
Specification and Verification of Transaction

Atomicity, Isolation and Temporal Correctness

Simin Cai∗, Barbara Gallina†, Dag Nyström‡, and Cristina Seceleanu§

Mälardalen Real-Time Research Centre

Mälardalen University, Västerås, Sweden

Email: ∗simin.cai@mdh.se, †barbara.gallina@mdh.se, ‡dag.nystrom@mdh.se, §cristina.seceleanu@mdh.se

Abstract

Although transaction atomicity, isolation and temporal correctness are crucial to the dependability of many real-

time database-centric systems, the selected assurance mechanism for one property may lead to violating another. To

find an appropriate trade off, one needs to be able to specify and reason about the dependencies between atomicity,

isolation and temporal correctness, together with the selected mechanisms such as abort recovery, concurrency control,

and scheduling. However, existing design techniques do not take all these properties into account. In this paper, we

propose a UML profile, called UTRAN, for specifying atomic concurrent real-time transactions, with explicit support

for all three properties and their supporting mechanisms. We also propose a pattern-based modeling framework, called

UPPCART, to formalize the transactions and the mechanisms specified in UTRAN, as UPPAAL timed automata.

The UTRAN specification can be transformed into a UPPCART model via the proposed reusable patterns, which

allow flexible modeling of various abort recovery, concurrency control, and scheduling mechanisms. The desired

properties are then formalized using our proposed specification patterns, and verified by the UPPAAL model checker.

Our approach facilitates systematic design of desired atomicity, isolation and temporal correctness trade offs with

guarantee, thus contributing a dependable real-time database system.

Keywords

Transaction, Atomicity, Isolation, Temporal Correctness, UML, Model Checking

I. INTRODUCTION

In many database-centric systems, critical data such as account balance and configuration parameters are stored in

databases and managed by DataBase Management Systems (DBMS). To maintain the consistency of data, a DBMS

organizes operations as transactions, and manages them with various Abort Recovery (AR) and Concurrency Control

(CC) mechanisms [1]. Abort recovery restores the database to a consistent state when a transaction is aborted due

to errors, and thus achieves atomicity. Rollback, which undoes all changes of an aborted transaction, is a common

AR technique [2]. Concurrency control prevents inconsistency by regulating the concurrent access to data from

different transactions. Locks are often applied to avoid arbitrary access of data, as a widely applied CC technique

[1]. Together, AR and CC ensure the critical data to be dependable for applications relying on them.

1

Many database-centric systems are also time-critical, such as industrial control systems [3] and automotive

systems [4], whose configurations and states can be stored in databases. Reading an outdated sensor value, or

fetching the calibration parameter too late, could result in catastrophic consequences such as loss of lives. In such

real-time database systems, therefore, transactions must also be temporally correct, meaning that they must use fresh

data, and have to meet specified deadlines [5]. The assurance of atomicity and isolation, however, may jeopardize the

assurance of temporal correctness. CC may cause a transaction to be blocked for a long time. AR introduces extra

workload when performing recovery. To make matters worse, some CC algorithms may directly abort transactions,

while the recovery may again lock data and block other transactions further, which could lead to deadline misses.

Therefore, trade offs may need to be considered during the design of Real-Time DBMS (RTDBMS) [6], with respect

to the decision of the “variants” [7] of atomicity and isolation, and the selection of the AR and CC mechanisms.

To achieve an appropriate trade off, it is helpful to be able to specify all three properties, as well as the AR

and CC mechanisms, explicitly in a high-level language familiar to system designers. To ensure the correctness of

the trade off, one should be able to analyze such specifications, and reason about whether the properties can be

satisfied with the selected mechanisms. To our knowledge, although the specification and analysis of one or two

of these properties have been targeted by the research community, existing techniques do not take all three into

consideration. However, since atomicity, isolation and temporal correctness are closely dependent, missing one of

them in the analysis may result in the risk in the dependability of the entire RTDBMS.

The contribution of this paper is two-fold. First, we propose a UML (Unified Modeling Language) profile as

an extension of the Activity Diagram [8], for the specification of transactions, with explicit support for atomicity,

isolation and temporal correctness properties. We choose UML because it has become a well-accepted modeling

language for software systems, including real-time systems and database systems, thus can minimize the learning

effort for designers. The extension is presented as a UML profile, called UTRAN, which models a transaction as an

activity, and includes modeling elements to express abort recovery mechanisms such as rollback and compensation,

as well as isolation levels and concurrency control. Time-related properties such as deadlines and periods, which are

reused from the UML-MARTE profile [9] for expressing timing information in real-time systems, can be annotated

to transactions and operations.

Second, to facilitate the analysis of all three properties, we extend our UPPAAL-based analysis framework

[10], which models only transactions with isolation and temporal correctness concerns in UPPAAL Timed Au-

tomata (TA) [11]. The new framework, called UPPCART (UPPaal for Concurrent Atomic Real-time Transactions),

models transactions with encoded timing information, the selected AR, CC and scheduling mechanisms, and the

inconsistency to be avoided, as a network of UPPAAL TA. To reduce the modeling effort, we propose a set of

reusable basic modeling units, for modeling various CC algorithms and AR mechanisms, as well as the transactions.

Specifications in UTRAN can potentially be automatically transformed into UPPCART models. We also propose

patterns for formalizing the atomicity, isolation and temporal correctness properties as UPPAAL specifications [11].

The formalized properties can then be verified rigorously by the tool UPPAAL model checker, which provides a

guarantee for the correctness of the designed trade off.

The remainder of the paper is organized as follows. In Section II we present the preliminaries of the paper. In

2

Section III and Section IV, we introduce our proposed UTRAN profile and UPPCART framework, respectively.

The verification of the properties is presented in Section V. We discuss the related work in Section VI, after which

we conclude the paper and outline future work in Section VII.

II. BACKGROUND

In this section, we present the preliminaries of this paper, including the concepts of transactions, atomicity,

isolation and temporal correctness (Section II-A), UML profiles (Section II-B), and UPPAAL TA (Section II-C).

A. Transactions: Atomicity, Isolation and Temporal Correctness

In database systems, clients read and write data through a database management system, which guarantees data

consistency via transaction management. A transaction is a partially-ordered set of logically-related operations,

called a Work Unit (WU), that as a whole ensures the ACID properties [2]. ACID refers to: Atomicity (a transaction

either runs completely or makes no changes at all), Consistency (a transaction executing alone must not violate logical

constraints), Isolation (concurrent transactions do not interfere each other), and Durability (committed changes are

made permanent). The lifecycle of a transaction is managed by the following operations: begin (start a transaction),

commit (terminate a transaction while making its changes permanent and visible), and abort (terminate a transaction

and recover from its changes). Two types of aborts exist in a database system. System aborts are initiated by the

DBMS due to system errors or data contentions. User aborts are issued by clients to stop the transaction deliberately

according to the application semantics.

a) Atomicity: Under full atomicity assumption, “commit” means the completion of “all” changes, and “abort”

means that “nothing” is changed. In this paper, we are particularly interested in the recovery of transactions

terminated by errors. Therefore, our semantics of “commit” remains “all”, while “abort” could have various meanings

depending on the variants of atomicity.

We refer to the “nothing” semantics of full atomicity as failure atomicity. Failure atomicity is achieved by

rollback, a recovery mechanism to undo all changes and return to the states before the transaction starts when

it gets aborted [2]. Let us assume a transaction T0 that writes data D0 and D1 in sequence. Failure atomicity

will reverse the changes of D0 and D1, in case T0 is aborted before its commitment. Since failure atomicity

may be restricted in terms of performance and functionality, a number of variants of relaxed atomicity have also

been proposed, which allow changes to be partially undone, or recover inconsistency with extra operations [12].

The following abort recovery mechanisms that support relaxed atomicity are considered in this paper. Immediate

compensation recovers inconsistency due to abort by immediately executing a sequence of operations, such as

to update D2 that represents the error state. Deferred compensation, in contrast, executes a transaction which is

scheduled as a normal one to restore consistency. In both variants, the operations are designed flexibly, depending

on the application semantics. An atomicity manager, which possesses the knowledge of the atomicity variants,

performs the recovery at runtime [13].

b) Isolation: In literature, isolation has been quantified as various levels [14]. An isolation level is defined

as the avoidance of a particular set of phenomena, which are interleaved transaction executions that can lead to

3

inconsistent data. If we use rji to denote that transaction Ti reads data Dj , wj
i to denote that Ti writes Dj , the

following execution is considered as a phenomenon: <r00 , w0
1 , w1

1 , r10>, representing the execution “T0 reads D0,

T1 writes D0, T1 writes D1, T0 reads D1”. In this example, T0 reads an old version of D0 before the change of T1,

but a new version of D1 after the change of T1. If D0 and D1 are a pair of configuration parameters that should

be compatible, the consequence of T0 using these inconsistent parameters may result in unsafe system behaviors.

An isolation level precludes a subset of such phenomena, thus avoiding the inconsistency. Isolation levels are also

a flexible way to relax isolation, as the precluded phenomena are adjustable according to the particular semantics.

DBMS ensures isolation by associating a concurrency control manager to the managed data, which regulates

the interleaved transaction executions according to a selected CC algorithm [1]. Pessimistic Concurrency Control

(PCC), a family of CC algorithms commonly applied in DBMS [1], is considered in this paper. PCC exploits locks

to prevent unwanted interleavings. Depending on the algorithm, a transaction needs to hold a specific type of lock,

before reading or writing the data. Locks are acquired at a certain time point before the operations, and are released

at a certain time point afterwards. Upon receiving requests, the CC manager decides which transactions should

obtain the lock, wait, or even be aborted, according to the selected algorithm. The atomicity manager, in case a

transaction gets aborted by CC, performs the abort and recovery of the transaction.

c) Temporal Correctness: In a real-time database system, temporal correctness involves the transaction

timeliness, and temporal data consistency [5]. Transactions need to meet their deadlines, which is referred to

as timeliness [5]. Temporal data consistency includes two aspects. Absolute validity requires that data read by a

transaction must not be older than a specified validity interval. Relative validity requires that, if a transaction reads

a group of data, these data must be generated within a specified interval so that the results are temporally correct.

Temporal correctness is directly influenced by the scheduling policy adopted by the RTDBMS, which schedules

the operations issued clients. Commonly applied scheduling policies include First-In-First-Out (FIFO), round-robin,

or based on the priorities of the transactions [1]. In addition to deadlines and validity intervals, other important

time-related information includes execution times of the operations, and the arrival patterns of transactions (that is,

whether a transaction is started with a period, with a bounded inter-arrival interval, or randomly) [5].

The ACID properties often need to be relaxed in order to guarantee temporal correctness [6], for instance, by

using compensation rather than rollback for relaxed atomicity [15]. Real-time characteristics of transactions are

incorporated in many CC algorithms for better timeliness. A widely applied real-time PCC is Two Phase locking -

High Priority (2PL-HP) [16]. In this algorithm, a transaction acquires a readlock (write) on data before it performs

a read (write) operation, and releases all locks during commitment. If two transactions try to lock the same data, and

at least one of them requires a write lock, a CC conflict occurs. The transaction with higher priority will be granted

with the lock, while the transaction with lower priority will be aborted by the RTDBMS. As a result, transactions

with higher priorities are more likely to meet their deadlines.

B. UML Profiles and MARTE

UML is one of the most widely accepted modeling language in software development [8]. The profile mechanism

is designed to extend UML for languages customized for specific domains. A profile defines a package of stereotypes,

which are domain-specific concepts derived from existing UML concepts, and constraints to associate them. A

4

C

cl:=0,a:=0

ch!

cl<=3

cl>=1

cl:=0

L1 L2

L3

inc(a)

||

(a) A1

U

ch?
a<5

L4

L5

(b) A2

Fig. 1. A network of timed automata

stereotype can have tagged values as attributes. Profiles may be used as specification languages to model systems,

or adopted to add supplementary information that is used for analysis or code generation [17]. As timing information

is essential for our analysis and thus needs to be supported in the specifications, we reuse the relevant concepts

from the MARTE (Modeling and Analysis of Real-Time Embedded systems) [9] profile. MARTE is a profile

that defines the basic concepts to support the modeling of real-time and embedded applications, as well as to

provide information for performance and schedulability analysis. In this paper, we propose a profile that encodes

the information of transaction management and transactional properties for formal analysis. The following MARTE

concepts are reused: (i) MARTE::NFP_Duration, a data type for time intervals; (ii) MARTE::ArrivalPattern, a data

type for arrival patterns, such as periodic, sporadic and aperiodic patterns.

C. UPPAAL Timed Automata (TA)

Timed Automata are finite-state automata extended with real-valued clock variables [18]. UPPAAL TA extends

TA with discrete data variables, synchronization channels, user-defined functions, among other modeling features

[11]. Multiple UPPAAL TA can form a network of TA via parallel composition, in which individual automaton can

carry out its internal actions, while pairs of automata can perform hand-shake synchronization.

We use an example to illustrate UPPAAL TA. Fig. 1 shows a network of TA modeling a simple concurrent

real-time system, in which automaton A1 sporadically increments a variable a and synchronizes with automaton

A2. A1 consists of a set of locations (L1, L2 and L3), and edges connecting them. A clock variable cl is defined in

A1 to measure the elapse of time, and progresses continuously. A discrete variable a is defined globally, and shared

by A1 and A2. Semantically, a state of the network of TA consists of the current locations of the automata, together

with the values of the clock and discreet variable. At each location, an automaton may stay at the location, as long

as the invariant, which is a conjunction of clock constraints associated with the location, is satisfied. Alternatively

and non-deterministically, the automaton may take a transition along an edge, if the guard, which is a conjunction

of constraints on discrete or clock variables associated with the edge, is satisfied. In Fig. 1, A1 may delay in L2

as long as cl ≤ 3, or follow the edge to L3 when cl ≥ 1. Each edge may have an associated action, which is the

synchronization with other automata via a channel. Binary channels are used to synchronize one sender (indicated

by a mark “!”) with a single receiver (indicated by a mark “?”). In Fig.1, A1 sends a synchronization message ti

A2 via binary channel ch, while it takes the edge from L2 to L3. The synchronization can take place only if both

the sender and the receiver are ready to fire the edge. A broadcast channel is used to pass messages between one

sender and an arbitrary number of receivers. Using broadcast channels, the sender does not block even if some of

the receivers are not ready. An edge may have an assignment, which resets the clocks or updates discreet variables

when the edge is fired. In UPPAAL TA, both guards and assignments can be encoded as user-defined function in

5

a subset of C language, which brings high flexibility and expressiveness for modeling. In our example, when A1

moves from L2 to L3, a is incremented using the function inc(a).

A location marked as “U” is an urgent location, meaning that the automaton must leave the location without

delay in time. Another automaton may take transitions as long as the time does not progress. A location marked

as “C” is a committed location, which indicates no delay in time, and immediate transition. In this case, another

automaton may NOT take any transitions, unless it is also at a committed location. L3 is a committed location.

The UPPAAL model checker can verify properties specified in the UPPAAL language [11], called UPPAAL

queries, which is a decidable subset of Computation Tree Logic (CTL) [19]. For instance, the invariance property

“A1 never reaches location L3” can be specified as “A[]notA1.L3”, in which “A” is a path operator and reads

“for all paths”, whereas “[]” is the “always” temporal operator. If a safety property is not satisfied, the model

checker will provide a counterexample. The liveness property “If A1 reaches L2, it will eventually reach L3” can

be specified, using the “lead-to (→)” operator, as “A1.L2→ A1.L3”.

Our previous work has proposed to model a concurrent transaction system as a network of UPPAAL TA, denoted

as N ′, which is defined as follows [10], [20]:

N ′ ::= A0 || ... || An−1 || ACCManager || O0 || ... || Ok−1 || D0 || ... || Dl−1,

where A0, ..., An−1 are the TA of work units of transactions T0, ..., Tn−1, respectively. ACCManager is the

CCManager automaton that models the CC algorithm. O0, ..., Ok−1 are the TA of IsolationObservers that observe

the phenomena to be precluded by isolation, respectively. D0, ..., Dl−1 are the TA that monitors the time of data.

Isolation and temporal correctness can then be verified by UPPAAL model checker. We extend this framework in

this paper to include atomicity and abort recovery.

III. UTRAN PROFILE FOR SPECIFICATION OF ATOMIC CONCURRENT REAL-TIME TRANSACTIONS

In this section, we present our proposed UML profile for real-time transactions, called UTRAN. We first present

the domain model of real-time transactions in Section III-A, after which we introduce the UML profile diagram in

Section III-B, and illustrate its usage using an example in Section III-C.

A. Domain View

The domain model of real-time transactions is presented in Fig. 2. A transaction can be conceptually modeled

as an activity in the UML activity diagram. In order for the RTDBMS to manage the life cycle of a transaction, a

unique id is assigned to each transaction when it is started. A transaction may be assigned with a TemporalCor-

rectnessSpecification for time-related properties. This specification may specify a priority for the transaction, and

a relative deadline that defines the maximum allowed time interval between the start and the termination of the

transaction. The arrival pattern can be specified for the transaction, such as periodic, sporadic and aperiodic, as well

as the value of the period (or minimum inter-arrival time) if applicable. A transaction may also have a specified

relative validity interval, for the validity of a group of data read by the transaction.

6

0..1

<< enumeration >>
ARMechanism

Rollback
ImmediateCompensate
DeferredCompensate

RTDBMSScope

ConcurrencyControl
Algorithm

LockingRule LockType

UnlockingRule

ResolutionPolicy

IsolationPhenomenon

0..*

0..*

AtomicitySpecification

0..1

-atomVariant:
AtomicityVariant

Compensation

-relValidity: NFP_Duration

<< enumeration >>
IsolationLevel

ReadUncommitted
ReadCommitted
RepeatableRead
Serializable
Customized

1..*

-schedPolicy: SchedPolicy
<< enumeration >>
SchedPolicy

FIFO
RoundRobin
Priority

IsolationSpecification

-level: IsolationLevel

Transaction

-relDeadline: NFP_Duration

-priority: NFP_Int

ReadOp

WriteOp

Operation

CommitOpBeginOp AbortOp

DBOperation TMOperation

-execTime:
NFP_Duration

-execTime: NFP_Duration

-execTime:
NFP_Duration

-execTime:
NFP_Duration

-execTime:
NFP_Duration

PrecedenceRelation

predec

UML::Activity

-pattern: ArrivalPattern

Data
read
write

OperationPartialOrder

MARTE_Library::
BasicNFP_Types:
: ArrivalPattern

-periodic:
Periodic_Pattern
-aperiodic:
Aperiodic_Pattern
-sporadic:
Sporadic_Pattern
- ...

-max_delay:
NFP_Duration
-min_delay:
NFP_Duration

-id: Integer

UML::Action

succes

-period: NFP_Duration

-id: Integer

1..*

0..1

<< enumeration >>
AtomicityVariant

FailureAtomicity
RelaxedAtomicity

AbortRecoveryMechanism

-ar: ARMechanism

-cc: CCAlgorithm

<< enumeration >>
CCAlgorithm

2PL-HP
R2PL
...

TemporalCorrectness
Specification

-recoverTime: NFP_Duration

-absValidity: NFP_Duration

0..1

Fig. 2. Domain model of real-time transactions

A transaction consists of a set of partially-ordered operations, which are represented as actions in an activity.

Two types of operations are considered explicitly in a transaction: DBOperations and TMOperations. DBOperations

directly performs read and write access to the data. Such read and write operations, denoted as ReadOP and WriteOP

respectively, are atomic, whose worst-case execution times are also known. A ReadOP may be assigned with an

absolute validity interval for the data it reads.

Atomicity and isolation of transactions are also included in the domain model. Multiple transactions managed

by the same RTDBMS are related to an RTDBMSScope. A scheduling policy, which can be FIFO, RoundRobin

and Priority-based, can be specified for the RTDBMSScope. An isolation level is specified for the RTDBMSScope,

indicating the degree of isolation that should be provided for the set of transactions. Essentially, an isolation level

defines a set of IsolationPhenoma to be precluded, which are illegal sequence of operations that lead to logical

inconsistency. Therefore, an IsolationPhenomenon is basically an OperationPartialOrder. While some isolation levels

have been defined in the SQL-92 standards (ReadUncommitted, ReadCommitted, RepeatableRead, Serializable)

which can be selected from, customized isolation levels can also be defined with specified IsolationPhenoma.

A ConcurrencyControlAlgorithm specifies the lock-based concurrency control algorithm selected for the specified

isolation. Such an algorithm defines a set of lock types, each having its rules about, not only to which data it

should apply, but also when a lock should be acquired and released. These rules are specified as LockingRule and

UnlockingRule. A ConcurrencyControlAlgorithm also needs to specify a resolution policy, which describes how the

conflicts are resolved when two transactions try to lock the same data.

An AtomicitySpecification specifies the atomicity variant to conduct in order to restore consistency when it gets

terminated by error, as well as the desired recovery time. An AtomicitySpecification can either be attached to a

transaction, which specifies the atomicity handling when the latter is aborted by the transaction management system,

or to an abort operation, specifying the handling of abort issued by the clients. An AtomicitySpecification contains

an AtomicityVariant, which is an enumeration of the supported atomicity variants, including FailureAtomicity and

RelaxedAtomicity. An AbortRecoveryMechanism is associated with the atomicity variant. For FailureAtomicity,

Rollback is the AR mechanism, by which the RTDBMS will undo all the changes in the database that have

been done by aborted transaction. ImmediateCompensate and DeferredCompensate are the AR mechanisms for

RelaxedAtomicity by compensation to restore the consistency of the database. The difference is that, the former

7

<<Metaclass>>
Comment

<<Metaclass>>
Activity

<<Metaclass>>
Action

tid: Integer

<<stereotype>>
Transaction

pid: Integer

<<stereotype>>
IsolationPhenomenon

<<stereotype>>
Compensation

tid: Integer

<<stereotype>>
Operation

<<Metaclass>>
ActivityEdge

max_delay:
MARTE::NFP_Duration
min_delay:
MARTE::NFP_Duration

<<stereotype>>
DelayedNext

execTime:
MARTE::NFP_Duration
did: Integer

<<stereotype>>
DBOperation

<<stereotype>>
WriteOP

execTime:
MARTE::NFP_Duration

<<stereotype>>
TMOperation

<<stereotype>>
BeginOP

<<stereotype>>
CommitOP

<<stereotype>>
AbortOP

<<Metaclass>>
NamedElement

transactions: Integer[*]
Sched: SchedPolicy

<<stereotype>>
RTDBMSScopeisolationLevel:

IsolationLevel
disallowedPhenomena:
Integer[*]
cc: CCAlgorithm

<<stereotype>>
IsolationSpecification

relDeadline:
MARTE::NFP_Duration
priority: Integer
pattern: MARTE::ArrivalPattern
period: MARTE::NFP_Duration
relValidity: MARTE::NFP_Duration
relValGroup: Integer[*]

<<stereotype>>
TemporalCorrectnessSpecification

atomVariant: AtomicityVariant
arMech: ARMechanism
recoverTime: MARTE::NFP_Duration
compID: Integer

<<stereotype>>
AtomicitySpecification

<<Metaclass>>
Comment

ReadUncommitted
ReadCommitted
RepeatableRead
Serializable
Customized

<<Enumeration>>
IsolationLevel

Rollback
ImmediateCompensate
DeferredCompensate

<<Enumeration>>
ARMechanism

R2PL
ShortReadlock
2PL-HP

<<Enumeration>>
CCAlgorithm

FIFO
RoundRobin
Priority

<<Enumeration>>
SchedPolicy

absValidity: MARTE::NFP_Duration

<<stereotype>>
ReadOP

FailureAtomicity
RelaxedAtomicity

<<Enumeration>>
AtomicityVariant

Fig. 3. UTRAN profile for real-time transactions

allows the compensation to be executed immediately with highest priority, while in the latter case the compensation

is scheduled as a separate transaction with the same priority as the aborted one. If no AtomicitySpecification is

specified, atomicity is totally relaxed, and the partially changed data will not be recovered or compensated at all.

B. Profile

This subsection describe our UTRAN profile that contains the extensions to model the concepts in the previous

domain model. The profile diagram is presented in Fig. 3.

The «Transaction» stereotype, extending the UML Activity metaclass, maps the Transaction domain element.

Each activity stereotyped with «Transaction» may have a «TemporalCorrectnessSpecification» and an «Atom-

icitySpecification», which are associated comments that extends the Comment metaclass. A «TemporalCorrect-

nessSpecification» contains the information about the deadline, priority, arrival pattern, period, and relative validity

of the transaction. An «AtomicitySpecification» specifies the selected AtomicityVariant and ARMechanism, from

an enumeration of supported variants, as well as the recovery time, and the id of the compensation transaction

which is a special transaction specified by the stereotype «Compensation».

The actions in a «Transaction» are stereotyped as «Operation», each having the transaction id it belongs to.

«DBOperation», «TMOperation» and «ClientOperation» map the DBOperation, TMOperation and ClientOperation,

respectively. A «DBOperation» specifies the execution time to execute such an operation, and the id of the data

it accesses. «ReadOP» and «WriteOP» extends «DBOperation», to map the ReadOP and WriteOP, respectively. A

8

«TMOperation» specifies the execution time for the transaction management operation, which can be «BeginOP»,

«CommitOP», or «AbortOP».

The stereotype «RTDBMSScope» maps the RTDBMSScope concept, which contains the transactions managed by

the RTDBMS. The stereotype also specifies the CC algorithm and scheduling policy, selected from the enumerations

CCAlgorithm and SchedPolicy. The stereotype «IsolationSpecification» maps IsolationSpecation in the domain view,

which specifies the isolation level, as well as the disallowed phenomena explicitly. Each phenomenon is modeled as

an activity stereotyped as «IsolationPhenomenon», which contains a sequence of actions stereotyped as «Operation».

C. Example

Let us take two autonomous wheel loaders and their controller as an example. All data, including the positions

of the wheel loaders, their working conditions, the work plan, and the speed configurations, are stored in the

controller’s database. Assume that loader A is patrolling on the location with its predefined speed, and periodically

update its position in the database. A human operator can update the configuration data, that is, the work plan, and

the speed settings of the wheel loader A. These data should be updated at the same time. If the update fails, the

data should be rolled back to the previous values. The controller may get a command to start a job with loader B.

It updates the status of the job to “start”, reads the current location of loader A, read the work plan in the database,

read the speed configuration of loader A, and calculate the estimated speed and direction of the wheel loader B.

Loader B then moves to the position and informs the controller, which updates the job to “finish”. If this job fails,

due to some reason, the estimated position should be updated as “unknown”, and the job status as “failed”.

We consider three transactions in this scenario. The first transaction (UpdateConfTrans) updates the configuration

data. The second (JobTrans) controls the loader B to do the job. The third transaction (UpdateLocA) updates the

location of A periodically. UpdateConfTrans and JobTrans, as well as the specifications of their atomicity, isolation

and temporal correctness properties, are specified in UTRAN and shown in Fig. 4, while UpdateLocA is omitted.

The temporal correctness properties are specified in their respective attached «TemporalCorrectnessSpecification»,

with their deadlines and validity intervals. The atomicity variant of UpdateConfTrans, which is rollback, is spec-

ified in its «AtomicitySpecification». On the contrary, JobTrans selects ImmediateCompensate, as specified in its

«AtomicitySpecification», and compensates its failure with the compensation transaction LogError, which updates

the estimated position and logs the error. The transactions are in the scope of the RTDBMS, stereotyped with

«RTDBMSScope», whose isolation level is set to be RepeatableRead in its «IsolationSpecification», which disallow

the phenomena InconsistencyConfigs1 and InconsistencyConfigs2, both stereotyped as «IsolationPhenomenon».

IV. UPPCART FRAMEWORK FOR MODELING ATOMIC CONCURRENT REAL-TIME TRANSACTIONS

In this section, we propose a pattern-based framework, called UPPCART (UPPaal for Concurrent Atomic Real-

time Transactions), for modeling real-time transactions with concurrency control and abort recovery in UPPAAL

TA. The proposed framework is based on our previous work [10], which focuses on isolation and timeliness only.

In this work, we extend the previous framework in several substantial aspects. First, we extend the framework to

incorporate the modeling of atomicity, via a set of reusable patterns for modeling various abort recovery mechanisms,

especially their interplays with concurrency control. We also extend existing patterns for time-related behaviors, such

9

<<BeginOp>>
begin

{execTime: 1}

<<WriteOp>>
write_plan

{did:1, execTime: 2}

<<WriteOp>>
write_speedconf

{did:2, execTime: 1}

<<CommitOp>>
commit

{execTime: 1}

<<DelayedNext>>
{max_delay: 1
min_delay: 1}

<<DelayedNext>>
{max_delay: 2
min_delay: 1}

<<DelayedNext>>
{max_delay: 2
min_delay: 1}

<<AtomicitySpecification>>
atomVariant: Rollback
recoverTime: 2

<<TemporalCorrectnessSpeci
fication>>
relDeadline: 15
priority: 1
pattern: AperiodicPattern

<<BeginOp>>
begin

{execTime: 1}

<<ReadOp>>
read_locationA

{did:4, execTime: 1,
absValidity: 150}

<<ReadOp>>
read_plan

{did:1, execTime: 1}

<<CommitOp>>
commit

{execTime: 1}

<<DelayedNext>>
{max_delay: 1
min_delay: 1}

<<DelayedNext>>
{max_delay: 2
min_delay: 1}

<<DelayedNext>>
{max_delay: 2
min_delay: 1}

<<ReadOp>>
read_speed_conf

{did:2, execTime: 1}

<<WriteOp>>
update_job_status
{did:3, execTime: 1}

<<DelayedNext>>
{max_delay: 2
min_delay: 1}

<<WriteOp>>
update_job_status
{did:3, execTime: 1}

<<DelayedNext>>
{max_delay: 12
min_delay: 10}

<<DelayedNext>>
{max_delay: 1
min_delay: 1}

<<WriteOp>>
update_est_location
{did:5, execTime: 1}

<<AbortOp>>
abort

{execTime: 1}

<<DelayedNext>>
{max_delay: 5
min_delay: 4}

<<DelayedNext>>
{max_delay: 5
min_delay: 4}

<<BeginOp>>
begin

{execTime: 1}

<<WriteOp>>
write_est_location
{did:5, execTime: 1}

<<WriteOp>>
write_job_fail

{did:3, execTime: 1}

<<CommitOp>>
commit

{execTime: 1}

<<TemporalCorrectnessSpecification>>
relDeadline: 45 priority: 2
pattern: SporadicPattern period: 100
relValGroup: {1, 2} relValidity: 15

<<AtomicitySpecification>>
atomVariant: ImmediateCompensate
recoverTime: 10
compId: 3

<<IsolationSpecification>>
IsolationLevel: RepeatableRead
cc: 2PL-HP
disallowedPhenomena: {1, 2}

<<ReadOp>>
read_plan

{tid:2, did:1}

<<WriteOp>>
write_plan

{tid:1, did:1}

<<WriteOp>>
write_speedconf

{tid:1, did:2}

<<ReadOp>>
read_speedconf

{tid:2, did:2}

<<ReadOp>>
read_plan

{tid:2, did:1}

<<WriteOp>>
write_plan

{tid:1, did:1}

<<WriteOp>>
write_speedconf

{tid:1, did:2}

<<ReadOp>>
read_speedconf

{tid:2, did:2}

<<AtomicitySpecification>>
atomVariant: Rollback
recoverTime: 5

Fig. 4. Activity diagram of the wheel loader example using our UTRAN profile

as periodicity and delays. In addition, the proposed framework improves reusability of existing modeling units for

transactions and CC, by proposing a unified reusable modeling unit for all read, write, begin and commit operations,

as well as a more generic unit for CCManager that is suitable for a wider range of concurrency control algorithms.

In addition, we propose an algorithm to construct the UPPAAL TA models from a UTRAN specification.

We model the transactions, together with the CC algorithm and the AR mechanisms, as a network of UPPAAL

TA, denoted as N , which is defined as follows:

N ::= A0 || ... || An−1 || ACCManager || O0 || ... || Ok−1 || AATManager,

where A0, ..., An−1 are the TA of work units of transactions T0, ..., Tn−1, respectively. They also model the WU’s

interaction with the transaction manager with respect to concurrency control and abort recovery. ACCManager is

the CCManager automaton that models the CC algorithm, and interacts with the work unit TA. O0, ..., Ok−1 are

the TA of IsolationObservers that observe the phenomena to be precluded by isolation, respectively. AATManager is

the ATManager automaton that models the atomicity controller of recovery mechanisms upon abort of transactions.

We define two types of reusable structures for constructing the TA models. A pattern, consisting of a set of

variables, locations, edges and even other patterns, are parametrized structures representing the repetitive modeling

10

TABLE I. MODELING ELEMENTS OF THE WORK UNIT SKELETON

Element Type Explanation

ti parameter transaction id

p parameter transaction priority

PERIOD parameter period/minimal inter-arrival time of the transaction

DEADLINE parameter deadline of transaction commitment

RECOVERY_DEADLINE parameter deadline of transaction recovery

tc clock variable tracking the elapsed time of the transaction

tr clock variable tracking the elapsed time of abort recovery

abort_trans[ti] channel communication with ATManager

initialize(ti, p) function initialization of the transaction

units in our framework. A pattern can be composed with the rest of the automaton after instantiation. A skeleton

is a special type of pattern that defines the basic structure of a type of constituent automata of N , that is, a work

unit skeleton, a CCManager skeleton, an ATManager skeleton, and an IsolationObserver skeleton.

In the following texts, we first introduce the details of UPPCART in Section IV-A, followed by an algorithm

to construct UPPCART models from UTRAN in Section IV-B, and an illustrative example in Section IV-C.

A. The Proposed Modeling Framework

The skeletons and patterns for the various automata in UPPCART are presented as follows. We first introduce

the skeletons and patterns for work units and concurrency control, as well as the skeleton of IsolationObserver.

After this, we present the skeletons and patterns for atomicity and abort recovery mechanisms, and show how they

are integrated with the work units and the CCManager.

1) Modeling Work Units:

a) Work Unit Skeleton: A WU automaton models the work unit of a transaction and its interaction with the

CC and atomicity managers. A WU skeleton, as shown in Fig. 5, is a parametrized structure that consists of the

common variables, locations and edges of a WU automaton. The parameters, as well as other modeling elements,

are listed in Table I. Starting from the initial location, the automaton immediately initializes the transaction with

the specified id ti and priority p using function initialize(ti, p), and moves to the location ready. After an arbitrary

delay, it moves to the location begin, indicating the begin of the transaction, and sets clock variable tc to 0. The

location trans_committed represents the committed state of the transaction. Between begin and trans_committed are

a set of connected instantiated operation patterns that model the database and transaction management operations,

and delays between the operations. If the value of tc is greater than the specified DEADLINE, the automaton

moves to the location miss_deadline, indicating a deadline miss. Otherwise, it waits until the specified PERIOD

has reached, and moves to begin for the next activation. During the operations, the WUA may receive a message

from the atomicity manager ATManager via channel abort_trans[ti], and moves to the instantiated abort recovery

pattern, which models the AR mechanism. The location trans_aborted represents the aborted state of the transaction.

Similarly, if the value of tr is greater than a specified RECOVERY_DEADLINE, timeliness is breached, and the

WUA moves to miss_deadline.

11

begin

U trans_committed

Operations with CC and abort
recovery

C

…

tc:=0

ready

U

miss_deadline

trans_aborted

tc>DEADLINE tr>RECOVERY_DEADLINE

C

initialize(ti, p)

…tc<=DEADLINE

tc<=PERIOD
tc>=PERIOD
tc:=0

tr<=RECOVERY_DEADLINE

wait

initial

start_trans[ti]?

Delays

Fig. 5. TA skeleton for a work unit

tp>=MIN_delay

tp:=0

delaytp<=MAX_delay

previous_location

next_location

Fig. 6. Delay pattern

b) Delay Pattern: The pattern in Fig 6 models the delays between operations. The automaton may stay at

location delay for at most (least) MAX_delay (MIN_delay) time units, which are provided as parameters.

2) Modeling CC and Isolation Phenomena:

a) Operation-CC, Locking and Unlocking Patterns: We define a pattern to model the begin, commit, read

and write operations in each work unit. Since within each operation, the work unit may interact with the CC

manager according to the specific CC algorithm, our operation pattern also comprises CC-related activities such as

locking and unlocking as sub-patterns. Our Operation-CC pattern is presented in Fig. 7, whose modeling elements

are listed in Table II. Scheduling is modeled by three functions, enq_shc(ti), deq_shc(ti) and shc(), which specify

the selected scheduling policy. After the start_operation location, the enq_shc(ti) function pushes the transaction id

into the scheduling queue. On the edges from the location check_sched, the function shc() checks if the transaction

is the next to be scheduled. If it is the case, the automaton moves to do_operation; otherwise, the automaton waits

at location wait, until some transaction or the CCManager releases CPU via the cpu_free channel. The automaton

may stay at do_operation for at most WCRT_op time units, and at least BCRT_op time units, which represent the

longest and shortest time to complete the operation. Upon the completion of the operation, a signal is sent to the

IsolationObservers via channel notify_op[ti]. Before reaching finish_operation, the CPU is set to be free, and the

transaction is moved from the scheduling queue by the function deq_shc(ti).

According to the selected CC algorithm, the transaction needs to lock and unlock data, before or after the

operations. This is modeled by the Locking and Unlocking patterns inserted into the operation patterns, as illustrated

in Fig. 7. The Locking and Unlocking patterns are presented in Fig. 8. In the Locking pattern, the automaton sends a

request to the CCManager via channel locktype[ti][di], in which “locktype” is parametrized for the particular type of

lock, such as a readlock, specified by the CC algorithm. The automaton then either moves to location finish_locking,

12

sch()==ti
cs:=ti

check_sched

C

C

enq_sch(ti)

sch()!=ti

cpu_free?

do_operation
tp<=WCRT_op

C

C

tp>=BCRT_op
notify_op[ti]!

cpu_free!
cs:=FREE, deq_sch(ti)

finish_operation

start_operation

Instantiated Locking/Unlocking Patterns

Instantiated Locking/Unlocking Patterns

tp:=0

wait

notified_observer

Fig. 7. Operation-CC pattern

wait[ti][di]?

try_to_lock_di

C

C

C

wait_for_lock

C

cpu_free!
cs:=FREE

grant[ti][di]?
cs:=ti

finish_locking

start_locking

grant[ti][di]?

locktype[ti][di]!

(a) Locking pattern

C

C start_unlocking

finish_unlocking

unlock[ti][di]!

(b) Unlocking pattern

Fig. 8. Locking and unlocking patterns

if it is granted by CCManager via channel grant[ti][di]; or releases CPU and gets blocked at location wait_for_lock,

until CCManager grants it later. In the Unlocking pattern, the automaton sends the request via channel unlock[ti][di],

which is received and processed by the CCManager.

b) CCManager Skeleton: The CCManager skeleton, presented in Fig. 9, provides a common structure for

modeling various CC algorithms, and the interaction with the transactions and the atomicity manager. The particular

resolution policy of a CC algorithm is encoded in the functions listed in Table III. When CCManager receives a

locking request, it updates the status of the transaction and the data by calling updateRequest(), and judges whether

the requester can obtain the lock by calling satisfyPolicy(). The satisfying requester is granted with the lock, if the

algorithm does not abort any transactions in order to resolve conflicts. If any transactions need to be aborted due to

concurrency conflicts, as suggested by needAbort(), CCManager sends a signal to ATManager via channel cc_conf,

and waits until all abort and recovery are handled, before it grants the lock to the requester. On the other hand, if

the requester does not satisfy the policy, it is either aborted, decided needAbort() according to the CC algorithm,

13

TABLE II. MODELING ELEMENTS OF THE OPERATION, LOCKING AND UNLOCKING PATTERNS

Element Type Explanation

di parameter id of data to be accessed

BERT_op (WERT_op) parameter best (worst) case response time of the operation

tp clock variable temporary variable for tracking the time of individual operations

cs integer variable indicating the possession of the CPU

FREE constant indicating that the CPU is free

cpu_free broadcast channel release of CPU

locktype[ti][di] channel request CCManager for a “locktype” of lock on data di

grant[ti][di] channel grant of lock on data di from CCManager

wait[ti][di] channel reject of lock on data di from CCManager

unlock[ti][di] channel unlocking data di

notify_op[ti] broadcast channel notification of completion of operation

enq_sch(ti) function adding transaction ti in the scheduling queue

sch() function returning the next transaction from the scheduling queue according to the selected policy

deq_sch() function removing transaction ti from the scheduling queue

C

C

C

C

C

cs_dbms==0
i:trans_t, j:data_t
locktype[i][j]?
updateRequest(i,j,LOCKTYPE),
cs_dbms:=1

cs_dbms==0
i:trans_t, j:data_t
unlock[i][j]?
updateUnlock(), cs_dbms:=1

next_id==-1
cs_dbms:=0

getNext()

needAbort()
cc_conf!

!needAbort()
grant[request_id][data_id]!
updateGrant()satisfyPolicy()

satisfy:=true

!satisfyPolicy()
satisfy:=false next_id!=-1

grant[next][data_id]!
updateGrant(), getNext()

lock_request_received unlock_request_received

decide_grant

decide_reject

decide_grant_next

call_ATManager

grant[request_id][data_id]!
updateGrant()

!needAbort()
wait[request_id][data_id]!
updateReject()

C

cc_conf_done!

C

cs_dbms:=0

idle

atomicity_resolved

needAbort()
cc_conf!

call_ATManager2

C
cc_conf_done! atomicity_resolved2

C

cs_dbms:=0

Fig. 9. TA skeleton for the CCManager

or blocked. When the CCManager receives an unlocking request, it updates the status of the transaction and the

locks, and grants locks to all legitimated blocked transactions. The next transaction to be granted with a lock is

obtained using the getNext() function.

c) IsolationObserver Skeleton: The skeleton for an IsolationObserver is shown in Fig. 10. Each IsolationOb-

server observes a specified sequence of operations, by accepting the corresponding notification messages from the

work unit automata via the notify_op[ti][di] channel when an operation is completed. If the monitored sequence

indicating the phenomeon occurs, the automaton moves to the isolation_phenomenon location.

3) Modeling Data: Fig. 11 presents the skeleton of data. The clock variable age, which is reset every time a

write operation is performed on the data, represents how old the data is since the last update.

4) Modeling Atomicity and Abort Recovery: We separate the atomicity control model into an ATManager

automaton, and the abort recovery parts in work unit automata. The ATManager models the behavior of deciding

the transactions to be aborted upon errors, conflicts or user’s instructions. The work unit automata include the

14

TABLE III. MODELING ELEMENTS OF THE CCMANAGER SKELETON

Element Type Explanation

LOCKTYPE parameter type of the lock

request_id integer variable id of the requesting transaction

data_id integer variable id of the requested data

next_id integer variable id of the next transaction to be granted with locks

cs_dbms integer variable indicating critical section for handling request atomically

satisfy boolean variable indicating whether the requester should be granted with the lock

cc_conf channel notification of CC conflict to ATManager

cc_conf_done channel resolution of CC conflict by ATManager

satisfyPolicy() function checking if the requester should be granted with the lock according to the selected CC algorithm

needAbort() function checking if any transaction should be aborted due to CC

getNext() function getting the next transaction to be granted with locks

updateRequest() function updating status of transaction and data on request

updateGrant() function updating status of transaction and data after grant

updateReject() function updating status of transaction and data after reject

updateUnlock() function updating status of transaction and data after unlock

isolation_phenomenon

notify_read [ti][tj]?

notify_write[tm][dn]?
…

r_i_j

r_i_j_w_m_n

idle

C

notify_commit[ti]?
/notify_abort[ti]?

notify_commit[ti]?
/notify_abort[ti]?

ti_committed/
ti_aborted

Fig. 10. IsolationObserver skeleton

notify_write[di]?
age:=0

C updated

Fig. 11. TA skeleton for data

instantiated abort recovery patterns that model the selected mechanisms for the specific transactions. We distinguish

two types of abort, which are user abort that is issued by a client using an abort operation deliberately, and system

abort that occurs due to internal conflicts and system failures, such as CC conflicts.

a) ATManager Skeleton: Our ATManager skeleton provides a common structure for modeling the atom-

icity manager. The proposed skeleton, as shown in Fig. 12, the ATManager may receive user abort requests via

user_abort[i] channel, or system abort due to CC via cc_conf channel from CCManager. Other types of errors, such

as communication errors, can be modeled in a similar way. The function getAbort() specifies the logic to decide

the transaction to be aborted. The automaton then sends the abort signal to the corresponding work unit automaton

via channel abort_trans[abort_id], and waits until the abort is done by the work unit automaton. ATManager

then updates the status and locks of transactions and data using the function updateAbort(), and checks if more

transactions need to be aborted.

b) Abort Recovery Patterns: RollbackImComp and DeferredComp: The abort recovery mechanisms are

modeled by the RollbackImComp pattern (Fig. 13), and the DeferredComp pattern (Fig. 14), respectively, which

are composed into the work unit automata. The former models the rollback and immediate compensation mecha-

15

cc_conf_detected

C
getAbort()

Ccc_conf?
error_type:=CC

abort_id!=-1
abort_trans[abort_id]!

C

report_abort[abort_id]?
updateAbort(), getAbort()

abort_id==-1
cc_conf_handled!

idle
do_abort abort_done

i:trans_t
user_abort[i]?

abort_id:=ti, error_type:=USER

user_abort_detected
C

Fig. 12. TA skeleton for the ATManager

nisms, while the latter models the deferred compensation mechanism. The Rollback-ImmeComp pattern models the

execution of a series of operations by the DBMS. In case of rollback, the operations are the ones completed before

the abort of the transaction. In case of immediate compensation, the operations are specified for the transaction.

In the RollbackImComp pattern, each operation is represented by a location op_n, at which the automaton may

stay for at most (least) WCRT_opn (BCRT_opn) time units. When all operations are completed, the work unit

reports the completion of recovery to the ATManager via channel report_abort[ti], removes the transaction from

the scheduling queue by function deq_sch(ti), and notifies the IsolationObserver via channel notify_abort[ti].

In case of deferred compensation, the compensating transaction is modeled as a separate work unit, using

the work unit skeleton and the operation patterns. The DeferredComp pattern starts the compensation transaction

via channel start_trans[ci], where ci is the id of the compensating transaction. The work unit automaton then

immediately reports to ATManager and removes the transaction from the scheduling queue. When the compensating

transaction ci commits, the work unit automaton receives the notification of ci, and notifies that transaction is aborted

and recovered via channel notify_abort[ti].

c) SystemAbort Pattern: We distinguish two types of abort, which are user abort that is issued by a client

using an abort operation deliberately, and system abort that occurs due to internal conflicts and system failures, such

as CC conflicts. System abort is modeled as a composition of an instantiated operation pattern with a Rollback-

ImmComp pattern or a DefComp pattern, as shown in Fig. 15. We refer to this compensation as the SystemAbort

pattern. In this pattern, when the WU automaton receives an abort_trans[ti] signal from the ATManager, it moves

to the corresponding abort recovery patterns.

d) UserAbort Pattern: The UserAbort pattern is defined in Fig. 16. When the work unit is scheduled as the

next one to execute by function sch(ti), it issues the abort request to ATManager via channel user_abort[ti]. After

it gets the permission from ATManager, the automaton moves to the corresponding abort recovery pattern. When

the recovery is completed, the automaton sets the CPU to be free, and moves to location trans_aborted.

B. Model Construction Algorithm from UTRAN

The pseudo code listed in Fig. 17 accepts a UTRAN activity diagram specifying the RTDBMS and transactions

as input, and returns a UPPCART model. The aforementioned skeletons and patterns are used to construct the model.

The main procedure modelNTA traverses each «Transaction» in the diagram, and constructs a work unit automaton

for each of them (line 5). The construction of work unit automata is done by the procedure modelWUA (line 18

to 26), which calls procedure modelOP (line 28 to 33) to construct instantiated patterns for operations with CC,

16

tp <=WCRT_op1

start_rollback/
start_immed_comp

tp >=BCRT_op1
C

tp:=0
op_1

tp:=0
C…

trans_rolledback/
trans_compensated

report_abort[ti]!
deq_sch(ti)

C
notify_abort[ti]!

abort_notified

Fig. 13. RollbackImComp pattern

start_deferred_comp

C

wait_for_comp

C

trans_compensated

start_trans[ci]! notify_commit[ci]?

C

report_abort[ti]!
deq_sch(ti)

C

notify_abort[ti]!

abort_notified

async_report

Fig. 14. DeferredComp pattern

abort_trans[ti]?
tr:=0

Instantiated
Operation-CC

Pattern

Instantiated Abort
Recovery Patterns

Utrans_aborted

Fig. 15. SystemAbort pattern

sch()==ti
tp:=0, cs:=DBMS

check_sched
C

enq_sch(ti)

sch()!=ti

cpu_free?

start_user_abort

C

user_abort[ti]!

abort_trans[ti]?
tr:=0

Instantiated Abort
Recovery Patterns

C finish_user_abort

cpu_free!
cs:=FREE

U

trans_aborted

call_ATManager

abort_trans[ti]?
tr:=0

Fig. 16. UserAbort pattern

and procedure modelATOMICITY (line 34 to 51) to model the «AtomicitySpecification» of user abort operations.

The main procedure then models the atomicity aspects of system abort for each «Transaction» (line 7), by calling

modelATOMICITY, followed by creating CCManager (line 11), ATManager (line 12), and IsolationObservers (line

13). Before ending, the main procedure instantiates the functions in the automata models with the specific code

from the selected CCAlgorithm and SchedPolicy (line 14).

C. Example

We illustrate the modeling framework using the example in Section III-C. The work unit automaton of transaction

UpdateConfTrans is shown in Fig. 18. Its operations, as shown in the figure, are modeled by instantiating the

Operation-CC pattern, in which the CC-related interaction described by the 2PL-HP algorithm is modeled by the

instantiated Locking and Unlocking patterns. The rollback mechanism is modeled with the SystemAbort pattern,

consisting of the instantiated RollbackImComp pattern. The other transactions in the system are modeled in the

similar way, as shown in Fig. 19 and Fig. 20, respectively. The functions that models the priority-based scheduling,

which is specified in the UML diagram in Fig. 18, are listed briefly in Program 1 in Appendix.

The CCManager for 2PL-HP shares the same structure with the CCManager skeleton in Fig. 9, as presented

in Fig. 21. The instantiation in particular for 2PL-HP is done through the core functions of the algorithm, which

are listed in Program 2 in Appendix. Similarly, the ATManager is constructed using the ATManager skeleton

in Fig. 12, and instantiated with the functions listed in Program 3 in Appendix. Fig. 23 presents the example of

ATManager. Using the IsolationObserver skeleton, we construct an IsolationObserver for an «IsolationPhenomenon»

InconsistentConfig1, which specifies a sequence of operations. The two isolation phenomena in the example are

presented in Fig. 24 and Fig. 25, respectively.

17

1: Input: a UTRAN diagram, denoted as U
2: Output: a Network of Timed Automata, NTA
3: procedure MODELNTA(U)
4: for each «Transaction» T in U do
5: call modelWUA(T)
6: if T has an AtomicityVariant as VARIANT then
7: call modelAtomicity(SYSABORT, VARIANT)
8: end if
9: instantiate a Delay pattern for each «DelayedNext»

10: end for
11: create CCManager using CCManager Skeleton
12: create ATManager using ATManager Skeleton
13: create an IsolationObserver using IsolationObserver Skeleton for each «IsolationPhenomenon» in U
14: instantiate the functions in the NTA according to the selected CCAlgorithm and SchedPolicy
15: end procedure
16:
17: procedure MODELWUA(T)
18: create a WU automaton W using the Work Unit Skeleton
19: for each «BeginOp», «CommitOp», «ReadOp» and «WriteOp» in T, denoted as P do
20: call modelOP(W, P)
21: end for
22: for for each «AbortOp» P in T, whose AtomicityVariant as VARIANT do
23: call modelAtomicity(USERABORT, VARIANT)
24: end for
25: end procedure
26:
27: procedure MODELOP(A, P)
28: instantiate Operation-CC pattern for P in A
29: if transaction needs to lock/unlock data D before/after P according to CCAlgorithm then
30: insert instantiated Locking/Unlocking patterns before/after P
31: end if
32: end procedure
33:
34: procedure MODELATOMICITY(TYPE, VARIANT)
35: if TYPE is USERABORT then
36: instantiate a UserAbort pattern
37: else if TYPE is SYSABORT then
38: instantiate a SystemAbort pattern
39: end if
40: call modelAbortRecovery(VARIANT)
41: end procedure
42:
43: procedure MODELABORTRECOVERY(VARIANT)
44: if VARIANT is Rollback then
45: instantiate RollbackImComp pattern, rollback operations are the operations completed before abort
46: else if VARIANT is ImmediateCompensation then
47: instantiate RollbackImComp pattern, compensation operations are listed in the associated «Compensation»
48: else if VARIANT is DeferredCompensation then
49: instantiate DeferredComp pattern, call constructWUA(C) for the associated «Compensation» C
50: end if
51: end procedure

Fig. 17. Model Construction Algorithm

18

Fig. 18. TA of UpdateConfTrans
19

Fig. 19. TA of JobTrans

20

Fig. 20. TA of UpdateLocA

Fig. 21. TA of CCManager

21

Fig. 22. TA of Data

Fig. 23. TA of ATManager

Fig. 24. TA of InconsistentConfig1

22

Fig. 25. TA of InconsistentConfig2

TABLE IV. UPPAAL QUERY PATTERNS FOR VERIFYING TRANSACTIONAL PROPERTIES

Property Type Property Description UPPAAL Query Pattern

Atomicity Ti aborted due to ERRORTYPE is eventually

rolled back (compensated)

(ATManager.abort_id == i

&&ATManager.error_type == ERRORTY PE)

→ Ai.trans_rolledback (Ai.trans_compensated)

Isolation The specified isolation phenomena never occur A [] not (O1.isolation_phenomenon || ... ||On.isolation_phenomenon)

Timeliness Ti never misses its deadline A [] notAi.miss_deadline

Absolute Valid-

ity

When read by Ti, Dj is never older than the

absolute validity interval AVI(j)

A [] (Ai.read_di_done imply Dj.age <= AV I(j))

Relative Validity Whenever Ti reads Dj or Dl, the age differences

of Dj and Dl is smaller than or equal to the

relative validity interval RVI(j,l)

A[] ((Ai.read_dj_done ||Ai.read_dl_done) imply

((Dj.age−Dl.age <= RV I(j, l))&&

(Dl.age−Dj.age <= RV I(j, l))))

V. VERIFICATION

With the transactions as well as the atomicity and concurrency control mechanisms modeled in UPPAAL TA,

we are able to formally verify the atomicity, isolation and temporal correctness properties. Table IV lists the patterns

to formalize the properties in UPPAAL queries. Among them, atomicity is formalized as a liveness property, while

isolation and temporal correctness are formalized as invariance properties.

We use the aforementioned patterns to formalize the properties for the system in Section III-C, and verify them

using the UPPAAL model checker. The verification results are listed in Table V, which shows that all properties

are satisfied with the current design of CC and atomicity mechanisms.

VI. RELATED WORK

A number of high-level description languages have been proposed for transaction-based systems. Some of them,

like ours, extend UML or existing profiles. Marouane et al. [21] propose a MATRE-based profile for real-time

database systems. Timing properties can be specified using their profile, while atomicity and isolation are not

considered. Unified Transaction Modeling Language (UTML) [22] and its extension [23] are UML-based languages

23

TABLE V. VERIFICATION RESULTS OF THE EXAMPLE SYSTEM

Property Type UPPAAL Query Pattern Verification

Time

Explored

States

Verification

Result

Atomicity (ATManager.abort_id == 1&&ATManager.error_type == CC)

→ A1.trans_rolledback

5.99s 344107 Satisfied

Atomicity (ATManager.abort_id == 2&&ATManager.error_type == USER)

→ A2.trans_rolledback

6.13s 344475 Satisfied

Atomicity (ATManager.abort_id == 2&&ATManager.error_type == CC)

→ A2.trans_compensated

6.13s 355050 Satisfied

Isolation A [] not (InconsistentConfig1.isolation_phenomenon

|| InconsistentConfig2.isolation_phenomenon)

5.60s 336405 Satisfied

Timeliness A [] not (A1.miss_deadline ||A2.miss_deadline ||A3.miss_deadline) 5.62s 336405 Satisfied

Absolute Validity A [] (A2.read_d4_done imply D4.age <= 150) 9.45s 423960 Satisfied

Relative Validity A[] ((A2.read_d1_done ||A2.read_d2_done) imply

((D1.age−D2.age <= 15)&& (D2.age−D1.age <= 15)))

18.35s 547479 Satisfied

for transactions that enables selection of the ACID properties. Atomicity and isolation are treated as monolithic

properties respectively, rather than a spectrum of variants. Timeliness is not the authors’ focus. The Business

Process Execution Language (BPEL) [24] and the Business Process Model and Notation (BPMN) [25] are XML-

based, high-level description languages for specifying business processes, which is a flexible transaction model with

various atomicity. Rollback and compensation can be specified at transaction level and for internal activities. Charfi

et al. [26] and Sun et al. [27] introduce extra concepts for transactions to BPEL, which allow transaction policies

for atomicity to be specified explicitly. Compared with their work, our proposed profile can specify variants of

isolation as well as timing properties. Watahiki et al. [28] introduce temporal constraints to BPMN, which can be

verified by UPPAAL. Isolation and CC are not part of this framework. ReflecTS [29] allows specification of various

ACID properties of flexible transaction models. Both ASSET [30] and KALA [31] use procedural languages for

flexible transaction models, in which operations and AR mechanisms are specified using primitives provided by the

languages. Compared to these works, our supports specification of timeliness, and the selection of CC algorithms.

Many researchers have also made efforts to formally model and analyze transaction properties. The ACTA

framework [32] specifies transaction models in first order logic and allows for formal reasoning. Gallina [7]

uses higher-order logic to specify transaction properties, which can be formally analyzed by the Alloy tool. Both

frameworks are restricted in the formal specification and analysis of ACID, while timeliness, especially the impact of

CC and abort recovery mechanisms, are not included. Derks et al. [12] propose to model and verify transactions with

atomicity variants in Petri nets. Liu et al. [33] model and analyze a transaction model using Maude. Lanotte et al.

[34] propose a timed-automata-based language for long running transactions with timing constraints. Committing

protocols for atomicity variants can be modeled and analyzed. In contrast to these works, our work provides a

formal framework for modeling transactions together with abort recovery and CC mechanisms, in which atomicity,

isolation, timeliness, as well as their impacts on each other, can be analyzed in a unified framework.

24

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a UML profile called UTRAN for specifying atomic concurrent real-time

transactions. UTRAN supports specification of transaction atomicity, isolation and temporal correctness, as well

as the selection of AR, CC and scheduling mechanisms, in high level. Specified as UML activities with UTRAN,

transactional properties can be explicitly specified, and be extracted and further analyzed by tools.

We have also proposed a framework based on UPPAAL TA to formally model the UTRAN specification, which

allows the specified properties to be rigorously verified by UPPAAL model checker. We provide a set of parametrized

automata skeletons and patterns to model the transaction system. Via instantiation and composition, these skeletons

and patterns enable flexible modeling of a wide range of abort recovery mechanisms and CC algorithms. Properties

are formalized as UPPAAL queries for verification. We have also proposed an algorithm to construct the TA model

from an UTRAN specification, which can potentially be automated by a tool.

Our furture work will focus on a tool chain that facilitates the entire process, from high-level specification,

to automatic model generation and verification. Another future work is to improve the scalability of our formal

framework. In case of large systems, exhaustive model checking may not converge due to state explosion. Other

formal techniques, such as statistical model checking, could be integrated in order to achieve better scalability.

Acknowledgment: The Swedish Research Council (VR) is gratefully acknowledged for supporting this

research by the project “Adequacy-based Testing of Extra-Functional Properties of Embedded Systems”.

REFERENCES

[1] R. A. Elmasri and S. B. Navathe, Fundamentals of Database Systems. Addison-Wesley Longman Publishing Co., Inc., 2004.

[2] J. Gray and A. Reuter, Transaction Processing: Concepts and Techniques. Morgan Kaufmann Publishers Inc., 1992.

[3] S. Han, K.-Y. Lam, J. Wang, K. Ramamritham, and A. K. Mok, “On co-scheduling of update and control transactions in real-time sensing

and control systems: Algorithms, analysis, and performance,” IEEE Transactions on Knowledge and Data Engineering, vol. 25, no. 10,

pp. 2325–2342, 2013.

[4] S. Cai, B. Gallina, D. Nyström, and C. Seceleanu, “Customized real-time data management for automotive systems: A case study,” in

Industrial Electronics Society, IECON 2017-43rd Annual Conference of the IEEE. IEEE, 2017, pp. 8397–8404.

[5] K. Ramamritham, “Real-time databases,” Distributed and Parallel Databases, vol. 1, no. 2, pp. 199–226, 1993.

[6] J. A. Stankovic, S. H. Son, and J. Hansson, “Misconceptions about real-time databases,” Computer, vol. 32, no. 6, pp. 29–36, 1999.

[7] B. Gallina, “Prisma: a software product line-oriented process for the requirements engineering of flexible transaction models,” Ph.D.

dissertation, University of Luxembourg, 2010.

[8] “The unified modeling language specification version 2.5.1,” Object Management Group, Standard. [Online]. Available:

https://www.omg.org/spec/UML/2.5.1/

[9] “Uml profile for marte specification version 1.1,” Object Management Group, Standard. [Online]. Available: https://www.omg.org/spec/

MARTE/1.1/

[10] S. Cai, B. Gallina, D. Nyström, and C. Seceleanu, “A formal approach for flexible modeling and analysis of transaction timeliness and

isolation,” in Proceedings of the 24th International Conference on Real-Time Networks and Systems. ACM, 2016, pp. 3–12.

[11] K. G. Larsen, P. Pettersson, and Y. Wang, “Uppaal in a nutshell,” International Journal on Software Tools for Technology Transfer, vol. 1,

no. 1, pp. 134–152, 1997.

[12] W. Derks, J. Dehnert, P. Grefen, and W. Jonker, “Customized atomicity specification for transactional workflows,” in The Proceedings of

the 3rd International Symposium on Cooperative Database Systems for Advanced Applications. IEEE, 2001, pp. 140–147.

25

[13] J. Kienzle, E. Duala-Ekoko, and S. Gélineau, “Aspectoptima: A case study on aspect dependencies and interactions,” in Transactions on

Aspect-Oriented Software Development V. Springer, 2009, pp. 187–234.

[14] A. Adya, B. Liskov, and P. O’Neil, “Generalized isolation level definitions,” in Proceedings of the 16th ICDE, 2000, pp. 67–78.

[15] N. Soparkar, E. Levy, H. F. Korth, and A. Silberschatz, “Adaptive commitment for distributed real-time transactions,” in Proceedings of

the third international conference on Information and knowledge management. ACM, 1994, pp. 187–194.

[16] R. K. Abbott and H. Garcia-Molina, “Scheduling real-time transactions: A performance evaluation,” ACM Trans. Database Syst., vol. 17,

no. 3, pp. 513–560, Sep. 1992.

[17] B. Selic, “A systematic approach to domain-specific language design using uml,” in Proceedings of the 10th IEEE International Symposium

on Object and Component-Oriented Real-Time Distributed Computing. IEEE, 2007, pp. 2–9.

[18] R. Alur and D. L. Dill, “A theory of timed automata,” Theoretical computer science, vol. 126, no. 2, pp. 183–235, 1994.

[19] E. M. Clarke, E. A. Emerson, and A. P. Sistla, “Automatic verification of finite-state concurrent systems using temporal logic specifications,”

ACM Transactions on Programming Languages and Systems (TOPLAS), vol. 8, no. 2, pp. 244–263, 1986.

[20] S. Cai, B. Gallina, D. Nyström, and C. Seceleanu, “Towards the verification of temporal data consistency in real-time data management,”

in Modelling, Analysis, and Control of Complex CPS (CPS Data), 2016 2nd International Workshop on. IEEE, 2016, pp. 1–6.

[21] H. Marouane, C. Duvallet, A. Makni, R. Bouaziz, and B. Sadeg, “An uml profile for representing real-time design patterns,” Journal of

King Saud University-Computer and Information Sciences, 2017.

[22] G. Nektarios and S. Christodoulakis, “Utml: Unified transaction modeling language,” in Proceedings of the 3rd International Conference

on Web Information Systems Engineering. IEEE, 2002, pp. 115–126.

[23] D. Distante, G. Rossi, G. Canfora, and S. Tilley, “A comprehensive design model for integrating business processes in web applications,”

International Journal of Web Engineering and Technology, vol. 3, no. 1, pp. 43–72, 2006.

[24] “Web services business process execution language version 2.0,” Organization for the Advancement of Structured Information Standards,

Standard. [Online]. Available: http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

[25] “Business process model and notation specification version 2.0,” Object Management Group, Standard. [Online]. Available:

https://www.omg.org/spec/BPMN/2.0/

[26] A. Charfi, B. Schmeling, and M. Mezini, “Transactional bpel processes with ao4bpel aspects,” in Fifth European Conference on Web

Services. IEEE, 2007, pp. 149–158.

[27] C.-a. Sun, E. el Khoury, and M. Aiello, “Transaction management in service-oriented systems: Requirements and a proposal,” IEEE

Transactions on Services Computing, vol. 4, no. 2, pp. 167–180, 2011.

[28] K. Watahiki, F. Ishikawa, and K. Hiraishi, “Formal verification of business processes with temporal and resource constraints,” in IEEE

International Conference on Systems, Man, and Cybernetics (SMC). IEEE, 2011, pp. 1173–1180.

[29] A.-B. Arntsen and R. Karlsen, “Reflects: a flexible transaction service framework,” in Proceedings of the 4th workshop on Reflective and

adaptive middleware systems. ACM, 2005, p. 4.

[30] A. Biliris, S. Dar, N. Gehani, H. Jagadish, and K. Ramamritham, “Asset: A system for supporting extended transactions,” in ACM SIGMOD

Record, vol. 23, no. 2. ACM, 1994, pp. 44–54.

[31] J. Fabry and T. D’Hondt, “Kala: Kernel aspect language for advanced transactions,” in Proceedings of the 2006 ACM symposium on

Applied computing. ACM, 2006, pp. 1615–1620.

[32] P. K. Chrysanthis and K. Ramamritham, “Synthesis of extended transaction models using acta,” ACM Trans. Database Syst., vol. 19,

no. 3, pp. 450–491, 1994.

[33] S. Liu, P. C. Ölveczky, M. R. Rahman, J. Ganhotra, I. Gupta, and J. Meseguer, “Formal modeling and analysis of ramp transaction

systems,” in Proceedings of the 31st Annual ACM Symposium on Applied Computing. ACM, 2016, pp. 1700–1707.

[34] R. Lanotte, A. Maggiolo-Schettini, P. Milazzo, and A. Troina, “Modeling long-running transactions with communicating hierarchical

timed automata,” in Formal Methods for Open Object-Based Distributed Systems. Springer, 2006, pp. 108–122.

26

[35] Ï. B. Arpinar, U. Halici, S. Arpinar, and A. Doğaç, “Formalization of workflows and correctness issues in the presence of concurrency,”

Distributed and Parallel Databases, vol. 7, no. 2, pp. 199–248, 1999.

[36] A. Zarras and V. Issarny, “A framework for systematic synthesis of transactional middleware,” in Proceedings of the IFIP International

Conference on Distributed Systems Platforms and Open Distributed Processing, 1998, pp. 257–272.

APPENDIX A

USER-DEFINED FUNCTIONS IN THE EXAMPLE MODELS

Program 1. Functions for priority-based scheduling
//Push ti to the queue, sorted by priority

void enq_sch(ti) {

...

for(i=0;i<queue.size;i++) {

if(ti.priority < queue[i].priority) {

queue[i+1] = queue[i];

queue[i] = ti;

...} }}

//Delete ti from the queue, and sort the rest

void deq_sch(ti) {

...

for(i=0;i<queue.size;i++) {

if(ti == queue[i]) {

queue[i] = queue[i+1];

...} }}

//Return the first ready transaction in the queue,

//and the CPU is not occupied by others

int sch() {

...

for(i=0;i<queue.size;i++) {

if((cs==i||cs==FREE) && queue[i].state==READY) {

return i; }}}

27

Program 2. Functions for 2PL-HP CCManager
//Check if the requester should be granted with the lock

bool satisfyPolicy() {

...

if(data_id not locked) return true;

else if(data_id is readlocked) {

if(locktype == readlock) return true;

if(locker has lower priority) return true;

else return false;

} else {

if(locker has lower priority) return true;

else return false;

}

}

//If the requester is allowed to lock the data that is

//already locked, the locker needs to be aborted

bool needAbort() {

...

if(requester.data is locked by another transaction)

return true;

}

//Get the next transaction that waits to lock the data

void getNext() {

...

for(i=0;i<queue.size;i++) {

if(queue[i].state==BLOCKED && queue[i].data==data_id) {

next_id = i;

...} }}

//Update the status of the transactions and the data

updateRequest();

updateGrant();

updateNext();

updateUnlock();

updateReject();

28

Program 3. Functions for ATManager
//Get the next transaction to abort

bool getAbort() {

...

if(error_type==CC) {

for (each transaction t) {

if(t has locked data_id)

abort_id=t; return; }

} else if(error_type==USER) {

abort_id=-1; return; }

else //other errors

... }

//Update the status of the transactions and the data

updateAbort();

29

