification-3.0
http://open-services.net/wiki/core/specification-3.0
http://scania.se/om-scania/
http://www.amass-ecsel.eu/
https://www.iso.org/obp/ui/

Mälardalen University Master Thesis

[40] I. Habli and T. Kelly, “Process and product certification arguments- Getting the balance
right,” ACM SIGBED Review, vol. 3, no. August 2016, pp. 1–8, 2006.

[41] M. Bender, T. Maibaum, M. Lawford, and A. Wassyng, “Positioning Verification in the
Context of Software / System Certification,” 11th International Workshop on Automated
Verification of Critical Systems (AVoCS 2011), vol. 46, p. 15, 2011.

[42] H. Doerr and I. Stuermer, “Managing an ISO 26262 Safety Case: A Software System Per-
spective,” SAE, Tech. Rep., 2016.

[43] IEEE, “IEEE-Standards Glossary.” [Online]. Available: https://www.ieee.org/education
careers/education/standards/standards glossary.html

[44] ISO, “Semantic interoperability of health information.” [Online]. Available: http:
//www.en13606.org/the-ceniso-en13606-standard/semantic-interoperability

[45] W. Gödert, M. Nagelschmidt, and J. Hubrich, Semantic Knowledge Representation for In-
formation Retrieval, 2014.

[46] M.-A. Sicilia, “Metadata research: Making digital resources useful again?” in Handbook of
metadata, semantics and ontologies, M.-A. Sicilia, Ed. Madrid: World Scientific Publishing
Co., 2014, ch. I.1, pp. 1–8.

[47] S. J. Mellor and M. J. Balcer, Executable UML. A foundation for Model-Driven Architecture.
Addison Wesley, 2002.

[48] A. B. Markman, Knowledge representation. Psychology Press, 2013.

[49] M. Seidl, M. Scholz, C. Huemer, and G. Kappel, UML @ Classroom. Springer, 2012.

[50] W3C, “W3C Internationalization,” 2011. [Online]. Available: https://www.w3.org/
International/O-URL-and-ident.html

[51] “XML RDF.” [Online]. Available: http://www.w3schools.com/xml/xml{ }rdf.asp

[52] “Reasoner.” [Online]. Available: https://www.w3.org/2001/sw/wiki/Category:Reasoner

[53] Patrick J. Hayes and P. F. Patel-Schneider, “RDF 1.1 Semantics,” 2014. [Online]. Available:
https://www.w3.org/TR/rdf11-mt/

[54] “Serialización (C# y Visual Basic).” [Online]. Available: https://msdn.microsoft.com/
es-es/library/ms233843.aspx

[55] “RDF 1.1 Turtle.” [Online]. Available: https://www.w3.org/TR/turtle/

[56] T. Berners-Lee, R. Fielding, and L. Masinter, “Uniform Resource Identifier (URI): Generic
Syntax,” 2005. [Online]. Available: http://www.ietf.org/rfc/rfc3986.txt

[57] W3Schools, “XML Tutorial.” [Online]. Available: http://www.w3schools.com/xml/

[58] T. Bray, D. Hollander, and A. Layman, “Namespaces in XML,” 199. [Online]. Available:
https://www.w3.org/TR/1999/REC-xml-names-19990114/

[59] W3Schools, “XML RDF,” 2016. [Online]. Available: http://www.w3schools.com/xml/
xml rdf.asp

[60] T. Berners-Leer, “Linked Data,” 2009. [Online]. Available: https://www.w3.org/
DesignIssues/LinkedData.html

[61] S. Decker, F. V. Harmelen, J. Broekstra, M. Erdmann, D. Fensel, I. Horrocks, M. Klein, and
S. Melnik, “The Semantic Web - on the respective Roles of XML and RDF,” IEEE Internet
Computing, vol. 4, no. October, p. 19, 2000.

89

https://www.ieee.org/education_careers/education/standards/standards_glossary.html
https://www.ieee.org/education_careers/education/standards/standards_glossary.html
http://www.en13606.org/the-ceniso-en13606-standard/semantic-interoperability
http://www.en13606.org/the-ceniso-en13606-standard/semantic-interoperability
https://www.w3.org/International/O-URL-and-ident.html
https://www.w3.org/International/O-URL-and-ident.html
http://www.w3schools.com/xml/xml{_}rdf.asp
https://www.w3.org/2001/sw/wiki/Category:Reasoner
https://www.w3.org/TR/rdf11-mt/
https://msdn.microsoft.com/es-es/library/ms233843.aspx
https://msdn.microsoft.com/es-es/library/ms233843.aspx
https://www.w3.org/TR/turtle/
http://www.ietf.org/rfc/rfc3986.txt
http://www.w3schools.com/xml/
https://www.w3.org/TR/1999/REC-xml-names-19990114/
http://www.w3schools.com/xml/xml_rdf.asp
http://www.w3schools.com/xml/xml_rdf.asp
https://www.w3.org/DesignIssues/LinkedData.html
https://www.w3.org/DesignIssues/LinkedData.html

Mälardalen University Master Thesis

[62] “Semantic web,” W3C, 2015. [Online]. Available: https://www.w3.org/standards/
semanticweb/

[63] J. Domingue, D. Fensel, and J. A. Hendler, “Semantic Web Architecture,” in Handbook of
Semantic Web Technologies. Springer Science & Business Media, 2011, ch. 1, pp. 1–41.

[64] S. Powers, Practical RDF. OReilly Media, 2003.

[65] “RDF 1.1 Primer,” 2014. [Online]. Available: https://www.w3.org/TR/2014/
NOTE-rdf11-primer-20140225/

[66] “RDF Schema 1.1,” 2014. [Online]. Available: https://www.w3.org/TR/rdf-schema/

[67] D. Brickley and R. Guha, “RDF Schema 1.1,” 2014. [Online]. Available: https:
//www.w3.org/TR/rdf-schema/

[68] “SPARQL 1.1 Query Language.” [Online]. Available: https://www.w3.org/TR/
sparql11-query/

[69] B. DuCharme, Learning SPARQL. O’Reilly Media, Inc., 2013.

[70] E. Prud’hommeaux, J. E. Labra Gayo, and H. Solbrig, “Shape expressions: An RDF vali-
dation and transformation language,” Proceedings of the 10th International Conference on
Semantic Systems - SEM ’14, pp. 32–40, 2014.

[71] W3C, “RDF Data Shapes Working Group,” 2016. [Online]. Available: https:
//www.w3.org/2014/data-shapes/wiki/Main Page#RDF Data Shapes Working Group

[72] T. Bosch and K. Eckert, “Guidance , Please! Towards a Framework for RDF-based Con-
straint Languages .” in International Conference on Dublin Core and Metadata Applications,
2015, p. 19.

[73] A. Ryman, A. Le Hors, and S. Speicher, “OSLC Resource Shape: A language for defining
constraints on Linked Data,” LDOW, no. 996, 2013.

[74] “OSLC Core Version 3.0. Part 6: Resource Shape.” [Online]. Avail-
able: http://docs.oasis-open.org/oslc-core/oslc-core/v3.0/csprd01/part6-resource-shape/
oslc-core-v3.0-csprd01-part6-resource-shape.html

[75] D. Johnson, “Expressing relationships for OSLC,” 2012. [Online]. Available: http:
//open-services.net/bin/view/Main/OslcCoreSpecAppendixLinks

[76] W3C, “Linked Data,” 2015. [Online]. Available: https://www.w3.org/standards/
semanticweb/data

[77] “Open Services for Lifecycle Collaboration.” [Online]. Available: http://open-services.net/

[78] S. Speicher and J. El-khoury, “An Introduction to OSLC and Linked Data.” [Online].
Available: http://open-services.net/linked-data-and-oslc-tutorial-2015-update/

[79] J. L. De La Vara and R. K. Panesar-Walawege, “SafetyMet: A metamodel for safety stan-
dards,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), vol. 8107 LNCS, pp. 69–86, 2013.

[80] Y. Luo, M. Van Den Brand, L. Engelen, J. Favaro, M. Klabbers, and G. Sartori, “Extracting
models from ISO 26262 for reusable safety assurance,” Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinfor-
matics), vol. 7925 LNCS, pp. 192–207, 2013.

[81] K. Padira, “Investigation of Resources Types for OSLC domains Targeting ISO 26262,”
Master Thesis, Blekinge University, 2016.

90

https://www.w3.org/standards/semanticweb/
https://www.w3.org/standards/semanticweb/
https://www.w3.org/TR/2014/NOTE-rdf11-primer-20140225/
https://www.w3.org/TR/2014/NOTE-rdf11-primer-20140225/
https://www.w3.org/TR/rdf-schema/
https://www.w3.org/TR/rdf-schema/
https://www.w3.org/TR/rdf-schema/
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/2014/data-shapes/wiki/Main_Page#RDF_Data_Shapes_Working_Group
https://www.w3.org/2014/data-shapes/wiki/Main_Page#RDF_Data_Shapes_Working_Group
http://docs.oasis-open.org/oslc-core/oslc-core/v3.0/csprd01/part6-resource-shape/oslc-core-v3.0-csprd01-part6-resource-shape.html
http://docs.oasis-open.org/oslc-core/oslc-core/v3.0/csprd01/part6-resource-shape/oslc-core-v3.0-csprd01-part6-resource-shape.html
http://open-services.net/bin/view/Main/OslcCoreSpecAppendixLinks
http://open-services.net/bin/view/Main/OslcCoreSpecAppendixLinks
https://www.w3.org/standards/semanticweb/data
https://www.w3.org/standards/semanticweb/data
http://open-services.net/
http://open-services.net/linked-data-and-oslc-tutorial-2015-update/

Mälardalen University Master Thesis

[82] C. Kaiser and B. Herbst, “Smart Engineering for Smart Factories : How OSLC Could Enable
Plug & Play Tool Integration,” in Mensch und Computer 2015 Workshopband, 2015, pp.
269–278.

[83] C. E. Salloum, “Seamless Integration of Test Information Management and Calibration Data
Management in the Overall Automotive Development Process,” 2015.

[84] R. Bogusch, S. Ehrich, R. Scherer, T. Sorg, and W. Robert, “A Lean Systems Engineering
Approach for the Development of Safety-critical Avionic Systems,” in Proceedings of the 8th
European Congress on Embedded Real Time Software and Systems (ERTS 2016), Toulouse,
France, 2016, p. 11.

[85] J. Munir, “Information Integration using a Linked Data approach ,” 2015.

[86] M. Elaasar and Adam Neal, “Integrating Modeling Tools in the Development Lifecycle with
OSLC: A Case Study,” Model-Driven Engineering Languages and Systems, vol. NA, pp.
154–169, 2013.

[87] T. Bosch and K. Eckert, “Requirements on RDF Constraint Formulation and Validation,”
in Conf. on Dublin Core and Metadata Applications, 2014, pp. 95–108.

[88] T. Bosch, A. Nolle, E. Acar, and K. Eckert, “RDF Validation Requirements - Evaluation
and Logical Underpinning,” arXiv preprint arXiv:1501.03933, 2015.

[89] V. Choi, “Big Metadata : A study of Resource Description Framework (RDF) technolo-
gies to enable machine-interpretable metadata in biomedical science,” Ph.D. dissertation,
Stockholm University, 2015.

[90] I. Boneva, “Comparative expressiveness of ShEx and SHACL (Early working draft),” hal-
01288285, 2016.

[91] B. Gallina, “A model-driven safety certification method for process compliance,” Proceed-
ings - IEEE 25th International Symposium on Software Reliability Engineering Workshops,
ISSREW 2014, pp. 204–209, 2014.

[92] J. Conallen, “OSLC Architecture Management Specification Version 2.0,”
2011. [Online]. Available: http://open-services.net/wiki/architecture-management/
OSLC-Architecture-Management-Specification-Version-2.0/

[93] “Web Ontology Language (OWL),” 2012. [Online]. Available: https://www.w3.org/2001/
sw/wiki/OWL

[94] H. Pérez-Urbina, E. Sirin, and K. Clark, “Validating RDF with OWL Integrity Constraints,”
2012. [Online]. Available: http://docs.stardog.com/icv/icv-specification.html

[95] P. F. Patel-Schneider, “Using Description Logics for RDF Constraint Checking and Closed-
World Recognition,” Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intel-
ligence, vol. abs/1411.4, pp. 247–253, 2014.

[96] S. Staworko, I. Boneva, J. E. Labra Gayo, E. G. Prud, and H. Solbrig, “Complexity and
Expressiveness of ShEx for RDF,” vol. i, pp. 1–17, 2014.

[97] B. Gallina, A. Gallucci, K. Lundqvist, and M. Nyberg, “VROOM & cC: a Method to Build
Safety Cases for ISO 26262-compliant Product Lines,” SAFECOMP Workshop on Next Gen-
eration of System Assurance Approaches for Safety-Critical Systems (SASSUR), pp. 1–12,
2013.

[98] L. Bass, P. Clements, and R. Kazman, Software Architecture and practice, 3rd ed. Addison-
Wesley, 2013.

91

http://open-services.net/wiki/architecture-management/OSLC-Architecture-Management-Specification-Version-2.0/
http://open-services.net/wiki/architecture-management/OSLC-Architecture-Management-Specification-Version-2.0/
https://www.w3.org/2001/sw/wiki/OWL
https://www.w3.org/2001/sw/wiki/OWL
http://docs.stardog.com/icv/icv-specification.html

Mälardalen University Master Thesis

[99] B. Gallina, K. Padira, and M. Nyberg, “Towards an ISO 26262-compliant OSLC-based Tool
Chain Enabling Continuous Self-assessment,” 10th International Conference on the Quality
of Information and Communications Technology- Track: Quality Aspects in Safety Critical
Systems, 2016.

[100] I. Sljivo, B. Gallina, J. Carlson, and H. Hansson, “Generation of safety case argument-
fragments from safety contracts,” Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 8666 LNCS,
pp. 170–185, 2014.

92

