
Mälardalen University Press Doctoral Theses
No. 270

UTILIZING HARDWARE MONITORING TO
IMPROVE THE QUALITY OF SERVICE AND
PERFORMANCE OF INDUSTRIAL SYSTEMS

Marcus Jägemar

October 2018

Copyright c©Marcus Jägemar, 2018
ISBN 978-91-7485-395-7
ISSN 1651-4238
Printed by E-Print AB, Stockholm, Sweden

Äntligen!1

My own translation:

Finally!

— Gert Fylking, 2000 [107]

1The debater Gert Fylking attended the Nobel literature prize announcement several consecutive
years (2000–2002) and exclamated “finally” when the winner was announced. His comment implied
that the prize winner was unknown for the people that didn’t belonging to the cultural elite. In this
thesis we interpret the quote explicitly, that the thesis is finished at last!

Abstract

TH E drastically increased use of information and communications tech-
nology has resulted in a growing demand for telecommunication net-
work capacity. The demand for radically increased network capacity

coincides with industrial cost-reductions due to an increasingly competitive
telecommunication market. In this thesis, we have addressed the capacity and
cost-reduction problems in three ways.

Our first contribution is a method to support shorter development cycles for
new functionality and more powerful hardware. We reduce the development
time by replicating the hardware utilization of production systems in our test
environment. Having a realistic test environment allows us to run performance
tests at early design phases and therefore reducing the overall system develop-
ment time.

Our second contribution is a method to improve the communication per-
formance through selective and automatic message compression. The message
compression functionality monitors transmissions continuously and selects the
most efficient compression algorithm. The message compression functional-
ity evaluates several parameters such as network congestion level, CPU usage,
and message content. Our implementation extends the communication capacity
of a legacy communication API running on Linux where it emulates a legacy
real-time operating system.

Our third and final contribution is a framework for process allocation and
scheduling to allow higher system performance and quality of service. The
framework continuously monitors selected processes and correlate their perfor-
mance to hardware usage such as caches, floating point unit and similar. The
framework uses the performance-hardware correlation to allocate processes on
multi-core CPUs for minimizing shared hardware resource congestion. We have
also designed a shared hardware resource aware process scheduler that allows
multiple processes to co-exist on a CPU without suffering from performance
degradation through hardware resource congestion. The allocation and schedul-
ing techniques can be used to consolidate several functions on shared hardware

v

thus reducing the system cost. We have implemented our process scheduler as
a new scheduling class in Linux and evaluated it extensively.

We have conducted several case studies in an industrial environment and
verified all contributions in the scope of a large telecommunication system
manufactured by Ericsson. We have deployed all techniques in a complicated
industrial legacy system with minimal impact. We have shown that we can
provide a cost-effective solution, which is an essential requirement for industrial
systems.

Sammanfattning

TE L E K O M M U N I K AT I O N S B R A N C H E N står just nu inför en stor ut-
maning där kommunikationsprestanda och snabba leveranstider blir allt
mer viktiga för att positionera sig i den ökande konkurrensen. I denna

avhandling har vi addresserat detta problem på tre sätt. Det första sättet är att
reducera utvecklingstiden genom att replikera hårdvarulast från produktionssys-
tem på testnoder. Den andra genom att förbättra kommunikationsprestandan
genom automatisk meddelandekomprimering. Den tredje, och sista, genom att
implementera allokerings- och schemaläggningstekniker som möjliggör kon-
solidering av mjukvara på delad hårdvara.

Våra tekniker reducerar utvecklingstiden genom att flytta en del av pre-
standaverifikationen från slutet av utvecklingscykeln till den mycket tidigare
programmeringsfasen. Vi metod börjar med att mäta resursanvändande och pre-
standan för ett produktionssystem som kör hos en kund. Från dessa mätningar
skapar vi en modell som vi sedan använder för att återskapa hårdvarulasten på en
testnod. Att köra funktionstester på ett testsystem som har liknande hårdvarulast
ger ett tillförlitligt resultat. Genom att använda vår metod kan vi flytta vissa
tester från prestandaverifikationen i slutet av utvecklingscykeln till program-
meringsfasen och därmed spara utvecklingstid.

Under våra tester märkte vi att kommunikationssystemet var överlastat och
att processorn inte användes fullt ut. För att öka kommunikationsprestandan
implementerade vi en metod som automatiskt komprimerar meddelanden när
det finns processorkapacitet att använda. Vi implementerade ett reglersystem
som väljer den bästa ur en mängd av kompressionsalgoritmer. Vår mekanism
utvärderar automatiskt alla algoritmer och reagerar på förändringar i processor-
last, nätverkslast eller meddelandeinnehåll.

Av ekomiska skäl vill företaget konsolidera flera mjukvarufunktioner till
en hårdvara. När vi testade prestandan före och efter konsolidering märkte
vi en synbar prestandaförsämring. Orsaken till prestandaförsämringen var att
programmen som förut körde själva nu skall dela på resurser såsom cache och
liknande. Vi har också utvecklat en teknik för att automatiskt allokera processer

ix

på ett kluster av kärnor för att maximera prestandan. Vi utvecklade också en
teknik för att låta flera processer dela på en kärna utan att för den skull påverka
quality of service för varandra. I vår implementation använder vi performance
monitoring unit (PMU) för att mäta resursanvändning. Vi programmerar också
PMU så att den genererar ett avbrott när en process har uttömt sin tilldelade
mängd av resurser.

All programvaruutveckling och test har genomförts på ett industriellt tele-
kommunikationssystem tillverkat av Ericsson. Alla tekniker är implementer-
ade för bruk i produktionsmiljö och monitorerings- och modelleringsfunktion-
aliteten används kontinuerligt i felsökningsysfte av produktionssystemet. De
tekniker vi presenterar i denna avhandling ger också en kostnadseffektiv lösning,
vilket är en viktigt krav för industriella system.

I dedicate this thesis to my beloved wife Karolinn and my
lovely daughters Amelie, Lovisa and Elise.

[Art by L. Jägemar]

Acknowledgements

I could not imagine the amazing personal journey it is when studying for a
Ph.D. I utterly and completely underestimated the level of commitment
and the massive amount of work involved in finishing a Ph.D., as stated

by Paulsen [227]: “The Ph.D. education is the highest education available - no
wonder that it is demanding and difficult. Accept this.”. I have come to many
insights during my studies. The most important personal insight is that this
thesis is not a product of a gifted genius that shuffled through the studies and
quickly finished it. It is something completely different. Writing a Ph.D. thesis,
has for me, been much more of a constant challenge requiring long-term goals
that can bridge short-term ups and downs. Having at least a tiny fraction of
what is nowadays called grit [72, 73] is something that I discovered in the very
final stages of writing this thesis. This determination saw me through seven
years of part-time research interrupted with industrial work and several parental
leaves. Working on this thesis is one of the most rewarding achievements in my
professional life. I wish that all people would get the opportunity to fulfill their
goals in the same way as I have.

I could not have done this without help from many people. The following people
have in various ways been involved in my Ph.D. project.

First of all, I would like to thank my supervisors and co-authors, Björn Lisper,
Sigrid Eldh, Andreas Ermedahl and Moris Behnam for your knowledge, support,
patience and constructive discussions during my studies. We have in many ways
acted as a team with diverse competencies and achieved many exciting results.
I would also like to express gratitude towards my manager at Ericsson, Magnus
Schlyter, who supported me from the first day until completing the thesis.

The work presented in this Ph.D. thesis has been funded by Ericsson and the
Swedish Knowledge Foundation (KK stiftelsen) through the ITS-EASY [279]
industrial Ph.D. school at Mälardalen University.

xv

xvi

Furthermore, thanks to all students in the ITS-EASY research group, we all
share the ups and downs of studying for a PhD; Apala Ray, Daniel Hallmans,
Daniel Kade, David Rylander, Eduard Paul Eniou, Fredrik Ekstrand, Gaetana
Sapienza, Kristian Wiklund, Markus Wallmyr, Mehrdad Saadatmand, Melika
Hozhabri, Sara Dersten, Stephan Baumgart, and Tomas Olsson.

I would also like to thank my additional co-authors: Jakob Danielsson, Gordana
Dodig-Crnkovic, Rafia Inam, Mikael Sjödin, Daniel Hallmans, Stig Larsson
and Thomas Nolte. I enjoyed working with you.

I have the greatest gratitude to my parents; my mother and father who always
wanted me to study hard to become something they never could.

Finally and foremost, I want to express my endless love for my wife Karolinn
and our three daughters, Amelie, Lovisa, and Elise. I would not have been able
to write this thesis without your support and encouragement. I am also grateful
for all support and understanding when being away on conference trips and
writing papers late at night.

Marcus Jägemar

September 2018, Sigtuna, Sweden

“ “

— The unsuccessful self-treatment of a case of “writer’s block”,
Dennis Upper [289]2

2Dennis Upper pinpoints the writer’s block problem in his empty article. The comedy continues
as the reviewer sarcastically states that he cannot find any faults, although he has used both lemon
juice and X-ray when reviewing the article. The problem is real, as many writers can vouch for,
even though the article is a joke.

List of Publications

TH I S thesis is a monograph based on multiple contributing conference
papers, technical reports, patents, and journal article. The following list
shows the publications most closely related to the topics presented in

the thesis, followed by other publications by the author.

Related Publications
A Marcus Jägemar, Sigrid Eldh, Andreas Ermedahl and Björn Lisper. Towards

Feedback-Based Generation of Hardware Characteristics. In Proceedings
of the International Workshop on Feedback Computing, 2012 [150].

B Marcus Jägemar, Sigrid Eldh, Andreas Ermedahl and Björn Lisper. Auto-
matic Multi-Core Cache Characteristics Modelling. In Proceedings of the
Swedish Workshop on Multicore Computing, Halmstad, 2013 [151].

C Marcus Jägemar, Sigrid Eldh, Andreas Ermedahl and Björn Lisper. Auto-
matic Message Compression with Overload Protection. Journal of Systems
and Software, 2016 [153].
This journal article is an extension of the already published paper H [152].

D Marcus Jägemar, Sigrid Eldh, Andreas Ermedahl and Moris Behnam. A
Scheduling Architecture for Enforcing Quality of Service in Multi-Process
Systems. In Proceedings of Emerging Technologies and Factory Automation
(ETFA), Limasol, Cyprus, 2017 [157].
This paper is an extension of patent O [155].

E Marcus Jägemar, Sigrid Eldh, Andreas Ermedahl, Moris Behnam and Björn
Lisper. Enforcing Quality of Service Through Hardware Resource Aware
Process Scheduling. In Proceedings of Emerging Technologies and Factory
Automation (ETFA), Torino, Italy, 2018 [147].
This paper is an extension of patent P [156].

xxi

xxii

Other Publications
F Rafia Inam, Mikael Sjödin and Marcus Jägemar. Bandwidth Measurement

using Performance Counters for Predictable Multicore Software. Proceed-
ings of the International Conference on Emerging Technologies and Factory
Automation (ETFA), 2012. [136]

G Daniel Hallmans, Marcus Jägemar, Stig Larsson and Thomas Nolte. Iden-
tifying Evolution Problems for Large Long Term Industrial Evolution Sys-
tems. In Proceedings of IEEE International Workshop on Industrial Experi-
ence in Embedded Systems Design, Västerås, 2014. [122]

H Marcus Jägemar, Sigrid Eldh, Andreas Ermedahl and Björn Lisper. Adap-
tive Online Feedback Controlled Message Compression. In Proceedings of
Computers, Software and Applications Conference
(COMPSAC), Västerås, 2014. [152]

I Marcus Jägemar and Gordana Dodig-Crnkovic Cognitively Sustainable ICT
with Ubiquitous Mobile Services - Challenges and Opportunities. In Pro-
ceedings of the International Conference on Software Engineering (ICSE),
Firenze, Italy, 2015. [146]

J Jakob Danielsson, Marcus Jägemar, Moris Behnam and Mikael Sjödin. In-
vestigating Execution-Characteristics of Feature-Detection Algorithms. In
Proceedings of Emerging Technologies and Factory Automation (ETFA),
Limasol, Cyprus, 2017. [59]

K Jakob Danielsson, Marcus Jägemar, Moris Behnam, Mikael Sjödin, Tiberiu
Seceleanu. Measurement-based evaluation of data-parallelism for OpenCV
feature-detection algorithms. In Proceedings of Computers, Software and
Applications Conference (COMPSAC), 2018. [60]

L Marcus Jägemar. Mallocpool: Improving Memory Performance Through
Contiguously TLB Mapped Memory, In Proceedings of Emerging Technolo-
gies and Factory Automation (ETFA), 2018. [145].

xxiii

Technical Reports
M Marcus Jägemar, Sigrid Eldh, Andreas Ermedahl and Björn Lisper. Tech-

nical Report: Feedback-Based Generation of Hardware Characteristics,
2012. [149].

N Marcus Jägemar, Sigrid Eldh, Andreas Ermedahl, Björn Lisper and Gabor
Andai. Automatic Load Synthesis for Performance Verification in Early
Design Phases. Technical Report, 2016. [154].
This technical report is an extension of the already published papers A [150],
B [151] and the technical report M [149].

Patents
O Marcus Jägemar, Sigrid Eldh, Andreas Ermedahl. Decision support for OS

process scheduling based on HW-, OS- and system-level performance coun-
ters, Pat. Pending 62/400353, United States, 2016. [155].

P Marcus Jägemar, Sigrid Eldh, Andreas Ermedahl. Process scheduling in
a processing system having at least one processor and shared hardware
resources, PCT/SE2016/050317, United States, 2016. [156].

Licentiate Thesis
Q Marcus Jägemar. Utilizing Hardware Monitoring to Improve the Perfor-

mance of Industrial Systems, Licentiate Thesis3, Mälardalen University,
2016. [144].

3A licentiate is an intermediate postgraduate degree academically merited between an M.Sc.
and a Ph.D.

Never, for the sake of peace and quiet, deny your own experience
or convictions.

— Dag Hammarskjöld4

4Secretary-General of the United Nations 1955-61, Nobel prize winner 1961.

Contents

I Thesis 3

1 Introduction 7
1.1 Researching Uncharted Territories 8
1.2 Monitoring a Production System 9
1.3 Modeling a Production System 10
1.4 Improving the Communication System 11
1.5 Improving Performance while Enforcing Quality of Service . . 12
1.6 Outline . 13

2 Background 17
2.1 Telecommunication Standards 18
2.2 Telecommunication Services 19
2.3 Industrial Systems . 21
2.4 Deploying Our Target System 25
2.5 System Details . 27
2.6 Operating Systems . 32

2.6.1 Enea OSE . 32
2.6.2 Linux . 34

3 Research Method 41
3.1 The Hypothesis . 42
3.2 Research Questions . 42

3.2.1 System Monitoring 42
3.2.2 System Modeling . 43
3.2.3 Improving System Performance 43
3.2.4 Process Allocation and Scheduling to Efficiently En-

force Quality of Service 44

xxvii

xxviii Contents

3.3 Delimitations . 45
3.4 Research Methodology . 46
3.5 Threats to Validity . 47

3.5.1 Construct Validity 48
3.5.2 Internal Validity . 49
3.5.3 Conclusion Validity 50
3.5.4 Method Applicability 50

4 Contributions 55
4.1 Publication Mapping, Hierarchy and Timeline 56
4.2 Paper A . 57
4.3 Paper B . 58
4.4 Paper C (Based on Paper H) 59
4.5 Paper D (Based on Patent O) 60
4.6 Paper E (Based on Patents P) 61

5 Measuring Execution Characteristics 65
5.1 Introduction . 66
5.2 System Model and Definitions 66

5.2.1 Hardware Resources 66
5.2.2 Memory Management 67
5.2.3 Systems, Applications and Processes 69
5.2.4 Hardware Resource Monitoring 71
5.2.5 Service Performance Monitoring 72

5.3 Implementation . 73
5.3.1 Measuring Characteristics 75
5.3.2 Counter Sets . 76
5.3.3 Second Generation Implementation 77

5.4 Experiments Using the Performance Monitor 78
5.4.1 Debugging Performance Related Problems 78
5.4.2 The Cycles Per Instruction (CPI) Stack 82
5.4.3 Closed Loop Interaction 84

5.5 Related Work . 84
5.6 Summary . 86

6 Load Replication 91
6.1 Introduction . 92
6.2 System Model and Definitions 94

6.2.1 The Modeling Method 96
6.3 Implementation . 98

Contents xxix

6.3.1 Address Translation 98
6.3.2 The Load Controller 99
6.3.3 Generating Cache Misses 100

6.4 Experiments Using Execution Characteristics Modeling 104
6.4.1 Running a Test Application With The Load Generator 104
6.4.2 Production vs. Modeled Execution Characteristics . . 106
6.4.3 System Performance Measurement 111
6.4.4 Performance Prediction When Switching OS 111

6.5 Related Work . 115
6.6 Summary . 116

7 Automatic Message Compression 121
7.1 Introduction . 122

7.1.1 Communication Performance Problem 122
7.1.2 Improving the Communication Performance 123

7.2 System Model and Definitions 124
7.2.1 Definitions . 126
7.2.2 Network Measurements 128
7.2.3 Compression Measurements 128
7.2.4 The Communication Procedure 128
7.2.5 Selecting the Best Compression Algorithm 130
7.2.6 Compression Overload Controller 132
7.2.7 Compression Throttling 133

7.3 Implementation . 134
7.3.1 Compression Algorithms 135
7.3.2 Putting it all together 136
7.3.3 Real-World Compression Throttling 137

7.4 Experiments Using Automatic Message Compression 138
7.4.1 Automatic Compression 139
7.4.2 Algorithm Selection Methods 141
7.4.3 Auto-select for Changing Message Content 142
7.4.4 Overload Handling 145

7.5 Related and Future Work . 146
7.6 Summary . 148

8 Resource Aware Process Allocation and Scheduling 153
8.1 Introduction . 154

8.1.1 Motivation for Resource Aware Scheduling 154
8.1.2 Problem Description and Current Solutions 155

xxx Contents

8.1.3 What to do about it? 156
8.2 System Model and Definitions 157

8.2.1 Terminology . 158
8.2.2 Telecommunication System Requirements on Process

Scheduling . 159
8.2.3 Our Allocation and Scheduling Architecture 160
8.2.4 Resource and Performance Monitoring 164
8.2.5 Resource and Performance Correlation 165
8.2.6 Resource Aware Process Allocation 168
8.2.7 Resource Aware Process Scheduling 171
8.2.8 Integrating all Parts 172

8.3 Implementation . 177
8.3.1 System Monitoring 177
8.3.2 Allocation and Scheduling Engine (ASE) 180
8.3.3 Implementing a Process Allocator 181
8.3.4 Implementing a Process Scheduling Policy 183

8.4 Experiments . 184
8.4.1 Testing Automatic Process Allocation 184
8.4.2 Testing the QoS Aware Process Scheduler 190

8.5 Related Work . 199
8.6 Summary . 204

9 Conclusion and Future Work 209
9.1 Conclusion . 210
9.2 Future Work . 211

10 Definitions 217

11 Key Concepts 223

Bibliography 228

I

Thesis

3

Talk is cheap. Show me the code.

— Linus Torvalds [288]

1
Introduction

IN this thesis we share the result from our investigation on how to make a
large-scale [122] telecommunication system [23] more competitive by im-
proving its software. The system we investigated has a significant market

share [293] and is used as an infrastructure system throughout the world. We
start this Chapter in Section 1.1 by outlining our research goals and process.

Our contributions comes from four areas. First, we investigate how to moni-
tor the performance of the system with the goal to identify and fix performance-
related software bugs, Section 1.2. We use our performance monitor throughout
the rest of our work. Secondly, we utilize the performance monitor to model
the execution behavior of the production system, Section 1.3. We use the model
to replicate the load and mimicking the execution behavior of the production
system on test nodes in the lab. Mimicking the execution behavior is useful
for finding performance-related bugs in the early phases of the development
process. Thirdly, we use the performance monitor to identify a performance
problem in the communication subsystem of our target system, Section 1.4. To
improve the performance we devised an automatic compression mechanism that
trades CPU capacity when there is limited bandwidth. In our fourth and final
contribution, Section 1.5, we devised a method to efficiently allocate processes
over multiple CPUs while enforcing Quality of Service (QoS) through process
scheduling. The driving force is the increased demand to consolidate several
system functions on fewer multi-core CPUs without them affecting the QoS of
each other. We finish this chapter in Section 1.6 by giving a short overview of
the chapters in this thesis.

7

8 Chapter 1. Introduction

1.1 Researching Uncharted Territories

The primary goal of our research has always been to improve the performance
of our target system. Defining the outcome as well as the way to reach it was
one of the tasks in our assignment.

Researching the topics presented in this thesis has been like sailing through
uncharted territories. We started off with a clear goal to investigate the execution
characteristics, i.e., hardware usage and system performance. In doing so, we
implemented a tool called Charmon, see Section 1.2 that helped us to monitor
computers, denoted nodes, in a computer system for days and weeks continu-
ously. The low resource usage of Charmon enabled us to run it on production
systems, revealing information on how our monitored system performed in real-
world situations.

The next step was to utilize the execution characteristics data to create a
model of the production node hardware resource usage. We implemented a tool
called Loadgen, see Section 1.3, which automatically mimics the previously
monitored production system on a test node. The Loadgen program implements
a feedback controller that controls several memory access loops so that the test
node reaches the same cache utilization as the production node.

We noticed that the communication performance was not efficient during the
implementation and verification phase of the Loadgen tool. More specifically,
the performance dropped when the network was congested. By investigating
the Charmon logs further, we deduced that the CPU load was low in many of
the network congestion situations. Our idea was to implement a mechanism,
see Section 1.4, that automatically, and transparently, compress messages when
there is available CPU capacity, and the network congestion level is high.

To reduce the manufacturing costs the product department decided to con-
solidate several system functions on fewer CPUs. We utilized Charmon to inves-
tigate the effects of simultaneously running multiple system functions on one
CPU. The effects were quickly detected, and the memory subsystem suffered
heavily when several IO-intensive applications competed for resources. The
discoveries triggered us to look at current process allocation and scheduling
algorithms. We could not find any suitable algorithms in the literature, so we
devised a new algorithm, see Section 1.5. Our algorithm automatically evalu-
ates the resource usage of processes and allocated them appropriately over a set
of cores on a multi-core CPU. We also developed a scheduling algorithm to en-
force QoS so that the system functions do not affect the execution performance
of each other. Both these algorithms have resulted in patents [155, 156].

1.2 Monitoring a Production System 9

In short, the Charmon tool was an eye-opener for us. The tool provides much
information on system behavior. It became easy to evaluate and develop im-
provements intelligently by utilizing the Charmon tool. It provided information
that was invaluable when motivating the need for improvements. Particularly,
when providing execution characteristics from production environments.

1.2 Monitoring a Production System

We implemented a characteristics monitoring tool aimed for running at customer
sites. Our goal with the monitoring tool was to get a better understanding of real-
world systems by sampling the hardware usage. Our monitor samples hardware
events from the CPU or any other low-level hardware components. We grouped
these events into sets that represent a certain type of behavior, for example,
cache-usage, translation lookaside buffer (TLB) usage, cycles per instruction.
Running a monitoring tool in a production environment pose special restrictions
and requirements such as:

• It must be possible to run the monitor on a production system.

• The monitor must have a low probe-effect [99] since it is not allowed to
affect the behavior and performance of production system.

• The monitor must be able to capture long time intervals because the
system behavior changes slowly depending on end-customer usage.

We addressed the production environment constraints by being very restrictive
when implementing the monitoring application. First, we followed the company
development process when implementing our monitoring application. Several
experiences system engineers reviewed the system design and we verified the
application in our test environment. It is vital that no undesired behavior or faults
occur when running in a sensitive environment. Secondly, we have chosen a
low hardware event sample frequency (1Hz) to reduce the probe effect. A low
sampling frequency also reduce the memory requirement for hardware usage
samples. The sampling frequency is sufficient for the slowly changing behavior
of our target system.

10 Chapter 1. Introduction

1.3 Modeling a Production System

We devised a method that automatically synthesizes a hardware characteristics
model from data obtained by the monitoring tool, see Section 1.2. The model
can replicate the hardware usage of the production system.

Our goal was to create an improved test suite consisting of a hardware
characteristics model together with a functional test suite. We assumed that such
a test suite should improve testing and make it possible to discover, primarily
performance related bugs, in the early stages of system development. Finding
bugs in the early design phases adheres well to the desire of reducing the total
system development time since bug-fixing becomes much more difficult and
time-consuming further from the introduction of the bug [29].

Our method uses a Proportional Integrative Derivative (PID) controller [22]
to synthesize the model automatically from the hardware characteristics data
obtained through our monitoring tool. No manual intervention is needed. The
overall method is generic and supports any type of hardware characteristics.
The system we investigated is memory-bound and mostly limited by cache and
memory bandwidth. We have implemented one PID-control loop per character-
istics entity. In our model, we have used L1I-cache, L1D-cache and L2D-cache
hardware usage to represent the behavior of the system.

Definition 1 The cache acts as a small intermediate memory that is substan-
tially faster than the RAM. The subscript index determine the cache level, start-
ing with 1 for the first cache-level. The capital letter “I” denotes the instruction
cache and “D” denotes the data cache.

Definition 2 The translation lookaside buffers (TLB) temporarily store mem-
ory mappings between the virtual, which is visible to a process, and the physical
address space. The capital letter “I” denotes instruction and “D” denotes data.

We have evaluated our monitoring and modeling method by synthesizing
a model for L1I-cache, L1D-cache, and L2D-cache misses according to the
hardware characteristics extracted from a running production system. We have
successfully tested our load synthesize model by detecting a bug that was not
possible to find in the original test suite. The message RTT degradation was
0.75% when we tested a new version of the production system on the original
test suite. Such small performance degradation is not possible to detect with the
automated test suite because it is within the limits of performance variation of
the system. We detected a performance degradation of 10.8% when running the

1.4 Improving the Communication System 11

test suite together with Loadgen, which clearly signals a performance problem
and it is readily detectable by the automated test suite.

1.4 Improving the Communication System

We contrived and implemented a mechanism to automatically find and use a
compression algorithm that provides the shortest message Round-Trip Time
(RTT) between two nodes in a communication system.

Our goal, when performing this work, was to improve the communication
performance of our target system. We had already implemented the monitoring
tool, Section 1.2, and the characteristics model, Section 1.3 and could use these
tools for performance measurements.

We added a software metric to our monitoring tool, measuring message RTT.
We could deduce that 1) The message RTT varied depending on the network
congestion levels and 2) The hardware usage varied but was relatively low in
certain conditions. We assumed that we could trade computational capacity for
an increased messaging capacity by using message compression. We defined
some critical considerations such as:

• The compression algorithm must be selected automatically because the
message content can change over time and depend on the location of
system deployment.

• Our mechanism should only use message compression if there are com-
putational resources to spare since other co-located services should not
starve.

• Our mechanism must handle overload situations with grace and message
compression can be resumed when the system has returned to normal
operation.

Our implementation automatically selects the most efficient compression
algorithm depending on the current message content, CPU-load and network
congestion level. We evaluated our implementation by using production system
communication data gathered at customer sites and replayed it in a lab (with
explicit customer concent). Our experiment shows that the automatic compres-
sion mechanism produces a 9.6% reduction in RTT and that it is resilient to
manually induced overload situations.

12 Chapter 1. Introduction

1.5 Improving Performance while Enforcing Qual-
ity of Service

We designed and implemented a Shared Resource Aware (SRA) process sched-
uler. SRA monitors both performance and hardware resource usage of individ-
ual processes in a system. We measure the performance in high-level metrics
such as message turnaround time or the number of operations per second. The
SRA algorithm measures the hardware resource usage by utilizing the perfor-
mance monitoring unit (PMU) to quantify the number of accesses to hardware
resources. SRA measures, interprets and acts on processes’ hardware resource
usage and their applicaiton performance to efficiently allocate (where to run)
and schedule (how and when) different processes. The key properties of SRA
are:

• SRA continuously monitors the hardware resource usage and continu-
ously calculate the correlation towards the process performance. Having
a good understanding of the correlation between hardware resource usage
and performance is vital when reducing the effects of shared hardware
resource.

• SRA uses the hardware resource-performance correlation to allocate pro-
cesses over the set of available CPU cores thus improving the system
performance by reducing shared hardware resource congestion.

• SRA uses performance counters to detect when a process overuse its stip-
ulated hardware resource quota. SRA may decide to context switch the
process when an overflow occurs to minimize the effects on other pro-
cesses co-executing on the common hardware. Enforcing a strict shared
resource quota makes it possible to provide a QoS simultaneously as
improving the system-level performance.

We implemented the process allocation part of SRA as a core affinity selector
in Linux. Our initial experiments indicate that it is possible to gain up to 30%
performance increase compared to the standard Linux CFS process scheduler
by allocating cache-bound processes in a way that is shared resource-aware. We
designed the process scheduling part of SRA as a new Linux scheduling policy
and implemented it as a new scheduling class in Linux.

1.6 Outline
The thesis continues in Chapter 2 (background) with further explanations of
our target system. We describe standards and functionality supported by the
telecommunication system we investigated. We also describe system setup, de-
sign, and structure. Chapter 3 (research method) define the research questions
we addressed in this thesis. We also delimit our research and describe the me-
thodology we used. We conclude the chapter by describing validity issues. We
list our contributions in Chapter 4 and illustrate how the publications relate to
each other and to the research areas. The four following chapters describe our
contributions in detail. Each chapter follows a similar structure, starting with
an introduction to each research area closely followed by the system model and
definitions. We continue by describing our implementation, experiments and
conclude each chapter with related/future work. The chapters are Chapter 5
(measuring execution characteristics), Chapter 6 (load replication), Chapter 7
(automatic message compression), and Chapter 8 (resource aware process allo-
cation and scheduling). We present a summary of our contributions in Chapter 4
together with each publication. Chapter 9 concludes the thesis by describing
our main findings and directions of our future work.

More and better collaboration between academia and the software
industry is an important means of achieving the goals of more stud-
ies with high quality and relevance and better transfer of research
results.

— D. Sjøberg, T. Dybå , M. Jørgensen [272]

2
Background

WE believe that it is vital to understand the context of industrial set-
tings within which we have worked on this thesis. This background
chapter describes some of the most fundamental components and

behaviors of our target system.
We start by listing telecommunication standards, Section 2.1, and how they

relate to current and future telecommunication services, Section 2.2. The plat-
form we have worked with supports various standards spanning from 2G (GSM)
via 3G (UMTS, WCDMA) and 4G (LTE) and further towards the current 5G
standard. The primary driver for new communication standards is the growing
demand for higher communication bandwidth. We continue, in Section 2.3, by
defining our view of large-scale industrial systems [122]. Such systems have
common attributes such as strong system uptime requirements, many simulta-
neously deployed software and hardware generations and considerable size and
complexity. We also describe various deployment scenarios, in Section 2.4, for
our target system. We continue in Section 2.5 by describing implementation
details, development process, and other detailed system-specific information.
We conclude the chapter with Section 2.6 giving a detailed description of the
OS:es used in our target system and our experiments.

17

18 Chapter 2. Background

Telecom.
Standard

Max Down
Link Speed

First
Introd.

Main Features

1G (NMT, C-
Nets, AMPS,
TACS)

- 1980 Several different analog stan-
dards for mobile voice tele-
phony.

2G (GSM) 14.4kbit/sec
circuit switched,
22.8kbit/sec
packet data [106]

1991 The first mobile phone network
using digital radio. Introduced
services such as SMS.

→ GPRS 30–100kbit/sec 2000 Increased bandwidth over GSM.

→ EDGE 236,8kbit/sec 2003 Increased bandwidth over GSM
and GPRS.

3G (UMTS,
WCDMA)

384kbit/sec 2001 Mobile music and other types
of apps started to be used
through more advanced smart-
phones. The phones changed
awareness and increased the de-
mand for higher communication
bandwidth.

→ HSPA 14.4–
672Mbit/sec [219]

2010 Increased bandwidth over 3G.

4G (LTE) 100Mbit/sec–1Gbit/ 2009 Mobile video.

5G 1Gbit/sec to many
users simultaneously

2018 Massive deployment of high
bandwidth to mobile users,
smart homes, high definition
video transmission. Focus on
low response time.

Table 2.1: The most important telecommunication standards and their commu-
nication bandwidth linked to the main features introduced by the standard.

2.1 Telecommunication Standards

Telecommunication systems are complex because they implement several com-
munication standards. Standards define how systems should interact and is a

2.2 Telecommunication Services 19

fundamental tool when connecting different manufacturer’s systems. The stan-
dards continuously evolve to reflect customer demands, which drive equipment
manufacturer to continually develop new features and system improvements.
Several standards execute concurrently for efficiency reasons. See Table 2.1 for
a list of telecommunication standards and their main features.

Groupe Spécial Mobile (GSM) [287] (2G) was introduced in 1991 and
provided the second generation of mobile communication. It was the first com-
mercial and widely available mobile communication system that supported dig-
ital communication [235]. Needless to say, the GSM system was an astonishing
commercial success with 1 billion subscribers in 2002 [63] and 3.5 billion [118]
in 2009. The introduction of GSM changed the way people communicate by
allowing a significant portion of the population in industrialized countries to use
mobile phones. Several extensions to the GSM standard, GPRS, and EDGE, fur-
ther increased the communication bandwidth, thus allowing the implementation
of even more complex services.

In 2001, the third generation (3G) standard was introduced as a response
to customer demands for further increased bandwidth. The 3G standard is also
known as Universal Mobile Telecommunication System (UMTS).

A fourth increment (4G) of the telecommunication standard, also called
Long Term Evolution (LTE) [142], was introduced to the market in 2009. At
this point, a large part of the industrialized world had adapted the “always-
online” paradigm. The society, as a whole, looks favorably on mobile broad-
band and social networking services [146] demanding higher capacity in the
telecommunication infrastructure.

Today, in 2018, we are standing on the brink of the next telecommunication
standard to be implemented (5G). It is estimated to be released to the market in
2020 with substantial improvements compared to LTE [24]. The first improve-
ment is a massive increase in bandwidth when there are many simultaneous
users. A drastically reduced latency (below 1ms) is needed to support traffic
safety and industrial infrastructure processes [87]. There is also an increasing
demand for a reduction of energy consumption [42] so that it is environmentally
friendly [88], while also making it possible to install network nodes in remote
places [86] with scarce power supply.

2.2 Telecommunication Services

The introduction of mobile phones quicky made voice communication the most
important service. It was the natural way to extend the already existing wire

20 Chapter 2. Background

 0

 2

 4

 6

 8

 10

 12

2
0

1
0

2
0

1
1

2
0

1
2

2
0

1
3

2
0

1
4

2
0

1
5

2
0

1
6

2
0

1
7

2
0

1
8

2
0

1
9

T
ra
ffi

c
[E

x
a
B

y
te

s]

Voice Communication
Mobile Phone Data
Mobile Computer Data

(a) Voice and data traffic.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

2
0

1
0

2
0

1
1

2
0

1
2

2
0

1
3

2
0

1
4

2
0

1
5

2
0

1
6

2
0

1
7

2
0

1
8

2
0

1
9

T
ra
ffi

c
[E

x
a
B

y
te

s]

Sum
Video
Audio,Web,File sharing,
Social Networking Services

(b) Mobile application traffic.

Figure 2.1: The graph [146] shows world-wide market outlook for mobile traffic
2010 – 2019 [84].

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Ja
n
-2

0
0

8

Ju
l-

2
0

0
8

Ja
n
-2

0
0

9

Ju
l-

2
0

0
9

Ja
n
-2

0
1

0

Ju
l-

2
0

1
0

Ja
n
-2

0
1

1

Ju
l-

2
0

1
1

Ja
n
-2

0
1

2

Ju
l-

2
0

1
2

Ja
n
-2

0
1

3

Ju
l-

2
0

1
3

Ja
n
-2

0
1

4

Ju
l-

2
0

1
4

 0

 20

 40

 60

 80

 100

A
v
a
ila

b
le

 A
p

p
s

[M
x
#

]

D
o
w

n
lo

a
d

e
d

 A
p

p
s

[B
x
#

]Available Apple Apps
Available Google Apps
Apple Downloads
Google Downloads

Figure 2.2: The graph [146] shows download-statistics for mobile phone appli-
cation gathered from several online sources [12, 13, 45, 138, 285].

bound voice service into the mobile era. Voice services have now reached its
peak from a capacity perspective [84], see Figure 2.1a. It is also apparent that
data communication is rapidly increasing for both mobile phones and mobile
computers. A report [85] by Ericsson Consumer Lab attributes the increased
data usage to five main usage areas:

2.3 Industrial Systems 21

• Streaming services are quickly gaining acceptance among the population
and include on-demand services such as music, pay-per-view TV and
movies. Ericsson estimates that mobile video will be one of the most
requested services in the coming years (2010–2019), see Figure 2.1b.

• Home appliance monitoring is increasing rapidly. For example water
flood monitoring, heat and light control, refrigerator warning systems,
coffee-machine refill sensors, entry and leave detection and much more.

• Data usage are expected to increase further at a rapid pace with the use
of Information Communication Technology (ICT) devices such as mobile
phones, watches, tablets and laptops. There is a common acceptance to
use ICT devices for a large portion of daily activities [90] such as bank
transactions, purchases, navigation, etc. The use of devices is expected
to further increase the utilization of telecommunication networks [312].
The extraordinary increase in download rate of mobile apps indicates the
acceptance of mobile usage among people, see Figure 2.2.

• Vehicle communication to support self-driving cars [87] and automated
vehicle fleet management [88].
• Reduced network latency is needed to implement Industrial infrastruct-

ure [87] operations over wireless networks.

The overall increase in geographical and population coverage paired with new
services, such as the ones described above, will contribute to an enormous
growth in mobile data traffic. The geographical coverage was in 2014 mainly
focused on Europe and USA with Asia, mainly India and China, quickly catch-
ing up and surpassing [88]. In 2015 there were approx. 7.4(3.4)1 billion mobile
subscribers world-wide and it is estimated that there will be 9.1(6.4) billion sub-
scriptions by 2021 [88]. Increasing both geographical and population coverage
causes an unprecedented change in global mobile data usage, which is currently
one of the biggest challenges for network operators.

2.3 Industrial Systems
The system we have targeted and also performed our experiments upon is an
execution platform handling several generations of telecommunication stan-
dards. The platform has been developed by Ericsson for several decades and is
called Cello or Connectivity Packet Platform [4, 168] (CPP). The platform is
generic and supports many existing communication standards [75], including
3G and LTE.

1The number of advanced smartphone subscriptions in parenthesis.

22 Chapter 2. Background

Node

Node

Node

Node

Node

Node Node

Node

Node
Node

Node

Node

Node

In
te

rf
ac

e

In
terface

S
tan

d
ard

ized
St

an
da

rd
iz

ed

In
te

rf
ac

e

St
an

da
rd

iz
ed

Industrial System

Interfaces
Internal

Internet

Standardized

Interface

Other Industrial System

Figure 2.3: Industrial systems interacts with surrounding systems using stan-
dardized interfaces. We have concentrated on node-internal characteristics and
performance improvements for internal interfaces.

The telecommunication system we have investigated in this thesis shares
similar properties with other large-scale industrial systems. We believe that
other systems also can use our research results since they share a similar system
structure and behavior. We show a simplified overview of the telecommunica-
tion system investigated by us in Figure 2.3. The system distributes over many
computers, denoted nodes. Internal nodes that implement a subset of the sys-
tem functionality do not necessarily use standardized communication protocols.
Performance improvements can be achieved using proprietary protocols over
internal interfaces. Standardized communication is necessary for external com-
munication such as the interoperability between equipment manufacturers. We
have defined behavioral patterns that are common to industrial and telecommu-
nication systems [122] . Some examples are:

2.3 Industrial Systems 23

• There is a low acceptance for system downtime.

• There are multiple concurrent hardware and software generations.

• The lifetime spans over several decades.

• The size and system complexity causes long lead-times when developing
new functionality.

• Substantial internal communication between nodes inside the industrial
system. External connections require the use of standardized protocols,
for example 3GPP for telecommunication systems, Figure 2.3.

We have tried to generalize our research as far as possible. We believe that
our research results should be applicable for many other systems sharing the
same structure and behavior as the type of telecommunication system we have
investigated. Some industrial systems are located in large server facilities, pro-
viding easy access for engineers and scientists. Other industrial systems are
located in “friendly” places where a support engineer can access them and
extract any information needed. Telecommunication systems are typically de-
ployed in a different type of environment. Most network operators have their
own infrastructure where the telecommunication nodes are located. Support
and maintenance personnel is often employed by the operator. In the rare cases
when the operator receives support help from the equipment manufacturer, they
are not given full access to the nodes. Such restrictions makes it difficult to mon-
itor hardware characteristics for production nodes. Operators are traditionally
very restrictive towards running diagnostics, test programs or monitoring tools
that are not verified as production level software.

Physical access restrictions also make it vital to have adequate error han-
dling that gathers enough information when a fault occurs. It is not possible to
retrieve additional troubleshooting information at a later time meaning that all
necessary information must be generate automatically and packaged together
with the trouble report. The scenario of restricted node access is one aspect we
have addressed in this thesis work. System developers have always demanded
hardware characteristics measurements for production nodes, but it has been
hard to obtain such information.

24 Chapter 2. Background

Figure 2.4: Many circuit boards (to the left) are interconnected to form a cabi-
net (to the right). Courtesy of Ericsson 2016.

Figure 2.5: Several interconnected cabinets construct a large-scale telecommu-
nication system. One node in Figure 2.3 can vary in size from a single circuit
board up to several cabinets. Courtesy of Ericsson 2016.

2.4 Deploying Our Target System 25

Figure 2.6: Complex lab test environment. Courtesy of Ericsson 2016.

2.4 Deploying Our Target System

A node is a system entity that can be implemented with different physical
components. The physical layout of a telecommunication system is governed
by strict rules. One cabinet, to the right in Figure 2.4, consists of three vertically
mounted sub-racks. Each sub-rack holds up to 20 circuit boards, illustrated to
the left in Figure 2.4. In total, a cabinet sums up to approximately 20 ∗ 3 = 60
circuit boards, depending on the desired configuration. Several cabinets can be
connected to form a large-scale node, see Figure 2.5. Each circuit board can
have several CPUs with multiples of 10’s of cores each. In total the largest
systems can consists of thousands of CPU’s.

It is possible to deploy the system in several different levels, which is par-
ticularly useful for testing purposes. Running one board by itself provides the
most basic level of system used for low-level testing. A slightly bigger system
is achieved when at least two boards are interconnected to form a small cluster.
This level of system is useful for verifying cluster functionality. Much more
complex testing scenarios can be formed by configuring larger nodes, such
as Figure 2.6. These type of nodes are seldom available for software design

26 Chapter 2. Background

purposes since they are very costly. Large-scale nodes are mainly used when
testing complex traffic scenarios and for performance related verification.

A fully operational telecommunication system needs additional equipment
such as various antennas, cabling, GPS, and operator interaction computers. The
system also requires many mechanical parts to house nodes and towers to mount
antennas. We do not consider those types of equipment and have only focused
on the part of system related to message communication and traffic handling.

3

5

4

L
o

g
ic

B
u

si
n

es
s

2

H
ar

d
w

ar
e

1

P
la

tf
o

rm

BA C

Latest

Local Adjustments

Legacy

Cluster Functions

Application

Operating System

Target Specific Drivers

Generic Drivers

Figure 2.7: There are five abstraction levels (right) implementing the complete
system spanning from hardware to business logic (left). There are multiple
hardware implementations (bottom) spanning from legacy single-core proces-
sors (1–A) to advanced multi-core processors (1–C). The same platform (2-4)
and application (5) supports all hardware implementations.

2.5 System Details 27

2.5 System Details

We followed the guidelines presented by Petersen [231] to contextualize our
investigated system. We investigated a large telecommunication system [23,
293] where each node in the system overview, Figure 2.3, is described internally
as in Figure 2.7. From a high-level perspective there are five abstraction levels
(to the right in figure) that are structured in three functional parts (to the left in
figure).

The hardware (level 1) is implemented with custom made circuit boards
with varying performance capabilities depending on desired functionality and
year of manufacture. The performance spans from older single-core boards up
to several CPU’s, each utilizing 10’s of cores. Memory capacity is varying from
a few MB’s up to many GB’s per CPU.

Hardware variations put great emphasis on designing drivers (level 2) that
must be generic as well as provide support target specific functionality. The
drivers must maintain a stable legacy interface towards the OS. Application
programming interface stability is vital in large scale system development.

Third party vendors deliver the OS (level 3) and depending on the use-
case it is either a specifically tailored proprietary real-time OS or Linux. The
API-functionality supplied by the OS must be both backward and forward com-
patible regardless of changes to the OS and the hardware. Changing low-level
functionality should not be propagated upwards to higher levels.

Cluster functionality is implemented (level 4) to support board interoper-
ability, communication mechanisms, initial configuration, error management,
error recovery and much more. The majority of the platform source code is
implemented at this level. It is a complex part of the platform (levels 2–4) with
complicated system functionality to maintain high-availability. Sharing the plat-
form between multiple hardware platforms is vital for the maintainability of the
complete system.

The application runs on the uppermost level of the system (level 5). It is
by far the largest portion of all layers when comparing computational capacity,
memory footprint and any functional metric. There are several applications that
each implement a complete telecommunication standard, such as GSM [287],
WCDMA [130, p 1–10] or LTE [142]. Several high-level modeling languages
have been used to model these applications in combination to low-level native
code. The model is, in some cases, used to generate low-level programming
code that is natively compiled for a specific target. The resulting code is com-
plex to debug, especially from a performance perspective. One issue is the
sheer size of the application, which footprint is many Gigabytes. Furthermore,

28 Chapter 2. Background

it sometimes runs inside an interpreting/compiling virtual machine shadowing
internal functionality. We have mainly worked with the platform parts in our
studies (levels 2–4).

Maturity and Quality

The CPP telecommunication platform is a very mature product, and Ericsson
deployed the first test system in 1998 [294] and released the first commercial
system in 2001. The system is deployed worldwide and had a market share
of 40% [247] in 2015. Nokia-Alcatel-Lucent (35%) and Huawei (20%) share
most of the remaining market share. Being competitive is a key factor, and
one of the most critical success factors for the resulting products is to keep
development times as short as possible [110, 251, 284, 286, 293]. There are, in
general, new hardware releases every 12-24 months to improve performance
and consolidate functionality on fewer boards. Constant development activities
using an agile [68] development process results in continuous customer releases
of new software versions.

There are strict quality requirements on telecommunication systems, similar
to other large infrastructure systems. In particular, there is little acceptance for
downtime. Typically, a system is required to supply a 99.999% [176] uptime
(five nines) meaning a maximum of roughly 5 minutes system downtime per
year. Such high availability is difficult to reach because regular system updates
may result in system restarts lowering the uptime. Intelligent traffic handling
allows nodes to process traffic when a particular node is updated. There are
many simultaneously running generations of software and hardware in an inter-
connected telecommunication system [122]. Multiple software and hardware
revisions increase the complexity, especially when designing new functionality
and debugging legacy problems.

It is also difficult to develop telecommunication systems because of the
strict system level agreements (SLA) [305]. There are several levels of SLA,
varying from customer demands of certain uptime, such as 99,999% [176] (five
nines) uptime, to the quality of service (QoS) for the OS. This thesis address
QoS for the process scheduler in Chapter 8.

Size and Type of System

To give an idea of the system size we present the number of source lines
(SLOC) [216]. The OS is either a legacy third party real-time OS (many million

2.5 System Details 29

lines)2 or Linux (15 million lines [189]). Running on top of the OS is a manage-
ment layer providing cluster awareness and robustness. This layer consists of
several million lines of code. The business logic is implemented using a model-
based approach with large and complex models. It implements the complete
communication standard for terminating traffic and handling call-setup. This
part of the system has cost several thousands of man-year to develop, and the
execution footprint is many GB.

The system is an extensive embedded distributed system [276]. Each exe-
cution unit (board) runs an OS that supports soft real-time applications. The
boards are interconnected to form a large distributed system. Processes ex-
ecuting on one board can easily connect to processes executing on another.
Interconnect poses many practical difficulties for standard OS:s, for example,
the vast number of concurrently running processes. Furthermore, the system is
designed to be both robust and scalable [113]. Customizing a telecommunica-
tion platform is a significant and challenging task. There is an operational and
maintenance interface containing literary thousands of possible customization
options. To further add to the overall complexity, it is also possible to make
individual choices on how to connect each physical node in the network, see
Figure 2.3.

Programming Languages

The system is built using many different programming paradigms. Drivers, ab-
straction level 2 in Figure 2.7, are implemented in either assembler or C. The
OS, level 3, is also implemented in C and assembler where high performance
is needed. The rationale for selecting C as the main programming language is
historical but knowledge (at the time) and execution efficiency was the main
reasons for the decision. The OS, level 3, is supplied by a third party company.
For maintainability reasons, the surrounding code implements local OS adjust-
ments. During our research, we have mainly implemented functionality in level
3.

Moving the abstraction further from the hardware changes the programming
paradigm to support higher level programming languages. For cluster function-
ality, level 4, several programming languages are used, such as C and C++ for
legacy code. Depending on requirements, recent functional additions may be
implemented in either Java or Erlang.

Various model-based approaches have been used when implementing the
application layer, level 5. There are several applications implementing differ-

2Business aspects prohibits us from disclosing the exact number of lines of code.

30 Chapter 2. Background

ent parts of the telecommunication standards described in Section 2.2. The
applications share the common execution environment provided by lower levels
(1–4).

Hardware

Message processing system usually consists of two parts [262, p1], the control
system and the data plane. The control system implements functionality for
configuring and maintaining the system throughout its life span. The data plane
is mainly concerned with payload handling, i.e. routing messages towards their
destination. In our system, the control system hardware is different from the
data plane hardware. The former is partially implemented with common off-the-
shelf hardware while the latter uses tailored CPU’s with specialized hardware
support for packet handling. We have investigated the control system, which
has a communication rate in the range of Gbit/sec. The traffic terminates at the
destination node where the CPU performs some message processing. We have
not investigated the data plane.

The CPP system runs on more than 20 [23] different hardware platforms
depending on the required performance. Low-power boards may be using ARM
CPUs while high-end circuit boards aimed towards heavier calculations may use
powerful PowerPC R© or x86 CPUs. Using multiple hardware architectures is a
challenging task. Platform code from level 4 and upwards, see Figure 2.7, must
be hardware agnostic to be easily portable and efficiently maintained. The same
applies to the application software, level 5, executing on top of the platform.

Development Process

Developing a large infrastructure system [122] puts great effort into develop-
ment tools and the applied development process. Individual tracking of each
code change is a requirement. Customers require continuous improvements
with little or no consideration to the age or version of the software and hard-
ware. It is hard to support systems with mixed hardware generations, and each
software release must support several simultaneously running hardware genera-
tions. As an indication of the system size, thousands of skilled engineers [122]
have spent decades implementing the system. The design organization is dis-
tributed over many geographic locations, requiring intense coordination.

When we started our research, the development process consisted of many
sequential steps of different complexity and size. We have since then started to
use agile development processes.

2.5 System Details 31

test and design

costly.

Development Deployment

1

2

3

4

5

Approval of Functional Change

System Dept.

Implementation of Functional Change

Test Dept.

Application Development

Appl. Design Dept.

Platform Design Dept.

Customer Organization

Characteristics Test

System Deployment

Iterations between

Test

process stages are

Figure 2.8: System development waterfall model.

Requirement phase The requirement phase is the first step in the develop-
ment process. This is the place where the system department specify function
requirements and decide when a system function should be implemented, 1
in Figure 2.8. Requirements for the system department may originate from
customers, market trends or internally.

Design phase The second step in the development process is the design phase.
The design phase consists of a chain of activities that each depend on the suc-
cessful completion of earlier activities, similar to the waterfall model [252]. We
use agile methods [68] within each development substage allowing parallel
development of system functions. The first activity in the design phase is plat-
form development, denoted 2 . The primary requirement on the platform is to
provide an adequate execution environment for subsequent application devel-
opment. Such an execution environment contains an OS and drivers together
with low-level APIs and a cluster-aware middleware. Finally, multiple applica-
tion development departments build the applications, 3 , that implements the
business logic, i.e., the real customer-demanded functionality.

32 Chapter 2. Background

System test phase The third major development process stage contains system-
testing, 4 , and product-release, 5 . Although software unit testing is performed
throughout the development phase, no full-scale performance test can be done
before all parts of the system are completed. Testing departments measure
the application execution characteristics (hardware resource usage) and perfor-
mance when both the platform and the application have been finalized. Usability
analysis and application performance is measured at the end of the development
cycle [101] because it usually requires both a fully working system and a suit-
able test environment. The system can be released to customers when it meets
both functional and performance requirements.

2.6 Operating Systems
Our target system has used several different OS:es over time as various system
implementations had different requirements. It was common to use tailored
OS:es during the 90’s. The burden of maintaining inhouse developed OS:es
prompted a more economically viable solution. Enea OSE, Section 2.6.1 was
introduced at first as a consultancy project and later as a full product. Using a
third-party OS resolved many of the problematic issues that troubled the design
organization. For example keeping up with the latest software technologies,
migrating the OS to new targets and many other obstacle. A similar reasoning
later prompted the switch from OSE to Linux. It is difficult to pinpoint the
exact year but early tests were made around 2010. We briefly describe Linux in
Section 2.6.2.

2.6.1 Enea OSE
The Enea OSE is a general-purpose real-time [39, p430] OS [273]. OSE was
originally developed for use in many generations of Ericsson telecommunica-
tion systems. The idea for OSE sprung from the need of a general-purpose
real-time OS that was both simple to handle and had high performance. We
describe the most important OSE services [111] in the following paragraphs:

Process scheduling OSE implements various type of processes. The most
common process type is the prioritized process, which is handled by a fixed
priority preemptive scheduler. There are 32 priority levels [81]. A running pri-
oritized process can only be interrupted by another prioritized process if the
latter one has higher priority or if the running process yields. It is also possi-
ble to use interrupt-, timer- and background processes. An interrupt process is

2.6 Operating Systems 33

typically triggered by an external event, such as an arriving Ethernet packet. A
timer process has a recurring execution pattern and runs at specific intervals.
Background processes have the lowest priorities and will only execute when no
other process demands the CPU [80].

Memory management Each application, denoted load-module in OSE, has
its own memory domain that may be shared with other applications by form-
ing process blocks [41, p4]. Applications can, in general, not access common
memory unless explicitly configured. Such memory protection improves the
system stability because stray memory accesses can be avoided. OSE also tries
to locate corrupted memory buffers by implementing various buffer endmark
checks when making system calls [81, p39].

Centralized error handling Error handling [81, p39] in OSE is generally
system-wide. It is generally not necessary to handle possible error return codes
when calling system functions. The kernel will detect that an error has occurred
and call either an error handler connected to the process or a system-wide error
handler. The main benefit of this mechanism is that it makes it possible to
centralize error handling and not scatter it all over the system code.

Message passing Processes in OSE communicate through a signalling inter-
face. The signalling interface sets up an inbox where received messages are
tagged. When the recipient polls the inbox the message is copied from the
sender to the receiver. The message interface is very efficient since it mini-
mize the number of process context switches, thus allowing extensive message
passing while maintaining a high performance.

There are many other convenience services supported by OSE [82, p39].
For example heap managing, program loading, persistant storage, command-
line interface and many more.

Our target system has evaluated and used various type of system setups [115]
ranging from standalone OSE systems to hybrid approaches. For legacy sys-
tems, the most common setup is although the standalone and pure OSE-based
system. Around 2010 the market trend showed a relentless drive of moving to
open source software such as Linux. Some reports [91] showed that the perfor-
mance impact of such a move would not be too great. Much work was spent in
trying to bridge the gap between OSE and Linux [214] although the move to the
Linux OS was unavoidable. The desire to move large parts of the target system
to Linux has also triggered numerous internal and external [255] investigations.
Most investigations state that it is feasible to move from OSE to Linux but it

34 Chapter 2. Background

requires further investigations. We describe Linux in the next section of this
thesis.

2.6.2 Linux
Linux is a vast OS. It has more than 15 million [189] lines of code (SLOC) [216]
and supports many different architectures and a wide array of drivers. The gen-
erability comes with a performance cost making it difficult for Linux to compete
with tailor-made real-time OSes. Linux has, on the other hand, some advantages
such as its free availability of source code and a huge installed base. Among
others, these two factors have resulted in a vast Linux development commu-
nity. A company can, to some extent, expect that drivers will be automatically
developed for new hardware without themselves doing the job. The Linux com-
munity has, of course, also addressed the performance penalty of generability.
There has been much work related to performance optimizations, such as the
early adoption of Symmetric Multiprocessing Processors (SMP). There is also
an extensive array of tools suitable for performance analysis, such as Perf [188],
Oprofile [184], Valgrind [215], PAPI [109] and many others.

Linux was at the beginning mostly suitable for desktop computers, and
subsequently, it made its way into the server market. Quite recently [249] Linux
has started to support real-time behavior making it suitable for use in embedded
industrial products, such as telecommunication systems. The lack of licensing
fee for Linux has been a dominant driving force to migrate legacy functionality
from tailored OS:es to Linux.

History Linux was first released in 1991 [270] named version 0.01. It was a
basic OS with no networking support, and it ran only on Intel R© 386 hardware.
The first official version of Linux was delivered 1994 and supported only i386-
based computers. After many structural changes and major redesigns, the Linux
kernel of today does not much resemble the initial version, see Table 2.2. The
Linux community added support for additional architectures in the 1.2 Linux
kernel in [270] and the process scheduler was still simple and designed to be
fast when adding and removing processes [163]. The most important change in
the 2.0 release included rudimentary Symmetric Multiprocessor Support (SMP).
The 2.2 kernel release added support for scheduling classes making it possible
to use several scheduling policies for different processes, such as real-time and
fair scheduling. The release also improved on the previous SMP support [163].

The 2.4 kernel added O(N) the process scheduler, which divided the exe-
cution time into epochs. All processes belong to the ready-queue when an epoch

2.6 Operating Systems 35

Version Year Major Design Changes

1.0 1994 The initial (official) Linux delivery only targeting i386-based
computers.

1.2 1995 Added a modular architecture and support for several additional
architectures such as Alpha, SPARC and MIPS. The process
scheduler was implemented with a circular run-queue utilizing
a round-robin scheduling policy [27]. The main design goal was
to be simple and fast when adding and removing processes [163,
270].

2.0 1996 Added multiple architectures and SMP support.

2.2 1999 Added support for scheduling classes, which made it possible to
use several scheduling policies for different processes. This re-
lease also added more advanced support for SMP system [163].

2.4 2001 The O(N) scheduler was added. It divided the execution time
into epochs and iterated over all processes in the system se-
lecting basing the selection mechanism on a metric function.
Parts of the execution quanta left-over from one epoch could be
passed on to the next epoch [163, 194].

2.6 2003 The O(1) scheduler is released to reduce scalability issues re-
lated to the earlier scheduler [1, 163, 173, 174].

2.6.23 2007 The CFS scheduler [96] was created to improve the responsive-
ness of desktop applications [172].

3.14 2014 The EDF scheduler [97, 181] is merged into Linux main track.

Table 2.2: A brief history of Linux kernel key releases.

starts. As processes are assigned to CPUs thus exhausting their execution quota,
the scheduler moves them to the wait-queue. The epoch ends when all processes
are in the wait-queue, which starts a new epoch by swapping the wait-queue
and ready-queue [172]. The scheduler selects the next task by iterating over all
processes in the system and using a metric selection function. A new epoch can
inherit the execution quanta left-over from a previous epoch [163, 194].

The community quickly discovered that the O(N) scheduler has scalabil-
ity problems with large systems having a massive number of concurrent pro-
cesses. The 2.6 release introduced the O(1) scheduler, which provided a con-
stant time for each process scheduling selection [1, 163, 173, 174]. The O(1)

36 Chapter 2. Background

scheduler solved many of the scalability problems but showed latency prob-
lems for user-interactive applications. There were heated debates in kernel
discussion groups how to solve the issue of responsiveness. One suggestion
was to introduce the Staircase scheduler [173] and later the Rotating Stair-
case DeadLine (RSDL) [174] scheduler into the OS. Both schedulers aimed to
reduce latency and provide better desktop support for Linux. These two sched-
ulers acted as a starting point for the later development of the Completely Fair
Scheduler (CFS) [172] which replaced the O(1) scheduler in the Linux ker-
nel 2.6.23 [96]. Improving the responsiveness [172] for desktop applications
triggered the development of the CFS scheduler [96].

I believe that many events in my work and life have been a matter
of luck or accident. But I am also aware of several occasions on
which I explicitly made choices to step off the obvious path, and
do something that others thought odd or worse. . . I have come to
think of these events as ’detours’ from the obvious career paths
stretching before me. Frequently these detours have become the
main road for me. There are obvious costs to such detours. Other
choices might have made me richer, more influential, more famous,
more productive, and so on. But I like what I am doing, even though
the path has involved a lot of wandering through uncharted terri-
tory.

— L. David Brown3

3Quoted from the book by M. Brydon-Miller, D. Greenwood and P. Maguire [37]

3
Research Method

WE We have had a large-scale telecommunication system [23, 293] at
our disposal during the work on this thesis. This is a unique op-
portunity for real-world research on a large scale system. Instead

of using a theoretical example that is well suited, we had to let the particular
system influence us when we formulated the hypothesis, see Section 3.1, and
the research questions in Section 3.2. We have expressed our research questions
generically to ensure that they can address issues that are problematic for many
other large-scale communication systems. We have also clarified some essential
requirements related to each research question.

The research delimitations are closely related to the research questions be-
cause they limit the scope of our research. We have listed the most significant
delimitations in Section 3.3.

We have performed several case studies during the monitoring and model-
ing phases to explore and describe our environment. We adopted a hands-on
approach in the performance improvement phases to solve the particular prob-
lems found by using the techniques devised by earlier phases. We list in detail
the the research methods used in each study in in Section 3.4. The chapter is
concluded in Section 3.5 by listing the threats to validity.

41

42 Chapter 3. Research Method

3.1 The Hypothesis

We have investigated several ways to improve the performance of large telecom-
munication systems. We have formulated the hypothesis as follows:

By monitoring relevant hardware and software character-
istics of a large industrial telecommunication system, we
can find performance improvement areas.

3.2 Research Questions

The goal of our research is a systematic collection of characteristics data that
can be used to model the hardware usage of the system and to find performance
improvement areas. The research questions below mirrors the requirements
obtained from the industrial environment where we have worked.

3.2.1 System Monitoring

The telecommunication system we have focused on is well understood and
thoroughly tested from a functional perspective. The system has not reached the
same level of maturity concerning characteristics testing. New functionality is
well defined and implemented according to detailed specifications by engineers
with long experience in system development. However, the system complexity
and the difficulty to monitor the system behavior and the hardware usage makes
it difficult to understand what impact software changes will have on the system
behavior. This reasoning leads to our first research question:

Q1 How to monitor the hardware usage and software performance
of a production system without noticeable side-effects on the
monitored system?

We refine the research question, Q1 with additional constraints making it com-
pliant with general industrial requirements:

• The probe-effect [108] of the resource monitor must be negligible to
admitting the tool in a customer production environment.

3.2 Research Questions 43

• The resource monitor must support sustained monitoring times, several
days or weeks, as well as high-frequency sampling.

• The resource monitor must be easily adaptable to different systems, ar-
chitectures, and scenarios.

3.2.2 System Modeling
We continued to work with characteristics monitoring, see Section 3.2.1, and
quickly understood that our monitoring mechanisms could be useful for other
purposes than only characteristics monitoring. The design organisation where
we performed our tests had for a long time struggled with the problem of hav-
ing long lead times between platform development and characteristics testing.
According to system architects the long lead-time results in difficult and time-
consuming bug fixes. Early error detection is very difficult [6], but when suc-
cessful it allows software errors to be corrected sooner than previously possi-
ble [282] leading to a reduction in development cost [29, 30]. This reasoning
resulted in our second research question:

Q2 How to automate modeling and replication of hardware usage
for a production system?

We refine the research question, Q2 with additional constraints making it com-
pliant with industrial requirements:

• The mechanism should be fully automatic because we want to include it
in an automated test framework.

• The mechanism should be generic for most types of industrial systems to
make it applicable over the complete product suite with varying hardware
and software implementations.

3.2.3 Improving System Performance
Our first two research questions targeted characteristics monitoring of a produc-
tion system and performance bottlenecks detection. The natural next step was
to target performance improvements for the system. How to use the extracted
execution characteristics information to identify areas where the performance
of our target system can be improved? This reasoning resulted in our third
research question.

44 Chapter 3. Research Method

Q3 How can the communication performance of a telecommunica-
tion system be improved through message compression while
retaining the system load within pre-defined limits?

We refine the research question, Q3 with additional constraints so that it com-
plies with general requirements for our industrial system:

• The communication performance improvements must be fully automatic
since network operators do not allow access to the system after deploy-
ment.

• The network congestion level and CPU utilization are different for vari-
ous deployment scenarios and also changes over time due to alternating
usage patterns. Any communication improvement method must automat-
ically adapt to a changing environment, and it is therefore not possible to
optimize it for a specific scenario.

• The system must be able to handle and improve the communication per-
formance for multiple concurrent communication streams.

• Other co-located services, such as databases, JAVA machines, SFTP, SSH-
and Telnet servers, should not be negatively affected by the communica-
tion improvements.

• Robustness and automaticity have higher priority than performance.

Improving the performance of our investigated system is the overall goal of this
thesis. The target is to design an automatic mechanism that is robust and works
well in an industrial environment.

3.2.4 Process Allocation and Scheduling to Efficiently En-
force Quality of Service

We have continued to study the performance impact of shared hardware re-
source congestion. We have investigated process allocation and scheduling. We
realized that it is difficult to estimate the hardware usage of a computer system.
It is even more challenging to map the hardware-usage to the user-experienced
performance automatically.

There are many efforts to enforce QoS by limiting the CPU time-quota avail-
able for processes in a system [44]. Time-quota approaches do not necessarily
tackle the performance impact of shared hardware resource congestion. We can

3.3 Delimitations 45

exemplify this by a scenario where processes p0 and p1 execute on adjacent
cores having a shared cache. Accesses from p0 will affect the cache availabil-
ity for p1, even if the OS process scheduler assigns sufficient CPU quota to
each process. In this context, we define allocation as the way to distribute pro-
cesses over a set of cores, and scheduling as the way to control the execution of
processes on the same core.

Q4 How can an operating system process scheduler provide high
performance and enforce shared resource quality of service by
allocating and scheduling processes on a multicore CPU?

As with the previous research questions, we refine the research question, Q4
with additional constraints so that it complies with general requirements for our
industrial system:

• Processes should be allocated so that they achieve high performance.

• It must be possible to ensure that a pre-defined shared resource quota is
available for QoS sensitive processes.

• It must be easy to deploy the scheduler in an industrial environment.

• The scheduler must simultaneously support legacy scheduling policies
such as real-time/deadline, time-sharing, etc.

3.3 Delimitations
We have chosen to limit the scope of our investigation to one particular system,
which is the telecommunication system to which we have had privileged access.
It is hard to gain access to other industrial systems since we need to modify
parts of the system to perform our research. We have performed our experiments
on one type of system, but our opinion is that our methods apply to many
other large-scale industrial systems. We believe that the general methods are
applicable for many other systems, although the specific experimental results
are unique for our target system. Some delimitations specific to our research
are:

• We have not yet explicitly verified that characteristics testing in early
design phases reduce the total system development time, but earlier re-
search [29, 30, 282] strongly implies that.

46 Chapter 3. Research Method

• The telecommunication system we have investigated is IO-bound, and
we have therefore mostly focused on modeling the low-level cache usage.

• For the system modeling parts of this thesis, we have opted to use a low
sample frequency (1Hz) that may be insufficient in some cases. We think
that it is sufficient for our static model synthesis procedure. The charac-
teristics of our target system are relatively static where the resource usage
slowly changes depending on end-user behavior. The reason for this was
that operator requirements forced us to guarantee that the production
environment would not experience any probe effect. See Section 3.2.1.

Most limitations stem from the fact that it is challenging to get customer consent
to access production nodes. Customers are very concerned that any system
change may affect stability, security or performance, and it is therefore usually
difficult to run any monitoring tool at a customer site. One of the goals in future
system development is to migrate from the current development process to a
DevOps development process, which depends on making runtime monitoring
data available smoothly between Development and Operations and vice versa
of a system (DevOps) [245].

3.4 Research Methodology

We have used two qualitative methods [263] to obtain the research results pre-
sented in this thesis. The first is case studies [182, 253, 254] to explore and
describe the investigated object. The second method is action research [185]
when iteratively implementing improvements in an industrial environment.

We base the papers A, B and the technical reports M and N on case studies
of the telecommunication system at our disposal. We opted to use the case study
method to get a better understanding of the system characteristics of production
system. We also wanted to describe the system behavior.

We were active participants of the design organization [230] during the
research for paper C, extending paper H. Changing the position from an obser-
vatory view (as in the case study) to a participatory role allowed us to switch
method towards action research and a more improvement-centric view. We con-
tinued to use the same method during our work on paper D, E and patents O, P.
Table 3.1 relates each research question to publication and research method.

3.5 Threats to Validity 47

RQ Sect. Publication Question Type Research Method

Q1 3.2.1 A (M, N) Exploratory/
Descriptive

Case study

Q2 3.2.2 B (M, N) Exploratory/
Descriptive

Case study

Q3 3.2.3 C (H) Problem Solving/
Improvement

Action research

Q4 3.2.4 D (O) and E (P) Problem Solving/
Improvement

Action research

Table 3.1: Mapping the research questions to methods [244, 254].

3.5 Threats to Validity

We have performed all our research within the scope of an industrial environ-
ment. One of the apparent benefits of investigating an industrial system is that it
provides excellent insight into a production system with real-life customers and
user scenarios. For example, we have gathered the data we used in Papers A, B
and C at customer sites running production systems with real traffic.

We have also based the work for papers D and E on the same production
system but we have used the test framework for generating realistic use cases.
The requirements for all papers stem from the production environment.

However, performing research in the scope of an industrial system intro-
duces some difficulties commonly not seen in pure academic environments. It
is hard to obtain the scientific rigor needed for academic publications, and it
is challenging to publish raw data or implementation details due to corporate
secrecy. It is also challenging to get unrestricted access to a production sys-
tem for research-oriented testing purposes. We have often been allowed a very
limited time-frame for running our implementations on production nodes and
with far-reaching limitations on capacity usage. Such limitations contrast to
the academic interest of having a well-isolated system where it is possible to
determine all execution conditions completely.

We have followed the guidelines by Runeson [254] and Wohlin [302] to
categorize and describe how we have performed our experiments. We divide
the validity discussion into subcategories described in the following sections.

48 Chapter 3. Research Method

3.5.1 Construct Validity

The construct validity [302, p108] describes the relationship between theory and
observation, for example, if our test design has captured the topics we wanted
to investigate.

Our test design for Papers A and B was to 1) Extract characteristics data
from a production system running at a customer site and 2) Synthesize a model
using a production test system. 3) Test the model using a customer bug fix.
We duplicated the real development process in our test design, which indicates
that our early-stage performance benchmarking approach works in a real-world
application. We also assumed, according to earlier research by Boehm [29, 30],
and Tassey [282], that it is economically beneficial to catch bugs in the initial
phases of the development process. They state that the cost of fixing a bug
increases with the distance between where a bug was introducing to where it is
corrected. We accept this claim because it is widely accepted in both industry
and academia, and we have not verified it by ourselves. We wanted to evaluate if
it was possible to synthesize the hardware usage of a production system and the
mimic the load on a test system. Our experiments show that we have addressed
the construction bias.

For the tests in Paper C we modified an existing test system to replay previ-
ously sampled communication data from a production system. We also added
synthetic data to force the test system into corner-cases where our method auto-
matically selects other compression algorithms than the one used for production
system messages. We also introduced synthetic load generators to mimic over-
load scenarios. We wanted to investigate if we could construct an automatic
method that selectively compresses messages using the best of several com-
pression algorithms. Our tests show that our implementation fulfills the desired
functionality.

We set up the test environment for Papers D and E after detailed discus-
sions with engineers handling our target system. During our discussions, we
concluded that we could run the standard test system for our initial allocation
and scheduling tests. The test system captures the principal behavior of the
production system by mimicking packet processing and high cache and mem-
ory utilization. We desired to construct a system that automatically collects the
hardware resource usage of processes and then uses the derived information
for maximizing their performance by allocating them over a CPU core clus-
ter to maximize the performance. Additionally, the system should support the
possibility to restrict the usage of specified hardware resources for individual

3.5 Threats to Validity 49

processes, thereby not affecting the performance of other processes. We have
therefore shown our studies has thoroughly addressed the construct bias.

3.5.2 Internal Validity

The internal validity [162] reflects the quality of the data analysis. In other
words, that have we described and investigated the cause and the correct causal
effect between the things we investigate.

Before starting our research, several senior system architects stated that the
system we are investigating is IO-bound and memory-bound, which in effect
are the system bottlenecks. We empirically verified their statement by using
our characteristics monitor to investigate the system characteristics. We also
verified the claim that our system is IO-bound later in our work when we had
developed the resource-performance correlation method. We have run our tests
on one telecommunication system that is similar to other large-scale systems,
see Section 2.3.

For Papers A and B we synthesized a model for L1I-cache, L1D-cache,
and L2D-cache miss ratio. The model was then used to clone the production
system hardware-usage on a test node. We believe that the model is sufficiently
accurate by verifying that the performance impact of a real bug fix is similar
in the model environment and the production environment. Our tests with the
production system shows that we discovered a real performance related bug
when using the load synthesize mechanism.

For Paper C we have sampled production system message data for use with
the automatic compression mechanism.

We have implemented and tested the techniques presented by Papers D
and E in the scope of the telecommunication system we are investigating. We
have implemented the hardware monitoring part by using the Perf API in Linux
kernel-space, which is easily reusable in other settings and environments. The
system-level monitoring is application specific and needs to be implemented by
the application developer. The analysis part is implemented in a high-level lan-
guage and is completely portable. Our correlation engine automatically selects
the highest correlated resource with the performance and it is system agnostic
since it can use any resource usage metric and application performance met-
ric. Our tests show that the resource-performance correlation model correctly
captures the performance bottleneck for our type of system.

50 Chapter 3. Research Method

3.5.3 Conclusion Validity

The conclusion validity describes the relationship between the treatment and the
outcome [302, p104]. Have we drawn the correct conclusions from the available
data?

We have identified some threats to the conclusion validity for Papers A
and B. We have tested our monitoring and modeling method on one production
system. The test set is too small for far-reaching generalizations, which forces
us to limit our conclusions to the particular type of system we have investigated.
Our target system has the highest market share (40% [247]) among telecommu-
nication systems, which strengthen our belief that the research is representable
for this particular system type. We can reason that many other systems are
similar to our from the resource and performance perspective. The similarity
implies that our techniques should be widely applicable with only minor correc-
tions to certain hardware dependent parts. However, we cannot be certain since
we have not tested and evaluated our method on other industrial systems. It is
challenging to get operator consent to verify our modeling mechanism on other
manufacturers equipment. However, we believe that the generic mechanism is
highly usable for other types of systems with minor modifications. Adapting
our modeling method requires the cache generator functions to be adapted to
different cache structures.

We have implemented our automatic message compression mechanism, de-
scribed in Paper C, on the same system used for Papers A and B. We extracted
our test data from a running production system. We believe our automatic com-
pression mechanism is sufficiently generic and can be utilized by many com-
munication system. Migrating the mechanism to another system require minor
modifications such as modifying the set of compression algorithms suitable for
the new system.

We have validated our techniques presented in Papers D and E on a test
system that replicates applications running on our target system. We have to
the best of our knowledge taken threats of validity into considerations and sys-
tematically attempted to address them. There is always a risk that the proposed
solutions are not as general as we attempt.

3.5.4 Method Applicability

We argue that the findings in Papers A and B gives us excellent insight into
the behavior, resource usage, and performance of our investigated telecommu-
nication system. Understanding the relationship between resource usage and

performance is vital when developing performance critical systems. Our tools
can help the system designer to understand where to look for system-wide bot-
tlenecks.

The implementation described in Paper C has improved the messaging per-
formance by applying selective compression when there are CPU-cycles to
spare. The most significant benefit is that the compression mechanism automat-
ically finds the algorithm providing the lowest message round-trip time. We do
not need to make any manual analysis which it makes a suitable mechanism for
a large-scale system with changing execution patterns.

We have had many discussions at both academic conferences and with in-
dustrial partners. The conclusion has often been that current process schedulers
lack hardware resource awareness, as the one presented in Papers D and E.
We argue that a process scheduler may not need to be resource-aware in all
scenarios. Many end-user desktops will be better off with low latency process
scheduling to support user responsiveness. Other scenarios favor high through-
put, such as server farms handling large volumes of work requests. There is still
a need for resource-aware schedulers when running systems that should provide
a cost-effective (efficient) QoS environment. Our telecommunication system is
such a system, and many other systems share this use-case. All of those systems
can benefit from our resource aware process scheduler.

We have implemented our ideas in a telecommunication system but also
published the results in the academic community. Our contributions are now part
of our company’s product portfolio, which further indicates that our research is
needed and valuable. We believe that our target system is representative of other
large-scale systems and especially systems with extensive communication. The
test of time will show if our results impacts other systems.

1. Du skall inte tro att du är något.
2. Du skall inte tro att du är lika god som vi.
3. Du skall inte tro att du är klokare än vi.
4. Du skall inte inbilla dig att du är bättre än vi.
5. Du skall inte tro att du vet mer än vi.
6. Du skall inte tro att du är förmer än vi.
7. Du skall inte tro att du duger till något.
8. Du skall inte skratta åt oss.
9. Du skall inte tro att någon bryr sig om dig.

10. Du skall inte tro att du kan lära oss något.

— Aksel Sandemose1 [259]

1Sandemose formulated these statements in his book “En flykting korsar sitt spår”. He expresses
the opinion that no person should believe that they can achieve something, become something better,
or even should strive to achieve something in life. This is often referred to as the ”Jante law”.

4
Contributions

TH E contributions presented in this thesis spans over several technical
areas where. Each contribution has been published within various aca-
demic communities. We start this chapter in Section 4.1 by mapping

each publication to a research area and display the publication order. We have
mapped the research questions (Q) to sections of publications in the following
ways:

• A low-intrusive characteristics long-term monitoring application for in-
dustrial use (Q1), Section 4.2.

• An automatic load replication mechanism (Q2), Section 4.3.

• An automatic message compression mechanism that reduce the message
round-trip time by content-aware compression (Q3), Section 4.4.

• A resource aware process allocation mechanism that allocates processes
to increase performance (Q4), Section 4.5.

• A resource aware process scheduling mechanism that enforce QoS be-
tween processes sharing a common hardware (Q4), Section 4.6.

The two last contributions each address a subset of a common research question.
Each of the sections above contains the publication abstract and a brief outline
of our contributions.

55

56 Chapter 4. Contributions

Pat. P

C

H
Pat. O

ED

N

Q

A

K

M
J

B

F

Message Compression
Execution

Monitor
Adaptive Online Shared ResourceLoad Replication

Aware Process
Allocation and Scheduling

Characteristics

Figure 4.1: Our four main research areas.

4.1 Publication Mapping, Hierarchy and Timeline
This thesis consists of four major research areas as depicted in Figure 4.1. The
first area relates to execution characteristics measurement and is mainly based
on

Paper A [150]. Our research in the area is also connected to our other Pa-
pers F [136], J [59] and K [60]. The second area, load replication, is mainly
based on Paper B [151]. The technical report N [154] further expands and adds
contributions to both Paper A and B. Adaptive online message compression is
the third technical area. This area is based on the journal Paper C [153], which
is an extension of Paper H [152]. The fourth and final research area is published
in Papers D [157] and E [147]. Paper D describes resource efficient process al-
location by extending our work in Patent O [155]. Paper E presents a QoS aware
process scheduler extending Patent P [156]. The Licentiate thesis Q [144] was
published as a collection-of-papers and contains the first three research areas.

D

K

E

L

J

N,Q

N,Q

P

O

5.

Shared Resource Aware Process Scheduling

Shared Resource Aware Process Allocation

Monitoring

3.

2.

1.

4.

Load Replication

Other Publications

A,F,M

M

2012

B

2013

G

2014

I

2015 20172016 2018

Adaptive Online Message Compression H C,Q

Figure 4.2: Publication order.

We depict the paper publication order in Figure 4.2. Some papers spans multiple
lines since they cover several research areas.

4.2 Paper A 57

4.2 Paper A
We have addressed research questions Q1 (Section 3.2.1) in:

Marcus Jägemar, Sigrid Eldh, Andreas Ermedahl and Björn Lisper. To-
wards Feedback-Based Generation of Hardware Characteristics. In Pro-
ceedings of the International Workshop on Feedback Computing, 2012. [150]
The paper is further expanded in the technical report N [154].

Paper abstract
In large complex server-like computer systems it is difficult to characterise hard-
ware usage in early stages of system development. Many times the applications
running on the platform are not ready at the time of platform deployment lead-
ing to postponed metrics measurement. In our study we seek answers to the
questions: (1) Can we use a feedback-based control system to create a character-
istics model of a real production system? (2) Can such a model be sufficiently
accurate to detect characteristics changes instead of executing the production
application? The model we have created runs a signalling application, similar to
the production application, together with a PID- regulator generating L1 and L2

cache misses to the same ex- tent as the production system. Our measurements
indicate that we have managed to mimic a similar environment regarding cache
characteristics. Additionally we have applied the model on a software update
for a production system and detected characteristics changes using the model.
This has later been verified on the complete production system, which in this
study is a large scale telecommunication system with a substantial market share.

Contribution
Thesis writer (me) is the main and first author of Paper A and the extended
technical report N [154]. We implemented a method for long-term monitoring
of large-scale systems. The first implementation supported Enea OSE running
PowerPC R©, and it was later ported to Linux and other architectures such as
Intel R© x86. We also evaluated the method on a deployed telecommunication
systems to get realistic hardware usage information.

58 Chapter 4. Contributions

4.3 Paper B
We have addressed research questions Q2 (Section 3.2.2) in:

Marcus Jägemar, Sigrid Eldh, Andreas Ermedahl and Björn Lisper. Auto-
matic Multi-Core Cache Characteristics Modelling. In Proceedings of the
Swedish Workshop on Multicore Computing, Halmstad, 2013. [151]
The paper is further expanded in the technical report N [154].

Paper abstract
When updating low-level software for large computer systems it is difficult to
verify whether performance requirements are met or not. Common practice is
to measure the performance only when the new software is fully developed and
has reached system verification. Since this gives long lead-times it becomes
costly to remedy performance problems. Our contribution is that we have de-
ployed a new method to synthesise production workload. We have, using this
method, created a multi-core cache characteristics model. We have validated our
method by deploying it in a production system as a case study. The result shows
that the method is sufficiently accurate to detect changes and mimic cache char-
acteristics and performance, and thus giving early characteristics feedback to
engineers.We have also applied the model to a real software update detecting
changes in performance characteristics similar to the real system.

Contributions
Thesis writer is the main and first author of Paper B and the extended technical
report N [154]. We devised a method to automatically replicate the load of
a production system on a test system making it possible early detection of
performance bottlenecks. The replication method utilizes a feedback controller
to minimize the manual work required. Running performance tests early in the
development process reduces the total system development time, which is a
clear advantage in an industrial environment with a competitive market.

4.4 Paper C (Based on Paper H) 59

4.4 Paper C (Based on Paper H)
We have addressed research question Q3 (Section 3.2.3) in:

Marcus Jägemar, Sigrid Eldh, Andreas Ermedahl, and Björn Lisper.
Online Message Compression with Overload Protection., Journal of Sys-
tems and Software, 2016. [153]
This journal article extends Paper H.

Paper abstract
In this paper, we show that it is possible to increase the message throughput of a
large-scale industrial system by selectively compress messages. The demand for
new high-performance message processing systems conflicts with the cost ef-
fectiveness of legacy systems. The result is often a mixed environment with sev-
eral concurrent system generations. Such a mixed environment does not allow a
complete replacement of the communication backbone to provide the increased
messaging performance. Thus, performance-enhancing software solutions are
highly attractive. Our contribution is 1) an online compression mechanism that
automatically selects the most appropriate compression algorithm to minimize
the message round trip time; 2) a compression overload mechanism that ensures
ample resources for other processes sharing the same CPU. We have integrated
11 well-known compression algorithms/configurations and tested them with
production node traffic. In our target system, automatic message compression
results is a 9.6% reduction of message round trip time. The selection procedure
is fully automatic and does not require any manual intervention. The automatic
behavior makes it particularly suitable for large systems where it is difficult to
predict future system behavior.

Contributions
Thesis writer is the main and first author of Papers C and H [152]. Our main
contribution is the idea to compress selectively messages depending on net-
work congestion level, message content, and current CPU usage. We have also
implemented and evaluated the complete message compression selection mech-
anism in a telecommunication system. This journal article is an extension of
conference Paper H [152]. We have extended Paper H by adding additional
compression algorithms and a thorough rework of the paper structure. We have
also elaborated on a scenario where the content of a message-stream changes.

60 Chapter 4. Contributions

4.5 Paper D (Based on Patent O)
We have addressed research question Q4 (Section 3.2.4) in:

Marcus Jägemar, Sigrid Eldh, Andreas Ermedahl and Moris Behnam. A
Scheduling Architecture for Enforcing Quality of Service in Multi-Process
Systems. In Proceedings of Emerging Technologies and Factory Automa-
tion (ETFA), Limasol, Cyprus, 2017. [157]
This paper is an extension of patent O [155].

Paper abstract
There is a massive deployment of multi-core CPUs. It requires a significant
drive to consolidate multiple services while still achieving high performance
on these off-the-shelf CPUs. Each function had earlier an own execution envi-
ronment, which guaranteed a certain Quality of Service (QoS). Consolidating
multiple services can give rise to shared resource congestions, resulting in lower
and non-deterministic QoS. We describe a method to increase the overall sys-
tem performance by assisting the operating system process scheduler to utilize
shared resources more efficiently. Our method utilizes hardware and system-
level performance counters to profile the shared resource usage of each process.
We also use a big-data approach to analyzing statistics from many nodes. The
outcome of the analysis is a decision support model that is utilized by the
process scheduler when allocating and scheduling process. Our scheduler can
efficiently distribute processes compared to traditional CPU-load based process
schedulers by considering the hardware capacity and previous scheduling and
allocation decisions.

Contributions
Thesis writer is the main and first author of Paper D, which is based on Patent O.
Our first contribution is methods for process resource monitoring, which con-
nects to my earlier research presented in Publication N. We also contributed the
with the idea to correlate hardware resource usage with application performance
and use the correlation for making process allocation decisions to maximize
the system performance. We have also implemented the functionality in the
framework of a large telecommunication system. The system can automatically
monitor the resource usage of processes and efficiently distribute them over the
CPU core cluster depending on their hardware resource usage.

4.6 Paper E (Based on Patents P) 61

4.6 Paper E (Based on Patents P)
We have addressed research question Q4 (Section 3.2.4) in:

Marcus Jägemar, Sigrid Eldh, Andreas Ermedahl, Moris Behnam and
Björn Lisper. Quality of Service Process Scheduling by Shared Resource
Supervision. In Proceedings of Emerging Technologies and Factory Au-
tomation (ETFA), Torino, Italy, 2018 [147]
This paper is an extension of patent P [156].

Paper abstract
The demand for more advanced and computationally demanding system func-
tions drives hardware manufacturers to improve system performance contin-
uously. More powerful hardware is not always possible due to the increased
cost. Many companies try to improve system performance through function
consolidations where multiple functions share a common hardware. In legacy
systems, each function had individual execution environment that guaranteed
hardware resource isolation and therefore the Quality of Service (QoS). Consol-
idation of multiple functions increases the risk of shared resource congestion.
Current process schedulers focus on time quanta and do not consider shared re-
sources. We present a novel process scheduler that complements current process
schedulers by enforcing QoS though Shared Resource Aware (SRA) process
scheduling. SRA programs the PMU so that it generates an overflow interrupt
when reaching the assigned process resource quota. The scheduler swaps out
the process when receiving the interrupt making it possible to enforce QoS. We
have implemented our scheduling policy as a new scheduling class in Linux.
Our experiments show that it efficiently enforces QoS without seriously affect
the shared resource usage of other processes executing on the same shared
resource cluster.

Contributions
Thesis writer is the main and first author of Paper E which extends Patent P.
Our first contribution is to reduce the performance impact for processes sharing
hardware resources. We enforce QoS by letting the PMU overflow interrupt
trigger a context switch. We implemented the scheduling method in the frame-
work of a telecommunication system with complex and high hardware resource
usage. We also implemented the new scheduling class in Linux and evaluated
it by using a test application that mimics the target telecommunication system.

Du ska alltid tänka: Jag är här på jorden denna enda gång! Jag
kan aldrig komma hit igen! Och detsamma sa Sigfrid till sig själv:
Tag vara på ditt liv! Akta det väl! Slarva inte bort det! För nu är
det din stund på jorden!.

My own translation:

You should always think: I am here on earth only once! I can never
get back here again! Sigfrid said the same thing to himself: Take
care of your life! Take care of it! Don’t waste it! For this is your
moment on earth!

— Vilhelm Moberg [213]

5
Measuring Execution

Characteristics

This section corresponds to research question Q1 (Section 3.2.1), which we
have addressed in papers N (A, B, M).

How to monitor the hardware usage and software performance of a pro-
duction system without noticeable side-effects on the monitored system?

MO N I T O R I N G has always been an important issue when optimizing
the user-experienced application and system performance [10]. Hav-
ing trustworthy measurements is vital for making well-founded opti-

mization decisions. It is of similar importance to measure the execution charac-
teristics, i.e. hardware resource usage, of a system to find performance bottle-
necks.

We begin this chapter in Section 5.1 by giving a short introduction to perfor-
mance and execution characteristics monitoring. We discuss theoretical aspects
in Section 5.2 and continue by describing our characteristics monitoring (Char-
mon) implementation in Section 5.3. We have performed a number of exper-
iments to verify that Charmon works as expected, see Section 5.4. The state-
of-the art related to performance and characteristics monitoring is described
in Section 5.5 and we conclude the chapter by presenting our conclusions in
Section 5.6.

65

66 Chapter 5. Measuring Execution Characteristics

5.1 Introduction

Performance is an important issue for most software development projects, and
it can be one of the major differentiating factors in a highly competitive market.
It is therefore problematic that functional aspects receive the most attention.
Performance requirements may often be as vague as the phrase “The overall
performance must not be worse than before”. We advocate a balanced view
of these two requirements and that non-functional requirement should clearly
specify the required performance and system characteristics.

There is a need for performance and characteristics measurements to under-
stand and verify where and when performance problems occur. In this thesis we
use the term performance when we quantify the actual user-experience, i.e., to
what degree does the application fulfill the available capacity. We use execution
characteristics when discussing the resource usage of an application. Charac-
teristics measurements can include performance measurements. The type of
characteristics measurements we discuss in this thesis relates to hardware or
software resource usage.

5.2 System Model and Definitions

There are several ways to measure the behavior of an application. One way
to measure the performance of an application is by using a high-abstraction
performance metric [7, 93] such as packets/second or operations/second. It is
also possible to measure the hardware resource usage by using the Performance
Monitoring Unit (PMU) inside the CPU. One reason for chosing a high-level
abstraction is because the hardware resource usage may not completely capture
the user-experienced performance of an application. On the other hand will the
hardware resource usage explicitly describe what is needed from the hardware
to reach the observed performance. Both system-level performance metrics and
hardware resource usage are important when describing the performance and
behavior of an application or system. The following sections describe each of
the concepts.

5.2.1 Hardware Resources
A computers system executes on an hardware platform consisting of many
different parts. The most important parts is the central processing unit (CPU),
which contains one or several execution units (cores).

5.2 System Model and Definitions 67

Definition 3 The CPU has a set of cores denoted C.

The execution performance of a computer application depends on the availabil-
ity of hardware resources. The CPU is therefore constructed with multiple units
that can execute in parallel to give as much performance as possible. Our target
system is designed to handle large traffic volumes which put considerable strain
on communication links and the memory subsystem on communication nodes.
Previous work by engineers within the company has improved the execution
performance through algorithm improvements and code optimizations. We will
mainly focus on memory-related issues in this thesis although we can use our
techniques for any hardware resource. Some of the most important hardware
units for memory bound processes are TLB and caches.

Translation Lookaside Buffers (TLB)

The CPU continuously access memory when an application executes. The in-
struction pointer inside the CPU procedes to the next memory location. When
a new memory location is accessed the Memory Management Unit (MMU)
needs to translate the virtual address location, understandable by the process, to
a physical address understandable by the hardware. This translation is time con-
suming and most hardware uses a Translation Lookaside Buffer (TLB) cache
for the most used address translations. CPU manufacturers use different approa-
ches when defining the TLB implementation. It is common to use several TLB
levels and to partition it for instructions, ITLB, and data, DTLB.

Cache Memory

The cache memory in a computer system is a temporary storage of actual mem-
ory values, in contrast to the TLB that stores a temporary address translation.
The cache is structured in a similar way as the TLB. The cache can be parti-
tioned into instruction (I-cache) and data (D-cache), or being shared between
both of them. A CPU is usually designed to have several cache levels, such as
L1D-cache, L2D-cache, etc.

5.2.2 Memory Management
Memory Management [300] is one of the most important tasks for an OS. The
task for the MM is to let processes allocate and free memory when they need
it rather than statically allocate all memory at system startup. The MM is also
responsible for programming the memory management unit (MMU) hardware

68 Chapter 5. Measuring Execution Characteristics

p6 2

v p4 0
v p5 1

v p7 3

0−3

v

9

VTLB

la
rg

e
T

L
B

s
If

 n
o

t
u

si
n

g

v4−7 p

v v v v

p p p p p p p p p

v vv v v1

3

0v

p
0 1 2

2 3 4 5 6 7 8 9

4 5 6 7 8 9

Physical address space

Virtual address space

1
2 3 4

4KB TLB
v2 4p
v p3

MMU HW and SW Memory Manager

Figure 5.1: Address translation via 4 KB and variable size TLBs.

so that it protects the data of each process from being tampered with [280].
It is tempting to assume that the Linux MM source code is stable but it is
still undergoing heavy development [131] due to bug fixes and the demand
optimizations. There are three types [193, Ch.3.2.1] of memory allocations. The
first type is used when an application explicitly allocate static memory through
global and static variables. Secondly, the compiler uses automatically allocated
memory when it detects local variables or function arguments. The third type is
Dynamic memory explicitly allocated by calling a memory management API.
One example of such an API is glibc [193]. The glibc library provides the
malloc() family of functions, which implements a heap where memory is
allocated and freed.

Address Translation

Address translation is a central part of the execution flow in modern CPUs [145].
One of the main tasks for the MMU is to translate virtual addresses, virtaddr ,
used by software to physical addresses, physaddr , used by the CPU and also
on the bus towards the memory subsystem. The memory is divided into pages,
typically 4 KB for most OS:es. The memory map contains the set of pages
reserved for each process in the system. The kernel throws a segmentation fault
(SEGFAULT) if a process access memory outside its memory map and the
process is killed. The MMU implements fast and efficient address translation
by using cached virtaddr → physaddr entries in the TLB cache because it is
too slow to search the address map for each address translation [256].

5.2 System Model and Definitions 69

The number of entries in the TLB cache is limited (in the order of 100:s
of entries) and each entry in the TLB typically maps a 4 KB page. The TLB
is therefore typically denoted as the 4 KB TLB. The complete TLB memory
mapping capacity is 100 ∗ 4 KB = 400 KB if the TLB supports 100 mappings.
Such mapping capacity is much too small to map the entire memory space for
any large-scale computer system utilizing GB or TB of memory.

The TLB cache entries are replaced in a similar way as entries in the
L1-cache, L2-cache and L3-cache. If the total system memory working set is
larger than the maximum TLB capacity. TLB cache misses are costly because
the CPU must halt the program execution and search through the memory map
finding the process-specific virtaddr → physaddr mapping [143].

Most CPUs also support variable size TLBs (VSP-TLB) to improve the
performance. PowerPC supports large TLB with sizes spanning from 4 KB to
2 TB for every power of 2 [105]. Intel supports a similar mechanism but with
fewer TLB sizes, such as 2 MB/4 MB/1 GB [140]. The VSP-TLB reduce the
pressure on 4 KB TLB for applications using large contiguous memory chunks.
Several contiguous 4 KB TLB pages can be replaced by one VSP-TLB map-
ping as depicted in Figure 5.1. An application strides through memory 1 and
access a virtual address located on page virtaddr2, which the MMU translates
to physical address virtaddr4 by searching the 4 KB TLB. The stride continues
through 2 (virtaddr2 → virtaddr9). It is possible to drastically improve the
performance by using one VSP-TLB (virtaddr4−7 → physaddr0−39) map-
ping instead of 4 separate 4 KB TLB entries. The performance improvement is
even greater if the contiguous memory is several MB or GB. The reasoning
above applies to both instruction, ITLB, and data, DTLB, TLB for which most
hardware implements separate TLBs.

5.2.3 Systems, Applications and Processes
A computer system is the execution environment consisting of both hardware
and software that provides the required functionality. A system typically con-
sists of one or several software applications. The code in an application executes
in the context of one or several processes p ∈ P where P is the set of all pro-
cesses in the system. Each p has its own memory space protected by the memory
management unit (MMU). It is possible to have one or multiple threads, t ∈ T,
for one p. All t belonging to a p shares the same memory context provided by
process p.

Definition 4 Let sys ∈ SYS denote the system under investigation where the
complete set of systems is SYS .

70 Chapter 5. Measuring Execution Characteristics

Events
CPU Pipeline Unit Stalls from the following pipeline stages:
→ Fetch (Nr. fetches, Nr. prefetches, Instruction Buffer empty/full)
→ Decode (Nr. stalls)
→ Issue (Simple/Complex integer, Load-Store, Branch, Floating point, Altivec)
→ Schedule (Simple/Complex integer, Load-Store, Branch, Floating point, Altivec)
→ Retire (Completion buffer empty/full)
CPI/IPC
Data Load/Store miss rate/ratio
Branch miss rate/ratio
L1I-cache miss rate/ratio
L1D-cache miss rate/ratio
L2I-cache miss rate/ratio
L2D-cache miss rate/ratio
L3-cache read miss rate/ratio (System Wide)
L3-cache write statistics (System Wide)
Cycles/Interrupts
L1ITLB miss rate/ratio
L1DTLB miss rate/ratio
L2TLB miss rate/ratio
VSP-ITLB miss rate/ratio (Variable size TLBs)
VSP-DTLB miss rate/ratio (Variable size TLBs)

Table 5.1: Examples of hardware event that can be monitored by the PMU.

Definition 5 We denote the application under investigation as appl ∈ APPL
where the complete set of applications in sys is APPL.

Definition 6 Let p ∈ P be one process of the complete set of processes P
executing on system sys . We use a subscript, pi ∈ P , if we need to differentiate
between multiple processes.

We often compare processes belonging to different applications in our exam-
ples. We therefore define Pappl as the set of processes belonging to a certain
application appl .

Definition 7 The set of processes for appl in sys is denoted Pappl , where
Pappl ⊆ P and appl ⊆ APPL.

5.2 System Model and Definitions 71

5.2.4 Hardware Resource Monitoring
Every system that runs on a computer depends on the availability of low-level re-
sources, which makes it possible for the system to complete its task. A resource
can, from a system-level perspective, relate to both software and hardware. A
software resource is often a service provided by the OS or a middleware Appli-
cation Programming Interface (API). A hardware resource is typically provided
by the CPU or some peripheral component. Some examples of hardware re-
sources are the Arithmetic Logic Unit (ALU), caches, MMU and many other. It
is often necessary to measure the hardware resource usage for a process when
debugging performance related issues. We therefore introduce the concept of
hardware resource samples, mr ,p of hardware resource r for process p.

Definition 8 The hardware resource, r ∈ R, is one of the total set of hardware
resources, R. We use a subscript i, such that ri ∈ R, if we need to differentiate
between multiple resources.

Definition 9 Let rappl denote the set of resources used by an application appl.

Definition 10 A bounded series of resource usage samples of hardware re-
source r ∈ R for process p ∈ P is denoted by mr ,p , by mr ,appl for an applica-
tion appl ∈ APPL or by sys ∈ SYS for a system.

Measuring resource usage There are many different tools available for mea-
suring the rappl for application appl. One efficient way [83] to measure rappl
usage is by utilizing the Performance Monitoring Unit (PMU) [226] of modern
CPUs. The PMU is implemented purely in hardware and once it has been pro-
grammed it runs without any software intervention or execution cost [108]. It
is therefore an efficient way to measure the resource usage. The PMU is widely
available for Intel R© [183] and similarly on PowerPC R© where it is called Perfor-
mance Monitor Counters (PMC) [104]. Engineers have used the PMU for a long
time when investigating user-space performance problems. A more recent trend
is to use the PMU for kernel space performance investigations [258]. Table 5.1
shows some examples of hardware resources that can be monitored by the PMU.
No hardware resource monitoring tool was available for our legacy target OS
when we started our investigation leading up to this thesis. At the time there
were some tools for Linux, for example, Perf [62], that implemented a subset of
our requirements. Because of the GPL-license, it is politically difficult to port
Perf to a proprietary OS. We opted to implement a tailored monitoring tool that
supported all of our industrial requirements.

72 Chapter 5. Measuring Execution Characteristics

Charmon currently runs on two different OS:es, Enea’s OSE for our legacy
system, and Linux for current and future systems. We use Charmon for long-
term monitoring, and continuously run it while sampling multiple hardware
metrics through the PMU [83]. A PMU is an hardware implemented event
counter, and it can autonomously count the occurrences of the specified event
after it has been programmed. PMU events [104] that are common for many
hardware architectures are for example cache misses, RAM accesses, branch
misses and similar issues. There are also other types of events that are unique
to each architecture, for instance, related to the execution pipeline, memory
subsystems and similar.

5.2.5 Service Performance Monitoring

There are numerous tools [124] available for measuring the performance of
a computer system. Some tools measure many aspects of a complete system
such as Spec [127] or LM-Bench [204] while others target a subset such as the
CPU [126], floating point unit (FPU) or the cache/memory [201]. One common
thing among all these tools is that they describe the performance through a high-
level performance metric such as operations/sec, messages processed/sec or
similar. There are well-founded reasons [93] for using a high-level performance
metric when describing the application performance. We could, for example,
try to express the performance of an application by measuring the R usage,
such as the number of Instructions Per Second (IPS). IPS counts the number of
instructions executed by the CPU, which would be high if the software iterates
in a spin-lock but the user-experienced performance is low [93]. Therefore, mea-

Event Data Source Description
CPU-load OS The OS tracks execution statistics

for all p ∈ P and appl ∈ APPL.
Message RTT Application
Number o fusers Application The number of concurrent users in

the system.
Operations/second Application The number of system or applica-

tion operations executed per sec-
ond.

Table 5.2: Some examples of software performance metrics.

5.3 Implementation 73

suring R may not be a good way to describe the user-experience performance.
We propose to use a high-level metric to measure the experience performance.

Definition 11 The performance is denoted by x ∈ X where X denotes the set
of all performance metrics. The performance of process, p, is denoted xp and
xappl for application appl ∈ APPL and xsys for system sys ∈ SYS .

Definition 12 The bounded series of performance metric samples of x for pro-
cess p is denoted mx ,p .

Charmon measure x in a similar way as each r ∈ R and continuously monitor
process-specific and user defined x with fixed time period. Some examples of
x is shown in Table 5.2. It is useful to have one tool to simultaneously capture
both x and R since each measurement gets the same time-base and is therefore
easily comparable.

5.3 Implementation
We have implemented Charmon with the explicit requirement to be continuously
running within the platform. Charmon samples both hardware and software
metrics. The hardware-usage is sampled by periodically setting and reading the
PMU [102, 103]. Each individual counter inside the PMU can be configured
to count one hardware-event. Charmon stores counted events in a database
together with x measurements. Charmon has a very low probe effect [108] since
the PMU is implemented in hardware located inside the CPU with negligible
performance penalty. The data read from the PMU is infrequently stored in a
memory-based database that is flushed to disk at user-demand.

Charmon was first implementation for Enea OSE running on a Freescale
p4080 [102] with 13 concurrently running sets of performance events, see List-
ing 5.1 for examples of the PMU configuration. The implementation targets
various parts of the functionality described in Table 5.1. We designed each
event set to help providing an understanding of one particular hardware func-
tion. Each set uses between one and six PMU counters depending on the desired
functionality and the number of counters supported by the hardware.

The second type of counter set utilized by Charmon are software based.
A software counter can in practice be anything that is countable, but the two
primary software metrics monitored in Charmon are CPU-load, supplied by
the OS, and message round trip time. Our initial implementation of Charmon
supported two software metrics related to the application performance. The sup-
ported metrics were CPU load and message round-trip time. CPU-load shows

74 Chapter 5. Measuring Execution Characteristics

Listing 5.1: ”Example PMU configuration for sampling hardware usage.”
PME ITEM sampleConf ig [] = {

/* 0. IPC */
{{{ E500 PME INSTRUCTIONS COMPLETED , E500 PME PROCESSOR CYCLES ,

E500 PME NOTHING , E500 PME NOTHING }} , &p h I n s t r , &p t I n s t r } ,
/* 1. DLS: Data Load/Store ratio
* DLS below 1 indicates odd memory usage behavior and potentially poor cache usage as
* data is more frequently written than read. DLS is typically above 3. */
{{{ E500 PME LOAD MICRO OPS COMPLETED ,

E500 PME STORE MICRO OPS COMPLETED ,
E500 PME NOTHING , E500 PME NOTHING }} , &phDls , &p t D l s } ,

/* 2. BTB Hit/Miss: Branch Target Buffer Hit/Miss Ratio
* Low BTB hit ratio indicates BTB is turned off and instruction execution is poor, generally
* also giving poor IPC. BTB Hit should be above 0.7. Consider using likely()/unlikely() in
* branch statesment to improve BTB Hit. */
{{{ E500 PME BTB HITS AND PSEUDO HITS , E500 PME BRANCHES FINISHED ,

E500 PME NOTHING , E500 PME NOTHING }} , &phBtb , &p t B t b } ,
/* 3. L1 I$ Hit and Miss Ratio
* Low I cache hit ratio indicates poor execution flow, likely due to jumpy code or poor BTB hit. */
{{{ E500 PME INSTRUCTION L1 CACHE RELOADS FROM FETCH ,

E500 PME INSTRUCTIONS COMPLETED , E500 PME NOTHING ,
E500 PME LOAD MICRO OPS COMPLETED }} , &phL1IHi tMiss , &p t L 1 I H i t M i s s } ,

/* 4. L1 D$ Hit and Miss Ratio */
{{{ E500 PME DATA L1 CACHE RELOADS , E500 PME LOAD MICRO OPS COMPLETED ,

E500 PME STORE MICRO OPS COMPLETED ,
E500 PME INSTRUCTION L1 CACHE RELOADS FROM FETCH }} ,
&phL1DHitMiss , &ptL1DHitMiss } ,

/* 5. L2 Hit and Miss Ratio
{{{ E500 PME L2 CACHE INSTRUCTION HITS ,

E500 PME L2 CACHE INSTRUCTION ACCESSES ,
E500 PME L2 CACHE DATA HITS , E500 PME L2 CACHE DATA ACCESSES }} ,
&phL2HitMiss , &p tL2Hi tMis s } ,

/* 6. Interrupts per Cycle
* A high Int.pC indicates the core is not smootly executing but
* constantly being interrupted, this will give poor performance. */
{{{ E500 PME PROCESSOR CYCLES , E500 PME INTERRUPTS TAKEN ,

E500 PME EXTERNAL INPUT INTERRUPTS TAKEN ,
E500 PME SYSTEM CALL AND TRAP INTERRUPTS }} ,
&p h I r q P e r C y c l e , &p t I r q P e r C y c l e } ,

/* 7. ITLB hit/miss rate */
{{{ E500 PME INSTRUCTIONS COMPLETED , E500 PME INSTRUCTION MMU TLB4K RELOADS ,

E500 PME INSTRUCTION MMU VSP RELOADS , E500 PME NOTHING }} ,
&phITLB , &ptITLB } ,

/* 8. DTLB hit/miss rate */
{{{ E500 PME LOAD MICRO OPS COMPLETED , E500 PME DATA MMU TLB4K RELOADS ,

E500 PME DATA MMU VSP RELOADS , E500 PME STORE MICRO OPS COMPLETED }} ,
&phDTLB , &ptDTLB } ,

/* 9. L2TLB hit/miss */
{{{ E500 PME PROCESSOR CYCLES , E500 PME L2MMU MISSES ,

E500 PME INSTRUCTIONS COMPLETED , E500 PME NOTHING }} ,
&phL2TLB , &ptL2TLB } ,

} ;

5.3 Implementation 75

the number of processes in the ready-queue [119]. The round-trip message
time describes performance on a system level. We have introduced many other
metrics in later version of Charmon, see Table 5.2 for some examples.

Sampling Frequency Selecting a sampling frequency was not a simple task.
We had to deal with some critical demands during the implementation of the
first version of Charmon. The most important ones were:

• We are using the performance-related data to create a semi-static model
that does not require higher sampling frequency.

• A customer is very sensitive to any disturbance of their system. It is,
therefore, challenging to get consent to running testing tools in production
systems. We must be certain that Charmon does not affect the system
performance or behavior in any way.

The general discussion revolved around not being able to run any monitoring
tools, because of the scare of probe effects and using a very low sampling
frequency. We opted for the latter solution and selected to use a 1Hz sampling
frequency, which is undoubted to low for capturing a dynamic behavior but
sufficient for detecting semi-static behavior or trends. The reason for using such
a low frequency is not technical; it is a matter of ensuring that it will never
impact the behavior of the system being observed.

5.3.1 Measuring Characteristics
Charmon iterates over a list of hardware event sets that is each programmed to
the PMU for a period. As shown in Figure 5.2 Charmon is awoken 1 by a fixed
interval timer interrupt and sleeps in between. Charmon starts by reading 2 the
resulting values for the previous hardware counter set. Reading hardware coun-
ters is, for the legacy OS, low-intrusive by utilizing the mfspr [104] assembly
instruction. The PowerPC R© instruction set defines this particular instruction,
but there are similar instructions for other architectures. On Linux, we use the
Perf-API [62] for reading hardware metrics and our implementation for reading
software metrics. The logical functionality, which is the major part of the Char-
mon application, is the same for both OSes. For both OSes, the measurements
are stored 3 in a local database (DB). Next, the subsequent hardware perfor-
mance counter set is read 4 from a table and programmed 5 into the PMU
registers. The PMU programming is similar to reading and we use the mtspr
for the legacy OS. The Linux Charmon implementation utilizes the Perf-API,
which implements the PMU interaction.

76 Chapter 5. Measuring Execution Characteristics

Local Database

33

Charmon

Time

Performance Monitor Counters (PMC)

A
ct

io
n

cpu_load_fcn

Nr ctx switches

CPU load

Signal RTT

S
et

0

1

2

nr:ctx_fcn

sig_rtt_fcn

L1−I cache0

S
et

Name

L1−D cache1

2 L2−Common 461 462

9

9

463

10

2

41

60

464

1

1

0 1 2 3

Hardware PMCSoftware
CounterName

5
.
W

ri
te

2
.
R

ea
d

3
.
S

to
re

 m
ea

s.

4
.
G

et
 n

ex
t

co
u
n
te

r
se

t

6
.
R

et
u
rn

1
.
IR

Q

Figure 5.2: Hardware Characteristics measurements using Charmon.

It is also possible to add other software metrics, such as CPU-load, process
context switches, signal turn around time. Our implementation uses CPU-load,
which is supplied by the OS, and round-trip message time, which is supplied
by the messaging application. Measurements for software metrics are stored in
the DB to provide a contextualized and time-stamped log of both hardware and
software utilization. Charmon provides the possibility to have a mix of both
low-level and high-level metrics, which is useful when debugging/investigating
performance related problems. After setting a new set 5 of hardware counters,
Charmon sleeps for a predefined interval, then restarts at step 1 . When using
multi-core CPUs we follow a similar procedure where Charmon simultaneously
programs all cores with the same counter set.

5.3.2 Counter Sets

Charmon implements two types of counter sets. The first and by far largest
set uses hardware PMU counters. The second set uses software counters. We
started by investigating the first set that contains hardware metrics describing the
system performance, for example, instructions per second and cycles per second.
By using these two metrics, it is possible to calculate Cycles Per Instruction

5.3 Implementation 77

(CPI), which to some extent describes the efficiency of the system [94]. The next
area of interest is to understand where the system loses performance. It is well-
known from interviewing senior technicians within the organization we belong
to that the target system we are investigating is memory-bound. Therefore, we
implemented several counter sets to observe all cache usage regardless of the
cache level. Using the CPI-metrics [94, 95] as a guideline we implemented
many more metrics, such as counters for Translation Lookaside Buffers (TLB),
branches, floating point units and other. We know that we must be careful when
using CPI-stacks since they can be misleading [7], especially for multi-core
CPUs. We also include counters for all pipeline stages since that is helpful to
gain further knowledge of where stalls could occur.

Charmon has been designed and implemented to allow easy addition of
more counter sets. Our aim has been to ease the extension of Charmon with
additional counter sets whenever the need arise. In the future, we expect that
memory subsystem metrics may be of specific interest because new hardware ar-
chitectures introduce more multi-level cache hierarchies, non-uniform memory
accesses, and other complex techniques.

5.3.3 Second Generation Implementation

The original version of Charmon has been used for an extensive period of
time and in several ways. We received several new requirements during the
initial Charmon usage, which related to both new functionality and what was
conceived as functional limitations.

The second generation of Charmon was ported to the x86 architecture as
a natural continuation of previous work. The PowerPC R© target was not fur-
ther developed in the context of our target system and the functionality of old
Charmon suffice for the time being. The OSE-version of Charmon was also
discontinued at the same time and we focused all our implementation efforts
into further development of the Linux version [9].

The original Charmon supported a low, user-defined, sample frequency but
in practice we never used a higher sample frequency than 10Hz because we
were investigating semi-static systems and not their dynamic behavior. The per-
formance debugging methodology implicitly stated that we should use Perf [62]
when investigating performance-related problems related to dynamic behavior.
We received several questions related to much higher sample frequencies caus-
ing us to revisit this issue in the second generation Charmon. Our changes
included changes to the overall software structure and some code optimizations
to reduce the sampling overhead.

78 Chapter 5. Measuring Execution Characteristics

A more generic request related to the generality of Charmon. Both ourselves
and other users wanted to use Charmon on several different CPU architectures.
The PMU hardware differs slightly between chip architectures, manufacturers
and even between chip revisions. Running on two x86 CPUs does not neces-
sarily mean that they have the same PMU counter hardware implementation.
We addressed this issue by implementing a target specification JSON [232]
file. The file specifies the available hardware counters making the source code
generic. We also implemented a more generic interface to support sample-event
configuration through configuration files.

5.4 Experiments Using the Performance Monitor

There are numerous ways to use a performance monitor such as Charmon.
We have utilized Charmon in several ways. The first way was to find specific
performance-related problems and understand why they occur. The second way
is to create a Cycles Per Instruction (CPI) stack, which is a slightly more ad-
vanced way to debug performance issues. Finally, we have used Charmon by
connecting it to other system functions providing a closed-loop.

5.4.1 Debugging Performance Related Problems
A typical use-case for Charmon is when a system designer encounters a per-
formance related problem. We promote a methodology that starts with using
Charmon with the default event-set, see Listing 5.1, on the system under inves-
tigation. The default event set gives an overview of the system resource usage,
and an experienced engineer can quickly see if some events indicate a prob-
lem. When a problem-area has been found we advocate defining one or several
new event-sets that encapsulate and investigate a particular problem in more
detail. These new sets can explain why the problem happens. We have used
this methodology on several occasions when performance debugging and many
system engineers believe that Charmon is an adequate tool to improve the un-
derstanding of a systems’ execution characteristics. We present three examples
of successful performance investigations using Charmon in the following text.

1) Investigating a performance reduction between two system versions

The performance of our target system was not tested during the design phase at
the time of this investigation. The performance was validated much later, during
the system-testing phase, where system testers detected that the performance,

5.4 Experiments Using the Performance Monitor 79

x , of the system had dropped between two subsequent versions A and B of a
production-system with identical appl . The only difference between A and B
was 10 bug fixes inside the OS, none of which addressed the functionality used
by appl .

Setup The test setup consisted of a cabinet with 3 subracks each containing 20
PowerPC R© 750GX [132] CPU-boards interconnected with a Gigabit backplane.
Each board ran a full version of the telecommunication system including the
production application. The application performs message processing (memory
strides) on received messages before sending them to its communication partner.
We suspected that the memory system was congested and therefore decided
to monitor the following resources R = {L1D-cache,L2D-cache,L1I-cache,
ITLB,VSP-ITLB,DTLB,VSP-DTLB}. The performance of appl is specified
by x = {CPU-load}

Execution This is the seminal test of the Charmon monitoring tool. We de-
signed and implemented Charmon and gave the system-testers instructions on
how to run it. The system testers configured a test system similar to the pro-
duction system and started Charmon measuring the system performance, xA,
before and after the OS upgrade xB . The measurements resulted in extensive
logs mr,A, mr,B , as well as mx ,A, mx ,B for r ∈ R,

Evaluation We quickly deduced that x increased 10 percentage points (pp)
between A and B. We investigated and compared the measurements mr,A and
mr,B showing that the 4 KB instruction TLB usage had increased tenfold be-
tween A and B. Similarly the VSP-ITLB was close to zero for B.

Remarks The functionality added in B compared to A was not directly re-
lated to the system function that suffered the performance degradation. Further
investigation showed that the size of the kernel monolith had grown with as
little as a couple of KB so that the system kernel-trap interface entry point
ended up outside the 4 MB VSP-ITLB mapping the complete kernel monolith.

The kernel part located outside of the 4 MB VSP-ITLB caused a radically
increased load on the 4 KB TLB throughout the system. It was easy to fix the
problem by realigning the monolith so that the VSP-ITLB covered the complete
code section, and the performance returned to an acceptable level. We conclude
that the Charmon tool quickly indicated the source of the performance loss.
Contrary, it would have been very difficult to pinpoint the problem by measuring
the execution environment only.

80 Chapter 5. Measuring Execution Characteristics

Feature PowerPC R© p4080 [264] PowerPC R© T4240 [105]
Core 8xe500mc (32bit, 1.5GHz) 12xe6500 hyperthreaded→ 24

virtual cores (64bit, 1.6GHz)
L1-cache Two separate/core 8-way (I+D)

32 KB set-assoc. pseudo LRU
Two separate/core 8-way (I+D)
32 KB set-assoc. pseudo LRU

L2-cache One separate/core 8-way
128 KB set-assoc. unified I and
D pseudo LRU

3 x 16-way set-associative
2048 KB unified, shared among
four e6500

Platform Cache 2 MB platform cache/CPU 3 x 512 KB platform cache
MMU 6 TLB in total,

8-entry, fully-associative, I/D
L1TLB arrays for Variable Size
Pages (VSP),
64-entry, 4-way set-associative
I/D L1TLB arrays for 4 KB
pages,
64-entry, fully-associative uni-
fied L2TLB array for VSP,
512-entry, 4-way set-associative
unified L2TLB array, for 4 KB
pages.

6 TLB in total,
8-entry, fully-associative, I/D
L1TLB arrays for Variable Size
Pages (VSP),
64-entry, 4-way set-associative
I/D L1TLB arrays for 4 KB
pages,
64-entry, fully-associative
unified L2TLB array for VSP,
1024-entry, 8-way set-
associative unified L2TLB
array for 4 KB pages,
hardware page table-walk.

Table 5.3: Cache specifications for PowerPC R© p4080 [264] and T4240 [105].

2) Comparing two operating systems

The legacy system in this experiment was running on Enea OSE real-time [39,
p430] OS. There was a general opinion in the design department that OSE
was more efficient than Linux. This opinion was further strengthened by earlier
performance tests. We formulated an M.Sc. thesis [9] to investigate the accuracy
of this belief in more detail. The M.Sc. thesis worker used Charmon to measure
and compare the execution characteristics for OSE and Linux.

Setup The test setup contained two p4080 [102] PowerPC R© CPU-boards,
see Table 5.3, interconnected with a 100Mbit ethernet link. Each board ran
a minimalistic version of our basic telecommunication system and a test ap-
plication. The test application replicates the behavior of the production appli-
cation and performs some basic message processing (memory strides) on re-
ceived messages before sending them to its communication partner. We defined
x = {message Round Trip Time (RTT)}.

5.4 Experiments Using the Performance Monitor 81

Execution We ran Charmon with the configuration, R, listed in Table 5.1
when monitoring the execution characteristics and application performance of
the system. We ran the two Test Cases (TC), the first on Enea OSE (TCOSE)
and the other on a Linux system with kernel 2.6 (TCLinux).

Evaluation The first measurements of x showed that the message RTT was
about 300% higher in TCLinux vs. TCOSE . We saw a similar pattern when we
evaluated the R. The D-cache and I-cache hit ratio in TCOSE is almost 100%
while it was substantially lower in TCLinux. Investigating the TLB measure-
ments show that the number of 4 KB and VSP-DTLB evictions in TCOSE is 0,
but 800k 4 KB DTLB reloads/sec and 750k 4 KB ITLB reloads/sec. The VSP-
TLB usage in TCLinux us 0.

Remarks It is apparent from the evaluation results that Linux uses a much
larger working set, both for data and instruction. This is in fact not surprising
since Linux is a general-purpose OS while OSE is tailor made for the type
of system we have evaluated. Other results came as a surprise. We also moni-
tored the number of system traps and interrupts for each TCOSE and TCLinux.
Our measurements showed that Linux generated between 100-250 times more
interrupts than OSE for the same test run. A radical increase of interrupts is
very expensive from an execution point-of-view. Our recommendations for the
software department was to 1) start using VSP-TLB for the Linux system and
2) investigate why network traffic generates so many interrupts.

3) Comparing two hardware architecture

We have also compared the execution characteristics of a Linux system running
on two different CPUs. We performed the tests within the context of the same
M.Sc. thesis [9] as in Example 2. The goal was to evaluate and predict the sys-
tem performance if the system was migrated from one type of CPU to another
type.

Setup We used a p4080 [102] PowerPC R© running Linux kernel 3.12.19 in the
first test case, which is denoted by TCp4080. The second test case, TCT4240, uti-
lized a T4240 [105] PowerPC R© CPU running Linux kernel 3.813. See Table 5.3
for hardware information related to the two CPUs. The reason for choosing dif-
ferent kernel versions was that both our hardware was not supported in any of
the two kernels. See Table 5.3 for hardware specifications. We configured the
R = {D-cache, I-cache,DTLB, ITLB}. We had two concurrently measured x .

82 Chapter 5. Measuring Execution Characteristics

The first was the total runtime for all test applications and the second one was
the Dhrystone [297] runtime. We ran the memtester [43] and IPerf [74] as test
applications. Memtester load the memory subsystem and IPerf is an TCP, UDP
and SCTP test application. Dhrystone performs integer arithmetics and cause
heavy CPU load.

Execution We started Charmon and the test applications according to the
following affinity settings: memtester (Amem = {c2}), Dhrystone (Adhry =
{c4}) and IPerf with 1G link (AIPerf = {c7}).

Evaluation The total test runtime was 1m33s for TCp4080 and 1m04s for
TCT4240. Dhrystone executed 55% faster on TCT4240 compared to TCp4080.
The L2D-cache hit ratio was 80% on TCp4080 and almost 100% on TCT4240.

Remarks One apparent difference is that the core frequency is higher in
TCT4240 compared to TCp4080. Increasing the CPU frequency between 1.5GHz
and 1.6GHz cannot by itself explain the massive performance improvement. We
attribute the increased L2D-cache hit rate in TCT4240 to the larger L2 cache. The
performance is much higher in TCT4240 because the cache hit ratio is almost
100%. The TLB handling is another difference between TCp4080 and TCT4240.
The p4080 in TCp4080 uses software table walk when the requested memory
location is not in the TLB. software table walk can be a costly operation since
parts of the OS must operate in page-fault exception context when fetching the
demanded virtaddr → physaddr memory mapping and reprogramming the
TLB. The T4240 in TCT4240 uses hardware table walk meaning that the OS
configure a memory region describing the current memory setup. The hardware
automatically locate the memory mapping when a memory request cause a page
fault without any page handling software being executed. Other researchers
have earlier stated that software table walk has some other advantages, such as
flexibility [143] as hardware table walk [14, Ch. 6.1]. In this case the hardware
table walk is very efficient and improves the performance.

5.4.2 The Cycles Per Instruction (CPI) Stack
We have created a cycles per instruction (CPI)-stack to get an indication of the
most relevant hardware metrics to monitor. Eyerman et al. [94] describes CPI as
the total execution cost of a single instruction, including wasted capacity caused
by processor stalls such as branch prediction misses, TLB misses, cache misses.
Splitting the CPI into each contributing cost builds a CPI stack and the CPI

5.4 Experiments Using the Performance Monitor 83

 0

 20

 40

 60

 80

 100

0 1 2 3 4 5 6 7

C
P
I
st

a
ck

 r
a
ti

o
 p

e
r

co
n
su

m
in

g
 H

W
 r

e
so

u
rc

e
 [

%
]

CPU Core [#]

Base+other
L1-cache

L2-cache
L3-cache

TLB
Branch miss

Figure 5.3: CPI stack for the production system.

stack can be used to illustrate how big part of the total execution time is spent
doing real work and how much time is spent stalling for congested resources.
A system engineer can evaluate how well a set of processes executes on a core
by building a CPI stack per CPU core.

We are using the PowerPC R© p4080 CPU in our target system, which has no
specific hardware counters for measuring the number of lost cycles contributed
by individual shared resources. We have therefore calculated each CPI-stack
contributor by using the arithmetic mean [198] cost of each access and mul-
tiplied it by the number of accesses. The performance monitor counters can
measure the number of accesses. The mean performance penalty was obtained

84 Chapter 5. Measuring Execution Characteristics

by interviewing hardware designers and through testing. Following our reason-
ing, we estimate the CPI-stack as:

CPI = CPIL1-cache + CPIL2-cache + CPIL3-cache + CPITLB

+ CPIbranch + CPIbase+other

We agree with other researchers [8, 94, 208] that our simplified CPI-stack is
blunt, but it confirmed the opinions expressed by senior hardware and software
designers working within our target organization. Figure 5.3 illustrates our
measurements. In this particular test run, we focus on cores 6 and 7, which is
where our target application runs. Cores 0-5 runs other applications not closely
related to this investigation. They will not have much impact on the tested
application apart from their sharing the same L3-cache and other peripheral
resources. Figure 5.3 shows that the majority of wasted execution time is spent
waiting for L1-cache, L2-cache, and L3-cache.

5.4.3 Closed Loop Interaction

We have implemented Charmon to support a closed-loop interface. We want
to provide other applications the possibility to directly access performance-
related measurements and also act upon the current system performance. The
concept of acting on performance measurements is something that we will
discuss further in Chapters 6, 7 and 8.

5.5 Related Work

We have found exciting relations to our work in the area of continuous system
monitoring. For example Anderson et al. [10] implements a low intrusive (the
execution impact is 1%-3%) sample based mechanism to gather system-wide
information. Their implementation samples hardware performance counters
when they generate overflow interrupts. Our implementation uses a timer to
sample the hardware performance counters periodically.

One of the standard work when monitoring or measuring system perfor-
mance is the LM-Bench suite by Mcvoy and Staelin [204]. It measures and
calculates cache and memory timings to understand the system behavior. Un-
fortunately, our legacy platform does not support all API-calls and development
tools required by LM-Bench. The lack of API support is one major factor for
us implementing our hardware monitor.

5.5 Related Work 85

Eranian [83] claims that performance monitor counters are an essential com-
ponent in performance measurements and when evaluating system performance.
They have investigated resource usage on the Intel R© architecture. We started
our resource and performance investigations on the PowerPC R© architecture and
then, some years later, continued on the Intel R© architecture. The fundamental
approach is similar to our monitor and theirs. They run a measurement appli-
cation that gathers resource and performance information for later evaluation.
In our case, we have extended this idea to let the samples provide input to a
feedback control algorithm that can later mimic the monitored system.

Diniz et al. [69] have investigated how to use feedback control mechanisms
to improve program compilation. They have modified a compiler to use perfor-
mance feedback results from an initial application test-run. Their method allows
the compiler to utilize complex optimization mechanisms that are not usually
possible to utilize when using static methods at compile time. Lau et al. [180]
extend the work by investigating how feedback control techniques can improve
the performance of JAVA programs executing in a Virtual Machine (VM). They
state that there are plenty of known optimization techniques available, but it
is hard for a VM to know which one to use in particular cases. Sometimes a
function optimization decreases the overall performance because the function
may operate on different data during the next iteration.

Eyerman et al [94] describe an architecture for measuring the CPI-stack
via tailored PowerPC R© Power5 hardware performance counters. They also
describe the difficulties and errors when using more straightforward methods,
denoted “naive”, like multiplying the number of misses with the average cost.
The total number of misses may, for example, contain entries in mispredicted
execution paths that should be omitted in the real CPI calculation. In our case,
we could only use the naive method because our target hardware architecture
did not support extended CPI counters. Additional research by Eyerman [93]
suggest that CPI-stacks simplifies the execution environment and that the result
may be misleading. Their suggestion is to use a system-level metric to describe
the performance as described by Alameldeen and Wood [7] and Eyerman [93].
We have used CPI as a low-level metric to get an indication of which shared
hardware resources to synthesize in our models. We use message round-trip
time as the system level metric when measuring the system performance.

Sherwood et al. [268,269] deduce that it is possible to model subsections of
an application by dividing it into basic block vectors and providing a hardware-
independent metric. In our case we have problems simulating the production
application, because of its size and complexity, making it difficult to use this

approach. Our opinion is that their technique can act as an good complement to
ours.

Demme [65] states that it is possible to accelerate system development by
using and evaluating the result from PMU counters. They have devised an own
tool, LiMits, and used it to perform case studies on Firefox and MySQL.

5.6 Summary
We have answered Q1 (Section 3.2.1) by the work presented in the text above
and through our publication A, which is further expanded in the technical re-
ports M and N. We have reused knowledge, techniques and tools in our later
papers J and K.

We have shown that it is possible to monitor the production environment of
a large-scale industrial system with our implemented Charmon tool. Charmon
can measure both hardware resources and the system performance continuously
and present the results in a user-friendly manner. Charmon also implements
an API where other applications can extract resource and performance data for
selected processes.

We use this feature in our research presented later in this thesis. We have
used the hardware resource measurements and performance measurements to
debug performance-related problems. The measurements aided us to find so-
lutions and give advice to system engineers investigating performance-related
problems. The Charmon tool is part of the industrial system.

There are numerous ways to improve our current work. We have made
substantial changes to the Charmon tool over the time of our research, adding
new features and porting it to new hardware architectures. There is a natural
extension to this. We should widen the perspective and make the tool freely
available. The next step is to generalize it further to make it even easier to add
new architectures, PMU events, performance metrics. There are also several
improvements to be made in the current sampler. We would like to optimize the
PMU sampler to reduce the impact on the observed system further. The cause
of action will follow the industrial demand, and we will address the issues with
the highest industrial impact on the product portfolio.

Det här är inget man kan diskutera, jag har rätt och du har fel.1

My own translation:

This isn’t something to discuss, I am right and you are wrong.

— Hans Rosling [248]

1Hans Rosling exclaims “This isn’t something to discuss, I am right and you are wrong.“ during
a danish DR2 TV-interview, when the program leader says that world is in chaos with regards to
war and refugees.

6
Load Replication

This section corresponds to research question Q2 (Section 3.2.2), which we
have adressed in the technical report N based on papers A, B and M.

How to automate modeling and replication of hardware usage for a pro-
duction system?

PE R F O R M A N C E is an important issue for most software development
projects, and it is one of the major differentiating factors for most new
software releases in a highly competitive market. Time-to-market is also

a key factor [110,293] for large-scale industrial systems [122]. The ability to de-
liver performance improvements for the next generation of an existing product
is an ever-more important issue in the software industry. This chapter describes
a technique that firstly models the execution characteristics of a production
system. Secondly, it replicates the execution characteristics on a test system.
The ultimate goal of our method is to make it possible to test newly developed
system functions with regards to performance issues much earlier than with
traditional functional testing.

We begin this chapter in Section 6.1 by giving an introduction to load repli-
cation. We continue by describing our theoretical approach in Section 6.2, more
specifically how we create the execution characteristics model. Section 6.3 de-
scribe our implementation specific details and lists two successful experiments
replicating load from a production system in Section 6.4. We continue with
related and future work in Section 6.5. We conclude the chapter by presenting
our conclusions in Section 6.6.

91

92 Chapter 6. Load Replication

A
ct

iv
it

y

Time

Platform

Application

Delivery

Continuous testing throughout
the design phase

A
ct

iv
it

y

Characteristics Test

Platform

Application

Delivery

Time

iterations between
Late stage

design and test

Lead−Time Reduction

effort varies over time
The characteristics test

Test phase Development phase

a) Characteristics testing and corrections are iteratively performed at
the end of the design process.

b) Performing characteristics testing throughout the development
process shortens the total development time.

Figure 6.1: Two performance verification approaches of an industrial system.

6.1 Introduction

Many companies use various degrees of traditional waterfall [252] development
processes when implementing industrial systems. Agile development methods
continuously make their way into design organizations although large organiza-
tions still have specific checkpoints to pass before passing on a product to later
stages in the development process.

Figure 6.1a depicts the current, semi-sequential, development process with
a slight overlap between some development activities. Platform implementation
starts the chain of development activities. When the platform starts to reach
a finished state, it is subjected to various function-tests during the same time
the application development starts in parallel. A similar scenario applies to

6.1 Introduction 93

the application development. A system test organization usually gets involved
just before the system deployment. The system verification stage is where
testers verify the functional properties, absence of bugs and overall system
performance. There are also many iterations between the test-, the design- and
application departments because various bugs needs to be fixed and retested.
The latter is depicted to the right in Figure 6.1a.

The extended development time results in long lead-times between the start
of platform development and system performance test. Long lead-times coin-
cide with the fact that it is expensive to fix bugs late in the development process
as stated by Boehm [28]:

Finding and fixing software problems after delivery is often 100
times more expensive than finding and fixing it during the require-
ments and design phase.

Some important reasons why it is important to get early-stage characteristics
feedback are that:

• The lab costs for hardware and personnel when testing a complete pro-
duction system are magnitudes larger compared to using small test nodes.

• It is expensive to fix bugs late in the development phase [282]. One
reason for this is that the developers that made the initial code might not
be available for troubleshooting and fixing the problem.

• It is vital to get an early performance evaluation when performing cost-
reduction activities for an existing product. Several functions previously
executing on different CPUs may be co-located to one CPU in an effort to
reduce cost. System function consolidation may have undesirable effects
on system performance.

Our idea is that it is possible to reduce the development time by moving all
or part of the execution characteristics testing to earlier design phases in the
development process, as depicted in Figure 6.1b. The main benefit is that per-
formance related bugs are easier to detect, isolate and correct because engineers
are in the middle of implementing and debugging the software. An additional
bonus-effect is the feedback that the engineer receives when his/her code is
tested for performance issues.

94 Chapter 6. Load Replication

���������
���������
���������
���������

���������
���������
���������
���������

Step 1

Loadgen Charmon

Platform Rev A

Test Appl. LoadgenTest Appl.

performance
counters

Application Charmon

Platform Rev A

performance

The application is modeled by a test
application and a load generator

counters

Production Node Test Node Test Node

Create a model on the
test system

Use Charmon to get hardware
and software characteristics

Read Read

from the production system
can use the same model
Multiple platform SW releases

CC C

Step 3Step 2

Platform Rev B

Figure 6.2: Three steps in the modeling process. (1) Gather execution charac-
teristics from a production node; (2) Create a model of the production system
using the original platform A; (3) Use the production node model for testing
purposes when a new platform B is released.

6.2 System Model and Definitions

We have depicted our three-step modeling process in Figure 6.2. The first step
is to sample the execution characteristics of the target system (Platform revision
A) when it is running in a production environment. The second step is to create a
hardware characteristics model on a test system to emulate the hardware usage
of the target system. In the third and final step, we use the model on a test
system together with a function-test suite to detect if there are any performance
deviations for new software releases (Platform revision B). We use the Charmon
tool to sample the execution characteristics, see Chapter 5.

The characteristics model maps hardware characteristics from the produc-
tion node to a smaller test node. The main goal is to provide a more realistic
execution environment for the test node similar to the production node envi-
ronment. It is well-known in the industry, that functional test suites are good
at testing the required functions, but they do not stress the system in the same
way as the real production system. Running tests while stressing the system
increases the ability to provoke congestion scenarios that may lead to the detec-
tion of hidden bugs.

6.2 System Model and Definitions 95
O

u
r

im
p

le
m

en
te

d
 f

u
n

ct
io

n
al

it
y

C
o

n
fi

g
u

ra
ti

o
n

 d
at

a
d

ir
ec

ti
o

n
C

o
n

fi
g

u
ra

ti
o

n
 d

at
a

E
x

tr
ac

ti
o

n
 o

f
ch

ar
ac

te
ri

st
ic

s
d

at
a

L
eg

en
d S
y

st
em

 s
tr

u
ct

u
re

C
h

ar
m

o
n

P
ro

d
u

ct
io

n
 A

p
p

l.

P
ro

d
u

ct
io

n
 N

o
d

e

P
la

tf
o

rm

P
M

C

b
)

U
se

 t
h

e
ex

tr
ac

te
d

 c
h

ar
ac

te
ri

st
ic

s
in

fo
rm

at
io

n
 t

o
cr

ea
te

 a
n

 e
x

ec
u

ti
o

n
 m

o
d

el
 o

n
 a

 t
es

t
n

o
d

e.
p

ro
d

u
ct

io
n

 n
o

d
e

ex
ec

u
ti

o
n

 e
n

v
ir

o
n

m
en

t.
a)

 E
x

tr
ac

t
h

ar
d

w
ar

e
ch

ar
ac

te
ri

st
ic

s
fr

o
m

 a

ch
ar

ac
te

ri
st

ic
s

E
x

tr
ac

te
d

 H
W

G
en

er
at

o
r

L
o

ad

T
es

t
N

o
d

e

T
es

t
A

p
p

l.

L
o

ad
C

o
n

tr
o

ll
er

P
M

C

P
la

tf
o

rm
C

h
ar

m
o

n

L
o

ad

T
es

t
N

o
d

e

T
es

t
A

p
p

l.

M
o

d
if

ie
d

 P
la

tf
o

rm

G
en

er
at

o
r

P
M

C

U
se

 r
et

ri
ev

ed
g

en
er

at
o

r
p

ar
am

et
er

s

R
et

ri
ev

ed
 g

en
er

at
o

r
p

ar
am

et
er

s

n
o

d
e

ex
ec

u
ti

o
n

 e
n

v
ir

o
n

m
en

t
o

n
 a

 t
es

t
n

o
d

e.

H
W

 c
h

ar
ac

te
ri

st
ic

s

It
er

at
e

c)
 U

se
 t

h
e

ex
ec

u
ti

o
n

 m
o

d
el

 t
o

 s
im

u
la

te
 t

h
e

p
ro

d
u

ct
io

n

C
o

n
ti

n
u

o
u

s
ex

tr
ac

ti
o

n
o

f
ch

ar
ac

te
ri

st
ic

s
in

fo
rm

at
io

n
.

U
se

 e
x

tr
ac

te
d

G
en

er
at

ed
 l

o
ad

G
en

er
at

ed
 l

o
ad

C
h

ar
m

o
n

Fi
gu

re
6.

3:
Sc

he
m

at
ic

de
sc

ri
pt

io
n

of
ch

ar
ac

te
ri

st
ic

s
ex

tr
ac

tio
n

fr
om

a
pr

od
uc

tio
n

sy
st

em
,h

ow
to

cr
ea

te
an

ex
ec

ut
io

n
m

od
el

an
d

ho
w

to
si

m
ul

at
e

th
e

pr
od

uc
tio

n
sy

st
em

ex
ec

ut
io

n
en

vi
ro

nm
en

to
n

a
te

st
sy

st
em

.

96 Chapter 6. Load Replication

6.2.1 The Modeling Method
Our method to mimic the execution characteristics of a production system re-
quires an understanding of the resource usage of a production system. We
sample the hardware resource usage, R, and application performance, x , for
the target system. An r ∈ R can be any measurable hardware resources such
as cache misses, branch prediction unit statistics, floating point counters and
similar, as described in Section 5.2.4. It is necessary for a system designer to
determine and specify what r that will accurately describe the execution char-
acteristics of the target system. The performance, x , is any application-specific
metric that accurately describe the application performance, see Section 5.2.5.
We describe the process to obtain the execution characteristics from a produc-
tion application and mimicking it in a test environment by three steps. We
assume that the same type of hardware is used in the production system and in
the test system.

1. The modeling procedure is started by sampling r ∈ R for process p in
the production system running in its target environment resulting in a
bounded series of measurements, mr ,p . See Figure 6.3a for an illustra-
tion.

2. The second step, as depicted in Figure 6.3b, is to create a simulated
environment on a test node. We achieve a simulated environment by
substituting the production application with a function test application
together with a load generator mimicking the characteristics obtained in
Step 1. We use the average value for each modeled metric, mr ,p .

(a) Run the test application, t, on the same platform as in Step 1, i.e.
exactly the same software release of the platform.

(b) Continuously evaluate δr = mr ,p −mr ,t for all r ∈ R. Let a pro-
portional–integral–derivative (PID) control algorithm [22] converge
until δr is sufficiently small, as decided by a system engineer.

(c) Retrieve metrics from the control algorithm.

In the process above we have sampled the execution characteristics from a
production system and then mimicked a similar execution environment for a
test application that performs a function-test. We can generate the same rate
of cache misses without using the control algorithm by storing the internal
load-generation parameters retrieved in Step 2c. This allows us to change the
platform and then apply the same rate of cache misses. Investigating the ratio

6.2 System Model and Definitions 97

0
7

1
5

2
3

3
1

W
ay

 2

W
ay

 4

W
ay

 5

W
ay

 6

W
ay

 1

W
ay

 0

W
ay

 7

W
ay

 3

3

2
a

2
b

1

6
4

B
 C

ac
h

e
L

in
e

A
d

d
re

ss
 T

ag
S

ta
tu

s
B

it
s

S
el

ec
t

T
ag

S
el

ec
t

B
y

te
 i

n
 t

h
e

C
ac

h
e

L
in

e

64
 se

ts

E
A

(3
2

b
it

)

Sel
ec

t S
et0
7

1
5

2
3

3
1

0
7

1
5

2
3

3
1

3
5

:
P

h
y
si

ca
l

A
d
d
re

ss
 (

3
6
b
it

)

:
E

ff
ec

ti
v
e

A
d
d
re

ss
 t

o
 b

e
A

cc
es

se
d
 (

3
2
b
it

)

LSB

MSB MSB

LSB

A
d

d
re

ss
 T

ra
n

sl
at

io
n

P
A

(3
6

b
it

)

Figure 6.4: Address translation and physical address usage in the cache struc-
ture.

98 Chapter 6. Load Replication

of misses allows us to detect changes in platform behavior. In the continued
procedure below we can measure x for a different releases of the platform to
get an indication of how it will perform when running the production system.

3. In this last step, see Figure 6.3c, we can detect changes to x for a modified
platform without running the production application.

(a) Start the modified platform together with the test application, t.

(b) Generate the same resource usage R as obtained for t in step 2c.

(c) Measure x for t and changes of x indicates a performance change.

The characteristics of the modified platform is different from the original one
if x has changed in Step 3c. Low-level changes to the OS can influence the
overall performance of the applications drastically if there are performance-
related problems in cache handling or if the memory footprint has changed.

6.3 Implementation
The modeling process is generic and can use any hardware metric that is 1)
possible to measure and 2) for which we can create an adaptable load generator
mechanism. By load generator, we mean a specific part of the test application
that can explicitly generate accesses to the resource we want to target. A system
designer could investigate their target system with Charmon and decide which
hardware metric has the highest effect on the performance. In the research lead-
ing up to this thesis, we have focused on modeling the cache usage. We selected
to model the cache-usage mainly because the system we are investigating is
memory-bound and depends heavily on cache and memory subsystem. The
CPI-stack [94] in Section 5.4.2 further strengthen our opinion that our target
application is memory-bound. Additionally, utilizing few metrics reduces the
modeling complexity. The modeling application has been implemented using
several PID-controllers. There is one PID-controller for each cache modeled
property (L1I-cache, L1D-cache, and L2D-cache). The modeling procedure is
fully automatic and the model is typically created after 1–5 minutes.

6.3.1 Address Translation
The p4080 [102,103] Freescale processor has an 8-way set associative cache [274].
The address translation starts with a user-accessible 32-bit Effective Address
(EA). When a user accesses an EA, the Memory Management Unit (MMU)

6.3 Implementation 99

A cache miss
A memory stride

L
1

 H
it

L
1

 H
it

L
1

 H
it

L
1

 M
is

s

Stride through memory by Core 0

L
2
 H

it

L
1

 M
is

s
L

2
 M

is
s

L
L

 H
it

L
1

 H
it

L
1

 H
it

Address Space

Shared L2−Data Cache

Shared Last Level (LL) Cache

L1−Data Cache

Other cores can cause
cache eviction if using,
a shared cache.

A memory access causing a cache miss.

Figure 6.5: A memory stride through various data cache levels.

converts it to a 36-bit Physical Address (PA), step 1 in Figure 6.4. There are
eight address tags for each cache set, which each points to a corresponding
64B cache line. The selection of address tag 2a is done with bits PA[0:23] in
parallel to the set selection 2b with bits PA[24:29]. A specific Byte within the
cache line is selected using bits PA[30:35], see [102,103]. We can use the same
reasoning for Intel CPUs [140] although the section above describes a Freescale
CPU. It is just to add or remove sets according to the CPU specifications.

6.3.2 The Load Controller
The load controller is designed to replicate the execution characteristics, i.e.
hardware usage, of the modeled system. The model is synthesized by increas-
ingly generating hardware-load to reach a user-supplied limit. When reaching
the desired limit, a model is automatically created, which is possible to store
for later use. The desired limits can be obtained through extracting production
system characteristics, as in Figure 6.3a. Current measurements are obtained
through the Charmon utility while automatically creating the model, see Fig-
ure 6.3b. When the model synthesis process has reached a stable state, it is
possible to extract the controller parameters for offline storage. As shown in
Figure 6.3c, the stored parameters can later be directly fed into the load con-
troller. When the load controller receives the model parameters, it can start
generating hardware load according to the model. The main benefit of using
this procedure is that the model is synthesized once and then deployed widely
without the need for remodeling.

100 Chapter 6. Load Replication

Each hardware metric has its own PID-controller. It has proved difficult to
avoid oscillations when implementing an autonomous feedback control loop
that simultaneously considers multiple metrics. For each additional metric, the
convergence is slower, and the oscillation tendencies increase. We are aware
that there are more advanced techniques that may support multi-metric control,
but due to lack of time, we have not investigated this issue further.

We have implemented a cache miss generator for L1I-cache, L1D-cache
and L2D-cache because they are substantial lost-cycle contributors, see Sec-
tion 5.4.2. We have actively chosen a subset of the characteristics contributors
because adding more metrics increase the complexity of the control algorithm.
Increased complexity leads to oscillations and longer convergence time.

6.3.3 Generating Cache Misses

Cache memories has been around since 1968 with the introduction of IBM
system 85 [190]. The main goal by using caches is to reduce the average access
time when accessing memory. The cache usage is even more important with the
systems of today since the CPU capacity increase quicker than the bandwidth
towards the RAM. There are two type of cachees. The first cache-type aims
to reduce the access time when fetching instructions. Instruction cache misses
are typically an effect of code with frequent jumps or context switches. The
other cache-type is data cache and contains a snapshot of the most used data
that applications access and operate on. Code that access its data structures
inefficiently generate extensive data cache congestion. All caches utilize a re-
placement strategy [274] that decides what to do when the cache is full and a
new item needs to be placed in the cache. The PowerPC R© p4080 and T4240
utilize a pseudo LRU replacement strategy.

We use the cache structure to generate a desired cache hit/miss ratio. It
is easy to generate data cache misses by striding through memory as shown
in Figure 6.5. In general, a short stride (jump) cause less cache misses while
longer strides cause more cache congestion. It is possible to generate the desired
cache hit/miss-ratio by varying the stride length and access pattern. A similar
reasoning applies to the instruction cache.

Generating I-cache Misses

We use a large switch-case statement [275] to generate L1I-cache misses, see
Listing 6.1. The bigswitch() function is called with varying argument val-
ues for the switch-case index n depending on the desired outcome. We can

6.3 Implementation 101

Listing 6.1: Generating L1I-cache misses.
1 i n t b i g s w i t c h (i n t n) {
2 s w i t c h (n) {
3 case 1 : n += 1 0 ;
4 b r e a k ;
5 case 2 : n += 1 1 ;
6 b r e a k ;
7 case 3 : n += 1 2 ;
8 b r e a k ;
9 . . .

10 case 99999 : n += 50009 ;
11 b r e a k ;
12 d e f a u l t : n+= 2 0 ;
13 }
14 r e t u r n n ;
15 }

foresee at least three possible outcomes depending on the hardware architec-
ture used and the n function argument value. The first is when using a small
n resulting in a short program jump. Jumping a short distance does not cause
any instruction cache miss since the destination address is already in the cache.
Jumping further by using a larger n results in a L1I-cache miss because the
cache needs to evict the current content and load the content for the destination
address. The instruction pipeline also needs to be filled with new instructions
from the destination address. Jumping even further, caused by a very large n,
cause a L2I-cache miss with similar results to a L1I-cache.

The feedback controller varies the jump distance to produce the desired
amount of cache misses. The main advantage of using this method is its sim-
plicity while minimizing the data accesses, which would affect other feedback
controllers working with data cache modeling.

Generating L1D-cache and L2D-cache Misses

We generate L1D-cache and L2D-cache misses by utilizing various memory
strides [148]. Our implementation determines the memory address to access
by different cache tags, sets, and offsets, see Figure 6.4, to reach the desired
ratio of cache misses. The general approach to generating D-cache misses is
straightforward. Striding within the number of sets/tags/offset supported by
the L1D-cache results in a cache hit. Striding outside the cache results in a
L1D-cache miss. Similar reasoning applies to generate L2D-cache misses but

102 Chapter 6. Load Replication

Listing 6.2: Function to generate D-cache hits and misses.
1 f u n c t i o n g e n D c a c h e m i s s e s (addr , a c c e s s e s , r a tL1 , r a t L 2)
2 % PowerPC R© p4080 hardware definitions.
3 d e f i n e TAGS (8)
4 d e f i n e SETS (6 4)
5 d e f i n e CACHELINE SIZE (6 4)
6 d e f i n e L2 SIZE (128KB)
7 i n t s
8 i n t t
9 i = 0

10 i n t v
11 % Start with the last used address.
12 a = addr
13 f o r e v e r
14 % Select a set.
15 s = 0
16 f o r s < SETS do
17 t = 0
18 f o r t < TAGS do
19 % Change offset to (maybe) generate L1miss.
20 i f i % r a t L 1 then
21 % Move outside cache line.
22 o f f s e t += CACHELINE SIZE
23 e n d i f
24 % Change offset to (maybe) generate L2miss.
25 i f i % r a t L 2 then
26 % Move outside the L2 cache.
27 o f f s e t += L2 SIZE
28 e n d i f
29 % Access data.
30 v += a [o f f s e t +s+ t] ;
31 % Quit if we have made enough accesses.
32 i f i > a c c e s s e s then
33 go to e x i t
34 e n d i f
35 t ++
36 en d f or
37 s ++
38 en d f or
39 en d f or
40 e x i t :
41 r e t u r n a

6.3 Implementation 103

it requires a larger working set. We have designed the cache miss generator
function to generate cache misses with few side-effects, such as cache hits,
instruction cache misses and so on.

We present the pseudo code for our data cache-miss generator algorithm in
Listing 6.2. There are several input parameters to the gen Dcache misses()
function. The first is addr which contains the base address of the allocated
working set memory. The next is accesses which denotes the total number
of accesses that should be made by the function before returning to the caller.
The following arguments, ratL1 and ratL2, denotes the ratio of memory
accesses where we should try to generate a L1D-cache orL2D-cache miss. We
have not specifically optimized the function but rather focused on making it
generic to support various hardware architectures. Our function tries to excer-
cise the entire cache, i.e., all sets, ways, and cache lines. Lines 3 – 6 define
our target. The PowerPC R© p4080 L1D-cache architecture is implemented with
64 sets where each set has 8-ways. The L1D-cache has a total size of 32 KB
divided into 64 Byte cache lines. The algorithm begins with an eternal loop at
line 12 . It starts by selecting the set 14 and the tag 16 . If we should generate
a L1D-cache miss, we make sure that we use an offset that is outside the cache
line. We use a simpler approach for generating L2D-cache misses and adds
the size of the L2D-cache to the offset. The memory access at line 27 triggers
the actual cache hit or miss. We exit the function at 29 if we have reached
the total number of accesses. We have also implemented various controls in
the gen Dcache misses() function to ensure that we do not access mem-
ory outside the allocated working set memory. We have omitted this code to
improve readability in Listing 6.2.

A side effect of striding through a multi-level cache is that misses at a certain
cache-level will most likely also generate misses for all preceding cache-levels.
Also, note that explicitly generating cache misses are difficult. It is not an exact
science because all processes running on the system affects the system-wide
cache and will affect the cache miss generator function. Also, generating a
L2D-cache miss will trigger a L1D-cache miss. These are contributing reasons
for connecting the PID controller to the cache miss generating function. We
want to define the cache miss rate or ratio and then let the PID controller deter-
mine the actual function-argument values. We control the cache hit-miss ratio
by giving the total number of accesses as well as the desired ratio for cache
misses. The PID control algorithm, see Section 6.3.2, provides the parameters
given to the function.

104 Chapter 6. Load Replication

6.4 Experiments Using Execution Characteristics
Modeling

We will describe the outcome from four experiments in the following sections.
We begin our experiments with Section 6.4.1 where we verify that our execution
characteristics method. In Section 6.4.2 we compare the hardware characteris-
tics of a production node with characteristics from a test node, both with and
without a characteristics model. In Section 6.4.3, we present an example of find-
ing a performance related bug in the early phases of the development process.
In our last experiment, see Section 6.4.4, we use our modeling mechanism to
derive an estimate of the performance impact when switching from a legacy-OS
to Linux.

6.4.1 Running a Test Application With The Load Generator
The goal of this experiment was to verify that it was possible to replicate a
synthetic execution environment while running a standard packet processing
test application. The test application sends messages between two applications
running on the same system. Each application performs some basic packet
processing before sending the packet back to the other communication part.

Setup We had already sampled the execution environment of a production
system, see Section 5.2.4, so we knew the system cache usage. We decided
to set the following desired values: L1I-cache miss ratio 0.74%, L1D-cache
miss ratio 3.3% and various L2D-cache miss ratio [Core 0=22%, Core 1=14%,
2=15%, . . . , 7=20%].

Execution The test application and the load generator was started at the be-
ginning of the test run, see Figure 6.6. The feedback controller was aborted
after approx. 35 minutes, returning the load on the node to its normal state with
a load provided only by the test application.

Evaluation We use one PID-controller per core and hardware metric. The
test application has an initial characteristic (to the left) that differs from the
final characteristics (to the right) that corresponds to the desired values as given
above, see Figure 6.6 Each of the eight graphs in Figure 6.6 shows CPI and
cache misses when running a signaling application sending signals between
two processes located on the same core. The effect of an increased cache miss

6.4 Experiments Using Execution Characteristics Modeling 105

 0

 5

10

15

20

25

30

C
a
ch

e
 M

is
s

R
a
ti

o
[%

]

Core 0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

C
y
cl

e
 P

e
r

In
st

ru
ct

io
n

,
C

P
I

Core 1

 0

 5

10

15

20

25

30

C
a
ch

e
 M

is
s

R
a
ti

o
[%

]

Core 2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

C
y
cl

e
 P

e
r

In
st

ru
ct

io
n

,
C

P
I

Core 3

 0

 5

10

15

20

25

30

C
a
ch

e
 M

is
s

R
a
ti

o
[%

]

Core 4

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

C
y
cl

e
 P

e
r

In
st

ru
ct

io
n

,
C

P
I

Core 5

 0

 5

10

15

20

25

30

0
0

0
5

1
0

1
5

2
0

2
5

3
0

3
5

C
a
ch

e
 M

is
s

R
a
ti

o
[%

]

Time[minutes]

Core 6

0
0

0
5

1
0

1
5

2
0

2
5

3
0

3
5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

C
y
cl

e
 P

e
r

In
st

ru
ct

io
n

,
C

P
I

Time[minutes]

Core 7

L1 I$[%] L1 D$[%] L2 D$[%] CPI RTT[us]

Figure 6.6: CPI and cache miss ratio when bouncing signals.

106 Chapter 6. Load Replication

 0

 5

 10

 15

 20

Production
System

Test
Appl.

Test Appl. with
Generated Load

 0

 0.5

 1

 1.5

 2

 2.5

 3

M
is

s
ra

ti
o
 [

%
]

C
P
I
[C

y
cl

e
s/

In
st

ru
ct

io
n
]

CPI[Cyc/Instr]

2.04

1.15

1.96

L1 ICache miss ratio

0.74
0.06

0.75

L1 DCache miss ratio

3.3

0.14

3.35

L2 DCache miss ratio

22

1

21.2

Figure 6.7: CPI and cache miss ratio for core 6.

ratio is an increasing CPI, which affects the performance of other processes
executing on the same core. We conclude that it is possible to replicate the load
of this production system on a test system. We need to perform additional tests
to evaluate how generic the results are and if we can replicate the load of any
system.

6.4.2 Production vs. Modeled Execution Characteristics

The goal of this experiment was to compare the original and replicated execution
characteristics. We looked closer at core 6, which runs the main application

6.4 Experiments Using Execution Characteristics Modeling 107

 0 5

 1
0

 1
5

 2
0

 2
5

 3
0

00

02

04

06

08

10

12

14

16

18 1
.5

 2 2
.5

 3 3
.5

 4
Miss ratio [%]

Cycles Per Instruction(CPI)

T
im

e
 [

m
in

u
te

s]

L1
 I
$

L1
 D

$
L2

 D
$

C
P
I

M
e
a
n
 v

a
lu

e
S
td

 D
e
v
.

M
a
x

M
in

(a
)P

ro
du

ct
io

n
sy

st
em

.

 0 5

 1
0

 1
5

 2
0

 2
5

 3
0

00

02

04

06

08

10

12

14

16

18 1
.5

 2 2
.5

 3 3
.5

 4

Miss ratio [%]

Cycles Per Instruction(CPI)

T
im

e
 [

m
in

u
te

s]

L1
 I
$

L1
 D

$
L2

 D
$

C
P
I

M
e
a
n
 v

a
lu

e
S
td

 D
e
v
.

M
a
x

M
in

(b
)M

od
el

ed
te

st
sy

st
em

.

Fi
gu

re
6.

8:
A

co
m

pa
ri

so
n

of
ha

rd
w

ar
e

ch
ar

ac
te

ri
st

ic
s

fo
ra

pr
od

uc
tio

n
sy

st
em

an
d

a
m

od
el

ed
te

st
sy

st
em

.

108 Chapter 6. Load Replication

functionality on the production system. The other cores handle various support
services related to other types of traffic processing, but we have omitted them
due to space constraints.

Setup We use the same test setup as in Section 6.4.1 but configure core 6 with
the following desired values: L1I-cache miss ratio 0.74%, L1D-cache miss ratio
3.3% and various L2D-cache miss ratio [Core 0=22% and then Core 1=14%,
2=15%, . . . , 6=22%, 7=20%].

Execution We use our modeling method to create a hardware characteristics
model that converge the cache usage to the desired level, see Figure 6.6. All
cores in the CPU are modeled during the experiment and shows similar charac-
teristics as the production node. We have implemented three Test Cases (TC).
TC1 shows the original samples from the production system. TC2 shows the
execution characteristics when running only the function-test suite on the test
system. TC3 shows the function-test suite together with the load generator, i.e.
on a replicated execution environment.

Evaluation The execution characteristics, i.e. cache usage, for the production
system (TC1) is shown in the leftmost stacks in Figure 6.7. It is easy to see that
the application is a heavy user of cache-memory. This is in itself an important
conclusion for the engineering department when they investigate the possibility
to make performance improvements. The cache usage for TC2 is shown in the
middle of the figure. Comparing the cache usage between TC1 and TC2 shows
an important shortcoming with the function-tests. The memory footprint and
memory usage are far too small when running TC2. Even though the function-
test suite exercise the functionality of the system it does not generate remotely
enough stress on the system. In TC3 we add load-replication to the function-test
suite. The execution characteristics is almost identical to the production system.

A closer investigation of the measurements in Figure 6.7 reveals that the
cache usage of the production system in TC1 jitters over time, Figure 6.8a.
The jitter in TC1 is much higher than in TC3, see Figure 6.8b. Such jitter
has a two-fold meaning. On the positive side, the model system is within the
limits of the production system execution characteristics. The mean cache usage
ratio is similar to the production system. There may also be downsides to the
jitter difference. The explicit effects are difficult to predict, but although the
mean cache-usage is similar, memory access bursts tend to congest memory
subsystems. Memory congestions will have negative effects on the memory
access time.

6.4 Experiments Using Execution Characteristics Modeling 109

Original
Release

Modified
Release

Comparison Increase

Core [ms] [ms] [ms] [%]

0 Omitted from the simulation.
1 0.5934 0.5982 0.0048 0.81%
2 0.5935 0.5999 0.0064 1.08%
3 0.6017 0.6068 0.0051 0.85%
4 0.6022 0.6057 0.0035 0.59%
5 0.6022 0.6058 0.0036 0.60%
6 0.6025 0.6060 0.0036 0.59%
7 0.6015 0.6061 0.0046 0.76%
Average 0.75%

Table 6.1: Mean message RTT for a test application w/ and w/o a particular
software change while running on a test system. The data was sampled on a
second-level basis during several hours.

Original
Release

Modified
Release

Comparison Increase

Core [ms] [ms] [ms] [%]

0 Omitted from the simulation.
1 2.0238 2.2492 0.2254 11.14%
2 2.0937 2.3423 0.2487 11.88%
3 1.9284 2.1527 0.2243 11.63%
4 2.0195 2.2548 0.2353 11.65%
5 1.9945 2.1778 0.1832 9.19%
6 2.1637 2.4100 0.2463 11.38%
7 1.9952 2.1704 0.1752 8.78%
Average 10.81%

Table 6.2: Mean message RTT for a test application w/ and w/o a particular
software change while simultaneously running a load generator on a test system.
The data was sampled on a second-level basis during several hours.

Remarks It is also possible to detect periodically reoccurring events by look-
ing for peaks in graphs. Our measurements imply that the production node
executes a memory intensive task roughly every second minute because there
are repeating CPI peaks occurring with this interval, see Figure 6.8a.

110 Chapter 6. Load Replication

O
riginalR

elease
M

odified
R

elease
C

om
parison

C
ore

Instr.
C

ycls.
IPC

C
PI

C
PU

Instr.
C

ycls.
IPC

C
PI

C
PU

Instr.
C

ycls.
IPC

C
PI

C
PU

0
O

m
itted

from
the

sim
ulation.

O
m

itted
from

the
sim

ulation.
O

m
itted

from
the

sim
ulation.

1
1111M

1498M
0,74

1,35
63,7%

1106M
1499M

0,74
1,36

69,3%
-0,49%

0,09%
-0,49%

0,49%
8,79%

2
1040M

1498M
0,70

1,44
63,8%

961M
1502M

0,64
1,56

69,2%
-7,54%

0,26%
-7,96%

8,65%
8,46%

3
1043M

1498M
0,70

1,44
62,8%

966M
1500M

0,64
1,55

68,7%
-7,38%

0,15%
-7,51%

8,12%
9,39%

4
1046M

1498M
0,70

1,44
63,3%

967M
1499M

0,65
1,55

68,6%
-7,50%

0,05%
-7,37%

7,95%
8,37%

5
1044M

1498M
0,70

1,44
64,0%

963M
1502M

0,64
1,56

69,1%
-7,74%

0,29%
-7,83%

8,49%
7,97%

6
1042M

1498M
0,70

1,44
63,3%

959M
1496M

0,64
1,56

67,9%
-8,04%

-0,16%
-7,89%

8,57%
7,27%

7
1044M

1501M
0,70

1,44
63,3%

966M
1500M

0,64
1,55

68,5%
-7,46%

-0,02%
-7,44%

8,04%
8,21%

x
1053M

1498M
0,70

1,42
63,5%

984M
1500M

0,66
1,53

68,8%
-6,6%

0,1%
-6,6%

7,2%
8,4%

Table
6.3:

C
om

parison
of

tw
o

releases
of

a
telecom

m
unication

system
running

in
a

production
environm

ent.
T

he
m

odified
system

contains
a

hardw
are

errata
fix

related
to

cache
handling.T

he
characteristics

data
w

as
sam

pled
each

second
during

severalhours
ata

custom
ersite.T

he
table

show
s

the
average

value.

6.4 Experiments Using Execution Characteristics Modeling 111

6.4.3 System Performance Measurement
The goal of this experiment was to verify if it is easier to detect performance-
related problems (bugs) when running a function-test suite in an execution
environment that is similar to the production environment.

Setup We use the same test setup as in Section 6.4.1.

Execution TC1 was running on the original production system with no bug-
fix. In TC2 we run the function-test suite to verify that the bug-fix does not affect
the function and performance of the system. In TC3 we run the function-test
suite in a load-replicated execution environment. Both TC2 and TC3 contain
the same bug fix related to a CPU errata. The errata was at the time of imple-
mentation very difficult to understand and no engineer could forsee the effects it
could have on system performance. TC4 denotes the actual outcome of running
the production system including the bug-fix.

Evaluation Executing TC2 showed a minor performance degradation where
the message Round-Trip-Time (RTT) increased by 0.75%, as shown in Table 6.1.
When running TC2 the message RTT increased to 10.8% with the bug-fix com-
pared to without it, see Table 6.2. Such a considerable performance degradation
clearly indicated that the bug-fix could cause a performance problem for the
production system. To validate our method we delivered the bug-fix for for-
mal performance verification. The average CPU load increased by 8.4%, see
Table 6.3, when the bug-fix was tested together with the production system.

Remarks It is difficult to make a direct comparison between the message RTT
on the test system, ts, and the CPU load on the production system. However,
we estimate that ts = tp + tt where tp is the time it takes to process a message
and tt is the time in transit between nodes. In the system we are investigating
tt � tp since the available bandwidth is high and the communication path is
relatively short. Thus, we assume that ts is proportional to tp, and that CPU
load is a major contributor to the message RTT. A higher CPU-load results in
an increased message RTT due to longer processing time.

6.4.4 Performance Prediction When Switching OS
The goal of this experiment [9] was to predict the application performance im-
pact when switching the OS from Enea OSE [273] to Linux. Many industrial

112 Chapter 6. Load Replication

systems still run on a legacy-OS that is expensive to maintain. The maintenance
cost drives the demand to migrate such systems to Linux, which supports many
more architectures and has a well-maintained execution environment and tools.
It is useful to get a performance indication before deciding to port the com-
plete system. In a practical sense, this experiment evaluates if a performance
test is more accurate when using a synthesized hardware characteristics model
together with a test suite compared to running the performance test with the test
suite only.

Setup We use a similar test setup as in Section 6.4.1 and utilize two intercon-
nected PowerPC R© p4080 [102] CPU boards for Enea OSE and two additional
boards running Linux. There were no significant background activity for either
OS.

Execution In the first scenario, we run the function-test suite on two Enea
OSE and two Linux system (Scenario S1 in Table 6.4). In our second test sce-
nario), we run the function test-suite together with our load generator (Scenario
S2 in Table 6.4).

Evaluation The function test run, S1, results in an 183% increase in mes-
sage RTT when using Linux compared to Enea OSE. However, in the load-
replication Linux runs we obtained a 14% message RTT degradation, S2. Later,
when we had ported much of the system and its production applications to
Linux, it was possible to verify that the average message RTT performance
degradation was 15%, which is very close to our prediction.

Remarks We have revealed some clues to the radical drop in performance
(+183% message RTT increase) when interpreting the results in S1. Starting
from the top of Table 6.4 the first metric that stands out is a decrease of 1.2
percentage point (pp) for L1I-cache hit ratio. It may, at first glance, look like a
negligible change but we know from experience that even small decreases in the
cache hit ratio affects the performance. The next metric is L1D-cache hit ratio,
which has decreased with 0.6pp. Such a hit rate reduction gives the first hint
of a larger working set for Linux. The platform and test application remain the
same for both OSes, which suggests that Linux by itself causes the increased
working set size. Investigating the Linux source code shows that it is much
more complicated than the legacy-OS. We attribute much of the complexity to
the generic and modular design of Linux. We can observe a similar increase
for the shared L2-cache where the L1D-cache and L1I-cache spillover affects

6.4 Experiments Using Execution Characteristics Modeling 113

S1
:O

nl
y

Te
st

Pr
og

.
S2

:T
es

tP
ro

g.
w

/L
oa

dg
en

M
et

ri
c

L
eg

ac
y

L
in

ux
In

cr
ea

se
L

eg
ac

y
L

in
ux

In
cr

ea
se

C
om

m
en

ts
Si

gn
al

R
T

T
6u

s
17

us
11

us
(+

18
3%

)
25

us
29

us
4u

s(
+1

4%
)

B
ig

di
ff

er
en

ce
w

/a
nd

w
/o

L
oa

dg
en

.
L
1
I-

ca
ch

e
hi

tr
at

io
10

0%
98

.8
%

-1
.2

pp
99

.3
%

98
.8

%
-0

.5
pp

L
eg

ac
y

fit
s

in
th

e
ca

ch
e.

L
1
D

-c
ac

he
hi

tr
at

io
99

.8
%

99
.2

%
0.

6p
p

98
.2

%
98

.5
%

0.
3p

p
Si

m
ila

rc
ac

he
us

ag
e

fo
rb

ot
h

O
Se

s.
L
2
-c

ac
he

hi
tr

at
io

–
10

0%
–

85
.0

%
90

.0
%

5p
p

L
2

is
no

tu
se

d
fo

ro
ri

gi
na

ll
eg

ac
y

bu
t

m
od

el
ed

w
ith

L
oa

dg
en

.
L
2
-c

ac
he

ac
ce

ss
es

0
16

M
16

M
6M

13
.5

M
6.

5M
(+

10
8%

)
IT

L
B

4
K

B
re

lo
c.

0
75

0k
75

0k
0

45
0k

45
0k

T
he

L
in

ux
co

de
ba

se
is

m
uc

h
la

rg
er

.
D

T
L

B
4

K
B

re
lo

c.
0

75
0k

75
0k

0
55

0k
55

0k
T

he
L

eg
ac

y
sy

st
em

us
es

V
ar

ia
bl

e
Si

ze
Pa

ge
s

to
re

du
ce

-T
L

B
pr

es
su

re
.

V
SP

-D
T

L
B

re
lo

c.
50

k
0

-5
0k

20
k

0
-2

0k
L
2
T

L
B

re
lo

c.
0

0
0

0
11

0k
11

0k
T

he
L

in
ux

da
ta

se
ti

s
la

rg
er

fo
rS

2.
B

ra
nc

h
hi

tr
at

io
10

0%
84

%
-1

6p
p

94
%

85
%

9p
p

Sm
al

le
rc

od
e

ba
se

fo
rt

he
le

ga
cy

sy
st

em
re

su
lts

in
go

od
br

an
ch

pr
ed

ic
tio

n.
B

ra
nc

h
hi

tr
at

e
20

0M
12

0M
-8

0M
(-

40
%

)
80

M
90

M
10

M
(1

2.
5%

)
In

te
rr

up
ts

0
23

0k
+2

30
k

0
25

0k
25

0k
T

he
ne

tw
or

k
dr

iv
er

im
pl

em
en

ta
tio

n
di

ff
er

s.

Ta
bl

e
6.

4:
Sc

en
ar

io
S1

sh
ow

sa
m

es
sa

gi
ng

te
st

ap
pl

ic
at

io
n.

S2
sh

ow
th

e
sa

m
e

te
st

ap
pl

ic
at

io
n

ru
nn

in
g

w
ith

an
ad

di
tio

na
l

ha
rd

w
ar

e
lo

ad
ge

ne
ra

to
r.

(p
p=

pe
rc

en
ta

ge
po

in
t)

.

114 Chapter 6. Load Replication

the number of accesses. The L2-cache hit ratio is negligible for the legacy OS
because there are too few accesses.

The TLB is closely related to the cache. The number of ITLB relocations
have increased from 0 → 750k. We conclude that the total size of Linux is
substantially larger than OSE. If we investigate the DTLB we can observe that
Linux does not use Transparent Huge-Pages (THP) [179] because the number
of DTLB relocations has increased from 0→ 750k. At the same time, the usage
of VSP-DTLB is reduced from 50k → 0.

The execution flow is also affected by the increased code base and leads
to a branch hit ratio drop (100 → 84). The last counter in this experiment is
the number of external interrupts. It seems likely that the Linux network driver
implementation uses much more interrupts than the legacy OS. A polling driver
would probably reduce the number of interrupts for a messaging application
such as ours.

The message RTT has increased for both the legacy OS (6us → 24us)
and Linux (17us→ 29us) in scenario S2. The difference between the OSes is
much smaller, only +14%. We can still see that the instruction flow is slower for
Linux, L1I-cache (99.3%→ 98.8%) and ITLB relocations (0→ 450k). For the
data flow, we can observe better cache hit ratio for Linux (98.2%→ 98.5%) but
there are still many more 4 KB DTLB relocations (0→ 550k) due to missing
VSP/THP support. The L2-cache usage shows a greater number of accesses by
Linux but also with higher hit ratio. Branch hit ratio still shows a performance
impact for Linux, and there are still a great number of interrupts.

Conclusions Based on the data collected, we believe that there are strong
indications that we can attribute the most of the performance degradation to 1)
a larger code and data working set; 2) the number of interrupts handled by the
network driver. One explanation for the significant difference in message RTT
between S1 and S2 is the greater size of the complete code and data set in Linux.
Even a small size increase of the working set cause many more cache-misses.

To overcome the performance degradation we suggest the following actions:
1) Enable VSP/THP or similar functionality to utilize large memory pages,
which will reduce the pressure on 4 KB TLB, 2) Use interrupt coalescing or
polling to reduce the number of handled interrupts within the Linux network
driver, and 3) Investigate why the total code and data set is bigger for Linux.

6.5 Related Work 115

6.5 Related Work

Performance monitoring is vital in today’s system development, and we believe
that it will become even more desirable when developing future systems be-
cause of their increasing complexity. The amount of software implemented in
modeling languages increase to aid the designer developing complex business
logic. Compiling the models to low-level code introduce an additional com-
plicating factor compared to the implementation in legacy systems, typically
implemented in C. An ever-increasing complexity in CPUs and memory sub-
systems require system engineers to put much effort into investigating multiple
performance bottlenecks. To do so, system developers need much information
on hardware resource usage, and system monitoring is one important building
stone.

Bell and John [20] describe a method to model an application by synthesiz-
ing vital metrics. The metrics are used to create a representative test application
automatically with similar characteristics to the original one. Starting with the
synthesizing procedure, we use a feedback control loop to model the system
while Bell and John [20] use statistical simulation with instruction traces, de-
scribed by Nussbaum and Smith [223]. Bell and John state that the synthesis
procedure is semi-automatic, and an average of ten passes with some manual
intervention is needed to tune the synthesis parameters. As a comparison, our
feedback control algorithm allows the synthesis procedure to converge with no
user interaction. Additionally, our model is described by the resulting configura-
tion parameters, which are fed to the generic method. For Bell and John model
derivation is done at compile time thus requiring a recompilation when altering
the configuration. Another difference between our approaches is that we use a
signaling application to detect any performance changes between releases while
Bell and John use IPC.

Joshi et al. [164] have formulated a concept called performance cloning, i.e.
load synthesis, that can be used to synthesize characteristics from a proprietary
application and create a model that mimics a similar behavior. In effect Joshi et
al. implements a similar methodology as Bell and John in [20] but have refined
the memory and branching model to be hardware agnostic.

Doucette and Fedorova [71] implements a similar functionality to ours when
generating cache misses to determine application sensitiveness for different
architectures. If an application is sensitive for accesses to a particular hardware
resource and another architecture has a different amount of that resource, the
application performance is related to the hardware upon which it runs. By
using their approach, it is possible to estimate the suitability of a new hardware

116 Chapter 6. Load Replication

platform for a particular application. The load configuration is static compared
to our automatic mechanism.

Similar to the research by Eklov et al. [76,77] and Tang et al. [281] our load
generator “steals” hardware resources from other applications ny starving them.
In contrast to their method, we use a cache miss generator to mimic a certain
execution environment while Eklov et al. and Tang et al. determine the cache
and memory bandwidth demand for the application. Our work related to load
synthesis is concentrated on core-private caches instead of the shared caches
targeted by Eklov et al. and Tang et al.

Alameldeen et al. [6] investigate server platforms and concludes that it is
difficult to synthesize and model production systems. We certainly agree to that
conclusion. They mimic the desired characteristics by using a manually tailored
workload suite in their work. In contrast, we use an automatic feedback-based
load generator to achieve an approximation of the production application.

There are other attempts to measure the system performance. Podzimek2013
et al. [233] has created a benchmarking suite where multiple applications simul-
taneously runs on a test system. The effect of consolidating multiple application
is similar to ours, i.e. shared resource such as caches cause the applications to
affect the performance of each other. The authors have expanded their work and
created a tool called Showstopper [234].

6.6 Summary

We have answered Q2 (Section 3.2.2) with theories, experiments and through
our work presented in this chapter. Our Paper B describe the load synthesis
method, which is further expanded in the technical reports M and N.

We have build upon our earlier research and used the Charmon resource and
performance monitoring tool. We connected a load synthesis application to the
Charmon supplied API. A feedback control loop continuously obtained the cur-
rent resource usage measured by Charmon through the PMU. The feedback loop
can then control the hardware resource usage of the load-replication application
and automatically reach the desired resource usage. The load-replication appli-
cation automatically reaches the same execution characteristics as the model of
the production large-scale industrial system.

We have used the execution characteristics model to mimic the hardware
resource usage of the production system on smaller and cheaper test nodes.
Having a realistic test environment during the design phase makes it possible
to move performance testing from late in the development cycle to the much

earlier software design phase. Detecting performance-related problems early in
the software design phase reduce the cost of debugging performance-related
problems. We have deployed the proposed solution in a telecommunication
development organization, and the company evaluates it for production usage.

Our work synthesizes a resource usage model and mimics static load of a
system. Static load synthesis is suitable for our type of system where the load
is stable over time, i.e., the application typically executes with a similar load
for the majority of its execution time. However, we recognize the need for syn-
thesizing dynamic behavior and therefore see this as an upcoming future work.
We would also like to investigate further and improve the feedback controller
so that it converges faster.

Don’t cry because it’s over, smile because it happened.1

— Theodor “Dr. Seuss” Geisel

1This quote summarizes my own experience when writing this thesis. It has been great fun and
at the same time very challenging. Sometimes it was so rewarding that I couldn’t stop writing. But
as always, things have to come to an end.

7
Automatic Message

Compression

This section corresponds to research question Q3 (Section 3.2.3), which we
have addressed in papers C (H).

How can the communication performance of a telecommunication system
be improved through message compression while retaining the system load
within pre-defined limits?

TH E massive deployment of Information Communication Technology de-
vices drives [70] the demand for a radically increased mobile commu-
nication bandwidth. End-user demands are passed on to the operators

that define requirements for a radical capacity increase [21, 84]. The telecom-
munication industry tackles the requirements in various ways and one of them
is to increase the communication capacity.

The chapter starts with Section 7.1 that gives an introduction to the com-
munication problem. We theorize the problem in Section 7.2 where we also
describe one way to improve the messaging performance. Our implementation
is described in Section 7.3 and we show the results form experiments in Sec-
tion 7.4. We relate our work to other researchers in Section 7.5 and estimate
possible future work. We conclude the chapter with our comments on messag-
ing performance and compression in Section 7.6.

121

122 Chapter 7. Automatic Message Compression

7.1 Introduction

There is a great demand for high-performance communication in today’s indus-
try, both internally and between systems. We are in the midst of the evolution
into multicore CPUs which causes the computational capacity [120, 129] to
grow quicker than the available communication bandwidth [218]. Large-scale
industrial systems [122] have additional problem areas, for example, the large
and very expensive legacy of already installed systems. It is not always econom-
ically feasible to replace current systems with newer ones just because they can
provide higher performance. Industrial requirements explicitly state that older
systems must coexist with more modern ones, which pose difficulties when
requiring substantial performance improvements.

7.1.1 Communication Performance Problem

The general opinion in our design organisation that the control plane commu-
nication performance was sub-optimal. We started our performance evaluation
by using Charmon, as outlined in Chapter 5, on the telecommunication system
we were investigating. Two things were clear when we evaluated the execution
characteristics; 1) The network congestion was high; 2) The CPU load was
varying between moderate (∼ 25%) and high (100%) depending on the exe-
cution pattern of the services sharing the same hardware resources. Network
communication is a well-known bottleneck [299] when computational capacity
grows quicker than the bandwidth.

From these data, we assumed that it would be possible to increase the band-
width under certain scenarios by compressing messages [121, 165, 217]. Mes-
sage compression require CPU capacity. The node may have CPU capacity
to spare depending on the current operational scenario. Although, this is not
always the case so the compression method must consider the system CPU-load
before starting to compress messages. Furthermore, the data transferred by the
system changes over time and depends on the deployment situation, making it
is difficult to decide manually what compression algorithm to use.

Manual system configuration is usually frowned upon for large-scale sys-
tems because it introduces additional costly manual labor. The same applies for
manual configuration of the messaging subsystem with changing message con-
tent. Industrial systems implicitly require automatically configurable messaging
systems, removing the need for off-line decisions. Communication mechanisms
must be able to handle different scenarios and a dynamic environment.

7.1 Introduction 123

Message compression implies that we are trading CPU resources for a re-
duction in message size, which in turn leads to quicker message transit time. A
message processing node in our industrial environment runs several essential
services that must not have their execution disrupted. Since unrestricted mes-
sage compression may overload the CPU, there must be an overload protection
for message compression.

7.1.2 Improving the Communication Performance
We have designed and implemented an automatic compression method to im-
prove the messaging performance and resolve the issues described in Sec-
tion 7.1.1. The main features of our method are:

• A novel mechanism that automatically and transparently evaluate the
messaging performance of different compression algorithms and select
the most efficient one for the current communication stream.

• An automatic mechanism that detects both network congestion and mes-
sage content changes and continuously selects the best compression al-
gorithm.

• A selection mechanism that simultaneously can handle multiple com-
munication streams. Each stream will have its own environment provid-
ing the possibility to have different compression algorithms for different
streams.

• A Proportional Integrative Derivative (PID) feedback controller that eval-
uate the CPU usage and dynamically adapt the ratio of compressed and
uncompressed messages, keeping the CPU usage to a specified limit.

We have implemented the method and tested it on a large telecommunication
system. We have used a realistic test setup to show that our implementation
improves the performance improvements to our system.

• We have used data extracted from a production system in our test envi-
ronment.

• We have integrated 9 different compression algorithms with an additional
2 configuration variations in our test environment.

124 Chapter 7. Automatic Message Compression

snd_msg()

l1

t r rcv_msg()t s

t

0
p

1
p

(a) Without message compression.

1

r

0
p

l2

Decompression

t

p

Compression

rcv_msg()stsnd_msg()

t

t tc d

(b) With message compression.

Figure 7.1: Schematic description of generic messaging system.

7.2 System Model and Definitions
In many cases it is reasonable to assume that the optimal compression algorithm
for a specific data set is known. However, in some scenarios this is not the case.
The message content may be unknown to the programmer, which makes it diffi-
cult to select an appropriate compression algorithm. To find the most suitable
compression algorithm there are two approaches. The first is to manually, in
an offline manner, select the compression algorithm that the operator think is
the best one. The second method, the one we suggest in this paper, is to use
a selection mechanism to automatically evaluate and select the compression
algorithm that is most suitable for the current message stream. For systems with
no compression this is a straight-forward procedure, which is depicted in Figure
7.1a.

Process p0 in Figure 7.1a communicates with p1 running on a
processor located on another node. Process p0 and p1 use legacy
functionally without message compression. To increase messaging
performance it is possible to use message compression, such as
illustrated in Figure 7.1b.

With our novel solution, we can transparently improve messaging performance
by adding message compression to the legacy application programming inter-
face (API). The API already contains functions that handle message commu-
nication. We modify the existing API and add selective message compression
functionality inside the snd msg() function and corresponding decompres-
sion functionality in rcv msg(). It is a substantial saving for any industrial
software to improve performance without any API change. API changes have
a drastic impact on context and dependencies and often requires substantial in-
vestments in modifying system components. System rebuild, regression testing

7.2 System Model and Definitions 125

etc. will also cause an increased cost. Our solution is to update the existing API
to monitor each communication instance. The communication API can trans-
parently utilize the most suitable compression algorithm for different instances
and types of message content.

The message scenario is initiated by sending messages using all im-
plemented compression methods in a round-robin fashion [15, Ch
7.7]. Compression and network statistics are stored for this commu-
nication instance. After an initial evaluation period one compres-
sion algorithm will be selected if it is predicted to give the lowest
message round trip time.

The total time (tt1) in Equation 7.1 is the time inside the send function (ts), to
travel on the link (tl1) and inside the receive function (tr). See Figure 7.1a.

tt1 = ts + tl1 + tr (7.1)

As illustrated in Figure 7.1b our approach is to add compression (tc) and de-
compression (td), see Equation 7.2.

tt2 = tc + ts + tl2 + tr + td (7.2)

Assuming that ts and tr are equal in both scenarios since the API send and
receive call does not differ in functionality, we can conclude that message com-
pression is beneficial if the time it takes to compress and decompress messages
is lower than reduced link time, Equation 7.3.

tc + tl2 + td < tl1 (7.3)

The performance of each compression algorithm can be derived by gathering
cumulative statistics. Such statistical data can then be used to predict future
message compression, send, link, receive and decompression time for each com-
pression algorithm. The prediction method selects the compression algorithm
that gives the lowest message time (tt). The selected algorithm is used for the
majority of messages until a different algorithm outperforms the current one.
To make sure that it is possible to detect a network- or message content change
some messages are sent using other compression algorithms. The idea is to
gather statistical data for all implemented algorithms, not only the one that is
selected.

Assume that one compression algorithm, F , is selected for a mes-
sage stream. F will then be used to compress most of the trans-
mitted messages. The rest of the algorithms will continuously be

126 Chapter 7. Automatic Message Compression

evaluated by compressing a very small number of messages. If the
content of the message stream changes, the algorithm evaluation
may favour a different algorithm than F , which is subsequently
chosen as the best compression algorithm.

If the CPU load increases beyond a limit a PID-feedback controller will re-
duce the message compression time-quota, causing messages to be sent uncom-
pressed.

Process p0 executes on the same CPU as p1 sharing a common
hardware. A process p1 is ordered to perform CPU demanding
calculations. The CPU usage throttling mechanism reduces the
compression quota for p0 resulting in fewer compressed messages.
Reducing the resource usage allocated for message compression
increase the available CPU resources for service S.

We think that it is difficult to manually, in an offline manner, consider all sce-
narios above selecting the most suitable compression algorithm. Our approach,
using an automatic mechanism, greatly simplifies this task and provides the
flexibility needed for a changing message stream while at the same time being
able to provide CPU resources for other co-located services.

7.2.1 Definitions

A host in our communication system will typically communicate by first receiv-
ing a message and then spend some time processing it producing a result that
is immediately sent onwards to another host. A host is usually, for cost-savings
reasons, also configured to handle additional concurrent tasks, such as statis-
tics measurements, user interaction, database management and/or other similar
actions.

Definition 13 We define a host in our communication system to be a computer
that performs a system vital task and that communicates with other hosts in the
system.

We also need to define how we measure the communication performance of
a host. The messaging performance varies depending on properties such as
link speed, host distance in the network. In the case of message compression,
additional properties can be added such as compression/decompression rate and
compression ratio.

7.2 System Model and Definitions 127

Definition 14 We define messaging performance as the time between the sender
host calls the snd msg() call together with the link time until the receiver ob-
tains the message, i.e. ts + tl1 + tr in Figure 7.1a.

We have also defined another way to measure the communication performance
of our target system. The message processing performance includes the com-
plete time until the sending node receives back a message from the host it is
communicating with.

Definition 15 The concept message processing performance is a measurement
of the ability to process messages per time interval. In our study, we measure
this as the message round-trip time (RTT) between two interconnected nodes.

We need a way to differentiate the performance between various compression
algorithms. We have opted to determine the compression algorithm suitability
according to their ability to provide a minimum message RTT.

Definition 16 We define the best compression algorithm to be the one that
gives the lowest message RTT.

To measure the performance of each compression algorithm we define three
key properties: compression time, decompression time, and compression ratio.
A compression ratio H ≤ 1 indicates that no compression is achieved or even
worse that the resulting message is larger than the uncompressed. Achieving
a higher compression ratio H > 1 results in a smaller compressed message
compared to the original one.

Definition 17 The compression time, tc = s/tcr is the time to compress a
particular message of size s. The compression rate, tcr, is the number of bytes
compressed per second, [B/s].

Definition 18 The decompression time, td = s/tdr is the time to decompress
a particular message of size s. The decompression rate, tdr, is the number of
decompressed bytes per second, [B/s].

Definition 19 The compression ratio of a particular algorithm is H = su/sc,
where su is the size of the uncompressed message and sc is the corresponding
size when being compressed.

Definition 20 The transmission time, tt, is the sum of message compression
time, tc, send time, ts, one way of the message round-trip time, trtt, and decom-
pression time, td, such that tt = tc + ts +

trtt
2 + td.

128 Chapter 7. Automatic Message Compression

r
i+2

r
i+1

No

Compression

No

New Calculation New Calculation

Time

New Calculation

Use Compression Use Compression Compression Use Compression
Compression

No

r
i

Figure 7.2: At the start of each round, ri, messages are compressed. When the
compression time budget is exhausted, messages are transmitted uncompressed
to reduce CPU load. In this example the ratio compressed/uncompressed is
increasing slowly.

The transmission time denotes the complete time it takes for a message from one
node to another. It is difficult to measure the very short time a message spends
on the link because the sender and receiver must have synchronized clocks. It is
easier to measure the time it takes back and forth since we can measure the time
it takes for a probe message. We, therefore, estimate the one-way time with half
the round-trip time when calculating the transmission time.

7.2.2 Network Measurements
To measure the network capacity the sending rate, tsr, and RTT rate, trttr, are
continuously monitored. The data stored in the table is used for predicting fu-
ture compression algorithm usages. Each measurement is a cumulative moving
average to ensure that network changes, such as congestion, affect the algo-
rithm selection procedure. In general, hard compression is favoured on slower
congested networks with high transmission time.

7.2.3 Compression Measurements
A number of algorithm specific metrics are measured such as compression rate,
tcr, decompression rate, tdr, compression ratio, H , see Table 7.1. The counters
are updated each round and shows messaging properties for the system it is
running on. The values will differ depending on the hardware it runs on and
the message content. The values are calculated as cumulative moving average
over a user-defined time to provide a good balance between quick response and
stable behavior. If a particular system experiences problems with this approach
it is simple to change this mechanism to a more appropriate one.

7.2.4 The Communication Procedure
We explain our method of automatic message compression by showing the send
and receive procedure. The sending process owns all messages that are sent

7.2 System Model and Definitions 129

Algorithm Processed
Size [B]

tcr
[B/us]

tdr
[B/us]

H

Uncompressed 100k 0 12 1.00
LZFX 200k 0.00 10 0.90
LZO 2300k 0.05 50 0.5
LZO SAFE 400k 0.003 32 0
LZMA 500k 0.002 43 0
LZW 5000k 0.001 32 0
BZ2 5000k 0.02 25 0
LZ4 5000k 1.0 100 0

Table 7.1: A number of metrics are monitored and stored in a database to be
used in the decision process for future messaging. There is one table for each
communication stream. Metric stored are the number of bytes passed through
the communication subsystem, compression rate(tcr), decompression rate(tdr)
and compression ratio(H). The values in the table are fabricated and will be
different for each system.

and they belongs to a message stream, see Figure 7.2. The message stream
is divided into rounds separated by an assessment period where the previous
rounds are evaluated and the compression strategy is decided for the next round.
It is desirable to keep as long round as possible while still letting adjustments
take effect in a reasonable time. Additionally it must be long enough so that
there is sufficient information to evaluate to make a good estimation of the
compression algorithm performance. Both the round length and the number of
rounds evaluated are configurable and system dependant.

Sending a message

We describe the communication procedure in the procedure below. The proce-
dure shows the most significant steps together with links to later sections where
we describe more details. There are no measured values when round 0 starts, so
we use all compression algorithms equally much. For each subsequent round r
do:

1. Evaluate previous statistics and assign r its parameters.

(a) Calculate the algorithm distribution for r by setting a weighted proba-
bility, see Section 7.2.5. An algorithm that has a lower message RTT
gets a higher probability for being selected than other algorithms.

130 Chapter 7. Automatic Message Compression

(b) Derive a compression time budget for r, see Section 7.2.7.

2. Send messages.

(a) A random compression algorithm is selected from the list with its
weighted probabilities. This means that for adjacent messages there
might be different compression algorithms depending on message size,
content etc. If the time budget is exhausted, don’t compress the mes-
sage.

(b) Send the message.

(c) Update the statistics for the compression algorithm used, also decrease
the time budget with the time it took to compress the current message.
Store the data at the sending node.

3. Until end of round, goto item 2
4. When the round ends, goto item 1.

The length of a round can be determined by time or number of messages
depending on requirements and behavior for the system being implemented.

Receiving a message

The reception procedure is simpler than the sending procedure since no algo-
rithm selection is needed. The following procedure outlines the necessary steps
to be performed by the receiver.

1. The message is received.
2. The receiver reads the message header to determine which compression al-

gorithm was used for this particular message.
3. The message is decompressed.

(a) Destination memory is allocated for the uncompressed message.
(b) The time it took to decompress the messages is stored in a database

on the receiver node. The stored time is sent to the sender node with
periodic probe messages, Section 7.3.3.

4. The application can resume operation with the newly received message.

7.2.5 Selecting the Best Compression Algorithm
It is possible to use many different approaches when selecting the most appro-
priate compression algorithm. For example, we could make a static selection
based on the result of an initial evaluation run. This would initially provide

7.2 System Model and Definitions 131

the best possible overall compression ratio but any content change in the com-
munication stream would over time cause the selected algorithm to perform
poorly. At the other end of the spectrum we could use all available algorithms
evenly in a round robin [15, Ch 7.7] fashion. This provides a lower overall
compression ratio but will be robust whenever there are content changes. We
have defined three different algorithm distributions: Majority, One Algorithm
or Round Robin. They are explained in more details below.

Compression Selection 1 - Majority Distribution

At the beginning of each round a compression algorithm distribution is cal-
culated based upon measurements during previous rounds. The calculation is
done according to Equation 7.6 for each algorithm providing an estimated cost
for a typical message of size s. This produces a set of data. Depending on the
communication stream users the message stream content may suddenly change.
This may lead to vast differences in compression ratio and compression time
for different algorithms. This is one reason for allowing all compression tech-
niques to run in each round. Completely turning off a compression algorithm
would make the strategy static and unable to cope with a changing situation.
The internal distribution is decided by a simple scheme where the initial values
have been decided by emprirical tests. The best algorithm is selected and all
other algorithms gets 1% of the compression budget. The rest is allocated for
the best algorithm. The effect of this is that the for the next round the majority
of the messages will be sent using the best algorithm but it will still be possible
to detect when another algorithm performs better and move it up the scale to
be used more often. Higher performance can be obtained by more elaborate
distribution schemes for compression algorithms.

Compression Selection 2 - One Algorithm

One algorithm is manually selected and gets the complete compression budget.
No other compression algorithm will be used making this an offline method
of determining which method is to be used. If it is possible to select the best
algorithm it will provide the best compression ratio but as it is a static selection
it provides poor performance for message streams where the content changes.

Compression Selection 3 - Round Robin

Round robin [15, Ch 7.7] apply an equal share of compression budget between
the available compression algorithms. Each algorithm get the same amount of

132 Chapter 7. Automatic Message Compression

1

O
v
e
rl

o
a
d

T
h
re

s
h
o
ld

C
P
U

 U
s
a
g
e

R
a
ti

o
 C

o
m

p
r.

/

U
n
c
o
m

p
r.

2

3

4

5

System CPU overload

6

0%

100%

Time

The ratio of compressed messages

System-wide CPU-usage

A
v
g
 M

e
s
s
a
g
e

L
a
te

n
c
y

High

Low

Figure 7.3: Adaptive online message compression overload protection.

slots with no regard to their performance. This results in a great flexibility but
may lead to lower performance can be gained through compression since all
algorithms are used.

7.2.6 Compression Overload Controller
Continuously compressing large quantities of data requires substantial compu-
tational capacity. We quickly realized that we needed to prevent overloading
the CPU when enabling message compression.

The overload mechanism is illustrated in Figure 7.3. The CPU load is, in the
left part of the figure, well below (1) the threshold. A temporary load-increase
(2) surpasses the threshold, and our mechanism reduces the compression quota
resulting in fewer compressed messages. Message compression is resumed
when the system load is reduced (3). Our overload mechanism also handles
scenarios with partially compressed message streams. If the total CPU load

7.2 System Model and Definitions 133

caused by message compression and other services are above the threshold (4),
our mechanism reduces the compression quota. A quota reduction may lead to
a partially compressed message stream with compressed messages intermixed
with uncompressed. Message compression is gradually resumed (5) as the total
system load converges to the overload threshold (6).

7.2.7 Compression Throttling

We want to make sure that all processes gets a fair chance of running. In some
cases high CPU-load and excessive message compression may starve other ser-
vices running on the same CPU. We have implemented a control algorithm that
throttles the amount of CPU cycles that can be used for message compression.
The idea is to continuously monitor CPU-usage and current communication
bandwidth. If the current CPU-load is low and the desired bandwidth is high it
is possible to trade computational capacity for an increased compression level
causing the perceived bandwidth to increase. This is achieved by assigning
more CPU capacity to message compression.

Compression and Decompression Time

We measure the time spent on message compression and decompressing mes-
sages during a round. The total time is calculated by adding the compression
time tc and decompression time td time for each individual message n. Adding
tc and tdc for all messages,N , during a round results in the total time, ttot, spent
performing compression activities, Equation 7.4. Aggregated decompression
time measurements are piggybacked on probe messages sent from receiving
nodes to the compressing node when measuring the message round trip time
per compression algorithm.

ttot =

n=N∑
n=0

(tc(n) + td(n)) (7.4)

Controlling the total compression time

We want to throttle the total time spent compressing messages, ttot, per round
to adjust the computational capacity spent for message compression if the CPU
is overloaded. We use a feedback control algorithm which aims at maximizing
the amount of time assigned for compression to match the desired CPU-load

134 Chapter 7. Automatic Message Compression

target level. We want to find the optimal distribution of CPU-load between com-
putational capacity and messaging compression to maximize the throughput
without overloading the CPU.

The Control Algorithm

The (PID) control algorithm use CPU load as input and ttot as output. The
control algorithm will continuously adapt ttot to converge to the target CPU
load given at the time of system configuration. Increasing ttot will cause more
CPU time to be allocated for message compression.

Initial Values

We do not have any knowledge of the message stream content at the start of a
new communication system or when creating new communication streams. In
these cases we set the initial compression budget is 0 to avoid an instantaneous
CPU overload. Initially, for the first round, there will be no compression and
for the subsequent rounds the feedback control loop will increase ttot to allow
more compression. The desired value of CPU load is system dependent and
therefore configurable. Most systems will have different services running at the
same time as the messaging system so the CPU-load budget must be carefully
determined.

7.3 Implementation

We have implemented the message compression functionality as part of a Linux-
based telecommunication system. The application we are targeting is running
inside an emulation layer that adds support for a legacy OS. We have only
made changes in the communication API parts by adding the ability to support
message compression before entering the TCP/IP layer inside the Linux kernel.
No changes has been done to the Linux kernel.

We have modified an existing communication system by introducing a trans-
parent message compression layer, as a response to the challenges above, see
Figure 7.1. The legacy communication API containing snd msg() and rcv -
msg() is wrapped by snd msg()’ and rcv msg()’ to capture the message
data. Our implementation of the API will transparently compress messages and
then use the standard communication API supplied by the OS.

We have integrated eleven state-of-the-art compression algorithms in the
telecommunication system we have investigated. Each algorithm has special

7.3 Implementation 135

compression properties. One algorithm can, for example, provide high compres-
sion ratio but require much CPU time (LZMA [228]), which may be suitable
for networks experiencing high congestion. Other algorithms may have special
target areas, such as efficient text compression (SNAPPY [114]) or being fast
but not so high compression ratio (QLZ [240]).

Our implementation requires the same communication API for both the
sender and the receiver. The snd msg()’ function prepends a new header to
each transmitted message. The header contains information on the compression
algorithms used for compressing the particular message. When the receiving
node calls the rcv msg()’ function, the API implements a transparent decom-
pression of the message. The API sends decompression statistics to each sender
making it possible to calculate the complete compression→ transmission→
decompression time.

7.3.1 Compression Algorithms

There are numerous compression algorithms, all designed for various uses and
with different characteristics. Some [228] [266] of the algorithms focus on pure
compression ratio with little regard to the compression- and decompression rate.
Others [224] [48] provide a lower compression ratio but are faster. It is easy to
understand that both approaches are useful in different situations. Additionally,
it is possible to accelerate partial or complete compression algorithms by im-
plementing them in hardware [139]. In this paper we focus on lossless [238]
compression thus completely disregarding lossy [33] compression techniques.
Lossless techniques could be applied to data that doesn’t need to be transmit-
ted in an unchanged manner. Our implementation of the automatic mechanism
uses eleven compression algorithms/configurations; LZFX [49], LZO [224],
LZO-SAFE which is a safe configuration of LZO, LZMA [228], LZW [298],
BZ2 [266], LZ4 [48], FastLZ level 1 and 2 [128], Snappy [114], and QLZ [240].
The key properties are listed in Table 7.2. The list is extended from the results
by Karlsson and Hansson [165].

It is simple to add new compression algorithms. The current implementa-
tion uses a list where the compression algorithms are transparently used. All
algorithm measurements are generic and they do not depend on the specific
implementation.

136 Chapter 7. Automatic Message Compression

Table 7.2: Implemented compression algorithms and their characteristics.

Compr. Alg. Key Characteristics
LZFX [49] Fast compression, low H .
LZO [224] Fast compression, low H .
LZO-SAFE [224] A safe configuration of LZO, slightly slower than LZO.
LZMA [228] Slow compression, high H .
LZW [298] Medium compression, medium H .
BZ2 [266] Medium compression, high H .
LZ4 [48] Fast compression, low H .
FastLZ lv1 [128] Fast compression, low H , suitable for small messages.
FastLZ lv2 [128] Slightly slower than lv1, higher H than lv1.
Snappy [114] Very fast compression, mediumH , suitable for text mes-

sages.
QLZ [240] Very fast compression, medium H , suitable for small

messages.

7.3.2 Putting it all together
A message stream is divided into communication rounds, see Figure 7.2. Each
round consists of two phases, see Definition 21. The first part is an evaluation
of statistical data retrieved from previous messaging rounds. The evaluation
procedure uses the historical data to predict if message compression should be
used for subsequent messages, as defined by Equation 7.2. The most suitable
compression algorithm is chosen depending on its ability to reduce the message
transition time. Messages will be compressed using the algorithm distribution
decided by the selection phase, during the second part, see Figure 7.2,

Definition 21 A communication round is started by an evaluation phase fol-
lowed by a transmission phase, and it is delimited by a fixed number of mes-
sages.

Estimating the Compression Metrics

The time to transfer a message between two interconnected nodes is a central
concept in this paper and is denoted transmission time (Definition 7.2). We
have split this procedure in several parts that are individually measurable in a
run-time environment.

The first part is the sending time, see Definition 22. It is the time it takes to
prepare the message and present it to the driver that will perform the actual link

7.3 Implementation 137

transmission. The time to send a message is defined as, ts = s
tsr

, where s is the
size of the message in Bytes and tsr is the rate of transmission [Byte/s].

Definition 22 Sending time is the time spent inside the low-level send-message
function call after all mandatory message processing has been performed.

The second part is the Round Trip Time (RTT), see Definition 23.

Definition 23 The round-trip-time (RTT), trtt = s
trttr

, is defined as the time it
takes for a message of size s to travel from node A to node B and back to A. The
amount of data per time unit sent back and forth between two communication
partners, RTT rate, is defined by trttr [B/s].

Estimating the Transmission Time

With Equations 7.1 – 7.3 we can describe the time it takes between the sending
application calls the send msg() function and the receiver obtains the decom-
pressed message and can operate on it. For our system we assume that the link
time (tl) is roughly half the RTT, as defined by Equation 7.5. We assume that it
takes equal time back and forth between two nodes, which gives an estimation
for our proposed algorithm.

tl =
trtt
2

(7.5)

Combining Equation 7.2 with Equation 7.5 results in Equation 7.6.

tt = tc + ts +
trtt
2

+ td (7.6)

The evaluation phase needs statistical data to be able to predict the need for
message compression. Each algorithm will have its own set of measurements
for compression time (tc), send time (ts) and decompression time (td). The
round trip time (trtt) is a network dependent parameter and is stored on a per-
network basis.

7.3.3 Real-World Compression Throttling
Compression throttling, see Section 7.2.7, is dependent on the ability of accu-
rately measuring the current system CPU utilization. We assume that systems
in which our method should be used have such metrics available. The CPU load
is an input to the automatic throttling functionality when determining actions
for current and future messaging strategies. In particular, we are interested in

138 Chapter 7. Automatic Message Compression

the current CPU-load and communication properties since these are used to de-
termine the compression technique. If the CPU is already saturated with other
computational tasks it is possible avoid burdening it further with compression
to allow the highest possible throughput while preserving the availability of
other services.

Measuring the CPU-load

The CPU load is measured on a per-core basis, see Definition 24, and is used
by the feedback control loop determining how much time should be spent on
compression. Normally the target CPU load should be set to a value that allows
other services to run in the desired way. Setting the target CPU load too high
may cause the system to overload since all messages will be compressed and
the worst case is that some process may starve out vital functionality on the
system.

Definition 24 The CPU-load, L, is defined as the number of processes, ready
to execute, in the run-queue of the operating system [119].

Linux implements the CPU load measurement through the /proc filesystem.
An application can open a specific virtual file (/proc/stat) and read various
CPU load figures. Linux supplies a 1 minute running average for the CPU-load
to avoid jitter. We use the 1 minute CPU-load measurement because it greatly
reduces oscillation problems in the feedback controller, where intermittent ser-
vice usage may cause spikes in the CPU-load.

Measuring the RTT

We periodically issue probe messages to other nodes to measure the message
RTT, indicating the network saturation. The periodicity is user-configurable.

7.4 Experiments Using Automatic Message Com-
pression

We have devised four tests to verify that our automatic compression method
improves the message performance, is fully automatic and that it fulfils indus-
trial requirements. The first test presented in Section 7.4.1 verifies that it is
possible to improve the messaging performance by compression. The second

7.4 Experiments Using Automatic Message Compression 139

test presented in Section 7.4.2 verifies that our method finds the most appro-
priate compression algorithm from the set of available algorithms. Our third
test presented in Section 7.4.3 shows that the selection algorithm can handle a
changing message stream. The fourth and final test presented in Section 7.4.4
makes sure that the number of compressed messages are reduced when the CPU
is overloaded.

Data sets We use several different data sets, {D0,D1,Dp}, in our experiments.
The first data set contains only zeros, which we denote D0. The second set
contains only ones, denoted D1. We also use message content gathered from
the control traffic of a production environment in each test, denoted Dp. The
traffic was intercepted by Wireshark [50]. Our assumption is that production
traffic data will provide a more realistic evaluation of our suggested techniques
compared to pure synthetic test data. The data is control traffic to handle main-
tenance duties, internal communication etc.

7.4.1 Automatic Compression
The goal with this test is to verify that it is possible to increase the overall
message processing performance by using message compression.

Setup The test setup is as follows: Node A is a Quad-Core AMD Opteron
2378@2.4GHz running Ubuntu Linux with kernel 3.2; Node B is a Intel R©

Core i7-4600U@2.10GHz running Ubuntu Linux 3.2; both nodes are intercon-
nected by a 100Mbit Ethernet network that is shared with a large number of
workstations and other office equipment.

Execution We have three test cases (TC1, TC2 and TC3). In TC1 we send
uncompressed messages gathered from a production node between A and B.
For TC2 we use data set D0 and our automatic compression mechanism selects
how to send them most efficiently. Scenario TC3 is the same as TC1 but with
data set Dp.

Evaluation We display the measurements from TC1 in Figure 7.4a, which
acts as a reference measurement representing the original system. In TC2, our
compression selection algorithm automatically selects Snappy [114] as the best
algorithm when using D0, see Figure 7.4b. Snappy is a fast and efficient com-
pression algorithm for simple textual messages. External network disturbances
triggers an additional compression algorithm selection at approximately 10k

140 Chapter 7. Automatic Message Compression

 0

 1

 2

 3

 4

 5

 0 10 20 30 40 50
 0

 0.2

 0.4

 0.6

 0.8

 1

R
T
T

[m
s
]

a) No compression - reference measurement (D0)

 0

 1

 2

 3

 4

 5

 0 10 20 30 40 50
 0

 0.2

 0.4

 0.6

 0.8

 1

R
T
T

[m
s
]

b) Compression enabled for synthetic dataset (D1)

Network disturbances causes an
additional algorithm selection.

A
lg
o
ri
th
m

S
e
le
c
tio
n

R
a
tio
[0
-1
]

 0

 1

 2

 3

 4

 5

 0 10 20 30 40 50
 0

 0.2

 0.4

 0.6

 0.8

 1

R
T
T

[m
s
]

Number Message [# x1000]

c) Compression enabled for production node messages (Dp)

A
lg
o
ri
th
m

S
e
le
c
tio
n

R
a
tio
[0
-1
]

Avg. RTT
Current RTT
NO-COMPR

LZFX
LZO

LZO-SAFE

LZMA
LZW
BZ2

LZ4
FASTLZ1
FASTLZ2

SNAPPY
QLZ

Figure 7.4: Three different test runs; a) Uncompressed messages; b) Com-
pressed messages with zero-pattern payload; c) Compressed messages with
production system pattern.

messages but the most optimal compression algorithm is still Snappy. For TC3,
our compression selection mechanism selects QLZ [240] when we use a more
complex, and realistic, data set Dp, see Figure 7.4c. The transient at 20k mes-
sages may be caused by network congestion on the busy office network we are
using. QLZ is very fast at compressing messages, similar to Snappy.

Remarks The reason for our selector to chose Snappy in TC1 and QLZ in
TC2 is probably that the available communication bandwidth is fairly high. The
benefit of spending time on compression can not be earned-back in the trans-
mission phase. Our conclusion is that it is possible to increase the messaging
performance by message compression.

7.4 Experiments Using Automatic Message Compression 141

Table 7.3: Relative improvements for different algorithm selection strategies.

Selection mechanism Test
case

RTT
[ms]

Relative time reduction

Uncompressed TC1 1.57 0.0 (Reference)
Round Robin TC2 1.45 -8.8%
Automatic (QLZ) TC3 1.35 -16.6%
Offline algorithm (QLZ) TC4 1.30 -21.1%

7.4.2 Algorithm Selection Methods
Our goal with this experiment is to verify that the our automatic compression
mechanism can provide the best message processing performance by selecting
compression algorithm that gives the lowest RTT.

Setup We use the same test setup as in Section 7.4.1.

Execution We run four test cases in this experiment. All messages are re-
played from the data set Dp. TC1 is the reference test where we send all mes-
sages without compression. This scenario represents the unmodified commu-
nication system. In TC2, we use all compression algorithms equally much in
a round-robin fashion [15, Ch 7.7]. We evaluate our method in TC3 by letting
the system automatically select the compression algorithm providing the lowest
message RTT. In the last test case, TC4, we turn off our automatic mechanism
and manually evaluate the QLZ algorithm. We know, from the experiment in
Section 7.4.1, that QLZ is the best algorithm for the production data set so it
should be the ideal compression algorithm.

Evaluation We present the result from all tests in Table 7.3. We have normal-
ized the RTT values according to the measurements for TC1. The measurements
show that TC2 gives an 8.8% RTT reduction compared to TC1. It is interesting
that even though TC2 uses all compression algorithms it has a lower average
RTT compared to the reference value. Using our automated compression selec-
tion mechanism in TC3 gives a 16.6% RTT reduction. Manually assigning a
compression algorithm reduce the RTT for TC4 by 21.1%. It is apparent that
TC3 is not performing as well as TC4 when evaluating the results but it still pro-
vides a 16.6% reduction in RTT. The automatic selection mechanism is second
best and provides the automatic selection functionality with the additional cost

142 Chapter 7. Automatic Message Compression

of 21.1% − 16.6% = 4.5pp in RTT. The cost of automation can be attributed
to intermittent use of non-optimal compression algorithms to be able to detect
changes in the message stream. The cost can be reduced at the expense of not
having the same ability to detect message stream changes.

Remarks Investigating TC3 in greater detail shows some interesting facts.
The QLZ [240] compression algorithm is automatically selected in TC3, see
Figure 7.5. T3 is inferior to T1 during the first part of the graph, up until about 6k
messages. At that point the selected compression algorithm starts to contribute
to an increased message processing performance and lower message RTT. Our
conclusion is that our automatic selection mechanism finds the best compression
algorithm, but the adaptability comes at a cost.

7.4.3 Automatic Compression Algorithm Selection for Chang-
ing Message Content

The goal of this experiment is to verify that our automatic selection mechanism
will continuously ensure the best message processing performance even when
the content changes in the message stream.

 1

 1.5

 2

 2.5

 3

 0

 1
0

 2
0

 3
0

 4
0

 5
0

A
v
e
ra

g
e
 R

T
T
 [

m
s
]

(L
o
w

e
r

is
 b

e
tt

e
r)

Number Message [# x1000]

Overhead for the
adaptive mechanism

Performance gain
over uncompressed

Avg. RTT
QLZ (Manual)

Uncompressed
Adaptive improvement

Adaptive overhead

Figure 7.5: Cumulative average round trip time (RTT) for each of the selection
methods.

7.4 Experiments Using Automatic Message Compression 143

 1

 1.5

 2

 2.5

 3

R
T
T
 [

m
s]

a) Current and cumul. avg.
 RTT (lower is better)

Uncompressed messages (average=1.65)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

A
v
e
ra

g
e
 C

o
m

p
r.

b) Cumul. avg. compr. ratio per
 algorithm (higher is better)

 0

 1

 2

 3

 4

 5

S
u
it

a
b
ili

ty

c) Algorithm suitability
 (lower is better)

 0

 10

 20

 30

 40

 50

 60

N
r

C
u
m

u
l.
 M

sg
 [

#
 x

1
0

0
0

] d) Cumul. nr. msg. compressed
 each algorithm
 (higher is better)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 20 40 60 80 100

C
o
m

p
re

ss
io

n
 T

im
e
 [

R
e
la

ti
v
e
]

Number Messages [# x1000]

e) Rel. compr. time for each
 algorithm (lower is better)

Avg. RTT
Current RTT
NO-COMPR

LZFX
LZO

LZO-SAFE

LZMA
LZW
BZ2

LZ4
FASTLZ1
FASTLZ2

SNAPPY
QLZ

Figure 7.6: Message stream change at 10k messages triggers an re-selection
(Snappy→QLZ).

144 Chapter 7. Automatic Message Compression

Setup We use the same test setup as in Section 7.4.1. The system is configured
to select the best algorithm from all implemented algorithms. We run 100k
messages before ending the test.

Execution In this experiment we use two data sets. Our test run is depicted
in Figure 7.6. The darker yellow field to the left, between 0 and 10k messages,
shows the initial data set D1. At 10k messages we switch to the Dp data set.
This is marked by a lighter yellow shade ending at 30k messages where our
method has found the best compression algorithm and starts to use it exclusively.

Evaluation We show that the automatic mechanism selects Snappy [114] for
D1 in the first part of the message stream. The selection mechanism detects
that the message content changes and QLZ [240] is selected as a better match
for Dp.

The first and uppermost graph a) in Figure 7.6 shows the message RTT. The
mean message RTT value is much higher in the initial part of the experiment
but at 5k messages it is reduced to a value lower than uncompressed messaging.

The second graph b) shows the mean compression ratio for each algorithm
being evaluated. Snappy is chosen as the most suitable compression algorithm
for D1. Snappy results in a good overall RTT for the first data set. After changing
the message content to Dp, the QLZ compression algorithm is selected.

The third graph c) shows the suitability of each compression algorithm. This
is a selection algorithm heuristics that we use to select the most appropriate
compression algorithm.

The fourth graph d) shows the cumulative number of messages compressed
by each algorithm.

The final graph e) illustrates the relative compression time for each algo-
rithm. The FastLZ1 algorithm is by far the slowest of all compression algo-
rithms.

Remarks We see that Snappy is the best compression algorithm when inter-
preting the graphs in Figure 7.6 within the interval 0 → 10k messages. The
D0 → Dp data set change at 10k triggers a new selection procedure. Several
compression algorithms compete in the interval 15→ 30k messages and QLZ
is finally selected at 30k. The QLZ compression algorithm dominates in the
remaining interval 30k → 100k.

We conclude that our section algorithm adapts to a changing content in a
message stream by finding them most appropriate compression algorithm with
respect to message RTT.

7.4 Experiments Using Automatic Message Compression 145

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0

 2
0

 4
0

 6
0

 8
0

 1
0

0

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

A
v
e
ra

g
e
 R

T
T
 [

m
s
]

A
lg

o
ri

th
m

 S
e
l.
 R

a
ti

o
[0

-1
]

a
n
d
 C

P
U

-l
o
a
d
[p

ro
c
s
 i
n
 r

u
n
-q

u
e
u
e
]

Number Message [# x1000]

Average RTT QLZ[%] NO COMPR[%] CPU-load

Figure 7.7: Overload handling by reducing compression time budget.

7.4.4 Overload Handling

The goal of this experiment is to verify that our message compression selection
algorithm is able to limit the CPU resources available for message compression.
As previously explained, this is to ensure that our algorithm does not cause any
performance degradations for other services co-located on the same CPU.

Setup We use the same test setup as in Section 7.4.1.

Execution In this experiment we use messages from the Dp data set. An
external application, cpuburn [209], runs in the interval 27k → 50k messages
with the sole purpose to overload the system, see Figure 7.7.

Evaluation We can see that the ratio of QLZ-compressed messages are in-
creased in the interval 0 → 30k. Our overload controller mechanism detects
the increased CPU-usage and reacts at 40k by reducing the amount of CPU-
resources available for message compression. The resource shortage cause
fewer messages to be compressed by QLZ in the interval 40k → 60k. The
available compression resources are stable between 60k → 80k resulting in a
somewhat constant balance between uncompressed and QLZ-compressed mes-
sages.

146 Chapter 7. Automatic Message Compression

Remarks We do not know why the CPU-load is increases in the interval
70k → 100k. One plausible reason is that the overload situation caused by
cpuburn may have caused the queue in the send-buffer to increase. A large
queue needs to be processed when the CPU is restored to a stable state.

After running this experiment we conclude that our overload mechanism
can reduce the CPU-resources available for message compression in situations
when the CPU is burdened with other tasks.

7.5 Related and Future Work

We start with general compression techniques then list relevant automatic com-
pression techniques. At the end of the section general message compression
techniques are described.

Comparison of Compression Algorithms

Ringwelski et al. [242] manually investigates a number of compression tech-
niques with regard to compression ratio and computational resources. This is
the starting point for our investigation, how can this task be fully automated?
In the MSc thesis [165] by Karlsson and Hansson, performed as part of this
investigation, a number of compression techniques are compared with regard
to compression ratio and resource usage. Their work also investigates the suit-
ability for each algorithm in the context of communication scenarios.

Automatic Compression

Jeannot [159] describes a way to automatically compress messages being sent
through a POSIX-like API called adaptive online compression library for data
transfer (AdOC). The library can be freely downloaded at the official web
page [160]. The major differences compared to our work are:

• Jeannot uses POSIX standard calls while we have adapted an asynchronous
messaging system to be legacy compliant.
• They use multiple threads to compress and communicate data. We have

performed the compression in user mode and single thread mode.
• AdOC uses large 200 KB messages compared to ours that are usually a

multiple of 100s of Bytes.

7.5 Related and Future Work 147

• Jeannot uses an ingenious technique looking at the current send queue length.
If the length is increasing the network must be saturated and higher com-
pression is requested.

In [171] by Knutsson and Björkman have changed the communication mecha-
nism in Linux so that packets are transparently compressed/uncompressed as
a function of available memory and communication capacity. In their paper
they state that it would be desirable to only use idle CPU cycles. Knutsson
describes [170] that it is possible to use an automatic scheme to use different
compression depending on the availability of CPU, RAM and network resources.
In [161] Jeannot, Knutsson and Björkman revisits earlier techniques being re-
implemented outside kernel space to improve portability.

Sucu and Krintz [278] have created a communication compression environ-
ment called Adaptive Compression Environment (ACE). It aims to change the
behavior of socket communication introducing compression for certain mes-
sages. Only messages larger than 32 KB are affected since smaller messages
are sent uncompressed. Krintz and Sucu [177] revisit the earlier paper [278]
and adds a number of compression algorithms such as Bzip2, zlib and LZO.

The trade-off between available bandwidth and the required computational
capacity for compressing message is discussed in [236] by Pu and Lenin. They
present a thorough investigation of simple schemes such as “compress-all mes-
sages” or “compress-none”. Furthermore, which is of special interest to this
publication is the investigation of mixed messaging. In other words, when the
messaging stream is intermixed (denoted Fine-Grained mixing) with both com-
pressed and uncompressed messages. Gray et al. in [117] points out vital prob-
lems with automatic compression such as how to decide when to compress
and not compress a message. The authors expands the work done by Pu and
Singaravelu [236] taking mixed sets of compressed and uncompressed message
further. In [36] by Brunet et al. describes a technique to auto-tune compression
parameters depending on the actual hardware running the application.

Biederman [25] owns a patent that shows a general idea of receiving, com-
pressing and sending messages. The method is similar to ours but not take into
consideration the following issues. We adopt a feedback control loop to control
the amount to CPU time spent compressing. This can control the maximum
amount of CPU load in the system allowing coexistence of other services. Bie-
derman uses different levels of compression. We suggest to use arbitrary com-
pression algorithms used simultaneously with an additional machine learning
to let the best algorithm dominate.

148 Chapter 7. Automatic Message Compression

Message and Data Compression
Gutwin et. al [121] describes a transparent way of compressing Groupware
messages in an efficient way. Both text and serialized objects are supported
which makes it convenient for users to use the framework. Wiseman et al. [301]
investigates loss-less compression of communication systems. They use off-
line data to rate compression techniques and then use them in an automatic
fashion. Nicolae [217] apply compression to cloud computing and its effect
on cloud storage is investigated. Especially how to sacrifice a slight computa-
tional overhead. An interesting part of this paper is that it applies a practical
implementation on the Grid5000 research network to obtain results. A signifi-
cant reduction of network traffic has been detected using both LZO and BZIP2
compression algorithms. In recent CPUs there is a trend to include hardware
support for compression, see [139]. The apparent benefit is that this function
will offload the CPU with the heavy burden of compressing messages. In our
investigation this means that such an algorithm will have special characteristics
with relatively low compression ratio but very fast compression rate.

7.6 Summary
We have answered Q3 (Section 3.2.3) by our work presented in this chapter and
in the publications referenced by this chapter and through our publication C,
based on earlier publication H.

We utilized our Charmon resource and performance monitoring tool to de-
tect and find a communication performance problem. By going through the
performance and resource usage measurements, we noticed that the communi-
cation link was saturated and that the system did not fully utilize the CPU at
all times. Based on the observations results we devised a transparent method
that automatically evaluates the suitability of each one in a set of compression
algorithms on the current communication stream. Our automatic compression
method uses the compression algorithm that resulted in the shortest message
RTT for the current stream. The messaging mechanism automatically considers
the available CPU-resources to reduce its effect on other co-located processes,
i.e., we reduce the CPU quota for compression if other processes want to use
the CPU.

Adding more compression algorithms is the first and most apparent direction
for future improvements. The current set of compression algorithms works well
for the system we investigate, but it would be interesting to know if we can im-
prove the performance further by implementing newer compression algorithms.

We would also like to implement and test hardware supported compression al-
gorithms. Hardware supported compression have a slightly different approach
than software based ones because of the significantly reduced compression time.
A drastic compression time reduction changes the behavior of the complete sys-
tem, but we believe that our mechanism would automatically support it without
any changes.

– Jag vet ingenting om tur,
bara att ju mer jag tränar
desto mer tur har jag1.

My own translation:

– I don’t know anything about luck,
but the more I train,
the more lucky I get.

— Ingemar Stenmark

1Stenmark becomes somewhat irritated when a reporter implies that it was pure luck that he
won the world alpine skiing tournament.

8
Resource Aware Process

Allocation and Scheduling

This section corresponds to research question Q4 (Section 3.2.4), which we have
addressed in Papers D [157] and E [147] based on and extending Patents O [155]
and P [156].

How can an operating system process scheduler provide high performance
and enforce shared resource quality of service by allocating and schedul-
ing processes on a multicore CPU?

TH E telecommunication industry is currently consolidating [66] many
services on multi-core CPUs in an effort to reduce the hardware cost
and increase system capacity. Cost reductions [283] is a natural step

in an increasingly competitive [166] telecommunication market. Consolidating
multiple services with various QoS levels is difficult because all services affect
the shared execution environment. Sharing resources between services makes it
difficult to specify and enforce hardware resource access for individual services.

We begin this chapter with a short introduction to process allocation and
scheduling, Section 8.1. We continue by describing the system model and give
important definitions in Section 8.2. The implementation of our allocation and
scheduling architecture is described in Section 8.3. We evaluate our research by
testing our allocation and scheduling architecture in Section 8.4. We describe
how our work contrasts to other researchers’ work in Section 8.5 and conclude
the chapter with our conclusions in Section 8.6.

153

154 Chapter 8. Resource Aware Process Allocation and Scheduling

8.1 Introduction

The demand for advanced telecommunication gadgets [146] and the desire
to be continuously connected [90] to the Internet drives the telecommunica-
tion industry to continue developing systems with higher capacity [47, 89]
for every release. The customer demand for increased network capacity co-
incides with fierce operator competition [166] resulting in a Capital Expendi-
ture (CAPEX) [283] reduction, i.e., the amount of money a company invests in
buying or improving their products portfolio. The CAPEX reduction causes op-
erators to look for cost-efficient [92] ways to optimize the performance of legacy
implementations while simultaneously implementing new 5G [2,11] functional-
ity. Consolidating multiple system functions on a multi-core CPU [66] is one of
the most common ways to improve the cost and efficiency of legacy functions.
Consolidation means that software designed for running on tailored hardware
should suddenly co-exist with other software functions on a common hardware
with many shared resources such as for example caches and floating point unit.

8.1.1 Motivation for Resource Aware Scheduling
Migration of legacy systems to multi-core architectures poses new challenges
when decade-old software should retain the agreed system level agreements
(SLA) [305] of QoS while executing in the same environment as newly de-
veloped functionality. The performance of a throughput-sensitive application
will suffer from the increased shared hardware resource congestion caused by
other applications. Applications may also miss their deadlines if the system
engineer does not change process priorities and/or deadlines to account for
the uncertainty introduced by co-executing applications. Hardware overprovi-
sioning is the standard industry practice to provide sufficient capacity in many
currently existing system deployments [307]. Overprovisioning will empirically
tell the system designer that the set of co-located applications fulfills each SLA.
However, it is difficult to meet all SLA requirements without being pessimistic
when calculating the amount of hardware to overprovision. Overprovisioning
is very expensive, and it is, therefore, desirable to use mechanisms that can
achieve a deterministic shared resource execution environment without adding
extra hardware. Efficient resource handling is an important research question
and there are many [311] techniques to optimize the application assignment.
Optimized assignment of individual instances of virtual machine or containers
with CPU as the lowest level of granularity may be too coarse for cost-efficient
system deployment. It is hard to ensure that a process has sufficient shared

8.1 Introduction 155

resources [5], even for processes running on single-core CPUs. Adding several
concurrently executing processes makes it even harder to provide a determinis-
tic execution environment. The systems become even more complicated with
the introduction of multi-core CPUs and heterogeneous [178, 212] systems that
add several levels of shared hardware resources with individual characteristics
and behaviors.

8.1.2 Problem Description and Current Solutions

Operating system process schedulers follows similar trends as other software.
System engineers tries to keep the source code as simple as possible with a min-
imal memory footprint and overhead [196]. Current process schedulers, like the
completely fair scheduler (CFS) [172] in Linux, keep track of many scheduling
parameters, such as each process’ historical CPU-usage and its configurable pro-
cess priority. The main aim of CFS is to provide a fair execution environment
through process allocation and scheduling. The user should experience a high
degree of interactivity with the OS while not wholly starve all other processes.

As far as we know, no process schedulers for currently existing OS’es evalu-
ate shared hardware and software resource usage during process scheduling. A
high priority process, ph, may be starved by a low priority process, pl because
pl uses substantial quantities of a shared resource that cause ph to miss its dead-
line. An example of such a case is when the periodical process ph finishes with
its first execution instance and the scheduler swaps in pl. Process pl immedi-
ately strides through its extensive working set and evicts all entries in the cache
shared by both processes. When the next instance of ph starts to execute it is
swapped in, but the cache is cold. The cache needs to be re-populated with data
for ph, causing long data access delays. The system designer must consider the
effects of shared resource congestion when designing the system, especially if
the system has hard real-time properties or requirements for high throughput.

The problem is twofold. The first problem is that shared resource conges-
tion leads to performance degradation since processes may not be optimally
allocated on the available hardware. The second problem is that two processes
may affect the QoS of each other because they are scheduled to run on shared
hardware. We will describe allocation and scheduling in detail in Section 8.1.3.

The individual per-process CPU-usage alone may not be enough to provide
performance guarantees for multi-core systems because application processes
running on one hardware core may, through accesses to shared resources, af-
fect the performance and behavior of processes running on other cores. Shared
resource congestion is particularly problematic for the type of memory-bound

156 Chapter 8. Resource Aware Process Allocation and Scheduling

applications commonly running in telecom systems and other large-scale indus-
trial communication systems. There are several ways to address this kind of
congestion problem. One commonly used method is to turn off adjacent cores
that share a shared resource. Overprovisioning by using hardware with much
higher capacity than needed is another way. Neither of the two above mentioned
methods efficiently utilizes the available hardware resources and is therefore
costly to implement.

There are some approaches to address the problem of shared resource con-
gestion such as ARINC-653 [291]. ARINC-653 is an aviation standard to en-
force the partitioning of shared resources such as CPU, memory and I/O to
avoid resource congestion. Our target system is by no means as sensitive as an
airplane, but the general idea of hardware partitioning is similar between the
two environments.

8.1.3 What to do about it?

What is commonly thought of and often expressed as process scheduling re-
ally consists of two different parts [309]: 1) Process allocation and; 2) Process
scheduling [61, p35:5]. Process allocation acts on the problem of where pro-
cesses should run, i.e. on what CPU or core. Process scheduling decides when
and how processes should run.

The correct result of a system function is vital for most systems. But in
many cases the correct result by itself is not sufficient. Also, the timely arrival
of the result is of vital importance [277]. Using a result that arrives too late may
be inaccurate and even cause a system to malfunction, for example by using
real-time scheduling algorithms.

Many OS process schedulers use CPU-load as the main input when mak-
ing scheduling decisions. The main tasks for the OS process scheduler is to
select which CPU cores to allocate processes on and the duration and the se-
quence of processes’ execution schedule. The traditional scheduling approach
works well for processes that are CPU-bound (turtles [304]), such as the case
when the CPU computational capacity is the main limiting factor. The perfor-
mance might drop significantly when scheduling memory-bound processes (rab-
bits [304]) on large CPU/core clusters with shared resources. Memory-bound
processes make intense use of memory, causing strain on all levels of cache
memory [5]. Concurrently running multiple memory-bound processes on the
same hardware reduces the overall system performance [313] due to shared
resource contention. Interference between processes makes it difficult to pro-
vide an efficient execution environment with a deterministic QoS. Our opinion

8.2 System Model and Definitions 157

is that it is possible to address the overprovisioning issue by making the OS
scheduler shared resources aware. We have addressed the resource congestion
problem by devising a method that automatically allocate processes to achieve
high performance while at the same time schedule processes to enforce QoS.
Our method automatically performs the following actions:

1. Measure hardware resource usage and performance for each monitored
process, see Section 8.2.4.

2. Correlate each measured hardware resource and the process performance,
see Section 8.2.5.

3. Determine what hardware resources have greatest correlation to system
performance by sorting the correlation list and selecting the top hardware
resource, see Section 8.2.5.

4. Allocate processes efficiently so that they minimize shared resource con-
gestion by using the resource-performance correlation and knowledge of
the hardware architecture, see Section 8.2.6.

5. Use process scheduling constraints on monitored processes to avoid per-
formance degradation caused by shared resource congestion, see Sec-
tion 8.2.7.

The following sections describe our allocation and scheduling method in detail.

8.2 System Model and Definitions

We have mainly focused on the systems running in the telecommunication ap-
plication domain [23, 144] but our opinion is that other industrial domains can
easily adopt our proposed method. Our target system is thoroughly described
in Section 2.5. The applications utilize a process model that allows individ-
ual processes to freely migrates over certain subsets of the cores in a node.
A predefined QoS requirement is associated with each application. For exam-
ple the number of served requests/second, or maximum number of deadlines
missed/second. We assume open systems, which means that it is possible to
add/remove/change applications during runtime. The application workload is
dynamic and varies over the system runtime. However, in our experience, the
frequency of significant configuration changes is low (at least several minutes
time resolution) for our considered applications. The system should not be mis-
taken for an offline [100] method simply because it provides directives related
to process allocation and scheduling directives at a low frequency.

158 Chapter 8. Resource Aware Process Allocation and Scheduling

8.2.1 Terminology

Computer systems that are designed to meet a well-defined deadline fall into
one of the two following categories [250, p1]: hard or soft real-time systems.
According to our definition, a hard real-time system fails catastrophically if it
misses a single execution deadline. If a soft real-time system misses a deadline,
it suffers a performance degradation or QoS reduction but not a complete system
failure. A process with high priority is deemed to be more important than a
process with lower priority or to ensure that a set of processes are schedulable.
The scheduler makes sure that a high-priority process can execute while a low-
priority process stalls.

A process scheduling algorithm is either preemptive or non-preemptive [39,
p35]. A process can be interrupted at any time and being replaced by another
process with higher priority when using a preemptive process scheduler. In a
non-preemptive scheduling algorithm, a task that has started its execution will
run until it has completed regardless of the state of other processes in the system.
The benefit of preemption is that a system designer can prioritize processes
in the system letting them execute in the same execution environment [271,
p264]. The downside to preemption is that intermittent context switches are
costly [186] because the process scheduler needs to push-pop registers and
program the memory management unit with different context depending on
what process should execute.

It is also common to classify scheduling algorithms whether they are static
or dynamic [39, p35]. A static scheduling algorithm determines the schedul-
ing parameters before starting the process. All subsequent scheduling uses the
initial parameters. The static approach contrasts with the dynamic scheduling
where scheduling parameters is selected at runtime. The offline and online con-
cepts are related to the static-dynamic classification. An algorithm that is offline
calculates all scheduling decisions at process start and stores them in a list cov-
ering all possible scheduling scenarios. An online algorithm acts on either the
dynamic or static parameters during the process execution time.

Regardless of the system type, we also need to define some fundamental
process scheduling concepts. We show some of the most significant execution
time definitions for an aperiodic process in Figure 8.1 [39]. An arbitrary process
in our target system is denoted pi where i is an index number to use when denot-
ing multiple simultaneously executing processes. In some cases, we will omit
the index number for increased clarity. From an execution timing perspective,
pi can be periodic, τi, or aperiodic, Ji. A periodic process repeatedly executes
with a fixed time-period Ti. An aperiodic process executes sporadically at dif-

8.2 System Model and Definitions 159

ferent time intervals. The ready-queue contains processes that wants to execute.

t

i f
ii

e

l
i

C
i

d
i

a
i

J
i

i
T

s

Figure 8.1: Timing definitions for an aperiodic process Ji.

As shown in Figure 8.1 an aperiodic process Ji is arrives in the ready-queue at
ai. The process starts its execution at si and continues its execution for a time
Ci finishing at fi before the stipulated deadline di. These variables describe the
ideal execution of an aperiodic process without any explicit regards to shared
resource congestions. A preemptive multi-process system implies that there are
several processes, p0 and p1, sharing common resources such as CPU, cache
and similar. When p0 is swapped out it may have fully utilized the available
shared resources causing performance disturbances for p1 when it is swapped
in. We have extended the original Figure 8.1 [39] with shared resource latency,
li, i.e. the time it takes to swap in hardware resources after a context switch. Fol-
lowing this reasoning the execution start is delayed to ei instead of the process
swap-in at si.

8.2.2 Telecommunication System Requirements on Process
Scheduling

Ericsson has a broad product portfolio, each with different requirements on the
OS. The requirements vary from casual demands of necessary computational
capacity to strict hard real-time execution requirements. The latter systems use
either the general RT scheduling policy supplied by standard Linux or the more
stringent RT-patched Linux kernel.

Other types of requirements arose with the introduction of multi-core CPUs
and the drive to make systems more cost-effective by consolidating multiple
functions on a shared CPU. The co-existence of multiple system functions
on a shared hardware may cause shared resource congestion, which in turn
cause a performance impact. A performance penalty is often acceptable, but in
certain circumstances, the capacity and behavior of a system function must not
be affected by other functions. This scenario introduced the requirement of a

160 Chapter 8. Resource Aware Process Allocation and Scheduling

shared resource aware process scheduler that can both limit the shared resource
usage and also ensure a certain level of shared resource availability.

A typical use case for a shared resource aware process scheduling policy
is when a customer would like to implement and deploy a tailored function
inside the original system. Such deployment-specific system function must not
affect the performance and behavior of the original system because that could
affect the overall system functionality and QoS. A typical solution within the
industrial community is to contain the new function in a virtual machine. The
new function will still affect the performance of the other applications sharing
the same hardware although the virtual machine encapsulates it. We need a
method to not only encapsulate the execution environment, such as in a virtual
machine but also to contain the hardware resource usage caused by the virtual
machine.

8.2.3 Our Allocation and Scheduling Architecture

We have devised an architecture to achieve increased performance and determin-
istic QoS, see Figure 8.2 for an abstracted model. Our architecture follows the
traditional closed-loop feedback principle consisting of sensing, controlling and
actuation. In our architecture this becomes three tasks: The first task is to con-
tinuously monitor the hardware resource usage and the performance of selected
processes through a performance monitor (PM). Monitoring corresponds to the
sensing concept in closed-loop methodology. The output from the first step is a
database of hardware usage and software performance. The second task is the
controlling part. Here we utilize a decision engine (DE) to automatically ana-
lyze the data monitored by the PM and provide appropriate process allocation
and scheduling directives. The output from the second step is process-allocation
directives and scheduling parameters. The third and final task is the actuation,
where we automatically act upon the allocation and scheduling directives. We
allocate processes to the designated CPU/core and schedule processes so that
they do not overspend their hardware resource quota and violates the QoS.

Industrial requirements reward flexible deployment, which caused us to aim
for making each component in Figure 8.2 self-contained. Therefore, each ele-
ment operates as a stand-alone component with a well-defined communication
protocol. The dividing line between low-intrusive statistics collection (left) and
continuous analysis (right) is typical for large-scale industrial systems where
customers are sensitive to even very small application intrusions [241]. We also
want to have an architectural border between collecting statistics and the analy-
sis functionality. We want to ensure the possibility to perform the analysis-part

8.2 System Model and Definitions 161

Fi
gu

re
8.

2:
O

ur
re

so
ur

ce
aw

ar
e

pr
oc

es
s

al
lo

ca
tio

n
an

d
sc

he
du

lin
g

ar
ch

ite
ct

ur
e.

M
ul

tip
le

no
de

s
co

lle
ct

st
at

is
tic

s
1

th
at

is
tr

an
sm

itt
ed

to
th

e
de

ci
si

on
en

gi
ne

2
.O

ffl
in

e
da

ta
is

st
or

ed
in

m
an

ua
lly

an
d

au
to

m
at

ic
al

ly
cr

ea
te

d
fil

es
3

.

162 Chapter 8. Resource Aware Process Allocation and Scheduling

in a cloud environment because we estimate that the calculations requires lots
of computational capacity when the size of the system increase.

The following sections will describe the most important components in the
architecture.

Performance Monitor (PM) The PM continuously measures the hardware
resource usage (R) and the system performance (x). We can configure the
sampling frequency to provide a detailed execution profile while being low-
intrusive. The PM is an extension of the Charmon tool described in Section 5.3.
We have strived to make Charmon more generic and support various hardware
and PMU event sets. The sampled data is combined and periodically transmitted
to an analysis node. We store all needed parameters required by the PM in a
configuration file that can be updated in runtime.

Global Statistics Collector (GSC) The architecture supports multiple nodes.
Data gathered from one node can affect process allocation and scheduling for
other nodes if they have a similar setup. Each node has an individual PM con-
nected to the system-global GSC. The GSC collects data from all nodes and
aggregate the information in a local database that is usable for other components
in the scheduling framework.

Software Resource Sensitivity Model (RSM) The RSM describe how a pro-
cess behaves and how sensitive it is to shared resource contention. The system
continuously updates the RSM with new information deduced from R and x
measurements. The RSM contains a snapshot of how processes behave in the
system, and it is, therefore, possible to store the RSM for later usage. A stored
snapshot is suitable for jump-starting systems before the initial deployed at a
customer site. The RSM can, for example, consist of directives such as Process
p1 generates 1M /sec memory accesses during normal operation, process p1 and
p2 should not execute on the same core, or that the performance of p1 correlates
to a subset of R, such as cache-bound or CPU-bound [304].

Hardware Model The hardware model gives a low-level description of the
hardware capabilities and capacity where the system executes. Information
stored in the model can for example be cache architecture, size, and bandwidth;
DRAM access time and bandwidth; or hardware floating point support and
capacity. The hardware model is manually created offline for each supported
hardware type. It is possible to create the hardware model using various types

8.2 System Model and Definitions 163

of probing techniques that automatically detects the capacity and limitations to
the hardware.

Manually Defined Constraints Experienced system engineers have vast do-
main knowledge of the system they implement. They may have well-founded
opinions to consider when making process allocation and scheduling decisions.
A manually defined constraint is for example: Do not run p1 on the same core
asp2. A scheduling example is that p1 should have a budget of 1M L1D-cache
accesses per second while p2 does not have any limit.

Decision Engine (DE) and Data-Pre-Processor (DPP) The DE process per-
formance samples from all nodes in the system. The primary task for the DE
is to find correlations between hardware usage and process performance and to
decide how to use this knowledge to make process allocation and scheduling
decisions. The DE also tries to optimize what metrics to sample during the next
evaluation period. The probe effect [108] and event multiplexing costs [67] are
reduced by minimizing the number of concurrently monitored metrics (hard-
ware resources).

The data sent from the nodes to the DE requires substantial data-processing
to be suitable for automatic machine processing. It is also useful to get initial
operator feedback on how the system behaves, like drawing hardware usage and
performance graphs. An operator can quickly identify performance changes
over time and determine if something is going wrong with the system. The Data
Pre-Processor (DPP) aligns all performance samples so that it has the same
time-base (start and stop time) and sampling frequency. Aligning data is vital
for following data processing algorithms with strict requirements on the data
format. The DPP also finds the correlation between R and x , as depicted in
Figures 8.3a and 8.3b. There are numerous correlation metrics to use [187].
We selected the Pearson [125, 187] coefficient because it is simple to use and
several scientific software libraries implement it.

The DE continuously update the RSM with information on how sensitive
processes are for congestions. We have designed the architecture, so that already
decided allocation and scheduling directives survive system crashes, upgrades,
and other disturbances when clearing the internal memory. The DE contains
several more components that we out of clarity describe in each of the following
paragraphs.

Machine Learning (ML) The ML function process the well-formatted hard-
ware usage and performance data together with the outcome from the analysis

164 Chapter 8. Resource Aware Process Allocation and Scheduling

step provided by the DPP. We can use the ML system to deduce bottlenecks,
performance issues in the input data. First of all, we want to find performance
bottlenecks. For example, if two processes that run on the same core reduce
the overall performance because they utilize the same hardware resources. We
also want to use the ML system to identify where to run processes and when
to schedule them for minimal hardware usage and optimal performance. The
performance model stores the result from the ML system.

Decision Support Creation (DSC) The DSC constructs and formats alloca-
tion and scheduling contracts by interpreting the performance model together
with constraints and previously stored directives from the software resource
sensitivity model, hardware model, and manually defined constraints. The out-
put from the DSC is a set of contracts that describe process allocation and
scheduling decisions. A process allocation example is how to distribute a set
of processes over the available cores. Other types of scheduling directives can
be that p1 is not allowed to have more than 1M L1-cache misses/sec. The De-
ployment Support Model (DSM) database stores the allocation and scheduling
contracts. We exemplify an allocation and scheduling contract in Figure 8.9.

Deployment The DSM is parsed during the deployment phase and converted
into a contract format that is distributable throughout the system. The contracts
are designed to be easily transmitted to all nodes in large-scale systems. Mes-
sage compression is typically not needed for standard systems but possible for
large deployments. In our prototype, we use a textual format for the contracts
because we want to simplify debugging and easy to visualize.

Allocation and Scheduling Engine (ASE) The ASE receives and parses the
allocation and scheduling contract provided by the deployer. The ASE allocates
processes to certain cores [155] by interpreting the allocation contract. The
scheduling contract is forwarded to the OS process scheduler, which enforce the
scheduling contract [156] when the demand for a shared resource is greater than
the available capacity. The ASE forwards the sampling directive for hardware
usage and performance to the PM. This mechanism ensures that the DE can
vary the hardware resources to monitor without manual operations.

8.2.4 Resource and Performance Monitoring
We have utilized the performance monitor unit (PMU) [64, 83] via the Perf
tool [188] to measure the hardware utilization of processes running in Linux.

8.2 System Model and Definitions 165

The user-space part of the Perf tool is well-tested and widely used in many
projects [31]. There is also a kernel-space part of the Perf API used by various
functionality in the Linux kernel. One example is the watchdog that uses the
PMU to detect system lockups when the kernel or some driver runs in an eternal
loop. The kernel part of Perf is less documented and not as widely used as the
user-space interface. We have modified the process scheduler [258], which
required us to use Perf in kernel space.

The scheduling performance monitor is an evolution of the monitor used by
us in earlier work related to monitoring and modeling, see Chapters 5 and 6. We
have developed the characteristics monitor further to support higher sampling
frequencies and new hardware architectures. We have also added a convenient
interface that is easily accessible via JSON [232] configuration files.

8.2.5 Resource and Performance Correlation

It is convenient to measure hardware resource usage by utilizing some of the
available monitoring tools such as Charmon in Chapter 5, Perf [188], OPro-
file [184] or PAPI [109] just to mention a few. It is much more difficult to
understand what PMU-events [226] to sample with the tools. It is convenient
to describe the performance of a single-process-application with a set of low-
level performance metrics R when the application is the sole user of a CPU.
However, how can we be sure that the measured hardware metrics correctly
reflects the perceived performance of the monitored application? Measuring
the performance with R is more complicated when multiple processes share a
common hardware resource, because each process may affect the performance
of all other processes. A user-perceived application performance metric, x , is
more suitable for describing the application performance [93] in such scenarios.
The performance, x , is typically a humanly conceivable metric such as mes-
sages/sec, nr operations/sec, user-requests served/sec or similar. It is usually
difficult to compare x between two applications because the performance met-
rics may differ radically, for example x for p0 is nr operations/sec and x for p1
is nr simultaneous users.

Our solution to the performance-comparison problem is to simultaneously
measure R and x and then correlate the measurements for each r ∈ R with
x . We use R to compare the hardware resource usage of multiple processes
and x to describe the performance of each process accurately. We quantify the
correlation between measurements of R and x by using the Pearson [125, 187]
coefficient. We denote the correlation between two sets a and b by ρ(a, b). The
value returned from the ρ(a, b) spans between −1 and 1 where ρ(a, b) = 1 is

166 Chapter 8. Resource Aware Process Allocation and Scheduling

400*106

600*106

800*106

1*109

1*109

1*109

2*109

2*109

0
8

:1
8
:3

0

0
8

:1
9
:0

0

0
8

:1
9
:3

0

0
8

:2
0
:0

0

0
8

:2
0
:3

0

0
8

:2
1
:0

0

0
8

:2
1
:3

0

0
8

:2
2
:0

0

0
8

:2
2
:3

0

0
8

:2
3
:0

0

5*106

10*106

15*106

20*106

25*106

30*106

35*106

E
v
e
n
t

C
o
u
n
te

r[
N

r]

S
y
st

e
m

 L
e
v
e
l
P
e
rf

.
M

e
tr

ic

Low Level Metric System Level Metric

(a) There is high correlation between r1 and x so that Corr(r1, x , p).

0*100

2*106

4*106

6*106

8*106

10*106

0
8

:1
8
:3

0

0
8

:1
9
:0

0

0
8

:1
9
:3

0

0
8

:2
0
:0

0

0
8

:2
0
:3

0

0
8

:2
1
:0

0

0
8

:2
1
:3

0

0
8

:2
2
:0

0

0
8

:2
2
:3

0

0
8

:2
3
:0

0

5*106

10*106

15*106

20*106

25*106

30*106

35*106

E
v
e
n
t

C
o
u
n
te

r[
N

r]

S
y
st

e
m

 L
e
v
e
l
P
e
rf

.
M

e
tr

ic

Low Level Metric System Level Metric

(b) There is low correlation between r2 and x so that 6Corr(r2, x , p).

Figure 8.3: Correlation between two hardware resources, r1 and r2, and system
performance, x , for a process p.

8.2 System Model and Definitions 167

total correlation between the sets a and b, ρ(a, b) = 0 is no correlation, and
ρ(a, b) = −1 is an inverted correlation.

Definition 25 LetCorr(r , x , p) denote the correlation ρ(mr ,p ,mx ,p) between
the bounded series mr ,p and mx ,p for some r ∈ R, p ∈ P , x ∈ X , |mr ,p | =
|mx ,p | and where each element in mr ,p is timely synchronized with the corre-
sponding element in mx ,p .

It is often convenient to identify the maximum correlation value among all
resources r ∈ R and the performance x , which we denote Ĉorr(R, x , p).

Definition 26 Let Ĉorr(R, x , p) = maxr∈RCorr(r , x , p) denote the maxi-
mum correlation value for all resources r ∈ R for a given process, p ∈ P , and
performance metric x ∈ X

Similarly, it is convenient to identify the resource, r̂ , for which measured values
have the highest correlation to the measured process performance.

Definition 27 Let r̂ = {ri | ∀ri ∈ R, p ∈ P , x ∈ X ,Corr(r , x , p) > θ}
denote the set of resources ri ∈ R with descendingly sorted correlation values
larger than the threshold, θ.

We can quickly generate a list of sorted correlation values by calculating
Corr(r , x , p) for each r ∈ R. Identifying the resource r̂ makes it possible
to deduce which hardware resource has the highest impact on application per-
formance. Figure 8.3a shows two graphs representing the hardware resource
usage for two resources R = {r1, r2} and the performance x for process p.
Figure 8.3a shows a resource usage graph where the measurements for x is
significantly correlated to the measurements for a a resource r1. The other ex-
ample, shown in Figure 8.3b, exemplifies a graph where r2 and x has a low
correlation. We therefore deduce that r̂ is r1 for Ĉorr(R, x , p).

For example, consider that a particular shared resource usage (such as
L1-cache) is correlated to the system performance for processes p0 and p1.
A process scheduler can therefore deduce that p0 should not be allocated in
such a way that it shared a L1-cache cluster with p1, which typically happens
in modern CPUs where multiple cores share common hardware resources.

Figure 8.3 acts as an example where we have configured the PMU to sample
a set of hardware resources, R, simultaneously as the application performance,
x . Our automatic correlation functionality process the sampled data, and we
show the three hardware resources with the highest correlation to x in Figure 8.3.

168 Chapter 8. Resource Aware Process Allocation and Scheduling

This means in effect the resources with the highest correlation to system per-
formance. The monitored application is an extensive user of L1D-cache as well
as L1I-cache. Such information is useful for application engineers when they
are improving the performance of individual applications. hardware congestion
is also valuable for system engineers when they plan for future deployment
schemes, i.e. where and how to run applications on shared hardware.
Understanding correlations between resources and performance is useful for au-
tomatic bottleneck localization [306] and has been used for a long time within
industrial environments. The performance debugging possibilities is even fur-
ther expanded when we add the possibility to automatically identify the resource
having the highest impact on performance.

8.2.6 Resource Aware Process Allocation
The OS will in most cases automatically and dynamically allocate processes
depending on the system load, process CPU usage, and power consumption
settings. There are special cases when system designers need to statically bind,
denoted affine in the Linux community, processes to a subset of the available
set of CPU cores and most OS:es supply such functions through a privileged
user accessible APIs.

Definition 28 The affinity Ap ⊆ C for process p ∈ P is the set of cores where
p is bound/allowed to execute.

Process scheduling is a well-known problem. It has always been challenging to
let processes efficiently co-exist on hardware with shared resources. There are
many different implementations of process scheduling. Some schedulers targets
a particular scenario, such as EDF [96], multi-resource servers [137], the lottery
scheduler [205]. Yet others, like CFS [303], apply a more generic approach by
being fair to all processes.

The standard CFS [163] scheduler in Linux is of the latter type, trying to
be fair among all executing processes. In practice CFS balance between giving
quick feedback for interactive processes while still allowing resource demand-
ing background processes execute as much as possible. Some industrial systems
have other constraints, such as real-time or high throughput requirements. We
have identified resource constraints as another essential process scheduling
requirement for our target system. In some process deployment scenarios, a
process p0 is not allowed to disturb the execution of another process p1. A
shared cache between two CPU cores is a typical use-case when one process
can affect the performance of another one. In theory, our reasoning expands to

8.2 System Model and Definitions 169

Main memory

L1 Cache

L2 Cache

L1 CacheL1 Cache

Core 0

L2 Cache

Core 1

L1 Cache

Scenario 1

Core 2

p

Core 3

10
p

(a) L1-cache congestion.

Main memory

L1 Cache

L2 Cache

L1 CacheL1 Cache

Core 0

L2 Cache

Core 1

L1 Cache

Scenario 2

Core 2

p

Core 3

10
p

(b) L2-cache congestion.

Figure 8.4: Two processes p0 and p1 compete for the shared cache.

any shared resource such as cache, memory, FPU, branch prediction engines, or
similar. We have opted to limit our reasoning to memory intensive application
and their cache and memory usage in this thesis, although our reasoning and
techniques are equally applicable to any measurable resource. The following
scenarios exemplify the problem we address without allocation and scheduling
framework, and the effect the problem has on our target system.

Scenario 1: Using the Linux CFS scheduler to allocate two processes p0 and
p1 may end up in a non-optimal process allocation such as the one depicted in
Figure 8.4a. In the scenario, p0 and p1 execute on the same core and share a
common L1-cache resulting in L1-cache congestion. This type of scenario cause
severe performance degradation if p0 and p1 are memory intensive processes.

Main memory

L1 Cache

L2 Cache

L1 CacheL1 Cache

Core 0

L2 Cache

Core 1

L1 Cache

Scenario 3

Core 2 Core 3

0
p p

1

Figure 8.5: Memory congestion.

Scenario 2: We can use a similar
reasoning to the scenario shown in
Figure 8.4b. The major difference
is that p0 and p1 execute on adja-
cent cores that each has its L1-cache
but shares the L2-cache. This sce-
nario is an improvement from the
first scenario because the number of
L1-cache misses will be significantly
lower but p0 and p1 will still affect
the performance of each other due to
L2-cache congestion.

Scenario 3: The main problem with CFS is that it does not consider shared
hardware resource usage when making its allocation and scheduling decisions.

170 Chapter 8. Resource Aware Process Allocation and Scheduling

Main memory

L1 Cache

L2 Cache

L1 CacheL1 Cache

Core 0

L2 Cache

Core 1

L1 Cache

Scenario 4

Core 2 Core 3

0
p pp

pp p

p
1

p

p p

p
p

(a) p0 and p1 coexist with many other pro-
cesses.

p

p

Main memory

L1 Cache

L2 Cache

L1 Cache

0
p p

1

L1 Cache

Core 0

p

L2 Cache

p

p

pp

Core 1

p

L1 Cache

p

Scenario 5

p

Core 2 Core 3

(b) Efficient allocation of processes p0
and p1.

Figure 8.6: Deploying large number of processes on a target system.

Our tests [157] show that CFS can select any of Scenario 1, 2 or 3 depending
on the other processes concurrently running on the system. The best solution
would be to move p0 and p1 sufficiently apart so that they share as few resources
as possible, like in Figure 8.5

Scenario 4: A more realistic real-world scenario is shown in Figure 8.6a
where p0 and p1 co-exist with many other processes p. No process in the sys-
tem is affined to a certain core and can float freely to any core depending on the
available CPU capacity and the process execution pattern. The performance of
p0 and p1 is difficult to evaluate because they will be severely affected by any
other process p. The performance of p0 and p1 will be impeded by shared re-
source congestion even if we use an ordinary process priority scheme supported
by most OS:es.

Scenario 5: Our target scenario is shown in Figure 8.6b where our Shared
Resource Aware (SRA) process allocator efficiently allocates p0 and p1 on
different cache clusters (Ap0

= {c0} and Ap1
= {c2}), thus avoiding the

L1-cache and L2-cache congestion described in scenarios 1 and 2. SRA also
enforces the availability of shared resources by scheduling the processes so that
any p cannot affect the performance of p0 or p1. SRA will in effect reserve a
user-configurable number of cache accesses to the L1-cache and L2-cache and
the main memory.

8.2 System Model and Definitions 171

L2−Cache
FPU

76543

1 62 3 7 4 85
Program PMU and
context switch

PMU overflow interrupt ()
due to excessive resource usage.

Normal process
context switch

PMU
monitor

1 2 8

Execution time

depleted
Timeslice

Shared
hardware
resources

Processes p
0

p
1 1

p
0

p

L1 I−Cache
L1 D−Cache

Figure 8.7: Enforcing hardware resource usage for process p1.

8.2.7 Resource Aware Process Scheduling
Process scheduling decides how and when to run processes on a core. If many
processes wants to utilize the CPU, some processes may need to share one core.
The effect is, naturally, that the processes will affect the performance of each
other.

We have devised a method [156] to schedule processes according to their
resource usage rather than just considering their CPU quota. We limit the re-
sources usage by processes through the use of quota for specific hardware re-
sources. The scheduler suspends a process when it consumes its quota of any
resource. The suspended process is resumed after a predefined time, i.e., get new
quota for all resources. Our method is based on defining a resource overflow
mechanism that generates an interrupt when reaching the configured resource
quota. In that way we can enforce two scenarios: 1) set an overflow value for
a particular process p so that it always get the desired amount of resources. 2)
set an overflow value for all other processes sharing the resource, so that they
cannot affect the performance of p.

Definition 29 The access limit value, Or ,p , is the number of accesses to re-
source r ∈ R by a process p ∈ P before the hardware should generate a
resource usage overflow interrupt. We denote the set of all overflow values for
p as OR,p = {Or ,p : ∀r ∈ R}

Our method is illustrated by an example in Figure 8.7. The figure depicts a
process p0 implementing a system-critical task that must maintain a high pro-
cessing throughput. Process p1 co-executes on the same core sharing some
resources with p0 such as FPU, L1I-cache, L1D-cache, and L2-cache. Process

172 Chapter 8. Resource Aware Process Allocation and Scheduling

p1 is swapped in at time 1 and the OS sets an OR,p1
where R = {L1I-cache,

L1D-cache,L2-cache, FPU} so that an interrupt should be generated when any
Or ,p1 is reached for r ∈ R. The scheduler starts p1 and no further software-
based monitoring is needed until the overflow is triggered. At 2 , a r ∈ R
reaches its access limit, and the PMU hardware generates an interrupt handled
by the OS process scheduler. The scheduler swaps out p1 because it has de-
pleted its resource quota and p0 is swapped in at 3 . Process p0 does not have
any resource restrictions (for the sake of reasoning) and will, therefore, run
until 4 when it has depleted its CPU quota, i.e., as a normal process. At 5
process p1 is once again swapped in and the PMU is programmed with OR,p1

.
The scenario continues in a similar manner with resource exhaustion in 6 and
CPU-quota based context switching [192] in 7 and 8 . The example shows a
typical scenario when a process with high throughout demand is protected from
shared resource disturbances via a PMU counter overflow mechanism.

8.2.8 Integrating all Parts

A successful and industrially applicable implementation of our allocation and
scheduling method requires several steps. We find the resources used by p
which has significant influence on the process performance. As an example,
it is of limited use to enforce the L1D-cache usage if ITLB is the main limit-
ing resource for the performance of p. Second, we need to quantify the access
limit Or ,p after finding r with Ĉorr(R, x , p). The resource limit describes
the needed number of accesses to resources for maintaining the desired per-
formance. Third, we need a way to monitor the resource usage continuously
for processes assigned to our allocation and scheduling framework. Fourth and
last, we deploy our scheduler with the access limit values, Or ,p , determined by
previous steps so that it can enforce the performance of p.

Finding the Resource to Enforce

The first thing to do when deploying our method is to determine what hardware
resources, r̂ ∈ R, for p, has the highest correlation to the performance, x . Many
experienced system designers know what resource has the highest effects on
the performance which makes it easy to find r̂ . The system engineer may be
biased and it is not always correct to determine r̂ from his or her knowledge. We
therefore suggest a different approach where we have formalized an unbiased
procedure to determine r̂ . The procedure described in Listing 8.1 has been

8.2 System Model and Definitions 173

tested in our experiments [157]. The total measurement time, t, and the sampling
period δ depends on the system being monitored.

Listing 8.1: Determine what hardware resource has the highest correlation to
the performance.

1 s t a r t p
2 % Iterate for a predefined time.
3 f o r t ime t do
4 % Measure all hardware resources and the process performance.
5 measure R and x f o r p
6 d e l a y δ
7 en d f or
8 f i n d Ĉorr(R, x , p) and r̂

We describe the procedure in Listing 8.1 as follows. We start the process being
investigated in step 1 . It is important that p is deployed in a test environment
that represents the execution environment of the real production system. We
continue, in steps 2 and 3 , by monitoring p for time t. Wait for a pre-defined
time before measuring again, step 4 . Conclude the procedure, in step 5 , by
finding the resource that has the highest correlation to the performance.

The procedure above describes how to find the resources, r̂ , with the highest
correlation to the performance. Our technique is generalizable so that we can
extract an arbitrary number of resources with their corresponding performance
correlation values.

Finding the Resource Usage Limit

We want to determine the actual resource usage for r̂ on p. The limit for r̂ is
denoted by Or̂ ,p . We determine the resource usage limit for p by co-executing
a process, l, that increasingly consume the same resource as p. This is simi-
lar to previous work on cache boundness [77–79] but our method is generic
and applies to any hardware resource as long as it is measurable. We define
a performance degradation limit, ω, i.e., a relational value when the process
performance is degraded by shared resource congestion. For example, we use
ω = 0.9 if the lowest acceptable performance is 90% of the maximum perfor-
mance.

Listing 8.2 shows the procedure for finding a resource usage limit with ac-
ceptable performance degradation. We begin the procedure by starting process
p, step 1 , in an execution environment that correctly represents the production
environment. In step 2 we measure the maximum capacity for process p dur-
ing a configurable and system specific time t. The time is chosen so that p is

174 Chapter 8. Resource Aware Process Allocation and Scheduling

allowed to reach a stable execution state. We continue in step 6 by calculating
the performance limit, xlimit, for p and then start l, in step 7 , that use the same
hardware resource as p. In steps 10 – 16 p and l runs concurrently while l
periodically increase its hardware resource usage, r . We stop iterating when
the performance of p drops below xlimit. We measure the current resource us-
age, mr, by p in step 19 for the last iteration when the performance was still
acceptable. We then assign the resource usage as the overflow value in step
20 , Or ,p , which defines the resource usage needed by p to maintain the desired
performance and QoS.

Listing 8.2: Determine acceptable hardware resource usage limits.
1 s t a r t p
2 % Measure the maximum capacity for process p.
3 f o r t ime t do
4 measure x
5 en d f or
6 % Determine the lower performance limit.
7 s e t xlimit = ω ∗ x
8 s t a r t l e e c h l
9 % Increase the leech resource usage until the performance is too low.

10 r e p e a t u n t i l x of p < xlimit

11 % Store the last resource usage value that works.
12 s t o r e x of p in xprev .
13 % Increase resource usage.
14 i n c l usage o f r
15 measure x of p .
16 d e l a y δ
17 e n d r e p e a t
18 % Read the desired overflow value from the PMU.
19 measure r of p f o r xprev s t o r e in mr

20 s e t Or,p = mr .

Resource Monitoring

Our current monitoring algorithm implementation works in a periodic round
robin fashion, iterating over all monitored processes and the set of events of
interest for those processes. More formally; let P be the set of processes that
we want to monitor. Let E be the set of PMU events available on the given
hardware platform and let C be the capacity of the PMU. To each process
pi ∈ P we assign a set of PMU event sets Ei. Each event set Eij ∈ Ei is a
subset of E, i.e. Eij ⊆ E, such that |Eij | ≤ C. The following pseudo-code
illustrates how our current implementation work:

8.2 System Model and Definitions 175

Listing 8.3: PMU sampling process.
1 % Iterate over each process.
2 f o r e a c h p r o c e s s pi ∈ P do
3 % Iterate over each PMU event set belonging to pi.
4 f o r each PMU e v e n t s e t Eij in Ei do
5 program e v e n t s e t Eij i n t o PMU
6 r e s e t t i m e r T
7 w a i t f o r t i m e r T t o e x p i r e
8 read v a l u e s o f PMU c o u n t e r s i n t o V
9 % If configured, read the performance metric for pi .

10 i f mon per f (pi) then
11 read p e r f v a l u e (pi) i n t o xpi
12 e l s e
13 xpi = 0
14 e n d i f
15 s t o r e t u p l e {i, Eij , V, xpi} in d a t a b a s e DB
16 en d f or
17 en d f or

Our resource monitor utilizes the PMU to sample pre-configured events, see
Listing 8.3. We start the PMU sample procedure by defining a set of processes to
monitor 1 and iterating through each of them. We then find and iterate over each
PMU event set belonging to the selected process 4 . The event is programmed
5 into the PMU, and a timer is programmed with the sampling interval 6 .
The monitoring application yields and wait for the timer to expire 7 and read
8 the PMU values. Read the application performance for pi if the system
administrator has configured the monitor to do so 10 . We have provided the
ability to omit application performance for system evaluation reasons. Reading
the application performance 11 requires an API call to the application so that it
is possible to quantify the performance. It is possible to run the monitor without
performance measurements if a user only wants to understand the hardware
usage of a system. The monitoring procedure ends by storing the hardware
measurements together with the performance measurement in the local database
14 . The monitor repeats the process during the time span we want to monitor
the system, and the database contains historical and current performance and
hardware usage of each pi ∈ P .

Enforcing the Resource Usage

We have, in the previous sections, determined the resources most correlated to
the performance, r̂ and its resource usage limit, Or,p , for a process p so that it
can maintain its performance x within a defined range, ω. There are multiple
ways to schedule processes in an OS. A typical OS such as Linux has several

176 Chapter 8. Resource Aware Process Allocation and Scheduling

Listing 8.4: Process scheduling.
1 % Iterate over all sched. policies in priority order.
2 f o r e a c h po ∈ PO in p r i o o r d e r do
3 % Get a process from the sched.policy waiting queue.
4 p = get process(po)
5 % Schedule the process if any, otherwise skip to next sched.pollicy..
6 i f p then
7 % Suspend the current process.
8 swap out (pcurr)
9 % Start the new process.

10 swap in (p)
11 % If the process to swap in is assigned to SRA.
12 i f sched class(p) = SRA then
13 % Program PMU events with the hardware resource usage overflow limit.
14 program Or,p i n t o PMU
15 % Wait until the process has depleted its resource quota.
16 r e s e t t i m e r T
17 w a i t f o r t i m e r T t o e x p i r e o r PMU o v e r f l o w i n t e r r u p t
18 e n d i f
19 e n d i f
20 en d f or

scheduling policies in an effort to meet each process’ execution environment
demand.

Definition 30 The Linux OS implements a set of scheduling policies, PO.
Each scheduling policy po ∈ PO implements a specific scheduling method. A
process, p, belongs to one and only one scheduling policy such that pop ∈ PO.

Each process in the system belongs to only one scheduling policy, po. We
have implemented and added our Shared Resource Aware (SRA) scheduling
policy to the Linux kernel so that it contains the following policies: PO =
{RT,EDF, SRA,CFS} in reduced priority order. As an explanation: RT=real-
time, EDF=earliest deadline first, and CFS is the normal time sharing policy.
The OS scheduler walks through PO asking each policy for a process to run
when the current process is swapped out. This order defines the scheduling
priority among the policies, i.e. RT is most important, then EDF etc. The pro-
cedure shown in Listing 8.4 gives an overview of how process scheduling is
implemented in Linux and how SRA fits into the current scheduling framework.
The OS calls the procedure in Listing 8.4 when it decides that the currently
executing process should be context switched, called being swapped out. There
are several reasons for the OS deciding on a context switch. One is that a tick

8.3 Implementation 177

has arrived at the OS means that the process has executed too long and the OS
needs to decide what process to run. Another reason is that a higher priority
process has been created or wants to execute. The current process can also be
stalled waiting for an hardware response.

We start the procedure, in step 1 , by iterating over all scheduling policies
po ∈ PO in priority order with the most critical policy first. The scheduler
asks the policy for a process that wants to run, in step 3 . If the scheduling
policy does not have a process that wants to run it moves on to the next policy,
in step 6 . The current process is swapped out, 8 , and the new is swapped in,
9 . This step was the last step in the generic scheduler, and we now enter the
SRA scheduler. Start by programming the PMU, 13 , to generate an overflow
interrupt if p overuse its hardware resource quota. Continue by setting a timer
so that p can only execute for a determinist time, 15 . We then wait, in step 16 ,
for the timer to expire or p to overuse its resources.

The resource usage enforcement procedure, Listing 8.4, is implemented
inside the Linux kernel, which contrasts to the user space implementation of
resource monitoring, Listing 8.3.

8.3 Implementation

We have implemented a simplified version of our allocation and scheduling
architecture, see Figure 8.2, as a proof of concept. The following subsections
describe the implementation in detail and our compliance and deviations from
the theoretical design.

8.3.1 System Monitoring
The main requirement for our implemented PM is to sample different levels
of process performance and store the result in a database with low impact on
the investigated system [241]. The PM uses a configuration file that specifies
sample frequency, the R to measure and on what CPU/core.

Performance Monitoring Our implementation of the performance monitor
measure the performance and writes the result to a text file a specific format.
Each line in the file contains date-time and the value of one measurement, mx .
Each entry looks as follows:

2017-05-09.19:20:06.991009 2415072

178 Chapter 8. Resource Aware Process Allocation and Scheduling

The PM creates multiple files if we decide to measure the performance of
several processes at the same time.

Hardware Resource Monitoring We implement hardware resource moni-
toring by using the PMU [226]. Our implementation uses the Perf-API [112]
provided by the Linux kernel [188]. Even though the PMU complexity varies
between chip manufacturers, there are many PMU events available. The sheer
magnitude of event availability poses a challenging problem because there are
far too many events to be simultaneously monitored using the available hard-
ware counters [67]. A typical chip implements several hundreds of PMU events
but only 4-6 simultaneously usable counters [141]. It is hard to automatically
deduce what events to program [310] and what sampling period to use [222]
so we have made those parameters configurable. We minimize the number of
simultaneously running events because event multiplexing causes performance
penalties [220] and probe effects [108]. It is also possible to use the PMU
from within a virtualized environment [265], which is typically useful when
debugging a faulty kernel implementation. We have to state that not all events
are implemented in a virtualized environment making it difficult to debug all
aspects of hardware resource monitoring.

The PMU is also referred to as a hardware performance counter [141]. Such
hardware performance counter is a special-purpose register built into modern
microprocessors, which counts the number of hardware related activities related
to the currently configured event. Although there are some efforts in simplifying
PMU usage [183], it is difficult to interpret and understand the effects of differ-
ent R measurements, which is one reason for our implementation of a graphical
visualization tool. The PM is implemented in C and uses the Perf-API [188]
to sample PMU events. We have chosen to use a 100Hz sampling frequency
as a trade-off between fine-grained granularity and avoiding probe effect [108].
The pre-configured PMU event set in Perf is limited, and we are therefore using
raw event sets. The PM keeps track of the events to program and utilize their
event-id. In theory, our test hardware supports more than 300 PMU [65] events
but in practice far fewer are usable for process allocation purposes.

Figure 8.8 shows the output from the Charmon tool. The preamble shows
some basics such as the Charmon version and compilation date closely followed
by sampling configurations such as a boolean showing if the sampler is running
at the time of dumping the information. Charmon also shows the configured
sampling frequency and the number of slots in the internal DB. We have made
it possible to limit the number of entries in the DB to ensure that Charmon will
have little impact on the memory footprint for the system it monitors.

8.3 Implementation 179
P
R
O
G
R
A
M

R
e
v
i
s
i
o
n
:
v
e
r
s
i
o
n
1
.
0
.
2

C
o
m
p
i
l
e
d

:
A
p
r

7
2
0
1
7
0
8
:
4
2
:
0
9

S
T
A
T
I
S
T
I
C
S

S
a
m
p
l
i
n
g
:
o
n

S
a
m
p
l
e
f
r
e
q
u
e
n
c
y
[
H
z
]

:
1
0
0

E
v
i
c
t
i
o
n
l
i
m
i
t
[
#
]

:
3
0
0
0
0

[
S
A
M
P
L
E
S
]

2
0
1
7
-
0
4
-
0
9
.
1
9
:
2
0
:
1
1
.
5
0
0
5
6
2
,
0
,
0
0
.
5
0
0
5
6
1
,
7
2
8
3
,
I
C
A
C
H
E
.
M
I
S
S
E
S
,
0
,
L
1
D
.
R
E
P
L
A
C
E
M
E
N
T
,
0
,
I
T
L
B
_
M
I
S
S
E
S
.
M
I
S
S
_
C
A
U
S
E
S
_
A
_
W
A
L
K
,
0
,
D
T
L
B
_
L
O
A
D
_
M
I
S
S
E
S
.
M
I
S
S
_
C
A
U
S
E
S
_
A
_
W
A
L
K
,
0

2
0
1
7
-
0
4
-
0
9
.
1
9
:
2
0
:
1
1
.
5
0
0
5
6
3
,
1
,
0
0
.
5
0
0
5
6
3
,
7
2
8
3
,
I
C
A
C
H
E
.
M
I
S
S
E
S
,
1
2
4
5
,
L
1
D
.
R
E
P
L
A
C
E
M
E
N
T
,
6
3
5
,
I
T
L
B
_
M
I
S
S
E
S
.
M
I
S
S
_
C
A
U
S
E
S
_
A
_
W
A
L
K
,
4
4
,
D
T
L
B
_
L
O
A
D
_
M
I
S
S
E
S
.
M
I
S
S
_
C
A
U
S
E
S
_
A
_
W
A
L
K
,
4
2

2
0
1
7
-
0
4
-
0
9
.
1
9
:
2
0
:
1
1
.
5
0
0
5
6
3
,
2
,
0
0
.
5
0
0
5
6
3
,
7
2
8
3
,
I
C
A
C
H
E
.
M
I
S
S
E
S
,
4
7
2
9
,
L
1
D
.
R
E
P
L
A
C
E
M
E
N
T
,
1
9
9
7
8
4
0
,
I
T
L
B
_
M
I
S
S
E
S
.
M
I
S
S
_
C
A
U
S
E
S
_
A
_
W
A
L
K
,
2
1
,
D
T
L
B
_
L
O
A
D
_
M
I
S
S
E
S
.
M
I
S
S
_
C
A
U
S
E
S
_
A
_
W
A
L
K
,
1
4
9

2
0
1
7
-
0
4
-
0
9
.
1
9
:
2
0
:
1
1
.
5
0
0
5
6
4
,
3
,
0
0
.
5
0
0
5
6
3
,
7
2
8
3
,
I
C
A
C
H
E
.
M
I
S
S
E
S
,
0
,
L
1
D
.
R
E
P
L
A
C
E
M
E
N
T
,
0
,
I
T
L
B
_
M
I
S
S
E
S
.
M
I
S
S
_
C
A
U
S
E
S
_
A
_
W
A
L
K
,
0
,
D
T
L
B
_
L
O
A
D
_
M
I
S
S
E
S
.
M
I
S
S
_
C
A
U
S
E
S
_
A
_
W
A
L
K
,
0

2
0
1
7
-
0
4
-
0
9
.
1
9
:
2
0
:
1
1
.
5
0
0
5
6
4
,
4
,
0
0
.
5
0
0
5
6
4
,
7
2
8
3
,
I
C
A
C
H
E
.
M
I
S
S
E
S
,
0
,
L
1
D
.
R
E
P
L
A
C
E
M
E
N
T
,
0
,
I
T
L
B
_
M
I
S
S
E
S
.
M
I
S
S
_
C
A
U
S
E
S
_
A
_
W
A
L
K
,
0
,
D
T
L
B
_
L
O
A
D
_
M
I
S
S
E
S
.
M
I
S
S
_
C
A
U
S
E
S
_
A
_
W
A
L
K
,
0

2
0
1
7
-
0
4
-
0
9
.
1
9
:
2
0
:
1
1
.
5
0
0
5
6
5
,
5
,
0
0
.
5
0
0
5
6
4
,
7
2
8
3
,
I
C
A
C
H
E
.
M
I
S
S
E
S
,
0
,
L
1
D
.
R
E
P
L
A
C
E
M
E
N
T
,
0
,
I
T
L
B
_
M
I
S
S
E
S
.
M
I
S
S
_
C
A
U
S
E
S
_
A
_
W
A
L
K
,
0
,
D
T
L
B
_
L
O
A
D
_
M
I
S
S
E
S
.
M
I
S
S
_
C
A
U
S
E
S
_
A
_
W
A
L
K
,
0

2
0
1
7
-
0
4
-
0
9
.
1
9
:
2
0
:
1
1
.
5
0
0
5
6
5
,
6
,
0
0
.
5
0
0
5
6
5
,
7
2
8
3
,
I
C
A
C
H
E
.
M
I
S
S
E
S
,
0
,
L
1
D
.
R
E
P
L
A
C
E
M
E
N
T
,
0
,
I
T
L
B
_
M
I
S
S
E
S
.
M
I
S
S
_
C
A
U
S
E
S
_
A
_
W
A
L
K
,
0
,
D
T
L
B
_
L
O
A
D
_
M
I
S
S
E
S
.
M
I
S
S
_
C
A
U
S
E
S
_
A
_
W
A
L
K
,
0

2
0
1
7
-
0
4
-
0
9
.
1
9
:
2
0
:
1
1
.
5
0
0
5
6
5
,
7
,
0
0
.
5
0
0
5
6
5
,
7
2
8
3
,
I
C
A
C
H
E
.
M
I
S
S
E
S
,
0
,
L
1
D
.
R
E
P
L
A
C
E
M
E
N
T
,
0
,
I
T
L
B
_
M
I
S
S
E
S
.
M
I
S
S
_
C
A
U
S
E
S
_
A
_
W
A
L
K
,
0
,
D
T
L
B
_
L
O
A
D
_
M
I
S
S
E
S
.
M
I
S
S
_
C
A
U
S
E
S
_
A
_
W
A
L
K
,
0

2
0
1
7
-
0
4
-
0
9
.
1
9
:
2
0
:
1
1
.
5
1
1
2
8
8
,
0
,
0
0
.
5
1
1
2
8
8
,
7
2
8
6
,
I
C
A
C
H
E
.
M
I
S
S
E
S
,
1
2
4
5
,
L
1
D
.
R
E
P
L
A
C
E
M
E
N
T
,
4
5
7
,
I
T
L
B
_
M
I
S
S
E
S
.
M
I
S
S
_
C
A
U
S
E
S
_
A
_
W
A
L
K
,
6
8
,
D
T
L
B
_
L
O
A
D
_
M
I
S
S
E
S
.
M
I
S
S
_
C
A
U
S
E
S
_
A
_
W
A
L
K
,
5
0

2
0
1
7
-
0
4
-
0
9
.
1
9
:
2
0
:
1
1
.
5
1
1
2
8
9
,
1
,
0
0
.
5
1
1
2
8
9
,
7
2
8
6
,
I
C
A
C
H
E
.
M
I
S
S
E
S
,
0
,
L
1
D
.
R
E
P
L
A
C
E
M
E
N
T
,
0
,
I
T
L
B
_
M
I
S
S
E
S
.
M
I
S
S
_
C
A
U
S
E
S
_
A
_
W
A
L
K
,
0
,
D
T
L
B
_
L
O
A
D
_
M
I
S
S
E
S
.
M
I
S
S
_
C
A
U
S
E
S
_
A
_
W
A
L
K
,
0

2
0
1
7
-
0
4
-
0
9
.
1
9
:
2
0
:
1
1
.
5
1
1
2
8
9
,
2
,
0
0
.
5
1
1
2
8
9
,
7
2
8
6
,
I
C
A
C
H
E
.
M
I
S
S
E
S
,
0
,
L
1
D
.
R
E
P
L
A
C
E
M
E
N
T
,
0
,
I
T
L
B
_
M
I
S
S
E
S
.
M
I
S
S
_
C
A
U
S
E
S
_
A
_
W
A
L
K
,
0
,
D
T
L
B
_
L
O
A
D
_
M
I
S
S
E
S
.
M
I
S
S
_
C
A
U
S
E
S
_
A
_
W
A
L
K
,
0

2
0
1
7
-
0
4
-
0
9
.
1
9
:
2
0
:
1
1
.
5
1
1
2
9
0
,
3
,
0
0
.
5
1
1
2
9
0
,
7
2
8
6
,
I
C
A
C
H
E
.
M
I
S
S
E
S
,
3
0
9
5
,
L
1
D
.
R
E
P
L
A
C
E
M
E
N
T
,
1
9
1
7
2
4
5
,
I
T
L
B
_
M
I
S
S
E
S
.
M
I
S
S
_
C
A
U
S
E
S
_
A
_
W
A
L
K
,
2
,
D
T
L
B
_
L
O
A
D
_
M
I
S
S
E
S
.
M
I
S
S
_
C
A
U
S
E
S
_
A
_
W
A
L
K
,
7
8

2
0
1
7
-
0
4
-
0
9
.
1
9
:
2
0
:
1
1
.
5
1
1
2
9
0
,
4
,
0
0
.
5
1
1
2
9
0
,
7
2
8
6
,
I
C
A
C
H
E
.
M
I
S
S
E
S
,
0
,
L
1
D
.
R
E
P
L
A
C
E
M
E
N
T
,
0
,
I
T
L
B
_
M
I
S
S
E
S
.
M
I
S
S
_
C
A
U
S
E
S
_
A
_
W
A
L
K
,
0
,
D
T
L
B
_
L
O
A
D
_
M
I
S
S
E
S
.
M
I
S
S
_
C
A
U
S
E
S
_
A
_
W
A
L
K
,
0

2
0
1
7
-
0
4
-
0
9
.
1
9
:
2
0
:
1
1
.
5
1
1
2
9
1
,
5
,
0
0
.
5
1
1
2
9
0
,
7
2
8
6
,
I
C
A
C
H
E
.
M
I
S
S
E
S
,
0
,
L
1
D
.
R
E
P
L
A
C
E
M
E
N
T
,
0
,
I
T
L
B
_
M
I
S
S
E
S
.
M
I
S
S
_
C
A
U
S
E
S
_
A
_
W
A
L
K
,
0
,
D
T
L
B
_
L
O
A
D
_
M
I
S
S
E
S
.
M
I
S
S
_
C
A
U
S
E
S
_
A
_
W
A
L
K
,
0

2
0
1
7
-
0
4
-
0
9
.
1
9
:
2
0
:
1
1
.
5
1
1
2
9
1
,
6
,
0
0
.
5
1
1
2
9
1
,
7
2
8
6
,
I
C
A
C
H
E
.
M
I
S
S
E
S
,
0
,
L
1
D
.
R
E
P
L
A
C
E
M
E
N
T
,
0
,
I
T
L
B
_
M
I
S
S
E
S
.
M
I
S
S
_
C
A
U
S
E
S
_
A
_
W
A
L
K
,
0
,
D
T
L
B
_
L
O
A
D
_
M
I
S
S
E
S
.
M
I
S
S
_
C
A
U
S
E
S
_
A
_
W
A
L
K
,
0

2
0
1
7
-
0
4
-
0
9
.
1
9
:
2
0
:
1
1
.
5
1
1
2
9
2
,
7
,
0
0
.
5
1
1
2
9
1
,
7
2
8
6
,
I
C
A
C
H
E
.
M
I
S
S
E
S
,
0
,
L
1
D
.
R
E
P
L
A
C
E
M
E
N
T
,
0
,
I
T
L
B
_
M
I
S
S
E
S
.
M
I
S
S
_
C
A
U
S
E
S
_
A
_
W
A
L
K
,
0
,
D
T
L
B
_
L
O
A
D
_
M
I
S
S
E
S
.
M
I
S
S
_
C
A
U
S
E
S
_
A
_
W
A
L
K
,
0

2
0
1
7
-
0
4
-
0
9
.
1
9
:
2
0
:
1
1
.
5
2
2
0
0
4
,
0
,
0
0
.
5
2
2
0
0
4
,
7
2
8
9
,
I
C
A
C
H
E
.
M
I
S
S
E
S
,
0
,
L
1
D
.
R
E
P
L
A
C
E
M
E
N
T
,
0
,
I
T
L
B
_
M
I
S
S
E
S
.
M
I
S
S
_
C
A
U
S
E
S
_
A
_
W
A
L
K
,
0
,
D
T
L
B
_
L
O
A
D
_
M
I
S
S
E
S
.
M
I
S
S
_
C
A
U
S
E
S
_
A
_
W
A
L
K
,
0

2
0
1
7
-
0
4
-
0
9
.
1
9
:
2
0
:
1
1
.
5
2
2
0
0
5
,
1
,
0
0
.
5
2
2
0
0
5
,
7
2
8
9
,
I
C
A
C
H
E
.
M
I
S
S
E
S
,
1
3
1
8
,
L
1
D
.
R
E
P
L
A
C
E
M
E
N
T
,
1
3
0
2
,
I
T
L
B
_
M
I
S
S
E
S
.
M
I
S
S
_
C
A
U
S
E
S
_
A
_
W
A
L
K
,
1
0
,
D
T
L
B
_
L
O
A
D
_
M
I
S
S
E
S
.
M
I
S
S
_
C
A
U
S
E
S
_
A
_
W
A
L
K
,
6
9

2
0
1
7
-
0
4
-
0
9
.
1
9
:
2
0
:
1
1
.
5
2
2
0
0
6
,
2
,
0
0
.
5
2
2
0
0
6
,
7
2
8
9
,
I
C
A
C
H
E
.
M
I
S
S
E
S
,
0
,
L
1
D
.
R
E
P
L
A
C
E
M
E
N
T
,
0
,
I
T
L
B
_
M
I
S
S
E
S
.
M
I
S
S
_
C
A
U
S
E
S
_
A
_
W
A
L
K
,
0
,
D
T
L
B
_
L
O
A
D
_
M
I
S
S
E
S
.
M
I
S
S
_
C
A
U
S
E
S
_
A
_
W
A
L
K
,
0

2
0
1
7
-
0
4
-
0
9
.
1
9
:
2
0
:
1
1
.
5
2
2
0
0
6
,
3
,
0
0
.
5
2
2
0
0
6
,
7
2
8
9
,
I
C
A
C
H
E
.
M
I
S
S
E
S
,
1
1
4
0
,
L
1
D
.
R
E
P
L
A
C
E
M
E
N
T
,
5
8
8
,
I
T
L
B
_
M
I
S
S
E
S
.
M
I
S
S
_
C
A
U
S
E
S
_
A
_
W
A
L
K
,
5
2
,
D
T
L
B
_
L
O
A
D
_
M
I
S
S
E
S
.
M
I
S
S
_
C
A
U
S
E
S
_
A
_
W
A
L
K
,
6
7

2
0
1
7
-
0
4
-
0
9
.
1
9
:
2
0
:
1
1
.
5
2
2
0
0
7
,
4
,
0
0
.
5
2
2
0
0
7
,
7
2
8
9
,
I
C
A
C
H
E
.
M
I
S
S
E
S
,
0
,
L
1
D
.
R
E
P
L
A
C
E
M
E
N
T
,
0
,
I
T
L
B
_
M
I
S
S
E
S
.
M
I
S
S
_
C
A
U
S
E
S
_
A
_
W
A
L
K
,
0
,
D
T
L
B
_
L
O
A
D
_
M
I
S
S
E
S
.
M
I
S
S
_
C
A
U
S
E
S
_
A
_
W
A
L
K
,
0

2
0
1
7
-
0
4
-
0
9
.
1
9
:
2
0
:
1
1
.
5
2
2
0
0
7
,
5
,
0
0
.
5
2
2
0
0
7
,
7
2
8
9
,
I
C
A
C
H
E
.
M
I
S
S
E
S
,
0
,
L
1
D
.
R
E
P
L
A
C
E
M
E
N
T
,
0
,
I
T
L
B
_
M
I
S
S
E
S
.
M
I
S
S
_
C
A
U
S
E
S
_
A
_
W
A
L
K
,
0
,
D
T
L
B
_
L
O
A
D
_
M
I
S
S
E
S
.
M
I
S
S
_
C
A
U
S
E
S
_
A
_
W
A
L
K
,
0

2
0
1
7
-
0
4
-
0
9
.
1
9
:
2
0
:
1
1
.
5
2
2
0
0
8
,
6
,
0
0
.
5
2
2
0
0
7
,
7
2
8
9
,
I
C
A
C
H
E
.
M
I
S
S
E
S
,
0
,
L
1
D
.
R
E
P
L
A
C
E
M
E
N
T
,
0
,
I
T
L
B
_
M
I
S
S
E
S
.
M
I
S
S
_
C
A
U
S
E
S
_
A
_
W
A
L
K
,
0
,
D
T
L
B
_
L
O
A
D
_
M
I
S
S
E
S
.
M
I
S
S
_
C
A
U
S
E
S
_
A
_
W
A
L
K
,
0

2
0
1
7
-
0
4
-
0
9
.
1
9
:
2
0
:
1
1
.
5
2
2
0
0
8
,
7
,
0
0
.
5
2
2
0
0
8
,
7
2
8
9
,
I
C
A
C
H
E
.
M
I
S
S
E
S
,
0
,
L
1
D
.
R
E
P
L
A
C
E
M
E
N
T
,
0
,
I
T
L
B
_
M
I
S
S
E
S
.
M
I
S
S
_
C
A
U
S
E
S
_
A
_
W
A
L
K
,
0
,
D
T
L
B
_
L
O
A
D
_
M
I
S
S
E
S
.
M
I
S
S
_
C
A
U
S
E
S
_
A
_
W
A
L
K
,
0

2
0
1
7
-
0
4
-
0
9
.
1
9
:
2
0
:
1
1
.
5
3
2
5
6
8
,
0
,
0
0
.
5
3
2
5
6
8
,
7
2
9
2
,
I
C
A
C
H
E
.
M
I
S
S
E
S
,
1
1
3
5
,
L
1
D
.
R
E
P
L
A
C
E
M
E
N
T
,
7
3
0
,
I
T
L
B
_
M
I
S
S
E
S
.
M
I
S
S
_
C
A
U
S
E
S
_
A
_
W
A
L
K
,
3
2
,
D
T
L
B
_
L
O
A
D
_
M
I
S
S
E
S
.
M
I
S
S
_
C
A
U
S
E
S
_
A
_
W
A
L
K
,
5
4

2
0
1
7
-
0
4
-
0
9
.
1
9
:
2
0
:
1
1
.
5
3
2
5
6
9
,
1
,
0
0
.
5
3
2
5
6
9
,
7
2
9
2
,
I
C
A
C
H
E
.
M
I
S
S
E
S
,
0
,
L
1
D
.
R
E
P
L
A
C
E
M
E
N
T
,
0
,
I
T
L
B
_
M
I
S
S
E
S
.
M
I
S
S
_
C
A
U
S
E
S
_
A
_
W
A
L
K
,
0
,
D
T
L
B
_
L
O
A
D
_
M
I
S
S
E
S
.
M
I
S
S
_
C
A
U
S
E
S
_
A
_
W
A
L
K
,
0

2
0
1
7
-
0
4
-
0
9
.
1
9
:
2
0
:
1
1
.
5
3
2
5
6
9
,
2
,
0
0
.
5
3
2
5
6
9
,
7
2
9
2
,
I
C
A
C
H
E
.
M
I
S
S
E
S
,
1
2
6
1
,
L
1
D
.
R
E
P
L
A
C
E
M
E
N
T
,
4
9
8
,
I
T
L
B
_
M
I
S
S
E
S
.
M
I
S
S
_
C
A
U
S
E
S
_
A
_
W
A
L
K
,
5
1
,
D
T
L
B
_
L
O
A
D
_
M
I
S
S
E
S
.
M
I
S
S
_
C
A
U
S
E
S
_
A
_
W
A
L
K
,
5
0

2
0
1
7
-
0
4
-
0
9
.
1
9
:
2
0
:
1
1
.
5
3
2
5
7
0
,
3
,
0
0
.
5
3
2
5
7
0
,
7
2
9
2
,
I
C
A
C
H
E
.
M
I
S
S
E
S
,
0
,
L
1
D
.
R
E
P
L
A
C
E
M
E
N
T
,
0
,
I
T
L
B
_
M
I
S
S
E
S
.
M
I
S
S
_
C
A
U
S
E
S
_
A
_
W
A
L
K
,
0
,
D
T
L
B
_
L
O
A
D
_
M
I
S
S
E
S
.
M
I
S
S
_
C
A
U
S
E
S
_
A
_
W
A
L
K
,
0

2
0
1
7
-
0
4
-
0
9
.
1
9
:
2
0
:
1
1
.
5
3
2
5
7
3
,
4
,
0
0
.
5
3
2
5
7
2
,
7
2
9
2
,
I
C
A
C
H
E
.
M
I
S
S
E
S
,
0
,
L
1
D
.
R
E
P
L
A
C
E
M
E
N
T
,
0
,
I
T
L
B
_
M
I
S
S
E
S
.
M
I
S
S
_
C
A
U
S
E
S
_
A
_
W
A
L
K
,
0
,
D
T
L
B
_
L
O
A
D
_
M
I
S
S
E
S
.
M
I
S
S
_
C
A
U
S
E
S
_
A
_
W
A
L
K
,
0

2
0
1
7
-
0
4
-
0
9
.
1
9
:
2
0
:
1
1
.
5
3
2
5
7
3
,
5
,
0
0
.
5
3
2
5
7
3
,
7
2
9
2
,
I
C
A
C
H
E
.
M
I
S
S
E
S
,
0
,
L
1
D
.
R
E
P
L
A
C
E
M
E
N
T
,
0
,
I
T
L
B
_
M
I
S
S
E
S
.
M
I
S
S
_
C
A
U
S
E
S
_
A
_
W
A
L
K
,
0
,
D
T
L
B
_
L
O
A
D
_
M
I
S
S
E
S
.
M
I
S
S
_
C
A
U
S
E
S
_
A
_
W
A
L
K
,
0

2
0
1
7
-
0
4
-
0
9
.
1
9
:
2
0
:
1
1
.
5
3
2
5
7
3
,
6
,
0
0
.
5
3
2
5
7
3
,
7
2
9
2
,
I
C
A
C
H
E
.
M
I
S
S
E
S
,
0
,
L
1
D
.
R
E
P
L
A
C
E
M
E
N
T
,
0
,
I
T
L
B
_
M
I
S
S
E
S
.
M
I
S
S
_
C
A
U
S
E
S
_
A
_
W
A
L
K
,
0
,
D
T
L
B
_
L
O
A
D
_
M
I
S
S
E
S
.
M
I
S
S
_
C
A
U
S
E
S
_
A
_
W
A
L
K
,
0

2
0
1
7
-
0
4
-
0
9
.
1
9
:
2
0
:
1
1
.
5
3
2
5
7
4
,
7
,
0
0
.
5
3
2
5
7
4
,
7
2
9
2
,
I
C
A
C
H
E
.
M
I
S
S
E
S
,
0
,
L
1
D
.
R
E
P
L
A
C
E
M
E
N
T
,
0
,
I
T
L
B
_
M
I
S
S
E
S
.
M
I
S
S
_
C
A
U
S
E
S
_
A
_
W
A
L
K
,
0
,
D
T
L
B
_
L
O
A
D
_
M
I
S
S
E
S
.
M
I
S
S
_
C
A
U
S
E
S
_
A
_
W
A
L
K
,
0

2
0
1
7
-
0
4
-
0
9
.
1
9
:
2
0
:
1
1
.
5
4
3
1
7
5
,
0
,
0
0
.
5
4
3
1
7
5
,
7
2
8
3
,
I
C
A
C
H
E
.
M
I
S
S
E
S
,
0
,
L
1
D
.
R
E
P
L
A
C
E
M
E
N
T
,
0
,
I
T
L
B
_
M
I
S
S
E
S
.
M
I
S
S
_
C
A
U
S
E
S
_
A
_
W
A
L
K
,
0
,
D
T
L
B
_
L
O
A
D
_
M
I
S
S
E
S
.
M
I
S
S
_
C
A
U
S
E
S
_
A
_
W
A
L
K
,
0

2
0
1
7
-
0
4
-
0
9
.
1
9
:
2
0
:
1
1
.
5
4
3
1
7
6
,
1
,
0
0
.
5
4
3
1
7
6
,
7
2
8
3
,
I
C
A
C
H
E
.
M
I
S
S
E
S
,
1
2
3
5
,
L
1
D
.
R
E
P
L
A
C
E
M
E
N
T
,
7
1
4
,
I
T
L
B
_
M
I
S
S
E
S
.
M
I
S
S
_
C
A
U
S
E
S
_
A
_
W
A
L
K
,
5
2
,
D
T
L
B
_
L
O
A
D
_
M
I
S
S
E
S
.
M
I
S
S
_
C
A
U
S
E
S
_
A
_
W
A
L
K
,
6
4

Fi
gu

re
8.

8:
A

fe
w

ha
rd

w
ar

e
re

so
ur

ce
sa

m
pl

es
ex

tr
ac

te
d

fr
om

th
e

C
ha

rm
on

m
on

ito
ri

ng
to

ol
.T

he
sa

m
pl

in
g

fr
eq

ue
nc

y
is

10
0H

z
an

d
C

ha
rm

on
is

co
nfi

gu
re

d
to

lim
it

th
e

nu
m

be
ro

fs
am

pl
es

in
th

e
da

ta
ba

se
to

30
00

0.

180 Chapter 8. Resource Aware Process Allocation and Scheduling

Performance Analysis and Decision Making It is easy to obtain vast quan-
tities of data by monitoring the performance a system. One of the major chal-
lenges is to analyze the data and understand where it is possible to improve the
process allocation and scheduling. We have implemented the DE in Python by
using various scientific libraries including Numpy [290], Pandas [203], Scikit-
learn [229] and Armadillo [260, 261]. The DE finds and displays the Pearson
correlation Corr(r , x , p) for process p. The automatic interpretation of the
Pearson correlation has not yet been fully implemented and we currently per-
form it manually. We use a simple decision-making technique based on decision
tree [237]. Our approach starts by finding the r with highest correlance, r̂ , to x .
If several processes have the same r̂ we allocate the processes so that they do
no execute on cores that have that particular shared resource.

Allocation and Scheduling Output Contracts The output from the DE is
an allocation and scheduling contract provided in textual JSON format [232] as
exemplified in Figure 8.9. The contract begins with the process called testrun -
core0, denoted p0 in the following text. The contract stipulates that p0 has
allocation constraints such that: Process p0 is allowed to use any physical CPU
(-1) in the system but has the affinity Ap0 = {c0}. The contract also contains
scheduling constraints such as OL1D-cache,p = 1000000 and OL2D-cache,p =
100000 over a period length of 10 ms. The contract gives other instructions to
the process allocator and scheduler for process testrun core0, denoted by p1.
The contract does not specify any CPU constraints but p1 is affinedAp1

= {c1}.

8.3.2 Allocation and Scheduling Engine (ASE)

The Linux process scheduler, Completely Fair Scheduler (CFS), keeps track
of the historical execution time for each process. CFS aims to achieve high
performance with low overhead while at the same time enforce priority-based
scheduling and quick feedback for user-interactive processes. The ASE is imple-
mented in C and interprets the allocation contract created by the DE. We have
implemented the process allocation part of the ASE in user-space by using the
Linux sched setaffinity() kernel function to update the process core
affinity bitmask, which results in the desired process allocation. This type of
affinity implementation is commonly available and used in other projects [26].

8.3 Implementation 181

[
{

”Name” : ” Sample a l l o c a t i o n o f p roc #0 ” ,
” Descr ” : ” Th i s p roc i s a heavy cache u s e r and want

t o e x e c u t e on c o r e 0 . ” ,
” P id ” : ” t e s t r u n c o r e 0 ” ,
” A l l o c a t i o n ” : [
{ ”CPU” : ”−1” } ,
{ ” Core ” : ” 0 ” }

] ,
” C o n s t r a i n t s ’ ’ : [
{ ” P e r i o d ” : 10 }
{ ”L1−DCache ” : 1000000 } ,
{ ”L2−DCache ” : 100000 }

]
} ,
{

”Name” : ” Sample a l l o c a t a t i o n o f p roc #1 ” ,
” Descr ” : ” Th i s p roc i s a heavy CPU u s e r and want

t o e x e c u t e on c o r e 1 . ” ,
” P id ” : ” t e s t r u n c o r e 1 ” ,
”CPU” : ”−1” ,
” Core ” : ” 1 ” ,

}
]

Figure 8.9: Process allocation and scheduling output contract in JSON format.

8.3.3 Implementing a Process Allocator
Our process allocator continuously monitors the hardware resource usage and
application performance of the designated process. The process allocator uses
the measurements to find a correlation between hardware usage and applica-
tion performance. We have shown that it is possible to create a system that
uses pre-programmed hardware architecture information, such as cache struc-
ture, together with the Corr(r , x , p) correlation results to efficiently distribute
processes over the CPU core cluster [157]. The Linux process scheduler is
described in an article about the Lottery process scheduler [205].

We have used some basic Linux support for hardware resources governing
such as:

• Support for hardware performance monitoring through the user- and
kernel-space Perf-API.

• Core affinity support makes it possible to allocate individual processes
to specific cores. The affinity functionality is reached through the system
calls sched setaffinity() and sched getaffinity().

182 Chapter 8. Resource Aware Process Allocation and Scheduling

rt.c

S
C

H
E

D
_
R

R

R
T

R
eal−

T
im

e X
Y

Z

d
ead

lin
e.c

S
C

H
E

D
_
F

IF
O E
D

F
E

arliest D
ead

lin
e F

irst

S
R

A
S

h
ared

 R
eso

u
rce A

w
are

S
C

H
E

D
_
S

R
A

sra.c

N
o
 u

ser task
s are assig

n
ed

 to

d
ead

lin
e.c

S
T

O
P

R
ealtim

e task
s

L
eg

acy

N
o
n
−

tim
e critical task

s

L
o
w

est P
rio

rity

fair.c

S
C

H
E

D
_
O

T
H

E
R

S
C

H
E

D
_
B

A
T

C
H

S
C

H
E

D
_
N

O
R

M
A

L
/

C
F

S
C

o
m

p
letely

 F
air S

ch
ed

u
ler

S
C

H
E

D
_
ID

L
E

id
le.c

ID
L

E

th
is class.

H
ig

h
est P

rio
rity

reso
u
rce g

o
v
ern

in
g

T
ask

s n
eed

in
g

T
h
e p

er−
C

P
U

 id
le task

A
 sp

ecial n
o
n
−

in
terru

p
tib

le task
.

Figure
8.10:L

inux
scheduling

policy
priority.

8.3 Implementation 183

8.3.4 Implementing a Process Scheduling Policy

We have added SRA to kernel version 4.6.2, it was the latest kernel when we
started our kernel development. Changing the behavior of the Linux process
scheduler is not an easy task [173, 174], from an implementation point-of-view.
The code is complex and difficult to grasp. Austad describes the inner workings
and structure of the Linux kernel, especially the scheduling framework [18].
The kernel structure is even further described in by Mauerer [200]. The Linux
scheduler contains roughly 30000 SLOC [216] and the current, unoptimized,
version of SRA adds 4300 SLOC to this. There has been many attempts to im-
prove the scheduling performance, such as making the scheduler heterogeneous
aware [38] and others have added new scheduling policies, such as the Lottery
scheduler [205].

We have added hardware resource tracking support in kernel space by uti-
lizing the PMU inside the process scheduler. Our new scheduling policy fits
within the standard Linux scheduling framework [96]. The scheduling frame-
work supports multiple concurrent scheduling policies, spanning from high-
priority real-time behavior to low-priority batch processing. Each scheduling
policy is implemented by a scheduling class, as shown in Figure 8.10. The
most common scheduling policy in Linux is the CFS [172], which handles
time-sharing processes. We have inserted a new SRA scheduling policy after
RT to make sure that real-time tasks has higher priority. We added SRA before
CFS so that SRA can throttle resource usage with higher priority than ordinary
Linux processes. We have implemented the new scheduling policy as a sepa-
rate scheduling class, named sched sra class. The framework explicitly
defines necessary functionality for each class.

Processes can move freely between the different scheduling policies by
using the chrt shell command. Such a command triggers the kernel to call
the switched from() function in the currently assigned scheduling class,
asking it to remove the process from its internal storage. First, the scheduler
removes the process from one class and then add it to the new scheduling class
by calling the switched to() function. There are many other functions
implemented for each scheduling class but describing them is out of the scope
of this text.

The process scheduler calls the generic pick next task() function
whenever deciding that a new task should be swapped-in. The generic func-
tion iterates over a linked list containing all available scheduling classes. That
iteration causes a priority between the scheduling classes, starting with EDF

184 Chapter 8. Resource Aware Process Allocation and Scheduling

and ending with the idle loop. As displayed in Figure 8.10 we have opted to
insert our SRA scheduling class between RT ad CFS.

8.4 Experiments

We have designed two experiments to verify our allocation and scheduling
framework. We verify several functional properties in each of the experiments.
In the first, Section 8.4.1, we verify that the process allocator efficiently dis-
tributes processes over a CPU cluster. In the second experiment, Section 8.4.2,
we instruct the process scheduler to preserve QoS for a process that runs in a
complex shared resource environment. We have disabled CPU frequency scal-
ing in all experiments to let the CPU run at the maximum frequency during our
tests and Table 8.1 shows the hardware we have used. We ran each experiment
multiple times with similar results. The results presented below are from indi-
vidual test runs because they illustrate both resource and performance variations
better than an average value.

8.4.1 Testing Automatic Process Allocation
The goal of this experiment is to ensure that we can reach a good process
allocation automatically for multiple processes that utilize shared hardware
resources. We use two types of processes in this experiments. The first process
type, pmem, is memory-bound which means that the performance of the process
depends heavily on its ability to access memory. The pmem process simulates a
packet processing application by striding (reading and writing) through memory,
see Section 6.3.3. The other process type, pcpu, is CPU-bound and iterate in a
short loop performing integer operations, resulting in a lower cache usage but
heavy CPU usage. A pcpu process simulates an application which performance
depends on the availability of computational capacity in the CPU. Our target
environment typically contains several message processing applications that
co-exist with other processes consuming processing power for various reasons
like calculating checksums, busy-waiting for external input and similar tasks.

Setup Our test system uses an Intel R© CoreTM i7-4600U CPU, see Table 8.1.
We simulate the execution environment of a production system by simulta-
neously running four processes P = {p1, p2, p3, p4}. Processes {p1, p2} are
of type pmem and {p3, p4} are of type pcpu. We have configured each pmem

to stride through a 128 KB working set, which is larger than the L1D-cache

8.4 Experiments 185

Feature i7-4600U [52, 53] i7-4980HQ [54, 55, 158]
Core 2xIntel R© CoreTM i7-4600U CPU

(Haswell/SharkBay) at 2.10GHz
(4 virtual threads)

4xIntel R© CoreTM i7-4980HQ
CPU (Haswell/Crystalwell) at
2.80GHz (A total of 8 threads)

L1-cache 32 KB 8-way set assoc. instruc-
tion caches/core +
32 KB 8-way set assoc. data
cache/core

32 KB 8-way set assoc. instruc-
tion cache/core +
32 KB 8-way set assoc. data
cache/core

L2-cache 256 KB 8-way set assoc. cache/-
core

256 KB 8-way set assoc. cache/-
core

L3-cache 4 MB 16-way set assoc. shared
platform cache

6 MB 12-way set assoc. shared
platform cache

MMU 64 Byte line size,
64 Byte Prefetching,
DTLB: 4 entries 1 GB 4-way set
assoc.,
DTLB: 64 entries 4 KB 4-way
set assoc.,
ITLB: 64 entries 4 KB 8-way set
assoc.,
L2Unified-TLB: 1 MB 4-way set
assoc.,
L2Unified-TLB: 1024 entries
4 KB/2 MB 8-way assoc.

DTLB: 64 entries 4 KB 4-way
set assoc., 32 entries 2 MB/4 MB
4-way set assoc., 4 entries 1 GB
4-way set assoc.,
ITLB: 128 entries 4 KB 4-way
se assoc., 8 entries per hardware
thread 2 MB/4 MB
L2Unified-TLB: 1024 entries 8-
way 4 KB/2 MB system wide

Table 8.1: hardware specifications for our test systems.

(32 KB) but sufficiently small to fit inside the L2D-cache (256 KB), even when
adding the additional data needed by the test application. We want to avoid
undesirable spillover into the shared system-wide L3-cache since that introduce
a performance dependency towards an additional cache level. We have imple-
mented a heuristic model in the DE, see Section 8.2, that allocate processes that
depends on the same hardware resource as efficiently as possible. The target
hardware has two virtual execution threads per physical CPU core. For con-
venience, we denote each virtual thread as a core in the same way as Linux
perceives the hardware, i.e., such that the CPU contains {c0, c1, c2, c3}. The
hardware model contains a subset of the information in Figure 8.1, such as the
definition of CPU core clusters {c0, c1} and {c2, c3}. Each CPU core cluster
shares a L1I-cache, L1D-cache, L2-cache. The model also contains information

186 Chapter 8. Resource Aware Process Allocation and Scheduling

Figure 8.11: The graphs show the resource usage R = {L1D-cache, ITLB,
DTLB,L1I-cache} for process p1 and the Corr(r , x , p1). The performance,
x , is defined as the number of packets processed/sec. The dashed lines show
individual measurements while the unbroken line shows measurements that has
been passed through a Butterworth low-pass filter to remove oscillations.

8.4 Experiments 187

Table 8.2: TC1: The sorted correlation between each r ∈ R and x when running
processes p1 through p4 using standard Linux CFS process scheduler.

Resource index p1 p2 p3 p4 Resource(r)
0 0.92 0.91 0.41 0.41 L1D-cache
1 0.43 1.19 0.25 0.07 ITLB
2 0.09 0.31 0.15 0.08 DTLB
3 0.07 0.29 0.28 0.45 L1I-cache

of the unified and system-wide L3-cache. We have performed our tests on an
Ubuntu 14.04 x86 64 Linux system running a 3.13 kernel.

We have used the method described in Listing 8.1 to find the hardware
resources most correlated to the performance. We have opted to monitor 4
resource events continuously per process to minimize the system performance
impact. We define R = {L1D-cache,DTLB,L1I-cache, ITLB} and measure R
individually per processes and core. We normalize the sampled data and use
a Butterworth [243] low-pass filter to remove high-frequency ripples before
calculating the correlation between R and x .

Running TC1 We start the processes in the reference test, denoted TC1, with-
out any core-affinity. The OS-scheduler is allowed to migrate processes between
all cores in the system freely. We have assigned all pmem and pcpu processes to
the SCHED NORMAL class in the Linux process scheduler. The PM monitor
continuously measures R and x for each process in P on all 4 cores.

Evaluating TC1 We have configured the allocation framework to evaluate the
process allocation after running the system for 30 seconds. The PM measures R
and x for all processes in P and forwards the result to the DE which correlates

Table 8.3: TC2: The sorted correlation between each r ∈ R and x when running
processes p1 through p4 using the SRA process allocator.

Resource index p1 p2 p3 p4 Resource(r)
0 0.98 0.89 0.12 0.21 L1D-cache
1 0.70 0.13 0.83 0.57 ITLB
2 0.81 0.24 0.58 0.64 DTLB
3 0.59 0.13 0.21 0.40 L1I-cache

188 Chapter 8. Resource Aware Process Allocation and Scheduling

 800000

 1×106

 1.2×106

 1.4×106

 1.6×106

 1.8×106

 2×106

 2.2×106

0
0
:0

0

0
0
:0

5

0
0
:1

0

0
0
:1

5

0
0
:2

0

0
0
:2

5

0
0
:3

0

0
0
:3

5

0
0
:4

0

Min = 0 Max = 3.1e+06 Mean = 1.6e+06 Std dev = 3e+05

S
ys

te
m

-l
ev

el
 P

er
fo

rm
an

ce
[N

r.
 O

p
er

at
io

n
s]

Time[mm:ss]

mean-stddev
mean+stddev

Process p1

 800000

 1×106

 1.2×106

 1.4×106

 1.6×106

 1.8×106

 2×106

 2.2×106

 2.4×106

0
0
:0

0

0
0
:0

5

0
0
:1

0

0
0
:1

5

0
0
:2

0

0
0
:2

5

0
0
:3

0

0
0
:3

5

0
0
:4

0

Min = 0 Max = 3.7e+06 Mean = 1.6e+06 Std dev = 3.1e+05

S
ys

te
m

-l
ev

el
 P

er
fo

rm
an

ce
[N

r.
 O

p
er

at
io

n
s]

Time[mm:ss]

mean-stddev
mean+stddev

Process p2

Figure 8.12: Running p1 with the Linux CFS scheduler results in x =
1.6M (top), and for p2 x = 1.6M (bottom).

the values. Figure 8.11 shows measurements of R and x for p1. We have sorted
the graphs according to their Corr(r , x , p1) with the highest value for the top
graph. We deduce that the performance of p1 has the highest correlation to
L1D-cache because of the high Corr(L1D-cache, x , p1) correlation value. The
complete list of R and Corr(r , x , p1) is displayed in Table 8.2. From the list,
we can further deduce that p1 and p2 depends on the L1D-cache because both
have high correlation values. The DE uses our heuristic model, together with the

8.4 Experiments 189

 1.2×106

 1.4×106

 1.6×106

 1.8×106

 2×106

 2.2×106

 2.4×106

 2.6×106

 2.8×106

0
0
:0

0

0
0
:0

5

0
0
:1

0

0
0
:1

5

0
0
:2

0

0
0
:2

5

0
0
:3

0

0
0
:3

5

0
0
:4

0

Min = 1.9e+04 Max = 2.6e+06 Mean = 2.2e+06 Std dev = 4.1e+05

S
ys

te
m

-l
ev

el
 P

er
fo

rm
an

ce
[N

r.
 O

p
er

at
io

n
s]

Time[mm:ss]

mean-stddev
mean+stddev

Process p1

 1.2×106

 1.4×106

 1.6×106

 1.8×106

 2×106

 2.2×106

 2.4×106

0
0
:0

0

0
0
:0

5

0
0
:1

0

0
0
:1

5

0
0
:2

0

0
0
:2

5

0
0
:3

0

0
0
:3

5

0
0
:4

0

Min = 2e+05 Max = 2.5e+06 Mean = 1.8e+06 Std dev = 2.9e+05

S
ys

te
m

-l
ev

el
 P

er
fo

rm
an

ce
[N

r.
 O

p
er

at
io

n
s]

Time[mm:ss]

mean-stddev
mean+stddev

Process p2

Figure 8.13: Using our shared resource process allocator results in xp1 =
2.2M (top), xp2 = 1.8M (bottom).

correlation information to decide that p1 and p2 should be affined to different
L1D-cache clusters.

Running TC2 In test, TC2, we want to reduce the L1D-cache congestion
by utilizing different cache clusters for p1 and p2. We start our scheduling
framework to let the DE dynamically affine processes according to the heuristic
and input from the PM. The effect is that DE affines Ap1

= {c0} and Ap2
=

{c2}. The DE allocate p3 on Ap3
= {c1} because p3 has low correlation to

190 Chapter 8. Resource Aware Process Allocation and Scheduling

L1D-cache, it is of type pcpu. The same rule applies to p4 which is allocated
accordingly Ap4

= {c3}. The average performance for p1 in TC2 is x = 2.2
and for p2 the performance is x = 1.8.

Evaluating TC2 We start by evaluating R for p1. We deduce that p1 executed
on core 2 by examining the measurements for R. The CFS process scheduler al-
locates, TC1, our test processes, p1 and p2, in such a way that the measured mean
performance is xp1 = 1.6M and xp2 = 1.6M operations/sec. Details of the test
application performance is shown in Figure 8.12. Allocating processes p1 and
p2 using our proposed scheduling architecture, TC2, results in a drastic perfor-
mance improvement where xp1

= 2.2M(+37.5%) and xp2
= 1.8M(+12%)

operations/sec, see Figure 8.13. On average the performance increase for p1 and
p2 is 20%. The main reason for the performance improvement is the reduced
cache contention when moving p1 and p2 to cores that do not share L1-cache.
Our shared resource allocation architecture considers the adverse effects of
shared resource contention and enforces the process reallocation.

Remarks Our tests show that going from scenario 4 (TC1) to 5 (TC2), illus-
trated in Figure 8.6, improves the performance of two memory-bound appli-
cations by 20% [157] (xp1

: 1.6 → 2.2 and xp2
: 1.6 → 1.8). Comparing the

correlations for CFS (TC1), in Table 8.2, and SRA (TC2) in Table 8.3 shows
that the increased performance in TC2 changes the balance of correlance. The
increased performance utilization introduce ITLB, DTLB and L1I-cache as the
next bottlenecks for an event higher performance.

8.4.2 Testing the QoS Aware Process Scheduler
The goal of this test is to verify that the SRA process scheduler can ensure
QoS by enforcing shared resource usage in a scenario where multiple processes
compete for the same resource.

Test Setup

We have used the same hardware for all experiments in this test. Our test sys-
tem is an Intel R© CoreTM i7-4600U, see Table 8.1. We have turned off CPU
frequency scaling and reduced the performance impact of other processes by
starting as few services as possible. The test system runs Ubuntu 14.04 x86 64
Linux system with a 4.6.2 kernel. We will further describe the exact test setup
for each test case.

8.4 Experiments 191

Leeches

We extensively use leeches in the following experiment. A leech is in the context
of this thesis a process that heavily uses system resources such as caches, CPU
or FPU. Benchmarking suites exploit this mechanism to generate hardware
load on a system to determine its capacity. We have created three type of leech
applications. The first leech generate substantial CPU load by iterating through
a tight inner loop. The second leech generate heavy load on caches and the
memory subsystem by iterating through several loops reading from and writing
to memory. We can configure the stride to generate various access patterns as to
saturate either the L1D-cache, L2D-cache or other levels. The third leech iterate
through a tight loop executing FPU instructions. We exclusively use memory
bound leeches in all the following tests.

TC1 : Enforcing QoS for a Media Player

It is common to use the MPlayer [292] multimedia player when verifying re-
source allocation scheduling algorithms [38,308]. Other researchers [133] have
concluded that MPlayer uses a significant amount of data when playing high-
quality movies. MPlayer is a suitable test candidate for the SRA process sched-
uler because our target system also uses large volumes of data. MPlayer is
also useful for many other memory-bound applications that require a stable
execution environment and a minimum QoS level.

Setup We have configured MPlayer to show a high-resolution movie which
causes heavy load on the memory subsystem due to the large volumes of
data needed by the video/audio decoder. It is possible to measure the QoS
for MPlayer in several ways. One way is to measure the used decoder mem-
ory bandwidth [267, p125]. Another way is to measure the perceived QoS by
continuously measuring the number of lost Frames Per Second (FPS). We have
chosen the latter performance metric because it efficiently describes the user-
experienced application QoS. There are several ways to reserve resources, and
the most common is to allocate a certain amount of computational power in
the CPU for a specific media player [206, 207] while running some other ap-
plication that tries to “steal” as much of the available resources as possible. A
successful scheduling algorithm has a high QoS level [57] by showing a low
number of lost FPS compared to less reliable process schedulers with a high
number of lost FPS.

Execution We have followed the process described below:

192 Chapter 8. Resource Aware Process Allocation and Scheduling

1. Run MPlayer in a continuous loop showing the movie while storing the
number of dropped FPS in a file. We use a 24 FPS MPEG4 test movie
with a filesize of 81 MB, resolution 1920x1080, a bitrate of 10.4 Mbps,
and a total playing time of 1 min 2 sec.

2. Start phase 1 (CFS with only MPlayer)

(a) Continuously measure the number of dropped FPS.

3. Begin phase 2 (CFS with memory congestion)

(a) Starting four leeches with 10 MB data working set each.
(b) Continuously measure the number of dropped FPS caused by the

leech memory congestion.

4. Start phase 3 (SRA with memory congestion)

(a) Move MPlayer from CFS to SRA scheduling class.
(b) Configure SRA to enforce L1D-cache capacity for MPlayer such

that OL1D-cache,MPlayer = 106, meaning that we configure the PMU
to generate an overflow interrupt, causing a process context switch,
at 106 L1D-cache replacements. We configure SRA to renew the
quota every 10ms.

(c) Continuously measure the number of dropped FPS caused by the
leech memory congestion.

We empirically deduced the settings for the SRA scheduler. Using a too large
access limit value does not yield any higher performance for MPlayer but limits
other processes from executing. With similar reasoning, using a too small access
limit value reduces the MPlayer performance.

Evaluation The reference measurement in phase 1 shows high QoS and
MPlayer runs without any lost FPS. During phase 2, MPlayer shows clear signs
of lower QoS by losing 10 FPS when it runs under CFS together with the leeches.
The user can clearly see that the movie is choppy and shows clear signs of an
overloaded system. Phase 3 restores the high QoS by switching MPlayer to
SRA and reduce the lost FPS to 0. The movie plays smoothly, in the same way
as phase 1 when running without leeches.

Remarks It is apparent that MPlayer does not perform well when coexisting
with other application (leeches) that are also memory bound. The CFS scheduler
does not provide enough shared resource isolation to retain the high QoS when
multiple processes compete for the same shared hardware resource. Scheduling

8.4 Experiments 193

System
Test System

Production Application

Telecommunication

Link Handler

Platform

Test Application

Communication OS Extensions

Linux

Hardware Support
Cluster Awareness

Figure 8.14: The production application is replaced by a test application while
preserving the same platform implementation.

the MPlayer with SRA ensure the availability to the configured quota of the
demanded resources. In this experiment we have ensured the availability to
L1D-cache.

TC2 : Enforcing QoS for a Telecommunication Application

The goal of this test case is to verify that it is possible to enforce resource usage
resulting in a higher QoS level than CFS can provide.

Setup In this experiment we simulate a real-world execution scenario by em-
ulating a real system, as depicted in Figure 8.14. The production application is
huge, see Section 2.5, and is very complex to evaluate. We have therefore used
the test application setup described in Chapters 5 and 6. The main functionality
of the production application is to receive messages, process and then forward
(send) them to another computer in the network. Processing messages cause
heavy cache usage and memory bus congestion, as described in Chapter 6. We
have emulated this behavior by using a system test application replicating the
behavior of the production system. Apart from the application we use the same
general system setup as the production application, see Figure 8.14. The system
runs on Linux, and several extensions provide cluster awareness, communica-
tion capabilities, and other OS services to run efficiently.

Execution The test execution is described in the following procedure:

194 Chapter 8. Resource Aware Process Allocation and Scheduling

1. Start OS-extensions such as the process handling, IPC, communication
and link handler daemons.

2. Start the test application, appl , and initiate message communication and
processing.

3. Continuously measure the system level performance, x for appl , defined
as the message round-trip time.

4. Start phase 1 that measure the performance of appl when it runs by itself
using CFS.

5. Reset message counter, cnt = 0.
6. When cnt = 106, start two leeches, each with 10 MB data workset.
7. Start phase 2 that measure the shared resource effects of appl co-existing

with leeches on the CFS scheduler.
8. When cnt = 2 ∗ 106, move appl from CFS to SRA.
9. Configure SRA to enforce resource usage. Start by ensuring that there are

enough data cache capacity available for appl such that OL1D-cache,appl =

106. Renew each quota every 10ms.
10. Start phase 3 that measure the shared resource effects of appl co-existing

with leeches on the SRA scheduler.
11. When cnt > 3 ∗ 106, conclude the test.

Evaluation phase 1 : Running appl without additional load We can see
the reference performance to the left (cnt = [0, 106]) in Figure 8.15 where
appl runs on its own using the CFS scheduler. The average message RTT is
approx. xphase1 = 42.9µs for appl and acts as a reference value of the highest
achievable performance.

Evaluation phase 2 : Introducing additional load Introducing additional
cache usage, through leeches, stresses the system and reduce the performance
of appl . It is obvious that CFS cannot guarantee the QoS that appl desire, as
shown (cnt = [106, 2 ∗ 106]) in Figure 8.15. The performance for appl has
dropped drastically to xphase2 = 137.6µs, which is an message RTT increase
of xphase2

xphase1
= 137.6

42.9 = 321%.

Evaluation phase 3 : Enforcing QoS by running appl in SRA We switch
scheduling policy for appl from CFS to SRA at cnt = 2 ∗ 106 causing SRA to
enforce the L1D-cache. The resulting performance is xphase3 = 81.7µs, which

8.4 Experiments 195

 0

 50

 100

 150

 200

0

1

2

3

4

5

App. runs in CFS.

App. runs in CFS
together with other
applications.

App. runs in SRA together
with other applications.

Adding background load cause
 a message RTT increase.

Moving app. from CFS to SRA enforce
the resources availability.

Avg. CFS (42.9)

Avg. CFS+load (137.6)

Avg. SRA (81.7)

1

2

M
e
s
s
a
g
e

R
o
u
n
d

T
ri
p

T
im
e

R
T
T

[u
s
]

Number Messages [# x1000000]

Message round trip time CFS Std Dev. CFS Std Dev.

Figure 8.15: Enforcing hardware resources.

is substantially better than phase 2 and the message RTT is, compared to phase
2, reduced by xphase2−xphase3

xphase2
= 137.6−81.7

137.6 = 40.6%.

Remarks We can draw some conclusions from this experiment. The first con-
clusion is that SRA can enforce QoS because xphase3 is significantly smaller
than xphase2, denoted by the colored field 1 in Figure 8.15. The second conclu-
sion is that xphase1 is significantly better than xphase3, denoted by the colored
field 2 in Figure 8.15. There are several reasons for phase 1 being more effi-
cient than phase 3. We will further investigate the scheduling performance of
CFS vs. SRA in TC3 and the performance variations over time in TC4.

TC3 : The Cost of Enforcing QoS

The goal of this test case is to mesure the scheduling cost of using SRA com-
pared to CFS.

Setup We use the same test setup as in TC2.

196 Chapter 8. Resource Aware Process Allocation and Scheduling

 40

 42

 44

 46

 48

 50

 52

 54

 56

0

1

2

3

4

5

M
e
s
s
a
g
e

R
o
u
n
d

T
ri
p

T
im
e

R
T
T

[u
s
]

Number Messages [# x1000000]

CFS RTT
SRA RTT

SRA performance cost

Avg. CFS (42.8)

Avg. SRA (49.6)

Figure 8.16: SRA vs. CFS scheduling performance.

Execution The setup procedure is as follows:

1. Start OS-extension, communication and link handler daemons.
2. Start the test application, appl , and initiate message communication and

processing.
3. Continuously measure the system level performance, x , for appl defined

as the message round-trip time.
4. Reset message counter, cnt = 0.

In phase 1 we run the setup procedure and then the following:

1. Start phase 1 that measure the performance of appl when it runs by itself
on the CFS scheduler.

2. Stop the test when cnt = 5 ∗ 106.

In phase 2 we run the setup procedure and then the following:

1. Start phase 2 that measure the shared resource effects of appl when it
runs by itself on the SRA scheduler.

8.4 Experiments 197

2. Configure SRA to enforce resource usage. Start by ensuring that there are
enough data cache capacity available for appl such that OL1D-cache,appl =

106. Renew each quota every 10ms.
3. Stop the test when cnt = 5 ∗ 106.

Evaluation Scheduling the test application with SRA results in a message
RTT xSRA = 49.6µswhile CFS has xCFS = 42.8µs, see Figure 8.16, meaning
that scheduling in CFS is xSRA−xCFS

xCFS
= 49.6−42.8

42.8 = 15.9% more efficient than
SRA.

Remarks There are several possible reasons for the performance degradation
in SRA compared to CFS. For example:

1. We have only restricted the resource usage for L1D-cache, thus other re-
sources will still cause congestion-effects and ultimately the performance
of appl .

2. Another issue that affects the SRA scheduling performance is that the
SRA implementation is far from optimized. We removed several debug
statements before performing these test cases, which reduced the SRA
scheduling cost by approx. 30%. We estimate that it is possible to drasti-
cally improve the SRA performance by going through a normal produc-
tification procedure. We typically profile the code to find optimization
opportunities. In general, we cannot see any reason why the runtime
performance of SRA should be much different than CFS.

TC4 : Performance Variation in SRA is Smaller Than in CFS

The goal of this test case is to investigate how the application performance
varies over time for CFS compared to SRA. A high performance variance can
lead to coarse grained response times. It is therefore desirable to have a stable
execution time.

Setup We use the same test setup as in TC2.

Execution We have divided our tests into two phases with a common setup
procedure:

1. Start OS-extension, communication and link handler daemons.
2. Start two leeches, each with 10 MB data workset.

198 Chapter 8. Resource Aware Process Allocation and Scheduling

 76

 78

 80

 82

 84

 86

 88

 90

0

1

2

3

4

5

Number Messages [# x1000000]

SRA mean=79.9 spread=9.3(11.6%) min=78.9 max=88.2 stddev=1.0

 130

 135

 140

 145

 150

 155

M
e
s
s
a
g
e

R
o
u
n
d

T
ri
p

T
im
e

R
T
T

[u
s
]

CFS mean=142.7 spread=37.7(53.8%) min=135.1 max=188.9 stddev=3.7

 130

 135

 140

 145

 150

 155

M
e
s
s
a
g
e

R
o
u
n
d

T
ri
p

T
im
e

R
T
T

[u
s
]

CFS RTT
SRA RTT

CFS RTT Mean Value
SRA RTT Mean Value

CFS Std Dev.
SRA Std Dev.

CFS mean=142.7 spread=37.7(53.8%) min=135.1 max=188.9 stddev=3.7

Figure 8.17: The application performance varies substantially running CFS
compared to SRA.

3. Start the test application, appl , and initiate message communication and
processing.

4. Continuously measure the system level performance, x for appl , defined
as the message round-trip time.

5. Reset message counter, cnt = 0.

Phase 1: Run the setup procedure and then continue with the following steps:

1. Continuously measure the performance xCFS when appl runs with load
using the CFS scheduler.

2. When cnt = 5 ∗ 106, stop the test.

Phase 2: Run the setup procedure and then continue with the following steps:

1. Configure SRA to enforce resource usage. Start by ensuring that there are
enough data cache capacity available for appl such that OL1D-cache,appl =

106. Renew each quota every 10ms.
2. Continuously measure the performance xSRA when appl runs with load

using the SRA scheduler.

8.5 Related Work 199

3. When cnt = 5 ∗ 106, stop the test.

Evaluation From the measurements in phases 1 and 2 it is apparent that the
variations in SRA is substantially smaller than when using CFS, see Figure 8.17.
The performance of appl when using SRA is 78.9 ≤ xSRA ≤ 88.2µs, which
has a span of maxSRA −minSRA = 9.3µs. CFS varies much more, 135.1 ≤
xCFS ≤ 188.9µs, and has a span of maxCFS −minCFS = 37.7µs.

Remarks We conclude that SRA manages to restrict the resource conges-
tion caused by other processes. The reduction of congestion leads to a more
stable execution environment and less performance fluctuation. Such consider-
able performance variation will have an impact on the application performance
granularity, even when achieving the same mean performance. A significant
performance variation may lead to missed deadlines if the response time cannot
be met due to resource congestions. In this sense, SRA is a much better choice
than CFS.

8.5 Related Work
Running a process, p, on a single-core system is an ideal situation from a per-
formance evaluation perspective and is thoroughly evaluated for decades [191].

There are numerous different scheduling algorihtms [267] targetting various
scheduling domains and system requirements [250]. Most process schedulers
only act on execution time and do not consider the shared hardware resource
usage. This type of scheduler assumes that execution time, texec, correlates
to application performance, such that Corr(texec, x , p). One benefit of this
assumption is that it simplifies process scheduling. The execution time is easily
comparable between all processes in a system. The weakness of the model
is that texec does not always model the application performance. We show
examples of several widely used scheduling algorithm in the following sections.

Deadline Scheduler There are various types of deadline schedulers. The Ear-
liest Deadline First scheduler dynamically tracks processes so that the one with
the shortest time to its deadline gets the highest priority. There are various types
of real-time schedulers that tries to solve the problem of shared resource conges-
tion (but not explicitly), such as EDF [57]. Another related area is how to control
QoS. Many attempts have been made to control QoS, for example, QoS control
within an OS [239] or QoS control within a middleware [246]. There is an EDF

200 Chapter 8. Resource Aware Process Allocation and Scheduling

implementation [97,181] in Linux since kernel revision 3.14. RT-Muse [196] is
one of the tools available for measuring the real-time characteristics of a system
scheduler.

Fixed Priority Scheduler Many researchers attribute fixed-priority schedul-
ing to the seminal paper published 1973 by Liu and Layland [191] although
some researchers [17] claims that there are several earlier attempts to implement
scheduling policys [51]. A preemptive fixed-priority process scheduling [191]
ensures that at any given time out of all runnable processes in the system, the
process with the highest priority executes.

Shared Resource Allocation and Scheduling The general idea behind re-
source aware process scheduling is to use any measurable metric when making
scheduling decisions. CPU-time is traditionally used by process schedulers, but
our opinion is that we should expand the reasoning to include any hardware
metric.

A central issue for resource-aware schedulers is to efficiently measure the
resource usage for each monitored process [257]. The scheduler can then use
the resource usage when making allocation or scheduling decisions. The de-
mand for heterogeneous CPUs has increased due to requirements of diversified
application loads [210]. This demand causes, according to Bower et al. that
schedulers needs to be aware of dynamically changing heterogenicity [32]. One
process scheduler instance may span a big CPU-core cluster where the core ca-
pacity varies over time due to the utilization situation. A process scheduler can
decide if a process should execute on a high-capacity or low-capacity core of
a heterogeneous CPU by monitoring the number of execution stalls generated
inside or outside the CPU [175]. It is possible to reach a similar conclusion by
measuring the level of cache misses [38] and use the outcome as input to the
scheduler. Some researchers measure the number of processor cycles used by a
process [206, 207] and use it to schedule processes efficiently. We have not ad-
dressed heterogeneous hardware explicitly, but our opinion is that we can handle
cores with varying capacity with our allocation and scheduling framework.

Other researchers have investigated how memory contention affects the per-
formance of applications sharing an execution environment. One promising
technique is to use the PMU to measure the memory bandwidth utilized by a
process [136]. Using the memory bandwidth simultaneously with other metrics
is possible by using a multi-resource server [137], which is demonstrated [135]
by using the ExSched [16] framework in Linux. The concept of multi-resource
servers is also usable when consolidating several software components on com-

8.5 Related Work 201

mon hardware [19]. The main difference with these implementations is that they
are implemented as user-space implementations and suffer from performance
problems. Our scheduler executes inside the Linux kernel as has, therefore,
much higher performance.

An efficient allocation of processes reduces the intercore [116] congestion
while process scheduling reduce the intracore and interprocess congestion lev-
els. Apart from process scheduling there are other techniques to reduce the
effects of shared cache congestion such as page coloring [123] and cache par-
titioning [211]. We have not investigated these techniques because our target
hardware do not always support for them.

Blagodurov et al. [26] states that cache and memory congestion is the main
performance bottleneck for many system. They have implemented a scheduling
algorithm for Linux that evenly distribute memory accesses over the available
cache. Their distributed intensity online algorithm manage the scheduling of
each process by assigning a value that quantifies the process’ memory miss
rate. There are other techniques to provide cache aware process scheduling.
Knauerhase et al. [169] have devised a method to observe the cache usage
of processes and schedule cache-intensive processes on cores with separate
cache clusers. Our approach differs from Knauerhause because it automatically
detects which of the shared hardware resources that have the greatest effects
on the system performance. Our mechanism uses this correlation to optimize
process allocation and scheduling parameters.

High Performance Computing (HPC) Feitelson [98] stated already 1995
that “The main issue is how to share the resources of the parallel machine
among a number of competing jobs, giving each the required level of service”.
This sentence condense the main idea for high performance computing (HPC)
systems. The drastic development of HPC-tools and techniques is somewhat
related to our research. One such example is the automatic memory bandwidth
monitor [35]. Apart from monitoring the memory bandwidth, it can also allo-
cates applications over a set of CPU cores to maximize the performance. The
same research team shown that application co-location can drastically reduce
power consumption while retaining performance [34]. Our techniques are more
generic and can monitor any hardware resource and is, therefore, not limited to
only the memory bandwidth.

Xiong defines and implements a method to schedule processes in a multi
processor system according to their SLA [305] by aiming to minimize the cost
of computation. Job scheduling is a large research topic and it incorporates
three main areas [305]. The first area is how jobs are assigned to processors.

202 Chapter 8. Resource Aware Process Allocation and Scheduling

The second area is in what order a set of jobs should execute. The third area is
how to assign enough resources so that the jobs can run efficiently and ensure
the QoS requirements. The first area defines the problem we have addressed by
our process allocator method. The second and third areas are addressed by our
resource aware process scheduler.

Mars has identified the problem of “Cross-core application interference
due to contention for shared on-chip and off-chip resources pose a significant
challenge to providing application level quality of service (QoS) guarantees
on commodity multicore micro-architectures.” [197]. They use a simplified
heuristics to determine if two applications are sensitive to the last-level cache
contrasting to our approach of supporting any measurable hardware metric.

Process Classification Schemes There are many ways to classify processes
as a function of their resource usage. We have opted to describe the hardware
resource usage by values. We have, for example, described the cache usage
by the number of accesses/sec or the floating point (FP) usage by the num-
ber of FP-instructions executed/sec. There are other process descriptions and
classification systems that defines a certain behaviour. Xie and Loh [304] have
introduced a classification scheme that defines four classes depending on the
process’ execution pattern and L2-cache usage: 1) Turtles - rarely uses the
L2-cache; 2) Sheep - low L2-cache usage; 3) Rabbits - high L2-cache usage
and sensitive to memory contention; 4) devil - high L2-cache usage and still
causes many L2-cache-misses by itself. In a simular way, Zhuravlev et al. [313]
has defined the pain classification scheme, which determines to what degree a
process is cache-sensitive and how it affects the cache usage of other processes.
Ren [241] describes the importance of system-wide performance sampling and
understanding of a system. They also describe the importance of monitoring live
systems running at customer sites, such that obtaining real-world measurements
that may be difficult to obtain in a lab environment.

System- and Hardware Monitoring Software engineers have used PMU
counters since they were first included in CPUs. One of the first implementa-
tions was the Intel Pentium CPU [199].

Many attempts have been made to use PMUs to understand performance
bottlenecks, for example, hierarchical cycle accounting [221], source-code loop-
level methodology [66]. Also, PMUs were used in [133, 308] to bound the in-
terference between memory intensive processes that execute on different cores
by assigning a budget on the number of memory requests for each core [308] or
application [133] every predefined period. When a core/application consumes

8.5 Related Work 203

its budget, monitored by a PMU, the scheduler suspends it until the next period
replenishes its budget. The calculation of the budget for cores/application is
based on the worst-case resource use, which might not be easy to obtain and of-
ten cause overprovision. Also, depending on the source of resources contention,
suspending processes might not be the most efficient solution, and it might be
more efficient to move them to other cores to decrease the interference, which
our solution can explore better.

Many researcher have proposed the usage of feedback control approaches
to control the scheduling of dynamic workload applications [3, 56, 58, 167,
195, 296]. In the literatures, different types of controllers, sensing and actuat-
ing parameters were proposed. Regarding controllers, PI/PID controllers were
proposed in [3, 167, 195], Linear quadratic regulator LQR [167, 295], Fuzzy
controller [167], stochastic controller [56], cascade controller [195], model
predictive controllers [296]. Regarding sensing parameters, most of the men-
tioned works use either deadline miss ratio, utilization, overrun or a combination.
While for the actuation (i.e., controlling the scheduling) CPU budget, process
period, allocation of processes or combinations are used. Our solution is dif-
ferent from the aforementioned works in two aspects; first, we use both R and
x to find as an input to the control loop to find the source of the problem and
provide a proper action, while all mentioned works do not consider R. In addi-
tion they assume that all process have the same QoS/x requirement (i.e., each
process should have a deadline miss ratio less than certain value) while in our
solution different QoS/x can be used for different process which is a more prac-
tical assumption specially for the application domain that we are targeting. The
second aspect is that we do not use traditional feedback control approaches to
design the controller, which require control models that might be very complex
to obtain/identify since such systems are non-linear and time varying systems.
Instead, we use machine learning based controller to optimize the usage of
resources and gurantee the required QoS.

Emulators There are several emulators where researchers can evaluate their
work. One of the most well-known is Linsched [40] where Linux schedul-
ing experts can implement and test their new schedulers. Another emulator is
ExSched [16], which acts as a user-mode framework where researchers can
implement and test their schedulers. These emulators are not suitable to use
in a production environment because they run in user-space, which results in
slow performance. On the other hand, one significant benefit is that user-mode
allows easy debugging by utilizing common debugging tools, such as GDB.
We have implemented part of our process scheduler inside a virtual machine to

ease debugging and, therefore, reduce the development time. We could deploy
the functionality on a native Linux environment after verifying its functionality
inside the virtual machine.

8.6 Summary

We have answered Q4 (Section 3.2.4) by the work presented in this chapter and
through our Papers A and B that extends the Patents P and O.

Our target system requires high throughput at the same time as maintaining
a certain level of QoS. The currently existing Linux process schedulers sup-
port various real-time schedulers that do not meet the requirements because
they do not account for shared hardware resource congestions. The first part
of our scheduling framework automatically correlates resource usage with per-
formance, which indicates what hardware resource has the highest impact on
the performance. We use the correlation information to allocate processes effi-
ciently over a CPU core cluster so that processes do not affect the performance
of each other through involuntary shared resource congestion. The second part
of our scheduling framework uses PMU events to restrict the hardware resource
usage so that a process does not affect the performance of other processes exe-
cuting on the same core. We have verified our ideas on a test system replicating
the environment of a telecommunication system [154]. Our shared resource
aware allocation method shows an average 20% (37.5% for one process and
12% for another process) performance increase SRA vs. Linux CFS. We have
also verified our QoS aware process scheduler by running several test cases. We
reduce the effect of shared resource memory congestion by triggering context
switched at PMU counter overflow.

The current implementation works but still requires some improvements to
be production grade. We would like to develop it further to include it in the
product formally. We would also like to automate the scheduling framework
further to decrease the time for re-allocation and re-scheduling decisions. We
have limited our experiments by implementation time and system access restric-
tions. We would like to experiment further by comparing our SRA scheduler
with other process scheduling algorithms implemented in the Linux kernel, for
example, EDF, RT and similar.

Adding machine learning is a natural extension to the current heuristic and
rule-based system in the decision engine. Our current system depends on hu-
man input when setting the rules but our working assumption has been that
a machine learning system would be able to find many more correlations and

8.6 Summary 205

problematic scenarios that we cannot find manually. We knew this at the begin-
ning of our project phase but due to time constraints we decided to prepare but
not implement advanced machine learning functionality.

It is untrue that happiness means a trouble free life. (A) happy life
means overcoming struggles, fighting with struggles, resolving diffi-
culties. The challange is that you just confront your challanges, you
try your best, strain yourself and then you get the moment of happi-
ness when you see that you have have controlled the challenges or
the fate. Now, that is exactly this joy of overcoming difficulties of
fighting with struggles, facing them point-blank and overcoming.

— Zygmunt Bauman in the film
“The Swedish Theory of Love” [1:06:10], 20161

1This quote summarize all struggles in life, including my own experiences writing a thesis.

9
Conclusion and Future

Work

ON E of the essential things in a thesis is the conclusions. What have we
learned from all the research that is the foundation for the thesis and
what are the ultimate conclusions? Each chapter has its own summary

section that describes our conclusions. In this chapter, we lift our gaze and give
a broader and more general conclusion to our complete work. We briefly answer
the research questions listed in Section 3.2. We give our answers in the frame
of the telecommunication system we have defined in Section 2.5, and delimited
in Section 3.3.

We have divided this chapter into two parts. The first part lists our con-
clusions, Section 9.1, and shortly comment on each research question and our
achievements. The second part lists some possible future work, Section 9.2. We
describe, what we think is, the most interesting future research areas related to
our research areas.

209

210 Chapter 9. Conclusion and Future Work

9.1 Conclusion

We have formulated four research questions. We have implemented a perfor-
mance and hardware usage monitoring application that can observe large indus-
trial systems in a production environment. Our implementation answers the first
research question (Q1), Section 3.2.1. The monitoring application periodically
samples hardware characteristics information with low impact on the system
behavior. We describe our monitoring conclusions in more detail in Section 5.6.

As a response to the second research question (Q2), Section 3.2.2, we have
devised a method to automate the synthesis process when modeling the hard-
ware usage of a production system. We have tested our method by using hard-
ware characteristics information sampled by our monitoring application to cre-
ate an execution model on a much smaller and cheaper test system. The charac-
teristics model makes it possible to run performance tests 1) without using the
business logic of the production system and 2) much earlier in the development
process. Both approaches aim to reduce the overall development time and cost.
We present our load synthesis conclusions in Section 6.6.

To answer the third research question (Q3), Section 3.2.3, we needed to
understand how the performance of our target communication system could
be improved. As a first step, we implemented a message compression mecha-
nism that automatically selects the most appropriate compression algorithm de-
pending on the network congestion level, message content, and CPU load. Our
mechanism uses the compression algorithm that provides the shortest round-
trip message time for bulk message transmission. Our mechanism continuously
assess the performance of all supported compression algorithms and adapt to a
changing environment or message stream content. We plan to continue using
the monitor-model-improve methodology to find additional performance im-
provements. There is a more detailed description of our message compression
conclusions in Section 7.6.

We answer the fourth research question (Q4), Section 3.2.4, by designing a
framework that efficiently allocates processes in a CPU-core cluster to improve
performance while simultaneously scheduling processes to retain QoS. We
have implemented our framework and tested it on a test system that emulates a
real telecommunication system. We describe our conclusions in more detail in
Section 8.6.

We formulated all research questions from requirements observed when be-
ing a part of the software design organization of Ericsson’s telecommunication
system. We investigated and designed our solutions to the research questions
with the mindset and environment provided by the industrial settings. We there-

9.2 Future Work 211

fore focused more on devising and implementing solutions that work in an
industrial system rather than more generalized solutions with severe practical
limitations in an industrial environment. We implemented and tested all of our
research results within the environment of Ericsson’s telecommunication sys-
tem. Our opinion is that our generic methods should be usable for many other
systems although we have mainly tested them on one particular system. The
reason for this limitation comes naturally since we cannot get access to other
commercial telecommunication system.

The corporate test department currently uses the monitoring and modeling
tool for early-stage performance testing. We have patented the allocation [155]
and scheduling mechanisms [156] for possible inclusion in future products.

Finally, It has been great fun and rewarding to do all this work. It has been
a personality-changing event for me, and I wish that many more people would
get the opportunity to pursue their wishes and dreams, whatever they are.

9.2 Future Work
Every researcher knows that it is difficult to limit the scope of one’s work when
conducting research. Plunging deeper into a problem and investigating it more
thoroughly is always rewarding and gratifying but there must always be an
end to the study. In this section, we list some areas where we would like to
investigate further, given the time and resources. We divide this section into
four parts, each describing one research area: monitoring, modeling, message
compression and process allocation/scheduling.

Monitoring
Our opinion is that the techniques for hardware monitoring have matured sig-
nificantly during the last decade. There are, however, still some distance to go.
There are many academic techniques, but we think that they still need to be
simplified and made much more available for the industrial community. Many
companies do not have engineers explicitly dedicated to performance evalua-
tion, so the state-of-the-art monitoring techniques should be implemented in
user-friendly tools. Commercialization of performance tools is and will proba-
bly always be a market opportunity. We would like to investigate more detailed
and efficient methods that can be used to monitor large-scale systems. In partic-
ular, how to efficiently and accurately monitor customer-deployed systems. It is
probably not as easy as increasing the sampling frequency, as that will affect the
performance of the system. Much remains to be done in the monitoring arena.

212 Chapter 9. Conclusion and Future Work

Load replication

We think that adding load replication support for dynamic behavior would make
the model more accurate. We use the mean value of a metric when creating
the hardware usage model in our current implementation. The mean-value-
approach is sufficient for our current purposes but modeling the dynamic re-
source usage should make it possible to investigate additional performance-
related areas. For example the undesirable memory bus side-effects caused by
data bursts. It would also be useful to add additional hardware metrics to the
model, such as branch misses, last level caches, and TLB misses just to name
a few. Our opinion is that using modeling and load replication is beneficial for
most design organizations. In an ideal case, we may be able to move parts of
the performance testing to the early development phase. Imagine having a per-
formance gauge in the source-code editor, telling how well the code utilizes the
hardware. That could be an interesting research project as well as a commercial
opportunity.

We have assumed, according to existing research, that finding performance
related bugs in the initial phases of the development process will reduce the
total development time. We would like to formally validate our assumptions by
performing a study of an industrial system. We would also like to implement
and test our methods on a broader range of systems to verify that they support
varying types of systems.

Automatic message compression

It is easy to improve our automatic message compression method by adding
additional compression algorithms. It would be particularly interesting to evalu-
ate the hardware supported compression algorithms included in recent CPUs. It
would also be rewarding to use machine learning techniques to predict recurring
changes to the message stream and predict the most appropriate compression
algorithm to use.

During our writing this thesis, we have deduced that there is an infinite
demand for performance investigations and capacity improvements within the
industry. We think that the demand for more advanced monitoring techniques
will continue to be a vital issue in a competitive market environment. The
continuous need for increased communication bandwidth is promising for the
development of more advanced and efficient adaptive message compression
techniques. We estimate that modern CPUs will increasingly support hardware
acceleration for compression algorithms.

9.2 Future Work 213

Process allocation and scheduling
The last research topic presented in this thesis is resource-aware process al-
location and scheduling. We still have many issues to investigate in this area.
This is particularly interesting as the hardware becomes more advanced and
complicated with every new architecture and CPU. Our opinion is that there is
a need to evaluate and improve scheduling algorithms continually. OS:es will
always need the standard algorithms, but there is a place for tailored scheduling
methods that targets a particular use-case. It would be interesting to investigate
how to efficiently allocate processes on a set of heterogeneous CPU cores. We
would also like to investigate how to guarantee QoS on heterogeneous hardware.
How can we handle the increased CPU complexity and increasing number of
cores, shared resources and bottlenecks? More complex cache with many levels,
clusters, and various sharing between cores further complicate scheduling and is
something that we need to handle in future resource aware process schedulers.

We would also like to formalize our reasoning related to process allocation
and scheduling. It would be useful to find a theoretical connection between
resource usage and performance for a given hardware architecture. Predicting
the performance and QoS before deploying the system would be a great tool
for system designers.

Jag är inte en petimeter, jag är en besserwisser!1

My own translation:

I am no fusspot, I am a besserwisser!

— Amelie Jägemar, 2018

1Our daughter, nine years old, exclaimed that she wasn’t a fusspot at all when she was told not
to always correct parents and her younger sisters on non-essential matters.

1 0
Definitions

We use the definitions listed in Table 10.1 throughout the thesis. We have
grouped the definitions in functionality order. The section reference describes
where each defintion is defined in the thesis.

Definition Page Description

CPU and cores (C) 67 The CPU has a set of cores denoted C.

System (sys) 69 Let sys denote the system under investigation.

Application (appl) 70 We denote the application under investigation
as appl ∈ APPL where APPL is the set of
applications in sys .

Processes (P) 70 Let p ∈ P be one process of the complete set
of processes P executing on system sys . We use
a subscript, pi ∈ P , if we need to differentiate
between multiple processes.

Core affinity (Ap) 168 The affinity Ap ⊆ C for process p ∈ P is the set
of cores where p is bound/allowed to execute.

CPU-load (L) 138 The CPU-load, L, is defined as the number of
processes, ready to execute, in the run-queue of
the operating system.

Continued on next page→

217

218 Chapter 10. Definitions

← Continued from previous page

Definition Page Description

Hardware resource
(r , ri, R)

71 The hardware resource, r , is one of the total
hardware resources, R, such that r ∈ R. We
use a subscript i, such that ri ∈ R, if we need to
differentiate between multiple resources.

Hardware resource
measurement (mr ,p)

71 The bounded series of resource usage samples
of hardware resource r for process p is denoted
by mr ,p .

Performance (x , X) 73 The performance is denoted by x ∈ X where X
denotes the set of all performance metrics.

Performance measure-
ment (mx ,p)

73 The bounded series of performance metric sam-
ples of x for process p is denoted mx ,p .

Access limit value
(Or ,p)

171 The access limit value, Or ,p , is the number of
accesses to resource r ∈ R by a process p ∈ P
before the hardware should generate a resource
usage overflow interrupt. We denote the set of all
overflow values for p as OR,p = {Or ,p : ∀r ∈
R, p ∈ P}

Pearson correlation
(ρ(a, b))

165 The Pearson correlation coefficient, ρ(a, b) quan-
tifies the similarity between the two data sets a
and b.

Resource and perfor-
mance correlation
(Corr(r , x , p))

167 Let Corr(r , x , p) denote the correlation
ρ(mr ,p ,mx ,p) between the bounded series mr ,p

and mx ,p for some r ∈ R, p ∈ P , x ∈ X and
where |mr ,p | = |mx ,p |.

Maximum resource and
performance correla-
tion (Ĉorr(R, x , p))

167 Let Ĉorr(R, x , p) = maxr∈RCorr(r , x , p) de-
note the maximum correlation value for all re-
sources r ∈ R for some given process, p ∈ P ,
and performance metric x ∈ X .

Continued on next page→

219

← Continued from previous page

Definition Page Description

The resource with max
correlation value (r̂)

167 Let r̂ = {ri | ∀ri ∈ R, p ∈ P , x ∈ X ,
Corr(r , x , p) > θ} denote the set of resources
ri ∈ R with descendingly sorted correlation val-
ues larger than the threshold, θ.

Transmission time (tt) 127 The transmission time, tt, is defined as the sum
of message compression time, tc, send time, ts,
one way of the message round-trip time, trtt, and
decompression time, td, such that tt = tc + ts +
trtt
2

+ td.

Compression time (tc)
and rate (tcr)

127 Let compression time, tc =
s

tcr
be the time to

compress a particular message of size s. The
compression rate, tcr, is the number of bytes
compressed per second.

Decompression time
(td) and rate (tdr)

127 Let decompression time, td =
s

tdr
be the time to

decompress a particular message of size s. The
decompression rate, tdr, is the number of decom-
pressed bytes per second, [B/sec].

Compression ratio (H) 127 We define compression ratio as rc =
su
sc

, where

su is the size of the uncompressed message and
sc is the compressed message size.

Data sets
(D,D0,D1,Dp)

139 A data set, D, is a bounded series of values. A
data set containing only zeros is denoted D0. A
data set with only ones is denoted D1. A data set
that contains sampled production system mes-
sage data is denoted Dp.

Table 10.1: Definitions.

People who are really serious about software should make their
own hardware.

— Alan Kay1

1talk at Creative Think seminar, 20 July 1982 http://folklore.org

http://folklore.org

1 1
Key Concepts

Table 11.1 lists the most common abbreviations used throughout the following
text.

Key Concept Description
2G (GSM) The second generation telecom network, 1991, introduced

digital communication.
3G The third telecom network generation, 1998, enabled large

scale digital communication with increased bandwidth
and service availability.

3GPP The 3GPP is a standardization organization created by the
telecommunication industry. 3GPP aims to create a global
standard that is used for development and maintenance of
telecommunication systems.

4G (LTE) Long term evolution is the fourth generation telecommu-
nication network, 2008, with increased capacity.

5G High bandwidth to mobile users with explicit focus on
low response times.

Action
Research
(AR)

A research method where the researcher is an active part
of an incremental procedure (plan, act/observe and re-
flect), which is repeatedly used to improve the object
being investigated. AR was first expressed in 1946 by
Lewin [185]

Continued on next page→

223

224 Chapter 11. Key Concepts

← Continued from previous page
Key Concept Description
(Process) allo-
cation

Process allocation [309] acts on the problem of where
processes should run, i.e. on what CPU or core.

(Process)
scheduling

Process scheduling decides when and how processes
should run.

ASIC Application specific integrated circuits are circuits that
can be pre-programmed with specific functionality

Capacity The Oxford english dictionary states that capacity means:
“Ability to receive or contain; holding power”. We use
capacity as a description of the maximal capability of a
resource.

COTS Common off the shelf are devices that does not need to be
tailored for a specific need, they can be bought from other
device manufacturer that produce common hardware for
many purposes.

CPI Cycles per instruction is a metric to determine the perfor-
mance of a computer system. A CPI stack estimate how
much of the total execution time is attributed to various
HW resources such as cache misses, branch misses, TLB
misses etc [94].

Five Nines 99.999% uptime, which results maximum of approx. 5
min downtime per year.

FPGA Field programmable arrays are generic circuits that can
be programmed in runtime with new functionality.

FPU The floating point unit typically architecturally located
inside modern CPUs.

HW HW is an abbreviation for hardware, which means all
physical parts in the network, including computers, cables,
circuit-boards etc.

ICT Information communication technology that makes it pos-
sible for people to communicate and easily access infor-
mation.

Continued on next page→

225

← Continued from previous page
Key Concept Description
L1-cache,
L2I-cache,
L2D-cache

The cache acts as a small intermediate memory that is
substantially faster than the RAM. The subscript index de-
termine the cache level, starting with 1 for the first cache-
level. Using the capital letter “I” indicate the instruction
cache and “D” means the data cache.

L1TLB,
L1ITLB,
L1DTLB

The translation lookaside buffers temporarily store mem-
ory mappings between the virtual and the physical address
space. The index,“I” and “D” specifiers acts the same was
as for caches.

Low-intrusive
Monitoring

The monitoring mechanism does not affect the behavior
or performance of the monitored system. There is no no-
ticeable effect on the system.

Node A computer designed for message processing, which is
part of a telecommunication system.

OS Operating system.
Performance As specified by the Oxford English dictionary; “The qual-

ity of execution of such an action, operation, or process;
the competence or effectiveness of a person or thing in per-
forming an action; spec. the capabilities, productivity, or
success of a machine, product, or person when measured
against a standard.” [225]. More specifically; a quantifi-
able metric on how good a particular action is performed.
We denote system performance with x .

PID
Controller

Proportional integrative controller [22].

PMU The performance monitor unit [310] implements funtion-
ality to measure many metrics (events) that describe the
currently executing application. For example: cache us-
age, floating point usage, execution pipeline statistics. The
PMU is completely implemented in HW making it an ef-
ficient tool for execution supervision.

Continued on next page→

226 Chapter 11. Key Concepts

← Continued from previous page
Key Concept Description
PMU Over-
flow

It is possible to configure the PMU to generate an interrupt
on an event counter overflow. We use this mechanism to
enforce shared resource quota through process context
switch on overflow.

Production
Node

One node that is running at a customer site handling real
end-user traffic.

(Process)
Scheduling

Process scheduling [61, p35:5] decides when and how
processes should run.

Superscalar
Processors

Low-level instructions can be executed in parallel to
achieve higher performance, typically more than one in-
struction per clock cycle. The first commercial appearance
was in 1988 with Intel R© i960CA [202].

SW As specified by the Oxford english dictionary; ”The pro-
grams and procedures required to enable a computer to
perform a specific task, as opposed to the physical com-
ponents of the system” [225]

Service
Level Agree-
ment (SLA)

The service level agreement stipulates guidelines and re-
quirements for a particular application or process [305].

Test Node Test nodes are typically smaller than production nodes and
usually only accessible by corporate personnel. Economic
reasons and keeping debugging simple drive the demand
to keep test nodes being small.

Table 11.1: Key concepts.

Bibliography

[1] Josh Aas. Understanding the Linux 2.6.8.1 CPU Scheduler. Silicon Graphics
International SGI, 22(February):1–26, 2005.

[2] Ericsson Ab. 5G systems. Technical Report January, Ericsson, 2017.
[3] Luca Abeni and Giorgio Buttazzo. Adaptive bandwidth reservation for multime-

dia computing. In IEEE real time computing systems and applications, December,
pages 1–8. 1999.

[4] Göran Ahlforn and Erik Örnulf. Ericsson’s family of carrier-class technologies.
Technical Report 4, Ericsson, 2001.

[5] Anastassia Ailamaki, David J Dewitt, Mark D Hill, and David a Wood. DBMSs
On A Modern Processor : Where Does Time Go ? Proceedings of the 25th
International Conference on Very Large Data Bases (VLDB’99), 1394:266–277,
1999.

[6] Alaa R. Alameldeen, Milo Martin, Carl J. Mauer, Kevin E. Moore, and Min Xu.
Simulating a $2M Commercial Server on a $2K PC. IEEE Computer, 36(2):50–
57, 2003.

[7] Alaa R. Alameldeen and David A. Wood. IPC considered harmful for multipro-
cessor workloads. IEEE Micro, pages 8–17, 2006.

[8] Osman Allam, Stijn Eyerman, and Lieven Eeckhout. An efficient CPI stack
counter architecture for superscalar processors. Proceedings of the Great Lakes
Symposium on VLSI, pages 55–58, 2012.

[9] Gabor Andai. Performance monitoring on high-end general processing boards.
Master thesis, KTH Royal Institute of Technology, 2014.

[10] Jennifer M. Anderson, Lance M. Berc, Jeffrey Dean, Sanjay Ghemawat,
Monika R. Henzinger, Shun-Tak A. Leung, Richard L. Sites, Mark T. Vande-
voorde, Carl A. Waldspurger, and William E. Weihl. Continuous profiling: where
have all the cycles gone? ACM SIGOPS, 15(4):357–390, 1997.

[11] J G Andrews, S Buzzi, W Choi, S V Hanly, A Lozano, a C K Soong, and J C
Zhang. What Will 5G Be? Selected Areas in Communications, IEEE Journal on,
32(6):1065–1082, 2014.

[12] Apple. Apples Revolutionary App Store Downloads Top One Billion in Just Nine
Months. www.apple.com, 2009. [Accessed 2015-03-04].

229

www.apple.com

230 Bibliography

[13] Apple. App Store Tops 40 Billion Downloads with Almost Half in 2012. www.

apple.com, 2013. [Accessed 2015-03-04].
[14] ARM. Cortex -A8 Revision : r3p1. ARM, edition i edition, 2009.
[15] Arpaci-Dusseau Andrea Arpaci-Dusseau Remzi. Operating Systems: Three Easy

Pieces, volume Electronic. Arpaci-Dusseau Books, Wisconsin, 2015.
[16] Mikael Asberg, Thomas Nolte, Shinpei Kato, and Ragunathan Rajkumar.

ExSched: An External CPU Scheduler Framework for Real-Time Systems. In
2012 IEEE International Conference on Embedded and Real-Time Computing
Systems and Applications, pages 240–249. 2012.

[17] Neil C. Audsley, Alan Burns, Robert I. Davis, Ken W. Tindell, and Andy J.
Wellings. Fixed priority pre-emptive scheduling: An historical perspective. Real-
Time Systems, 8(2-3):173–198, 1995.

[18] Henrik Austad. A Multicore-aware Deadline-driven Real-Time Scheduler for the
Linux Kernel. M.sc., Norwegian University of Science and Technology, 2009.

[19] Moris Behnam, Rafia Inam, Thomas Nolte, and Mikael Sjödin. Multi-core
composability in the face of memory-bus contention. SIGBED Review,
10(October):35–42, 2013.

[20] Robert H. Bell and Lizy K. John. Improved automatic testcase synthesis for
performance model validation. In Proceedings of International Conference on
Supercomputing, pages 111–120. 2005.

[21] Bell-Labs. Video Shakes - A Bell Labs Study on Rising Video Demand and its
Impact on Broadband IP Networks. Technical report, Bell Labs, 2012.

[22] S. Bennett. Nicolas Minorsky and the Automatic Steering of Ships. IEEE Control
Systems Magazine, 4(4):10–15, 1984.

[23] Mikael Bergqvist, Jakob Engblom, Mikael Patel, and Lars Lundegard. Some
experience from the development of a simulator for a telecom cluster (CPPemu).
In Proceedings of the International Association of Science and Technology for
Development, pages 13–21. 2006.

[24] JO Best. The race to 5G Inside the fight for the future of mobile as we know it -
Feature - TechRepublic. Techrepublic, 2015.

[25] Daniel Biederman. Communication system with content-based data compression.
US Patent 7069342, 2001.

[26] Sergey Blagodurov, Sergey Zhuravlev, and Alexandra Fedorova. Contention-
Aware Scheduling on Multicore Systems. ACM Transactions on Computer Sys-
tems, 28(4):1–45, 2010.

[27] Critical Blue. Process Scheduling in Linux. Technical report, University of
Edinburgh, 2013.

[28] Barry Boehm. The Incremental Comitment Spiral Model. Principles and Prac-
tices for Successful Systems and Software. Addison-Wesley Professional, 2013.

[29] Barry Boehm and Victor R. Basil. Software Defect Reduction Top 10 List. Com-
puter Journal, 34(1):135–137, 2001.

www.apple.com
www.apple.com

Bibliography 231

[30] Barry Boehm and Philip N. Papaccio. Understanding and controlling software
costs. IEEE Transactions on Software Engineering, 14(10):1462–1477, 1988.

[31] P. Bose and T.M. Conte. Performance analysis and its impact on design. Com-
puter, 31(5):41–49, may 1998.

[32] Fred A. Bower, Daniel J. Sorin, and Landon P. Cox. The impact of dynamically
heterogeneous multicore processors on thread scheduling. IEEE Micro, 28(3):17–
25, 2008.

[33] Rupinder Singh Brar. A Survey on Different Compression Techniques and Bit
Reduction Algorithm for Compression of Text / Lossless Data. 3(3):579–582,
2013.

[34] Jens Breitbart, Josef Weidendorfer, and Carsten Trinitis. Case Study on Co-
scheduling for HPC Applications. Proceedings of the International Conference
on Parallel Processing Workshops, 2015-Janua:277–285, 2015.

[35] Jens Breitbart, Josef Weidendorfer, and Carsten Trinitis. Automatic co-scheduling
based on main memory bandwidth usage. In Proceedings of the Workshop on Job
Scheduling Strategies for Parallel Processing (JSSPP). 2016.

[36] Elisabeth Brunet, Francois Trahay, Alexandre Denis, and Raymond Namyst. A
sampling-based approach for communication libraries auto-tuning. In Proceed-
ings of International Conference on Cluster Computing, pages 299 – 307. 2011.

[37] Mary Brydon-Miller, Davydd Greenwood, and Patricia Maguire. Why Action
Research? Action Research, 1(1):9–28, jul 2003.

[38] Anselm Busse. Load-aware Scheduling for Heterogeneous Multi-core Systems.
In Proceedings of the 31st Annual ACM Symposium on Applied Computing, pages
1844–1851. 2016.

[39] Giorgio C Buttazzo. Hard Real-Time Computing Systems: Predictable Scheduling
Algorithms and Applications, 3rd Edition (Real-Time Systems Series), volume 24
TS - C. Springer, 2011.

[40] J. Calandrino, D. Baumberger, Tong Li, J. Young, and Scott Hahn. LinSched
: The Linux Scheduler Simulator. Proceedings of the ISCA 21st International
Conference on Parallel and Distributed Computing and Communications Systems,
pages 171–176, 2008.

[41] Martin Carlsson and Jakob Engblom. Worst-case execution time analysis of
disable interrupt regions in a commercial real-time operating system. In Proceed-
ings of the 2nd International Workshop on Real-Time Tools (RT-TOOLS’2002).
2002.

[42] R. L. G. Cavalcante, S. Stańczak, M. Schubert, a. Eisenblätter, and U. Türke.
Toward Energy-Efficient 5G Wireless Communications Technologies. IEEE Signal
Processing Magazine, accepted f(October):24–34, 2014.

[43] Charles Cazabon. Memtester. http://pyropus.ca/software/memtester/,
2018. [Accessed 2018-08-27].

[44] Marco Cesati. Overview of the Linux Scheduler Framework, 2014.

http://pyropus.ca/software/memtester/

232 Bibliography

[45] Craig Chapple. Count of Active Applications in the App Store. http://

148apps.biz/app-store-metrics/?mpage=appcount, 2014. [Accessed
2015-03-04].

[46] Winston Churchill. Memorandum by the Prime Minister : Brevity. Technical
report, 1940.

[47] Cisco. Cisco Visual Networking Index: Forecast and Methodology Cisco Visual
Networking Index: Cisco Visual Networking Index: Forecast and Methodology.
Technical report, Cisco, 2015.

[48] Yann Collet. lz4 Data Compression Library. http://fastcompression.

blogspot.se/p/lz4.html, 2013. [Accessed 2015-03-04].
[49] Andrew Collette. LZFX Data Compression Library. http://code.google.

com/p/lzfx/, 2013. [Accessed 2015-03-28].
[50] Gerald Combs. Wireshark. http://www.wireshark.org/, 2014. [Accessed

2018-02-07].
[51] Richard Walter Conway, William L. Maxwell, and L. W. (Louis W.) Miller. The-

ory of scheduling. Dover, 1967.
[52] Intel Corporation. Mobile 4th Generation Intel R© Core TM Processor Family ,

Mobile Intel R© Pentium R© Processor Family , and Mobile Intel R© Celeron R©
Processor Family - Datasheet Volume 1. Technical Report September, 2013.

[53] Intel Corporation. Mobile 4th Generation Intel R© Core TM Processor Family ,
Mobile Intel R© Pentium R© Processor Family , and Mobile Intel R© Celeron R©
Processor Family - Datasheet Volume 2. Technical Report September, 2013.

[54] Intel Corporation. Mobile 4th Generation Intel R© Core TM Processor Family ,
Mobile Intel R© Pentium R© Processor Family , and Mobile Intel R© Celeron R©
Processor Family - Volume 1, volume 2. 2013.

[55] Intel Corporation. Mobile 4th Generation Intel R© Core TM Processor Family ,
Mobile Intel R© Pentium R© Processor Family , and Mobile Intel R© Celeron R©
Processor Family - Volume 2, volume 2. 2013.

[56] T Cucinotta, L Palopoli, L Marzario, G Lipari, and L Abeni. Adaptive reserva-
tions in a Linux environment. In Proceedings - IEEE Real-Time and Embedded
Technology and Applications Symposium, volume 10, pages 238–245. 2004.

[57] Tommaso Cucinotta. Access control for adaptive reservations on multi-user
systems. Proceedings of the IEEE Real-Time and Embedded Technology and
Applications Symposium, RTAS, pages 387–396, 2008.

[58] Tommaso Cucinotta, Fabio Checconi, Luca Abeni, and Luigi Palopoli. Adaptive
real-time scheduling for legacy multimedia applications. ACM Transactions on
Embedded Computing Systems, 11(4):1–23, 2012.

[59] Jakob Danielsson, Marcus Jägemar, Moris Behnam, and Mikael Sjödin. Investi-
gating Execution-Characteristics of Feature-Detection Algorithms. In Proceed-
ings of Emerging Technologies and Factory Automation (ETFA), page 4. IEEE,
Limassol, 2017.

http://148apps.biz/app-store-metrics/?mpage=appcount
http://148apps.biz/app-store-metrics/?mpage=appcount
http://fastcompression.blogspot.se/p/lz4.html
http://fastcompression.blogspot.se/p/lz4.html
http://code.google.com/p/lzfx/
http://code.google.com/p/lzfx/
http://www.wireshark.org/

Bibliography 233

[60] Jakob Danielsson, Jägemar Marcus, Moris Behnam, Mikael Sjödin, and Tiberiu
Seceleanu. Measurement-based evaluation of data-parallelism for OpenCV
feature-detection algorithms. In Proceedings of Computers, Software and Ap-
plications Conference (COMPSAC), page 10. 2018.

[61] Robert I. Davis and Alan Burns. A survey of hard real-time scheduling for
multiprocessor systems. ACM Computing Surveys, 43(4):1–44, 2011.

[62] Arnaldo Carvalho de Melo. The New Linux ’perf’ Tools. Technical report, Redhat,
2010.

[63] Johan De Vriendt, Philippe Lainé, Christophe Lerouge, and Xiaofeng Xu. Mobile
network evolution: A revolution on the move. IEEE Communications Magazine,
40(4):104–111, 2002.

[64] Roman Dementiev. Processor Performance Counter Monitoring. Technical
Report July, Intel, 2010.

[65] John Demme and Simha Sethumadhavan. Rapid identification of architectural
bottlenecks via precise event counting. In Proceeding International Symposium
on Computer Architecture (ISCA), page 353. 2011.

[66] Jeff Diamond, Martin Burtscher, John D. J.D. McCalpin, Byoung-Do Do Kim,
S.W. Stephen W. Keckler, and J.C. James C. Browne. Evaluation and optimiza-
tion of multicore performance bottlenecks in supercomputing applications. In
IEEE International Symposium on Performance Analysis of Systems and Software,
pages 32–43. 2011.

[67] Maria Dimakopoulou, Stéphane Eranian, Nectarios Koziris, and Nicholas Bam-
bos. Reliable and efficient performance monitoring in linux. Proceedings of the
International Conference for High Performance Computing, Networking, Storage
and Analysis, page 34, 2016.

[68] Torgeir Dingsøyr, Sridhar Nerur, Venugopal Balijepally, and Nils Brede Moe. A
decade of agile methodologies: Towards explaining agile software development.
Journal of Systems and Software, 85(6):1213–1221, 2012.

[69] Pedro C. Diniz and Martin C. Rinard. Dynamic feedback: An Effective Technique
for Adaptive Computing. ACM SIGPLAN Notices, 32(5):71–84, may 1997.

[70] Gordana Dodig-Crnkovic. Cognitive revolution, virtuality and good life. AI and
Society, 28:319–327, 2013.

[71] Daniel Doucette and Alexandra Fedorova. Base vectors: A potential technique for
microarchitectural classification of applications. In Proceedings of the Workshop
on the Interaction between Operating Systems and Computer Architecture. 2007.

[72] Angela Duckworth. Grit: The power of passion
and perseverance. https://www.ted.com/talks/

angela{_}lee{_}duckworth{_}the{_}key{_}to{_}success{_}grit,
2013. [Accessed 2017-09-17].

[73] Angela Duckworth. Grit : the power of passion and perseverance. Scribner,
2016.

https://www.ted.com/talks/angela{_}lee{_}duckworth{_}the{_}key{_}to{_}success{_}grit
https://www.ted.com/talks/angela{_}lee{_}duckworth{_}the{_}key{_}to{_}success{_}grit

234 Bibliography

[74] Jon Dugan, Seth Elliott, Bruce Mah, Jeff Poskanzer, and Prabhu Kaustubh. IPerf.
https://iperf.fr, 2018. [Accessed 2018-08-27].

[75] Denis Duka. Connectivity packet platform in the GSM/WCDMA network. Pro-
ceedings Elmar - International Symposium Electronics in Marine, pages 163–166,
2006.

[76] David Eklöv, David Black-Schaffer, and Erik Hagersten. StatCC: a statistical
cache contention model. In Proceedings of the International conference on Par-
allel architectures and compilation techniques, pages 551–552. 2010.

[77] David Eklöv, Nikos Nikoleris, David Black-Schaffer, and Erik Hagersten. Cache
Pirating: Measuring the Curse of the Shared Cache. In Proceedings of Interna-
tional Conference on Parallel Processing, pages 165–175. sep 2011.

[78] David Eklov, Nikos Nikoleris, David Black-Schaffer, and Erik Hagersten. Band-
width bandit: Understanding memory contention. In IEEE International Sympo-
sium on Performance Analysis of Systems and Software, pages 116–117. 2012.

[79] David Eklov, Nikos Nikoleris, David Black-Schaffer, and Erik Hagersten. Band-
width Bandit: Quantitative characterization of memory contention. In Proceed-
ings of the 2013 IEEE/ACM International Symposium on Code Generation and
Optimization, CGO 2013. 2013.

[80] Enea. OSE Kernel Reference Manual. Enea OSE Systems AB, Stockholm, r1.0.4
edition, 1998.

[81] Enea. OSE Architecture User’s Guide. Enea OSE Systems AB, Stockholm,
bl410003 edition, 2010.

[82] Enea. OSE Core User’s Guide. Stockholm, bl410003 edition, 2010.
[83] Stéphane Eranian. What can performance counters do for memory subsystem

analysis? In Proceedings of the ACM SIGPLAN workshop on Memory Systems
Performance and Correctness, pages 26–30. 2008.

[84] Ericsson. Market Outlook. Technical report, Ericsson, 2013.
[85] Ericsson. Ericsson Consumer Lab: 10 Hot Consumer Trends 2014. Technical

report, Ericsson Consumer Lab, 2014.
[86] Ericsson. 5G Energy Performance - Key Technologies and Design Principles.

Technical Report April, Ericsson White Paper, 2015.
[87] Ericsson. 5G Radio Access - Technology and Capabilities. Technical Report

February, Ericsson White Paper, 2015.
[88] Ericsson. Ericsson Mobility Report November 2015. Technical Report November,

Ericsson Consumer Lab, 2015.
[89] Ericsson. Ericsson Mobility Report November 2016. Technical Report November,

Ericsson, Stockholm, 2016.
[90] Ericsson. Hot Consumer Trends 2016. Technical Report December 2015, Ericsson

Consumer Lab, 2016.
[91] Fredrik Eriksson. Porting OSE Systems to Linux. Master thesis, Mälardalen

University, 2010.

https://iperf.fr

Bibliography 235

[92] Ernst & Young Global. 2015 Global telecommunications study: Navigating the
road to 2020. Ernst & Young Global Limited, pages 1–39, 2015.

[93] Stijn Eyerman and Lieven Eeckhout. System-level performance metrics for mul-
tiprogram workloads. IEEE Micro, 28(3):42–53, 2008.

[94] Stijn Eyerman, Lieven Eeckhout, Tejas Karkhanis, and James E. Smith. A Top-
Down Approach to Architecting CPI Component Performance Counters. IEEE
Micro, 27(1):84–93, 2007.

[95] Stijn Eyerman, K. Hoste, and Lieven Eeckhout. Mechanistic-empirical processor
performance modeling for constructing CPI stacks on real hardware. In Inter-
national Symposium on Performance Analysis of Systems and Software, pages
216–226. 2011.

[96] Dario Faggioli, Fabio Checconi, Michael Trimarchi, and Claudio Scordino. An
EDF scheduling class for the Linux kernel. Proceedings of the 11th Real Time
Linux Workshop (RTLW), page 8 pp., 2009.

[97] Dario Faggioli, Fabio Checconi, Michael Trimarchi, and Claudio Scordino. An
EDF scheduling class for the Linux kernel. Proceedings of the 11th Real Time
Linux Workshop (RTLW), page 8 pp., 2009.

[98] Dror G. Feitelson, Larry Rudolph, Larry Rudolph Dror G. Feitelson, Dror G.
Feitelson, and Larry Rudolph. Parallel Job Scheduling: Issues and Approaches. In
Proceedings of the Workshop on Job Scheduling Strategies for Parallel Processing
(JSSPP), volume 949, pages 1–18. 1995.

[99] Colin Fidge. Fundamentals of distributed system observation. IEEE Software,
13(6), 1996.

[100] Gerhard Fohler. How Different are Offline and Online Scheduling? In 2nd
International Real-Time Scheduling Open Problems Seminar, pages 2–3. 2011.

[101] Eelke Folmer and Jan Bosch. Architecting for usability: A survey. Journal of
Systems and Software, 70(1-2):61–78, 2004.

[102] Freescale. P4080 Reference Manual Rev F. 2009.

[103] Freescale. e500mc Core Reference Manual Rev F. Freescale, 2010.

[104] Freescale. Advanced QorIQ Debug and Performance Monitoring. Freescale, rev.
d edition, 2011.

[105] Freescale. e6500 Core Reference Manual. Freescale, revision f edition, 2012.

[106] Anders Furuskär, Jonas Näslund, and Håkan Olofsson. Edge - enhanced data
rates for GSM and TDMA/136 evolution. Ericsson Review (English Edition),
76(1):28–37, 1999.

[107] Gert Fylking. Gert Fylking bakom litteraturpris. https://www.svd.se/gert-
fylking-bakom-litteraturpris, 2000. [Accessed 2018-02-07].

[108] J Gait. A Probe Effect in Concurrent Programs. Software - Practice and Experi-
ence, 16(3), 1986.

https://www.svd.se/gert-fylking-bakom-litteraturpris
https://www.svd.se/gert-fylking-bakom-litteraturpris

236 Bibliography

[109] N Garner, G Ho, and P Mucci. A Portable Programming Interface for Perfor-
mance Evaluation on Modern Processors. The International Journal of High
Performance Computing Applications, 14(3):189–204, 2000.

[110] Gartner. High Tech and Telecom Providers. http://www.gartner.com/

technology/consulting/high-tech-telecom-providers.jsp, 2012.
[Accessed 2015-03-04].

[111] Brian Gildon. ADVANTAGES OF ENEA OSE R© : The Architectural Advan-
tages of Enea OSE in Telecom Applications (Product Marketing White Paper).
Technical report, Enea OSE, Stockholm, 2017.

[112] Thomas Gleixner. Linux Performance Counter announcement. http://lkml.

org/lkml/2008/12/4/401, 2008. [Accessed 2018-02-07].
[113] Adithya Gollapudi and Arvind Ojha. Comparing Applicability of Test Design

Techniques for Telecom systems. Ph.D. thesis, Mälardalen University, 2009.
[114] Google. Snappy Compression Library. https://code.google.com/p/

snappy, 2013. [Accessed 2015-03-28].
[115] Rasmuss Graaf. Choosing Your Runtime. Technical report, Enea, Stockholm,

2010.
[116] Giovani Gracioli, Ahmed Alhammad, Renato Mancuso, Antônio Augusto

Fröhlich, and Rodolfo Pellizzoni. A Survey on Cache Management Mechanisms
for Real-Time Embedded Systems. ACM Computing Surveys, 48(2):1–36, 2015.

[117] Michael Gray, Peter Peterson, and Peter Reiher. Scaling Down Off-The-Shelf
Data Compression : Backwards-Compatible Fine-Grain Mixing. In Proceedings
of Distributed Computing Systems, pages 112 – 121. 2012.

[118] GSM World. GSM Market Data Report. Technical report, 2009.
[119] Neil Gunther. UNIX Load Average. Technical report, TeamQuest, 2009.
[120] JL Gustafson. Reevaluating Amdahl’s law. Communications of the ACM,

31(5):532–533, may 1988.
[121] Carl Gutwin, Christopher Fedak, Mark Watson, Jeff Dyck, and Tim Bell. Improv-

ing network efficiency in real-time groupware with general message compression.
In Proceedings of Conference on Computer Supported Cooperative Work, pages
119–128. ACM Press, New York, USA, 2006.

[122] Daniel Hallmans, Marcus Jägemar, Stig Larsson, and Thomas Nolte. Identifying
evolution problems for large long term industrial evolution systems. In Proceed-
ings - IEEE 38th Annual International Computers, Software and Applications
Conference Workshops, COMPSACW 2014, pages 384–389. Västerås, 2014.

[123] AH Hashemi, DR Kaeli, and B Calder. Efficient procedure mapping using cache
line coloring. ACM SIGPLAN Notices, pages 171–182, 1997.

[124] Nicholas Hatt, Axis Sivitz, and Benjamin a Kuperman. Benchmarking Operating
Systems. In Conference for Undergraduate Research in Computer Science and
Mathematics., pages 63–68. 2007.

http://www.gartner.com/technology/consulting/high-tech-telecom-providers.jsp
http://www.gartner.com/technology/consulting/high-tech-telecom-providers.jsp
http://lkml.org/lkml/2008/12/4/401
http://lkml.org/lkml/2008/12/4/401
https://code.google.com/p/snappy
https://code.google.com/p/snappy

Bibliography 237

[125] Anthony Hayter. Probability and statistics for engineers and scientists. Brooks/-
Cole Cengage Learning, Boston, 4th edition, 2016.

[126] J.L. Henning. SPEC CPU2000: measuring CPU performance in the New Millen-
nium. Computer, 33(7):28–35, 2000.

[127] John L. Henning. SPEC CPU2006 benchmark descriptions. ACM SIGARCH
Computer Architecture News, 34(4):1–17, 2006.

[128] Ariya Hidayat. FastLZ. http://fastlz.org/, 2014. [Accessed 2015-03-28].
[129] M.D. Hill and M.R. Marty. Amdahl’s law in the multicore era. Computer,

41(7):33–38, jul 2008.
[130] Harri Holma and Antti Toskala. WCDMA for UMTS, 3rd edition. John Wiley &

Sons Ltd., 2004.
[131] Jian Huang, Moinuddin K Qureshi, and Karsten Schwan. An Evolutionary Study

of Linux Memory Management for Fun and Profit Methodology. 2016 USENIX
Annual Technical Conference (USENIX ATC 16), 2016.

[132] IBM. IBM PowerPC 750GX and 750GL RISC Micro- processor User ’ s Manual.
Technical report, 2006.

[133] Rafia Inam. Hierarchical scheduling for predictable execution of real-time soft-
ware components and legacy systems. Ph.D. thesis, Mälardalen University, dec
2014.

[134] Rafia Inam, Nesredin Mahmud, Moris Behnam, Thomas Nolte, and Mikael Sjödin.
The Multi-Resource Server for predictable execution on multi-core platforms.
2014 IEEE 19th Real-Time and Embedded Technology and Applications Sympo-
sium (RTAS), pages 1–12, 2014.

[135] Rafia Inam and Mikael Sjödin. Combating Unpredictability in Multicores through
the Multi-Resource Server. In Workshop on Virtualization for Real-Time Embed-
ded Systems. IEEE, 2014.

[136] Rafia Inam, Mikael Sjödin, Marcus Jägemar, Mikael Sjodin, and Marcus Jagemar.
Bandwidth measurement using performance counters for predictable multicore
software. In Proceedings of the International Conference on Emerging Technolo-
gies and Factory Automation (ETFA12). 2012.

[137] Rafia Inam, Joris Slatman, Moris Behnam, Mikael Sjödin, and Thomas Nolte.
Towards implementing multi-resource server on multi-core Linux platform. In
Emerging Technologies & Factory Automation (ETFA), 2013 IEEE 18th Confer-
ence on, volume 1, pages 10–13. 2013.

[138] Nathan Ingraham. Apple by the numbers: 30 billion app downloads, 650,000
apps available in the App Store. http://www.theverge.com/2012/6/11/

3077792/apple-wwdc-2012-stats-ios-mac-growth, 2012. [Accessed
2015-03-04].

[139] Intel. LZO hardware compression. http://software.intel.com/en-us/

articles/lzo-data-compression-support-in-intel-ipp, 2013. [Ac-
cessed 2015-03-04].

http://fastlz.org/
http://www.theverge.com/2012/6/11/3077792/apple-wwdc-2012-stats-ios-mac-growth
http://www.theverge.com/2012/6/11/3077792/apple-wwdc-2012-stats-ios-mac-growth
http://software.intel.com/en-us/articles/lzo-data-compression-support-in-intel-ipp
http://software.intel.com/en-us/articles/lzo-data-compression-support-in-intel-ipp

238 Bibliography

[140] Intel. Intel 64 and IA-32 architectures optimization reference manual. Technical
Report June, 2016.

[141] Intel. Intel R© 64 and IA-32 Architectures Software Developer’s Manual, Volume
3B, volume 3. Intel, 2016.

[142] Anand Padmanabha Iyer, Li Erran Li, and Ion Stoica. CellIQ : Real-Time Cellular
Network Analytics at Scale. In Nsdi, pages 218–234. 2015.

[143] Bruce L. Jacob and Trevor N. Mudge. A look at several memory management
units, TLB-refill mechanisms, and page table organizations. ACM SIGOPS Op-
erating Systems Review, 32(5):295–306, 1998.

[144] Marcus Jägemar. Utilizing Hardware Monitoring to Improve the Performance of
Industrial Systems. Licentiate thesis, Mälardalen University, 2016.

[145] Marcus Jägemar. Mallocpool : Improving Memory Performance Through Con-
tiguously TLB Mapped Memory. In Proceedings of IEEE Emerging Technologies
and Factory Automation (ETFA). IEEE, Torino, Italy, 2018.

[146] Marcus Jägemar and Gordana Dodig-Crnkovic. Cognitively Sustainable ICT with
Ubiquitous Mobile Services - Challenges and Opportunities. In Proceedings -
International Conference on Software Engineering, volume 2, pages 531–540.
2015.

[147] Marcus Jägemar, Sigrid Eldh, Andreas Ermedahl, Moris Behnam, and Björn
Lisper. Enforcing Quality of Service Through Hardware Resource Aware Pro-
cess Scheduling. In Proceedings of IEEE Emerging Technologies and Factory
Automation (ETFA). IEEE, Torino, Italy, 2018.

[148] Marcus Jägemar, Sigrid Eldh, Andreas Ermedahl, and Björn Lisper. Feedback-
Based Generation of Hardware Characteristics. Technical report, Mälardalen
University, 2012.

[149] Marcus Jägemar, Sigrid Eldh, Andreas Ermedahl, and Bjorn Lisper. Technical
Report : Feedback-Based Generation of Hardware Characteristics. Technical
report, Mälardalen University, 2012.

[150] Marcus Jägemar, Sigrid Eldh, Andreas Ermedahl, and Björn Lisper. Towards
Feedback-Based Generation of Hardware Characteristics. In Proceedings of the
7th International Workshop on Feedback Computing. 2012.

[151] Marcus Jägemar, Sigrid Eldh, Andreas Ermedahl, and Björn Lisper. Automatic
Multi-Core Cache Characteristics Modelling. In Proceedings of the Swedish
Workshop on Multicore Computing (MCC13), page 4. Halmstad, 2013.

[152] Marcus Jägemar, Sigrid Eldh, Andreas Ermedahl, and Björn Lisper. Adaptive
Online Feedback Controlled Message Compression. In Proceedings of Computers,
Software and Applications Conference (COMPSAC14). Västerås, 2014.

[153] Marcus Jägemar, Sigrid Eldh, Andreas Ermedahl, and Björn Lisper. Automatic
message compression with overload protection. The Journal of Systems and
Software, 2016.

Bibliography 239

[154] Marcus Jägemar, Sigrid Eldh, Andreas Ermedahl, Björn Lisper, and Gabor Andai.
Automatic Load Synthesis for Performance Verification in Early Design Phases.
Technical report, Mälardalen University, 2016.

[155] Marcus Jägemar, Andreas Ermedahl, and Sigrid Eldh. Decision support for OS
process scheduling based on HW-, OS- and system-level performance counters,
U.S. Patent 62/400353. 2016.

[156] Marcus Jägemar, Andreas Ermedahl, and Sigrid Eldh. Process scheduling in a
processing system having at least one processor and shared hardware resources.
U.S. Pat.Pending, PCT/SE2016/050317. 2016.

[157] Marcus Jägemar, Andreas Ermedahl, Sigrid Eldh, and Moris Behnam. A Sched-
uling Architecture for Enforcing Quality of Service in Multi-Process Systems. In
Proceedings of Emerging Technologies and Factory Automation (ETFA). 2017.

[158] Tarush Jain and Tanmay Agrawal. The Haswell Microarchitecture - 4th Gen-
eration Processor. International Journal of Computer Science and Information
Technologies, 4(3):477–480, 2013.

[159] Emmanuel Jeannot. Improving Middleware Performance with AdOC: an Adaptive
Online Compression Library for Data Transfer. In Proceedings of International
Parallel and Distributed Processing Symposium, page 70. 2005.

[160] Emmanuel Jeannot. ADOC homepage. http://www.labri.fr/perso/

ejeannot/adoc/adoc.html, 2012. [Accessed 2015-03-04].
[161] Emmanuel Jeannot, Bjorn Björn Knutsson, Mats Björkman, and Mats Bjorkman.

Adaptive online data compression. In IEEE High Performance Distributed Com-
puting. 2002.

[162] Oliver P. John and Veronica Benet-Martinez. Handbook of research methods in
social and personality psychology. Wiley Online Library, 2000.

[163] M Tim Jones. Inside the Linux 2.6 Completely Fair Scheduler. IBM developer-
Works, (December):1–9, 2009.

[164] Ajay Joshi, Lieven Eeckhout, Robert H. Bell, and Lizy K. John. Distilling the
essence of proprietary workloads into miniature benchmarks. ACM Transactions
on Architecture and Code Optimization, 5(2):1–33, aug 2008.

[165] Stefan Karlsson and Erik Hansson. Lossless Message Compression. Bachelor
thesis, Mälardalen University, 2013.

[166] Rich Karpinski. 2016 Trends in Mobile Telecom. Technical report, 451 Research,
2016.

[167] Nima Khalilzad. Adaptive and Flexible Scheduling Frameworks for Component-
Based Real-Time Systems. Ph.D. thesis, Mälardalen University, nov 2015.

[168] Lars-örjan Kling, Åke Lindholm, Lars Marklund, and Gunnar B Nilsson. CPP —
Cello packet platform. Technical Report 2, Ericsson Review, 2002.

[169] Rob Knauerhase, Paul Brett, Barbara Hohlt, Tong Li, and Scott Hahn. Using
OS observations to improve performance in multicore systems. IEEE Micro,
28(3):54–66, 2008.

http://www.labri.fr/perso/ejeannot/adoc/adoc.html
http://www.labri.fr/perso/ejeannot/adoc/adoc.html

240 Bibliography

[170] Björn Knutsson. Increasing Communication Performance via Adaptive Compres-
sion. In Proceedings of the Seventh Swedish Workshop on Computer Systems
Architecture. Gothenburg, Sweden, 1998.

[171] Björn Knutsson and Mats Björkman. Adaptive end-to-end compression for
variable-bandwidth communication. Computer Networks, 31(7):767–779, apr
1999.

[172] Jacek Kobus and Rafał Szklarski. Completely Fair Scheduler and its tuning.
Technical report, 2009.

[173] Con Kolivas. Staircase Process Scheduling Algorithm. https://lwn.net/

Articles/87729/, 2004. [Accessed 2017-08-28].
[174] Con Kolivas. Rotating Staircase DeadLine(RSDL). https://lwn.net/

Articles/224865/, 2005. [Accessed 2017-08-28].
[175] David Koufaty, Dheeraj Reddy, and Scott Hahn. Bias Scheduling in Heteroge-

neous Multi-core Architectures. EuroSys 2010, pages 125–138, 2010.
[176] N Krajnovic. The design of a highly available enterprise ip telephony network

for the power utility of Serbia company. Communications Magazine, IEEE,
47(4):118–122, apr 2009.

[177] Chandra Krintz and Sezgin Sucu. Adaptive on-the-fly compression. IEEE Trans-
actions on Parallel and Distributed Systems, 17(1):15 – 24, jan 2006.

[178] George Kyriazis. Heterogeneous System Architecture : A Technical Review. Tech-
nical report, AMD, 2012.

[179] Christoph Lameter. Bazillions of Pages - The Future of Memory Management
under Linux. In Proceedings of the Linux Symposium, volume 1, pages 275–284.
Ottawa, Ontario, Canada, 2008.

[180] Jeremy Lau, Matthew Arnold, Michael Hind, and Brad Calder. Online perfor-
mance auditing. In Proceedings of ACM SIGPLAN Conference on Programming
language design and implementation, pages 239–251. jun 2006.

[181] Juri (Scuola Superiore Sant’Anna) Lelli, Giuseppe (Scuola Superiore Sant’Anna)
Lipari, Dario (Scuola Superiore Sant’Anna) Faggioli, and Tommaso (Scuola Su-
periore Sant’Anna) Cucinotta. An efficient and scalable implementation of global
EDF in Linux. Proceedings of the OSPERT 2011, page 10, 2011.

[182] Robert Lenz. Media reviews, volume 4. Sage, 3rd edition, 1981.
[183] David Levinthal. Performance Analysis Guide for Intel R© Core TM i7 Processor

and Intel R© Xeon TM 5500 processors. Technical report, Intel, 2009.
[184] John Levon. Oprofile. http://oprofile.sourceforge.net, 2002. [Ac-

cessed 2018-02-07].
[185] Kurt Lewin. Action research and minority problems. Journal of Social Issues,

2(4):34–46, 1946.
[186] Chuanpeng Li, Chen Ding, and Kai Shen. Quantifying the cost of context switch.

Proceedings of the 2007 workshop on Experimental computer science - ExpCS
’07, (June):2–es, 2007.

https://lwn.net/Articles/87729/
https://lwn.net/Articles/87729/
https://lwn.net/Articles/224865/
https://lwn.net/Articles/224865/
http://oprofile.sourceforge.net

Bibliography 241

[187] M.H.T. Ling. COPADS, I: Distance Coefficients between Two Lists or Sets. The
Python Papers Source Codes, 2:2, 2010.

[188] Linux. Perf. https://perf.wiki.kernel.org, 2009. [Accessed 2017-02-
28].

[189] Linuxcounter. Lines of code of the Linux Kernel Versions. https://www.

linuxcounter.net/statistics/kernel. [Accessed 2018-02-07].
[190] J. S. Liptay. Structural aspects of the System/360 Model 85, II: The cache. IBM

Systems Journal, 7(1):15–21, 1968.
[191] C. L. Liu and James W. Layland. Scheduling Algorithms for Multiprogramming

in a Hard-Real-Time Environment. Journal of the ACM, 20(1):46–61, 1973.
[192] Fang Liu and Yan Solihin. Understanding the behavior and implications of

context switch misses. ACM Transactions on Architecture and Code Optimization,
7(4):1–28, dec 2010.

[193] S Loosemore, Rm Stallman, and R McGrath. The GNU C library reference
manual. Technical report, 2016.

[194] Robert Love. Linux Kernel Development. Pearson Education, 3rd edition, apr
2010.

[195] Chenyang Lu, J.a. Stankovic, G. Tao, and S.H. Son. Design and evaluation of
a feedback control EDF scheduling algorithm. In Proceedings 20th IEEE Real-
Time Systems Symposium. 1999.

[196] Martina Maggio, Juri Lelli, and Enrico Bini. Rt-Muse: Measuring Real-Time
Characteristics of Execution Platforms. Real-Time Systems, 53(6):857–885,
2017.

[197] Jason Mars, Neil Vachharajani, Robert Hundt, Mary Lou Soffa, and Others. Con-
tention aware execution. Proceedings of the 8th annual IEEE/ ACM international
symposium on Code generation and optimization - CGO ’10, page 257, 2010.

[198] JR Mashey. War of the benchmark means: time for a truce. ACM SIGARCH
Computer Architecture News, 32(4):1–14, 2004.

[199] Terje Mathisen. Pentium Secrets: Undocumented features of the Intel Pentium can
give you all the information you need to optimize Pentium code. Byte Magazine,
19(7):191—-192, jul 1994.

[200] Wolfgang Mauerer. Linux R© Kernel Architecture. 2008.
[201] John D McCalpin. Memory Bandwidth and Machine Balance in Current High

Performance Computers. IEEE Computer Society Technical Committee on Com-
puter Architecture (TCCA) Newsletter, (May):19–25, 1995.

[202] Steven McGeady, Randy Steck, Glenn Hinton, and Atiq Bajwa. Performance en-
hancements in the superscalar i960MM embedded microprocessor. COMPCON
Spring ’91 Digest of Papers, 1991.

[203] Wes McKinney. Data Structures for Statistical Computing in Python. Proceed-
ings of the 9th Python in Science Conference, 1697900(Scipy):51–56, 2010.

https://perf.wiki.kernel.org
https://www.linuxcounter.net/statistics/kernel
https://www.linuxcounter.net/statistics/kernel

242 Bibliography

[204] Larry Mcvoy and Carl Staelin. lmbench : Portable Tools for Performance Analysis.
In Proceedings of the USENIX Annual Technical Conference, pages 279–294.
1996.

[205] Marı́a Mejı́a, Adriana Morales-Betancourt, and Tapasya Patki. Lottery scheduler
for the Linux kernel. DYNA, 82(189):216–225, 2015.

[206] C Mercer, R Rajkumar, and J Zelenka. Temporal protection in real-time operat-
ing systems. In IEEE Workshop on Real-Time Operating Systems and Software
(RTOSS), pages 79–83. 1994.

[207] Clifford W Mercer, Stefan Savage, and Hideyuki Tokuda. Processor capacity
reserves: operating system support for multimedia applications. Proceedings of
IEEE International Conference on Multimedia Computing and Systems MMCS-
94, pages 90–99, 1994.

[208] Pierre Michaud. Demystifying multicore throughput metrics. IEEE Computer
Architecture Letters, pages 10–13, 2012.

[209] Michal Mienik. CPU burnin. URL http://cpuburnin.com.
[210] Sparsh Mittal. A Survey Of Techniques for Architecting and Managing Asymetric

Multicore Processors. Computing Surveys, 9219(c):1–13, 2015.
[211] Sparsh Mittal. A Survey of Techniques for Cache Partitioning in Multicore Pro-

cessors. ACM Computing Surveys, 50(2):1–39, 2017.
[212] Sparsh Mittal and Jeffrey S. Vetter. A Survey of CPU-GPU Heterogeneous Com-

puting Techniques. ACM Computing Surveys, 47(4):1–35, 2015.
[213] Vilhelm Moberg. Din stund på jorden. 1963.
[214] Naveed Ul Mustafa. Enriching Enea OSE for Better Predictability Support Mas-

ter of Science Thesis. Master thesis, KTH, 2011.
[215] Nicholas Nethercote and Julian Seward. Valgrind: A program supervision frame-

work. In Electronic Notes in Theoretical Computer Science, volume 89, pages
47–69. 2003.

[216] Vu Nguyen, Sophia Deeds-Rubin, Thomas Tan, and Barry Boehm. A SLOC
Counting Standard. COCOMO II Forum., 2007:1–15, 2007.

[217] Bogdan Nicolae. On the benefits of transparent compression for cost-effective
cloud data storage. In Proceedings of Transactions on Large Scale Data and
Knowledge Centered Systems, volume 3, pages 167–184. 2011.

[218] Jakob Nielsen. Nielsen’s law of internet bandwidth. (online). http://www.

nngroup.com/articles/law-of-bandwidth/, 1998. [Accessed 2018-01-
01].

[219] Nokia Siemens Networks. Long Term HSPA Evolution: Mobile Broadband Evo-
lution beyond 3GPP Release 10 HSPA has Transformed Mobile Networks. Tech-
nical report, Nokia Siemens Networks, 2010.

[220] Andrzej Nowak and Georgios Bitzes. The overhead of profiling using PMU
hardware counters. Technical Report CERN Openlab Report, CERN, 2014.

http://cpuburnin.com
http://www.nngroup.com/articles/law-of-bandwidth/
http://www.nngroup.com/articles/law-of-bandwidth/

Bibliography 243

[221] Andrzej Nowak, David Levinthal, and Willy Zwaenepoel. Hierarchical cycle
accounting: a new method for application performance tuning. In IEEE Inter-
national Symposium on Performance Analysis of Systems and Software, pages
112–123. 2015.

[222] Andrzej Nowak, Ahmad Yasin, Avi Mendelson, and Willy Zwaenepoel. Estab-
lishing a base of trust with performance counters for enterprise workloads. In
USENIX Annual Technical Conference, pages 541–548. 2015.

[223] S. Nussbaum and J.E. Smith. Modeling superscalar processors via statistical sim-
ulation. In Proceedings of the International Conference on Parallel Architectures
and Compilation Techniques, pages 15–24. 2001.

[224] Markus Oberhumer. LZO (Lempel-Ziv-Oberhumer) Data Compression Library.
http://www.oberhumer.com/opensource/lzo/, 2013. [Accessed 2015-03-
04].

[225] Oxford. English Dictionary (online), 2014.
[226] Dipak Patil, Prashant Kharat, and Anil Kumar Gupta. Study of Performance Coun-

ters and Profiling Tools. In Proceedings of 21st IRF International Conference.,
March, pages 45–49. Pune, India, 2015.

[227] Ulf Paulsson. Some short advice to a PhD student. Technical report, School of
Economics and Management, Lund University, Lund, 2018.

[228] Igor Pavlov. LZMA Software Development Kit. http://www.7-zip.org/sdk.
html, 2013. [Accessed 2015-03-27].

[229] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos, David Cournapeau,
Matthieu Brucher, Matthieu Perrot, and Édouard Duchesnay. Scikit-learn: Ma-
chine Learning in Python. Journal of Machine Learning Research, 12:2825–2830,
2012.

[230] Kai Petersen, C Gencel, and N Asghari. Action research as a model for industry-
academia collaboration in the software engineering context. In Proceedings
of the 2014 international workshop on Long-term industrial collaboration on
software engineering, pages 55–62. 2014.

[231] Kai Petersen and Claes Wohlin. Context in industrial software engineering re-
search. In International Symposium on Empirical Software Engineering and
Measurement, pages 401–404. Orlando, Florida, USA, 2009.

[232] Felipe Pezoa, Juan L Reutter, Fernando Suarez, Mart\’\in Ugarte, and Domagoj
Vrgoč. Foundations of JSON Schema. Proceedings of the 25th International
Conference on World Wide Web, pages 263–273, 2016.

[233] Andrej Podzimek and Lydia Y. Chen. Transforming system load to throughput
for consolidated applications. Proceedings - IEEE Computer Society’s Annual
International Symposium on Modeling, Analysis, and Simulation of Computer
and Telecommunications Systems, MASCOTS, pages 288–292, 2013.

http://www.oberhumer.com/opensource/lzo/
http://www.7-zip.org/sdk.html
http://www.7-zip.org/sdk.html

244 Bibliography

[234] Andrej Podzimek, Lydia Y. Chen, Lubomı́r Bulej, Walter Binder, and Petr Tüma.
Showstopper: The partial CPU load tool. Proceedings - IEEE Computer Society’s
Annual International Symposium on Modeling, Analysis, and Simulation of Com-
puter and Telecommunications Systems, MASCOTS, 2015-Febru(February):510–
513, 2015.

[235] Ian Poole. Cellular Communications Explained : From Basics to 3G. Elsevier,
1st edition, 2006.

[236] Calton Pu and Lenin Singaravelu. Fine-Grain Adaptive Compression in Dynam-
ically Variable Networks. In Proceedings of the International Conference on
Distributed Computing Systems, pages 685–694. 2005.

[237] J R Quinlan. Induction of Decision Trees. Mach. Learn., 1(1):81–106, mar 1986.

[238] K.A Ramya and M Pushpa. A Survey on Lossless and Lossy Data Compression
Methods. International Journal of Computer Science and Engineering Communi-
cations, 4(1):1277–1280, 2016.

[239] John Regehr and John A. Stankovic. Augmented CPU reservations: Towards pre-
dictable execution on general-purpose operating systems. Real-Time Technology
and Applications - Proceedings, pages 141–148, 2001.

[240] Lasse Mikkel Reinhold. QuickLZ - Fast compression library for C, C# and Java.
http://www.quicklz.com/, 2011. [Accessed 2013-05-31].

[241] Gang Ren, Eric Tune, Tipp Moseley, Yixin Shi, Silvius Rus, and Robert Hundt.
Google-Wide Profiling: A continuous profiling infrastructure for data centers.
IEEE Micro, 30(4):65–78, 2010.

[242] Martin Ringwelski, Christian Renner, Andreas Reinhardt, Andreas Weigel, and
Volker Turau. The hitchhiker’s guide to choosing the compression algorithm for
your smart meter data. In 2nd IEEE ENERGYCON Conference & Exhibition,
pages 935–940. 2012.

[243] D. Gordon E Robertson and James J. Dowling. Design and responses of But-
terworth and critically damped digital filters. Journal of Electromyography and
Kinesiology, 13(6):569–573, 2003.

[244] Colin Robson. Real world research. Blackwell, Oxford, 2nd edition, 2002.

[245] James Roche. Adopting DevOps practices in quality assurance. Communications
of the ACM, 56(11):38–43, 2013.

[246] Ronghua Zhang, Chenyang Lu, T.F. Abdelzaher, and J.a. Stankovic. Control-
Ware: a middleware architecture for feedback control of software performance.
Proceedings 22nd International Conference on Distributed Computing Systems,
pages 301–310, 2002.

[247] Jussi Rosendahl and Leila Abboud. Nokia buys Alcatel to take on Ericsson
in telecom equipment. http://www.reuters.com/article/2015/04/15/

nokia-alcatel-lucent-ma-idUSL5N0XC0X220150415, 2015. [Accessed
2018-02-07].

http://www.quicklz.com/
http://www.reuters.com/article/2015/04/15/nokia-alcatel-lucent-ma-idUSL5N0XC0X220150415
http://www.reuters.com/article/2015/04/15/nokia-alcatel-lucent-ma-idUSL5N0XC0X220150415

Bibliography 245

[248] Hans Rosling. Hans Rosling is lecturing the Danish Radio Channel 2 program
(deadline) host Adam Holm, sep 2015.

[249] Steven Rostedt and Darren V. Hart. Internals of the RT Patch. In Proceedings of
the Linux Symposium, page 318. 2007.

[250] Mehrin Rouhifar. A Survey on Scheduling Approaches for Hard Real-Time Sys-
tems. International Journal of Computer Applications, 131(17):41–48, 2015.

[251] Kim Rowe. Time to market is a critical consideration. http://www.embedded.
com/electronics-blogs/industry-comment/4027610/Time-to-

market-is-a-critical-consideration, 2010. [Accessed 2015-03-04].
[252] Dr. Winston W. Royce. Managing the Development of large Software Systems.

Ieee Wescon, (August):1–9, 1970.
[253] Per Runeson. Case Study Research or Anecdotal Evicende? Technical report,

Lunc University, 2010.
[254] Per Runeson and Martin Höst. Guidelines for conducting and reporting case study

research in software engineering. Empirical Software Engineering, 14(2):131–
164, dec 2008.

[255] Olof Rutgersson and Simon Boman. Replacing OSE with Real Time capable
Linux. Master thesis, Department of Computer and Information Science, 2009.

[256] Rafael H. Saavedra and Alan J. Smith. Measuring cache and TLB performance
and their effect on benchmark runtimes. IEEE Transactions on Computers,
44(10):1223–1235, 1995.

[257] J. C. Saez, A. Pousa, R. Rodriı́guez-Rodriı́guez, F. Castro, and M. Prieto-Matias.
PMCTrack: Delivering Performance Monitoring Counter Support to the OS
Scheduler. The Computer Journal, 60(1):60–85, jan 2017.

[258] J.C. Saez, A. Pousa, R. Rodrigues-Rodrigues, F. Castro, and M Prieto-Matias. PM-
CTrack: Delivering Performance Monitoring Counter Support to the OS Sched-
uler. The Computer Journal, 82(September):29–35, 2016.

[259] Aksel Sandemose. En flykting korsar sitt spår. Themis Förlag, 1933.
[260] Conrad Sanderson. Armadillo: An open source C++ linear algebra library for

fast prototyping and computationally intensive experiments. Technical Report,
NICTA:1–16, 2010.

[261] Conrad Sanderson and Ryan Curtin. Armadillo: a template-based C++ library
for linear algebra. The Journal of Open Source Software, 1:26, 2016.

[262] Max Schuchard, Eugene Y. Vasserman, Abedelaziz Mohaisen, Denis Foo Kune,
Nicholas Hopper, and Yongdae Kim. Losing Control of the Internet: Using the
Data Plane to Attack the Control Plane. In Computer and Communications
Security, pages 726–728. 2010.

[263] Carolyn B. Seaman. Qualitative methods in empirical studies of software engi-
neering. IEEE Transactions on Software Engineering, 25(4):557–572, 1999.

[264] Freescale Semiconductor. QorIQ Communications Processor Product Brief.
Freescale, 2008.

http://www.embedded.com/electronics-blogs/industry-comment/4027610/Time-to-market-is-a-critical-consideration
http://www.embedded.com/electronics-blogs/industry-comment/4027610/Time-to-market-is-a-critical-consideration
http://www.embedded.com/electronics-blogs/industry-comment/4027610/Time-to-market-is-a-critical-consideration

246 Bibliography

[265] Benjamin Serebrin and Daniel Hecht. Virtualizing performance counters. In
European Conference on Parallel Processing. 2011.

[266] Julian Seward. BZIP2, a program and library for data compression compression.
http://www.bzip.org, 2013. [Accessed 2015-03-04].

[267] L Sha, T Abdelzaher, K E Arzen, A Cervin, T Baker, A Burns, G Buttazzo, M Cac-
camo, J Lehoczky, and A K Mok. Real time scheduling theory: A historical
perspective. Real-Time Systems, 28(2-3):101–155, 2004.

[268] Timothy Sherwood and Brad Calder. Basic Block Distribution Analysis to Find
Periodic Behavior and Simulation Points in Applications. In Proceedings of the
International Conference on Parallel Architectures and Compilation Techniques
(PACT), September. 2001.

[269] Timothy Sherwood and Greg Hamerly. Automatically Characterizing Large Scale
Program Behavior. In Proceedings of the conference on Architectural Support
for Programming Languages and Operating Systems. 2002.

[270] Silberschatz, Galvin, and Gagne. Module 20: The Linux System. Technical report,
2002.

[271] Abraham Silberschatz, Peter Baer Galvin, and Greg Gagne. Operating systems
concepts. 9. Wiley, 2013.

[272] Dag Sjøberg, Tore Dybå, and Magne Jørgensen. The Future of Empirical Meth-
ods in Software Engineering Research. Future of Software Engineering, SE-
13(1325):358–378, 2007.

[273] Viveka Sjöblom. OSE och Linux - En studie om prestanda. Master thesis, Uppsla
University, 2008.

[274] Alan Jay Smith. Cache Memories. ACM Computing Surveys, 14(3):473–530,
1982.

[275] Stackoverflow. Generate Instruction Cache misses. http://stackoverflow.
com/questions/9793660/what-are-the-causes-for-instruction-

cache-miss. [Accessed 2018-02-07].
[276] Niklas Ståhle. Implementing Transaction Tracing in Real-Time Systems Master

of Science Thesis Implementing Transaction Tracing in Real-Time Systems. Ph.D.
thesis, Royal Institute of Technology, 2009.

[277] John A. Stankovic. A Serious Problem for Next-Generation Systems. Computer,
21(10):10–19, 1988.

[278] Sezgin Sucu and Chandra Krintz. Ace: A resource-aware adaptive compression
environment. In Proceedings of International Conference of Information Technol-
ogy: Coding and Computing, pages 183 – 188. 2003.

[279] Angelina Sundström, Gunnar Widforss, Malin Rosqvist, and Anette Hallin. Indus-
trial PhD Students and their Projects. Procedia Computer Science, 100:739–746,
2016.

[280] Andrew S Tanenbaum, Jorrit N Herder, and Herbert Bos. Can We Make Operating
Systems Reliable and Secure? IEEE, (May), 2006.

http://www.bzip.org
http://stackoverflow.com/questions/9793660/what-are-the-causes-for-instruction-cache-miss
http://stackoverflow.com/questions/9793660/what-are-the-causes-for-instruction-cache-miss
http://stackoverflow.com/questions/9793660/what-are-the-causes-for-instruction-cache-miss

Bibliography 247

[281] Lingjia Tang, Jason Mars, Neil Vachharajani, and Mary Lou Soffa. The Impact of
Memory Subsystem Resource Sharing on Datacenter Applications Categories and
Subject Descriptors. In Proceedings of the 38th annual international symposium
on Computer architecture, pages 283–294. 2011.

[282] Gregory Tassey. The economic impacts of inadequate infrastructure for software
testing. Technical Report 7007, National Institute of Standards and Technology,
2002.

[283] Gary Taylor and David Russell. PwC Capex is king - a new playbook for telecoms
execs. Technical Report December, PwC, 2014.

[284] Paul Taylor. Battle lines are drawn for the future of 4G. http:

//www.ft.com/intl/cms/s/0/399b1508-d9d8-11dc-bd4d-

0000779fd2ac.html{#}axzz1va5rEtRx, 2008. [Accessed 2015-03-04].
[285] Techcrunch. Apples App Store Hits 50 Billion Downloads, 900K Apps.

http://techcrunch.com/2013/06/10/apples-app-store-hits-50-

billion-downloads-paid-out-10-billion-to-developers/, 2013.
[Accessed 2015-03-04].

[286] Telecomasia. Faster time to market with next-gen OSS. http://www.

telecomasia.net/content/faster-time-market-next-gen-oss, 2012.
[Accessed 2015-03-04].

[287] Ericsson Nikola Tesla, Denis Duka, and Keywords Cpp. Connectivity Packet
Platform in the GSMIWCDMA Network. In Access, June, pages 7–9. 2006.

[288] Linus Torvalds. Talk is cheap. Show me the code. https://lkml.org/lkml/
2000/8/25/132, 2000. [Accessed 2018-02-23].

[289] Dennis Upper. The unsuccessful self-treatment of a case of “writer’s block”.
Journal of Applied Behavior Analysis, 7(3):1311997, 1974.

[290] Stéfan Van Der Walt, S. Chris Colbert, and Gaël Varoquaux. The NumPy ar-
ray: A structure for efficient numerical computation. Computing in Science and
Engineering, 13(2):22–30, 2011.

[291] Steven H. VanderLeest. ARINC 653 hypervisor. AIAA/IEEE Digital Avionics
Systems Conference - Proceedings, pages 1–20, 2010.

[292] Girish Venkatachalam. Multimedia Dynamite. Linux Journal, oct 2007.
[293] Hans Vestberg. Ericsson unveils new products, partnerships and increased market

share. In Proceedings of at Mobile World Conference. 2012.
[294] Wan Vinny. CPP in LTE Overview. Technical report, Ericsson, 2014.
[295] Xiaorui Wang, Xing Fu, Xue Liu, and Zonghua Gu. PAUC : Power-Aware Utiliza-

tion Control in Distributed Real-Time Systems. EEE Transactions on Industrial
Informatics, 6(3):302–315, 2010.

[296] Xiaorui Wang, Dong Jia, Chenyang Lu, and Xenofon Koutsoukos. DEUCON: De-
centralized end-to-end utilization control for distributed real-time systems. IEEE
Transactions on Parallel and Distributed Systems, 18(7):996–1009, 2007.

http://www.ft.com/intl/cms/s/0/399b1508-d9d8-11dc-bd4d-0000779fd2ac.html{#}axzz1va5rEtRx
http://www.ft.com/intl/cms/s/0/399b1508-d9d8-11dc-bd4d-0000779fd2ac.html{#}axzz1va5rEtRx
http://www.ft.com/intl/cms/s/0/399b1508-d9d8-11dc-bd4d-0000779fd2ac.html{#}axzz1va5rEtRx
http://techcrunch.com/2013/06/10/apples-app-store-hits-50-billion-downloads-paid-out-10-billion-to-developers/
http://techcrunch.com/2013/06/10/apples-app-store-hits-50-billion-downloads-paid-out-10-billion-to-developers/
http://www.telecomasia.net/content/faster-time-market-next-gen-oss
http://www.telecomasia.net/content/faster-time-market-next-gen-oss
https://lkml.org/lkml/2000/8/25/132
https://lkml.org/lkml/2000/8/25/132

248 Bibliography

[297] Reinhold P. Weicker. Dhrystone: a synthetic systems programming benchmark.
Communications of the ACM, 27(10):1013–1030, 1984.

[298] Terry A Welch. A Technique for High-Performance Data Compression. Computer,
17(6):8–19, 1984.

[299] Benjamin Welton, Dries Kimpe, Jason Cope, Christina M. Patrick, Kamil Iskra,
and Robert Ross. Improving I/O Forwarding Throughput with Data Compression.
2011 IEEE International Conference on Cluster Computing, pages 438–445, sep
2011.

[300] Paul R. Wilson, Mark S. Johnstone, Michael Neely, and David Boles. Dynamic
storage allocation: A survey and critical review. In Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), volume 986, pages 1–116. 1995.

[301] Y. Wiseman, K. Schwan, and P. Widener. Efficient end to end data exchange using
configurable compression. ACM SIGOPS Operating Systems Review, pages 4–
23, 2005.

[302] Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, Björn Regnell,
and Anders Wesslén. Experimentation in Software - An Introduction. Springer
Science+Business Media LLC, Lund, 2000.

[303] C. S. Wong, I. K T Tan, R. D. Kumari, J. W. Lam, and W. Fun. Fairness and
interactive performance of O(1) and CFS Linux kernel schedulers. Proceedings -
International Symposium on Information Technology 2008, ITSim, 3(1), 2008.

[304] Yuejian Xie and Gabriel H. Loh. Dynamic Classification of Program Memory
Behaviors in CMPs. Cmp-Msi’08, (June):1–9, 2008.

[305] Kaiqi Xiong and Sang Suh. Resource provisioning in SLA-based cluster comput-
ing. Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), 6253 LNCS:1–15,
2010.

[306] Ahmad Yasin. A Top-Down method for performance analysis and counters ar-
chitecture. IEEE International Symposium on Performance Analysis of Systems
and Software, pages 35–44, 2014.

[307] Murat Yuksel, K. K. Ramakrishnan, Shivkumar Kalyanaraman, Joseph D. Houle,
and Rita Sadhvani. Quantifying overprovisioning vs. Class-of-Service: Informing
the net neutrality debate. Proceedings - International Conference on Computer
Communications and Networks, ICCCN, 2010.

[308] Heechul Yun, Gang Yao, Rodolfo Pellizzoni, Marco Caccamo, and Lui Sha. Mem-
ory Access Control in Multiprocessor for Real-Time Systems with Mixed Critical-
ity. In 2012 24th Euromicro Conference on Real-Time Systems, pages 299–308.
2012.

[309] Omar U Pereira Zapata and Pedro Mej. EDF and RM multiprocessor scheduling
algorithms: Survey and performance evaluation. In Seccion de Computacion,
pages 1–24. 2005.

Bibliography 249

[310] Gerd Zellweger, Denny Lin, and Timothy Roscoe. So many performance events ,
so little time. APSys ’16, 2016.

[311] Jiangtao Zhang, Hejiao Huang, and Xuan Wang. Resource provision algorithms
in cloud computing: A survey. Journal of Network and Computer Applications,
64:23–42, 2016.

[312] Li Zhang, Dhruv Gupta, and Prasant Mohapatra. How expensive are free smart-
phone apps? ACM SIGMOBILE Mobile Computing and Communications Re-
view, 16(3):21–32, dec 2012.

[313] Sergey Zhuravlev, Sergey Blagodurov, and Alexandra Fedorova. Addressing
shared resource contention in multicore processors via scheduling. In Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), page 129. 2010.

Nu är det slut. *

— Fem myror är fler än fyra elefanter

*This quote is taken from the concluding scene of a TV-show, famous to all Swedish children
born during the 70’s. A pink elephant exclaims “This is the end” and then skedaddles away while
trumpeting with its trunk.

	Thesis
	Introduction
	Researching Uncharted Territories
	Monitoring a Production System
	Modeling a Production System
	Improving the Communication System
	Improving Performance while Enforcing Quality of Service
	Outline

	Background
	Telecommunication Standards
	Telecommunication Services
	Industrial Systems
	Deploying Our Target System
	System Details
	Operating Systems
	Enea OSE
	Linux

	Research Method
	The Hypothesis
	Research Questions
	System Monitoring
	System Modeling
	Improving System Performance
	Process Allocation and Scheduling to Efficiently Enforce Quality of Service

	Delimitations
	Research Methodology
	Threats to Validity
	Construct Validity
	Internal Validity
	Conclusion Validity
	Method Applicability

	Contributions
	Publication Mapping, Hierarchy and Timeline
	Paper A
	Paper B
	Paper C (Based on Paper H)
	Paper D (Based on Patent O)
	Paper E (Based on Patents P)

	Measuring Execution Characteristics
	Introduction
	System Model and Definitions
	Hardware Resources
	Memory Management
	Systems, Applications and Processes
	Hardware Resource Monitoring
	Service Performance Monitoring

	Implementation
	Measuring Characteristics
	Counter Sets
	Second Generation Implementation

	Experiments Using the Performance Monitor
	Debugging Performance Related Problems
	The Cycles Per Instruction (CPI) Stack
	Closed Loop Interaction

	Related Work
	Summary

	Load Replication
	Introduction
	System Model and Definitions
	The Modeling Method

	Implementation
	Address Translation
	The Load Controller
	Generating Cache Misses

	Experiments Using Execution Characteristics Modeling
	Running a Test Application With The Load Generator
	Production vs. Modeled Execution Characteristics
	System Performance Measurement
	Performance Prediction When Switching OS

	Related Work
	Summary

	Automatic Message Compression
	Introduction
	Communication Performance Problem
	Improving the Communication Performance

	System Model and Definitions
	Definitions
	Network Measurements
	Compression Measurements
	The Communication Procedure
	Selecting the Best Compression Algorithm
	Compression Overload Controller
	Compression Throttling

	Implementation
	Compression Algorithms
	Putting it all together
	Real-World Compression Throttling

	Experiments Using Automatic Message Compression
	Automatic Compression
	Algorithm Selection Methods
	Auto-select for Changing Message Content
	Overload Handling

	Related and Future Work
	Summary

	Resource Aware Process Allocation and Scheduling
	Introduction
	Motivation for Resource Aware Scheduling
	Problem Description and Current Solutions
	What to do about it?

	System Model and Definitions
	Terminology
	Telecommunication System Requirements on Process Scheduling
	Our Allocation and Scheduling Architecture
	Resource and Performance Monitoring
	Resource and Performance Correlation
	Resource Aware Process Allocation
	Resource Aware Process Scheduling
	Integrating all Parts

	Implementation
	System Monitoring
	Allocation and Scheduling Engine (ASE)
	Implementing a Process Allocator
	Implementing a Process Scheduling Policy

	Experiments
	Testing Automatic Process Allocation
	Testing the QoS Aware Process Scheduler

	Related Work
	Summary

	Conclusion and Future Work
	Conclusion
	Future Work

	Definitions
	Key Concepts
	Bibliography

