
Communication Middleware Technologies for Industrial Distributed
Control Systems: A Literature Review

Ali Balador1, Niclas Ericsson1, Zeinab Bakhshi2
1RISE SICS Västerås, Sweden, {ali.balador, niclas.ericsson}@ri.se

2RighTel, Iran, bakhshi.zeynab@gmail.com

Abstract—Industry 4.0 is the German vision for the future
of manufacturing, where smart factories use information and
communication technologies to digitise their processes to achieve
improved quality, lower costs, and increased efficiency. It is
likely to bring a massive change to the way control systems
function today. Future distributed control systems are expected
to have an increased connectivity to the Internet, in order
to capitalize on new offers and research findings related to
digitalization, such as cloud, big data, and machine learning. A
key technology in the realization of distributed control systems
is middleware, which is usually described as a reusable software
layer between operating system and distributed applications.
Various middleware technologies have been proposed to facilitate
communication in industrial control systems and hide the hetero-
geneity amongst the subsystems, such as OPC UA, DDS, and RT-
CORBA. These technologies can significantly simplify the system
design and integration of devices despite their heterogeneity.
However, each of these technologies has its own characteristics
that may work better for particular applications. Selection of the
best middleware for a specific application is a critical issue for
system designers. In this paper, we conduct a survey on available
standard middleware technologies, including OPC UA, DDS,
and RT-CORBA, and show new trends for different industrial
domains.

I. INTRODUCTION

Industrial systems are often safety critical, with end cus-
tomers expecting a longevity of 10-20 years, along with an
availability of up to 99.9999% in harsh environments. In an
centralized design, the control algorithm is concentrated in a
single entity. A single process controller operates all aspects of
your process, but it becomes a single point of failure. In order
to improve the reliability of control, process quality and plant
efficiency, Distributed Control Systems (DCS) have emerged.
Nowadays, industrial automation and control systems include
a large number of distributed systems (e.g., controllers, sensors
and actuators), which are often connected with each other
over an Ethernet-based network. DCS systems include applica-
tions in aerospace, defense, industrial automation, automotive
industry, and robotics. In these applications, data produced
in one system component needs to be shared with other
components. Such applications may have stringent deadlines
by which the data must be delivered, in order to process
it on time to make critical decisions. Increasing demand on
productivity, quality, safety, and security in industrial domain
leads to new challenges. One of these challenges is that
DCS not only require I/O communication for every controller
but also need horizontal (with other controllers on the same

hierarchical level) and vertical (with other devices on different
hierarchical levels) communication [1]. Another challenge is
the heterogeneity [2] in various systems and system of sys-
tems, that communicates on various homogeneous networks
and field-buses (e.g., DeviceNet, ProfiNET, CAN, Profibus).
The different systems are normally provided by different
vendors. For the systems on a homogeneous network/field-
bus level, interoperability is working well. However on the
system of systems level, i.e. the heterogeneous network, where
all systems converge, the system capabilities, data formats,
mapping schemes, and I/O interfaces varies, thereby causing a
rather complex heterogeneous system to deal with. In addition,
trends like, Internet of things (IoT), Cloud, and 5G are
pushing to be adopted and integrated into industrial systems.
Bringing new communication technologies, that is likely to
cause a need for faster system evolutions. E.g., due to newly
detected cybersecurity vulnerabilities, or in order to utilize new
functionality provided by cloud suppliers.

To facilitate the industrial control communication in DCS
and hide the heterogeneity amongst the subsystems, various
middleware technologies have been proposed by international
standardization organizations, industrial consortia and research
groups over the last couple of decades, such as OPC UA, DDS,
and MQTT. These technologies can significantly simplify
the system design and integrate control devices despite their
heterogeneity.

Despite all advances in the field of middleware technologies,
there are still many significant challenges to meet the require-
ments of DCS systems. These systems are very time sensitive,
meaning that transactions and decisions, must be carried out
reliably within a predefined time. These systems are usually
heterogeneous, complex and they must support various plat-
forms. Some of the most important challenges and aspects
for middleware where identified by the authors, together with
industrial partners, such as, compatibility, changeability, reuse,
timeliness (real-time), quality of service, safety and security,
and Internet connectivity. In addition the maturity and activity
are important for middleware selection [3].

The rest of the paper is organized as follows: Section II
presents related works and scope of paper. Section III shows
different middleware technologies. Evaluation and comparison
of the selected middleware solutions are then presented in
Section IV. Finally, section V concludes this paper.978-1-5090-6505-9/17/$31.00 c©2017 IEEE

TABLE I
SUMMARY OF EXISTING COMMUNICATION MIDDLEWARE

OOM MOM SOM

RT-CORBA DDS OPC UA
ICE MQTT SOME/IP
RMI AMQP Thrift
COM/DCOM CoAP

XMPP
ZeroMQ
Nanomsg
YAMI
JMS

II. RELATED WORKS AND SCOPE OF PAPER

In the last decades, many middleware technologies have
been introduced for DCS systems and each of them have
focused on different application domains. In this section, we
identified 16 middleware technologies and classified them into
three different groups [4], [5], including object oriented, mes-
sage oriented, and service oriented middleware technologies,
as shown in table I.

In order to focus more on suitable middleware technologies
for future DCS systems, many of these selected middleware
technologies are removed since they are outdated, though
they might still be used in many systems. Moreover, several
middleware technologies has been removed for other reasons.
For example, Scalable service-Oriented Middleware over IP
(SOME/IP) [6] was excluded from further investigations since
it does not appear as a middleware and was developed by
BMW for in-vehicle communication and was integrated in the
AUTOSAR 4.1 specifications. In addition, ZeroMQ [7] and
Nanomsg [8] were also removed because they only define mes-
saging formats and are thus not counted as a real middleware.
Moreover, those are not actually at the same level as the other
solutions, which are reviewed in this paper. Communication
middleware solutions like, JMS a pure java based server-to-
server protocol, that only support programming languages that
use just-in-time compilation or garbage collection, are omitted
due to lack of deterministic behavior.

Finally, a group of three promising middleware technologies
that also pointed out by many big industries and organizations,
including OPC UA, DDS and RT-CORBA has been selected
to be evaluated in more details.

III. COMMUNICATION MIDDLEWARE TECHNOLOGIES

In this section, we present the core architecture of each of
the three selected middleware technologies and their major
characteristics, including real-time capability, security, and
application domains.

A. OPC UA

The OPC foundation is an independent committee that
specifies and develops the OPC Unified Architecture (OPC
UA) standard [9], [10]. The OPC Classic is the original
version that was developed by OPC foundation in 1996. OPC
UA aims to expand OPC’s interoperability to the device and

enterprise levels. OPC UA is a client/server protocol. It defines
communications from the application to the transport layer,
making it very interoperable between vendors [11]. OPC UA
provides a set of standardized services with which clients
can interact with servers. Servers provides access to data and
functions that are structured in object-oriented information
models.

1) OPC UA architecture: OPC UA is much more than a
protocol. It builds on different layers shown in Figure 1. Two
main components of the architecture are transport and data
model. The OPC UA data model defines the rules and how to
expose an information model. It includes the entry points into
the address space, base types used to build a type hierarchy,
and some enhancing concepts, such as state machines used in
different information models. The transport layer is the other
main component, which defines protocols that serializes/de-
serialized the data and sends over the network. Two transport
protocols that are currently defined for OPC UA are TCP and
SOAP/HTTP [12]. Both of these protocols use standard TCP
as their underlaying technology and it makes OPC UA less
promising for hard time sensitive systems.

OPC UA basic services (base services) layer defines abstract
methods descriptions that are protocol independent, and form
the basis for the entire OPC UA functionality [9]. This layer
provides an interface between servers and clients using trans-
port mechanisms to exchange information. OPC UA supports
all successful Classic OPC features by information models
defined for the domain of process information on top of the
base services layer. Different organizations can define their
own specific information models on top of basic information
models, which are defined by OPC UA standard to describe,
configure, and monitor devices and PLCopen, a standard
for PLC programming languages. Moreover, vendor specific
information models can be defined using directly the UA base,
the OPC models, or other OPC-UA based information models.

Fig. 1. OPC UA Architecture

2) Real-time capability: There was no real-time demand
on OPC in the past because everything was user-driven.
For example, everything was asynchronous for traditional
Supervisory Control and Data Acquisition (SCADA) systems,
thereby there was no need for real-time communication. As
the OPC community intends to support real-time applications,
real-time behavior on the software and on the network be-
comes a requirement. Now, OPC community is working on

the UDP based OPC UA protocol and the publish/subscribe
communication model, which together with the Time Sensitive
Networks (TSNs) extension to Ethernet will enable even hard
real-time capabilities to OPC UA applications. During the
OPC day Europe 2016 [13], OPC UA Foundation announced
that the upcoming publish/subscribe communication model
that is being prepared for OPC UA specification 1.04 will
be released during the first half of 2017.

3) Security: OPC UA security has a multilayer structure
like OPC UA architecture [14]. Different security specifica-
tions are modeled in different layers of OPC UA Structure: (a)
Authentication: in application layer of OPC UA architecture,
clients, user or operator can be authenticated via a password
with the specific username or a certificate or combination of
both. X.509 certificates are used for authentications, (b) Autho-
rization: data access rules with defined rights in the policies,
are regulated in the application layer for each node. (c) Audit-
ing, in application layer auditing the logs and events are de-
fined. The server can log, each operation and the value changes
by users in every time frames, (d) Integrity and Confidentiality
are ensured in the secure channel of the communication layer.
Application authentication and authorization are also defined
in communication layer. OPC UA also supports symmetric
and asymmetric encryption key management systems to ensure
confidentiality and data integrity using the encryption feature
in transport layer. IPSec or Transport Layer Security (TLS)
protocols are used to create the secure communication channel
and encrypted messages between nodes in transport layer.

B. DDS

DDS [15] is a middleware whose concept was standardized
and is currently managed by the Object Management Group
(OMG). The first version of DDS was released by OMG
in 2004. DDS simplifies software systems by streamlining
the way that different applications receive and process data.
It causes reductions in cost and risks through development,
integration, deployment and the lifetime maintenance of dis-
tributed software systems. DDS is in charge of transferring
information. The system includes different publishers (data
writers) and subscribers (data readers). DDS makes data
exchanges between different devices that can include different
publishers and subscribers at the same time. Figure 2 generally
shows how DDS connects different publishers and subscribers.

1) DDS architecture: The OMG DDS standard defines a
programming model including a wire protocol and a set of
standard APIs. Figure 3 shows the structure of OMG DDS
standard. The DDS Interoperability Wire Protocol Specifica-
tion (DDSI) defines the interoperability protocol to ensures
that different vendors’ implementations of DDS can interop-
erate. The DDS API provides the standard interface between
DDS and applications, and ensures the source code portability
between different vendor implementations. Currently OMG
provides the standard DDS API interface in C, C++ and
Java languages. Lower level Data-Centric Publish-Subscribe
(DCPS) is intended for efficient delivery of information. All
the activities for DDS communication, for example, defining

Fig. 2. DDS Concept

topics, creating publisher/subscriber entities, writing/reading
data are defined in this layer. Optional higher-level Data-
Local Reconstruction Layer (DLRL) provides more direct
access to the exchanged data and simpler integration with
the local language constructs. The light-weighted UDP/IP is
used as a transport for DDS as it has the following char-
acteristics: universal availability, connectionless, predictable
behavior, scalability and multicast support. Although DDS can
also be implemented using other default transport protocols,
such as TCP/IP, RTPS/UDP, IP multicast, it is supposed to
work best over UDP/IP [16].

Fig. 3. Architecture of OMG DDS standard

2) Real-time capability: DDS is a publish/subscribe pro-
tocol, which focuses on communication at the edge of the
network. DDS nodes can communicate directly in peer-to-
peer fashion using UDP multicast. This removes the need
for centralized network management. Thereby, DDS is able to
provide faster and deterministic data distribution and is stated
to be a good solution for reliable and extreme real-time data
delivery at the edge [17]. DDS provides very low overhead,
efficient processing and low latencies.

3) Quality of Service: QoS is a set of parameters to evaluate
a service offered. From processing perspective, QoS represents
a set of both quantitative and qualitative characteristics that is
needed to achieve the required functionality. From commu-
nication perspective, QoS is defined as a set of requirements
that a network must provide for the transport of traffic. Among
all QoS parameters, the performance parameters (throughput,
bandwidth or resource management) are the most important
parameters for all distributed systems. Priority, durability,
synchronization and deadline are QoS parameters that can
guarantee a minimum QoS for DCS systems [18].

One of the most important characteristics of DDS is that it
provides 22 different QoS policies, covering almost all aspect
of communications except connection management parame-
ters, such as connection delay, mode, status and reconnection.
DDS is able to support most of the recommended parameters
[18]. These QoS policies can be seen as a function that allows
users to specify and control the behavior of the communica-
tion. The QoS policies can be configured to all DDS entities
like publisher, subscriber, data writer, data reader, topic and
so on. The DDS communication can only be established when
the QoS configurations are compatible between the publisher
and subscriber. In fact, the QoS policy follows the subscriber-
requested, publisher-offered pattern. These QoS parameters
show concerns to different aspects of DDS, including data
delivery, data availability, data timeliness, configuration and
resources.

4) Security: DDS provides five plug-ins to ensure Security,
authentication, access control, cryptographic, data tagging, and
logging plug-ins. Authentication plug-in verifies the identity
of the application and/or user that call operations on DDS.
X509 certificate, PKI, shared CA, RSA authentication and
secret handshake establishment using Diffie-Hellman algo-
rithm are used in this plug-in. Access control plug-in pushes
and enforces a set of policies that defines what succeeded
authenticated users can perform in DDS environment, like
which domain a user can join or which topic can be published
by a specific user. The cryptographic plug-in implements all
related cryptographic features such as, encryption, decryption,
digital signatures, hashing, generating and deploying keys and
certificates. Data tagging plug-in provides the ability to add
security label or tag to data, so it can be used to make different
data classifications and data information about data reliability.
Logging plug-in supports the capability of logging all the
security events and necessary operation, including errors and
security attacks.

C. Real-Time CORBA

The first version of CORBA was released in October 1991
by OMG. A group was formed within the OMG in 1996
to support real-time applications in the CORBA standard.
Real-time CORBA provides specifications to support the QoS
requirements of embedded and distributed real-time systems
. The RT-CORBA specifications that extends the existing
CORBA standard, providing features that allow applications
to allocate, schedule, configure and control CPU, communica-

tions and memory resources. RT-CORBA adds QoS control to
regular CORBA to improve application predictability, which
is required for real time applications, e.g., bounding priority
inversions and managing resources end-to-end.

1) RT-CORBA Architecture: In this middleware, Object
Request Broker (ORB) is the central component that is re-
sponsible for making communications between clients and
servers transparent and for allowing interoperability between
applications in hetero- and homogeneous networks and envi-
ronments. An application sends requests to an ORB, which
directs the request to an appropriate object that provides the
desired service. ORB acts as an intermediary, which allows the
object request or to access multiple remote or local objects.

Over the last decade, RT-CORBA has been gradually de-
ployed and used in many domains, such as aerospace, telecom-
munications, medical systems and many more, that have high
level of QoS requirements. The acceptance of RT-CORBA has
mainly two factors: maturation of patterns and frameworks,
and standards. Several design patterns, frameworks, and spec-
ifications has been introduced considering high-performance
and real-time systems.

The RT-CORBA specification defines capabilities that must
be managed by ORB endsystems to provide end-to-end pre-
dictable communications between CORBA clients and servers.
Figure 4 shows the ORB endsystem features for RT-CORBA.
These capabilities include communication infrastructure re-
source management, OS scheduling mechanisms, real-time
ORB endsystem, and real-time services and applications. To
manage these capabilities, RT-CORBA defines standard inter-
faces and QoS policies that can be used by applications to (1)
manage processor resources via thread pools, priority mecha-
nisms, intra-process mutexes, and a global scheduling services,
(2) memory resources via buffering requests in queues and
bounding the size of thread pool, and (3) communication
resources via protocol properties.

Fig. 4. ORB Endsystem Features of RT-CORBA

2) Quality of Service: RT-CORBA defines 13 different QoS
policies that includes many QoS areas, such as connection
management, message flow, and time management. However,
CORBA is focused on the message flow management param-
eters including delivery order, max hops, priority, routing, and
synchronization.

3) Security: Different security protocols are included in
the RT-CORBA specifications, such as TLS, its predecessor,
Secure Sockets Layer (SSL), Security Attribute Service (SAS)
and Internet Inter-ORB Protocol over SSL (SSLIOP) which
uses the SSL standard for authentication and encryption over
CORBA’s Internet Interoperability Protocol. SAS protocol [19]
provides message security and protection as well as client to
server authentication. The SAS protocol is divided into two
layers: (1) the authentication layer, (2) the attribute layer,
SAS provides Inter-operable Authentication, Delegation and
Privileges. The SSLIOP provides certificates and encryption
keys. Certificates and security tags are written in CORBA
Interface Definition Language (IDL). The encryption also
supports wide range of algorithms, such as RC4, DES, 3DES,
and IDEA.

IV. EVALUATION AND COMPARISON

Table II summarizes the results of analysis of different
characteristics of the middleware technologies that has been
presented in previous sections.

OPC UA and DDS have many similarities, but they actually
target different applications that make them neither competi-
tive nor orthogonal, but complementary. OPC UA provides
client-server interaction between components such as devices
or applications. DDS is a data-centric bus for integration
and peer-to-peer data distribution. Many applications would
need both of these characteristics, or they might propose two
different solutions to the same problem. Currently, OPC UA
is widely deployed in automation for manufacturing, process
control, and power. DDS applications are more focused on
medical, transportation, power, and defense domains.

In contrast to OPC UA, which exposes the network, DDS
hides the network, making device types and topology trans-
parent. DDS delivers the data to the receiver without the
receiver needs to deal with how the data got there. There
is a huge amount of data collected from sensors and other
inputs that need to be managed. OPC UA turns lower-level
data into information, that generally means raising the level of
abstraction and taking us away from the low level data points.
But, DDS provides access to low-level data points through
filtering. Presumably aggregation and abstraction are possible
too, but they simply become part of the data model, in the
same manner that database tables can handle aggregation and
calculations. OPC UA has two main characteristics: (1) it was
designed for non time-critical applications and (2) it shows
a relatively static configuration with data flowing up and out
for use by application programmers. On the other hand, DDS
was designed for applications that require short-loop, real-
time, reliable, and distributed exchange of data. DDS can be
used for setups having a complex data model and a dynamic

TABLE II
EVALUATION AND COMPARISON OF STUDIED MIDDLEWARE

TECHNOLOGIES

OPC UA DDS RT-CORBA

Sponser OPC (2009) OMG (2004) OMG (1996)

Real-time
Mode

Yes Yes
(extreme RT)

Yes
(hard RT)

QoS No 22 Levels Limited

Security Integrated
encryption,
integrity
verification and
authentication
services.
Custom access
control can be
implemented.

Five Security
Plug-in
Interfaces
(SPIs) for
authentication,
access control,
cryptographic,
logging, and
data tagging
service plug-ins.

TLS/SSL and
SSLIOP for
encryption
and integrity
verification.
SAS protocol
for authen-
tication.
Custom
access
control.

Architecture Request/Reply
Publish/Subscribe

Publish/Subscribe Request/Reply

Transport TCP, optionally;
SOAP/HTTP or
UA-specific pro-
tocol on top

UDP, TCP TCP

Portability
and platform
indepen-
dence

Yes Yes Yes

Main
Features

Full support for
all gateway and
control network
services.
Interoperability
with existing
applications and
availability
of APIs
for different
programming
languages.

Efficient distri-
bution of data
and rich set of
QoS policies.

Ability to
control and
management
of resources.

Disadvantages Designed for
specific and
non-real time
applications.
Weak support
of systems
with dynamic
configurations.
Weak support of
QoS.

Difficulty in
guarantee of
data delivery
and ordering
events.

Weak support
of security,
scalability,
and fault
tolerance.
Not suitable
for highly
dynamic
environments.

network that supplies and consumes the data. Therefore, DDS
provides more dynamic configuration compared to OPC UA.

Although DDS is a good candidate for use in industrial
automation domain, specially since it supports real-time data
production and consumption, but OPC UA dominates in this
area. The reason is that OPC UA is not being used in the
control feedback loops and instead it is used for sharing
non time critical information. PLCs have handled that role
for a long period of time before the IoT. New trends in
Industry 4.0 and the IoT show many companies recently

selected DDS for real-time applications, especially those that
start a manufacturing floor completely from scratch. In total,
both OPC UA and DDS are important to the future of the
industrial IoT (IIoT). They are currently working together
to be integrated. Two methods have already been proposed:
(1) a “OPC UA/DDS gateway” specifications that will permit
independent implementations to work together more smoothly
and (2) a “OPC UA DDS profile” will provide integration of
different use cases [20].

RT-CORBA is another middleware developed by the OMG
to support real-time applications. RT-CORBA and DDS are
complementary middleware standards. Similar to OPC UA,
CORBA is based on the client-server architecture and is best
suited to applications in which, one software component (the
server) is supplying a service to one or more other components
(clients), such as remote command processing, file transfer
and synchronous transactions. DDS is based on the publish-
subscribe architecture and is best suited to applications in
which one or more data sources (publishers) need to com-
municate information to one or more data users (subscribers).
Because publishers and subscribers require no knowledge of
each other, DDS provides a powerful integration framework
for large or dynamic distributed systems. With DDS, new
components can be added (as publishers and/or subscribers)
without any changes to the rest of the system. RTI offers an
integrated DDS and CORBA solution for many applications
that support both CORBA and DDS middleware standards.

V. CONCLUSIONS

In this survey paper, we have analyzed three key middleware
technologies for industrial control systems, including OPC
UA, DDS, and RT-CORBA. Several parameters, such as re-
sponse time, QoS, and security were studied and summarized.
This survey shows that both OPC UA and DDS are critical
standards for ensuring interoperability between a broad set
of manufacturing processes and equipment. Therefore, both
of them are important for Industry 4.0 that also mentioned by
Industrial Internet Consortium (IIC). Microsoft works with the
OPC Foundation to expand support of the OPC UA in their
products. They are announcing a new open-source reference
stack that supports OPC UA. Moreover, Azure IoT uses
upcoming Publisher/Subscriber OPC specification extension
and contains a sample application called OPC Publisher,
therefore, existing OPC UA servers can be connected directly
to Azure IoT and send OPC UA telemetry data for analysis
and machine learning in the cloud. On the other hand, DDS
specification is able to handle many of the problems and
requirements of distributed control systems, thereby having a
publish/subscribe communication style. Efficient distribution
of data with minimal overhead and the ability to control QoS
are the most important benefits of this middleware. In addition,
a rich set of QoS policies provided by this middleware
solves most of the existing problems in distributed control
systems. However, current trends shows that none of these
middleware technologies can support all requirements and QoS
attributes of distributed control systems, and each one only

focuses on some QoS parameters and requirements. Recently,
both OPC foundation and OMG are working on methods to
integrate OPC UA and DDS to combine the benefits of both
technologies.

REFERENCES

[1] Calvo, F. Pérez, I. Etxeberria and G. Morán, ”Control Communications
with DDS using IEC61499 Service Interface Function Blocks”, IEEE
Conference on Emerging Technologies and Factory Automation (ETFA),
pp. 1-4.

[2] B. Almadani, S. Khan, M. N. Bajwa, T. R. Sheltami, and E. Shakshuki,
”AVL and monitoring for massive traffic control system over DDS,”
Mobile Information Systems, vol. 2015, Article ID 187548, 9 pages,
2015.

[3] N. Ericsson, T. Lennvall, J. Åkerberg and M. Björkman, ”Challenges
from research to deployment of industrial distributed control systems,”
2016 IEEE 14th International Conference on Industrial Informatics
(INDIN), Poitiers, 2016, pp. 68-73.

[4] L. Qilin and Z. Mintian, ”The State of the Art in Middleware,”
2010 International Forum on Information Technology and Applications,
Kunming, 2010, pp. 83-85.

[5] Wolfgang Emmerich. 2000. Software engineering and middleware: a
roadmap. In Proceedings of the Conference on The Future of Software
Engineering (ICSE ’00). ACM, New York, NY, USA, 117-129.

[6] “SOME/IP”. Available: http://some-ip.com.
[7] “iMatix ZeroMQ”. Available: http://www.zeromq.org.
[8] “Nanomsg”. Available: http://nanomsg.org.
[9] W. Mahnke, S.-H. Leitner, and M. Damm, “OPC unified architecture”.

Springer Science & Business Media, 2009.
[10] M. Stopper and B. Katalinic, “Service-oriented Architecture Design

Aspects of OPC UA for Industrial Applications”, IMECS 2009, mARCH
18-20, 2009, Hong Kong.

[11] ”OPC Unified Architecture, Interoperability for Industrie 4.0
and the Internet of Things, OPC UA Foundation”. Available:
https://opcfoundation.org/wp-content/uploads/2016/05/OPC-UA-
Interoperability-For-Industrie4-and-IoT-EN-v5.pdf.

[12] “Why OPC UA matters”. Available: http://www.ni.com/white-
paper/13843/en.

[13] “OPC Day Europe 2016”. Available:
https://www.prosysopc.com/blog/opc-day-europe- 2016/

[14] P. Jafary, S. Repo, M. Salmenpera and H. Koivisto, ”OPC UA security
for protecting substation and control center data communication in the
distribution domain of the smart grid,” 2015 IEEE 13th International
Conference on Industrial Informatics (INDIN), Cambridge, 2015, pp.
645-651.

[15] Data Distribution Service (v1.4), Object Management Group, 2015.
Available: http://www.omg.org/spec/DDS/1.4/.

[16] Object Management Group (OMG), The Real-time Publish-Subscribe
Wire Protocol DDS Interoperability Wire Protocol Specification, OMG,
2014.

[17] Oh, Sangyoon, Jai-Hoon Kim, and Geoffrey Fox. ”Real-time per-
formance analysis for publish/subscribe systems.” Future Generation
Computer Systems 26.3 (2010): 318-323.

[18] J.-L. Poza-Luján, J.-L. Posadas-Yagüe, J.-E. Simó-Ten, ”A Survey on
Quality of Service Support on Middleware-Based Distributed Messaging
Systems Used in Multi Agent Systems”, Proc. International Symposium
on Distributed Computing and Artificial Intelligence ser. Advances in
Intelligent and Soft Computing, pp. 77-84, 2011.

[19] ”3GPP TS 32.373, “3rd Generation Partnership Project - Technical Spec-
ification Group Services and System Aspects - Telecommunication man-
agement;Security services for Integration Reference Point (IRP) - Com-
mon Object Request Broker Architecture (CORBA)solution(Release
8),””, 2008.

[20] “The Inside Story: How OPC UA and DDS Can
Work Together in Industrial Systems”. Available:
http://www.slideshare.net/RealTimeInnovations/the-inside-story-how-
opc-ua-and-dds-canwork-together-in-industrial-systems.

