System-Level Power

Optimization
Design Techniques & CAD Tools
Luca Benini

DEIS Universita' di Bologna, Italy
Ibenini@deis.unibo.it

© L. Benini: System-level power optimization ESSES 03 Slide -1 -

The vision: Ambient Inteligence

Devices as Appliances

- N - oy
w0 ~. e oL
=" - LR

fe

- " N -
On-Body Ad-hoc Sensor Adaptive Wireless In-Home

Qi 18 B

® Energy-efficient communcations is the cornerstone of
ambient intelligence
@®Requires highly efficient hardware & software

m RF circuits -
m Baseband protocol processing & appl.

© L. Benini: System-level power optimization ESSES 03 Slide -2 -

The AMI processing Bestiary

® The work-horse
Powers the fixed base network machines
Power \W Performance GB/s

® The hummingbird
Powers the wireless base network interfaces
Power m\/ Performance MB/s

e The butterfly
The sensor network hardware
Power W Performance KB/s

© L. Benini: System-level power optimization ESSES 03 Slide -3 -

[tanium® 2 Processor

® Released at 733MHz and
800MHz, now 1GHz

® Three level caching system

e 25 million transistors in the CPU
and 300 million in the cache
(0.18pm)

e 421mmz2die size

e The CPU running at full load
draws ~130 Watts

® The clock signals and logic total
to approx 84% of the total power
usage.

e Leakage power: approx. 2%.

e Power delivery: V=1.5V,
P=130W, P=V4l (1)

© L. Benini: System-level power optimization ESSES 03 Slide -4 -

Handset architecture

ANTENNA
SINGLE-CHIP ANALOG BASEBAND

AlDKD RECENER
NTERRACI

ASIC BACKPLANE SYNTHESEER | POWWER AMP

RF
NTERRACE

AUDED | ANDRD T
e : monrog

RF SECTION

TAICRD PHY

SINGLE-CHIP DIGITALIEASEBAND

ISR DEPLAY

MANAGEMENT
TI's TMS320vc5471
© L. Benini: System-level power optimization ESSES 03 Slide -5 -
Berkeley’s Daft Dust Device
Photodiode
CCR
Pad
® 63 mm3
e Circuits: 0.25 um CMOS
digital circuits underneath ground pad
metal shields to prevent photogenerated carriers
® CCR: Cronos MUMPS
) Opti(‘al wireless cannection (Iinp of Qight)
© L. Benini: System-level power optimization ESSES 03 Slide -6 -

The Energy-Flexibility Tradeoff

__ 1000
=
E
n
=2 100
gz
.g S
= 10
==
= ASIPs
> =
GE: g 1 DSPs
53
L
Embedded Processors
0.1 >
Flexibility (Coverage)
© L. Benini: System-level power optimization ESSES 03 Slide -7 -

Why designing low-power circuits/systems?

Practical reasons

— Extend battery-lifetime of high-throughput portable
applications.

Financial reasons:
— Reducing costs of: Packaging, PCB, Heat-sinks, Ventilation.
— Reducing ownership cost
Technological reasons:
— Producing high-density chips:
— Interconnect design issues:
— Power delivery and distribution.
— Reliability issues:

© L. Benini: System-level power optimization ESSES 03 Slide -8 -

Deep Sub-Micron Technologies

® Smaller geometries:
Higher device densities.
Higher clock frequencies.

® Consequence:

Greater power consumption in spite of lower
supply voltages:
— Technology scales faster than supply voltage.

© L. Benini: System-level power optimization ESSES 03 Slide -9 -

Voltage Trends

o 10
22U yedlrs TUyTars

IN

N
CUrRrGNOUWOAMOUEO

w

Voltage

=

o

5 3 1 0,6 0,35 0,18 0,13

Process geometries

© L. Benini: System-level power optimization ESSES 03 Slide -10 -

Power Trends

Example: Alpha processor

1992 1994 1998 1999 2001

Process (m 0.75 0.5 035 025 0.18
Clock speed (MHz) 200 300 667 750 1000
Transistors (millions) 1.68 9.3 152 152 100
Voltage 3.3 3.3 2.3 2.1 1.5
Power (W) 30 50 72 90 100
© L. Benini: System-level power optimization ESSES 03 Slide -11 -

Mobile Electronics (1)

® Wireless communication (appliances and infrastructure)

707

60

50

401

O Hand-sets
O Infrastructure

301

Billion US$

204

NN N\ N\

10

o4
1998 1999 2000

600 million mobile phones produémeld in 2001.

© L. Benini: System-level power optimization ESSES 03 Slide -12 -

Mobile Electronics (Il)

@ Cellular network subscribers

900+
800+
700+
600+
500+
400
30071
2007
1007
o-

O Cellular
subscribers

Million

1998 1999 2000 2001
1.9 billion subscribers predicted for year 2004.

© L. Benini: System-level power optimization ESSES 03

Slide -13 -

Battery Technology

@ Battery maximum power and capacity
increase by 10-15% per year.

® Chip power requirements increase much
faster: 35-40%. [source: 1999 SIA Technology Roadmap]

® Consequence:

Larger gap between battery technology
enhancements and chip power demand.

© L. Benini: System-level power optimization ESSES 03

Slide -14 -

Not Only Mobile

® 20% of electrical energy consumed in Amsterdam
is used for telecom.

e In the US, Internet is responsible for 9% of the
electrical energy consumed nation-wide.

This grows to 13% if all computer applications are
considered.

® The transfer of 2 MBytes of data through the net
consumes the energy of 1 pound of coal.

[source: 2000 CO, conference, Amsterdam, NL]

© L. Benini: System-level power optimization ESSES 03 Slide -15 -

Where Does the Power Go?

m Power profile (dynamic power) of a 4-way superscalar
microprocessor

Oissue queues
Ereg files
icachelitlb
Odcache/dtlb
OL2 cache
FUs

result buses
Oclock

other

m Bottom line: power needs to be reduced across-the -board

© L. Benini: System-level power optimization ESSES 03 Slide -16 -

Need to consider CPU & System Power

Mobile PC
Thermal Design (TDP) System Power

Other

13% 600/500 MHz uP

37%

Power Supply
10%

Memory+Graphic;
12%

LCD 10"
19%

)
Note: Based on Actual Measurements

CPU Dominates Thermal
Design Power

Courtesy: N. Dutt; Source: V. Tiwari]

Mobile PC
Average System Power

Other 600/500 MHz uP
13% 13%

Power Supply
10%

CD 10"
Memory+Graphic 30%
15%

HDD
19%

Multiple Platform
Components Comprise
Average Power

© L. Benini: System-level power optimization

ESSES 03 Side -17 -

Design for Low Power (1)

e CMOS technology dominates in modern ICs.
® Power consumption of a CMOS gate:
P=Pgy+Pgs Py

where:

— Pgyw = Switching (or dynamic) power.

— Pgc = Short-circuit power.

— P = Leakage (or stand-by) power.
@ So far, switching power minimization has been

the primary objective.

® In deep sub-micron, low-voltage processes,
leakage power becomes critical.

© L. Benini: System-level power optimization

ESSES 03 Slide -18 -

Design for Low Power (Il)

® CMOS inverter:
VDD

> EMOS
e]
VIN =0 => VOUT: 1

vV Vv Vi=1 =5 Vour = 0

© L. Benini: System-level power optimization ESSES 03 Slide -19 -

Design for Low Power (ll1)

® Switching power of a CMOS gate:
2
Psw =0.5Vpp fo C Egw
where:
— Vpp = Supply voltage.
— fok = Clock frequency.

— C,_ = Output load capacitance.
— Egw = Switching activity factor.

@ Design for low switching power:
Minimization of V,, fo, C, and Eg, .

© L. Benini: System-level power optimization ESSES 03 Slide -20 -

Design for Low Power (llI)

® V, and/or f., scaling:
Very effective.
Big impact on performance.

® Switched capacitance optimization
(i.,e., C X Egy):
Applicable at all levels of design abstraction.
Many technigues proposed.

© L. Benini: System-level power optimization ESSES 03 Slide -21 -

Objectives

® Describe design techniques and tools for
system-level design

® Address system-level modeling, design and
power management issues
® Purposely neglect:
Chip-level design issues
— physical and logic design
Distributed systems (e.g. wireless networks)

© L. Benini: System-level power optimization ESSES 03 Slide -22 -

Electronic systems

® A system is a combination of:

Hardware:
— Computation units
— Storage units
— Communication units
— Peripherals
Software :
— Application and system software

® Energy is required by all hardware units

e Software organization affects how hardware
consumes energy

© L. Benini: System-level power optimization ESSES 03 Slide -23 -

Electronic system design

® Conceptualization and modeling:
From idea to model

® Design:
HW: computation, storage and communication
SW: application and system software

® Run-time management:

Run-time system management and control of all
units including peripherals

© L. Benini: System-level power optimization ESSES 03 Slide -24 -

Examples

@ Modeling:

Choice of algorithm

Application-specific hardware vs. programmable hardware

(software) implementation
Word-width and precision

e Design:

Structural trade-off
— Resource sharing and logic restructuring
Exploit multiple/variable supplies

® Management:

Operating system
Dynamic power management

© L. Benini: System-level power optimization ESSES 03

Slide -25 -

QOutline

® System conceptualization and modeling
Modeling and design
Modeling for energy-efficient design

® System design

® System management

® Conclusions

© L. Benini: System-level power optimization ESSES 03

Slide -26 -

System models

® Modeling is an abstraction:
Represent important features and hide unnecessary details

e Functional models:
Capture functionality and requirements
Executable models:
— Support hw and/or sw compilation and simulation
® Implementation models:
Describe target realization

© L. Benini: System-level power optimization ESSES 03 Slide -27 -

Taxonomy

Classes of Systems

General-purpose Systems Special-purpose Systems

Modeling Styles

Implementation Models Functional Models

Executable Non-executable

© L. Benini: System-level power optimization ESSES 03 Slide -28 -

Modeling Power at the System Level

® The abstraction challenge
Model complex behavior
...at a reasonnable computational effort
With “acceptable” accuracy
® A spectrum of approaches depending on
the amount of functional information taken
into account

© L. Benini: System-level power optimization ESSES 03 Slide -29 -

The spreadsheet model

® General-purpose systems
Backward compatibility
Component-based

® Spreadsheet-based analysis
Basic budgeting
Simple “what if” analyses
No learning curve

© L. Benini: System-level power optimization ESSES 03 Slide -30 -

Example: spreadsheet analysis

PDA | #Comp vdd iidle lon %on widle I(mA)
Proc 1 3.3 05 50 0.7 0.3 36.15
DRAM 1 33 01 12 0.7 03 843
FLASH 5 3.3 00 9 0.7 0.3 315
IR 1 3.3 00 64 005 09 3.2
RTC 1 3.3 0.0 01 1 0 0.1
DC-DC 1 - 01 55 099 001 544
TOT 83.82
©L Benini: System-level povier optimization ESSES 03 Side 31 -

Power State Machines: System Model

e Eveni-driven model (resources & events)

]

N

System

Power

Manager

?
i

A

0

— 7|

User

<

N

Request

Rettrests

> User

|~

PN

User

Key feature:

No overhead for long inactivity (no events)

© L. Benini: System-level power optimization

ESSES 03 Slide -32 -

Power State Machines: Resource Model

@ Example of PFSM: LCD display unit.

1llmsec

0.5msec /_\ 0.1msec

BACKLIT DISPLAY OFF
150mW 0.1lmsec " 50mW 10msec omw
0.1lmsec T

® Key features:
Power associated with states
Transitions have a cost

© L. Benini: System-level power optimization ESSES 03 Slide -33 -

Power State Machines: Additional Components

® Workload:

User/Environment:
Non-deterministic FSM
(models the non-deterministic nature of the
requests).
® Power supply sub-system
Battery
DC-DC converter

© L. Benini: System-level power optimization ESSES 03 Slide -34 -

Functional Power Models

® Objective:
Estimate the power dissipated by a specific
fragment of code
® Needs to track instruction execution
® Must be fast (millions of instructions)
RTL or Gate-level are not fast enough

® Needs to model processor & memory
system

© L. Benini: System-level power optimization ESSES 03 Slide -35 -

Software Power Estimation: Instruction-Level

ILPA [TMWLO6]

@ Empirical method for characterizing single (or
very short sequences of) instructions.
® Key issues:
Evaluation of power dissipation for single instructions.
Choice of representative instructions for
characterization.

e® Advantage: Roughly architecture-independent.

© L. Benini: System-level power optimization ESSES 03 Slide -36 -

Instruction-Level Power Characterization

@ Direct measurement of the currents drawn from
the power supply while executing the instructions.

® HDL simulation:;

The instructions are simulated on a processor model in
some HDL.

The processor is plugged into a tester machine and
simulation traces are applied. The current is measured
by the tester.
® Use simulation of a gate-level description of the
processaor.

© L. Benini: System-level power optimization ESSES 03 Slide -37 -

Instruction-Level Models

® A power cost is assigned to each instruction.

e Two components of the cost:

Static component, called “"base-cost": It is the
individual instruction cost without a notion of ~“state".

Dynamic component, called "circuit state effects": It
accounts for the previous processor state.
@ Dynamic cost accounts for events depending on
sequences of events (e.g., cache misses,
pipeline stalls).

© L. Benini: System-level power optimization ESSES 03 Slide -38 -

Extracting the model

® The base cost is computed as follows:

An infinite loop containing a total of N copies of the
target instruction | is executed.

The average current is measured as described earlier.
The power cost is obtained from the values of the
current, the supply voltage and the cycle/instruction.
® N should not be too small to amortize the loop
overhead.

© L. Benini: System-level power optimization ESSES 03 Slide -39 -

Computing program execution cost

e Due to the averaging process, the costs for |, ® |, and
|, ® I, cannot be distinguished.

® The costof a program can be summarized as follows:
Cost(Program)=S;(B; - N) +5j (O ij N ij)+ S Eq

where:
B ; : Base cost of instruction i.
N ; : # of occurrences of instruction i.
O ;; : Dynamic cost of sequence ®j.
N ;;: # of occurrences of sequence ®j.
E : Other effects, obtained from program profiling.

© L. Benini: System-level power optimization ESSES 03 Slide -40 -

Instruction-Level power model: example

® Example of power cost values (expressed in pJ):

Instruction Base Girett-State-Effeets

Name Caost LOAD [DLOoAD ADD [MULT
LOAD 108 1013 015 119 | 092
DLOAD 2.37 017 |19 092
ADD 0.99 026 | 053
MULT 119 066

e Example of computation:

Program Evaluation

initial state is ADD) Race Cnst CH-eH=Stak
DIOAD Aax, Bay 237 119

LOAD C- 7 1.08 0.15

ADD Ao C B 0.90 1.19

Total 3.34 2.53

Total value = 5.87pJ/(3:25ns) = 78.26nMW (T, = 25ns)
© L. Benini: System-level power optimization ESSES 03 Slide -41 -

Micro-architectural Power Model

® The processor is viewed as an
interconnection of macro blocks

E.g. Execution units, register file, etc.
® Power models are built for the macros

E.g. Analytical, look-up tables, etc.
® Advantage: allows micro-architecture expl.
® Disadvantage: no black-box for COTS proc.

© L. Benini: System-level power optimization ESSES 03 Slide -42 -

Integrating functional and power models

e Estimating together HW and SW power
consumption is more effective than considering
the two contributions separately.

® This is because the power consumption of a task
mapped onto software is not independent of the
implementation of the remaining tasks.
® Two approaches:
Non-interacting (trace-based) HW/SW estimation.
Concurrent HW/SW estimation.

© L. Benini: System-level power optimization ESSES 03

Slide -43 -

Non-Interacting HW/SW Power Estimation

Avalanche [LH98]
@ Target system architecture:

CPU Custom HW
Qp:rpl ite. \/‘\DIvb)
[-Cache Main
D-Cache Memory

® Power estimation of custom HW done separately
(constant power in the model).

® Focus on power dissipation of SW and memory hierarchy.

© L. Benini: System-level power optimization ESSES 03

Slide -44 -

e Block diagram:

Trace-based Estimator Architecture

Main

Program

Execution CPU

joral- Trace ener

lApplication Be“g_/rlrc:r?alml)_revel Ense?;twh?g?ﬂel gy
imu yl
Program Mamory
Access
Mermory Trace Trace X
Profiler Dinero Il

y

Memory Ener
Energy 9y

@ Main feature:

cache energy models.
@ Main limitation:

estimation.

Main Memory
EnergyModel
Cache

EnergyModel

Cache

Exploitation of detailed software, memory, and

No interaction between SW and HW during the

© L. Benini: System-level power optimization

ESSES 03

Concurrent HW/SW Power estimation

E.g.: Simplescalar/Wattch

models

Instruction set

simulator

Processor
power
models

Lgache |

[ocace |

Addr/Data stream interface

o e b

Microarchitecture
units utilization interface

Processor units
memory models

© L. Benini: System-level power optimization

ESSES 03

Slide -46 -

Total System

Slide -45 -

Outline

®
® System conceptualization and modeling

Energy efficient design from
— Executable functional models
— Non-executable functional models

® System design
® System management
@ Conclusions

© L. Benini: System-level power optimization ESSES 03 Slide -47 -

Algorithm selection

® Inputs
A target macro-architecture
Abstract functional/executable spec.
Constraints
Library of algorithms
o Ohlective

Select the most energy-efficient algorithm that
satisfies constraints

© L. Benini: System-level power optimization ESSES 03 Slide -48 -

Example: set data types [wuytack9s]

® Select abstract data type (data struct & algorithm)
® Minimize memory power

® Application: ATM segment protocol processor

e Library with 32 complex abstract data types

Array Linked list Pointer array Binary tree
— = 9 [ToTl To]
r'd ™
" 1000 DP between best and worst
© L. Benini: System-level power optimization ESSES 03 Slide -49 -

Issues in algorithm selection

® Applicable only to general-purpose
primitives with many alternative
implementation

® Pre-characterization on target architecture
@ Limited search space exploration

© L. Benini: System-level power optimization ESSES 03 Slide -50 -

Power Conscious Algorithm Design

® Change the semantic of computation
® Hard to automate
® Very effective

© L. Benini: System-level power optimization ESSES 03 Slide -51 -

Approximate processing

Introducing well-controlled errors can be
advantageous for power
Reduced data width (coarse discretization)
Layered algorithms (successive approximations)
Lossy communication

Stagel ‘ Stage?2 B Stage 3

340" 400 680" 800 1020" 1200

—l

© L. Benini: System-level power optimization ESSES 03 Slide -52 -

Energy Scalable Algorithms

Quality
Distribution

+ Algorithm 11

Algorithm |

Energy

Emax.l Emax.ll

@® Maximize quality for given energy availability
® Energy Quality (E-Q) graph maximally concave

© L. Benini: System-level power optimization

Slide -53 -

ESSES 03

Series Expansion

y=f(X) =1+ kx+k,x*+--+ Kk x"
Qriginal Scalable i
g . T g
Xpowi = 0.0; if(x >1.0) { - u,;/’
y = 1.0; xpowi = pow(X, N); > 3! / 7 ‘-
for(i=1; i<N, i++) { y = k[N] *xpowi +1; ® |37 Lon /’
Xpowi *= X; for(i=N1; i>0; i--) { 8, ; ff/-.:-
y += xpowi *Kk[i]; Xpowi /= X; 2 r
} y += xpowi *k[i]; } 2
} | e =110
else { //original algo } _,.;-:?"' |] __m_,,..-"""r _{.“

® Incremental refinement
@ Most-significant-first approach

Normalized Energy

© L. Benini: System-level power optimization

ESSES 03 Slide -54 -

Encryption

Scalable encryption [Chandrakasan 98]

10
448

0 P=X.Y mod Q
2 100
g w = log,Q
2 .
5 Quality scales
f<.” 105 with w
8
L

100 I I

50 100
Energy per bit @ 1Mps (nJ)
© L. Benini: System-level power optimization ESSES 03 Slide -55 -
Outline

[

® System conceptualization and modeling

Energy efficient design from

—Non-executable functional models
— Implementation models

® System design
® System management
@ Conclusions

© L. Benini: System-level power optimization ESSES 03

Slide -56 -

Task graph

® Nodes are tasks
® Edges are dependencies
e Periodic execution is implicitly assumed

© L. Benini: System-level power optimization ESSES 03 Slide -57 -

Task graph techniques

® Problem formulation
Input
—Task graph
— Set of available processing elements (PES)
— Power, performance, cost metrics
— Performance & cost constraints

Output
— Power-optimized implementation (constrained)

® [Dave99], [Kirovski97]

© L. Benini: System-level power optimization ESSES 03 Slide -58 -

Processing elements

® Several classes of PEs
General-purpose processors (e.g. RISC core)
Digital signal processors (e.g. VLIW core)
Programmable logic (e.g. LUT-based FPGA)
Specialized processors (e.g. custom DCT core)

® Trade off flexibility vs. efficiency
Specialized is faster and power-efficient
General-purpose is flexible and inexpensive

© L. Benini: System-level power optimization ESSES 03 Slide -59 -

Cost metrics

® Multi-objective problems
Constrained optimization
Explore design trade-offs

® Example: performance and power

#Clock Cycles Energy (MJ)
PE1|PE |(PE |PE |PE |PE
2 s |1 |o |3 Tek = 10ns

Eegyper |17 |7 @ Vdd = 3.3V

T1 |100 [250 Jo900 [150 [s0 |45
T2 |110 |260 |900 [165 |52 |45

© L. Benini: System-level power optimization ESSES 03 Slide -60 -

Constrained optimization

® Design space
Who does what and when (binding & scheduling)
Supply voltage of the various PEs:
—Towk = K Vgl (Vaq - V)2
® Design target
Minimize power

Performance constraint (e.g. T =21nsec)

iteration

© L. Benini: System-level power optimization ESSES 03 Slide -61 -

Basic search algorithm

Task graph preprocessing

PE allocation

Scheduling & Binding

O
Cost Estimation > >

© L. Benini: System-level power optimization ESSES 03 Slide -62 -

Refined Power Metrics |

® Communication power
® Memory power

BUS |
PE 5w
PEHM PEE M
© L. Benini: System-level power optimization ESSES 03 Slide -63 -
Refined Power Metrics i
® Multi-tasking overhead
® Power management overhead
PE1 1 > PE1 > l >
PE1 >- > PE1 >- - >

© L. Benini: System-level power optimization

ESSES 03 Slide -64 -

Limitations of Task-Level Abstraction

® Task-level description does not express
complete functional information

Tasks must be defined a priori

Functional transformations are impossible
® Power metric characterization

Exaustive (every PE for every task)

Inaccurate (misses inter-task effects)

© L. Benini: System-level power optimization ESSES 03 Slide -65 -
Outline

o

o

® System design
Computation
Memory
Communication
Software

® System Management
® Conclusions

© L. Benini: System-level power optimization ESSES 03 Slide -66 -

System design

@ Input

The output of the conceptualization phase
— A macro-architectural template
— A hardware-software partition
— Component by component constraints

e Output
Complete hardware design

T
B9 7Y BY @I

© L. Benini: System-level power optimization ESSES 03 Slide -67 -

Design process

® Specify computation, storage, template
components, and software
Synergic process
® Fundamental tradeoff: general-purpose vs.
application-specific
Flexibility has a cost in terms of power

© L. Benini: System-level power optimization ESSES 03 Slide -68 -

Processing element design

® Application specific processing unit
Minimum flexibility, minimum power

® Application-specific processor
Tailored processor template

@ Core processor
Maximum flexibility, maximum power

© L. Benini: System-level power optimization ESSES 03 Slide -69 -

Application-specific computational units

@ Designed at the circuit/logic/RT level
Outside the scope of this tutorial

® Synthesized from high-level executable

specification (behavioral synthesis)

Supply voltage reduction
Switching frequency reduction
Load capacitance reduction
Minimization of switching activity

© L. Benini: System-level power optimization ESSES 03 Slide -70 -

Power-driven voltage scaling

From faster to power efficient by scaling
down voltage supply
Traditional speed-enhancing transformations
can be exploited for low-power design
— Pipelining
— Parallelization
— Loop unrolling
— Re-timing

© L. Benini: System-level power optimization ESSES 03 Slide -71 -

Issues

® Performance-enhancing transformations do
not always pay off
Region of diminishing returns (e.g. speculation)
® Voltage supply is driven low by
technological reasons
Reduced headroom

© L. Benini: System-level power optimization ESSES 03 Slide -72 -

Advanced voltage scaling

® Multiple voltages
Slow down non-critical path with lower voltage
supply
Two or more power grids
High-efficiency voltage converters

0-0-

© L. Benini: System-level power optimization ESSES 03

Slide -73 -

Clock frequency reduction

e f,, does not decrease energy
...but it may increase battery life: C=K/I2
® Multi-frequency clocks

GALS [Hemani99]
Low-frequency distribution [Chung95]

Clk domain 2
Clk
domain 1

Clk domain 3

© L. Benini: System-level power optimization ESSES 03

Slide -74 -

Reducing load capacitance

® Reduce wiring capacitance

Reduce local loads

Reduce global interconnect

Global interconnect can be reduced

by improving spatial locality: trade off
communication for computation

© L. Benini: System-level power optimization

ESSES 03

Slide -75 -

Reduce switching activity

@ Improve correlation between consecutive

input to functional macros

@ Reduced glitching

® All basic HLS steps have been modified
A synergic approach lead best results

oo o0

e | /&
® 66

.

86
o

© L. Benini: System-level power optimization

/
ESSES 03

Slide -76 -

Issues

@ High-level estimation
Accuracy is still limited
Dependency on input patterns
® Design flow
HLS is not yet mainstream technology
Compete with RTL techniques

© L. Benini: System-level power optimization ESSES 03 Slide -77 -

Application-specific processors

® Parameterized processors tailored to a
specific application

Optimally exploit parallelism
Eliminate unneeded features

® Applied to different architectures
Single-issue cores b instruction subsetting
Superscalar cores b # and type of FUs
VLIW cores b FUs and compiler

© L. Benini: System-level power optimization ESSES 03 Slide -78 -

Example: Application-specific VLIW optimization

Application
Processor library

Select Processor
Retarget compiler

Other?
Compile and
Simulate (ISS)

Estimate and find Eliminate dominated
best so far solutions
© L. Benini: System-level power optimization ESSES 03 Slide -79 -
Issues

® Exploration techniques

Limited search space

Accuracy of cost metrics
® Back-end

Synthesis of ASIPS

Competitive with highly-optimized cores?
® Preliminary research results

© L. Benini: System-level power optimization ESSES 03 Slide -80 -

Exploiting processor reconfigurability

Example: reconfigurable bit width

Clock

[Based on slide by &
©: H. Yasuura, 2000]

© L. Benini: System-level power optimization ESSES 03 Slide -81 -

Bung DLX

@ Standard 32-bit design of the DLX RISC Architecture

of general registers: 32

of instructions: 72

the datapath width 32 bits

the instruction length £ 32 bits

VHDL Description ~ 7,000 lines

Synthesized circuit 23,282 gates
® ASIPs defined through design modification table containing:

The datapath width £ up to 64

The data memory space £ 2% words

The instruction length £ 32 bits

The instruction memory space £ 2% words

The number of general registers £ 32

:Fl | F . . ; 7 E [Based on slide by &

© L. Benini: System-level power optimization ESSES 03 Slide -82 -

Key software elements:
Valen-C and a Retargetable Compiler

e Valen-C

Programmers can specify the effective bit width for each
variable: e.g.: int20 x, y, z

The semantics of the program is independent from
processor architecture.

® Retargetable compiler
Processor Definition + Valen-C Program
< Assembly code for the processor

[Data are available at
http://kasuga.csce.kyushu-u.ac.jp/~codesign/Valen-C/index-j.html
— Source code, documentation on Valen-C compiler]

[Based on slide by &
© : H. Yasuura, 2000]

© L. Benini: System-level power optimization ESSES 03 Slide -83 -

How does compilation
with Valen-C work?

Valen-C code 20-bit Processor 10-bit Processor
Int20 x, v, z;

X | XLl

z=x+y, =
addxyz -

add xI yl zl
addc xu yu zu

[Based on slide by &

O Yasuura, 20007

© L. Benini: System-level power optimization ESSES 03 Slide -84 -

More complicated cases

Valen-C Program 20-bit processor 12-bit processor
intl2 x;
int20 v; X X
int24 z; y y

— —

unused: 24 bits

total: 80 bits)
unused: 4 bits
total: 60 bits
unused bltS [Based on slide by &
© : H. Yasuura, 2000]
© L. Benini: System-level power optimization ESSES 03 Slide -85 -

Application: Decimal 12 bit Calculator

@ Valen-C (400 lines) 180
160
The length of 140 A
. g . 120 -‘ﬁwﬁ ——area (K
Variables—#-ef- ariables—
100 ,v_ gates)
4 257 80 —/—‘-‘{ _— cycle
8 257 (K
14 3 60 cycles)
40 —+—power
39 258 20 (nJ)
O -

o o O <
— <= N ™M

bitwidth datapath

[Based on slide by &

O Yasuura, 20007

© L. Benini: System-level power optimization ESSES 03 Slide -86 -

Dynamically Tunable Microprocessors

® Dynamically tailor the hardware to meet
program needs on-the-fly while the program
runs

Fine grain level: dynamically resize caches,
TLBs, issue queues, register files, etc.

Exploits logic shutdown (clock-gatinc etc.)

® Two parts:
Dynamically configurable hardware (*knobs”)
Feedback and control mechanisms (“tuning”)

© L. Benini: System-level power optimization ESSES 03 Slide -87 -

Dynamically Configurable Architecture

1
|
1
bpred !

1

1

1

1

1

1

|

| HTTTOH -
: fetch decode rename| dispatch
1

1

1

1

1

1

1

1

frequency= -~ -

High-performance processor with
additional control knobs

[Albornesi 02]

© L. Benini: System-level power optimization ESSES 03 Slide -88 -

Energy Savings and Performance Cost

Local Energy Savings

ENERGY PERFORMANCE
W
C] msi
B0% b g
Caches Bufters Blﬂ}.gﬂ C;*:rl["l‘-?‘r-
BufTers
RN
. ‘ L,
0% :
20050 i 1
I *

505

0%

I

200

109

| 1.5% (1/64) [l 6.2% (1/16) || 25% (1/4)

UONEPRISA(] 20UPLLIOLA]

© L. Benini: System-level power optimization ESSES 03

Slide -89 -

Low power core processors

® Details are outside the tutorial’s scope
[Gonzalez96,Burd96]
® Key ideas

Low voltage
Reduce wasted switching

Specialized modes of operations/instructions

Variable voltage supply

© L. Benini: System-level power optimization ESSES 03

Slide -90 -

Core design space for Multimedia [Nishitani99]

MOPS
® Sony Mpeg2 E
® NEC Mpeg2 En
TriMgdia | MPEG2 ENC
1 DE821164
.TMS'.{ZOCGZOl
®/741S320C6x
8 \pEG1 ENC
Scarlet °
VR4400 ® " \MmxPentium < MPEG2 DEC
® vRa4300|
i |
L Lucent1621i0
|
|
|
W
© L. Benini: System-level power optimization ESSES 03 Slide -91 -

Exploiting Variable Supply

@ Supply voltage can be dynamically
changed during system operation
Cubic power savings
Circuit slowdown
@ Just-in-time computation
Stretch execution time up to the max tolerable

/ Fixed voltage + Shutdown
 Variable voltage

Power

| >

A H PN | 1
AVAdTaorc uiTiT

ESSES 03 Slide -92 -

© L. Benini: System-level power optimization

Voltage scaling example

Byo b
2010 : .
2 g Processor—1(3.3V fixed)
Bosl]
5 1 E
g | Proces:sor—3(3.3V , 2.5V and 0.9V)
306 : .
Z |
| v 172
04f ! :
: S,
X H iy, » |
2 : Evl/l() - ."."-I-...u-ur-v
' (Ideal processor) e
0
x1 x5 x10 x15 x20
[Courtesy, Yasuura, 2000] Time Constraint
© L. Benini: System-level power optimization ESSES 03 Slide -93 -

Variable-voltage processor example: INTEL Xscale

Discrete VS
3 to 4 voltages
More frequencies
Transition penalties
» milliseconds

Dominated by supply
voltage transient

System support
Voltage supply circuitry
Interface circuits (!)

Voltage ranges
Decrease with tech.

POWER-PERFORNMANCE COMPARISON

1400, Intel® ¥Seale™ .ol

Ited® StrongARM® " A
Tochnoiogy Microarchitecture

Power Consumption (Watts)

233 MHz 175 MHz 150 MHz 400 MHz GO0 MHz B00 MHz 1GHz
=207 @15 @075V @1.0¢ 1.3V LR =LAV

Eres Pl wans Fromatels\Web-Sit

[INTELO1]

© L. Benini: System-level power optimization ESSES 03 Slide -94 -

Variable-supply Architectures

e High-efficiency adjustable DC-DC converter
@ Adjustable synchronization
Variable-frequency clock generator [Chandrakasan96]
Self-timed circuits [Nielsen94]

® Example: Power-pro architecture [Ishiara98], Crusoe
embedded processor [Transmeta00]

Prog H m

ROM [CPU
Data RAM vdd | |CLK

© L. Benini: System-level power optimization ESSES 03 Slide -95 -

Issues

® Optimization still not proven on real-life
architectures
® Overhead in supporting variable voltage
Adjustable DC-DC
Adjustable clock
Interfaces

® Reliability concerns

© L. Benini: System-level power optimization ESSES 03 Slide -96 -

Outline

®
®
® System design

Memory
Communication
Software

@ System Management

® Conclusions

© L. Benini: System-level power optimization ESSES 03 Slide -97 -

Memory Optimization

e Custom data processors

Computation is less critical than data storage
(for data-dominated applications)

@ General-purpose processors

A significant fraction of system power is
consumed by memories

Storage
Memory-related consumption

4 Transfer

© L. Benini: System-level power optimization ESSES 03 Slide -98 -

Off-chip vs. on-chip memories

Larger & off-chip memories need more energy than smaller &
on-chip memories; Example:

ARM7TDMI cores, well-known ARM Atmel Evaluation Board
for low power consumption

board

On-board memory

On-chip memory

Processor

© L. Benini: System-level power optimization ESSES 03 Slide -99 -

Minimization of Memory Access Power

® Basic concept: “Close” vs. “far” memory accesses:
Close: Faster, less energy consuming, smaller block sizes.
Far: Slower, more energy consuming, larger block sizes.

Example: Processor Chip
Exec > LO$ U L1$ - L2%
[Units :l) < »
1-16K 4-64K 16-1024K
< A ‘ Processor Bl.i >

M Barks v
Memory Datapath
Control & Control &

BUle Buffe

Eo=15n E;=3n EL=7nd Epay= 12703

© L. Benini: System-level power optimization ESSES 03 Slide -100 -

Memory Power Optimization

o Key idea: exploit locality
Hierarchical memory
Partitioned memory

@ Optimize software for power-efficient memory

architectures
[B1] o §
C S 1 I~ I
(B3] o |
! B2 P !
L1 i to B2 i
L2 N !
L3
© L. Benini: System-level power optimization ESSES 03 Slide -101 -
Exploiting Temporal Locality
A
Array
Index
Values
Can be kept in fagter
memory a\
Reuse
Region Time
| 4
© L. Benini: System-level power optimization ESSES 03 Slide -102 -

Exploiting Temporal Locality
(Multiple Levels)

Array
Index
Values

in the next
fastest memory

o DDDDD
]]
o

Time

© L. Benini: System-level power optimization ESSES 03 Slide -103 -

Optimization approaches

® Fixed memory access patterns
Optimize memory architecture

® Fixed memory architecture
Optimize memory access patterns

® Concurrently optimize memory architecture
and accesses

© L. Benini: System-level power optimization ESSES 03 Slide -104 -

Optimize Memory Architecture

@ Data replication to localize accesses
Implicit: multi-level caches [Su95], [Bahar98]
Explicit: buffers [Bajwa97], [Wuytack98]

@ Partitioning to minimize cost per access
Multi-bank caches [K0o98]

Partitioned memories [Tellez97], [Wuytack98]

B12 B23

Li[© " «—

L2 L3

Prem = Pyt 1 +Pgp(1-hity 1)+P, 5 ity 1 +(PgpstP 5)X1-hit, ;-hit, 5)

© L. Benini: System-level power optimization ESSES 03 Slide -105 -

Optimize Memory Accesses

® Sequentialize memory accesses
Reduce address bus transitions [Catthoor94], [Su95]

Exploit multiple small memories [Panda96]

® Localize program execution

Fit frequently executed code into a small instruction buffer
(or cache) [Panwar95], [Bellas98]

® Reduce storage requirements [Gebotys96], [Catthoor]

© L. Benini: System-level power optimization ESSES 03 Slide -106 -

Optimize Memory Architecture and Access Patterns

® Two phase-process

Specification (program) transformations
— Reduce memory requirements
— Improve regularity of accesses

Build optimized memory architecture
e Highest potential
How to automate program transformations

© L. Benini: System-level power optimization ESSES 03 Slide -107 -

Memory Hierarchy Optimization

@ Idea: Enforce locality in the cache and
memory sub-systems.
@ Solutions:
Data replication.

Alternatives to caches (e.g., scratch-pad
buffers).

Cache/Memory partitioning.

© L. Benini: System-level power optimization ESSES 03 Slide -108 -

Implicit Data Replication

® Usage of a filter cache:
Introduce an extra LO cache.
Much smaller (e.g., 256 byte).
Latency penalty due to LO misses

compensated by low-energy hits in LO cache.

Energy/delay product is reduced.

© L. Benini: System-level power optimization ESSES 03

Slide -109 -

Explicit Data Replication

@ Exploit buffers along_Il-cache and D-cache:
L1 D-cache
L f T
access
o

Memory q » D-L1 buffer

L1+

> o instr.
access

<

»
I-L1 buffer

@ No latency penalty.

© L. Benini: System-level power optimization ESSES 03

Slide -110 -

Explicit Data Replication (Cont.)

® Use of buffers as victim cache:
Accessed on a main cache miss.
Hit:
— Datum is promoted to main cache (and returned to CPU).
— The replaced line in the cache is moved to the victim cache.
Miss:
— L2 cache is accessed.

— The incoming datum is put in the main cache.
— The replaced line in the cache is moved to the victim cache.

© L. Benini: System-level power optimization ESSES 03 Slide -111 -

Explicit Data Replication (Cont.)

® Use of speculative buffers:

Every cache access is marked with a " confidence
level", obtained by examining processor state (i.e.,
current branch prediction state).

The main cache contains misses with high confidence
level.

The speculative buffer contains misses with low
confidence level

© L. Benini: System-level power optimization ESSES 03 Slide -112 -

Replace Caches with Scratch-Pad Buffers

® Viable solution for embedded systems, where memory
access profiles may be available.

@ Trade-off cache flexibility for lower access cost.

Bit-line

Address — B DATA Word-line

DECODER

SENSE

DATA
OUTPUT

© L. Benini: System-level power optimization ESSES 03 Slide -113 -

Replace Caches with Scratch-Pad Buffers (Cont.)

(&) ASM used as a cache.
(b) ASM used as a buffer for on-chip memory (no latency penalty).
(c) ASM used as a buffer for off-chip memory (no latency penalty).

|
I I I I — M asm |
|| Asm I| Asm plbata
wData I ’[’Data I | |
| | | A S |
I'agar g | |AdrCSAI i A
| & : |1 |
ddr |19 ddr |
Addr Addr |l Addr | Addr A 1
Data [« LDemn‘rv—' Data ¢ I Data || —Becoder v
isk
Processor v brocessor w Miss Processor R/W'
i Addr CS
Miss Data OFF Chip
Stall < MMU »] rBatabus
2 4 RAM
OFF Chip OFF Chip OFF Chip
Databus Addr bus < e

@ (b) ©

© L. Benini: System-level power optimization ESSES 03 Slide -114 -

Replace Caches with Scratch-Pad Buffers (Cont.)

80 4

® Results for MP3 decoder:

Percentageover Total 1.040.000

Number of Access 60 - H
Saving e O Write-Trough
20 977.000 L=4:a=1 R T L=4;a=4 :
1 01,4 Al gz i =has Write-Back
939.000 [ha=
40 1
60 4
301
20 1
50 4
10
0 - .
40 .
256 512 1024 1KB 2KB 2KB 2KB 4KB 4KB 4KB 4KB 4KB 4KB
Most
Frequent
Locations
Profiling Results Energy Savings
© L. Benini: System-level power optimization ESSES 03 Slide -115 -

CacheMemory Partitioning

Multi-bank caches:

Use independently-addressable banks.

Two-dimensional partitioning: M modules with
B banks each.

Power savings achieved through exploitation of
reduced capacitance of smaller memories.

Ad-hoc, low-power bank selection circuitry is
used.

© L. Benini: System-level power optimization ESSES 03 Slide -116 -

CacheMemory Partitioning (Cont.)

@ Example of multi-bank caches (M=4, B=2):

mod/bank
address/way

select

MO_low M2_low

MO_high 1 M2_high

M1_high M3_high

© L. Benini: System-level power optimization ESSES 03 Slide -117 -

CacheMemory Partitioning (Cont.)

Partitioned memories:

Memory hierarchy with independently-
addressable memory banks.

Exploit sleep-mode features to shut down
individual banks.

Design memory partition so as to maximize the
sleep-time.

Typical memory traces are used to drive the
partitioning process.

© L. Benini: System-level power optimization ESSES 03 Slide -118 -

CacheMemory Partitioning (Cont.)

e In the case of embedded systems, the dynamic memory
access profile may be available.
eldea:

Map most frequent addresses onto small partitions close
to the processor.

e Example:
A4 Reads oct |
84K
O B2
ARM [g, [Ador ||
Proc | — |rw
E MS A 32KB R/W
: — Agdr —
28K 4K 2K s _28KB
TRADITIONAL Dynamic Access Profile
ARCHITECTURE Y Power Optimized Architecture
© L. Benini: System-level power optimization ESSES 03 Slide -119 -

CacheMemory Partitioning (Cont.)

® Assumptions:
Energy per access monotonically increases with memory size.
@ Target: Automatic memory partitioning.
® Need of:
Cost metrics.
Optimization algorithm.
® The energy savings obtained by partitioning must
compensate the overhead of adding banks (longer wires,
bank selection logic).
e Link to physicaldesign is key for overhead
characterization.

© L. Benini: System-level power optimization ESSES 03 Slide -120 -

Memory Access Pattern Optimization

® Address sequentialization:
Exploitation of multiple (smaller) memories.

Low-transition bus encoding can also be
viewed as a tool for making addresses
sequential (e.g., Gray-code address
generation).

® Localization of execution;

Ad-hoc memory (or cache) for storing
frequently executed code [BHPS98].

© L. Benini: System-level power optimization ESSES 03 Slide -121 -

Exploiting Multiple Memories

® Mapping of arrays onto multiple physical memories:
Logical memory partitions are allocated according to some optimal
array organization (e.g., tile-based vs. row-major).

Target: Enforce spatial locality.

:D Logical Array ::> Logical C Physical

Arrays A i
Partitioning Memories Memories
L, 1 >
A T L1 >
r K2 M
P1
< A
A2 ———«—| L2 v
> >
A3 »| K5 » 13 4l _P2

© L. Benini: System-level power optimization ESSES 03 Slide -122 -

Code Density Optimization

@ Basic idea:
Minimize program memory occupation so as to
reduce the bandwidth of processor-memory
communication.

® Approaches:
Custom instruction sets.
Object code compression.
® Privilege memory traffic reduction (i.e., dynamic
code size) over static code size reduction:
Sometimes static code size may even increase.

© L. Benini: System-level power optimization ESSES 03

Custom Instruction Sets

@ Viable solution for general-purpose
processors.

@ Example: ARM Thumb code.
Interleaving of regular (32 bit) and Thumb (16
bit) instructions.
Requires modifications to the basic processor
architecture.
Requires specific compilers and software
development Kits.

© L. Benini: System-level power optimization ESSES 03

Object Code Compression

@ Viable solution for embedded processors.
e ldea:

Exploit the small subset of instructions used by
firmware code running on embedded processors.

® Approaches:
Full code compression.
Selective code compression.

© L. Benini: System-level power optimization ESSES 03 Slide -125 -

Full Code Compression

Replace all instructions with binary patterns of minimum
width.

® ([log, N], where N is the number of instructions).
® Architecture:

NETTOTY NMeTToTy
AddresLes Addresles Le'm,—E_I
) L i 1
e | » [l9gN]
’ | .
Instructions Instructions

IBT=1lnctr D Tabl

B

© L. Benini: System-level power optimization ESSES 03 Slide -126 -

Full Code Compression (Cont.)

@ Advantages:
Availability of ad-hoc source-code compilers is not required
(replace original instructions with compressed ones with script).
Architectural modifications to the processor are not required
(key feature for users of IP cores and nC).
® Limitations:
Very often the number of distinct instructions, N, used by a
program is not small. This implies:
— Size of IDT may be very large.
— Original and compressed instruction widths may be comparable.
— [log, N] may not be a multiple of 8.

© L. Benini: System-level power optimization ESSES 03 Slide -127 -

Selective Code Compression

Very often program traces are covered by a small
subset of instructions.

@ Consider for compression only such subset.

@ Candidates: Instructions that maximize program
coverage.

e IDT sffixed (256 words).

® Program is a mix of compressed and
uncompressed instructions.

© L. Benini: System-level power optimization ESSES 03 Slide -128 -

Selective Code Compression (Cont.)

@ Architecture:

Addresses |

8 bits

Instructions

8

Instructions

Memory

© L. Benini: System-level power optimization ESSES 03 Slide -129 -

Selective Code Compression (Cont.)

® Assumptions:
Byte-addressable memory.

Memory banks (8-bit wide) can be independently
disabled

(on acycle-by-cycle basis).
A reserved special word: The mark
(used to signal compressed/uncompressed instruction).

e Different use of the mark is possible.

© L. Benini: System-level power optimization ESSES 03 Slide -130 -

Selective Code Compression (Cont.)

@ Various architectures available.

e Example:

o Lhe 0 s1

1 L b+ 0 S1 1 s2
1 S2

2 i) - 2 S3

3 Lh 3 M

4 k- 3 M 4 |taalias|iaz|iar
4 14-1

° Lo 5 | L4-2 ° =

6 Ly 6 [L4-3 ° -

7 L b+ 7 M
7|44 8 [L7-aliz3|iz2|i71
8 S5

0 |M 3]s ls) 9 S8

1 |L4a]ia3]|ia2|ian 9 S6

> M S5 10 [™ 0 | M |s3]|s2]|s1

3 |L64|L63|L62]|L61 1 [L7-1 1 (44 143 142 |Laa

4 M 12| L7-2 2 S6 | M2 | S5

5 (1zal1730172]171 BL7-s 3 M1

6 S8 14 [L7-4 4 |yzalizalizoliz
15 S8 5 S8

© L. Benini: System-level power optimization ESSES 03 Slide -131 -

Selective Code Compression (Cont.)

® Advantages:

Size of IDT is fixed a priori and limited (we picked N =
256).

Instruction fetching/decompression logic has reduced
complexity.

e Drawback:
Requires a controller to handle instruction fetching
(the program stored in memory is a mix of compressed
(many) and uncompressed (few) instructions).

® Average power savings on execution of standard

programs around 45%.

© L. Benini: System-level power optimization ESSES 03 Slide -132 -

Data Density Optimization

® Same principle as code density optimization.

e Existing approaches based on data compression:

Target is memory traffic reduction (dynamic size of the
data-set).
More complex than code compression, because both
compression and decompression are required.
Hardware compressior/decompression unit (CDU)
needed.

— Speed vs. power design trade-off.

© L. Benini: System-level power optimization ESSES 03 Slide -133 -

On-The-Fly Data Compression

® CDU placed between D-Cache and main memory.
Data are uncompressed in the D-Cache, possibly
compressed in memory:
Compression is performed on cache write-backs.
Decompression is performed on cache refills.
Compression and decompression are performed one cache line at
a time.
@ A small portion of the main memory is dedicated to
store compressed data.

© L. Benini: System-level power optimization ESSES 03 Slide -134 -

On-The-Fly Data Compression (Cont.)

® Architecture:

Dcache CDhU rain Mem
refill req | { Compressed
Lo LD N frrer MEMAONY.cnnennd
linein Data
—— 1 Maten Read
addr >

Memory

CLAT >
writeback req

| addr
MatckJ
4 LC Y ¥
line out I > lq Data

Write -

@ LC: Line compressor (CAM); LD: Line decompressor
(RAM); CLAT: Compressed line address table (CAM).

® A cache lineis compressed only if it fits a slot in the
compressed memory.

© L. Benini: System-level power optimization ESSES 03 Slide -135 -

On-The-Fly Data Compression (Cont.)

e Profile-driven approach:

LC and LD arefilled once and for all with data profiling
information.

Memory traffic reductions around 42%.
Off-line data profiling needed; applicable to embedded systems.
® Adaptive approach:
Requires two LC CAMs and two LD RAMs; while the first
pair CAM-RAM is in use, the second pair is updated with

current data statistics. When “mature”, the two pairs are
swapped.

Memory traffic reductions around 30%.
No data profiling needed; applicable to general-purpose systems.

© L. Benini: System-level power optimization ESSES 03 Slide -136 -

Outline

®
®
® System design

Communication
Software

® System Management
® Conclusions

© L. Benini: System-level power optimization ESSES 03 Slide -137 -

Design of communication units

® Trends:
Faster computation blocks, larger chips
Communication speed is critical
Energy cost of communication is significant

® Multifaceted design approach:

On chip, networks, wireless, ...
Protocol stack

© L. Benini: System-level power optimization ESSES 03 Slide -138 -

Protocol stack
a simplified view

Applications @ Data Link

Error control through

OS & Middleware coding and channel

management
Network
Shared busses
Data Link ® Physical layer
Signaling
Physical Modulation
© L. Benini: System-level power optimization ESSES 03 Slide -139 -

Data encoding

® Theoretical results:

Bounds on transition activity reduction:

—The higher the entropy rate of the source is, the lower is the
gain achievable by coding

® Practical applications:
Processor-memory (and other) busses
—Data busses, address busses

® Transition activity reduction does not guarantee
energy savings

© L. Benini: System-level power optimization ESSES 03 Slide -140 -

Bus encoding

PROCESSOR MEMORY

BUS
Control ling(s)

© L. Benini: System-level power optimization ESSES 03 Slide -141 -

Bus encoding

@ Data buses:

Random white noise model
® Address busses:

Some spatio-temporal correlations
® Embedded software:

Addresses and data can be analyzed a priori to
determine encoding

© L. Benini: System-level power optimization ESSES 03 Slide -142 -

Bus-Invert coding for data busses

® Add redundant line INV to bus
e When INV=0
Data is equal to remaining bus lines
® When INV =1
Data is complement of remaining bus lines
® Performance:

Peak: at most n/2 bus lines switch

Average: Code is optimal. No other code with 1-bit
redundancy can do better

© L. Benini: System-level power optimization ESSES 03 Slide -143 -

Bus-Invert coding for data busses

® Average switching reduction is bus-width dependent:
Ex: 3.27 for an 8-bit bus
® Average switching per line decreases as busses get
wider
Use patrtitioned codes
No longer optimal (among redundant codes)

@ Implementation issues:
Difference (XOR) of two data samples and majority vote

© L. Benini: System-level power optimization ESSES 03 Slide -144 -

Bus-Inver code comparisons

lines mode A-trans A-trans/line A-power

2 |- 1 0.5 100%

2 Bl 10.75 0.375 75%

8 |- 4 0.5 100%

8 |1BlI |3.27 0.409 81.8%

8 |4BI |3 0.375 75%

16 |- 8 0.5 100%

16 |1 Bl (6.83 0.427 85.4%

© L. Benini: System-level power optimization ESSES 03 Slide -145 -

Extensions and generalizations

® Transition signaling:
Assert logic TRUE / FALSE by signal transitions
® Use several redundant lines
Limited-weight codes [Stan, Burelson]
Coding is space and time
Modulation techniques

© L. Benini: System-level power optimization ESSES 03 Slide -146 -

Encoding instruction addresses

® Most instruction addresses are consecutive
Use Gray code [Su, Tsui, Despain]

® \Word-oriented machines:
Increments by 4 (32bit) or by 8 (64bit).

Modify Gray code to switch 1 bit per increment
[Metha, Owens, Irwin]
Gray code adder for jumps

— Harder to partition

— Convert to Gray code after update

© L. Benini: System-level power optimization ESSES 03 Slide -147 -

Working zone encoding (WZE)

® Conjecture:

Software programs favor working zones of their
address space

o WZE:
Transmit WZ identifier and offset in WZ
1-hot encoding for offsets

® Applicability:
No caches: data/instruction/shared address
busses
With caches: data/instruction-only busses

© L. Benini: System-level power optimization ESSES 03 Slide -148 -

TO Code

® Add redundant line INC to bus
e WhenINC =0

Address is equal to remaining bus lines
® When INC =1

Transmitter freezes other bus lines

Receiver increments previously transmitted
address by a parameter called stride

® Asymptotically zero transitions for sequences
Better than Gray code

© L. Benini: System-level power optimization ESSES 03 Slide -149 -

Mixed bus encoding techniques

e TO BI:
Use two redundant lines: INC and INV
Good for shared address/data busses
@ Dual encoding:

Good for time-multiplexed address busses
Use redundant line SEL :

— SEL=1 denotes addresses

— SEL is already present in the bus interface
Dual TO:

— Use TO code when SEL is asserted.
Dual TO_BI:

— Use TO when SEL is asserted; otherwise use Bl

© L. Benini: System-level power optimization ESSES 03 Slide -150 -

Address bus encoding using statistical analysis

@ Statistical analysis of bus traces
Spatio-temporal correlation of word K-tuples
Often limited to first / second order statistics (K=1,2)
® Encode words according to correlation
@ Use transition signaling
@ Spatio-temporal correlation computation:
On-line adaptive
Off-line for embedded software

© L. Benini: System-level power optimization ESSES 03 Slide -151 -

Address bus encoding for embedded software

® Off-line statistical analysis of bus traces
Compute bit 2" order correlation from known stream:
— Correlate bit i; with bit .,
— Use correlation measure to group bits into fields
Apply graph clustering algorithm
Cluster correspond to mutual high spatio-temporal correlation

® Re-encode bus lines in each cluster
Group bus lines into clusters (with locally high correlation)
Encode signals within each cluster to reduce bus switching

© L. Benini: System-level power optimization ESSES 03 Slide -152 -

Information-Theoretic Code

® ldea:
Exploit the concept of correlator (widely used in information
theory) to simplify the encoding problem.
® New problem formulation:
Minimize word transition probabilities, that is, minimize the
number of 1's being transmitted.

y (n) =1 z(n)=0W® 1
D (n)
Correlator:
| Maps ones
to transitions
© L. Benini: System-level power optimization ESSES 03 Slide -153 -

Information-Theoretic Code (Cont.)

® Generic encoder-decoder (codec) architecture:

x (n) y(n Bus Y.{n) x (n)
 —— ———
: 0 -.E «
z (n) D
’ |

x (n-1)
Corr Decorr

e Encoding requirements: Xy
E should minimize the average number of 1's while
guaranteeing unique decodability of y(n).
® Symmetric operations occur in the decoding phase.

© L. Benini: System-level power optimization ESSES 03 Slide -154 -

Information-Theoretic Code (Cont.)

e® Encoding algorithm:
Sort the pairs of input data words according to their
probabilities.
Starting from the most probable pair:
— Assign minimum-one codes.
— Update decodability constraints.

Extract E and D.
® The probability of input data words is required up-
front. Therefore, this approach is applicable in
embedded systems.

© L. Benini: System-level power optimization ESSES 03 Slide -155 -

Information-Theoretic Code (Cont.)

e Example (bus width W=2):

XY X(n-1) @) XY XD | y(n) XY XD | y(n)
01 10 o1 10 00 o1 10 0
01 00 o1 00 00 o1 00 00
1 10 11 10 A 11 10 01 Nu
i 00y af 00y
00 10 00 10 o 00 10
i 00y i 00, 01y

® The algorithm provides optimal results, but it is impractical
in both size and time.
® Approximate solutions are required:

Clustered Encoding.
Discretized Encoding.

© L. Benini: System-level power optimization ESSES 03 Slide -156 -

Bus encoding: summary

@ Bus encoding is very useful to reduce switching of high-
capacitance busses

® Some techniques require synthesis of dedicated
encoder/decoder circuitry

@ Power consumption of such circuits must be weighted
against power savings on busses

® Techniques differ for address and data busses

© L. Benini: System-level power optimization ESSES 03 Slide -157 -

Outline

[
[
® System design

Software
® System Management
® Conclusions

© L. Benini: System-level power optimization ESSES 03 Slide -158 -

Views on embedded software

... itis now common knowledge that more than 70% of the
development cost for complex systems such as automotive
electronics and communication systems are due to software
development [A. Sangiovanni-Vincentelli, 1999]

For many products in the area of consumer electronics the amount
of code is doubling every two years [Fritz Vaandrager in:
Rozenberg, Vaandrager (eds.): Lectures on Embedded Systems,
LNCS, Vol. 1494, 1998]

ESSES 03 Slide -159 -

© L. Benini: System-level power optimization

Optimization for low-energy always the same as
optimization for high performance?

No !

* High-performance if available memory bandwidth fully used;
low-energy consumption if memories are at stand-by mode

* Reduced energy if more values are kept in registers

ADD r3,r0,r2
LDR r3, [r2, #0] int a[1000]; MOV 10,428
ADD r3,0,13 c=a mg& ﬁzrlril
MOV r0,#28 for (i = 1; i < 100; i++) { ’
e MOV r11,r10
LDR r0, [r2, rO] b +=*c; MOV r0,r9
ADD r0,r3,r0 - b +=*(c+7);) oy o
ADD 12,12 #4 }C +=1 MOV r8,r1
ADD r1,r1,#1 LDR r1, [r4, 1]
CMP r1,#100 ADD r0,r3,r1
BLTLL3 2096 cycles 2231 cycles QBB [g'[g'z‘i
19.92 pJ 16.47 pJ CMP 15,#100
DLT LLS

© L. Benini: System-level power optimization

ESSES 03

Slide -160 -

Impact of software

@ For a given a hardware platform, the energy to

realize a function depends on software

Operating system

Different algorithms to embody a function (e.g.,

sorting)
Different coding styles
Application software compilation

© L. Benini: System-level power optimization ESSES 03

Slide -161 -

Outline

Software design
— Compilation technigues (memory hierarchy)

— High-level transformations
— Dynamic power management

® Conclusions

© L. Benini: System-level power optimization ESSES 03

Slide -162 -

Reducing Memory Area

Forl=1,N Reusing the same
... =CII] memory space

Forl=1,N Can reduce capacity
B[I] = A[l] misses

Can lead to smaller
memory in embedded

Forl=1,N design
... =C[l]
Forl=1,N \
ClI] = All] last use
© L. Benini: System-level power optimization ESSES 03 Slide -163 -

On-chip vs. off-chip current

Example: Atmel ARM-Evaluation board

board current reduction:
oar Current /202
32 Bit-Load Instruction (Thumb)
200
On-board
memory 150
< 116
g 100 77,2
82,2 1,16
50
On-chip 48,2 50,9 44,4 53,1
memory 0 - - -
Prog Off-Chip/ Prog Off-Chip/ Prog On-Chip/ Prog On-Chip/
Data Off-Chip Data On-Chip Data Off-Chip Data On-Chip
Processor |E|Core+0n—Chip—Memory Current (mA) O Off-Chip-Memory Current (mA) |

© L. Benini: System-level power optimization ESSES 03 Slide -164 -

On-chip vs. off-chip energy

Example: Atmel ARM-Evaluation board Off-chip access takes

more cycles
= savings (86%) are
Energy larger than for the
32 Bit-Load Instruction (Thumb) current.
140,0 .
120,0 +—228 energy reduction:
100,0 +—
2 80,0 4 76‘5 /7.06
91 60,0 T 516
40,0 +—
16,4
20,0 +— ’
0,0 - - -
Prog Off-Chip/ Prog Off-Chip/ Prog On-Chip/ Prog On-Chip/
Data Off-Chip Data On-Chip Data Off-Chip Data On-Chip
© L. Benini: System-level power optimization ESSES 03 Slide -165 -
Exploitation of on-chip memory
Example: LE _ 3 Which segment (array, loop, etc.) to
foL2— be stored in on-chip memory?
board :
y Gain g; and size s, for each segmentii.
annat
Lol Maximise gain G = Sg;, respecting
On-board constraintK 3 Ss;.
memo . .
v Static memory allocation:
Array ...
/ /, Solution: knapsack algorithm.
QUi W |aray Dynamic reloading:
memory, ZLL—+
capacity K = | Paging theory.
Processer Int__

© L. Benini: System-level power optimization ESSES 03 Slide -166 -

Results for knapsack algorithm

Energy saving

| |
| |

I

@Onchip/MemSize
@ Energy Saving

U

o

/;0% 10,00% 20,00% 30,00% 40,00% 50,00%

%
4

%

0.5% |

[Steinke et al., 2002]

© L. Benini: System-level power optimization ESSES 03 Slide -167 -

Why not just use a cache ?

Energy consumption in tags, comparators and muxes is significant.
9

Za

/ —e— Scratch pad

5 /</ —&— Cache, 2way, 4GB space

4 i —5& Cache, 2way, 16 MB space
—

X / —>»<— Cache, 2way, 1 MB space

Energy per access [nJ]
w

256 512 1024 2048 4096 8192 16384

memory size

R Bamakar, S—Steinke, B=Stee, 2001]

© L. Benini: System-level power optimization ESSES 03 Slide -168 -

[ll. Dual Memory Loads (Architecture)

RAM M Register
A—
\
—>
A—
_— / Register
ALU
RAM N Register
© L. Benini: System-level power optimization ESSES 03 Slide -169 -
Dual Memory Loads (Example)

(X*Y)+ |Casel Case 2 Case 3
Z
M X,Y,Z XY X,Z
N 4 Y

LD B,X DLD B,X;A,Z |DLD B,X;C,Y

LD C,Y LD C,Y LD A.Z; MUL B.C

LD A,Z; MUL B,C MUL B,C ADD A,B

ADD A.B ADD A.B
Energy [10.57pJ 9.32pJ 8.85pJ

© L. Benini: System-level power optimization ESSES 03 Slide -170 -

Register Optimizations

@ Jui-Ming Chang, Massoud Pedram, Register Allocation and
Binding for Low Power, Univ. of Southern California, ACM 1995

technique for minimizing the switching activity of a set of
registers shared by different data values

—assumes known probability density function of the primary
input random variables or sufficiently large number of input
vectors

power consumption of well designed register sets depends
mainly on the total switching activity of the registers

power model based on switching activity
22.5% power reduction

© L. Benini: System-level power optimization ESSES 03 Slide -171 -

Register Optimizations

e Software Energy Optimization
[Tiwari J. VLSI Signal Proc. Aug ‘96]
Reduce Memory Accesses, Make better use of Registers
— Data for i486
— register access = 300 mA/cycle
— memory read (cache hit) = 430 mA/cycle
— memory write (write-through cache) = 530 mA/cycle

can be achieved by e.g. saving the least amount of context
during function calls (compiler policies)

better utilization of registers
— optimal register allocation of temporaries
— global register allocation for the most used variables
e use register operands as opposed to memory operands

© L. Benini: System-level power optimization ESSES 03 Slide -172 -

Register pipelining: key idea and results

R2:=a[0]; for i:= 1 to 10 do

for i:= 0 to 10 do =) begin RL:=afil, C:=2*R1+R2
C:= 2 * afi] + afi-1]; Rz =RL
end;
Results: 140 Gl

_ 120 _’95 99,8
= 100 — gus
i; 80
s 60 7356 36,29 275 288
2 20,4

40 28 'bn 2 i : 55¢
o i I AT T
0 T T T T

S $
& & & T
& & & <
< . fé
Steinke et al., 2001]
© L. Benini: System-level power optimization ESSES 03 Slide -173 -

Il. Register Allocation

® Objective: to reduce memory system energy
dissipation, proposed by Catherine H. at
University of Waterloo
@ Power model
Energy dissipation of register file and memory system

o] [o]
Erosei A(Egy *Ew) Gy +E)
M VR
Assume constant energy for memory read/write
Consider switch activity for register file read/write

EnsySem = é. (EVn\2V) +Err?v)+ é. H(\ﬂ.,VZ)ErrW

vivd R

© L. Benini: System-level power optimization ESSES 03 Slide -174 -

Register Allocation (cont’d)

® Map to a minimum cost network flow problem
Solid arc represents the life time of a variable
Dashed arc represents the sharing of one e it

2 7al bl
register (memory location) by two variables | 8
Capacity: 1 for each arc ety ;
Cost functions
- ew(v)®r(v):0 e e e
= €oe wwe) = ~(Bwew™ * Ey™ * Eua)' + B : e
=—(E,w2" + Eqwy™ + H(VL, V2)E,f) le 1
Amount of flow: F = number of registers 5 ")
Objective: find a flow of at most F, while g I ____________________
migimizing 6
A € o we)Xiewvay
r(vi)® w(v2)) 7
® Results: 28-60% energy reduction for memory)
system @
© L. Benini: System-level power optimization ESSES 03 Slide -175 -
Outline

@ Introduction
® System conceptualization and modeling

® System Design

Software design
— Compilation techniques (memory hierarchy)
— High-level transformations
— Dynamic power management

® Conclusions

© L. Benini: System-level power optimization ESSES 03 Slide -176 -

l. Instruction Scheduling and Reordering

@ Power depends on switching activity, units accessed

@ Power-driven scheduling
scheduling to reduce pipeline stalls
selecting a minimum-power instruction mix for an application
reducing switching on address/data lines
—instruction reordering
(pairs of instructions have different power consumptions)

—operand swapping

Reorder Instructions to reduce switching effects
— Not much impact on large general purpose CPUs
— Useful in DSPs - (~15% benefit) [Lee et. al. TvLSI, Dec ‘6]
low-power instruction sets
shut down unused units

© L. Benini: System-level power optimization ESSES 03 Slide -177 -

“Cold” Instruction Scheduling

® Two adjacent instructions have smaller
hamming distance ® fewer instruction
bus lines recharge from 0 to 1 (1 to 0)

32 hits VLIW microinstruction in hits list view

1001 0010 1010 0111 1010 1101 0001 0000

1100 1011 0001 1101 0000 1011 0101 0100

Bifferens Bit 0101 1001 1011 1010 10100110 0100 0100

Hamming
Distenee =15

© L. Benini: System-level power optimization ESSES 03 Slide -178 -

Machine Architecture

- 128 bits - Bus : 128 bite:
Instrucibens Memury
I | b 13hine L, b Tk
]
PC432 | i
i lﬂ[:riuttr Uit 4 ¢
PO Mubiiy Ulnit Umin 3 .\Il.ilrnl-l:::a.r
I | Uit I
(. I.- I | L i L
| 1) T P Sl
PO-T6 |aclddly | ol | negey | seatl | A . e -
P \\ :
4 ' P rsgram
Multiported Intzger Register Fil GOt
(R —_—
I Bua ; 684 bita
il [d_reg | s rel l 5 pead To Data Memory

VLIW Experimental Testbed

© L. Benini: System-level power optimization ESSES 03 Slide -179 -

Instruction Scheduling Policies

@ Software re-arranging optimization (helper)
without performance penalty

@ “List Scheduling” with critical path information

® A side constraint on standard performance-
oriented scheduler
General problem: side effects!!

© L. Benini: System-level power optimization ESSES 03 Slide -180 -

Solutions

@ Horizontal Scheduling
Permute micro-instructions within a given

VLIW instruction
® Vertical Scheduling

Reorder VLIW instructions’ sequence in a

basic block

® Possible Component Activity Solution

Extension to Pipeline States

© L. Benini: System-level power optimization ESSES 03 Slide -181 -
89%
gHorizontal Scheduling (4-Way)
88.134% @ Vertical scheduling(4-Way), W=4
88% +
Only On I US ® O Vertical scheduling(4-Way), W=8
?, 87.240%
= 87.022%
A E 87% +
S 86.537%
G
@
£ 86%
=
8
g
85%
84%
queens grep
© L. Benini: System-level power optimization ESSES 03 Slide -182 -

IV. Using energy consumption
as a cost function in instruction selection

Current for different instructions (ARM core):

SHIFT

ADD & LOGICAL 0
SToRE____________________ FN“y"'lo/b .
e improvement by using

SUB & COMPARE POP .

I — — these values in
BRANGH FUsH instruction selection
(— [

HULTIPLY
MOV
| | | | | |
38 40 45 50 55 60

Current [m A]

Slide -183 -

ESSES 03

© L. Benini: System-level power optimization

Avoid power hungry multiplies

* Replace multiplies by
additions/shifts

‘\/IULTIF’LY
MOV
I ! I ! I]
38) a5 50 55 60
© L. Benini: System-level power optimization ESSES 03 Slide -184 -

Outline

@ Introduction

® Power modeling for software optimization

@ Compilation techniques

@ High-level transformations

® Dynamic power management

® Synergistic techniques

@ Software optimization for wireless applications
@ Conclusions

© L. Benini: System-level power optimization ESSES 03 Slide -185 -

Manual Optimization Methodology

@ Motivation
Many source code optimizations are hard to automate
Provide guidelines for code developers

® Layered approach

Enables designers to focus first on abstract view & then
perform optimizations narrower in scope

Optimization problem is partitioned - enables parallelism
® Three levels of optimization
Algorithmic
Data
Instruction
® Prerequisite: system level power estimator and energy profiler

S : Benini
© L. Benini: System-level power optimization ESSES 03 [Source °§HHQ -186 -

Algorithmic Optimization

o Identify computationally intensive kernels
e Consider alternative algorithms for those kernels
@ Evaluate and implement the most promising algorithms

e MP3 audio example:
focused on two most computationally intensive kernels: sub-
band synthesis and DCT algorithms

— e.g. replacing standard DCT algorithm with Chen DCT,
reducing multiply count by 28%

© L. Benini: System-level power optimization ESSES 03 [Source: BESYHHQ -187 -

Data Optimization

Goal:
Change representation of data to match the target architecture

e MP3 audio example:
signal processing algorithms often use floating point data
CPUs usually are much more efficient with integer computation

— e.g. StrongARM emulates floating point in software

® implement a fixed-precision library
only slight changes to the code
implement independently form algorithmic optimizations
resulted in large energy savings and performance increase

S : Benini
© L. Benini: System-level power optimization ESSES 03 [Source °§HHQ -188 -

Instruction Optimization

® Exploit characteristics of the target architecture
® Examples of instruction optimizations
Integer division and modulo operation
Conditional Execution
Boolean Expressions
Switch Statement versus Table Lookup
Register Allocation
Variable Types
Function Design
Inline assembly

© L. Benini: System-level power optimization ESSES 03 Slide -189 -

Integer division and modulo operation

® Unsigned modulo 2 shift is 14.7% more energy
efficient as it does not require sign extension

@ Condition is 51.39% more energy efficient as
compared to the modulo operation

© L. Benini: System-level power optimization ESSES 03 Slide -190 -

Conditional Execution

@ all ARM instructions are conditional
@ conditional execution reduces the number of branches

@ code sequences with function calls are not
conditionalized
@ grouped relational expressions below are 1.25% more

energy efficient than the ungrouped ones due to
conditionalization

© L. Benini: System-level power optimization ESSES 03 Slide -191 -

Variable Types

® StrongARM default “i nt ” variable type is 18.2%
more energy efficient than “char ” or “short”

® sign or zero extending is needed for shorter
variable types

© L. Benini: System-level power optimization ESSES 03 Slide -192 -

Experimental Results for Software Optimization
(MP3 decoder)

@ Overall :10 times faster, 5 times less energy consumption
e Profiler provides results by functions and for each HW component

® Increase in energy consumption and decrease of performance in
FLASH due to increase in the code size with algorithmic change

Energy [mWhr]

% =

o |

Time [s]
80,00 O Original 1
70,00
08
60,00 7 .
] Algorithmic 06
50,00 Opts.
40,00 7
30,00 O Data &
20,00 1 Instruction
10,00 . 0
’ [O Combined
0,00 7 T T
System Flash RAM

@f&ﬁ&&y

@ Original

O Data & Instr.

Opt.

O Combined Opt.

© L. Benini: System-level power optimization

ESSES 03

[Source: Besrugg 193 -

Using Special-Purpose Instructions

SSE Registers

XTI ?

< 128 bits >

class SSEVec {

publ i c:
float *vec;
int size;

publ i c:

/'l Constructors
SSEVec() ;

-ain

Pentium 11l Benchmarks

Program TIme [M3) NoTmRitzed—| Power
m Normal sivp [v f Sa\gng
Tor 0.0022 0.0009 [0.41 [060 %5 |
B fir 0.3700 0.1700 |0.46 | 0.63 816
m exp U.U45U U.UZ0U U.o4 U.0Y aa
msS I.Z6UU T.UYUU U.80 U.8Y [Sy4v4
New SSE Datatype i 58000 T.7000 UZ9 U5Z 970
AVETage POWET Savings (%) 73T

SSEVec(int size);

Il Cverl oaded operators
SSEVec& oper at or +(SSEVec V) ;
SSEVec& oper at or - (SSEVec V) ;
SSEVec& oper at or * (SSEVec V) ;
SSEVec& oper at or / (SSEVec V) ;
float operator[](SSEVec v);

C++ Vector Class

SSEVec& oper at or +(SSEVec v) {
SSEVec *sv = new SSEVec(si ze);
_ nl28 nl, n2, n8;

for(int i=0; i<size; i+=4) {
nl = _nm | oad_ps(v.vec+i);

n2 = _nm | oad_ps(vec+i);

n8 = _nmsum ps(ni, n2);
_mmstore_ps(*sv.vec+i,nB); }

return *sv;

}

© L. Benini: System-level power optimization

® MATLAB style code

e Fixed throughput

results in
substantial power
savings

ESSES 03 Slide -194 -

Loop transformations (1)

Array folding

[. >
[>
[>
Frequently only small
segments of arrays live

Separation of margin handling

many if- only few margin
statements fot :> no checking, elements to be
margin-checking efficient + || processed

© L. Benini: System-level power optimization ESSES 03 Slide -195 -

Loop transformations (2)

Loop permutation:

for (j=0; j<=n; j++) for (k=0; k<=m; k++)
for (k=0; k<=m; k++) for (j=0; j<=n; j++)
pOIk] = ... plillK] = ...

Next reference to array element adjacent in the cache.

Loop unrolling:

for (j=0; j<=n; j++) |:> for (j=0; j<=n; j+=2)
pll =...; {pll=-
pi+1] =}

Improves utilization of pipeline;
simplifies keeping more values in registers

© L. Benini: System-level power optimization ESSES 03 Slide -196 -

Loop transformations (3)

Loop tiling: for (j1=0; j1<=n; j1+=t)
for (j=0; j<=n; j++) for (k1=0; ki<=m; k1+=)
for (k=0; k<=m; k++) |:> for (j2=]1; j2<=j1+t-1; j2++)
plilIK] = ... for (k2=k1; k2<=k1+t-1; k2++)
pli2][k2] =
Loop adjusted to size of cache lines
Loop fusion/fission fusion
for (j=0; j<=n; j++) :> for (j=0; j<=n; j++)
pll =-..; - {pl] = ...
for (j=0; j<=n; j++) o p0l = pl] + ..}
PLl= Pl + ... Improves caching and use of
Exploits small HW loops registers
© L. Benini: System-level power optimization ESSES 03 Slide -197 -

Memory Energy (J)

1,8 mxm
1,611
1,411
1,241 O original
11 loop
0,81 unroll
0,61 Etile
0,411 Oall
0,211
0

1K, 1-way 1K, 2-way 1K, 4way 1K, 8way

© L. Benini: System-level power optimization ESSES 03 Slide -198 -

Memory Energy (J)

mxm

1,67
1,41

1,211

0,81
0,61
0,41
0,21

1 u; "N

1K, 8-way 2K, 8-way 4K, 8-way 8K, 8-way

Ooriginal
®mloop
Wunroll
@Etile
Oall

© L. Benini: System-level power optimization

ESSES 03

Slide -199 -

Datapath Energy (J)

0,091
0,087
0,071
0,061
0,057
0,041
0,037
0,021
0,01+

mxm

N

original

loop unroll tile

all

© L. Benini: System-level power optimization

ESSES 03

Slide -200 -

Improving Locality: Data Transformations

® Linear layout transformations
Dimension re-indexing
Diagonal (skewed) memory layouts

@ Blocked memory layouts

Data transformations might be useful where
loop transformations fail, but they have their
own problems (e.g. aliasing)

© L. Benini: System-level power optimization ESSES 03

Slide -201 -

Example: Dimension Reindexing

Forl=1,N e Imitates the effect of a
ForJ=1,N different layout
All][3] = B[N @ Should be applied
[with a global view
~— . .
® Less negative impact
Forl=1,N on datapath energy
ForJ=1,N

AlIRT = BT[]

© L. Benini: System-level power optimization ESSES 03

Slide -202 -

Data Transformation Effects

2 mxm dinect
m trgnsformed
2way
Otransformed
O 4way
m trgnsformed

1k cache

© L. Benini: System-level power optimization ESSES 03 Slide -203 -

Outline

@ Introduction
® System conceptualization and modeling

® System Design

Software design
— Compilation techniques (memory hierarchy)
— High-level transformations
— Dynamic power management

® Conclusions

© L. Benini: System-level power optimization ESSES 03 Slide -204 -

Hardware support

Example: STRONGARM SA1100

400mw

@ RUN: operational
e IDLE: a swroutine

may stop the cCPU 1048 L60ms Qus
when not in use,
while monitoring 90us SLEEP
interrupts
® SLEEP: Shutdown 50mWwW 160uW

of on-chip activity

© L. Benini: System-level power optimization ESSES 03 Slide -205 -

The opportunity
Reduce power according to workloads
device states
shut down wake up
| hIIQy i idle. i hll':y |

|
:
| ! JM_‘
. 1 . .
T sleening T
working : Teq ping . i
(I

=

power states Tos Tow
T.4: shutdown delay T, Wakeup delay
T, time before shutdown Ty, time before wakeup

Shutdown only during long idle time

© L. Benini: System-level power optimization ESSES 03 Slide -206 -

A control system abstract model

Workload » Power

—» Performance

Busy/ldle T PM
commands

Power manager

(controller)

® System responds to input (workload) with a
performance level and a power consumption

® Controller samples B/l and issues PM commands
® Objective: minimize power for a desired performance

© L. Benini: System-level power optimization ESSES 03 Slide -207 -

The challenge

®Is an idle period long
enough for shutdown (T.)?

Predicting the future!

© L. Benini: System-level power optimization ESSES 03 Slide -208 -

Approaches to workload prediction

@ Timeout : [Karlin94, Douglis95, Li94, Krishnan99]
— Shutdown the system when timeout expires

@ Predictive : [Chung99, Golding95, Hwang00, Srivastava96]
— Shutdown the system if prediction is longer than T,

@ Stochastic : [Benini9g, Qiug9, Simunic01]

— Model the system stochastically (Markov chain)
— Policy optimization with constraints
» Trade off between energy saving and performance
— Non-deterministic decision
— Discrete time model / Continuous time model
— Superior to predictive and timeout

© L. Benini: System-level power optimization ESSES 03 Slide -209 -

Performance of predictors

Semi- Markov 0.40 326 76

Sliding Window

Device-Specific Timeout 0.44 323 64
Learning Tree 0.46 437 217

Exponential Average

always on ;

P : average power Ngg: number of shutdowns
Nyg : Wrong shutdowns (actually waste energy)

© L. Benini: System-level power optimization ESSES 03 Slide -210 -

Can | do better than that?

e mprove workload
iInformation

Application-aware DPM!

© L. Benini: System-level power optimization ESSES 03 Slide -211 -

Application aware DPM

Ny
—I '\DPM API
L

&
)

os| W

Interaction with scheduler

T
device

© L. Benini: System-level power optimization ESSES 03 Slide -212 -

Interaction with processes

® Concurrent processes
Created, executed, and terminated
Have different device utilization

Generate requests only when running (occupy
CPU)

® Power manager is notified when processes
change state

® Processes ask for “service levels” to the PM

© L. Benini: System-level power optimization ESSES 03 Slide -213 -

Interaction with Task Scheduling

Rearrange task execution to cluster
similar utilization and idle periods

tl
1 2
t2 L =
1 2
t3 ‘v/ ~— .
idlg T iflle fime

idle T: time quantum

© L. Benini: System-level power optimization ESSES 03 Slide -214 -

Shutdown-friendly scheduling

® Cluster processes with similar utilization patterns
Localize resource usage in time

@ Tradeoff against latency
A process may be delayed

@ Exploit application-knowledge

Processes can specify their latency requirements via
API calls

Safe assumptions on legacy processes: can specify
laxity of timing constraints

© L. Benini: System-level power optimization ESSES 03 Slide -215 -

Low-Power Scheduling in Practice

operating system

tasks specify 1. group tasks with same device

« device requirements requirements

* timing requirements 2. arrange groups with similar
device requirements

. execute tasks in groups

. wake up devices in advance to

eg. autosaver, 3
email download 4

meet timing constraints

© L. Benini: System-level power optimization ESSES 03 Slide -216 -

Power and Overhead Reduction

constraints Changes

100%: scheduling without
considering power management

Task scheduling reduces power and overhead.

© L. Benini: System-level power optimization ESSES 03 Slide -217 -

Process awareness improvements

be‘ter 1 l

Algorithm T .(ksec) N 4 P,
PA-DPM* 23.6 181 1.00
[ICCAD 97] 17.9 325 1.35
Timeout (2min) 12.3 64 1.56

T,: time during sleeping state
N4 number of shutdowns
P,: average power (normalized to row 1)

[YungO1]

© L. Benini: System-level power optimization ESSES 03 Slide -218 -

Can | do better than that?

e® Application-level DPM

Shaping the workload!

© L. Benini: System-level power optimization ESSES 03 Slide -219 -

Example: Communication Power

NICs powered by portables reduce battery life

2.5 hours

In general

* Higher bit rates » Higher power consumption

* 90% of power is drawn by listening to the radio channel!!

Proper use of PHY Iaypr services hy MAC is critical

© L. Benini: System-level power optimization ESSES 03 Slide -220 -

NIC power states

* Transmit mode
* Receive mode
* Doze mode
* Off-mode
— NIC completely turned off
— Use only when streaming multimedia is
somehow requested by the client
— Power overhead for frequent switches
— Must come with proper buffering strategies

© L. Benini: System-level power optimization ESSES 03 Slide -221 -

Networked Streaming multimedia

a1
Evha ma cubins can st e H"“-
s ok seorlamions

LAB ethernet network

SmartBadge llI

© L. Benini: System-level power optimization ESSES 03 Slide -222 -

Off mode power savings

Server
Access Point

Beacons

Power A

A
Doze mode || I Mn n n |
Off mode || | N\ N |

time "
Energy saving

time
Playbhdk ack
19 q
Buffer full Playing Low water mark reached
© L. Benini: System-level power optimization ESSES 03 Slide -223 -

Buffering strategies

Where shall | put the LWM?

* Higher error probability
< * Exploits NIC off-state
Bl S e =SSt St O =gkt a=a C i SItION
« lower error probability
> « Incurs NIC off-state overhead
* Maximum value: Buffer_length — 1 block

How long should the buffer be?

* |t dipends on the memory availability
* The longer the buffer length, the more the benefits of NIC off-state

BLHEEERING STRATECGIES SHOIH D RBRE POWED AN\MARE
o T TNV O UTTITOOVT L UVUTE D JT1 VVIL_T\ | ==

A4 O D O T O AR AN ALY IAY

L]
© L. Benini: System-level power optimization ESSES 03 Slide -224 -

Results

0T | !) ! I T | e i W
- — 20
.6 . ?:E;':'
- — EOZ11
U.ﬁ""

AVG POWER (W)

| .] . | i .
20 40 60 80 100 120 140
BUFFER TLENGTIH (no of media unitg) [Bertozzi02]
v Low length buffers incur off mode power overhead
v For high length buffers, good power saving

1.2

ESSES 03 Slide -225 -

© L. Benini: System-level power optimization

What if the system is not idle?

® Exploiting underutilization

Dynamic Voltage Scaling!

ESSES 03 Slide -226 -

© L. Benini: System-level power optimization

Variable-voltage processor example: INTEL Xscale

Discrete VS
3 to 4 voltages
More frequencies
Transition penalties

POWER-PERFORNMANCE COMPARISON

Intel® XScale™
Microarchitecture

System support

Voltage ranges

» milliseconds

Dominated by supply
voltage transient

Voltage supply circuitry
Interface circuits (!)

Decrease with tech.

Power Consumption (Watts)

175 MHz 150 MHz
@1.5¢ @075V

600 MHz

233 MHz
=20V

Emes ERwans

400 MHz
@1.00

600 MHz 1GHz
1.3V 1.6V “1.aV

From Intel's Web Site

[INTELO1]

ESSES 03

© L. Benini: System-level power optimization

Slide -227 -

Variable Frequency

Energy as a function of frequency

e Energy consumption: E,. .=V, > xC,, X xT
® Tisgivenby: T = Npame X = (Nygery + Nigie) %
® Hence the energy equation can be written as:
Efame = VDD2 XC gt X X(Nyseru + Nigee (F))

® Energy savings

Reduces costs of memory latency

Reduces costs of 1/O synchronization
e Discrete frequency range

Adaptation mismatch

frame

ESSES 03

© L. Benini: System-level power optimization

Slide -228 -

Streaming real-time single application example

® An MPEG stream is composed of frames

The decoder produces audio samples by processing block of
frames.

e SW and HW buffering allows synchronization among input rate,
output rate and processing time

® Each block must be elaborated in a fixed time, during this time
the CPU does not access input or output buffers

e Output data are sent to the audio CODEC by the DMA

i
i
i
i
S
=
]
£
0

© L. Benini: System-level power optimization ESSES 03 Slide -229 -

Single task: Freguency setting

< audio stream

> br, sr > < Look-up

FR

FRnax /
e
“ fyin f

[Acquaviva 01]

© L. Benini: System-level power optimization ESSES 03 Slide -230 -

Experimental Results

e Current waveform — no policy applied

A S e W R

E A
o
\c o
* Energy as afunction of 9 .
stream characteristics | S
@Q’/ bit rate
)
<
&
© L. Benini: System-level power optimization ESSES 03 Slide -231 -
Experimental Results (II)
@ Comparison between policies
A A
1600 0.59
.\.\- c 057
1400 o
_ 5 055
% 1200 § 0.53 *
3 1000 T ost
5 800 2 049
600 Y047
> 0.45 >
10 20 30 40 50 60 10 20 30 40 50 60
Bit rate(Kbit/s) Bit rate(Kbit/s)
without policies
—a . .
-E mixed policy
: _ —max opt e
Energy Reduction = shutdown
max variable frequency
Samnle rate 16K H =7
Ld
© L. Benini: System-level power optimization ESSES 03 Slide -232 -

Multiple tasks: voltage scheduling

® Performance constraints
Power

4 Static/dynamic workloads
. Hard/soft deadlines
Run fast o
and stop” @ Transition costs
Number of states
Active Idle Active Idle Active t .
State transition overhead
% e '@ Execution time estimation
o control WCET
Active Active Active Stochastic
e Policy granularity
) Inter-task
Dynamic Vcc/
freq control Intra-task
Active Active Active Time [] USing Sleep states
© L. Benini: System-level power optimization ESSES 03 Slide -233 -

Conservative vs. aggressive DVS approaches

@ Conservative: hard real-time guarantees

Basic idea
— Use conservative estimates (WCET)
— Perform scheduling with RT guarantees
— Stretch execution when running faster than WCET

Slack recovery

® Aggressive: soft real-time constraints
Basic idea
— Monitor system usage @ run time
— Predict future usage based on past history
— Set speed (and voltage) based on prediction
Slack prediction

© L. Benini: System-level power optimization ESSES 03 Slide -234 -

Conservative DVS formulations

@ Task type: Dependent tasks (task graphs)

® Task characteristics: tasks can have different
energy profiles, deadlines, release times

® Number of processors: single or multiple
@ Voltage type: Continuous or discrete

@ Voltage resolution: Different cycles of the
same task can have different voltages

© L. Benini: System-level power optimization ESSES 03 Slide -235 -

Overall Flow

Syatem
configurmiion

'y

| constroints

-

e /ﬁIi ™™o
N e sadiy=. Iis

+Ym

Bystem implementaticons
determined for enach task

© L. Benini: System-level power optimization ESSES 03 Slide -236 -

Approach

® An Integer Programming (IP) formulation of the
voltage selection problem

Number of variables and constraints linear to number of
tasks

Polynomial time solvable for continuous voltage
Efficient approximation for discrete voltage

@ Earliest Deadline First (EDF) scheduling for a
single processor and a priority-based list
scheduling for multiple processors

Polynomial time algorithm aimed at providing more
energy saving

© L. Benini: System-level power optimization ESSES 03 Slide -237 -

Scheduling

/9?\ — P.;L.)&{?.z. :
12

5 : P
t w @
? t3 [rfs, T3, dlg] §t3
t4 Q
T 4@ Tcon=19 b
Before Scheduling After Scheduling

© L. Benini: System-level power optimization ESSES 03 Slide -238 -

Scheduling and Voltage Setting (2 Vdds)

012 3456 7 8 2 10111212314151617 1819
| ST R A R IS O el DS (DG S SN N M o e |

1
pL [T 7 Rl T 7 W3 T a4 ¢ 1
p2[iz2 + 1 1t3 I cycle at V1

(a) always on Vh
Pl Tl T TS T e]
p2 I T

(b) treating tasks individually (Gruian)
Pl N T 5T T T]
p2 [TS

(c) treating tasks evenly (LLuo)
PLEEEEE T T]]
p2 [R il

() optimal solution

© L. Benini: System-level power optimization ESSES 03 Slide -239 -

Energy Consumption of the Four Implementations

Processor Data Energy consumption of different
(normalized) implementations

© L. Benini: System-level power optimization ESSES 03 Slide -240 -

Aggressive DVS: Workload Dependant Processing

D D
Workload
Monitor

Processor Utilization (20)

f(r)

4] | |

f ||'I i k] ‘
s \ ‘ v1 |Iﬁ I_,
. Fileserver NlIWorkstatlon
: Illql "'. ||_/“'x ~ a2

Task Queue .
L]
:IJ
n

@ How to predict workload, w?

e How frequently should the processing rate, f(r), be
updated

Tm;e (s)-

© L. Benini: System-level power optimization ESSES 03 Slide -241 -

Prediction Strategy

Warkload Workloads

: ™~ -1 = :
Predicted Wp[n +1] = a hn[k]Mn - k] Previous
k=0

Moving Average Workload
e
h[k]=—="nk

* Simplest
« Performance degradation with fast loads

Expected Workload State Least Mean Square @
(EWS) (LMS)
win+1] = E{w{n+1} = a W, p; N,alk] = h[k]+mw [n]w{n- K]
 Probabilistic formulation « Adaptive filter, self-adjusting
» Transition matrix updated every slot « Convergence issues

© L. Benini: System-level power optimization ESSES 03 Slide -242 -

Prediction Performance
MAW -
B .-'""-.
= ! __,-"'
2 w o
9 .) ot 4
Q = - B
& i @ e = LMS
h=Rx EWS
2 2 T
N .
(_U = i i 5 7
g Filter Taps (N)
B i
Z]
Pdate T m (\2&6 Conti
Irne T() ?&9 E ontinuous :
g . Pre.fect :
g
N = 3 tapS and T= 5 S I 1 " predicted
is a good choice
© L. Benini: System-level power optimization ._VV.._IiUle (S) -
Energy Performance Tradeoff
® Averaging is energy efficient_ | 4 "
r2+r2 o +r ('52 ‘_8 W2
1 2 3 B THhE 3 E(F < 05
5 G - ’.’® E(r)2® E(r) g
= — x T T
»
T 2T
Time
Increased
Averaging Decreased
Lower Energy Averaging o 10
_ Sluggish Higher Energy >
orma Faster Response 2 o5
i
>
wi w2
Update time T depends on
= Maximum allowed performance hit
= DC/DC converter and frequency change overheads
© L. Benini: System-level power optimization ESSES 03 Slide -244 -

Energy Savings

Energy Savings Ratio (ESR) | ESR Comparison
Trace Filter Perfect

MAW

Dialup
Server

File
Server

User
Work-
Station

LMS

[Sinha, VLSI 01]

© L. Benini: System-level power optimization ESSES 03

Slide -245 -

A control system abstract model

» Power

» Performance

PM commands
scheduling” suggestions”

Busy/ldle
process info

Power manager

(controller)

@ Better observation of the system
® More control “knobs”

' @ Objective: increase controllability & observability

© L. Benini: System-level power optimization ESSES 03

Slide -246 -

What about closed-loop control?

Workload ! Power

» Performance

Busy/ldle

hds
process info TT scheduling] suggestions”

Power manager

(controller)

e Stabilizes the system
® Reduces sensitivity to “modeling noise”
@ Challenge: high quality power/performance sampling

© L. Benini: System-level power optimization ESSES 03 Slide -247 -

Many degrees of freedom...

e Putting it all together

The energy-efficient OS

© L. Benini: System-level power optimization ESSES 03 Slide -248 -

Energy efficient OS: features

@ Controls multiple heterogeneous devices
Multiple sleep states, multiple active states

® Manages performance constraints
Minimizes latency (for event handling)
Satisfies throughput bounds & deadlines
Handles hard and soft constraints

® Interacts with applications & other OS services
Supports DPM APIs
LP scheduler, LP memory manager

@ Various practical research solutions: HPL-Stanford-UNIBO, UCI,

Berkeley, Delft
e® Closed-loop control is yet to be explored

© L. Benini: System-level power optimization ESSES 03 Slide -249 -

DRAM Memory Architecture

To/From CPU |
A !

onfiguration
Registers

> Memory
Controller

Yviv 'y
yYivivl,
Yivivl,

«
<«
<4

| 4

© L. Benini: System-level power optimization ESSES 03 Slide -250 -

Memory management:
Memory Operating Modes

3.75nd
2 cycles /30 cycles 9000 cycles
0.83 nJ 0.32nJ 0.005 nJ
© L. Benini: System-level power optimization ESSES 03 Slide -251 -

Dual-state (Static) HW Power State Policies

® All chips in one
base state

@ Individual chip e
Active while

pending requests
R b Standby/ NTP/TOTVerdovi/n
® Return to base
power state if no Active e
H . Access
pending access e

Time

© L. Benini: System-level power optimization ESSES 03 Slide -252 -

Quad-state (Dynamic) HW Policies

access access

no access
for Ta-s

no access for
Ts-n

e Downgrade state if no
access for threshold
time

e Independent
transitions based on

access pattern to each @ or Tnp @
chip 1

e Competitive Analysis Active - -
Na|
rent-to-buy l Access Pon - |
Active to nap 100’s of ns) >
Nap to PDN 10,000 ns Time
© L. Benini: System-level power optimization ESSES 03 Slide -253 -

Page Allocation and PADRAM

VirtuWory Page Processor
Ca hc
£
‘ V
4 16 * 1 * 16 4)16

v v v
0 N 2N 3N

Chip 0 Chip 1 Chip 2 Chip 3
N-1 2N-1 3N-1 aN-1

® Physical address determines which chip is accessed
® Assume non-interleaved memory

Addresses 0 to N-1 to chip 0, N to 2N-1 to chip 1, etc.
e Entire virtual memory page in one chip

e Virtual memory page allocation influences chip-level
locality

© L. Benini: System-level power optimization ESSES 03 Slide -254 -

Page Allocation Polices

® Random Allocation
Pages spread across chips

® Sequential First-Touch Allocation
Consolidate pages into minimal number of chips
One shot

® Frequency-based Allocation
First-touch not always best
Allow movement after first-touch

© L. Benini: System-level power optimization ESSES 03 Slide -255 -

Conclusions

® System-level power minimization requires
hardware & software interactions

® Architectures provide increased degree of
control on power vs. performance

@ Software must exploit it
@ It is important to understand both!

© L. Benini: System-level power optimization ESSES 03 Slide -256 -

The end

Thank you very much for attending this class !

© L. Benini: System-level power optimization ESSES 03 Slide -257 -

