
1

© L. Benini: System-level power optimization Slide -1 -ESSES 03

System-Level Power
Optimization

Design Techniques & CAD Tools

Luca Benini
DEIS Universita' di Bologna, Italy

lbenini@deis.unibo.it

© L. Benini: System-level power optimization Slide -2 -ESSES 03

The vision: Ambient Inteligence

On-Body In-HomeAd-hoc Sensor Adaptive Wireless

Devices as Appliances

l Energy-efficient communcations is the cornerstone of
ambient intelligence
lRequires highly efficient hardware & software

n RF circuits
n Baseband protocol processing & appl.

2

© L. Benini: System-level power optimization Slide -3 -ESSES 03

The AMI processing Bestiary

l The work-horse
n Powers the fixed base network machines

n Power W Performance GB/s

l The hummingbird
n Powers the wireless base network interfaces

n Power mW Performance MB/s

l The butterfly
n The sensor network hardware

n Power µW Performance KB/s

© L. Benini: System-level power optimization Slide -4 -ESSES 03

L3 CACHE
(1.5/3 MB)

l Released at 733MHz and
800MHz, now 1GHz

l Three level caching system
l 25 million transistors in the CPU

and 300 million in the cache
(0.18µm)

l 421mm2 die size

Itanium® 2 Processor

l The CPU running at full load
draws ~130 Watts

l The clock signals and logic total
to approx 84% of the total power
usage.

l Leakage power: approx. 2%.
l Power delivery: Vdd=1.5V,

P=130W, P=VddI (!!)

3

© L. Benini: System-level power optimization Slide -5 -ESSES 03

Handset architecture

C540

ARM7

TI’s TMS320vc5471

© L. Benini: System-level power optimization Slide -6 -ESSES 03

Berkeley’s Daft Dust Device

l 63 mm3

l Circuits: 0.25 µm CMOS
n digital circuits underneath ground pad
n metal shields to prevent photogenerated carriers

l CCR: Cronos MUMPS
L Optical wireless connection (line of sight)

360µm

30
0µ

m

PhotodiodePad to
CCR

Vdd
Pad
GND
Pad/

LFSR

Power-on ResetC
ha

rg
e

P
um

p

4

© L. Benini: System-level power optimization Slide -7 -ESSES 03

The Energy-Flexibility Tradeoff

Embedded Processors
0.4 MIPS/mW

ASIPs
DSPs 2 V DSP: 3 MOPS/mW

Dedicated
HW

Flexibility (Coverage)

E
n

er
g

y
E

ff
ic

ie
n

cy
M

O
P

S
/m

W
(o

r
M

IP
S

/m
W

)

0.1

1

10

100

1000

Reconfigurable
Processor/Logic

10-80 MOPS/mW

© L. Benini: System-level power optimization Slide -8 -ESSES 03

Why designing low-power circuits/systems?

n Practical reasons
– Extend battery-lifetime of high-throughput portable

applications.

n Financial reasons:
– Reducing costs of: Packaging, PCB, Heat-sinks, Ventilation.
– Reducing ownership cost

n Technological reasons:
– Producing high-density chips:
– Interconnect design issues:
– Power delivery and distribution.
– Reliability issues:

5

© L. Benini: System-level power optimization Slide -9 -ESSES 03

Deep Sub-Micron Technologies

l Smaller geometries:
n Higher device densities.
n Higher clock frequencies.

l Consequence:
n Greater power consumption in spite of lower

supply voltages:
– Technology scales faster than supply voltage.

© L. Benini: System-level power optimization Slide -10 -ESSES 03

Voltage Trends

0
0,5

1
1,5

2
2,5

3
3,5

4
4,5

5

5 3 1 0,6 0,35 0,18 0,13

20 years 10 years

Process geometries

V
ol

ta
ge

6

© L. Benini: System-level power optimization Slide -11 -ESSES 03

Power Trends

Example: Alpha processor

1992 1994 1998 1999 2001
Process (µ) 0.75 0.5 0.35 0.25 0.18
Clock speed (MHz) 200 300 667 750 1000
Transistors (millions) 1.68 9.3 15.2 15.2 100

Voltage 3.3 3.3 2.3 2.1 1.5
Power (W) 30 50 72 90 100

© L. Benini: System-level power optimization Slide -12 -ESSES 03

Mobile Electronics (I)

l Wireless communication (appliances and infrastructure)

n 600 million mobile phones produced in 2001.
0

10

20

30

40

50

60

70

B
ill

io
n

U
S

$

1998 1999 2000 2001

Hand-sets
Infrastructure

7

© L. Benini: System-level power optimization Slide -13 -ESSES 03

Mobile Electronics (II)

l Cellular network subscribers

n 1.9 billion subscribers predicted for year 2004.

0
100
200
300
400
500
600
700
800
900

M
ill

io
n

1998 1999 2000 2001

Cellular
subscribers

© L. Benini: System-level power optimization Slide -14 -ESSES 03

Battery Technology

l Battery maximum power and capacity
increase by 10-15% per year.

l Chip power requirements increase much
faster: 35-40%. [source: 1999 SIA Technology Roadmap]

l Consequence:
n Larger gap between battery technology

enhancements and chip power demand.

8

© L. Benini: System-level power optimization Slide -15 -ESSES 03

Not Only Mobile

l 20% of electrical energy consumed in Amsterdam
is used for telecom.

l In the US, Internet is responsible for 9% of the
electrical energy consumed nation-wide.
n This grows to 13% if all computer applications are

considered.
l The transfer of 2 MBytes of data through the net

consumes the energy of 1 pound of coal.
[source: 2000 CO2 conference, Amsterdam, NL]

© L. Benini: System-level power optimization Slide -16 -ESSES 03

Where Does the Power Go?

issue queues
reg files
icache/itlb
dcache/dtlb
L2 cache
FUs
result buses
clock
other

n Power profile (dynamic power) of a 4-way superscalar
microprocessor

n Bottom line: power needs to be reduced across-the-board

9

© L. Benini: System-level power optimization Slide -17 -ESSES 03

Need to consider CPU & System Power

CPU Dominates Thermal
Design Power

Mobile PC
Thermal Design (TDP) System Power

Note: Based on Actual Measurements

600/500 MHz uP
37%

LCD 10"
19%

HDD
9%

Memory+Graphics
12%

Power Supply
10%

Other
13%

Mobile PC
Average System Power

600/500 MHz uP
13%

LCD 10"
30%

HDD
19%

Memory+Graphics
15%

Power Supply
10%

Other
13%

Multiple Platform
Components Comprise

Average Power
[Courtesy: N. Dutt; Source: V. Tiwari]

© L. Benini: System-level power optimization Slide -18 -ESSES 03

l CMOS technology dominates in modern ICs.
l Power consumption of a CMOS gate:

P = PSW + PSC + PLk

where:
– PSW = Switching (or dynamic) power.
– PSC = Short-circuit power.
– PLk = Leakage (or stand-by) power.

l So far, switching power minimization has been
the primary objective.

l In deep sub-micron, low-voltage processes,
leakage power becomes critical.

Design for Low Power (I)

10

© L. Benini: System-level power optimization Slide -19 -ESSES 03

Design for Low Power (II)

l CMOS inverter:
VDD

CL

VIN VOUT

PMOS

NMOS

VIN = 0 => VOUT = 1

VIN = 1 => VOUT = 0

© L. Benini: System-level power optimization Slide -20 -ESSES 03

l Switching power of a CMOS gate:
PSW = 0.5 VDD fCK CL ESW

where:
– VDD = Supply voltage.
– fCK = Clock frequency.
– CL = Output load capacitance.
– ESW = Switching activity factor.

l Design for low switching power:
Minimization of VDD, fCK, CL and ESW .

Design for Low Power (III)

2

11

© L. Benini: System-level power optimization Slide -21 -ESSES 03

l VDD and/or fCK scaling:
n Very effective.
n Big impact on performance.

l Switched capacitance optimization
(i.e., CL x ESW):
n Applicable at all levels of design abstraction.
n Many techniques proposed.

Design for Low Power (III)

© L. Benini: System-level power optimization Slide -22 -ESSES 03

Objectives

l Describe design techniques and tools for
system-level design

l Address system-level modeling, design and
power management issues

l Purposely neglect:
n Chip-level design issues

– physical and logic design
n Distributed systems (e.g. wireless networks)

12

© L. Benini: System-level power optimization Slide -23 -ESSES 03

Electronic systems

l A system is a combination of:
n Hardware:

– Computation units
– Storage units
– Communication units
– Peripherals

n Software :
– Application and system software

l Energy is required by all hardware units
l Software organization affects how hardware

consumes energy

© L. Benini: System-level power optimization Slide -24 -ESSES 03

Electronic system design

l Conceptualization and modeling:
n From idea to model

l Design:
n HW: computation, storage and communication
n SW: application and system software

l Run-time management:
n Run-time system management and control of all

units including peripherals

13

© L. Benini: System-level power optimization Slide -25 -ESSES 03

Examples

l Modeling:
n Choice of algorithm
n Application-specific hardware vs. programmable hardware

(software) implementation
n Word-width and precision

l Design:
n Structural trade-off

– Resource sharing and logic restructuring
n Exploit multiple/variable supplies

l Management:
n Operating system
n Dynamic power management

© L. Benini: System-level power optimization Slide -26 -ESSES 03

Outline

l Introduction
l System conceptualization and modeling

n Modeling and design
n Modeling for energy-efficient design

l System design
l System management
l Conclusions

14

© L. Benini: System-level power optimization Slide -27 -ESSES 03

System models

l Modeling is an abstraction:
n Represent important features and hide unnecessary details

l Functional models:
n Capture functionality and requirements
n Executable models:

– Support hw and/or sw compilation and simulation

l Implementation models:
n Describe target realization

© L. Benini: System-level power optimization Slide -28 -ESSES 03

Taxonomy

Classes of Systems

General-purpose Systems Special-purpose Systems

Modeling Styles

Implementation Models Functional Models

Executable Non-executable

15

© L. Benini: System-level power optimization Slide -29 -ESSES 03

Modeling Power at the System Level

l The abstraction challenge
n Model complex behavior
n …at a reasonnable computational effort
n With “acceptable” accuracy

l A spectrum of approaches depending on
the amount of functional information taken
into account

© L. Benini: System-level power optimization Slide -30 -ESSES 03

The spreadsheet model

l General-purpose systems
n Backward compatibility
n Component-based

l Spreadsheet-based analysis
n Basic budgeting
n Simple “what if” analyses
n No learning curve

16

© L. Benini: System-level power optimization Slide -31 -ESSES 03

Example: spreadsheet analysis

PDA #Comp Vdd Iidle Ion %on %idle I(mA)

Proc 1 3.3 0.5 50 0.7 0.3 36.15

DRAM 1 3.3 0.1 12 0.7 0.3 8.43

FLASH 5 3.3 0.0 9 0.7 0.3 31.5

IR 1 3.3 0.0 64 0.05 0.95 3.2

RTC 1 3.3 0.0 0.1 1 0 0.1

DC-DC 1 - 0.1 5.5 0.99 0.01 5.44

TOT 83.82

© L. Benini: System-level power optimization Slide -32 -ESSES 03

Power State Machines: System Model

l Event-driven model (resources & events)

n Key feature:
No overhead for long inactivity (no events).

Resource

Resource

Resource

Resource

Power
Manager

DC-DC
Converter

Battery System
Requests

Requests

Requests

User

User

User

Environment

17

© L. Benini: System-level power optimization Slide -33 -ESSES 03

Power State Machines: Resource Model

l Example of PFSM: LCD display unit.

BACKLIT
150mW

DISPLAY
50mW

OFF
0mW

0.5msec

0.1msec

0.1msec

10msec

0.1msec

11msec

l Key features:
n Power associated with states
n Transitions have a cost

© L. Benini: System-level power optimization Slide -34 -ESSES 03

Power State Machines: Additional Components

l Workload:
n User/Environment:

Non-deterministic FSM
(models the non-deterministic nature of the
requests).

l Power supply sub-system
n Battery
n DC-DC converter

18

© L. Benini: System-level power optimization Slide -35 -ESSES 03

Functional Power Models

l Objective:
Estimate the power dissipated by a specific
fragment of code

l Needs to track instruction execution
l Must be fast (millions of instructions)

n RTL or Gate-level are not fast enough
l Needs to model processor & memory

system

© L. Benini: System-level power optimization Slide -36 -ESSES 03

Software Power Estimation: Instruction-Level

ILPA [TMWL96]
l Empirical method for characterizing single (or

very short sequences of) instructions.
l Key issues:

n Evaluationof power dissipation for single instructions.
n Choice of representative instructions for

characterization.

l Advantage: Roughly architecture-independent.

19

© L. Benini: System-level power optimization Slide -37 -ESSES 03

Instruction-Level Power Characterization

l Direct measurement of the currents drawn from
the power supply while executing the instructions.

l HDL simulation:
n The instructions are simulated on a processor model in

some HDL.
n The processor is plugged into a tester machine and

simulation traces are applied. The current is measured
by the tester.

l Use simulation of a gate-level description of the
processor.

© L. Benini: System-level power optimization Slide -38 -ESSES 03

Instruction-Level Models

l A power cost is assigned to each instruction.
l Two components of the cost:

n Static component, called ``base-cost'': It is the
individual instruction cost without a notion of ``state''.

n Dynamic component, called ``circuit state effects'': It
accounts for the previous processor state.

l Dynamic cost accounts for events depending on
sequences of events (e.g., cache misses,
pipeline stalls).

20

© L. Benini: System-level power optimization Slide -39 -ESSES 03

Extracting the model

l The base cost is computed as follows:
n An infinite loop containing a total of N copies of the

target instruction I is executed.
n The average current is measured as described earlier.
n The power cost is obtained from the values of the

current, the supply voltage and the cycle/instruction.

l N should not be too small to amortize the loop
overhead.

© L. Benini: System-level power optimization Slide -40 -ESSES 03

Computing program execution cost

l Due to the averaging process, the costs for I1 → I2 and
I2 → I1 cannot be distinguished.

l The cost of a program can be summarized as follows:

Cost(Program) = Σi (B i · N i) + Σi j (O i j ·N i j) + Σ k E k

where:
n B i : Base cost of instruction i.
n N i : # of occurrences of instruction i.
n O i j : Dynamic cost of sequence →j.
n N i j : # of occurrences of sequence →j.
n E k: Other effects, obtained from program profiling.

21

© L. Benini: System-level power optimization Slide -41 -ESSES 03

Instruction-Level power model: example

l Example of power cost values (expressed in pJ):

l Example of computation:

Total value = 5.87pJ/(3·25ns) = 78.26µW (Tc = 25ns)

LOAD
DLOAD
ADD
MULT

2.37 0.17 1.19 0.92

0.99 0.26 0.53

1.19 0.66

Instruction
Name

Base
Cost

Circuit State Effects
LOAD DLOAD ADD MULT

1.98 0.13 0.15 1.19 0.92

Total

EvaluationProgram
(initial state is ADD) Base Cost Circuit State
DLOAD A←x, B ←y
LOAD C←z
ADD A←C, B

2.37 1.19
1.98 0.15
0.99 1.19
3.34 2.53

© L. Benini: System-level power optimization Slide -42 -ESSES 03

Micro-architectural Power Model

l The processor is viewed as an
interconnection of macro blocks
n E.g. Execution units, register file, etc.

l Power models are built for the macros
n E.g. Analytical, look-up tables, etc.

l Advantage: allows micro-architecture expl.
l Disadvantage: no black-box for COTS proc.

22

© L. Benini: System-level power optimization Slide -43 -ESSES 03

Integrating functional and power models

l Estimating together HW and SW power
consumption is more effective than considering
the two contributions separately.

l This is because the power consumption of a task
mapped onto software is not independent of the
implementation of the remaining tasks.

l Two approaches:
n Non-interacting (trace-based) HW/SW estimation.
n Concurrent HW/SW estimation.

© L. Benini: System-level power optimization Slide -44 -ESSES 03

Non-Interacting HW/SW Power Estimation

Avalanche [LH98]
l Target system architecture:

l Power estimationof custom HW done separately
(constant power in the model).

l Focus on power dissipation of SW and memory hierarchy.

CPU
SparcLite

Custom HW
(ASICs)

Main
Memory

I-Cache
D-Cache

23

© L. Benini: System-level power optimization Slide -45 -ESSES 03

Trace-based Estimator Architecture

l Block diagram:

l Main feature:
Exploitation of detailed software, memory, and
cache energy models.

l Main limitation:
No interaction between SW and HW during the
estimation.

Behavioral- Level
Simulator

Mermory Trace
Profiler

Application
Program

Software
EnergyModel

Dinero III

Program
Execution
Trace

Mamory
Access
Trace

CPU
energy

Main
Memory
Energy

Cache
Energy

Main Memory
EnergyModel

Cache
EnergyModel

Total System
Energy

© L. Benini: System-level power optimization Slide -46 -ESSES 03

Concurrent HW/SW Power estimation

IF ID EX MEM WB
Instruction set

simulator

Microarchitecture
units utilization interface

Addr/Data stream interface

Icache Dcache

Main MemoryExternal

power

models

Peripherals

Processor unitsProcessor units
memory modelsmemory models

Processor

power

models

E.g.: Simplescalar/Wattch

24

© L. Benini: System-level power optimization Slide -47 -ESSES 03

Outline

l Introduction
l System conceptualization and modeling

n Modeling and design
n Energy efficient design from

– Executable functional models
– Non-executable functional models

l System design
l System management
l Conclusions

© L. Benini: System-level power optimization Slide -48 -ESSES 03

Algorithm selection

l Inputs
n A target macro-architecture
n Abstract functional/executable spec.
n Constraints
n Library of algorithms

l Objective
 Select the most energy-efficient algorithm that

satisfies constraints

25

© L. Benini: System-level power optimization Slide -49 -ESSES 03

Example: set data types [Wuytack96]

l Select abstract data type (data struct & algorithm)
l Minimize memory power
l Application: ATM segment protocol processor
l Library with 32 complex abstract data types

Array Linked list Pointer array Binary tree

×1000 ∆P between best and worst

© L. Benini: System-level power optimization Slide -50 -ESSES 03

Issues in algorithm selection

l Applicable only to general-purpose
primitives with many alternative
implementation

l Pre-characterization on target architecture
l Limited search space exploration

26

© L. Benini: System-level power optimization Slide -51 -ESSES 03

Power Conscious Algorithm Design

l Change the semantic of computation
l Hard to automate
l Very effective

© L. Benini: System-level power optimization Slide -52 -ESSES 03

Approximate processing

 Introducing well-controlled errors can be
advantageous for power
n Reduced data width (coarse discretization)
n Layered algorithms (successive approximations)
n Lossy communication

Stage1
340×400

Stage2
680×800

Stage 3
1020×1200

Min P? Med P?
N N

Y
Y

27

© L. Benini: System-level power optimization Slide -53 -ESSES 03

Energy Scalable Algorithms

Energy

Q
u

al
ity

Algorithm I

Algorithm II

Emax,I Emax,II

QII

QI

Quality
Distribution

100%

l Maximize quality for given energy availability
l Energy Quality (E-Q) graph maximally concave

© L. Benini: System-level power optimization Slide -54 -ESSES 03

Series Expansion

N
N xkxkxkxfy ++++== L2

211)(

if(x > 1.0) {
xpowi = pow(x,N);
y = k[N]*xpowi+1;
for(i=N-1; i>0; i--) {
xpowi /= x;
y += xpowi*k[i]; }

}
else { //original algo }

xpowi = 0.0;
y = 1.0;
for(i=1; i<N; i++) {
xpowi *= x;
y += xpowi*k[i];
}

ScalableOriginal

l Incremental refinement
l Most-significant-first approach

Normalized Energy

Q
u

al
ity

28

© L. Benini: System-level power optimization Slide -55 -ESSES 03

Encryption

64

128

192

256
320

384
448

Energy per bit @ 1Mps (nJ)

Security (M
IPS

-years)

50 100
10-10

10-5

100

105

P=X.Y mod Q

w = log2Q

Quality scales
with w

• Scalable encryption [Chandrakasan 98]

© L. Benini: System-level power optimization Slide -56 -ESSES 03

Outline

l Introduction
l System conceptualization and modeling

n Modeling and design
n Energy efficient design from

– Executable functional models
– Non-executable functional models
– Implementation models

l System design
l System management
l Conclusions

29

© L. Benini: System-level power optimization Slide -57 -ESSES 03

Task graph

l Nodes are tasks
l Edges are dependencies
l Periodic execution is implicitly assumed

T1

T2
T3

B

E

© L. Benini: System-level power optimization Slide -58 -ESSES 03

Task graph techniques

l Problem formulation
n Input

– Task graph
– Set of available processing elements (PEs)
– Power, performance, cost metrics
– Performance & cost constraints

n Output
– Power-optimized implementation (constrained)

l [Dave99], [Kirovski97]

30

© L. Benini: System-level power optimization Slide -59 -ESSES 03

Processing elements

l Several classes of PEs
n General-purpose processors (e.g. RISC core)
n Digital signal processors (e.g. VLIW core)
n Programmable logic (e.g. LUT-based FPGA)
n Specialized processors (e.g. custom DCT core)

l Trade off flexibility vs. efficiency
n Specialized is faster and power-efficient
n General-purpose is flexible and inexpensive

© L. Benini: System-level power optimization Slide -60 -ESSES 03

Cost metrics

l Multi-objective problems
n Constrained optimization
n Explore design trade-offs

l Example: performance and power

 #Clock Cyc les Energy (µJ)

 P E 1 PE
2

PE
3

P E
1

PE
2

PE
3

 Energy per
Cycle

1.5 .2 .05

T1 100 250 900 1 5 0 5 0 45

T2 110 260 900 1 6 5 5 2 45

T3 1 2 0 300 1000 1 8 0 60 50

TCLK = 10ns
@ Vdd = 3.3V

31

© L. Benini: System-level power optimization Slide -61 -ESSES 03

Constrained optimization

l Design space
n Who does what and when (binding & scheduling)
n Supply voltage of the various PEs:

– TCLK = K Vdd/(Vdd - Vt)2

l Design target
n Minimize power
n Performance constraint (e.g. Titeration=21µsec)

© L. Benini: System-level power optimization Slide -62 -ESSES 03

Basic search algorithm

Task graph preprocessing
(clustering-splitting)

Task graph preprocessing
(clustering-splitting)

PE allocationPE allocation

Scheduling & BindingScheduling & Binding

Stop?Stop?Stop?Cost EstimationCost Estimation

NO

YES

NO

32

© L. Benini: System-level power optimization Slide -63 -ESSES 03

Refined Power Metrics I

l Communication power
l Memory power

MPE
MPE MPE

BUS
T1

T2
T3

B

E

© L. Benini: System-level power optimization Slide -64 -ESSES 03

Refined Power Metrics II

l Multi-tasking overhead
l Power management overhead

PE1

PE1

PE1

PE1

33

© L. Benini: System-level power optimization Slide -65 -ESSES 03

Limitations of Task-Level Abstraction

l Task-level description does not express
complete functional information
n Tasks must be defined a priori
n Functional transformations are impossible

l Power metric characterization
n Exaustive (every PE for every task)
n Inaccurate (misses inter-task effects)

© L. Benini: System-level power optimization Slide -66 -ESSES 03

Outline

l Introduction
l System conceptualization and modeling
l System design

n Computation
n Memory
n Communication
n Software

l System Management
l Conclusions

34

© L. Benini: System-level power optimization Slide -67 -ESSES 03

System design

l Input
n The output of the conceptualization phase

– A macro-architectural template
– A hardware-software partition
– Component by component constraints

l Output
n Complete hardware design

Proc Inteconnect

PE PE PE PE

Mem Mem

© L. Benini: System-level power optimization Slide -68 -ESSES 03

Design process

l Specify computation, storage, template
components, and software
n Synergic process

l Fundamental tradeoff: general-purpose vs.
application-specific
n Flexibility has a cost in terms of power

35

© L. Benini: System-level power optimization Slide -69 -ESSES 03

Processing element design

l Application specific processing unit
n Minimum flexibility, minimum power

l Application-specific processor
n Tailored processor template

l Core processor
n Maximum flexibility, maximum power

© L. Benini: System-level power optimization Slide -70 -ESSES 03

Application-specific computational units

l Designed at the circuit/logic/RT level
n Outside the scope of this tutorial

l Synthesized from high-level executable
specification (behavioral synthesis)
n Supply voltage reduction
n Switching frequency reduction
n Load capacitance reduction
n Minimization of switching activity

36

© L. Benini: System-level power optimization Slide -71 -ESSES 03

Power-driven voltage scaling

 From faster to power efficient by scaling
down voltage supply
n Traditional speed-enhancing transformations

can be exploited for low-power design
– Pipelining
– Parallelization
– Loop unrolling
– Re-timing

© L. Benini: System-level power optimization Slide -72 -ESSES 03

Issues

l Performance-enhancing transformations do
not always pay off
n Region of diminishing returns (e.g. speculation)

l Voltage supply is driven low by
technological reasons
n Reduced headroom

37

© L. Benini: System-level power optimization Slide -73 -ESSES 03

Advanced voltage scaling

l Multiple voltages
n Slow down non-critical path with lower voltage

supply
n Two or more power grids
n High-efficiency voltage converters

* + -

+

+

© L. Benini: System-level power optimization Slide -74 -ESSES 03

Clock frequency reduction

l fclk↓ does not decrease energy
n …but it may increase battery life: C=K/Iα

l Multi-frequency clocks
n GALS [Hemani99]
n Low-frequency distribution [Chung95]

Clk
domain 1

Clk domain 2

Clk domain 3

38

© L. Benini: System-level power optimization Slide -75 -ESSES 03

Reducing load capacitance

l Reduce wiring capacitance
n Reduce local loads
n Reduce global interconnect

Global interconnect can be reduced
by improving spatial locality: trade off

communication for computation

© L. Benini: System-level power optimization Slide -76 -ESSES 03

Reduce switching activity

l Improve correlation between consecutive
input to functional macros

l Reduced glitching
l All basic HLS steps have been modified

n A synergic approach lead best results

+ +

- +

>

+ +

-

+

>

+

+

-

+

>

A AB C

H

0

AB ABA C

A CH H

0 0

39

© L. Benini: System-level power optimization Slide -77 -ESSES 03

Issues

l High-level estimation
n Accuracy is still limited
n Dependency on input patterns

l Design flow
n HLS is not yet mainstream technology
n Compete with RTL techniques

© L. Benini: System-level power optimization Slide -78 -ESSES 03

Application-specific processors

l Parameterized processors tailored to a
specific application
n Optimally exploit parallelism
n Eliminate unneeded features

l Applied to different architectures
n Single-issue cores ⇒ instruction subsetting
n Superscalar cores ⇒ # and type of FUs
n VLIW cores ⇒ FUs and compiler

40

© L. Benini: System-level power optimization Slide -79 -ESSES 03

Example: Application-specific VLIW optimization

Application
Processor library

Application
Processor library

Select Processor
Retarget compiler
Select Processor
Retarget compiler

Compile and
Simulate (ISS)
Compile and

Simulate (ISS)

Estimate and find
best so far

Estimate and find
best so far

Other?Other?

Eliminate dominated
solutions

Eliminate dominated
solutions

Done

Y

N

© L. Benini: System-level power optimization Slide -80 -ESSES 03

Issues

l Exploration techniques
n Limited search space
n Accuracy of cost metrics

l Back-end
n Synthesis of ASIPS
n Competitive with highly-optimized cores?

l Preliminary research results

41

© L. Benini: System-level power optimization Slide -81 -ESSES 03

Exploiting processor reconfigurability

CPU

ROM

RAM

LogicProgram
Size

Data Size

Vdd
Clock

Example: reconfigurable bit width

[B
as

ed
 o

n
sl

id
e

by
 &

©

 :
H

. Y
as

uu
ra

,
20

00
]

© L. Benini: System-level power optimization Slide -82 -ESSES 03

Bung DLX

l Standard 32-bit design of the DLX RISC Architecture

n # of general registers: 32
n # of instructions: 72
n the datapath width 32 bits
n the instruction length ≤ 32 bits
n VHDL Description ~ 7,000 lines
n Synthesized circuit 23,282 gates

l ASIPs defined through design modification table containing:
n The datapath width ≤ up to 64
n The data memory space ≤ 2

32
words

n The instruction length ≤ 32 bits
n The instruction memory space ≤ 2

32
words

n The number of general registers ≤ 32

n The number of instructions ≤ 72
[Based on slide by &
© : H. Yasuura, 2000]

42

© L. Benini: System-level power optimization Slide -83 -ESSES 03

Key software elements:
Valen-C and a Retargetable Compiler

l Valen-C
n Programmers can specify the effective bit width for each

variable: e.g.: int20 x, y, z
n The semantics of the program is independent from

processor architecture.
l Retargetable compiler

n Processor Definition + Valen-C Program
ê Assembly code for the processor

[Data are available at
http://kasuga.csce.kyushu-u.ac.jp/~codesign/Valen-C/index-j.html

– Source code, documentation on Valen-C compiler]

[Based on slide by &
© : H. Yasuura, 2000]

© L. Benini: System-level power optimization Slide -84 -ESSES 03

How does compilation
with Valen-C work?

Valen-C code
Int20 x, y, z;
....
z = x + y;

x
y
z

add x y z

xu
xl
yu
yl
zu
zl

add xl yl zl
addc xu yu zu

20-bit Processor 10-bit Processor

[Based on slide by &
© : H. Yasuura, 2000]

43

© L. Benini: System-level power optimization Slide -85 -ESSES 03

More complicated cases

Valen-C Program
int12 x;
int20 y;
int24 z;

12-bit processor

x

y

y

z

z

unused: 4 bits
total: 60 bits

20-bit processor

x

y

z

Z

unused bits

unused: 24 bits
total: 80 bits

z

[Based on slide by &
© : H. Yasuura, 2000]

© L. Benini: System-level power optimization Slide -86 -ESSES 03

Application: Decimal 12 bit Calculator

l Valen-C (400 lines)

The length of
Variables # of Variables

4 257

8 257
14 3
39 258

0
20
40
60
80

100
120
140
160
180

10 18 26 34

bitwidth datapath

area (K
gates)

cycle
(K
cycles)
power
(µJ)

[Based on slide by &
© : H. Yasuura, 2000]

44

© L. Benini: System-level power optimization Slide -87 -ESSES 03

Dynamically Tunable Microprocessors

l Dynamically tailor the hardware to meet
program needs on-the-fly while the program
runs
n Fine grain level: dynamically resize caches,

TLBs, issue queues, register files, etc.
n Exploits logic shutdown (clock-gatinc etc.)

l Two parts:
n Dynamically configurable hardware (“knobs”)
n Feedback and control mechanisms (“tuning”)

© L. Benini: System-level power optimization Slide -88 -ESSES 03

L2
Unified
Cache

fetch decode
fetch queue

dispatchrename

flt pt
reg
file

FPQ FPU

Integer
reg
file

IQ IU

LSQ L1
Dcache

bpred

L1
Icache

Integer

Memory

Floating Pt

Fetch

voltage and
frequency

voltage and
frequency

voltage and
frequency

voltage and
frequency

Dynamically Configurable Architecture

[Albornesi 02]

High-performance processor with
additional control knobs

45

© L. Benini: System-level power optimization Slide -89 -ESSES 03

Energy Savings and Performance Cost

© L. Benini: System-level power optimization Slide -90 -ESSES 03

Low power core processors

l Details are outside the tutorial’s scope
n [Gonzalez96,Burd96]

l Key ideas
n Low voltage
n Reduce wasted switching
n Specialized modes of operations/instructions
n Variable voltage supply

46

© L. Benini: System-level power optimization Slide -91 -ESSES 03

Core design space for Multimedia [Nishitani99]

Sony Mpeg2 Enc

NEC Mpeg2 Enc

TMS320C6x
TMS320C6201

MPact
TriMedia

SH4

Scarlet

DEC21164

PentiumII

MMXPentiumVR4400

VR4300StrongARM110

Pallas

Lucent16210
SPX

MN1933211

VR4100

1,0e+1

1,0e+2

1,0e+3

1,0e+4

1,0e+5

1,0e-2 1,0e-1 1,0e+0 1,0e+1 1,0e+2

MPEG2 ENC

MPEG1 ENC

MPEG2 DEC

ASIC

MediaProc

General Purpose

MOPS

W

© L. Benini: System-level power optimization Slide -92 -ESSES 03

Exploiting Variable Supply

l Supply voltage can be dynamically
changed during system operation
n Cubic power savings
n Circuit slowdown

l Just-in-time computation
n Stretch execution time up to the max tolerable

Available time

Power
Fixed voltage + Shutdown

Variable voltage

47

© L. Benini: System-level power optimization Slide -93 -ESSES 03

Voltage scaling example

[Courtesy, Yasuura, 2000]

© L. Benini: System-level power optimization Slide -94 -ESSES 03

Variable-voltage processor example: INTEL Xscale

From Intel’s Web Site

l Discrete VS
n 3 to 4 voltages
n More frequencies

l Transition penalties
n ≈ milliseconds
n Dominated by supply

voltage transient

l System support
n Voltage supply circuitry
n Interface circuits (!!)

l Voltage ranges
n Decrease with tech.

[INTEL01]

48

© L. Benini: System-level power optimization Slide -95 -ESSES 03

Variable-supply Architectures

l High-efficiency adjustable DC-DC converter
l Adjustable synchronization

n Variable-frequency clock generator [Chandrakasan96]

n Self-timed circuits [Nielsen94]

l Example: Power-pro architecture [Ishiara98], Crusoe
embedded processor [Transmeta00]

Dec
Power

Manager

CPU
Prog
ROM

Data RAM

DC-DC
& VCO

Vdd CLK

© L. Benini: System-level power optimization Slide -96 -ESSES 03

Issues

l Optimization still not proven on real-life
architectures

l Overhead in supporting variable voltage
n Adjustable DC-DC
n Adjustable clock
n Interfaces

l Reliability concerns

49

© L. Benini: System-level power optimization Slide -97 -ESSES 03

Outline

l Introduction
l System conceptualization and modeling
l System design

n Computation
n Memory
n Communication
n Software

l System Management
l Conclusions

© L. Benini: System-level power optimization Slide -98 -ESSES 03

Memory Optimization

l Custom data processors
n Computation is less critical than data storage

(for data-dominated applications)

l General-purpose processors
n A significant fraction of system power is

consumed by memories

Memory-related consumption
Storage

Transfer

50

© L. Benini: System-level power optimization Slide -99 -ESSES 03

Off-chip vs. on-chip memories

ARM7TDMI cores, well-known
for low power consumption

ARM Atmel Evaluation Board

Processor

On-chip memory

board

On-board memory

Larger & off-chip memories need more energy than smaller &
on-chip memories; Example:

© L. Benini: System-level power optimization Slide -100 -ESSES 03

Minimization of Memory Access Power

l Basic concept: “Close” vs. “far” memory accesses:
n Close: Faster, less energy consuming, smaller block sizes.
n Far: Slower, more energy consuming, larger block sizes.
n Example:

EL0= 1.5nJ EL1= 3nJ EL2= 7nJ ERAM= 127nJ

Exec
Units

L0$

1-16K

L1$

4-64K

L2$

16-1024K

Processor Chip

DRAM Barks
Memory
Control &
Buffer

Datapath
Control &
Buffer

Processor Bus

51

© L. Benini: System-level power optimization Slide -101 -ESSES 03

Memory Power Optimization

l Key idea: exploit locality
n Hierarchical memory
n Partitioned memory

l Optimize software for power-efficient memory
architectures

B1B1
B2B2
B3B3

B1B1

B2B2

B1B1

B2B2

PEPE

L1

L2
L3L3

© L. Benini: System-level power optimization Slide -102 -ESSES 03

Exploiting Temporal Locality

Array
Index
Values

Time
Reuse
Region

Can be kept in faster
memory

52

© L. Benini: System-level power optimization Slide -103 -ESSES 03

Exploiting Temporal Locality
(Multiple Levels)

Array
Index
Values

Time

in the fastest
memory

in the next
fastest memory

© L. Benini: System-level power optimization Slide -104 -ESSES 03

Optimization approaches

l Fixed memory access patterns
n Optimize memory architecture

l Fixed memory architecture
n Optimize memory access patterns

l Concurrently optimize memory architecture
and accesses

53

© L. Benini: System-level power optimization Slide -105 -ESSES 03

Optimize Memory Architecture

l Data replication to localize accesses
n Implicit: multi-level caches [Su95], [Bahar98]
n Explicit: buffers [Bajwa97], [Wuytack98]

l Partitioning to minimize cost per access
n Multi-bank caches [Ko98]
n Partitioned memories [Tellez97], [Wuytack98]

L1L1 L2L2 L3L3
B12 B23

Pmem = PL1⋅hitL1+PB12(1-hitL1)+PL2 ⋅hitL1+(PB23+PL3)⋅(1-hitL1-hitL2)

© L. Benini: System-level power optimization Slide -106 -ESSES 03

Optimize Memory Accesses

l Sequentialize memory accesses
n Reduce address bus transitions [Catthoor94], [Su95]

n Exploit multiple small memories [Panda96]

l Localize program execution
n Fit frequently executed code into a small instruction buffer

(or cache) [Panwar95], [Bellas98]

l Reduce storage requirements [Gebotys96], [Catthoor]

54

© L. Benini: System-level power optimization Slide -107 -ESSES 03

Optimize Memory Architecture and Access Patterns

l Two phase-process
n Specification (program) transformations

– Reduce memory requirements
– Improve regularity of accesses

n Build optimized memory architecture
l Highest potential

n How to automate program transformations

© L. Benini: System-level power optimization Slide -108 -ESSES 03

Memory Hierarchy Optimization

l Idea: Enforce locality in the cache and
memory sub-systems.

l Solutions:
n Data replication.
n Alternatives to caches (e.g., scratch-pad

buffers).
n Cache/Memory partitioning.

55

© L. Benini: System-level power optimization Slide -109 -ESSES 03

Implicit Data Replication

l Usage of a filter cache:
n Introduce an extra L0 cache.
n Much smaller (e.g., 256 byte).
n Latency penalty due to L0 misses

compensated by low-energy hits in L0 cache.
n Energy/delay product is reduced.

© L. Benini: System-level power optimization Slide -110 -ESSES 03

Explicit Data Replication

l Exploit buffers along I-cache and D-cache:

l No latencypenalty.

Memory

L1 D-cache

L1 I-cache

D-L1 buffer

I-L1 buffer

data
access

instr.
access

56

© L. Benini: System-level power optimization Slide -111 -ESSES 03

Explicit Data Replication (Cont.)

l Use of buffers as victim cache:
n Accessed on a main cache miss.
n Hit:

– Datum is promoted to main cache (and returned to CPU).
– The replaced line in the cache is moved to the victim cache.

n Miss:
– L2 cache is accessed.
– The incoming datum is put in the main cache.
– The replaced line in the cache is moved to the victim cache.

© L. Benini: System-level power optimization Slide -112 -ESSES 03

Explicit Data Replication (Cont.)

l Use of speculative buffers:
n Everycache access is marked with a " confidence

level'', obtained by examining processor state (i.e.,
current branch prediction state).

n The main cache contains misses with high confidence
level.

n The speculative buffer contains misses with low
confidence level.

57

© L. Benini: System-level power optimization Slide -113 -ESSES 03

Replace Caches with Scratch-Pad Buffers

l Viable solution for embedded systems, where memory
access profiles may be available.

l Trade-off cache flexibility for lower access cost.

D
E

C
O

D
E

R

SENSE

DATAAddress

DATA
OUTPUT

Word-line

Bit-line

© L. Benini: System-level power optimization Slide -114 -ESSES 03

Replace Caches with Scratch-Pad Buffers (Cont.)

(a) ASM used as a cache.
(b) ASM used as a buffer for on-chip memory (no latency penalty).
(c) ASM used as a buffer for off-chip memory (no latency penalty).

ASM
Data

Addr CS

Addr
Decoder

Miss

Addr
Data

Processor

Stall MMU

OFF Chip
Databus

(a)

OFF Chip
Addr bus

ASM
Data

Addr CS

Addr
Decoder

Addr
Data

Processor
Addr CS
Data

RAM

(b)

Miss

ASM
Data

Addr CS

Addr
Decoder

Addr
Data

Processor

EN

EN

EN

OFF Chip
Addr Bus

OFF Chip
Databus

Miss
R/W’

(c)

58

© L. Benini: System-level power optimization Slide -115 -ESSES 03

Replace Caches with Scratch-Pad Buffers (Cont.)

l Results for MP3 decoder:

939.000

977.000

1.040.000

40

50

60

70

80

256 512 1024

%

L=16;a=1

L=6;a=2
L=6;a=1

L=4;a=4L=4;a=2
L=4;a=1

L=6;a=1

L=4;a=2
L=4;a=1

L=4;a=1

0

10

20

30

40

50

60

1KB 2KB 2KB 2KB 4KB 4KB 4KB 4KB 4KB 4KB
Size

Saving Write-Trough

Write-Back

Percentageover Total
Number of Access

Most
Frequent
Locations

Profiling Results Energy Savings

© L. Benini: System-level power optimization Slide -116 -ESSES 03

Cache/Memory Partitioning

Multi-bank caches:
n Use independently-addressable banks.
n Two-dimensional partitioning: M modules with

B banks each.
n Power savings achieved through exploitation of

reduced capacitance of smaller memories.
n Ad-hoc, low-power bank selection circuitry is

used.

59

© L. Benini: System-level power optimization Slide -117 -ESSES 03

Cache/Memory Partitioning (Cont.)

l Example of multi-bank caches (M=4, B=2):

M0_low

M0_high

M1_low

M1_high

M2_low

M2_high

M3_low

M3_high

address/way
select

mod/bank
select

© L. Benini: System-level power optimization Slide -118 -ESSES 03

Cache/Memory Partitioning (Cont.)

Partitioned memories:
n Memory hierarchy with independently-

addressable memory banks.
n Exploit sleep-mode features to shut down

individual banks.
n Design memory partition so as to maximize the

sleep-time.
n Typical memory traces are used to drive the

partitioning process.

60

© L. Benini: System-level power optimization Slide -119 -ESSES 03

Cache/Memory Partitioning (Cont.)

l In the case of embedded systems, the dynamic memory
access profile may be available.

l Idea:
Map most frequent addresses onto small partitions close
to the processor.

l Example:

28 K 4 K 32 K

Reads

Addr

Dynamic Access Profile

ARM
Proc

32

32

MS
R/W

TRADITIONAL
ARCHITECTURE

4 KB

32KB

28 KB

SelectARM
Proc

MS

MS

MS R/W

R/W

R/W

Power Optimized Architecture

64K
32

32
Data
Addr

© L. Benini: System-level power optimization Slide -120 -ESSES 03

Cache/Memory Partitioning (Cont.)

l Assumptions:
n Energy per access monotonically increases with memory size.

l Target: Automatic memory partitioning .
l Need of:

n Cost metrics.
n Optimization algorithm.

l The energy savings obtained by partitioning must
compensate the overhead of adding banks (longer wires,
bank selection logic).

l Link to physicaldesign is key for overhead
characterization.

61

© L. Benini: System-level power optimization Slide -121 -ESSES 03

Memory Access Pattern Optimization

l Address sequentialization:
n Exploitation of multiple (smaller) memories.
n Low-transition bus encoding can also be

viewed as a tool for making addresses
sequential (e.g., Gray-code address
generation).

l Localization of execution:
n Ad-hoc memory (or cache) for storing

frequently executed code [BHPS98].

© L. Benini: System-level power optimization Slide -122 -ESSES 03

Exploiting Multiple Memories

l Mapping of arrays onto multiple physical memories:
n Logical memory partitions are allocated according to some optimal

array organization (e.g., tile-based vs. row-major).

n Target: Enforce spatial locality.

Arrays Logical Array
Partitioning

Logical
Memories

Physical
Memories

A1

A2

A3

K1

K2

K3

K4

K5

L1

L2

L3

P1

P2

62

© L. Benini: System-level power optimization Slide -123 -ESSES 03

Code Density Optimization

l Basic idea:
Minimize program memory occupation so as to
reduce the bandwidth of processor-memory
communication.

l Approaches:
n Custom instruction sets.
n Object code compression.

l Privilege memory traffic reduction (i.e., dynamic
code size) over static code size reduction:
n Sometimes static code size may even increase.

© L. Benini: System-level power optimization Slide -124 -ESSES 03

Custom Instruction Sets

l Viable solution for general-purpose
processors.

l Example: ARM Thumb code.
n Interleaving of regular (32 bit) and Thumb (16

bit) instructions.
n Requires modifications to the basic processor

architecture.
n Requires specific compilers and software

development kits.

63

© L. Benini: System-level power optimization Slide -125 -ESSES 03

Object Code Compression

l Viable solution for embedded processors.
l Idea:
Exploit the small subset of instructions used by
firmware code running on embedded processors.

l Approaches:
n Full code compression.
n Selective code compression.

© L. Benini: System-level power optimization Slide -126 -ESSES 03

Full Code Compression

Replace all instructions with binary patterns of minimum
width.

l ([log2 N] , where N is the number of instructions).
l Architecture:

Core

k

Addresses

Instructions

k bits

Memory

[log N] bits

Memory

Core
Addresses

IDT
[logN]

Instructions

k

IDT= Instr. Decompr. Table

64

© L. Benini: System-level power optimization Slide -127 -ESSES 03

Full Code Compression (Cont.)

l Advantages:
n Availability of ad-hoc source-code compilers is not required

(replace original instructions with compressed ones with script).
n Architectural modifications to the processor are not required

(key feature for users of IP cores and µC).

l Limitations:
n Very often the number of distinct instructions, N, used by a

program is not small. This implies:
– Size of IDT may be very large.
– Original and compressed instruction widths may be comparable.
– [log2 N] may not be a multiple of 8.

© L. Benini: System-level power optimization Slide -128 -ESSES 03

Selective Code Compression

Very often program traces are covered by a small
subset of instructions.

l Consider for compression only such subset.
l Candidates: Instructions that maximize program

coverage.
l IDT sf fixed (256 words).
l Program is a mix of compressed and

uncompressed instructions.

65

© L. Benini: System-level power optimization Slide -129 -ESSES 03

Selective Code Compression (Cont.)

l Architecture:

8 bits

Memory

Buffer

Core

IDT

CONTRInstructions

Addresses

8

k 0

1

k

Instructions

© L. Benini: System-level power optimization Slide -130 -ESSES 03

Selective Code Compression (Cont.)

l Assumptions:
n Byte-addressable memory.
n Memory banks (8-bit wide) can be independently

disabled
(on a cycle-by-cycle basis).

n A reserved special word: The mark
(used to signal compressed/uncompressed instruction).

l Different use of the mark is possible.

66

© L. Benini: System-level power optimization Slide -131 -ESSES 03

Selective Code Compression (Cont.)

l Various architectures available .
l Example:

L1*

L2*

L4
L3*

L5*

L6**

L7

L8*

0

1

2
3

4

5

6
7

0

1

2
3
4

5

6
7
8

9

11

10

14

12
13

15

S1

S2

S3

M

L4 - 1
L4 - 2
L4 - 3

L4 - 4

M

L7 - 1

L7 - 2
L7 - 3

L7 - 4

S6

S5

S8

0

1
2
3

4

5

6
7

8

9

S1

S2
S3

M

L4-1L4-2L4-3L4-4

M

S6

S5

L7-1L7-2L7-3L7-4

S80
1

2
3
4

5
6

L4-1L4-2L4-3L4-4

L7-1L7-2L7-3L7-4

L6-1L6-2L6-3L6-4

S1S2S3M

S5M

M

S8

0

1

2
3

4

5

L4-1L4-2L4-3L4-4

L7-1L7-2L7-3L7-4

S1S2S3M

S5S6

S8

M2

M1

© L. Benini: System-level power optimization Slide -132 -ESSES 03

Selective Code Compression (Cont.)

l Advantages:
n Size of IDT is fixed a priori and limited (we picked N =

256).
n Instruction fetching/decompression logic has reduced

complexity.
l Drawback:

n Requires a controller to handle instruction fetching
(the program stored in memory is a mix of compressed
(many) and uncompressed (few) instructions).

l Average power savings on execution of standard
programs around 45%.

67

© L. Benini: System-level power optimization Slide -133 -ESSES 03

Data Density Optimization

l Same principle as code density optimization.
l Existing approaches based on data compression:

n Target is memory traffic reduction (dynamic size of the
data-set).

n More complex than code compression, because both
compression and decompression are required.

n Hardware compression/decompression unit (CDU)
needed.

– Speed vs. power design trade-off.

© L. Benini: System-level power optimization Slide -134 -ESSES 03

On-The-Fly Data Compression

l CDU placed between D-Cache and main memory.
Data are uncompressed in the D-Cache, possibly
compressed in memory:
n Compression is performed on cache write-backs.
n Decompression is performed on cache refills.
n Compression and decompression are performed one cache line at

a time.

l A small portion of the main memory is dedicated to
store compressed data.

68

© L. Benini: System-level power optimization Slide -135 -ESSES 03

On-The-Fly Data Compression (Cont.)

l Architecture:

l LC: Line compressor (CAM); LD: Line decompressor
(RAM); CLAT: Compressed line address table (CAM).

l A cache line is compressed only if it fits a slot in the
compressed memory.

Dcache CDU Main Mem

Compressed
Memory

Memory

Data
Write

addr

Data
Read

Match

LC

CLAT

LD

Match

line out

writeback req

addr

line in

refill req

© L. Benini: System-level power optimization Slide -136 -ESSES 03

On-The-Fly Data Compression (Cont.)

l Profile-driven approach:
LC and LD are filled once and for all with data profiling
information.
n Memory traffic reductions around 42%.
n Off-line data profiling needed; applicable to embedded systems.

l Adaptive approach:
Requires two LC CAMs and two LD RAMs; while the first
pair CAM-RAM is in use, the second pair is updated with
current data statistics. When “mature”, the two pairs are
swapped.
n Memory traffic reductions around 30%.
n No data profiling needed; applicable to general-purpose systems.

69

© L. Benini: System-level power optimization Slide -137 -ESSES 03

Outline

l Introduction
l System conceptualization and modeling
l System design

n Computation
n Memory
n Communication
n Software

l System Management
l Conclusions

© L. Benini: System-level power optimization Slide -138 -ESSES 03

Design of communication units

l Trends:
n Faster computation blocks, larger chips

n Communication speed is critical

n Energy cost of communication is significant

l Multifaceted design approach:
n On chip, networks, wireless, ...

n Protocol stack

70

© L. Benini: System-level power optimization Slide -139 -ESSES 03

Protocol stack
a simplified view

l Data Link
n Error control through

coding and channel
management

n Shared busses

l Physical layer
n Signaling
n Modulation

NetworkNetwork

OS & MiddlewareOS & Middleware

ApplicationsApplications

Data LinkData Link

PhysicalPhysical

© L. Benini: System-level power optimization Slide -140 -ESSES 03

Data encoding

l Theoretical results:
n Bounds on transition activity reduction:

– The higher the entropy rate of the source is, the lower is the
gain achievable by coding

l Practical applications:
n Processor-memory (and other) busses

–Data busses, address busses
l Transition activity reduction does not guarantee

energy savings

71

© L. Benini: System-level power optimization Slide -141 -ESSES 03

Bus encoding

BUS
Control line(s)ENC

DEC
ENC
DEC

PROCESSOR MEMORY

© L. Benini: System-level power optimization Slide -142 -ESSES 03

Bus encoding

l Data buses:
n Random white noise model

l Address busses:
n Some spatio-temporal correlations

l Embedded software:
n Addresses and data can be analyzed a priori to

determine encoding

72

© L. Benini: System-level power optimization Slide -143 -ESSES 03

Bus-Invert coding for data busses

l Add redundant line INV to bus
l When INV=0

n Data is equal to remaining bus lines
l When INV = 1

n Data is complement of remaining bus lines
l Performance:

n Peak: at most n/2 bus lines switch
n Average: Code is optimal. No other code with 1-bit

redundancy can do better

© L. Benini: System-level power optimization Slide -144 -ESSES 03

Bus-Invert coding for data busses

l Average switching reduction is bus-width dependent:
n Ex: 3.27 for an 8-bit bus

l Average switching per line decreases as busses get
wider
n Use partitioned codes
n No longer optimal (among redundant codes)

l Implementation issues:
n Difference (XOR) of two data samples and majority vote

73

© L. Benini: System-level power optimization Slide -145 -ESSES 03

Bus-Inver code comparisons

lines mode A- trans A-trans/ line A-power

2 - 1 0.5 100%
2 BI 0.75 0.375 75%
8 - 4 0.5 100%
8 1 BI 3.27 0.409 81.8%
8 4 BI 3 0.375 75%
16 - 8 0.5 100%
16 1 BI 6.83 0.427 85.4%

© L. Benini: System-level power optimization Slide -146 -ESSES 03

Extensions and generalizations

l Transition signaling:
n Assert logic TRUE / FALSEby signal transitions

l Use several redundant lines
n Limited-weight codes [Stan, Burelson]
n Coding is space and time
n Modulation techniques

74

© L. Benini: System-level power optimization Slide -147 -ESSES 03

Encoding instruction addresses

l Most instruction addresses are consecutive
n Use Gray code [Su, Tsui, Despain]

l Word-oriented machines:
n Increments by 4 (32bit) or by 8 (64bit).
n Modify Gray code to switch 1 bit per increment

[Metha, Owens, Irwin]
n Gray code adder for jumps

– Harder to partition
– Convert to Gray code after update

© L. Benini: System-level power optimization Slide -148 -ESSES 03

Working zone encoding (WZE)

l Conjecture:
n Software programs favor working zones of their

address space
l WZE:

n Transmit WZ identifier and offset in WZ
n 1-hot encoding for offsets

l Applicability:
n No caches: data/instruction/shared address

busses
n With caches: data/instruction-only busses

75

© L. Benini: System-level power optimization Slide -149 -ESSES 03

T0 Code

l Add redundant line INC to bus
l When INC = 0

n Address is equal to remaining bus lines
l When INC = 1

n Transmitter freezes other bus lines
n Receiver increments previously transmitted

address by a parameter called stride
l Asymptotically zero transitions for sequences

n Better than Gray code

© L. Benini: System-level power optimization Slide -150 -ESSES 03

Mixed bus encoding techniques

l T0_BI:
n Use two redundant lines: INC and INV
n Good for shared address/data busses

l Dual encoding:
n Good for time-multiplexed address busses
n Use redundant line SEL :

– SEL=1 denotes addresses
– SEL is already present in the bus interface

n Dual T0:
– Use T0 code when SEL is asserted.

n Dual T0_BI:
– Use T0 when SEL is asserted; otherwise use BI

76

© L. Benini: System-level power optimization Slide -151 -ESSES 03

Address bus encoding using statistical analysis

l Statistical analysis of bus traces
n Spatio-temporal correlation of word K-tuples
n Often limited to first / second order statistics (K=1,2)

l Encode words according to correlation
l Use transition signaling
l Spatio-temporal correlation computation:

n On-line adaptive
n Off-line for embedded software

© L. Benini: System-level power optimization Slide -152 -ESSES 03

Address bus encoding for embedded software

l Off-line statistical analysis of bus traces
n Compute bit 2nd order correlation from known stream:

– Correlate bit it with bit jt+1

– Use correlation measure to group bits into fields
n Apply graph clustering algorithm
n Cluster correspond to mutual high spatio-temporal correlation

l Re-encode bus lines in each cluster
n Group bus lines into clusters (with locally high correlation)
n Encode signals within each cluster to reduce bus switching

77

© L. Benini: System-level power optimization Slide -153 -ESSES 03

Information-Theoretic Code

l Idea:
Exploit the concept of correlator (widely used in information

theory) to simplify the encoding problem.
l New problem formulation:
Minimize word transition probabilities, that is, minimize the

number of 1's being transmitted.
y (n) = 1 z (n) = 0→1

Correlator:
Maps ones
to transitions

© L. Benini: System-level power optimization Slide -154 -ESSES 03

Information-Theoretic Code (Cont.)

l Generic encoder-decoder (codec) architecture:

l Encoding requirements:
E should minimize the average number of 1's while

guaranteeing unique decodability of y(n).
l Symmetric operations occur in the decoding phase.

x (n) y(n)
Bus

z (n)

x (n)y (n)

W

E
D

x (n-1)
Corr Decorr

x (n-1)

78

© L. Benini: System-level power optimization Slide -155 -ESSES 03

Information-Theoretic Code (Cont.)

l Encoding algorithm:
n Sort the pairs of input data words according to their

probabilities.
n Starting from the most probable pair:

– Assign minimum-one codes.
– Update decodability constraints.

n Extract E and D.
l The probability of input data words is required up-

front. Therefore, this approach is applicable in
embedded systems.

© L. Benini: System-level power optimization Slide -156 -ESSES 03

Information-Theoretic Code (Cont.)

l Example (bus width W=2):

l The algorithm provides optimal results, but it is impractical
in both size and time.

l Approximate solutions are required:
n Clustered Encoding.
n Discretized Encoding.

x(n) x(n-1) y(n)

01

01

11

00

...

10

00

10

10

...

x(n) x(n-1) y(n)

01

01

11

00

...

10

00

10

10

...

00
00

00

00
00

00, 01

x(n) x(n-1) y(n)

01

01

11

00

...

10

00

10

10

...

00
00
01

79

© L. Benini: System-level power optimization Slide -157 -ESSES 03

Bus encoding: summary

l Bus encoding is very useful to reduce switching of high-
capacitance busses

l Some techniques require synthesis of dedicated
encoder/decoder circuitry

l Power consumption of such circuits must be weighted
against power savings on busses

l Techniques differ for address and data busses

© L. Benini: System-level power optimization Slide -158 -ESSES 03

Outline

l Introduction
l System conceptualization and modeling
l System design

n Computation
n Memory
n Communication
n Software

l System Management
l Conclusions

80

© L. Benini: System-level power optimization Slide -159 -ESSES 03

Views on embedded software

... it is now common knowledge that more than 70% of the
development cost for complex systems such as automotive
electronics and communication systems are due to software
development [A. Sangiovanni-Vincentelli, 1999]

For many products in the area of consumer electronics the amount
of code is doubling every two years [Fritz Vaandrager in:
Rozenberg, Vaandrager (eds.): Lectures on Embedded Systems,
LNCS, Vol. 1494, 1998]

© L. Benini: System-level power optimization Slide -160 -ESSES 03

Optimization for low-energy always the same as
optimization for high performance?

int a[1000];
c = a;
for (i = 1; i < 100; i++) {
b += *c;
b += *(c+7);
c += 1;

}

LDR r3, [r2, #0]
ADD r3,r0,r3
MOV r0,#28
LDR r0, [r2, r0]
ADD r0,r3,r0
ADD r2,r2,#4
ADD r1,r1,#1
CMP r1,#100
BLT LL3

ADD r3,r0,r2
MOV r0,#28
MOV r2,r12
MOV r12,r11
MOV r11,rr10
MOV r0,r9
MOV r9,r8
MOV r8,r1
LDR r1, [r4, r0]
ADD r0,r3,r1
ADD r4,r4,#4
ADD r5,r5,#1
CMP r5,#100
BLT LL3

2231 cycles
16.47 µJ

2096 cycles
19.92 µJ

No !
• High-performance if available memory bandwidth fully used;
low-energy consumption if memories are at stand-by mode

• Reduced energy if more values are kept in registers

81

© L. Benini: System-level power optimization Slide -161 -ESSES 03

Impact of software

l For a given a hardware platform, the energy to
realize a function depends on software
n Operating system
n Different algorithms to embody a function (e.g.,

sorting)
n Different coding styles
n Application software compilation

© L. Benini: System-level power optimization Slide -162 -ESSES 03

Outline

l Introduction
l System conceptualization and modeling
l System Design

n Software design
– Compilation techniques (memory hierarchy)
– High-level transformations
– Dynamic power management

l Conclusions

82

© L. Benini: System-level power optimization Slide -163 -ESSES 03

Reducing Memory Area

Reusing the same
memory space
n Can reduce capacity

misses
n Can lead to smaller

memory in embedded
design

For I = 1, N
… = C[I]

For I = 1, N
B[I] = A[I]

For I = 1, N
… = C[I]

For I = 1, N
C[I] = A[I] last use

© L. Benini: System-level power optimization Slide -164 -ESSES 03

On-chip vs. off-chip current

Current
32 Bit-Load Instruction (Thumb)

48,2 50,9 44,4 53,1

116
77,2 82,2 1,16

0

50

100

150

200

Prog Off-Chip/
Data Off-Chip

Prog Off-Chip/
Data On-Chip

Prog On-Chip/
Data Off-Chip

Prog On-Chip/
Data On-Chip

m
A

Core+On-Chip-Memory Current (mA) Off-Chip-Memory Current (mA)

Example: Atmel ARM-Evaluation board

Processor

On-chip
memory

board

On-board
memory

current reduction:

/ 3.02

current reduction:

/ 3.02

83

© L. Benini: System-level power optimization Slide -165 -ESSES 03

On-chip vs. off-chip energy

Energy
32 Bit-Load Instruction (Thumb)

115,8

51,6

76,5

16,4

0,0
20,0
40,0
60,0
80,0

100,0
120,0
140,0

Prog Off-Chip/
Data Off-Chip

Prog Off-Chip/
Data On-Chip

Prog On-Chip/
Data Off-Chip

Prog On-Chip/
Data On-Chip

10
 n

J

Energy

Example: Atmel ARM-Evaluation board Off-chip access takes
more cycles
+ savings (86%) are
larger than for the
current.

€

energy reduction:

/ 7.06

energy reduction:

/ 7.06

© L. Benini: System-level power optimization Slide -166 -ESSES 03

Exploitation of on-chip memory

Which segment (array, loop, etc.) to
be stored in on-chip memory?

Gain gi and size si for each segment i.

Maximise gain G = Σgi, respecting
constraint K ≥ Σ si.

Static memory allocation:

Solution: knapsack algorithm.

Dynamic reloading:

Paging theory.
Processor

On-chip
memory,
capacity K

board

On-board
memory

?

For i .{ }

for j ..{ }

while ...

Repeat

call ...

Array ...

Int ...

Array

Example:

84

© L. Benini: System-level power optimization Slide -167 -ESSES 03

Results for knapsack algorithm

Energy saving

0,00% 10,00% 20,00% 30,00% 40,00% 50,00%
latt

ice
_in

it
me_

ivlinhea
p_s

ort
sel

ect
ion

_so
rt

ins
erti

on
_so

rtbu
bb

le_
sor

tmatr
ix_

mult

biq
uad

_N
_se

ctio
ns

B
en

ch
m

ar
k

Onchip/MemSize

Energy Saving

[Steinke et al., 2002]

0.5%

© L. Benini: System-level power optimization Slide -168 -ESSES 03

Why not just use a cache ?

0

1

2

3

4

5

6

7

8

9

256 512 1024 2048 4096 8192 16384

memory size

E
ne

rg
y

pe
r

ac
ce

ss
 [n

J]

.

Scratch pad

Cache, 2way, 4GB space
Cache, 2way, 16 MB space

Cache, 2way, 1 MB space

Energy consumption in tags, comparators and muxes is significant.

[R. Banakar , S. Steinke, B.-S. Lee, 2001]

85

© L. Benini: System-level power optimization Slide -169 -ESSES 03

III. Dual Memory Loads (Architecture)

RAM M

RAM N
ALU

Register

Register

Register

© L. Benini: System-level power optimization Slide -170 -ESSES 03

Dual Memory Loads (Example)

(X*Y)+
Z

Case 1 Case 2 Case 3

M
N

X,Y,Z X,Y
Z

X,Z
Y

LD B,X
LD C,Y
LD A,Z; MUL B,C
ADD A,B

DLD B,X;A,Z
LD C,Y
MUL B,C
ADD A,B

DLD B,X;C,Y
LD A,Z; MUL B,C
ADD A,B

Energy 10.57pJ 9.32pJ 8.85pJ

86

© L. Benini: System-level power optimization Slide -171 -ESSES 03

Register Optimizations

l Jui-Ming Chang, Massoud Pedram, Register Allocation and
Binding for Low Power, Univ. of Southern California, ACM 1995
n technique for minimizing the switching activity of a set of

registers shared by different data values
– assumes known probability density function of the primary

input random variables or sufficiently large number of input
vectors

n power consumption of well designed register sets depends
mainly on the total switching activity of the registers

n power model based on switching activity
n 22.5% power reduction

© L. Benini: System-level power optimization Slide -172 -ESSES 03

Register Optimizations

l Software Energy Optimization
[Tiwari J. VLSI Signal Proc. Aug ‘96]
n Reduce Memory Accesses, Make better use of Registers

– Data for i486
– register access = 300 mA/cycle
– memory read (cache hit) = 430 mA/cycle

– memory write (write-through cache) = 530 mA/cycle

n can be achieved by e.g. saving the least amount of context
during function calls (compiler policies)

n better utilization of registers
– optimal register allocation of temporaries
– global register allocation for the most used variables

l use register operands as opposed to memory operands

87

© L. Benini: System-level power optimization Slide -173 -ESSES 03

Register pipelining: key idea and results

Key idea:
for i:= 0 to 10 do

C:= 2 * a[i] + a[i-1];

R2:=a[0]; for i:= 1 to 10 do
begin R1:= a[i]; C:= 2 * R1 + R2;

R2 := R1;
end;

28,1

115,1

44,1 36,2

99,8

27,5 28,826,3

95

35,6 29

80,4

20,4 22,9

0
20

40
60
80

100

120
140

biq
uad

_N
_se

ctio
ns

latt
ice

(*1
0)

hyd
ro f

rag
ment

tri-d
iag

ona
l eli

mina
tion

equ
atio

n o
f st

ate
 fra

gm
ent firs

t su
m

firs
t d

iffe
ren

ce

En
er

gy
 [µ

J]
 .

Results:

[Steinke et al., 2001]

© L. Benini: System-level power optimization Slide -174 -ESSES 03

l Objective: to reduce memory system energy
dissipation, proposed by Catherine H. at
University of Waterloo

l Power model
n Energy dissipation of register file and memory system

n Assume constant energy for memory read/write
n Consider switch activity for register file read/write

III. Register Allocation

∑∑
∈∈

+++=
Rv

r
vr

r
vw

Mv

m
vr

m
vwmsystem EEEEE)()()()()()(

∑∑
∈∈

++=
Rvv

r
rw

Mv

m
vr

m
vwmsystem EvvHEEE

2,1
)()()2,1()(

88

© L. Benini: System-level power optimization Slide -175 -ESSES 03

Register Allocation (cont’d)

l Map to a minimum cost network flow problem
n Solid arc represents the life time of a variable
n Dashed arc represents the sharing of one

register (memory location) by two variables
n Capacity: 1 for each arc
n Cost functions

– ew(v)→r(v) = 0
– er(v1)→ w(v2) = –(Ew(v2)

m + Er(v1)
m) + Ew(v2)

r + Er(v1)
r

= –(Ew(v2)
m + Er(v1)

m) + H(v1, v2)Erw
r

n Amount of flow: F = number of registers
n Objective: find a flow of at most F, while

minimizing

l Results: 28-60% energy reduction for memory
system

∑
→

→→
)2()1(

)2()1()2()1(
vwvr

vwvrvwvr xe

© L. Benini: System-level power optimization Slide -176 -ESSES 03

Outline

l Introduction
l System conceptualization and modeling
l System Design

n Software design
– Compilation techniques (memory hierarchy)
– High-level transformations
– Dynamic power management

l Conclusions

89

© L. Benini: System-level power optimization Slide -177 -ESSES 03

I. Instruction Scheduling and Reordering

l Power depends on switching activity, units accessed
l Power-driven scheduling

n scheduling to reduce pipeline stalls
n selecting a minimum-power instruction mix for an application
n reducing switching on address/data lines

– instruction reordering
(pairs of instructions have different power consumptions)

– operand swapping
n Reorder Instructions to reduce switching effects

– Not much impact on large general purpose CPUs
– Useful in DSPs - (~15% benefit) [Lee et. al. TVLSI, Dec ‘96]

n low-power instruction sets
n shut down unused units

© L. Benini: System-level power optimization Slide -178 -ESSES 03

“Cold” Instruction Scheduling

l Two adjacent instructions have smaller
hamming distance → fewer instruction
bus lines recharge from 0 to 1 (1 to 0)

90

© L. Benini: System-level power optimization Slide -179 -ESSES 03

Machine Architecture

VLIW Experimental Testbed

© L. Benini: System-level power optimization Slide -180 -ESSES 03

Instruction Scheduling Policies

l Software re-arranging optimization (helper)
without performance penalty

l “List Scheduling” with critical path information
l A side constraint on standard performance-

oriented scheduler
n General problem: side effects!!

91

© L. Benini: System-level power optimization Slide -181 -ESSES 03

Solutions

l Horizontal Scheduling
n Permute micro-instructions within a given

VLIW instruction

l Vertical Scheduling
n Reorder VLIW instructions’ sequence in a

basic block

l Possible Component Activity Solution
n Extension to Pipeline States

© L. Benini: System-level power optimization Slide -182 -ESSES 03

Experiment Results

88.134%

86.537%

87.240%

85.714%

87.022%

85.562%

84%

85%

86%

87%

88%

89%

queens grep

Pe
rc

en
ta

ge
 o

f
no

rm
al

 u
sa

ge

Horizontal Scheduling (4-Way)

Vertical scheduling(4-Way), W=4

Vertical scheduling(4-Way), W=8Only on IBUS

92

© L. Benini: System-level power optimization Slide -183 -ESSES 03

40 45 50 55 60

ADD & LOGICAL

SUB & COMPARE

SHIFT

MOV

BRANCH

MULTIPLY

 LOAD

 STORE

 PUSH

 POP

Strom [mA]

38

IV. Using energy consumption
as a cost function in instruction selection

Current for different instructions (ARM core):

Only ~ 10%
improvement by using
these values in
instruction selection

Current [mA]

© L. Benini: System-level power optimization Slide -184 -ESSES 03

Avoid power hungry multiplies

40 45 50 55 60

ADD & LOGICAL

SUB & COMPARE

SHIFT

MOV

BRANCH

MULTIPLY

 LOAD

 STORE

 PUSH

 POP

Strom [mA]

38

• Replace multiplies by
additions/shifts

Current [mA]

93

© L. Benini: System-level power optimization Slide -185 -ESSES 03

Outline

l Introduction
l Power modeling for software optimization
l Compilation techniques
l High-level transformations
l Dynamic power management
l Synergistic techniques
l Software optimization for wireless applications
l Conclusions

© L. Benini: System-level power optimization Slide -186 -ESSES 03

Manual Optimization Methodology

l Motivation
n Many source code optimizations are hard to automate
n Provide guidelines for code developers

l Layered approach
n Enables designers to focus first on abstract view & then

perform optimizations narrower in scope
n Optimization problem is partitioned - enables parallelism

l Three levels of optimization
n Algorithmic
n Data
n Instruction

l Prerequisite: system level power estimator and energy profiler

[Source: Benini]

94

© L. Benini: System-level power optimization Slide -187 -ESSES 03

Algorithmic Optimization

l Identify computationally intensive kernels
l Consider alternative algorithms for those kernels
l Evaluate and implement the most promising algorithms

l MP3 audio example:
n focused on two most computationally intensive kernels: sub-

band synthesis and DCT algorithms
– e.g. replacing standard DCT algorithm with Chen DCT,

reducing multiply count by 28%

[Source: Benini]

© L. Benini: System-level power optimization Slide -188 -ESSES 03

Data Optimization

Goal:
Change representation of data to match the target architecture

l MP3 audio example:
n signal processing algorithms often use floating point data
n CPUs usually are much more efficient with integer computation

– e.g. StrongARM emulates floating point in software
n → implement a fixed-precision library
n only slight changes to the code
n implement independently form algorithmic optimizations
n resulted in large energy savings and performance increase

[Source: Benini]

95

© L. Benini: System-level power optimization Slide -189 -ESSES 03

Instruction Optimization

l Exploit characteristics of the target architecture
l Examples of instruction optimizations

n Integer division and modulo operation
n Conditional Execution
n Boolean Expressions
n Switch Statement versus Table Lookup
n Register Allocation
n Variable Types
n Function Design
n Inline assembly

© L. Benini: System-level power optimization Slide -190 -ESSES 03

Integer division and modulo operation

l Unsigned modulo 2 shift is 14.7% more energy
efficient as it does not require sign extension

uint div16u (uint a)
{

return a / 16;
}

int div16s (int a)
{

return a / 16;
}

l Condition is 51.39% more energy efficient as
compared to the modulo operation

uint counter2 (uint count)
{
if (++count >= 60)

count = 0;
return (count);

}

uint counter1 (uint count)
{
return (++count % 60);

}

96

© L. Benini: System-level power optimization Slide -191 -ESSES 03

Conditional Execution

l all ARM instructions are conditional
l conditional execution reduces the number of branches
l code sequences with function calls are not

conditionalized
l grouped relational expressions below are 1.25% more

energy efficient than the ungrouped ones due to
conditionalization

int g(int a, int b, int c, int d)
{

if (a > 0 && b > 0 && c < 0 && d < 0)
return a + b + c + d;

return -1;
}

© L. Benini: System-level power optimization Slide -192 -ESSES 03

Variable Types

l StrongARM default “int” variable type is 18.2%
more energy efficient than “char” or “short”

l sign or zero extending is needed for shorter
variable types

int wordinc (int a)
{
return a + 1;

}

char charinc (char a)
{

return a + 1;
}

97

© L. Benini: System-level power optimization Slide -193 -ESSES 03

Experimental Results for Software Optimization
(MP3 decoder)

l Overall :10 times faster, 5 times less energy consumption
l Profiler provides results by functions and for each HW component
l Increase in energy consumption and decrease of performance in

FLASH due to increase in the code size with algorithmic change

Time [s]

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

80,00

System Flash RAM

Original

Algorithmic
Opts.

Data &
Instruction
Opts.

Combined

Energy [mWhr]

0

0,2

0,4

0,6

0,8

1

Ba
tt

CPU Fla
s

RAM

DC-DC
Lin

es

Original

Data & Instr.
Opt.
Combined Opt.

[Source: Benini]

© L. Benini: System-level power optimization Slide -194 -ESSES 03

Using Special-Purpose Instructions

xmm0

xmm1

xmm2

xmm3

xmm4

xmm5

xmm6

xmm7

SSE Registers

128 bits

a1 a2 a3 a4

b1 b2 b3 b4

c1 c2 c3 c4

op op op op

c = a op b

New SSE Datatype 0.52

0.89

0.69

0.63

0.60

f

92.00.291.70005.8000fft

73.1Average Power Savings (%)

81.60.460.17000.3700fir

74.40.540.02600.0480exp

32.20.851.09001.2800lms

85.30.410.00090.0022dot

VddSIMDNormal

Power
Saving

s
(%)

NormalizedTime (ms)Program

Pentium III Benchmarks

l MATLAB style code
l Fixed throughput

results in
substantial power
savings

class SSEVec {
public:
float *vec;
int size;

public:
// Constructors
SSEVec();
SSEVec(int size);

// Overloaded operators
SSEVec& operator+(SSEVec v);
SSEVec& operator-(SSEVec v);
SSEVec& operator*(SSEVec v);
SSEVec& operator/(SSEVec v);
float operator[](SSEVec v);

}

SSEVec& operator+(SSEVec v) {
SSEVec *sv = new SSEVec(size);
__m128 m1, m2, m3;
for(int i=0; i<size; i+=4) {
m1 = _mm_load_ps(v.vec+i);
m2 = _mm_load_ps(vec+i);
m3 = _mm_sum_ps(m1,m2);
_mm_store_ps(*sv.vec+i,m3); }
return *sv;
}

C++ Vector Class

98

© L. Benini: System-level power optimization Slide -195 -ESSES 03

Loop transformations (1)

Array folding

Frequently only small
segments of arrays live

Separation of margin handling

+

many if-
statements for
margin-checking

no checking,
efficient

only few margin
elements to be
processed

© L. Benini: System-level power optimization Slide -196 -ESSES 03

Loop transformations (2)

for (j=0; j<=n; j++)
for (k=0; k<=m; k++)

p[j][k] =

for (k=0; k<=m; k++)
for (j=0; j<=n; j++)

p[j][k] =

Loop permutation:

Next reference to array element adjacent in the cache.

Loop unrolling:
for (j=0; j<=n; j++)
p[j] = ... ;

for (j=0; j<=n; j+=2)
{ p[j] =;

p[j+1] =}
Improves utilization of pipeline;
simplifies keeping more values in registers

99

© L. Benini: System-level power optimization Slide -197 -ESSES 03

Loop transformations (3)

for (j=0; j<=n; j++)
for (k=0; k<=m; k++)

p[j][k] =

for (j1=0; j1<=n; j1+=t)
for (k1=0; k1<=m; k1+=t)

for (j2=j1; j2<=j1+t-1; j2++)
for (k2=k1; k2<=k1+t-1; k2++)
p[j2][k2] =

Loop tiling:

Loop adjusted to size of cache lines

Loop fusion/fission
for (j=0; j<=n; j++)
p[j] = ... ;

for (j=0; j<=n; j++)
p[j]= p[j] + ... ;

for (j=0; j<=n; j++)
{ p[j] =;

p[j] = p[j] +}

Improves caching and use of
registers

fusion

fission

Exploits small HW loops

© L. Benini: System-level power optimization Slide -198 -ESSES 03

Memory Energy (J)

0

0,2
0,4

0,6

0,8

1

1,2
1,4

1,6

1,8

1K, 1-way 1K, 2-way 1K, 4way 1K, 8way

original
loop
unroll
tile
all

mxm

100

© L. Benini: System-level power optimization Slide -199 -ESSES 03

Memory Energy (J)

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1K, 8-way 2K, 8-way 4K, 8-way 8K, 8-way

original
loop
unroll
tile
all

mxm

© L. Benini: System-level power optimization Slide -200 -ESSES 03

Datapath Energy (J)

0
0,01
0,02

0,03
0,04

0,05
0,06
0,07

0,08
0,09

original loop unroll tile all

mxm

101

© L. Benini: System-level power optimization Slide -201 -ESSES 03

Improving Locality: Data Transformations

l Linear layout transformations
n Dimension re-indexing
n Diagonal (skewed) memory layouts

l Blocked memory layouts

Data transformations might be useful where
loop transformations fail, but they have their

own problems (e.g. aliasing)

© L. Benini: System-level power optimization Slide -202 -ESSES 03

Example: Dimension Reindexing

For I = 1, N
For J = 1, N

A[I][J] = B[J][I]

l Imitates the effect of a
different layout

l Should be applied
with a global view

l Less negative impact
on datapath energyFor I = 1, N

For J = 1, N
A[I][J] = B’[I][J]

102

© L. Benini: System-level power optimization Slide -203 -ESSES 03

Data Transformation Effects

0

0,4

0,8

1,2

1,6

2

1k cache

direct
transformed
2way
transformed
4way
transformed

mxm

© L. Benini: System-level power optimization Slide -204 -ESSES 03

Outline

l Introduction
l System conceptualization and modeling
l System Design

n Software design
– Compilation techniques (memory hierarchy)
– High-level transformations
– Dynamic power management

l Conclusions

103

© L. Benini: System-level power optimization Slide -205 -ESSES 03

Hardware support

l RUN: operational
l IDLE: a sw routine

may stop the CPU
when not in use,
while monitoring
interrupts

l SLEEP: Shutdown
of on-chip activity

RUN

SLEEPIDLE

400mW

160uW50mW

90us

90us10us

10us
160ms

Example: STRONGARM SA1100

© L. Benini: System-level power optimization Slide -206 -ESSES 03

The opportunity

busy idle busy

shut down wake up

Tsd Twuworking workingsleeping

Tbs Tbw

Tsd: shutdown delay Twu: wakeup delay

Tbs: time before shutdown Tbw: time before wakeup

power states

device states

Shutdown only during long idle time

Reduce power according to workloads

104

© L. Benini: System-level power optimization Slide -207 -ESSES 03

A control system abstract model

l System responds to input (workload) with a
performance level and a power consumption

l Controller samples B/I and issues PM commands
l Objective: minimize power for a desired performance

System
(plant)

Power manager
(controller)

PM
commands

Power

Performance

Workload

Busy/Idle

© L. Benini: System-level power optimization Slide -208 -ESSES 03

The challenge

lIs an idle period long
enough for shutdown (Tbe)?

Predicting the future!

105

© L. Benini: System-level power optimization Slide -209 -ESSES 03

l Timeout : [Karlin94, Douglis95, Li94, Krishnan99]

l Predictive : [Chung99, Golding95, Hwang00, Srivastava96]

l Stochastic : [Benini99, Qiu99, Simunic01]

– Shutdown the system when timeout expires

– Shutdown the system if prediction is longer than Tbe

Approaches to workload prediction

– Model the system stochastically (Markov chain)
– Policy optimization with constraints

• Trade off between energy saving and performance
– Non-deterministic decision
– Discrete time model / Continuous time model
– Superior to predictive and timeout

© L. Benini: System-level power optimization Slide -210 -ESSES 03

Algorithm P N sd N wd

off-line 0.33 250 0
Semi- Markov 0.40 326 76

Sliding Window 0.43 191 28
Device-Specific Timeout 0.44 323 64

Learning Tree 0.46 437 217
Exponential Average 0.50 623 427

always on 0.95 - -

Performance of predictors

P : average power Nsd: number of shutdowns
Nwd : wrong shutdowns (actually waste energy)

106

© L. Benini: System-level power optimization Slide -211 -ESSES 03

Can I do better than that?

lImprove workload
information

Application-aware DPM!

© L. Benini: System-level power optimization Slide -212 -ESSES 03

Application aware DPM

user

device

programprogramprogram

power manager

requesters
DPM API

scheduler

Interaction with scheduler
OS

107

© L. Benini: System-level power optimization Slide -213 -ESSES 03

Interaction with processes

l Concurrent processes
n Created, executed, and terminated
n Have different device utilization
n Generate requests only when running (occupy

CPU)

l Power manager is notified when processes
change state

l Processes ask for “service levels” to the PM

© L. Benini: System-level power optimization Slide -214 -ESSES 03

Interaction with Task Scheduling

Rearrange task execution to cluster
similar utilization and idle periods

T: time quantum

t1
t2
t3

1
1

2
2

2
3

3

timeidle idleT

1

t1
t2
t3

1
1

2
2

2
3

3

idle

1

108

© L. Benini: System-level power optimization Slide -215 -ESSES 03

Shutdown-friendly scheduling

l Cluster processes with similar utilization patterns
n Localize resource usage in time

l Tradeoff against latency
n A process may be delayed

l Exploit application-knowledge
n Processes can specify their latency requirements via

API calls
n Safe assumptions on legacy processes: can specify

laxity of timing constraints

© L. Benini: System-level power optimization Slide -216 -ESSES 03

Low-Power Scheduling in Practice

tasks specify
• device requirements

• timing requirements

eg. autosaver,
email download

operating system
1. group tasks with same device

requirements

2. arrange groups with similar
device requirements

3. execute tasks in groups
4. wake up devices in advance to

meet timing constraints

109

© L. Benini: System-level power optimization Slide -217 -ESSES 03

Power and Overhead Reduction

Timing
constraints

P o w e r Power State
C h a n g e s

1000 67% 57 %
500 69 % 61%
100 80 % 95 %

100%: scheduling without
considering power management

Task scheduling reduces power and overhead.

© L. Benini: System-level power optimization Slide -218 -ESSES 03

Process awareness improvements

A l g o r i t h m T s (k s e c) N d P a

P A - D P M * 2 3 . 6 1 8 1 1 . 0 0
[I C C A D 9 7] 1 7 . 9 3 2 5 1 . 3 5

T i m e o u t (2 m i n) 1 2 . 3 6 4 1 . 5 6

Ts: time during sleeping state
Nd: number of shutdowns
Pa: average power (normalized to row 1)

better

[Yung01]

110

© L. Benini: System-level power optimization Slide -219 -ESSES 03

Can I do better than that?

lApplication-level DPM

Shaping the workload!

© L. Benini: System-level power optimization Slide -220 -ESSES 03

Example: Communication Power

NICs powered by portables reduce battery life

2.5 hours

• Higher bit rates Higher power consumption

• 90% of power is drawn by listening to the radio channel!!

In general

Proper use of PHY layer services by MAC is critical

8 hours

111

© L. Benini: System-level power optimization Slide -221 -ESSES 03

NIC power states

• Transmit mode
• Receive mode
• Doze mode
• Off-mode

– NIC completely turned off
– Use only when streaming multimedia is

somehow requested by the client
– Power overhead for frequent switches
– Must come with proper buffering strategies

© L. Benini: System-level power optimization Slide -222 -ESSES 03

Networked Streaming multimedia

LAB ethernet network WavePoint II Access Point

Range Extender antenna

SmartBadge III

Wavelan Card Turbo 11Mbps

112

© L. Benini: System-level power optimization Slide -223 -ESSES 03

Doze mode

Off mode Energy saving

Server

Buffering

Playback Playback

Buffer full Playing Low water mark reached

time

Power
Client

time

Refill

RequestRequest
Beacons

Access Point

Off mode power savings

© L. Benini: System-level power optimization Slide -224 -ESSES 03

Buffering strategies

Where shall I put the LWM?

• It dipends on the memory availability
• The longer the buffer length, the more the benefits of NIC off-state

How long should the buffer be?

• Higher error probability
• Exploits NIC off-state
• Minimum value exists to allow data acquisition

• lower error probability
• Incurs NIC off-state overhead
• Maximum value: Buffer_length – 1 block

BUFFERING STRATEGIES SHOULD BE POWER AWARE

113

© L. Benini: System-level power optimization Slide -225 -ESSES 03

Results

ü Low length buffers incur off mode power overhead
ü For high length buffers, good power saving

[Bertozzi02]

© L. Benini: System-level power optimization Slide -226 -ESSES 03

What if the system is not idle?

lExploiting underutilization

Dynamic Voltage Scaling!

114

© L. Benini: System-level power optimization Slide -227 -ESSES 03

Variable-voltage processor example: INTEL Xscale

From Intel’s Web Site

l Discrete VS
n 3 to 4 voltages
n More frequencies

l Transition penalties
n ≈ milliseconds
n Dominated by supply

voltage transient

l System support
n Voltage supply circuitry
n Interface circuits (!!)

l Voltage ranges
n Decrease with tech.

[INTEL01]

© L. Benini: System-level power optimization Slide -228 -ESSES 03

Energy as a function of frequency

Variable Frequency

l Energy consumption:
l T is given by:
l Hence the energy equation can be written as:

l Energy savings
n Reduces costs of memory latency
n Reduces costs of I/O synchronization

l Discrete frequency range
n Adaptation mismatch

frameeff
2

DDframe TfCVE ⋅⋅⋅=
t)NN(tNT idleusefulframeframe ⋅+=⋅=

))f(NN(fCVE idleusefulef f
2

DDframe +⋅⋅⋅=

115

© L. Benini: System-level power optimization Slide -229 -ESSES 03

Streaming real-time single application example

l An MPEG stream is composed of frames
n The decoder produces audio samples by processing block of

frames.
l SW and HW buffering allows synchronization among input rate,

output rate and processing time
l Each block must be elaborated in a fixed time, during this time

the CPU does not access input or output buffers
l Output data are sent to the audio CODEC by the DMA

© L. Benini: System-level power optimization Slide -230 -ESSES 03

Single task: Frequency setting

br, sr

FRmax

audio stream

f

FR

Look-up

[Acquaviva 01]

Vmin fMIN

116

© L. Benini: System-level power optimization Slide -231 -ESSES 03

Experimental Results

l Current waveform – no policy applied

E

sa
mple

rat
e bit rate

• Energy as a function of
stream characteristics

© L. Benini: System-level power optimization Slide -232 -ESSES 03

Experimental Results (II)

l Comparison between policies

E
n

er
g

y(
m

W
)

800

1000

1200

1400

1600

600

Bit rate(Kbit/s)

E
n

er
g

y
R

ed
u

ct
io

n

0.49

0.51

0.53

0.55

0.57

0.47

Bit rate(Kbit/s)

0.59

without policies
mixed policy
shutdown
variable frequency

Sample rate 16KHz

10 20 30 40 50 60
0.45

10 20 30 40 50 60

max

maxReductionEnergy
E

EE opt−
=

117

© L. Benini: System-level power optimization Slide -233 -ESSES 03

Multiple tasks: voltage scheduling

Dynamic Vcc/
freq control

Time

P
ow

er

“Run fast
and stop”

Active Idle IdleActive Active

Dynamic
freq
control

Active Active Active

Active Active Active

Power

t

l Performance constraints

n Static/dynamic workloads
n Hard/soft deadlines

l Transition costs
n Number of states
n State transition overhead

l Execution time estimation
n WCET

n Stochastic

l Policy granularity
n Inter-task
n Intra-task

l Using sleep states

© L. Benini: System-level power optimization Slide -234 -ESSES 03

Conservative vs. aggressive DVS approaches

l Conservative: hard real-time guarantees
n Basic idea

– Use conservative estimates (WCET)
– Perform scheduling with RT guarantees
– Stretch execution when running faster than WCET

n Slack recovery

l Aggressive: soft real-time constraints
n Basic idea

– Monitor system usage @ run time

– Predict future usage based on past history
– Set speed (and voltage) based on prediction

n Slack prediction

118

© L. Benini: System-level power optimization Slide -235 -ESSES 03

Conservative DVS formulations

l Task type: Dependent tasks (task graphs)
l Task characteristics: tasks can have different

energy profiles, deadlines, release times
l Number of processors: single or multiple
l Voltage type: Continuous or discrete
l Voltage resolution: Different cycles of the

same task can have different voltages

© L. Benini: System-level power optimization Slide -236 -ESSES 03

Overall Flow

119

© L. Benini: System-level power optimization Slide -237 -ESSES 03

Approach

l An Integer Programming (IP) formulation of the
voltage selection problem
n Number of variables and constraints linear to number of

tasks
n Polynomial time solvable for continuous voltage
n Efficient approximation for discrete voltage

l Earliest Deadline First (EDF) scheduling for a
single processor and a priority-based list
scheduling for multiple processors
n Polynomial time algorithm aimed at providing more

energy saving

© L. Benini: System-level power optimization Slide -238 -ESSES 03

S

After Scheduling

6

4

5

15

t1

t5

t2

t3

t4

T

P1 P2

Scheduling

Tcon = 19

6

4

5 1

5

t1

S

t5t2

t4

T
Before Scheduling

t3 [rl3, T3, dl3]

120

© L. Benini: System-level power optimization Slide -239 -ESSES 03

Scheduling and Voltage Setting (2 Vdds)

© L. Benini: System-level power optimization Slide -240 -ESSES 03

Energy consumption of different
implementations

3654191011(d)

256319714(c)

216619615(b)

0%8415021(a)

SavEdNVlNVh

121V1

412Vh

ETVCTVV

Processor Data
(normalized)

Energy Consumption of the Four Implementations

121

© L. Benini: System-level power optimization Slide -241 -ESSES 03

Aggressive DVS: Workload Dependant Processing

l How to predict workload, w?
l How frequently should the processing rate, f(r), be

updated

Variable Voltage
Processor

D
C

/D
C

C

o
n

ve
rt

er

W
o

rk
lo

ad
M

o
n

it
o

r

V fixed

V(r) w f(r)

r

?1

?2

?n

Task Queue

?

P
ro

ce
ss

or
 U

ti
liz

at
io

n
 (

%
)

Time (s)

Dialup Server

WorkstationFileserver

© L. Benini: System-level power optimization Slide -242 -ESSES 03

Prediction Strategy

Least Mean Square
(LMS)

Expected Workload State
(EWS)

Exp. Weighted Average
(EWA)

Moving Average Workload
(MAW)

kn
N

khn ,
1

][∀= k
n akh −=][

{ } ∑
=

=+Ε=+
L

j
ijj pwnwnw

0

]1[]1[][][][][1 knwnwkhkh enn −+=+ µ

• Simplest
• Performance degradation with fast loads

• Lower significance of older data
• Event prediction context [Hwang97]

• Adaptive filter, self-adjusting
• Convergence issues

• Probabilistic formulation
• Transition matrix updated every slot

∑
−

=

−=+
1

0

][][]1[
N

k
np knwkhnwPredicted

Workload
Previous

Workloads

122

© L. Benini: System-level power optimization Slide -243 -ESSES 03Time (s)

W
o

rk
lo

ad

Continuous

Prefect

Predicted

Prediction Performance

n N = 3 taps and T = 5 s
is a good choice

R
M

S
 E

rr
or

Filter Taps (N)

MAW

EWS
LMS

EWA

N
or

m
al

iz
ed

 E
n

er
g

y

Update Time, T (s) Filt
er T

aps (N
)

© L. Benini: System-level power optimization Slide -244 -ESSES 03

Energy Performance Tradeoff

l Averaging is energy efficient

T 2T

Time

W
or

kl
oa

d 1.0

0.5

W1
W2

0.675

En
er

gy

1.0

0.5

W1 W2

0.5625

)()(
22

2
21

2
2

2
1 rErE

rrrr
≥→

 +

≥
+

Decreased
Averaging

Higher Energy
Faster Response

Increased
Averaging

Lower Energy
Sluggish

Performance

n Update time T depends on
n Maximum allowed performance hit
n DC/DC converter and frequency change overheads

123

© L. Benini: System-level power optimization Slide -245 -ESSES 03

Energy Savings

36.310.81.112.1EWS

35.410.61.092.2EWA

43.114.71.032.3LMS

42.812.61.41

3.3

16.7

23.576.7

MAW

File
Server

33.87.41.5015.7EWS

37.49.21.4116.7EWA

47.714.11.2019.6LMS

35.33.65.22

1.6

52.7

275.2445.9

MAW

User
Work-
Station

35.13.84.6359.5EWS

35.63.75.2852.1EWA

36.03.95.1953.0LMS

2.2

Actual

1.2

Max /
Perfect

ESR Comparison

1.10

Perfect
/ Actual

10.6

F avg

(%)

34.8

2.42.9

MAW

Dialup
Server

PerfectMax F max

(%)

Energy Savings Ratio (ESR)
FilterTrace

[Sinha, VLSI 01]

© L. Benini: System-level power optimization Slide -246 -ESSES 03

A control system abstract model

l Better observation of the system
l More control “knobs”
l Objective: increase controllability & observability

System
(plant)

Power manager
(controller)

PM commands
scheduling” suggestions”

Power

Performance

Workload

Busy/Idle
process info

124

© L. Benini: System-level power optimization Slide -247 -ESSES 03

What about closed-loop control?

l Stabilizes the system
l Reduces sensitivity to “modeling noise”
l Challenge: high quality power/performance sampling

System
(plant)

Power manager
(controller)

PM commands
scheduling” suggestions”

Power

Performance

Workload

Busy/Idle
process info

© L. Benini: System-level power optimization Slide -248 -ESSES 03

Many degrees of freedom...

lPutting it all together

The energy-efficient OS

125

© L. Benini: System-level power optimization Slide -249 -ESSES 03

Energy efficient OS: features

l Controls multiple heterogeneous devices
n Multiple sleep states, multiple active states

l Manages performance constraints
n Minimizes latency (for event handling)
n Satisfies throughput bounds & deadlines
n Handles hard and soft constraints

l Interacts with applications & other OS services
n Supports DPM APIs

n LP scheduler, LP memory manager

l Various practical research solutions: HPL-Stanford-UNIBO, UCI,
Berkeley, Delft

l Closed-loop control is yet to be explored

© L. Benini: System-level power optimization Slide -250 -ESSES 03

DRAM Memory Architecture

Bank
To/From CPU

Controller
Memory

Configuration
Registers

Module

126

© L. Benini: System-level power optimization Slide -251 -ESSES 03

Memory management:
Memory Operating Modes

Active

3.75 nJ

Napping

0.32nJ

30 cycles

Power-down

0.005 nJ

9000 cycles

0.83 nJ

2 cycles

Standby

© L. Benini: System-level power optimization Slide -252 -ESSES 03

Dual-state (Static) HW Power State Policies

l All chips in one
base state

l Individual chip
Active while
pending requests

l Return to base
power state if no
pending access

access

No pending
access

Standby/Nap/Powerdown

Active

access

Time

Base

Active
Access

127

© L. Benini: System-level power optimization Slide -253 -ESSES 03

Quad-state (Dynamic) HW Policies

l Downgrade state if no
access for threshold
time

l Independent
transitions based on
access pattern to each
chip

l Competitive Analysis
n rent-to-buy
n Active to nap 100’s of ns
n Nap to PDN 10,000 ns

no access for
Ts-n

no access
for Ta-s

no access
for Tn-p

access
access

accessaccess

Active STBY

NapPDN

Time

PDN

Active
STBY
Nap

Access

© L. Benini: System-level power optimization Slide -254 -ESSES 03

Page Allocation and PADRAM

l Physical address determines which chip is accessed
l Assume non-interleaved memory

n Addresses 0 to N-1 to chip 0, N to 2N-1 to chip 1, etc.
l Entire virtual memory page in one chip
l Virtual memory page allocation influences chip-level

locality

Processor
Cache

16

16

Chip 0
N-1

0
Chip 1

16

2N-1

N
Chip 2

16

3N-1

2N
Chip 3

16

4N-1

3N

Virtual Memory Page

128

© L. Benini: System-level power optimization Slide -255 -ESSES 03

Page Allocation Polices

l Random Allocation
n Pages spread across chips

l Sequential First-Touch Allocation
n Consolidate pages into minimal number of chips
n One shot

l Frequency-based Allocation
n First-touch not always best
n Allow movement after first-touch

© L. Benini: System-level power optimization Slide -256 -ESSES 03

Conclusions

l System-level power minimization requires
hardware & software interactions

l Architectures provide increased degree of
control on power vs. performance

l Software must exploit it
l It is important to understand both!

129

© L. Benini: System-level power optimization Slide -257 -ESSES 03

The end

Thank you very much for attending this class !

