
Towards Increased Efficiency and Confidence in
Process Compliance

Julieth Patricia Castellanos Ardila and Barbara Gallina

IDT, Mälardalen University
Box 883, 721 23 Väster̊as, Sweden

{julieth.castellanos,barbara.gallina}@mdh.se

Abstract. Nowadays, the engineering of (software) systems has to com-
ply with different standards, which often exhibit common requirements
or at least a significant potential for synergy. Compliance management
is a delicate, time-consuming, and costly activity, which would bene-
fit from increased confidence, automation, and systematic reuse. In this
paper, we introduce a new approach, called SoPLE&Logic-basedCM.
SoPLE&Logic-basedCM combines (safety-oriented) process line engineer-
ing with defeasible logic-based approaches for formal compliance check-
ing. As a result of this combination, SoPLE&Logic-basedCM enables
automation of compliance checking and systematic reuse of process ele-
ments as well as compliance proofs. To illustrate SoPLE&Logic-basedCM,
we apply it to the automotive domain and we draw our lessons learnt.

Keywords: ISO 26262, Automotive SPICE, compliance by design, reuse,
defeasible logic, process assessment, software process improvement.

1 Introduction

In the context of safety critical systems engineering, quality (and more specifi-
cally safety) standards act as a baseline aimed at contributing to ”assuring so-
ciety at large that deployment of a given system does not pose an unacceptable
risk of harm” [1]. Standards impose requirements on the processes to be adopted
to engineer the systems as well as on the expected behaviour of the systems.
To adhere to the requirements regarding the processes, companies adapt their
practices, and provide evidence (e.g., arguments or even proofs of compliance),
which to some extent supports the fulfilment of the requirements. Providing such
evidence is a time-consuming and costly activity, which risks to steal time and
focus from other activities related to e.g., verification of systems behaviour. Since
the ultimate goal of our work is to free time for such verification activities, we
believe that process compliance would be highly benefit from automation and
systematic reuse. Moreover, confidence in the evidence could be increased via
logic-based approaches. Safety-oriented Process Line Engineering (SoPLE) [2, 3]
permits process engineers to systematise the reuse of process-related information.
To argue about or prove compliance, SoPLE is not enough. In a previous work [4,

2 Lecture Notes in Computer Science: Authors’ Instructions

5], SoPLE was combined with argumentation patterns and model-driven engi-
neering principles to automate the creation of reusable process-based argument
fragments aimed at showing compliance. In this paper, we intend to provide an
additional layer of confidence by offering a logic-based framework that enables
formal proofs of compliance. To do that, we build on top of results stemming
from the business process-related community and legal compliance. Specifically,
we use defeasible logic, a rule-based approach for efficient reasoning with incom-
plete and inconsistent information, a typical scenario in normative systems [6].
Our approach represents a novelty which contributes to 1) increasing efficiency
(via automation and systematic reuse) and confidence (via formal checking) in
process compliance, and 2) cross-fertilising previously isolated communities. In
this paper, we do not only present our new approach but we also apply it to
the automotive domain. In particular, we consider ASPICE (Automotive Soft-
ware Process Improvement and Capability Determination) [7], which provides a
software process assessment model, and ISO 26262 [8], a safety standard that
regulates the development process of safety-critical automotive systems. The
motivation for this choice is that it is well-known that process reference models
of these two standards overlap and exhibit several similarities [3, 9], specially in
process elements related to software and system engineering [10].

The rest of the paper is organised as follows. In Section 2, we provide back-
ground information related to our work. In Section 3, we introduce SoPLE&Logic-
basedCM for efficient and confidence process compliance. In Section 4, we apply
SoPLE&Logic-basedCM to the automotive domain, and based on the applica-
tion of our approach, we derive our lessons learned. In Section 5, we discuss
related work. Finally, in Section 6, we present conclusions and future work.

2 Background

This section provides basic information on which we base our work. In Section 2.1
and 2.2, we present two automotive standards. In Section 2.3, we recall SoPLE. In
Section 2.4, we present defeasible logic, and in Section 2.5, we recall an abstract
formal framework for regulatory compliance.

2.1 Automotive SPICE

ASPICE [7] is a standard that addresses the software process capability maturity
in automotive. To determine maturity, the process assessment model selects the
process reference model and augments it with indicators. These indicators are
used to identify if the process outcomes (PO), the result of the achievement of
the process, and the process attribute outcomes (PA), the result of the achieve-
ment of a specific process attribute, are present. Base practices (BP) (activity-
oriented PAs), must be evaluated to establish the capability of the process to be
achieved. BPs for the process Software Detailed Design and Unit Construction
(SWE.3) are: BP1-Develop software detailed design, BP2-Define interfaces of
software units, BP3-Describe dynamic behavior, BP4-Evaluate software detailed

Towards Increased Efficiency and Confidence in Process Compliance 3

design, BP5-Establish bidirectional traceability, BP6-Ensure consistency, BP7-
Communicate agreed software detailed design, and BP8-Develop software units.
These BPs are related to one or more of the POs presented in Table 1.

Table 1. POs for ASPICE SWE.3.

ID Process outcome description

PO1 A detailed design is developed that describes software units.

PO2 Interfaces of each software unit are defined.

PO3
The dynamic behavior of the software units is defined. NOTE: Not all software units have dynamic behavior
to be described.

PO4
Evaluate the software detailed design in terms of interoperability, interaction, criticality, technical complexity,
risks and testability.

PO5
Consistency and bidirectional traceability are established between e.g., software requirements and software
units. NOTE: Consistency is supported by bidirectional traceability.

PO6
The software detailed design and the relationship to the software architectural design is agreed and communi-
cated to all affected parties.

PO7 Software units defined by the software detailed design are produced.

2.2 ISO 26262

ISO 26262 [8] is a standard that focuses on the functional safety of electrical/-
electronical systems in vehicles (gross mass up to 3500 kg). In ISO 26262, ASIL
(Automotive Safety Integrity levels) are used to specify applicable safety require-
ments, but both safety and non-safety requirements are implemented within one
development process. Specifically, in the sub-phase Software Unit Design and
Implementation (SUDI), described in part 6, clause 8 of the standard, single soft-
ware units are addressed, and the following activities are included: A1-Specify
the software units, A2-Verify the software unit design, A3-Implement the soft-
ware units, and A4-Verify the software unit implementation. These activities are
related to one or more of the requirements presented in Table 2.

Table 2. Requirements for ISO 26262 SUDI.

ID Requirements description

R1
The requirements of this subclause shall be complied with if the software unit is safety-related (”Safety-related”
means that the unit implements safety requirements).

R2 Software units are designed by using a notation that depends on the ASIL and the recommendation level.

R3
The specification of the software units shall describe the functional behaviour and the internal design to the
level of detail necessary for their implementation.

R4
Design principles for software unit design and implementation shall be applied depending on the ASIL and
the recommendation levels to reach properties like consistency of the interfaces, correct order of execution of
subprograms and functions, etc.

R5
Software unit design and implementation are verified by applying verification methods according to the ASIL
and the recommendation levels to demonstrate, e.g., traceability.

R6
When ASIL and recommendation levels are not followed, a rationale that explains the reasons for this behavior
must be provided (Interpretation of tables, ISO 26262-Section 4.2).

4 Lecture Notes in Computer Science: Authors’ Instructions

2.3 SoPLE

As recalled in the introduction, SoPLE is a methodological framework to system-
atically model commonalities and variabilities between highly-related processes
to facilitate reuse and flexible process derivation. To identify commonalities and
variabilities, common terminology that allows the comparisons between the stan-
dards is required. In [3], a mapping of common terms between ASPICE and
ISO 26262 is provided (see Table 3). These terms are used as follows: if an activity
in ISO 26262 is equivalent to a base practice in ASPICE, the elements are mapped
to the common identifier activity, and are modeled in SPEM2.0/EPF (Eclipse
Process Framework)-Composer with a TaskUse. SPEM2.0/EPF-Composer is
suggested in the application of SoPLE. SPEM2.0 (Software and Systems Process
Engineering Metamodel) [11] is a standard that provides the elements required
to define software and systems development process. SPEM2.0 is implemented
in EPF Composer [12], a tool able to store reusable core methods separated
from its application in processes. One basic method content is the Task, which
symbolizes an assignable unit of work. Method content variability allows adap-
tation of created content without affecting the original content. We recall one
variability type called contributes, which provides a way for process elements
instances to contribute with their properties into the base variability element.
Process structures can be built incorporating method content elements (for ex-
ample, a task realized as a TaskUse) in a breakdown structure. Commonalities
in processes are usually partial, i.e., a process element contains a subset of com-
mon aspects. Common aspects constitute the commonality points (CP) while
variability points (VP) are the process elements that are replaced with partic-
ular instances of process elements (called variants). It should be noted that in
SPEM2.0 there is no notion of variability point, thus, we introduce an empty
task, which is made vary via contributes.

Table 3. Mapping of terms in ISO 26262, ASPICE and SPEM2.0/EPF [3].

Common Identifier ISO 26262 ASPICE SPEM2.0/EPF

Activity Activity Base Practice TaskUse/

2.4 Defeasible Logic

Defeasible logic [13] is a rule-based logic that provides reasoning with incom-
plete/inconsistent information. A defeasible theory is a knowledge base in de-
feasible logic, which contains: a) facts: indisputable statements; b) strict rules:
rules in the classical sense, whenever the premises are indisputable, so is the
conclusion; c) defeasible rules: rules that can be defeated by contrary evidence;
d) defeaters: rules used only to prevent conclusions; e) superiority relation: a
relation among rules used to define priorities. Formally, r: A(r) ↪→ C(r), a
rule r consists of an antecedent A, the consequence of the rule C, and the rule

Towards Increased Efficiency and Confidence in Process Compliance 5

↪→= {→ (strict),⇒ (defeasible), or (defeater)}. A defeasible proof requires
that we: a) Put forward a supported rule for the conclusion we want to prove;
b) consider all possible reasons against the desired conclusion; and c) rebut all
counterarguments, by either showing that some premises of the counterargument
do not hold, or the argument is defeated by another argument.

2.5 Compliance Checking Approach

In this subsection, we recall the abstract formal framework for modeling compli-
ance by design defined in [6], an approach in which compliance of a process with
a set of rules is verified before deploying. This approach is based on deontic logic
of violations [14], in which deontic notions are modelled using defeasible logics.
Deontic notions are present in normative systems e.g., an obligation is a deontic
effect that arises when a norm bounds the bearer to a specific situation. When a
violation occurs, a reparational obligation is in force. For compliance checking,
we should: 1) determine the obligations of the rules, 2) determine the state of
each task in a process, 3) determine the obligations in force for each task, and
4) check if the obligations in force have been fulfilled or violated. The approach
requires that the traces of the process (sequence of tasks, in which a process can
be executed, respecting the order given by the connectors), and semantic anno-
tations (functions that describe the environment in which a process operates)
are defined. The function Ann(n,t,i) returns the state of a trace (n) obtained
after a task (t), in the step (i). The function Force(n,t,i) = {p} associates to
each task (t) in a trace (n), in the step (i) a set of obligations (p).

3 SoPLE&Logic-basedCM

This section provides an overview of SoPLE&Logic-basedCM (see Fig. 1), our
approach for increasing confidence and efficiency in process compliance, by com-
bining safety-oriented process line engineering, the definition of defeasible the-
ories as presented in Section 2.4, and the use of the framework for modelling
compliance, presented in Section 2.5. As Fig. 1 depicts, a process engineer is
expected to: 1) model a SoPL (which includes manually modelling the skele-
ton of the process sequence); 2) formalise the standards rules, select the set of
rules that overlap, and analyse the compliance of the SoPL commonalities with
the overlapping rules; 3) analyze the effects of the tasks that contributes to the
variabilities in the in the standard-specific process.

4 Applying SoPLE&Logic-basedCM

In this section, for illustration purposes, we apply SoPLE&Logic-basedCM to
the software unit development process part provided by ASPICE and ISO 26262.
The remaining part of this section is structured as follows: in Section 4.1, we
model a SoPL. In Section 4.2, we define the proofs of compliance. In Section 4.3,
we present the lessons learnt.

6 Lecture Notes in Computer Science: Authors’ Instructions

Fig. 1. SoPLE&Logic-basedCM overview.

4.1 SoPL Modeling

In this subsection, we apply SoPLE, recalled in Section 2.3. The scope is ASPICE
SWE.3, and ISO 26262 SUDI recalled in Sections 2.1 and 2.2 respectively. In the
domain engineering phase, we find the equivalent process activities by applying
the terminology mapping presented in Table 3, and by analysing the scope of
each activity. Terminological similarity is found between BP1 and A1. However,
the scope of A1 (see Table 2 - R4) is broader than the scope of BP1, including
also BP2 and BP3. Hence, the commonality point (CP1) is defined as a task
called Define software unit design, which contains three successive steps, namely
develop software detailed design, define interfaces of software units, and describe
dynamic behavior. A similar analysis is done for CP2, where there is a correspon-
dence between A2 (scope determined in Table 2 - R4/R5) with BP4/BP5/BP6.
CP3 is a straightforward comparison between A3 and BP8. Our comparison also
includes standard-specific variants, for example, ISO 26262 variants are activ-
ities that deal with ASIL. Variants of this type are A1a-Define software unit
design concerning safety derived from A1, and A2a-Verify the software unit
design concerning safety derived from A2. These and other activities that are
standard-specific are represented as variability points (VP) (see Table 4). The
result of the domain engineering phase is a SoPL, depicted in Fig. 2.

Table 4. SPICE SWE.3/ISO 26262 SUDI activities mapping.

ID Step in the trace ISO 26262 ASPICE Common Name

CP1 1 A1 BP1, BP2, BP3 Define software unit design

VP1 2 A1a Define software unit design concerning safety

CP2 3 A2 BP4, BP5, BP6 Verify the software unit design

VP2 4
A2a Verify the software design concerning safety

BP7 Communicate agreed software detailed design

CP3 5 A3 BP8 Implement the software units

VP3 6 A4 Verify the software developed units

Towards Increased Efficiency and Confidence in Process Compliance 7

Fig. 2. SoPL model embracing ASPICE SWE.3 and ISO 26262 SUDI.

4.2 Definition of the Proofs of Compliance

In this subsection, we formalize the standards requirements and discover the
overlapping set of formal rules. These rules are used to annotate the common-
ality points of the SoPL model to define common proofs of compliance. Then
we define the effects of the rules that apply to the variability points of the
SoPL model and analyse their effects in the common proofs. The formalization
of the rules includes the definition of defeasible theories, as recalled in Section
2.4. For ASPICE SWE.3 (see Table 5) the rules PO2, PO4, PO5 and PO6 (see
Table 1) can be translated into the strict rules RA3, RA5, RA6 and RA7 respec-
tively, since these requirements are indisputable statements that are necessary to
achieve for compliance. PO1 and PO7 are also indisputable, but each one can be
expressed in a more granular way, RA1, RA2 and RA8, RA9, respectively. PO3,
instead, is a defeasible rule (RA4), since the note, ”not all software units have
dynamic behaviour to be described”, presented in the requirement, defeats the
rule. This defeasible rule does not have a defeater, so its conclusion is considered
provable, as well as the conclusions of the strict rules.

Table 5. Defeasible theories for ASPICE SWE.3.

PO ID Rule Rule description

PO1
RA1 sud → d. software unit design (sud) is developed (d).

RA2 sud → su. sud describes software units (su).

PO2 RA3 su → i. su has defined interfaces.

PO3 RA4 su ⇒ db. su has usually described dynamic behavior (db).

PO4 RA5 sud → v. sud is verified (v).

PO5 RA6 su → tc. su has established traceability and consistency (bt).

PO6 RA7 sud → ac. sud is agreed and communicated (ac).

PO7

RA8 sui → sud. software unit implementation (sui) is based on sud.

RA9 sui → i. sui is implemented (i).

For ISO 26262 SUDI, a similar analysis is done (see Table 6). Hence, nine
strict rules and three defeasible rules have resulted. The defeasible rules have a
defeated rule, namely RI12, which is in favor of the conclusions. For example, if
RI7 is not achieved (sud ⇒ ¬dp) then a rationale is provided (¬dp → r). Rules
of this type are provable, because their counterargument is a strict rule. The

8 Lecture Notes in Computer Science: Authors’ Instructions

mapping of the defeasible theories is presented in Table 7. Direct mapping is
done for the strict rules CR1 (RA1/RI2), CR2 (RA2/RI4), CR5 (RA8/RI8) and
CR6 (RA9/RI9), since these rules affect the processes in a similar way. CR3 is
the mapping between RA3 (definition of the interfaces) and RA4 (description
of dynamic behavior) to RI6 (description of the internal design). This mapping
is base on the premise that ISO 26262 is not specific on what the software unit
should show as internal design. However, definition of interfaces and dynamic
behavior are defined as properties that shall be reached by the software unit
design (see Table 2 - R4). For CR4 a similar situation occurs, since traceability
is considered one of the aspects that have to be demonstrated in ISO 26262
when verification is carried out (see Table 2 - R5). Hence, the mapping for
CR4 is RA5 (software unit is verified) and RA6 (software unit has established
traceability) to RI10 (software unit design is verified).

Table 6. Defeasible theories for ISO 26262 SUDI.

Req. ID Rule Rule description

R1 RI1 sud → sr. software unit design (sud) is safety related (sr).

R2

RI2 sud → d. sud is design (d).

RI3 d ⇒ n.
d is usually implemented by using a notation that depends on the ASIL and the recom-
mendation level (n).

RI4 sud → su. sud describes software units (su).

R3
RI5 sud → fb. sud has described functional behavior (fb).

RI6 sud → id. sud has described internal design (id).

R4

RI7 sud ⇒ dp.
sud is implemented by using design principles (dp) that depends on the ASIL and the
recommendation level.

RI8 sui → sud. software unit implementation (sui) is based on sud.

RI9 sui → i. sui is implemented (i).

R5
RI10

sud, sui →
v.

sud, sui are verified.

RI11 v ⇒ m.
v is usually done by using a method that depends on the ASIL and the recommendation
level (m).

R6 RI12
¬n, ¬dp,
¬vm → r.

If n, dp or m are not applied depending on the ASIL and the recommendation levels, then
rationale (r) is required.

The SoPL model (see Fig. 2) is constituted by one trace tSoPL. The ef-
fects of its tasks (tSoPL:<CP1, VP1, CP2, VP2, CP3, VP3>) are determined with the
function Ann (defined in Section 2.5) and presented in Listing 1.1.

Ann(tSoPL ,CP1, 1)={CP1}
Ann(tSoPL ,VP1, 2)=Ann(tSoPL ,CP1, 1) U {VP1}
Ann(tSoPL ,CP2, 3)=Ann(tSoPL ,VP1, 2) U {CP2}
Ann(tSoPL ,VP2, 4)=Ann(tSoPL ,CP2, 3) U {VP2}
Ann(tSoPL ,CP3, 5)=Ann(tSoPL ,VP2, 4) U {CP3}
Ann(tSoPL ,VP3, 6)=Ann(tSoPL ,CP3, 5) U {VP3}

Listing 1.1. Annotations for the trace tSoPL.

A task determines its state taking its effect and inheriting the previous ef-
fects. Once the states are determined, the obligations in force (rules that apply
to the tasks) are assigned, using the function Force (recalled in Section 2.5). In
Table 8, common defeasible theories (Table 7) are assigned to the commonality

Towards Increased Efficiency and Confidence in Process Compliance 9

Table 7. Rules comparison and commonality identification.

SPICE SWE.3 ISO 26262 SUDI Common

Rule
Description

ID Rule ID Rule

RA1 sud → d. RI2 sud → d. CR1 Software unit design (sud) is developed (d).

RA2 sud → su. RI4 sud → su. CR2 sud describe software units (su)

RA3 su → i.
RI6 sud → id

.
CR3

Internal design is described, including interfaces and

dynamic behaviorRA4 su ⇒ db.

RA5 sud → v.
RI10 sud → v. CR4 su is verified and traceability demonstrated

RA6 su → tc

RA8 sui → sud. RI8 sui → sud. CR5 su implementation (sui) is based on sud

RA9 sui → i. RI9 sui → i. CR6 sui is implemented (i)

points (CPs) of the SoPL trace tSoPL. In tSoPL, rules CR1, CR2, CR3 are ef-
fective at CP1, meaning that for the software unit design task (CP1), software
unit is designed (CR1), units are described (CR2), and the internal design, in-
cluding interfaces and dynamic behaviour is described (CR3) (Proof 1). Rule
CR4 is effective at CP2, meaning that in the verification of the software design
task, the software is verified and traceability is demonstrated (CR4) (Proof 2).
Finally, CR5 and CR6 are effective at CP3, meaning that in the develop of the
software units activity, implementation is based on design (GR5) and unit im-
plementation is carried out (GR6) (Proof 3). The obligations triggered by the
rules are fulfilled in the corresponding step, meaning that the obligation can-
not be postponed for other steps. As presented in Section 2.5, this means that
the commonality points of the trace tSoPL are compliant with the set of rules
presented in Table 7.

Table 8. Applicable rules and obligations in force for tSoPL.

Task, Step Rule Obligations in force

CP1,1 CR1, CR2, CR3 Force(tSoPL,CP1,1) = {CR1} U {CR2} U {CR3}

VP1,2 (standard-specific) Force(tSoPL,VP1,2) = Force(tSoPL,CP1,1) U {standard-specific}

CP2,3 CR4 Force(tSoPL,CP2,3) = Force(tSoPL,VP2,2) U {CR4}

VP2,4 (standard-specific) Force(tSoPL,VP2,4) = Force(tSoPL,CP2,3) U {standard-specific}

CP3,5 CR5, CR6 Force(tSoPL,CP3,5) = Force(tSoPL,VP2,4) U {CR5} U {CR6}

VP3,6 (standard-specific) Force(tSoPL,VP3,6) = Force(tSoPL,CP3,5) U {standard-specific}

Standard-specific processes are generated when variability points are de-
ployed with specific tasks. ASPICE SWE.3 process is tA:<CP1, CP2, BP7, CP3>,
where VP2 is contributed with BP7. ISO 26262 SUDI process is tI:<CP1, A1a,

CP2, A2a, CP3, A4>, where VP1 is contributed with A1a, VP2 with A2a and VP3
with A4. Table 9 shows the influence of the obligations in force for these tasks.

In ASPICE SWE.3, the proof obtained for CP1 (Proof 1), and the one ob-
tained in CP2 (Proof 2) are not altered, since the variability point (VP1) do not
have any corresponding task in the trace. The rule applied in VP2 (replaced by

10 Lecture Notes in Computer Science: Authors’ Instructions

Table 9. Applicable rules for the variability points.

tSoPL tA tI Rules Influence of the obligations in force

VP1 A1a

RI1,
RI3,
RI5,
RI7

For the design of the software units concerning safety (A1a), the software is safety-
related (RI1), the design is usually implemented by using a notation that depends on
the ASIL and the recommendation level (RI3), the design has described functional
behavior (RI5), and the design is usually implemented by using design principles that
depend on the ASIL and the recommendation level (RI7).

VP2
BP7 RA7 The software unit design communication (BP7) is done (RA7).

A2a RI11
The verification of the software unit design concerning safety (A2a) is done according
to methods that depends on the ASIL and the recommendation level (RI11)

VP3 A4
RI10,
RI11

The verification of the software unit implementation (A4) is done (RI10) according to
methods that depends on the ASIL and the recommendation level (RI11)

BP7) is triggered and fulfilled in BP7, so the proof obtained for CP3 is not al-
tered. In ISO 26262 SUDI, the proofs obtained in CP1 (Proof 1), CP2 (Proof 2)
and CP3 (Proof 3) corresponds to non-safety related rules, while the rules that
apply to the variability points corresponds to safety-related rules. Hence, the
proofs obtained in VP1 and VP2 adds information to the trace, and influence
the proofs obtained in CP2 (Proof 2) and CP3 (Proof 3) respectively. In this
case, we can conclude that the proof can be partially used.

4.3 Lessons learnt

Our automotive SoPL describes commonality and variability points presented
in ASPICE and ISO 26262, as a sequence of ordered tasks distributed in a
trace. Tasks have assigned states and obligations in force (normative rules) that
produce tasks effects. These effects can influence the tasks’ behaviors in the
trace, and define whether the designed trace is compliant or not with a given
set of rules. Our analysis started with the annotation of the commonality points
of the SoPL with the overlapping set of rules, obtained from the comparison of
the requirements provided by the two standards. These annotations provide the
possibility to derive a common set of proofs of compliance. However, the states
and obligations in force for the tasks that contribute to the variability points,
once the standard-specific processes are deployed, can affect the proof obtained
for the commonality points. Hence, proofs of compliance can be fully reused or
may be partially reused, depending on the effects produced by the variability
points. Fully reused proofs can be applied to commonality points that are not
preceded by a variability point, or that are preceded by a variability point that
either remains empty after deployment, or its state after deployment does not
produce effects that can be spread out in the trace. Partially reused proofs
can be applied to variability points that are contributed with standard-specific
tasks which states and obligations in force influence the process proofs obtained.
Therefore, a classification of the standard-specific tasks that contribute to the
standard-specific processes is required to understand whether the common proofs
can be fully/partially reused.

Towards Increased Efficiency and Confidence in Process Compliance 11

5 Related work

Related work regarding increased efficiency via automation and reuse was al-
ready discussed in [4, 5]. Thus, in this paper, we limit our attention to automated
compliance checking, the novel layer added to SoPLE. Automated compliance
checking is not a new research area, specially in business management. An ex-
ample of a framework that define proofs of compliance by design is presented
in [15], where rules are formalized using logics. However, these frameworks do
not contemplate the reuse of proofs of compliance. A more closely related work is
presented in [16] where business process are augmented with reusable fragments
to ensure process compliance by design. In this approach, rules are formalized
with temporal logics. In our approach, we seek to establish compliance proofs for
safety compliance, using defeasible logic and deontic logic of violations, instead
of temporal logics. Approaches for reusing proofs are also found in other areas.
For example, in [17, 18], software verification tasks are benefited by the reuse
of chunks of proofs. Our reusable chunks of proofs are instead derived from the
comparison between the set of rules and the process reference model provided
by a normative system.

6 Conclusions and future work

In this paper, we introduced SoPLE&Logic-basedCM, a novel approach for confi-
dent and efficient process compliance based on the combination of safety-oriented
process line engineering, defeasible logic, and an approach for compliance by de-
sign. We have applied SoPLE&Logic-basedCM to the automotive domain to
illustrate its potential in terms of reuse of proofs. More specifically, we have
limited our illustration to a specific portion of automotive standards (ASPICE
and ISO 26262) and we have shown that sets of compliance-related proofs can
be fully/partially reused.

The formalization of the approach presented in this paper is limited to
process-related activities, and a general view of the deontic notion obligation.
For future work, other process elements, e.g., work products will be addressed,
as well as a broader range or deontic notions classification (permissions and
prohibitions). Further validation of the approach on more complex processes is
also required, as well as the exploration of tools that can potentially support
the automation of our work, like Regorous [19], a compliance checker, and logic
reasoners like SPINdle1 and Deimos2, programs that are used to compute the
consequence of defeasible logic theories.

Acknowledgments. This work is supported by the EU and VINNOVA via the
ECSEL JU project AMASS (No. 692474) [20]. We thank Mustafa Hashmi for
his valuable comments on an earlier version of this paper.

1 http://spindle.data61.csiro.au/spindle/
2 http://www.ict.griffith.edu.au/arock/defeasible/Defeasible.cgi

12 Lecture Notes in Computer Science: Authors’ Instructions

References

1. Rushby, J.: New Challenges in Certification for Aircraft Software. In: 9th ACM
International Conference on Embedded Software (EMSOFT). (2011) 211–218

2. Gallina, B., Sljivo, I., Jaradat, O.: Towards a Safety-oriented Process Line for
Enabling Reuse in Safety Critical Systems Development and Certification. In:
35th Annual IEEE Software Engineering Workshop (SEW). (2012) 148–157

3. Gallina, B., Kashiyarandi, S., Martin, H., Bramberger, R.: Modeling a Safety- and
Automotive-Oriented Process Line to Enable Reuse and Flexible Process Deriva-
tion. In: IEEE 38th International Computer Software and Applications Conference
Workshops (COMPSACW). (2014) 504–509

4. Gallina, B., Lundqvist, K., Forsberg, K.: THRUST: A Method for Speeding up the
Creation of Process-related Deliverables. In: IEEE/AIAA 33rd Digital Avionics
Systems Conference (DASC). (2014) 5D4–11

5. Gallina, B.: A Model-Driven Safety Certification Method for Process Compliance.
2nd Int. Workshop on Assurance Cases for Software-intensive Systems (ISSREW)
(2014) 204–209

6. Hashmi, M., Governatori, G., Wynn, M.T.: Normative Requirements for Regula-
tory Compliance: An Abstract Formal Framework. Information Systems Frontiers
(2016) 429–455

7. Automotive SPICE: Process Assessment/Reference Model (2015)
8. ISO 26262: Road Vehicles-Functional Safety. International Standard (2011)
9. Lami, G., Falcini, F.: Automotive SPICE Assessments in Safety-Critical Contexts:

An Experience Report. In: IEEE International Symposium on Software Reliability
Engineering Workshops (ISSREW). (2014) 497–502

10. Bleakley, G.: How Rational can Help with Compliance to ISO 26262 & ASPICE.
Technical report, IBM Software Group (2014)

11. SPEM 2.0: Software & Systems Process Engineering Meta-model (2008)
12. Eclipse Composer Framework: https://eclipse.org/epf/
13. Antoniou, G., Billington, D., Governatori, G., Maher, M.J.: Representation Results

for Defeasible Logic. ACM Transactions on Computational Logic (2) (2000) 255–
287

14. Governatori, G., Rotolo, A., Sartor, G.: Temporalised Normative Positions in
Defeasible Logic. In: 10th International Conference on Artificial Intelligence and
Law (ICAIL). (2005) 25–34

15. Awad, A., Decker, G., Weske, M.: Efficient Compliance Checking Using BPMN-Q
and Temporal Logic. International Conference on Business Process Management
(BPM) (2008) 326–341

16. Schumm, D., Turetken, O., Kokash, N., Elgammal, A., Leymann, F., van den
Heuvel, W.J.: Business Process Compliance through Reusable Units of Compliant
Processes. In: International Conference on Web Engineering (ICWE). (2010) 325–
337

17. Reif, W., Stenzel, K.: Reuse of Proofs in software verification. In: International
Conference on Foundations of Software Technology and Theoretical Computer Sci-
ence (FSTTCS), Lecture Notes in Computer Science (1993) 284–293

18. Beckert, B., Bormer, T., Klebanov, V.: Reusing Proofs when Program Verification
Systems are Modified. Long Beach, California, USA (2005) 41

19. Governatori, G.: The Regorous Approach to Process Compliance. In: IEEE 19th In-
ternational Enterprise Distributed Object Computing Workshop (EDOCW), IEEE
(2015) 33–40

Towards Increased Efficiency and Confidence in Process Compliance 13

20. AMASS: Architecture-driven, Multi-concern and Seamless Assurance and Certifi-
cation of Cyber-Physical Systems. http://www.amass-ecsel.eu/

