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Abstract— In recent years, commercial exploitation of small
satellites and CubeSats has rapidly increased. Time to market
of processed customer data products is becoming an important
differentiator between solution providers and satellite constel-
lation operators. Timely and accurate data dissemination is
the key to success in the commercial usage of small satellite
constellations which is ultimately dependent on a high degree of
autonomous fleet management and automated decision support.
The traditional way for disseminating data is limited by on
the communication capability of the satellite and the ground
terminal availability. Even though cloud computing solutions
on the ground offer high analytical performance, getting the
data from the space infrastructure to the ground servers poses
a bottleneck of data analysis and distribution. On the other
hand, adopting advanced and intelligent algorithms onboard
offers the ability of autonomy, tasking of operations, and fast
customer generation of low latency conclusions, or even real-
time communication with assets on the ground or other sensors
in a multi-sensor configuration.

In this paper, the advantages of intelligent onboard processing
using advanced algorithms for Heterogeneous System Archi-
tecture (HSA) compliant onboard data processing systems are
explored. The onboard data processing architecture is designed
to handle a large amount of high-speed streaming data and
provides hardware redundancy to be qualified for the space
mission application domain. We conduct an experimental study
to evaluate the performance analysis by using image recognition
algorithms based on an open source intelligent machine library
”MIOpen” and an open standard “OpenVX”. OpenVX is a
cross-platform computer vision library.
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1. INTRODUCTION

Small satellites (i.e., satellites defined weighing less than 100
kg) all the way down to nanosatellites (i.e. satellites defined
weighing less than 10 kg) are rapidly attracting interest in
many areas including the commercial telecommunication,
Earth Observation (EO) markets, and the intelligence and
defense community [9]. EO satellites are experiencing rapid
advancements in optical imaging payload technologies and
onboard processing, leading to significantly improved quality
and resolution of imagery gathered from spaceborne plat-
forms. The smaller size of satellites together with a lower
cost has allowed the use of high performing Commercial-
Off-The-Shelf (COTS) electronic parts to be harnessed for
image compression and cloud removal using both Graphical
Processing Units (GPUs) and Field Programmable Gate Ar-
rays (FPGAs) [7], [17]. The improvements in sensor technol-
ogy have not been matched with equivalent developments in
satellite downlink technologies, and hence the exponential in-
creases in the generated data volume are forming a significant
bottleneck onboard the platform. Optical communication
holds promise to enable gigabit per second telemetry data
transfer for downlinks and intersatellite links [13]. This
would decrease the difference between sensor advances and
the communication bottleneck. However, latency and storage
capacity will still be big challenge since the number of places
on Earth with suitable optical stations are limited.

Many emerging missions use constellations of many (e.g.,
over 100) small satellites to enable rapid revisit times and
global coverage[5]. Small satellites are being deployed for
many different applications, e.g., communications, space
situational awareness, and Intelligence, Surveillance, and
Reconnaissance (ISR), precision agriculture (PA), machine to
machine communication, and air traffic management.

In order to address the latency issues and communication
bottlenecks, more onboard data analytics is required to enable
small satellites to accommodate the flexibility needed for
autonomous constellation management, information extrac-
tion, compression and sensor fusioning with low latency.
However, it is important to find data processing solutions
that fit the Size, Weight, and Power (SWaP) constraints
while collecting mission-critical sensor data. This paper
further explores the use, efficiency and performance of
HSA capabilities of modern System-on-Chips (SoC) for ISR
sensors (e.g., EO/Infrared/Hyperspectral cameras) using the
GIMME-series architectures [18].

GIMME-3 is an architecture developed at Milardalen Univer-
sity to pursue a SWaP optimized onboard computing solution
that enables Deep Learning on massively parallel units with
advanced Error Code Correction (ECC) for aerospace appli-
cation. GIMME-3 has been expanded to GIMME-4 which
introduces HSA capability through the AMD® R-series SoC



(f.m. named Merlin Falcon) [18].

Radar is an another important sensor which usually requires
massive processing. New methods suitable for onboard
processing are being developed. Single-frequency transmit-
ted wave-forms with high Doppler resolution nature called
Doppler synthetic aperture radar (D-SAR) is one interesting
approach for bistatic radar [19].

Contributions

The main contribution of this paper is to investigate the per-
formance of onboard data processing on the heterogeneous
architecture by running image processing algorithms which
use both MIOpen framework of high performing machine
learning primitives and OpenVX vision library. We focus on
the fact that the concurrent executions of multiple advanced
algorithms affect the worst-case execution time (WCET) of
other parallel running tasks which of expresses the quality
of the onboard heterogeneous system. Since less energy
consumption is an another key factor to increase the quality
of the onboard architecture, we have focused on the energy
consumption of GPU based heterogeneous computing. We
confirmed that an HSA compliant GPU based heterogeneous
computing improves the quality of the onboard architecture
for intelligent data processing since it either uses less energy
consumption and performs better than CPU for the feature
tracking with the different workloads.

Organization

In Section 2, we discuss an importance of onboard process-
ing, usage of in-orbit heterogeneous architectures and energy
consumption of parallel architectures running advanced algo-
rithms. The architectures and specifications are introduced in
Section 3. We describe our benchmark suites in Section4 and
the evaluation of the experiments are described in Section 5.
Section 6 concludes the paper and discusses future work.

2. RELATED WORK

In this work, we consider the contribution of heterogeneous
architecture in mission critical applications such as onboard
processing. Advanced and resource-intensive computing in
new science-mission applications brings a new challenge to
the space-computing community as these needs require next-
generation systems that should support a broad potential of
processing with low power consumption and high reliabil-
ity [21]. Certain numbers of the heterogeneous multicore
SoC platforms are introduced as a promising architecture
for space-computing. In order to increase the reliability of
such platforms, Wilson et al. consider a multifaceted strat-
egy (HARFT strategy) for fault-tolerant computing, targeting
SoC platforms consists of multicore CPUs and FPGA fabric.
The HARFT strategy introduces fault-tolerant schemes by us-
ing both compute nodes to achieve a robust, hybrid, hardware
redundant and fault-tolerant theme for a hybrid device.

Heterogeneous architectures including FPGA are not only the
hybrid solution in space-computing, but also several archi-
tectures including GPUs exist. However, fault masking and
tolerance on GPUs is less investigated for harsh environments
[16]. Milluzzi and George discuss GPU protection on Tegra
X1 SoC for space usage, i.e., how to avoid vulnerability
of Tegra SoCs against a wide range of single-event upsets
(SEUs) since it has complex caching structure which con-
sists of a number of the GPU cores and a custom task
scheduler. As a GPU protection, they consider a persistent

thread method with triple-modular redundancy (TMR) which
provides a strong basis for fault masking on a wide range
of platforms. They have succeeded to remove the vulner-
ability of scheduler faults even when GPUs pose a unique
challenge to a general TMR implementation. The paper

reports that the NVIDIA TegraTM K1 and X1 perform over
500 GFLOPS of peak performance at just 10 Watts Thermal
Design Power (TDP). Hence, the SoC considered in our
paper possesses sufficient computational performance that it

employees Radeon' R6 GPU which has the computational
potential up to 614GFLOPS and less than 10Watt in peak
performance.

Persistent threads style programming model/method is well-
known to protect GPU from the interference of host CPU
since it performs the direct communication with the different
GPU kernels instead of unnecessary round-trip communica-
tions through host CPU. Moreover, this method is useful for
FPGA protection as well. Khan et al. present a complete net-
working switch designed in OpenCL that consists of several
high-level constructs which create the building blocks of any
network application for FPGAs [14]. In this work, persistent
kernel method is used to avoid the intervention of the host to
provide the kernels with data processing constantly. Measur-
ing the intervention of the tasks to one another and between
the different compute nodes is one of the main challenges in
our work to assess the quality of the concurrent executions.

Measuring the energy consumption of the advanced algo-
rithms while running on the onboard computer is another
challenge in our work. Liu et al. tackle with an advanced
algorithm using the aerosol optical depth (AOD) proper-
ties from the performance and energy efficiency perspective
[15]. As a result of a large number of remote sensing
data and compute-intensive algorithms, the AOD retrieval is
computationally expensive. Two different kinds of parallel
architectures, multicore processors and GPU accelerators, are
used to run the time-consuming SRAP-MODIS algorithm
for the AOD retrieve. This algorithm includes not only a
set of nonlinear equations but also requires a large number
of input images. In this paper, the performance of par-
allel computations on both of the architectures and energy
consumptions are analyzed in the context of a quantitative
remote sensing retrieval application. The difference of the
power consumptions between the idle and load conditions
[10] is used as the power consumption of the applications
for the multicore and GPU in order to evaluate the power
consumption. We use this measurement method to determine
the real power consumption of the application running.

In order to adapt to unexpected situations, acquirement of
cognitive capabilities is important to autonomous control
systems in space [8]. Q-learning is a model-free rein-
forcement learning technique and it is efficient in solving
some classes of learning problems. Due to the constraints,
SWaP, convergence rate and costs, learning algorithms are
rarely implemented in onboard embedded systems in space.
Similarly to exploring Convolution Neural Network in our
paper, Gankidi and Thangavelautham present Q-learning with
Aritificial Neural Network. This method fits well with the
parallel computing and it achieved a great reducing process-
ing time by using the fine-grain parallelism of an FPGA
hardware. The result shows 43x speed up by Virtex 7 FPGAs
compared to Intel i5 2.3 GHz CPUs. They emphasize that the
fine grained parallel architectures are competitive considering
power consumption.



3. BACKGROUND
AMD A-series A10-8700P APU

As illustrated in Figure 1, the AMD A10-8700P APU main-
tained in a SoC comprises a quad core 1.8GHz 64bit A10

CPU and Radeon’ R6 GPU. The CPUs consist of 2 compute
units (CUs) each of which has 2 cores and shares 1MB
L2 cache. The cores integrated into the same CU share
96KB L1 instruction cache, and 32KB L1 data caches are
unique to each core. The GPU consists of 6 CUs with 64
cores each, and totally performs up to 614GFLOPS. The
APU shares 8GB DDR3 handled by memory controllers with
a full hardware cache coherence at 128 bit-wide memory
bandwidth between GPU and CPU caches. An Address
Translation Cache (ATC) hierarchy brings a fine grained
shared virtual memory, i.e., the same virtual address space
to all devices. This feature is known as a foundational aspect
of HSA that is merely passing the pointer to data between all
the devices and no memory copying required for the different
CUs. The AMD Embedded G- and R-Series SoCs are used
with the A-series APUs and there exist COTS products such
as conga-TR3? with the size of 95mm by 125 mm. The AMD
Embedded R-series SoC is based on a 28 nm process and
compliant with HSA 1.0 thus meaning it supports fine-grain
full cache coherency. The power consumption of this APU
ranges between from 12 Watt up to 35 Watt while the thermal
design power (TDP) is 15Watt.

A10-8700p APU
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Figure 1. AMD A-series A10 APU’s architecture

GIMME3 and GIMME4

A fault tolerant heterogeneous architecture, GIMME3, has
been designed for high performance computing in mission
critical applications [6]. GIMMES3 architecture was produc-
tized and commercialized by Unibap AB (publ) and was
flown into space on May 30th 2016 on the Satellogic NuSat-1
and NuSat-2 [18]. GIMME3 employees the AMD Embedded
G-series SoC based on FT3 and FT3(b) footprints (formerly
known as Kabini and Steppe Eagle, respectively) that support
up to quad core CPU with 2 GPU CUs [1]. Each AMD GPU
CU has 64 Arithmetic Logic Units (ALU) and GIMMES3 can
deliver 77 GFLOPS of GPU performance.

As an expansion of GIMMES3, Tsog et al. introduce the next
generation heterogeneous computing architecture GIMME4
using HSA for higher computing performance and better
redundancy [18]. Similarly to the AMD A10-series APU,
GIMMEH4 architecture is based on the AMD Embedded 2nd
Gen R-series SoC with 8 GPU CUs and FP4 footprint, for-
merly known as Merlin Falcon. Major differences between
the FT3(b) and FP4 footprint based products are the shift in
CPU architecture from ’Bulldozer’ to *Excavator’, updated
GPU design, memory controller, and the official support for
HSA [18]. The Unibap €2200 family development board

2conga-TR3:
http://www.congatec.com/en/products/com-express-type6/conga-tr3.html

based on GIMMEA4 architecture is 82 mm by 110 mm and
85g, and provides 819GFLOPS of GPU performance. Cur-
rently, GIMMEA4 has not tested yet in radiation environments,
however, the previous version GIMMES3 is fully confirmed
[6] that it operates in radiation environments.

Heterogeneous System Architecture

In modern trend in industrial applications, the role of hetero-
geneous computing has been increasing dramatically. Em-
ploying multiple types of compute nodes, CPU, GPU, FPGA,
DSP and so on, according to their strengths makes the em-
bedded systems as robust as much. However, the different
types of specifications and designs of the compute nodes
bring difficulties for the developing process from cost and
timing perspective. To overcome these problems, multiple
leading hardware vendors have established HSA Foundation®
to develop the Heterogeneous System Architecture (HSA)
specification for reducing heterogeneous computing com-
plexity and providing the developer friendly environments.
The HSA aims to ease the process of developing the hetero-
geneous platform by providing the similar environment for
the developers such as they used for the legacy systems, i.e.,
homogeneous systems. For example, providing the open-
source well-known compilers, LLVM and GCC, and using
only pointers in a virtual memory space gives access to the
memory spaces of all the compute nodes. The virtual memory
space in the HSA provides no memory copying between
different physical memories, i.e., the HSA provides unified
coherent memory that saves a lot of computation time for
transferring data between different physical memories. As a
part of HSA, AMD contributes by introducing an initiative
GPUOpen®, an open-source software stack, including, but
not limited to, kernel level driver, runtime, tools and libraries
such as ROCm, MIOpen, AMD OpenVX and CodeXL.

ROCm—ROCm is an open source software stack and consists
of multiple modules which support GPU computing [18].

MIOpen—MlIOpen, an alternative to CuDNN, is an open-
source machine learning library that developed to exert full
potential of ROCm software stack as well as heterogeneous
computing. In the current release (version 1.0), MIOpen sup-
ports Convolution Neural Network (CNN), Pooling, Softmax,
Activations, Gradient Algorithms Batch Normalization, and
LR Normalization[20] with data described in 4-D tensors.
Both OpenCL and HIP frameworks are enabled in MIOpen
that HIP includes a tool “hipify” which ports CUDA code
into C++.

OpenVX—The Khronos Group has designed an open and
royalty-free standard OpenVX that is portable across differ-
ent vendors and hardware types, and optimized and power-
efficient image processing for computer vision applications.
OpenVX enables the following use cases; face, body and
gesture tracking, smart video surveillance, advanced driver
assistance systems (ADAS), object and scene reconstruction,
augmented reality, visual inspection, robotics and more [23].
Moreover, OpenVX and OpenCV complement each other to
perform as perfect computer vision library since OpenVX
has to be implemented by hardware vendors and OpenCV
has a strong open source community. Not only, OpenVX
is the computer vision library, but also it has great poten-
tial to being as a machine learning library in its Neural
Network Extension. There are multiple vendors implement

SHSA Foundation: http://www.hsafoundation.com
4GPUOpen: https://gpuopen.com




their OpenVX libraries for both computer vision and neural
network libraries. However, we focus only on computer
vision library and use AMD OpenVX (AMDOVX) [3] in this
paper. Currently, the released version of the AMDOVX is
0.9.6 and it includes feature tracking ’Optical flow” algorithm
as well as feature detection algorithms, e.g. Harris, FAST,
Canny. Furthermore, the current version interoperates with
OpenCV as well.

CodeXL—CodeXL? is an open-source development tool suite,
debugging and profiling, for the different processors such as
CPU, GPU, and APU. Using CodeXL facilitates the HSA
development process as it provides debugging functionality
for OpenGL, OpenCL and HSA, and profiling functionality
for both OpenCL and HSA kernels. CodeXL works on both

Windows  and Linux . as a Visual Studio’ extension and
a standalone user interface with both graphical and command
line. In this paper, we deal with CodeXL mainly for power
profiling purpose, however, it is used for debugging purpose
as well.

4. EXPERIMENT SETUP

As illustrated in Figure 2, we consider a comparison of
the process of a reporting system using satellite data. The
traditional reporting system is depicted with solid lines and
it consists of storing raw data on the onboard computer of
satellite, downlinking to the ground station, processing data
on the ground station and creating the report. Meanwhile, the
report creating system using onboard processing is illustrated
with dash lines. The system begins with onboard processing
and storing analyzed data on the onboard computer. The
report will be ready once the analyzed data is downlinked
to the ground station. In this paper, we consider the onboard
processing only.

Onboard
processing Storing
analyzed
data

Downlinking
Creating a report

f
Constellation ; -
Downlinking
Storing
raw data

g
Processing data on

the ground station

Figure 2. A reporting system using satellite data

The SWaP is the key to evaluate advancing onboard process-
ing while assessing the quality of the onboard processing.
The size constraint is satisfied as both the Unibap 2200
family product and the conga-TR3 fit in the 1.5U CubeSats
or more. From the weight perspective, the Unibap ¢2200
family product takes less than 10% of the entire weight
of 1U CubeSat as specified by the CubeSat standard and
less than 3% of 3U CubeSat which is the preferred size of
CubeSats for the advanced missions. By the specification
of the board/system, the power consumption is known as be-
tween 15-35Watt that fits for the 3U CubeSats [4]. However,
we investigate the detail of power consumption to find the
real power consumption of the advanced onboard processing
while accessing the quality of the onboard processing.

5CodeXL: https://gpuopen.com/compute-product/codexl/

Benchmark suites

We design the following experiment scenarios by using
MIOpen and OpenVX with the CodeXL in order to assess the
HSA compliant onboard computer for advanced processing.

o ExpA - An investigation of the computational performance
and power consumption in CPU and GPU. The goal of this
experiment is to investigate the computational performance
and power consumption of advanced algorithms on CPU and
GPU devices of the HSA compliant onboard computer. We
use the CodeXL profiler to measure the power consumption
of the advanced algorithms. To the best of our knowledge,
CodeXL is an optimal tool to measure the power consumption
since it omits to equip physical measuring tools.

o ExpB - Assessing a quality of the concurrent executions of
advanced tasks. In this experiment, we aim to investigate the
quality of the HSA compliant onboard computer by executing
the multiple concurrent advanced algorithms. We consider a
comparison of the measurement-based worst case execution
time (WCET) of a task with different workloads on the CPU
and GPU.

Configuration of test scenarios

In the experiment ExpA, we consider the following 7 tasks
(in Table 1) on both CPU and GPU computations; OVXI,
OVX2, ML1-1, ML1-2, ML1-3, ML1-4 and ML1-5. OVXl
and OVX2 are based on a tracking algorithm with the dif-
ferent test data [11] and [12], respectively. ML1-1, ML1-2,
MLI1-3, ML1-4 and ML1-5 are the following machine learn-
ing applications of MIOpen with the default configurations,
respectively; Activations, Batch Normalization, CNN, LR
Normalization and Pooling.

Shortened name Detailed name
ovX1 Tracking algorithm with test data 1 [11]
ovXx2 Tracking algorithm with test data 2 [12]
MLI1-1 Activations
ML1-2 Batch Normalization
MLI1-3 CNN
ML1-4 LR Normalization
MLI1-5 Pooling

Table 1. Tasks’ shortened and detailed name list

The combinations of the following 5 tasks are used in
the experiment ExpB; OVX1, OVX2, ML10, ML100 and
ML1000. OVX1 and OVX2 are the same as we defined for
the experiment ExpA. ML10, ML100 and ML1000 are the
concurrent executions of the machine learning applications
Activations, Batch Normalization, CNN, LR Normalization
and Pooling with a custom configurations such as 10, 100
and 1000 iterations, respectively. We measure the WCET
of the task OVX1 while we consider the following tasks as
the workloads; OVX2, ML10, ML100 and ML1000. The
task OVXI1 converts a 4K image to 1280x720 RGB image
for every frame and tracks the features.

Test data

In this paper, we use the International Space Station (ISS)
Expedition 42’s time lapse videos of earth as test data. The
resolution of the videos is 4K 3840x2160 and the size of each
frame is around 6MB. The test data 1 and 2 have 180 and 600
frames, respectively. The frame rate of both the data is 60fps.

Evaluation environment

The experiments are performed on A10-8700P APU em-
ployed Acer E15 E5-552-T99R model notebook. The follow-



Tasks Computation time Energy consumption

GPU [ms] CPU [ms] Ratio=CPU/GPU GPU [Joules] CPU [Joules] Ratio=CPU/GPU
OVX1 79.33 137.35 1.73 441 478 1.08
ovXx2 31.18 93.62 3.00 3.92 434 1.11
ML1-1 1.12 0.66 0.58 1.09 1.14 1.05
ML1-2 0.19 22.34 119.67 0.73 0.87 1.19
MLI-3 12.06 2873.56 238.20 1.63 22.01 13.52
ML1-4 0.57 86.82 153.23 0.75 1.43 1.89
MLI-5 1.73 29.65 17.16 0.76 0.99 1.31

Table 2. The computation time and energy consumption of the tasks per frame or iteration in the ExpA.

ing software stacks are installed in the environment; Ubuntu
16.04, Linux Kernel 4.14.rc3 , ROCm 1.6.3, CodeXL 2.5-25,
MIOpen 1.0 and OpenVX 0.9.6. To reproduce the experi-
ments, we have implemented the patches® to the CodeXL,
since the current version of CodeXL is not suitable for the
newer versions of the Linux Kernel than 4.10.

5. EXPERIMENT RESULTS

The accuracy of the tasks (algorithms) are confirmed by the
comparison of calculations of both CPU and GPU. We have
confirmed the optical flow and Harris feature algorithms of
OpenVX as shown in Figure 6 in Appendix A. The results
of the ExpA are shown in Table 2. Both the results of
computation time and energy consumption are measured per
frame and iteration for OpenVX and MIOpen applications,
respectively. We can see that GPU computes faster than
CPU except in case of the MLI1-1 task. The speed up
ratio reaches up to 238 times in the ML1-3 task which is
based on one the most well-known algorithm CNN. From the
energy consumption perspective, GPU leads CPU for all the
cases. Moreover, GPU consumes surprisingly 13.52 times
less energy in case of CNN algorithm as GPU reaches 6 Watts
for the full performance in contrast with the usage of CPU
reaches 3 Watts. As we know the results are per unit (frame
and iteration), this experiment shows that GPU is a potential
candidate for the onboard processing.

Task / Workloads
Processor
OVX1 ovXx2 MLI10 ML100 ML1000
GPU [s] 7.11 9.34 0.25 1.92 21.51
CPU [s] 11.52 24.32 27.57 320.05 5406.53
CPU/GPU 1.62 2.60 111.94 166.82 251.30

Table 3. The computation time of each workload running
alone (no concurrent executions of any other tasks as well as
the workloads).

The aim of the expB is to investigate the measurement-based
WCET of the task (OVX1) while running with the different
workloads. The computation time of the workloads in the
expB is the total computation time of the tasks, meanwhile we
considered the computation time per unit (frame or iteration)
similar to the case in the ExpA. In Table 3, we can see that the
computation time of the workloads are different. Moreover,
the computation time of the workloads is measured when
each workload runs alone, i.e., no concurrent executions of
any other tasks at the same time. We can see that it is better to
run the machine learning algorithms on GPU than CPU since
the ratio of CPU/GPU increases when the iteration number of
a running algorithm increases.

6The patches to CodeXL 2.5-25:
https://github.com/GPUOpen-Tools/CodeXL/issues/16 1#issuecomment-
337128790

Figure 3 shows the variation of the computation time of
OVX1 while running together with the different work-
loads. Detail information are shown in Table 4. We
can see that the computation time of the OVXI slows
down to 2.82 times from 11.52s (no workload) to 32.56s
(OVX1+0OVX2+ML1000) on CPU. Meanwhile, the increase
of the computation time stays 2.23 times from 7.11s (no
workload) to 15.86s (OVX1+OVX2+ML1000) on GPU.
Therefore, GPU takes from 40ms (7.11s/179) to 89ms for
the calculation of each frame, and CPU takes from 64ms to
182ms for each frame. As shown in Figure 3, we confirm
that the computation time of the GPU is more stable than
CPU. The task OVX1 uses the datal which is 180frames, 4K
resolution and 60fps. In other words, it takes 1/60s=17ms
per frame. Therefore, the computation time of CPU is ap-
proximately 10.71 times more time compare to the frame rate
time of the video. However, GPU consumes approximately
5.24 times more time of the frame rate time of the video with
4K resolution, and it could be considered reasonable with the
lower frame rate (20-30fps) and the lower resolution of the
images.

The computation time of the task OVX1
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Figure 3. The variation of the computation time of OVX1
while running together with the different workloads.

. The computation time of the task OVX1

Concurrent executions

CPU [s] GPU [s]
OVXI1 + no workload 11.52 7.11
OVX1 + ML10 26.36 7.24
OVX1 + 0OVX2 25.50 15.59
OVX1 + ML100 25.17 15.17
OVX1 + ML1000 25.64 15.17
OVX1 + OVX2 + ML10 25.39 15.55
OVXI1 + OVX2 + ML100 25.74 15.66
OVX1 + OVX2 + ML1000 32.56 15.86

Table 4. The computation time of the task OVX1 while
running together with the different workloads in the ExpB.

6. CONCLUSION / FUTURE WORK

First of all, we have come to conclusion that GPU is a
potential candidate for the onboard computer processing



of the CubeSat as we performed two experiments over 7
different machine learning and computer vision algorithms.
From our experimental study, we have confirmed that the
HSA compliant GPU computes up to 238 times faster and
consumes between 13.5 times less energy, compared to the
CPU calculation. Moreover, we have confirmed that the
computation time of GPU is more stable than CPU while
running together with the different workloads. Therefore,
we conclude that GPU can be a highly potential candidate in
the onboard computer processing of the CubeSat. For future
work, we would like to continue developing combined usage il
of the intelligent applications for the onboard computer of the Finding the features from

CubeSat that allows more usability and reliability. the first frame of the video

APPENDICES

A. TEST DATA
Source of the test data

The first frames of ISS Expedition 42’s time lapse videos with
the id number jsc2015m000221” and ”jsc2015m000226”
are shown in Figures 4, and 5, respectively. These time lapse
videos are assembled from JSC still photo collections (still
photos iss042e255412 - iss042e255592 and iss042e283240 -
155042¢283840).

Tracking the features on
the coming frames

(a)Applying OVXI1 to the datal

Finding the features from
the first frame of the video

g

Figure 4. The first frame image from ISS Expedition 42
Time Lapse Video of Earth with the id ”’jsc2015m000221”

Tracking the features on
the coming frames
(b)Applying OVX2 to the data2

. ] o Figure 6. Applying OVX1 and OVX2 to the datal and
Figure 5. The first frame image from ISS Expedition 42 data2, respectively

Time Lapse Video of Earth with the id ”jsc2015m000226”

Tracking results
The results of the tasks OVX1 and OVX2 are shown in Figure B. PSEUDO CODE FOR THE MEASUREMENTS
6. OF THE COMPUTATION TIME

A guide to measure the computation time is shown in the
following pseudo code.



Algorithm 1 How to set a timestamp to the MIOpen code

* Include header files located in MIOpen/driver/.
- #include “InputFlags.hpp”
- #include “timer.hpp”

* Declare a timestamp variable
- Timer t;

* Set the timestamp for START
- START_TIME;

* Set the timestamp for END and calculate the computation
time

if inflags.GetValuelnt(”time”) == 1 then

STOP_TIME;

if WALL_CLOCK then

print t.gettime_ms();

end if

end if
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