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I went to the woods because I wished to live deliberately,
to front only the essential facts of life,
and see if I could not learn what it had to teach,
and not, when I came to die, discover that I had not lived.

– Henry David Thoreau
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Abstract

Embedded systems are ubiquitous and play critical roles in management sys-
tems for industry and transport. Software failures in these domains may lead to
loss of production or even loss of life, so the software in these systems needs
to be reliable. Software testing is a standard approach for quality assurance
of embedded software, and many software development processes strive for
test automation. However, important challenges for successful software test
automation are: lack of time for testing, lack of test environment availability,
and an excess of test results information that renders decision-making hard.

In this thesis these challenges are tackled in three ways. First, in order
to combat lack of time for testing, a method for automated system level re-
gression test selection was implemented and evaluated using data from several
years of nightly testing in a real world industrial setting. It was shown that
automated test selection can be integrated into system level nightly testing and
solve problems such as nightly testing not finishing on time. Second, in order
to improve the hardware coverage of devices in the test environment and how
test cases map to hardware, an algorithm based on the subgraph isomorphism
problem was implemented and evaluated using industrial data. This imple-
mentation was significantly faster than the previous implementation, and the
mapping process was done in such a way that hardware coverage increased
over iterations. Third, to better understand decision-making in critical steps
of the software development process in an industrial setting, two empirical
studies were conducted. The results showed how visualizations and a test re-
sults database support decision-making. Results also describe the overall flow
of information in software testing: from developers to hardware, and back to
developers via the test results database.

Automated system level software testing of networked embedded systems
can be difficult to achieve. This thesis addresses several important challenges
and provides results that are of interest both to industrial practitioners and re-
searchers.
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Sammanfattning

Inbyggda system finns överallt och har viktiga roller i styrsystem för industri
och transport. Mjukvarufel i dessa domäner kan leda till produktionsbortfall
eller dödsfall, så mjukvaran i dessa system måste vara pålitlig. Populära agila
mjukvaruutvecklingsprocesser fokuserar på testautomatisering, men att testa
mjukvara med hjälp av riktig hårdvara kan vara långsamt.

Två viktiga utmaningar för att framgångsrik testautomatisering är brist på
tid, och dålig tillgänglighet till testmiljö. Med automatisering och kontinuerlig
integration kommer en ökande mängd information om testresultat som gör det
svårt att fatta beslut. När testsviter ändras, och testfall mappas på olika delar
av de fysiska testsystemen över tid, så kan det bli svårt att fatta informerade
beslut.

För att förbättra testning givet dessa utmaningar så har vi undersökt
regressionstestselektion på systemnivå, samt metoder för att få mappningen av
testfall på testsystem att variera över tid för att få en ökande hårdvarutäckning.
För att bättre förstå beslutsprocesser genomförde vi en studie på Westemo
Research and Development AB för att undersöka hur beslutsprocesserna ser
ut i kritiska steg i utvecklingsprocessen. Vi genomförde även en intervjustudie
hos fem organisationer som jobbar med inbyggda system för att förstå
mjukvarutestningens informationsflöde.

Vi fann att automatisk testselektion kan integreras in i processen för nat-
tlig testning för att lösa problem som att testningen inte slutar i tid. Vi fann
också att automatisk mappning av testfall på testsystem kan göras på ett sådant
sätt att hårdvarutäckningen ökar över tid. Vidare så identifierade vi hur visu-
aliseringar och en testresultatsdatabas ger beslutsstöd. Slutligen beskriver vi
mjukvarutestningens informationsflöde från utvecklare till hårdvara, och till-
baka till utvecklare via en testresultatsdatabas.
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Populärvetenskaplig
sammanfattning

I moderna industriella automatiseringssystem, som ombord på tåg eller i vat-
tenreningsverk, spelar kommunikationsnätverket en kritisk roll. Bortfall av
service kan få allvarliga konsekvenser som minskad produktion eller eventuellt
dödsfall. Mjukvaran i inbyggda system i nätverk måste vara robust, och mjuk-
varutestning är standard som metod för kvalitetskontroll. Denna testning är
dyr, repetitiv, kan begränsa tiden till marknad och drabbas ofta av förseningar.
Testautomatisering är därför önskvärd.

Westermo Research and Development AB samarbetar i ett pågående
forskningsprojekt med Mälardalens Högskola där Per Erik Strandberg
undersöker testautomatisering av dessa system. Strandbergs forskning
fokuserar på två huvudområden. För det första, hur testar vi på ett smartare
sätt givet begränsade resurser: ska vi alltid köra alla testfall? Vilken hårdvara
ska vi använda för testerna? För det andra, hur kan vi använda den ökande
mängd data om testresultat som kommer från ökad testautomatisering?

Den första delen av Strandbergs forskning är inriktad på förbättrade al-
goritmer och implementering av dessa i verktyg. Ett exempel på ett sådant
verktyg är Svitbyggaren som väljer de viktigaste testfallen givet ett antal prior-
iteringskriterier. Ett andra verktyg väljer hårdvara för testningen. För att kunna
visa att dessa verktyg utökar forskningsfronten så gjorde han utvärderingar
med industriell data som samlats in under flera år. Däribland detaljer om
miljoner av testexekveringar, och även information om hur hårdvara organis-
erats i testsystem. Resultaten visar att förbättrade verktyg löser kritiska prob-
lem: med Svitbyggaren så avslutas nu testningen i tid och tillkortakommanden
i kvalitet hittas tidigare. Vidare så kan allokeringen av hårdvara ändras över
tid, något som förbättrar testtäckningen.

Den andra delen av Strandbergs forskning använder kvalitativa metoder
där intervjuer med utövare är centrala. Han transkriberade mer än 20 timmar
ljud till mer än 130 sidor text som sedan analyserades med metoder med ur-
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sprung i forskning om psykologi. I dessa studier visar Strandberg hur testresul-
tat nu visualiseras och hur beslut tas med hjälp av en databas med testresultat.
Han visar även det övergripande informationsflödet i mjukvarutestningspro-
cesserna, samt teman, utmaningar och bra tillvägagångssätt. De viktigaste bra
tillvägagångssätten är: nära samarbete och kommunikation mellan roller.

Det finns ett gap mellan industri och akademi inom fältet mjukvarutest-
ning. Strandbergs resultat och beskrivningar av verktyg kan guida och inspir-
era andra industriella utövare. Vad gäller forskning inom visualisering och
kommunikation som skulle kunna vara viktig för det fortsatta arbetet så ligger
akademin före och mycket forskning har redan gjorts. Men utmaningen att
allokera hårdvara är ny för akademin. Det är uppenbart att framtida forskning
om mjukvarutestning skulle dra nytta av ett fortsatt samarbete mellan industri
och akademi, och Strandberg hoppas spela en roll i överbryggandet av gapet.
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Chapter 1

Introduction

Embedded systems are becoming ubiquitous. They range from portable sen-
sors to communication equipment providing infrastructure, as part of a train
or other vehicles, industrial plants or in other applications. As many as 90%
of newly produced processors are part of embedded systems [22]. Software
failures in communication equipment can lead to isolation of nodes in a vehi-
cle or a plant, in turn leading to delays, loss of productivity, or even loss of
life in extreme cases. The software in embedded systems needs to be of high
quality and software testing is the standard method for detecting shortcomings
in quality.

Software testing, or testing, can be defined1 as the act of manually or au-
tomatically inspecting or executing software with or without custom hardware
in order to gather information for some purpose: feedback, quality control,
finding issues, building trust, or other. An important aspect of testing embed-
ded systems is to do testing on real hardware [3, 71]. For some of the testing,
emulators and simulators can be suitable, but these should be complemented
with physical hardware [53]. This way timing and other non-functional aspects
can be verified along with functional correctness. One common approach for
testing on real hardware is to build test systems of the embedded devices in
network topologies, in order to support testing.

An overwhelming majority of the software testing conducted in industry
is manual. Kasurinen et al. found it as high as 90% in a study in Finland in
2010 [33]. A practitioner focused report from 2015 found that only 28% of test
cases are automated [58]. If, instead, the tests can run with minimal human in-
tervention, considerable gains in test efficiency are possible. Indeed, many or-

1This definition partially overlaps with definitions from both the International Software Test-
ing Qualifications Board (ISTQB) and the ISO/IEC/IEEE 29119-1 standard [30, 67]. Many
other definitions exist.
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...
Function File Library OS Device Test System Test Env.

Figure 1.1: Abstraction levels: from low level (source code functions) to high (sys-
tem) level.

ganizations strive for agile and continuous development processes, where test
automation is an important part, and research has been done on how to achieve
this [45]. For organizations developing networked embedded systems to be
successful in this transition, they would need a number of things in addition to
agile processes. First of all, they would need a way to automate testing with
a test framework and test cases. Test suites would have to run every now and
then. The test framework would have to need to know how to log in, upgrade,
and configure the hardware in the test systems. If the organizations develop
many different hardware models, they would need several test systems with
different sets of hardware. In order to utilize the resources optimally, the test
systems might be shared: humans use them by day, and machines run nightly
testing when no one is in the office. This way developers and testers could use
the test systems for development, fault finding, and manual testing. During
the nights the organizations would benefit from potentially massive and broad
automated testing. This type of testing, on this high level, could be called au-
tomated system level testing in the context of networked embedded systems.
This level of abstraction is illustrated in the rightmost parts of Figure 1.1.

Wiklund et al. identified lack of time for testing as an important challenge
for test automation [69]. One reason could be that system level testing is slow
compared to unit testing, where a function, file or library may be tested (left
part of Figure 1.1). A typical test case for networked embedded systems on
system level could be a firewall test. This test case would need at least three
devices under test (DUTs): a firewall node, an internal node (that is to be
protected by the firewall), and an external node (that tries to reach the internal
node). Depending on configuration and type of traffic, the outside node should
or should not be able to reach the inside node. These test cases need time
because they perform several configuration and verification steps, send actual
traffic in the network, and the test framework analyzes the traffic sent. Because
testing is slow it may not be feasible to run all test cases every night, so the
organizations need to decide on which test cases to include in or exclude from
their test suites. This problem of regression test selection (RTS, or SL-RTS for
System Level RTS) is well studied, but very little previous research has been
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done on SL-RTS.
Wiklund et al. also found that low availability of the test environment is an

important challenge for test automation [69]. There is thus a need to maximize
the value of the testing, given available resources. If a large number of physical
test systems are built, and a large number of test cases designed, then one
would need a way to assign the hardware resources of the test systems to the
test cases, so that as many test cases as possible could run on as many test
systems as possible. In this thesis we refer to this process as “mapping” of test
cases onto test systems. If there is no automated mapping, then each new test
case might trigger a need to build a new test system, which would be expensive
and limit the scalability of the testing. Also, in order to maximize the value
of the testing, the mapping process should make sure that, over time, each
test case utilizes different parts of the hardware in the test systems, such that
hardware coverage is increased.

A recent literature study on continuous practices identified that, as the fre-
quency of integrations increase, there is an exponential growth of informa-
tion [56]. The study also identified a related challenge: lack of awareness
and transparency. These organizations would therefore also need a test results
database (TRDB) so that engineers, when they come to work in the mornings,
can rapidly understand the results of the nightly testing. Log files, trend plots
and other information should be readily available. It is therefore important to
study and learn from industrial practitioners on how the information flows in
their testing processes, and how they make decisions based on visualizations
and other support systems enabled by the TRDB.

1.1 Personal and Industrial Context

A large portion of the research in this thesis is qualitative. There is thus a risk
for researcher bias where personal background and industrial context could
play a role. Here I briefly mention them such that a reader could take this into
consideration when reading this thesis.

Before starting as an industrial doctoral student in 2017, I worked for 11
years with software testing, development, and requirements in the rail, nu-
clear, web, and communication equipment domains. During the majority of
this time I was a consultant, and as such I led a competence network on the
topic of software testing for 5 years. In this period of my life, I studied many
test and requirements certification syllabi and became a certified tester as well
as a certified professional for requirements engineering (ISTQB foundation,
ISTQB test manager, ISTQB agile tester, and REQB CPRE Foundation).

23

23



I am employed full time at Westermo Research and Development AB
(Westermo), where I have worked with test automation and test management.
Westermo designs and manufactures robust data communication devices for
harsh environments, providing communication infrastructure for control and
monitoring systems where consumer grade products are not sufficiently re-
silient. These devices and the software in them, WeOS (Westermo Operating
System), are tested nightly with the main purpose of finding software regres-
sions. In order to test for regressions, a number of test systems build up of
DUTs running WeOS have been constructed. Automated test cases have also
been implemented, as well as a test framework for running the test cases. I first
added code to this framework in 2011, when it was being migrated into what is
now its current form. Over time, more and more components have been added
to this eco-system for nightly testing, such as the test selection process we de-
scribe in Paper A, the test case mapping onto test systems that we describe in
Paper B, and the TRDB that is central to Paper C.

Westermo recently migrated from a development model loosely based on
scrum to a feature-driven development model based on kanban, where every
feature is developed in isolation from the others in separate code branches,
and then merged into a main branch after a risk management process. This
increased parallelization of the testing of the branches makes it harder to get
resources for nightly testing, and makes the results more sparse, in turn making
the test results more complicated to understand.

My background and position at Westermo has given me unique insights
in industrial software testing, which may have had an impact on how I have
collected and analyzed data.

1.2 Research Goal and Research Questions

In this thesis, we want to describe and improve upon industrial automated sys-
tem level software testing of networked embedded systems. We will focus on
three areas.

1.2.1 System-Level Regression Test Selection

Regression test selection is a challenge to many organizations, and much re-
search has been published (see 2.1.1 for an overview), but there is a lack of
research on system-level regression test selection. Our first research question
(RQ) is:
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RQ1 What important challenges might an organization have with respect to
system level regression test selection in the context of networked embed-
ded systems, and how could one implement and evaluate an automated
test selection algorithm to address these challenges?

1.2.2 Test Environment Assignment

When test cases for networked embedded systems are to be executed on a
physical test system, each test case needs to be mapped onto the available
hardware of the test system, and the hardware requirements of the test cases
needs to be taken into account. This need leads to the second RQ:

RQ2 How could one improve upon the challenge of test environment assign-
ment with respect to automated system level software testing of net-
worked embedded systems?

1.2.3 Flow of Information in Software Testing

With increased levels of test automation, there is an increased level of informa-
tion being produced. We wish to learn about the information flow in software
testing for organizations developing embedded systems, and also learn how a
test results database can support making decisions in a variety of scenarios.
This leads us to our third RQ:

RQ3 What is the flow of information in software testing, and how does a
test results database support decision-making in software development
processes?

1.3 Research Methods

In both Paper A and B, we focus on developing algorithms that are evaluated
empirically using industrial data. For papers C and D, we have interviewed
industrial practitioners and used other data sources in order to describe the state
of practice, and to generate theories. In this section, we discuss the methods
used in this thesis from the two viewpoints of Methods/Algorithms/Tools and
Empirical Studies.

1.3.1 Methods/Algorithms/Tools

Despite being an experience report, the core of Paper A is an algorithm for SL-
RTS. This algorithm was developed into a tool that we used for several years at
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Westermo, after which we did a quantitative and to some extent also qualitative
evaluation. We analyzed challenges highlighted by industrial practitioners (test
suites not finishing on time, manual work leading to forgotten tests, and test
cases being without concept of priority), as well as aspects seen as important in
academia (early fault detection in test suites). This evaluation used industrial
data from four years of nightly testing.

In Paper B, we proposed an algorithm for selecting a subset of available
hardware given certain requirements – the mapping problem. We created a
prototype implementation of it as a tool. We focused on a quantitative evalu-
ation with industrial data using 17 test systems and more than 600 test cases
for a total of more than ten thousand possible mappings, in order to compare a
before/after scenario of the tool.

We designed and implemented a TRDB to store results from nightly testing
in 2012. In Paper C we investigated how it is being used to support decision-
making at different levels, and in order to do so we obviously needed the tools
(the TRDB and the visualizations).

1.3.2 Empirical Studies

Paper A is an experience report, Paper C is a case study, and we call Paper D
an interview study. In all of these we did interviews, both informal (Paper A),
and very thorough (Papers C and D).

For Papers A and B we used empirical data as part of the quantitative
evaluations of the suitability of two tools, whereas the papers C and D had
a focus on describing practices and on generating theories.

For conducting interviews, we considered a large number of important
guidelines. Kitchenham and Pfleeger published a series of guideline papers
[35, 36, 37, 38, 50, 51] that had an influence on, for example, Runeson et al.
[54], that in turn has had an influence on for the overall guideline paper that
we followed for Paper D: Linåker et al. [40].

The integrity and anonymity of our interviewees was of great importance
to us, so for the data collection of Papers C and D we designed a process based
on existing ethical guidelines for this [20].

For the data analysis in Papers C and D, we hesitated between grounded
theory (for example described by Stol et al. [60]), content analysis (as de-
scribed for the field of nursing by Graneheim and Lundman [24]), and the-
matic analysis. There is a significant overlap between these methods, and in
2011 Cruzes and Dybå proposed methods for conducting thematic analysis in
software engineering [10]. In the end, we followed the recommendations of
thematic analysis described for the field of psychology by Braun and Clarke
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[7]. We saw this approach as simple and suitable for the type of data we had.
We also used scripted reports of raw data as support in the data analysis.

27

27



28



Chapter 2

Related Work

The research fields of software testing, regression test selection, as well as
communication and visualization, are all well studied. However, there is a
notable gap between academia and industry in these fields – despite mature re-
search, an overwhelming majority of the actual testing in the industry is man-
ual; test cases are designed based on experience instead of using state of the
art methods, and regression test cases are selected with poor methods. Previ-
ous work on the role of communication in software engineering and software
testing indicate that a requirements specification is of great importance – these
are unfortunately typically of poor quality. Despite more than 40 years of re-
search on regression test selection there is very little advice on performing it
on a system level.

Visualizing software test results rapidly is also an important topic, and
several studies on this topic have already been published. In this chapter we
also briefly mention work related to the mathematical field of graph theory and
the subgraph isomorphism problem – topics related to Paper B.

2.1 Industrial Software Testing

A lot of research has shown that industry seems to be slow to adopt state of
the art techniques for software testing. Most testing is done manually, perhaps
as much as 90% [33]. Well-defined test design techniques exist, but testers
“rely on their own experience more” [29]. The industrial use of issue trackers
is sometimes flawed: less than a quarter of organizational units in a study by
Kasurinen et al. used issue trackers [33].

On the positive side, companies change over time, and many strive towards
using more agile practices, such as shortening feedback loops and adopting
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continuous integration [45]. A recent literature study on continuous practices
identified that as code integrations become more frequent, the amount of data
such as test results will increase exponentially [56]. Therefore it is “critical to
collect and represent the information in [a] timely manner to help stakeholders
to gain better and easier understanding and interpretation of the results. . . ”
There is a need for speeding up continuous integration [59].

The agile movement can coexist with traditional approaches, and they
seem to benefit from each other. Notander et al. points out that a “common
belief is that agile processes are in conflict with the requirements of safety
standards. . . Our conclusion is that this might be the case [sometimes], but not
[always]” [43]. Ghanbari came to similar conclusions [23]. A study on com-
munication in agile projects suggest that plan-driven approaches are sometimes
needed in agile contexts [52].

When it comes to testing of embedded systems, two recent studies high-
light that an important aspect is to investigate non-functional qualities such as
timing and by testing on real hardware one can achieve this [3, 22].

2.1.1 Regression Test Selection

When organizations move towards nightly testing, and run testing on embed-
ded system, they risk ending up with nights that are not long enough – too
many test cases and too little time. This is a strong motivator for introducing
regression test selection (RTS). A well-cited paper by Yoo and Harman pro-
poses three strategies for coping with RTS: Minimization, Selection, and Prior-
itization [72]. RTS can be based on many different properties: code coverage
[41], expected fault locations [48], topic coverage [27], or historic data such as
last execution, fault detection, and coverage data [14, 16, 27, 34]. Mathemat-
ical optimization approaches have been used [19, 28, 41], as well as genetic
algorithms [68]. Software fault prediction is a related field, where one influen-
tial paper was written by Ostrand et al. for traditional software development in
large software systems [48]. Elbaum et al. mentions that traditional regression
testing techniques that rely on source code instrumentation and availability of a
complete test set become too expensive in continuous integration development
environments, partly because of the high frequency of code changes [14].

We identified four recent surveys on RTS, none of which is applicable to
SL-RTS. The most recent one, from 2016 by Hao et al. mentions that most
techniques have been evaluated with programs smaller than 6 kSLOC (SLOC
= source lines of code) [25]. This is still very far from common for many
embedded systems (where using the Linux kernel alone results in a code base
in the order of 10 MSLOC.) Second, Catal and Mishra found that the dom-

30

30



inating techniques for RTS are coverage based [9], , and these are thus not
applicable to system level software testing due to the instrumentation required.
The third survey, by Yoo and Harman, discuss a design-based approach to run
what seems to be unit-level test cases: “Assuming that there is traceability be-
tween the design and regression test cases, it is possible to perform regression
test selection of code-level test cases from the impact analysis of UML design
models” [72]. We speculate that this type of traceability is not so common in
industrial agile environments. Finally, Engström et al. published a paper in
2010 in which they investigated 28 techniques, where 14 were on statement
level, the others were no higher than module level [17].

A conclusion is that there has not been much prior work on SL-RTS, and
that most known RTS methods will not work on a system level because its need
for access to source code and source code instrumentation. In our research, we
have built upon the existing body of knowledge in the field of RTS and shown
feasibility of SL-RTS by using a framework of prioritizers that each investigate
some priority-giving aspect (such as time since last execution), a heuristic to
circumvent the need for source code access, and a priority merging process to
come up with a priority for each test case (Paper A).

2.1.2 Test Environment Assignment

The body of knowledge with respect to assigning test environments to test
cases for execution seems to be in its infancy. While submitting Paper B,
we were made aware of research by Kaindl et al. who investigate the same
high level. In their paper they “briefly sketch the technical essence of [their]
project” explaining that they plan to use a semantic specification, an ontology,
and a taxonomy to assign test environments to a test case [32]. As far as we
know, our paper is the only publication that has a working solution for this
problem in our domain.

In Paper B, we investigate “the mapping problem,” discuss this problem
and how this is related to the subgraph isomorphism problem. The subgraph
isomorphism problem is a well studied topic in the field of graph theory, and
much of the basic terminology is covered in books such as [70]. There are a
number of approaches to solving the subgraph isomorphism problem: satisfi-
ability, for example, is covered by both Knuth and Ullman [39, 66]. Another
approach is to do a combinatorial search, such the one described by Bonicci
et al. [5]. In the test cases and test systems at Westermo, there are frequently
cycles. If there is a cycle in a test case, then this must be mapped onto a cycle
in a test system. Algorithms for identifying cycles are therefore of importance
for improving the mapping, e.g. work by Paton, or Yuster and Zwick [49, 73].
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Figure 2.1: The Shannon-Weaver communication model.

2.2 Communication and Flow of Information

In a 60 year old publication, [57], Shannon first described what would later be
known as the Shannon-Weaver model of communication, shown in Figure 2.1.
This model has later been built upon to represent countless variants. It contains
an information source converted into a message that a transmitter converts to
a signal, noise is added to the signal from a noise source. The signal and
message then reach the destination. Later research on this model add, among
other things, medium used, as well as the role of distances.

Information flow has an important overlap with the concept of communi-
cation, it can be defined by a distributed system of agents and the relationships
between them. Information flow is important when a synergy between humans
and software systems is required for a work flow [13].

A theory for distances in software engineering “explains how practices
improve the communication within a project by impacting distances between
people, activities and artifacts” [4]. As an example, the practice of Cross-Role
Collaboration has an impact on the temporal distance. Olson and Olson found
that new technology may make geographical distance smaller, making cultural
distances appear to be greater [44]. They also found that modern communica-
tion media frequently relies on technical solutions, such as a conference phone,
and when there are usability problems, the users adapted their behavior instead
of fixing the technology – by shouting in the conference phone.

The requirements specification is the most important document for testers
during system testing, but this document is often of poor quality [29], and is
one of the main sources of technical debt for safety development [23]. Human
factors and the quality of the requirements specifications were also mentioned
in a qualitative interview study “as essential for development of safety critical
systems” [43]. Furthermore, the Annex E of the first part of the ISO/IEC/IEEE
29119 standard acknowledges that testers need to communicate, with vari-
ous stakeholders, in a timely manner, and that this communication may be
more formal (written based on reports) or oral (for example in agile develop-
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ment regimes) [30]. Similarly, the International Software Qualifications Board,
ISTQB, released their syllabus for certification of test automation engineers [2]
in 2016. It covers topics that frequently occurred in our interviews in Paper D.
They recommend that one should: measure benefits of automation (costs are
easily seen), visualize results, create and store logs from both the system under
test and the test framework, and generate reports after test sessions.

In Papers C and D, we extend the body of knowledge in the field of com-
munication and information flow in software engineering with results from a
case study conducted at Westermo on how decisions are made based on test re-
sults, and with results from an interview study conducted at five organizations
taking a holistic approach to the flow of information in software testing.

2.3 Visualization

According to Diehl, there are three important aspects of software visualization:
structure, behavior and evolution [12]. An early visualization technique to
show structure is from 1958 and generated control-flow diagrams because it
“is not practical to expect [everyone] to be intimately familiar with [all code]”
[55]. Visualizations may not only show structure but also compare structures.
One survey on software visualization, present methods for visualizing static
aspects with the focus of source code lines, class metrics, relationships, and
architectural metrics [8].

An important publication from 2002 use test results data with a combina-
tion of source code, code coverage, unit tests and test results in a sort of ex-
tended Integrated Development Environment (IDE) view [31]. A dashboard
is a common approach for quality monitoring and control in the industry.
These aim at presenting one or more key performance indicator (KPI) over
time [11, 21]. Recent studies on visualizing test results show that: there is a
need for summaries [42], information may be spread out in several different
systems [6], one might need to consider transitions between different views of
a test results visualization tool [46], and that visualizations may target man-
agers, experts, testers and code maintainers, with the purpose of giving early
warnings, suggestions for code improvements, planning support and support
for making decisions [61].

In his keynote at the practitioner-oriented conference Beauty in Code 2018
[1], Bach highlighted that stakeholders do not know what to visualize: “What
I had to do, is use my skill as a tester, and my interest in visual design, and
complexity, and displays, and statistics, to try to come up with something, that
they, when they saw it – it would be like someone seeing an iPhone for the first
time, they would say ‘I used to like Nokias and now I like Apple phones’.” We
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see this as support for findings in Paper D, that visualizations is not prioritized
and the individuals skilled in other domains end up being the one preparing
visualizations.

With respect to the body of knowledge in the field of visualization of soft-
ware test results, we confirm some of the previous work (such as the impor-
tance of visualizations, and the need to consider transitions between views);
we also provide a long term case study of the implementation and usage of test
results visualization and decision making, as well as show the importance of
the TRDB.
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Chapter 3

Contributions

In this thesis, we have investigated test selection, test environment assignment
and the flow of information in software testing. In Paper D, we focused on the
overall flow of information in software testing. A central result of this study is
the flow diagram in Figure 3.1 and the contributions of this thesis fit well in it.
Both test selection and test environment assignment can be seen as processes
having an impact on how we do system testing in the test environment. The
role of the test results database has, in one way, an importance after the testing
(e.g. to aid in reporting), but because it may impact coming test selection and
the coming test environment assignment, it also has an importance before the
testing activity.

In Paper A, we identified three challenges with nightly regression testing:
nightly testing did not finish on time, manual work and omitted tests, and no
priority for the test cases. These problems were solved by implementing Suite-
Builder, a framework of prioritizers that assign priorities based on multiple
factors. The algorithm was evaluated quantitatively using data from four years
of nightly testing, as well as qualitatively with interview data. When using the
SuiteBuilder, we found that test suites finish on time, and that two thirds of the
failing tests are now positioned in the first third of the test suites. The main
contribution of this work is the system-level regression test selection, and an
implementation that solves these three problems in our industrial context.

When performing testing of embedded systems, it is critical to also involve
real hardware, and in Paper B we show a way to map a test case onto a test
system using graph theory. As far as we know, there has been no prior evalu-
ated solution in in the domain of networked embedded devices. Our approach
was to use the graph models of the test systems and test cases, and adapt the
subgraph isomorphism problem to our domain. We evaluated the prototype
implementation quantitatively with the available test systems and test cases for
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Figure 3.1: Flow of Information in Software Testing.

more than 10000 different pairs of graphs. The new tool was more than 80
times faster than the old one. Also, by using a TRDB with previous mappings,
the algorithm could map in different ways over time. This way the DUT cov-
erage grew from a median of 33% for the 10000 pairs, to a median of 100% in
just five iterations.

A TRDB plays a central role in the testing of embedded systems, both
for its use in regression test selection, and also for the flow of information in
software testing. In Paper D, we show that this is not just a phenomenon at
Westermo – a test results database is central in advanced automated testing,
and in giving support for making decisions. In this paper, we conducted in-
terviews1 at five companies developing embedded systems. The qualitative
thematic analysis of the 17 hours of audio and 130 pages of transcriptions re-
vealed that TRDB was the 18th most discussed sub-theme (of 86 in total, see
Appendix E). This study also identified six themes of importance to the flow of
information in software testing (testing and troubleshooting, communication,
processes, technology, artifacts, and organization), seven challenges (details
of testing, root cause identification, poor feedback, postpone testing, poor arti-
facts and traceability, poor tools and test infrastructure, and distances), as well

1In this thesis, we have included Appendices D and E containing the questionnaire as well
as the themes and sub-themes identified during this study. These appendices were not in the
original paper.
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as five good approaches for improved information flow (close collaboration
between roles, fast feedback, custom test report automation, test result visual-
ization, as also tools and frameworks). As far as we know, this is the first study
taking a high level approach to the flow of information in software testing.

Paper C is on a similar topic as Paper D, in it we describe how the decision
process is carried out at Westermo in daily work, when merging a branch with
the main code branch, and at release time. We collected data from interviews,
questionnaires, archives, and through participant observations, for a system
that has been in use for six years. We were able to describe how visualizations
and scripted reports support decision making, the perceived value of these, and
important requirements in the form of user stories for continued work on the
TRDB and the visualizations. In this thesis, we include Appendix C with the
most important user stories (this appendix was not in the original paper). As
far as we know, this is the first publication where a long-term evaluation has
been done on test results visualization or decision-making based on test results.
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Chapter 4

Future Research

As future research, we want to propose a design for, implement, and evaluate
any benefits of an improved test results communication, visualization, and ex-
ploration solution. It should visualize test results in ways suitable for a range
of stakeholders – it should in particular make the lives of software developers
easier by showing failure patterns that simplifies decision making processes.

We note that several publications related to heatmaps or test results visual-
ization have been published recently, for example: [6, 15, 18, 26, 42, 46, 47]
and also Paper Y [61]. A careful reading of the advantages and disadvan-
tages of these approaches is probably a well invested time. Paper C and Pa-
per D should also provide insights valuable to this work.

Furthermore, the process improvements described in Paper A and Paper B:
not always running all test cases, running them in a varying order, and not al-
ways running a test case on the same hardware in a test system, may render
decision making harder when compared to always running the same tests in
the same order on the same hardware. These changes may thus cause addi-
tional challenges for test results exploration. These effects could be further
investigated.

Another area of research that could be seen as related to visualizing test
results as well as making decisions is “flaky tests” – test cases that have an
intermittent fail pattern. These are costly to debug and based on how an engi-
neer would investigate test results, it might not be obvious that a test is “flaky”.
Perhaps visualizations of various types of test data could aid in the debugging
of these test cases?
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Chapter 5

Summary and Conclusions

In this thesis, we have presented challenges, and their solutions, with conduct-
ing testing and when understanding test results, in the context of automated
system level software testing of networked embedded systems. Two exam-
ples of challenges are: (i) selecting test cases and (ii) mapping test cases onto
test systems. We also investigated the role of the test results database as an
enabler for test results visualization, as well as its central role in the flow of
information in software testing.

In this thesis, we have found that automated system level software testing
of networked embedded systems in some cases brings the same challenges as
testing at lower abstraction levels do, e.g. test selection, test results visualiza-
tion and for the flow of information in software testing. However, this type of
testing also brings unique challenges in that test mappings now play an impor-
tant role. Similarly, we want to emphasize the role of the test results database
as an enabler in this context. We have described and evaluated tools for test
selection as well as mapping test cases onto test systems, as well as gathered
knowledge from practitioners in an extensive interview study.

The findings from these studies may guide other industrial practitioners
when implementing their own tools and processes. This thesis also bring prob-
lems to the surface (such as the challenge of allocating hardware for a test
case), some of which may be new to academia, thus making future research
possible.

As we highlighted in Chapter 2, there is a lot of related work already done,
in particular when it comes to regression test selection. However, not much ad-
vice has been published for system level regression testing. The field of com-
munication, starting with the Shannon-Weaver model, is also tremendously
well studied. There are also a number of studies published on test results visu-
alizations. However, for the flow of information in software testing, there are,
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as far as we can tell, no previous studies. In particular, the flow of information
in software testing has never been studied from a holistic perspective: there are
many studies in several isolated dimensions, and we made an interview study
that aims at tying all the flows together.

All research has limitations, and many of the findings described in this
thesis could be enhanced by repeating the studies in additional organizations
and domains, or by using more data (more interviewees, more industrial test
results, etc.).
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