Noname manuscript No.
(will be inserted by the editor)

Data Aggregation Processes: A Survey, A Taxonomy, and
Design Guidelines

Simin Cai - Barbara Gallina - Dag Nystrom -
Cristina Seceleanu

Received: date / Accepted: date

Abstract Data aggregation processes are essential constituents for data management
in modern computer systems, such as decision support systems and Internet of Things
(IoT) systems, many with timing constraints. Understanding the common and vari-
able features of data aggregation processes, especially their implications to the time-
related properties, is key to improving the quality of the designed system and reduce
design effort. In this paper, we present a survey of data aggregation processes in a
variety of application domains from literature. We investigate their common and vari-
able features, which serves as the basis of our previously proposed taxonomy called
DAGGTAX. By studying the implications of the DAGGTAX features, we formulate
a set of constraints to be satisfied during design, which helps to check the correctness
of the specifications and reduce the design space. We also provide a set of design
heuristics that could help designers to decide the appropriate mechanisms for achiev-
ing the selected features. We apply DAGGTAX on industrial case studies, showing
that DAGGTAX not only strengthens the understanding, but also serves as the foun-
dation of a design tool which facilitates the model-driven design of data aggregation
processes.

Keywords Data aggregation taxonomy - Real-time data management - Data
modeling

1 Introduction

In modern information systems, data aggregation has long been adopted for data pro-
cessing and management in order to discover unusual patterns and infer information
[25], to save storage space [29], or to reduce bandwidth and energy costs [20]. Amid
the era of cloud computing and Internet of Things (IoT), the application of data ag-
gregation is becoming increasingly common and important, when enormous amounts

Milardalen Real-Time Research Centre, Mélardalen University,
Visterds, Sweden

{simin.cai, barbara.gallina,

dag.nystrom, cristina.seceleanu}@mdh. se

2 Simin Cai et al.

of data are continuously collected from ubiquitous devices and services, and further
analyzed. As an example, a surveillance application monitors a home by aggregating
data from a number of sensors and cameras. The aggregated surveillance data of in-
dividual homes could then be aggregated again in the cloud to analyze the security
of the area. In this example, data aggregation serves as a pillar of the application’s
workflow, and directly impacts the quality of the software system.

Within such systems, different aggregations may have various requirements to be
satisfied by the design. For instance, while one aggregation receives data passively
from a data source, another aggregation must actively collect data from a database
which is shared concurrently by other processes. This heterogeneity increases the dif-
ficulty in designing a suitable solution with multiple aggregations. In addition, many
applications such as automotive systems [22], avionic systems [8] and industrial au-
tomation [39] have timing constraints on both the data and the aggregation processes
themselves. The validity of data depends on the time when they are collected and
accessed, and the correctness of a process depends on whether it completes on time.
These real-time constraints also add to the complexity of data aggregation design.

In this paper, we focus on the design support for data aggregation processes (or
DAP for short), which are defined as the processes of producing synthesized forms
from multiple data items [52]. The main constituents of a DAP include: the raw data
as the source of aggregation, the aggregate function that performs computation on the
raw data, and the aggregated data as the result of the aggregation. We consider a DAP
as a sequence of three ordered steps, each possibly involving a series of activities on
these constituents, as follows:

1. Preparation of the raw data. A DAP starts with preparing the raw data required
for the aggregation, from the data source into the aggregation unit called the ag-
gregator. This step may involve the locating, extraction, transportation, and nor-
malization of raw data, if necessary.

2. Aggregation of the raw data. An aggregate function is applied by the aggregator
that transforms the raw data into the aggregated data.

3. Post-handling of the aggregated data. The aggregated data may be further han-
dled by the aggregator, for instance, saved into persistent storage or provided for
other processes.

Several existing works [41,47,31] have addressed the issue of finding a “correct”
aggregate function that serves the aggregation purpose of a given set of raw data,
while few of them have focused on the design of DAP after the data and the aggre-
gate function are decided, such that the desired constraints are met. In this paper, we
aim to support design of an entire aggregation process such that the timing constraints
can be satisfied. To achieve this, the designer must identify the time-related properties
for the constituents of DAP, and features that can influence these properties, in a high
level. Such features, ranging from functional features (such as data sharing) to extra-
functional features (such as the strictness of timing constraints), are varying depend-
ing on different applications. Therefore, we have proposed a high-level taxonomy of
data aggregation processes, called DAGGTAX (Data AGGregation TAXonomy) [10].
Presented as a feature diagram [33], DAGGTAX provides a comprehensive view of
DAP for designers, by identifying its mandatory features as well as the optional ones.
The usefulness of DAGGTAX has been demonstrated via two industrial case studies,

Data Aggregation Processes: A Survey, A Taxonomy, and Design Guidelines 3

which have shown that DAGGTAX raises the awareness of design issues in DAP, and
helps to reason about possible trade-offs between different design solutions.

This paper extends the work in [10] in three aspects. First, we present a survey
of DAP in literature, which aims to investigate the common and variable features of
DAP, and serves as an inspiration of DAGGTAX. The presented survey not only jus-
tifies the proposal of DAGGTAX, but also strengthens the understandings of DAP,
especially its applications in various domains, for the community. In addition, in this
paper, we strive to enlighten the implication of the features in DAGGTAX, and pro-
mote the reasoning of them during design time. Conflicts may arise among features
during design, in that the existence of one feature may prohibit another one. In this
case, trade-offs should be taken into consideration at design time, so that infeasible
designs can be ruled out at an early stage. Therefore, we propose a set of design con-
straints and heuristics to aid the design trade-offs. The design constraints are axioms
to be followed in order to achieve a correct design, while the heuristics, in a less for-
mal presentation, provides design suggestions for realizing the specified DAP. Third,
we provide a new case study, on a Brake-By-Wire (BBW) system, and demonstrate
the usefulness of DAGGTAX in analyzing high-level timing specifications.

In brief, this paper extends [10] with the following contributions:

— asurvey of DAP in literature, which serves as the basis of DAGGTAX;
— aset of design constraints and heuristics based on DAGGTAX.
— anew case study of analyzing a BBW system with DAGGTAX.

The remainder of the paper is organized as follows. In Section 2 we provide back-
ground information. Our survey is presented in Section 3, followed by DAGGTAX
in Section 4. We propose the design rules and heuristics in Section 5, and present the
case studies in Section 6. In Section 7, we discuss the existing taxonomies of data
aggregation. Finally, we conclude the paper and outline the future work in Section 8.

2 Background

In this section, we first recall the concepts of timeliness and temporal data consis-
tency, which are crucial properties commonly considered for real-time systems. After
that, we introduce feature models and feature diagrams, used to present our taxonomy.

2.1 Timeliness and Temporal Data Consistency

In a real-time system, the correctness of a computation depends on both the logical
correctness of the results, and the time at which the computation completes [9]. The
property of completing the computation by a given deadline is referred to as time-
liness [9]. The time interval between the activation and the completion of the task
is named the response time. A real-time task can be classified as hard, firm or soft
real-time, depending on the consequence of a deadline miss [9]. If a hard real-time
task misses its deadline, the consequence will be catastrophic, e.g., loss of life or
significant amounts of money. Therefore the timeliness of hard real-time tasks must
always be guaranteed. For a firm real-time task, such as a task detecting vacant park-
ing places, missing deadlines will render the results useless. For a soft real-time task,

4 Simin Cai et al.

missing deadlines will reduce the value of the results. Such an example is the signal
processing task of a video meeting application, whose quality of service will degrade
if the task misses its deadline.

Depending on the regularity of activation, real-time tasks can be classified as pe-
riodic, sporadic or aperiodic [9]. A periodic task is activated at a constant rate. The
interval between two activations of a periodic task, called its period, remains un-
changed. A sporadic task is activated with a MINimum inter-arrival Time (MINT),
that is, the minimum interval between two consecutive activations. During the de-
sign of a real-time system, a sporadic task is often modeled as a periodic task with
a period equal to the MINT. Similarly, MAXimum inter-arrival Time (MAXT) speci-
fies the maximum interval between two consecutive activations. An aperiodic task is
activated with an unpredictable interval between two consecutive activations. A task
triggered by an external event with unknown occurrence pattern is seen as aperiodic.

Real-time applications often monitor the state of the environment, and react to
changes accordingly and timely. The environment state is represented as data in the
system, which must be updated according to the actual environment state. The co-
herency between the value of the data in the system and its corresponding environ-
ment state is referred to as temporal data consistency, which includes two aspects,
the absolute temporal validity and relative temporal validity [57]. A data instance is
absolute valid, if the timespan between the time of sampling its corresponding real-
world value, and the current time, is less than a specified Absolute Validity Interval
(AVI). A data instance derived from a set of data instances (base data) is absolute
valid if all participating base data are absolute valid. A derived data instance is rel-
ative valid, if the base data are sampled within a specified interval, called Relative
Validity Interval (RVI).

Data instances that are not temporally consistent may lead to different conse-
quences. Different levels of strictness with respect to temporal consistency thus exist,
which are hard, firm and soft real-time, in a decreasing order of strictness. Using
outdated hard real-time data could cause disastrous consequences, and therefore this
should not appear. Firm real-time data are useless if they are outdated, whereas out-
dated soft real-time data can still be used, but will yield degraded usefulness.

Let us illustrate the difference between timeliness and temporal data consistency
via a DAP in an automotive system. We consider the braking system in a car which
calculates the braking torque by aggregating the speed of wheels and the brake pres-
sure. Timeliness requires that the braking torque must be generated by the DAP
within a deadline of, for instance, 100ms. This deadline is hard, as violating it may
lead to a crash. Temporal validity requires that the wheel speed must be sampled
within a certain interval, for instance, 90ms. This interval is also hard, because using
outdated speed data may also cause an accident, and hence must be avoided.

2.2 Feature Model and Feature Diagram

The notion of feature was first introduced by Kang et al. in the Feature-Oriented
Domain Analysis (FODA) method [33], in order to capture both the common charac-
teristics of a family of systems as well as the differences between individual systems.
Kang et al. define a feature as a prominent or distinctive system characteristic visible

Data Aggregation Processes: A Survey, A Taxonomy, and Design Guidelines 5

|
Q
Feaure | .o

(a) Mandatory feature (b) Optional feature (c) Alternative features (d) Cardinality

Feature3

Fig. 1 Notations of a feature diagram

to end-users. Czarnecki and Eisenecker extend the definition of a feature to be any
functional or extra-functional characteristic at the requirement, architecture, compo-
nent, or any other level [15]. This definition allows us to model the characteristics of
data aggregation processes as features. A feature model is a hierarchically organized
set of features, representing all possible characteristics of a family of software prod-
ucts. A particular product can be formed by a combination of features, often obtained
via a configuration process, selected from the feature model of its family.

A feature model is usually represented as a feature diagram [33], which is often
depicted as a multilevel tree, whose nodes represent features and edges represent
decomposition of features. In a feature diagram, a node with a solid dot represents a
common feature (as shown in Fig. 1a), which is mandatory in every configuration. A
node with a circle represents an optional feature (Fig. 1b), which may be selected by
a particular configuration. Several nodes associated with a spanning curve represent a
group of alternative features (Fig. 1c), from which one feature must be selected by a
particular configuration. The cardinality [m..n] (n > m > 0) annotated with a node in
Fig. 1d denotes how many instances of the feature, including the entire sub-tree, can
be considered as children of the feature’s parent in a concrete configuration. If m>1,
a configuration must include at least one instance of the feature, e.g., a feature with
[1..1] is then a mandatory feature. If m=0, the feature is optional for a configuration.

A valid configuration is a combination of features that meets all specified con-
straints, which can be dependencies among features within the same model, or de-
pendencies among different models. An example of such a constraint is that the se-
lection of one feature requires the selection of another feature. Researchers in the
software product line community have developed a number of tools, providing exten-
sive support for feature modeling and the verification of constraints. For instance, in
FeatureIDE [59], software designers can create feature diagrams using a rich graphic
interface. Designers can specify constraints across features as well as models, to en-
sure that only valid configurations are generated from the feature diagram.

3 A Survey of Data Aggregation Processes

Based on scientific literature, in this section, we present a survey of application exam-
ples that implement data aggregation processes. We select these examples because, on
one hand, DAP play an essential role in the solutions presented in this literature. On
the other hand, these examples comprise applications from a wide variety of domains,
which can help us to conclude the common and different characteristics of aggrega-
tion processes in general. We discuss the examples in three major categories. The first
category, presented in Section 3.1, are general-purpose infrastructures that implement

6 Simin Cai et al.

aggregation as a basic service. The second category focuses on the type of emerging
smart “X” applications (Section 3.2), in which data aggregation is commonly applied.
The third category, which includes examples that develop data aggregation as ad hoc
solutions suitable for the particular application scenarios, is presented in Section 3.3.

3.1 General-purpose Data Management Infrastructures

In this subsection, we investigate the design of aggregation processes in general-
purpose systems from the following domains: database management systems, data
warehouses, data stream management systems and wireless sensor networks.

Database Management Systems and Data Warehouses. Many information man-
agement systems adopt a general-purpose relational Database Management System
(DBMS) or a Data Warchouse (DW) [60] as a back-end for centralized data man-
agement, which have common aggregate functions implemented, and exposed as in-
terfaces for users or programmers. Internally, aggregation is supported by a number
of infrastructural services, including query evaluation, data storage and accessing,
trigger mechanism, and transaction management. In a typical disk-based relational
DBMS, data are stored as tuples in the disk. An aggregation process is started by a
query issued by a client. The DBMS then evaluates the query and loads the relevant
data from disk into the main memory. An aggregate function is performed on the
data and computes the aggregated value, which is then returned to the query issuer,
cached in main memory or stored in the disk. An aggregation process can also be
triggered by a state change in the database. Both raw data and aggregated data can be
accessed by other processes. In order to maintain logical data consistency, such pro-
cesses, including the aggregation process, are treated as transactions and governed by
the transaction management system, which ensures the so-called ACID (Atomicity,
Consistency, Isolation, and Durability) properties [24] during their executions.

Data can be aggregated by categories, usually specified in the "group-by" clause
of a query. These categories may have a hierarchical relationship and thus repre-
sent the granularities of aggregation. For example, in a temporal database, users may
choose to aggregate data by day, week or month, with a coarser granularity; in a
spatial database, the aggregation can be based on streets, cities and provinces [42].
In a data warehouse, the stored data usually have many dimensions, and the aggre-
gation may be performed on multiple dimensions [60]. Oftentimes, data need to be
loaded from various data sources via the ETL (Extraction, Transformation, Loading)
process, which extracts, validates and normalizes raw data before aggregation [60].
Therefore, the ETL process can be viewed as the preparation of raw data in a DAP in
a high level.

The aggregated value may be returned to the query issuer directly, or may be
stored persistently in the database. Alternatively, the aggregated values are cached in
materialized views, so that other processes can make use of them [58]. It is common
to store the aggregated values as materialized views in data warehouses since these
results will be frequently used by analysis processes [60].

A number of aggregate functions are included in the SQL standard and are com-
monly supported by general-purpose DBMSs. Other aggregate functions can be de-
fined as user-defined functions. The aggregation can be triggered by an explicit query

Data Aggregation Processes: A Survey, A Taxonomy, and Design Guidelines 7

issued by the client, or by a trigger that reacts to the change of the database. In a data
warehouse, aggregation can be planned periodically, or issued on purpose, in order to
refresh the materialized views that contains aggregated data [60].

Online Aggregation in Data Stream Management Systems. Data aggregation in
traditional DBMSs and DWs is performed like batch-processing: on a large num-
ber of tuples and in considerable time before returning the aggregated value. To im-
prove performance and user experience, Hellerstein et al. propose “online aggrega-
tion” [28], which allows tuples to be aggregated incrementally. Tuples are selected
from a base table by a sampling process, and aggregated with the cached partial
aggregated result from previously sampled tuples. The partially aggregated value is
available, which refers to the user as an approximate aggregated result. The aggrega-
tion process is defined with a stopping interface, through which the aggregation can
be stopped, giving the approximate result as the final result.

Online aggregation is often supported by Data Stream Management Systems
(DSMSs), which provide centralized aggregation for continuous data streams. Usu-
ally, stream data are pushed into the DSMS continuously, often at a high frequency.
Individual data instances are not significant, become stale as time passes, and do
not need to be stored persistently. Finite subsets of the most recent incoming stream
(“windows”) are cached in the system. Aggregate functions can be defined by users
and are applied on the windows. In the Aurora data stream management system [1],
the aggregate function can be associated with a “timeout” parameter, indicating the
deadline of the computation of the function. A function should return before it times
out, even if some raw data instances are missing or delayed, so as to provide timely
response required by many real-time applications. Aurora has implemented a load
shedding mechanism, which drops data instances when the system is overloaded. The
aggregation is triggered either by continuous queries with specified periods, or by ad
hoc queries which are issued by clients. The aggregated results are passed to the re-
ceiving application as an outgoing stream. To provide historical data, the aggregated
data may also be kept persistently for a specified period of time.

Multiple aggregation processes can be run concurrently, performing aggregation
on the same data stream [37]. Oyamada et al. [48] point out that the aggregation in
a DSMS may also involve non-streaming data, which can be shared and updated by
other processes, causing potential data inconsistency. The authors propose a concur-
rency control mechanism to prevent the inconsistency.

In-network Aggregation in Wireless Sensor Networks. Data aggregation plays an
essential role in Wireless Sensor Network (WSN) applications. In these applications,
numerous data are gathered from resource-constrained sensor nodes that are deployed
to monitor the environment. The gathered data are transmitted through a network to
sink nodes, which are equipped with more resource for advanced computation and
analysis. Along the transmission, data are aggregated in the intermediate sensor nodes
or special aggregate nodes, in a decentralized topology. This aggregation technique is
also called “in-network aggregation” [20]. In contrast, a sensor network can also ap-
ply centralized aggregation if the data of all sensors are transmitted to and aggregated
in one single node.

8 Simin Cai et al.

Madden et.al [43] propose Tiny AGgregation (TAG), a generic aggregation ser-
vice for ad hoc networks. In TAG, the user poses aggregation queries from a base
station, which are distributed to the nodes in the network. Sensors collect data and
route data back to the base station through a routing tree. As the data flow up the tree,
it is aggregated by an aggregation function and value-based partitioning according to
the query, level by level. At each level, a node awakens when it receives the aggregate
request, together with a deadline when it should reply to its parent, and propagates
the request to its children with an earlier deadline. Each node then listens to its chil-
dren, aggregates the data transmitted from the children and the reading of itself, and
then replies the aggregated result to its parent. If any node replies after its specified
deadline, its value will not be aggregated by its parent, which means that the final
aggregated result is actually an approximation. The aggregated results are cached by
the nodes, and can be used for fault tolerance reasons, e.g., loss of messages from a
child. TAG has also classified aggregate functions into distributive, algebraic, holistic,
unique and content-sensitive. Decentralized in-network aggregation is only appropri-
ate for distributive and algebraic aggregate functions, since they can be decomposed
into sub-aggregates. For other functions, all sensor data have to be collected to one
node and aggregated together.

TAG is later implemented in the TinyDB [44], which supports SQL-style queries.
Aggregation can be triggered periodically by continuous queries, or at once by a state
change or an ad hoc query. Aggregated results can be stored persistently as storage
points, which may be accessed by other processes.

3.2 Smart “X”, IoT and Big Data Applications

Data aggregation have been massively applied in the smart “X” domains, in the latest
decade. Facilitated by the Internet of Things (IoT), big data analysis and cloud tech-
niques, smart “X” addresses challenges and opportunities of a fully interconnected
and integrated world, in which both computation powers and data are ubiquitous.
Such examples include smart home [17], smart factory [40] and smart city [53].

Smart home applications improve the health and quality of life of the residents,
and prevent emergencies in the home. Smart factory applications not only contribute
to production and maintenance via optimized resource allocation and scheduling.
Smart city applications assist to provide better services for citizens and avoid hazards.
In spite of the various scope, these applications rely their decisions on analyzing the
massive data collected from different sensors, monitors and software systems. These
raw data, collected using various methods, are aggregated though a multi-layer ag-
gregation system. Taking smart city as an example[40], raw data may be aggregated
first in the community level, to form a report of the community. This aggregated data
are then aggregated in district level, in the end the city level. Data may also be first
aggregated in sub-domains, such as transportation, environment, etc., which in the
end are aggregated for a comprehensive decision.

Due to the heterogeneous requirements of different sub-systems and sub-domains,
the data aggregation processes in these applications have different characteristics.
Data may be extracted from different sources, with particular efforts for transporta-
tion and transformation. Aggregated results may be exploited immediately in the lo-
cal level, or be transmitted to the data center. Timing constraints are also different in

Data Aggregation Processes: A Survey, A Taxonomy, and Design Guidelines 9

l Node-layer Aggregation ‘ l Base-layer Aggregation ‘
¥ X Y x X
Dete‘ction Detection Detection
Confidence Confidence Confidence Group 1 Group N
1 2 N
3 5 Y Y ry
l Sensor-layer Aggregation ‘ l Group-layer Aggregation ‘
5 5 3 3 5 3
l Sensor 1 ‘ l Sensor 2 ‘ l Sensor N ‘ l Node 1 ‘ l Node 2 ‘ l Node N ‘

Fig. 2 Data Aggregation Architecture of VigilNet [27]

different scenarios. Decisions for timely reactions, such as handling of the falling of
an elderly, or organizing the real-time traffic volumes in an exhibition, may require to
use timely data, and meet strict deadlines of the aggregation process [36,35], while
historical analysis and long-term prognosis may impose less stringent requirements
in terms of timing constraints. Various aggregate functions are applied to achieve the
analysis goals. For scenarios with large amount of data, aggregate functions may even
relax the accuracy and provide approximate results in order for better timeliness [62].

3.3 Ad Hoc Applications

Many applications have unique requirements, and consequently use their ad hoc ag-
gregation processes to fulfill their requirements. Examples of such applications are
presented in the following paragraphs.

He et al. present the VigilNet for real-time surveillance with a tiered architecture
[27]. Four layers are implemented in this system and each layer has its data aggrega-
tion requirements. The data aggregation architecture of VigilNet is illustrated in Fig.
2. The first layer is the sensor layer in which data inputs are pushed from individual
sensors at specific rates, and aggregated as detection confidence vectors. In this layer
the aggregation needs to meet stringent real-time constraints since the sensors send
signals about fast-moving targets. The results of sensor-layer aggregation are sent to
the node for node-layer aggregation. Each sensor node includes several sensors, and
computes the average of sensor confidence vectors incrementally when a new sensor
confidence vector arrives. If the aggregated results show the existence of a tracking
target, the node estimates the position of the target, and sends a report to the lead-
ing node of the local group. The leader buffers the reports from members, until the
number reaches a predefined aggregation degree. Then, it aggregates all the reports,
estimates the current position of the target, and sends the aggregated report to the
base station. The base station aggregates the new report with historical positions of
the target, and calculates the velocity using a linear regression procedure.

Defude et al. propose the VESPA (Vehicular Event Sharing with a mobile P2P
Architecture) approach [16] for the Vehicular Ad hoc NETwork (VANET), to aggre-
gate traffic information events, such as parking places, accidents and road obstacles,
pushed from neighbor vehicles. The events are aggregated by times, areas and event
types. The aggregated values are stored and accessed for further analysis.

Goud et al. [22] propose a real-time data repository for automotive adaptive cruise
control systems. It includes an Environment Data Repository (EDR) and a Derived
Data Repository (DDR). The EDR periodically reads sensor readings, aggregates

10 Simin Cai et al.

them, and keeps the aggregated value in the repository. The DDR then reads and
aggregates the values from EDR, only when the changes of readings from some sen-
sors exceed a threshold. The sensor data are real-time and have their validity intervals.
The aggregate processes must complete before the data become invalid, and produce
the results for other processes with stringent deadlines.

Arai et al. propose an adaptive two phase approach for approximate ad hoc ag-
gregation in unstructured peer-to-peer systems [3]. When an ad hoc aggregate query
is issued, in the first phase, sample peers are visited by a random walk from the sink,
with a predefined depth. Information of the visited peers are collected to the sink,
and analyzed to decide the peers to be aggregated. These peers are then visited in the
second phase. For some aggregate functions such as COUNT and AVERAGE, partial
aggregate results are computed in the local peer, and returned to the sink. For other
aggregate functions, raw data are returned to the sink and aggregated in the sink.

Baulier et al. [6] propose a database system for real-time event aggregation in
telecommunication systems. Events generated by phone calls are pushed into the
system, which should be aggregated within specific response times. The aggregated
results are kept in a main-memory database for other time-critical processes. When a
new event arrives, it triggers the aggregate process to update the aggregate view. The
event record is stored into a persistent data warehouse, which is not time-critical.

Bar et al. [5] propose an online aggregation system for network traffic monitoring
where large volumes of heterogeneous data streams are processed with different time
constraints. Arriving stream data instances, as well as non-stream data, are stored per-
sistently in the system. Aggregation can be triggered by ad hoc queries, or triggered
periodically by continuous queries. The aggregate results are stored persistently in
materialized views. Aggregate functions are computed incrementally, by combining
the newly arrived instance with cached aggregated results.

Biir et al. describe an online active control system for aircrafts which employs
data aggregation [8]. In this application, real-time data are gathered periodically from
sensors deployed in the aircraft, and aggregated periodically. Since the aircraft system
is time-critical, the freshness of data and timely processing of aggregation are crucial.

Lee et al. propose an approach for aggregating data in an industrial manufactur-
ing system [39]. Three types of aggregation are described, which are aggregation at
the device level, aggregation in the control system, and aggregation in the remote
monitoring system. At device level, real-time raw data are produced by sensors and
controllers, and are aggregated in the devices. The aggregation is triggered hourly,
or by state changes in the device. The aggregation functions are simple calculations
for hourly throughput, error count, etc. The aggregated values are sent to subscribing
clients, namely the control system and the remote monitoring system. The control
system receives the data from devices and store them into a database. Every hour,
these data, together with other events, are aggregated to produce error times, through-
put, etc. The remote monitoring system also stores the data from devices and performs
aggregation. Delay could occur in aggregation in the remote system.

Iftikhar applies data aggregation on integration of data in farming systems [29].
Data are collected from different devices, and stored permanently in a relational
database. A gradual granular data aggregation strategy is then applied on the stored
data. Basically, older data should be aggregated in a coarse-grained granularity while
newer data are aggregated in a finer granularity. For different granularities, aggrega-

Data Aggregation Processes: A Survey, A Taxonomy, and Design Guidelines 11

tion is triggered in different periods. The aggregated results are kept in the database
while the raw data are deleted to save space.

Golab et al. propose a tool called DataDepot for generating data warehouses from
streaming data feeds [21], focusing on the real-time quality of the data. Raw data
are modeled as tables, which are not persistent and have a freshness property. Raw
data are generated from different sources, with various properties such as rate and
freshness. Raw tables are aggregated and stored in persistent derived tables which
must also be fresh. Updates in the raw tables are propagated to the derived tables.

3.4 Survey Results

More than 13,000 research works are indexed in the SCOPUS search engine using
“data aggregation” as a search key for title, abstract and keywords in computer sci-
ence and engineering. Although only a small proportion of related works are exam-
ined here, our survey covers a relevant set of systems and application domains, which
exposes the common and variable characteristics of the raw data, aggregated data, the
aggregate functions, as well as the entire data aggregation processes.

In Table 1, we summarize the previous review by listing characteristics of the
DAPs in the surveyed systems and applications. Clearly, each aggregation process
must have raw data, an aggregation function and the aggregated results. However,
other characteristics have shown great variety. For instance, in some applications the
aggregation process needs to pull the raw data from the persistent storage of the data
source. Therefore the designer of an aggregation process must take this interaction
into consideration. In other applications, however, raw data are pushed by the data
source, so fetching raw data is not the concern of the aggregation process. The aggre-
gated data may be stored persistently in some scenarios and are expected to survive
system failures, while in other scenarios they can only reside in the volatile memory.
As one can see in Table 1, the consistency of the data may depend on the time in
some DAP, while in others the data are static. A large variety of aggregate functions
have been applied in aggregation processes, depending on the requirements of the
particular application. The aggregation process itself may be scheduled periodically,
or triggered by ad hoc events. In time-critical systems, the aggregation processes have
strict timeliness requirements, while in some analytical systems with large amount of
data, the delays of the aggregation processes are tolerable. To design an appropriate
aggregation process, it follows that one must take these characteristics, as well as
their nature (necessity, optionality, etc) and their cross-cutting constraints, into con-
sideration. A designer could benefit from having a systematic representation of these
characteristics to ease the design, as well as support for facilitating feasible choices
of the involved characteristics. Therefore, we present a taxonomy based on these
characteristics as the systematic representation in the next section.

4 Our Proposed Taxonomy
Based on the characteristics revealed by our survey in Section 3, we have proposed a

taxonomy of data aggregation processes called DAGGTAX, which first appeared in
[10]. The taxonomy is shown in Fig. 3.

12

Simin Cai et al.

Table 1 Characteristics of Data Aggregation Processes in the Surveyed Applications

Example Raw Data Aggregate | Aggregated Data Triggering Deadline
Function Pattern
relational pulled from data sources; persis- | various possibly durable; | by events, or | usually no
disk-based tently stored; possibly shared functions possibly shared periodically
DBMS/DW
[58,42,12]
DSMS [1,48, | pushed by data sources; possibly | various pushed to receiver; | by events, or | depending
37] pushed periodically; not persis- | functions possibly durable; | periodically on the ap-
tently stored; real-time; possibly possibly maintained plication
shared; possibly shedded for a period
WSN [43,44]) pulled from data sources; not per- | various possibly maintained | by events, or | depending
sistently stored; possibly skipped functions for a period; pos- | periodically on the ap-
sibly durable; real- plication
time; possibly shared
Smart “X” [17, | possibly pulled from data sources; | various possibly maintained | by events, | depending
36,40,62,35, possibly persistently stored; pos- | functions for a period; possi- | sporadically on the ap-
53)) sibly skipped bly durable; possi- | or periodi- | plication
bly real-time; possi- | cally
bly shared
VigilNet [27], | pushed by data sources; not per- | confidence | pushed to receiver; | periodically hard
sensor layer sistently stored; real-time; pushed | function not durable
periodically
VigilNet [27], | pushed by data sources; not per- | average pushed to receiver; | by event soft
node layer sistently stored not durable
VigilNet [27], | pushed by data sources ad hoc | pushed to receiver; | by event soft
group layer function not durable
VigilNet [27], | pushed by data sources; persis- | regression | shared by event soft
base layer tently stored
VESPA [16] pushed by data sources various durable; shared by events soft
functions
Goud et al. | pulled from data sources; pulled | various not durable; real- | periodically hard
[22], EDR periodically; real-time; not persis- | functions time; shared
tently stored
Goud et al pulled from data sources; real- | various durable; real-time by events hard
[22], DDR time; not persistently stored functions
Arai et al. [3] pulled from data sources; not per- | various possibly durable by events no
sistently stored functions
Baulier et al. | pushed by data sources; persis- | various real-time; not | by events hard
[6] tently stored functions durable; shared
Bar et al. [5] pushed by data sources; persis- | various durable by events, or | soft
tently stored; possibly real-time functions periodically
Biir et al. [8] pushed by data sources; not per- | various not durable; real- | periodically hard
sistently stored; real-time; functions time
Lee et al. [39], | pushed by data sources; real-time various pushed to receiver; by events, or | soft
device functions not durable periodically
Lee et al. [39], | pulled from data sources; persis- | various possibly durable periodically soft
control tently stored functions
Lee et al. [39], | pulled from data sources; persis- | various possibly durable periodically soft
monitoring tently stored functions
Iftikhar [29] pulled from data sources; persis- | various durable; stored for | periodically soft
tently stored; stored for a period; | functions a period; possibly
possibly shared shared
DataDepot [21] | pulled from data sources; not per- | various durable; real-time by events depending
sistently stored; possibly shared; | functions on the ap-

real-time

plication

13

Data Aggregation Processes: A Survey, A Taxonomy, and Design Guidelines

|eAtayu|

|eAsqu|
Aupiea
anjosqy

(av)
awi]-jeay

sjuang

Q

J1posady

I

1poliad

s |

_ aulpeag _

ANI|-03-aul |

=

ulaned

(d) awiy-|eay Sunasdsu)

uoney

uoney

[ensaul Jodsues] uonew
Kupijen Jopsuesy
ainjosqy

paJons
Apuaisisiad

awiy-jeay

(ay)

2nsijoH

O
O

EIGINIEN
a1e21dng

ejeq
pa1esaussy

uonoung
21e82488y

{

$S920.4d
uonesa.dsy

\c

adAL

[«"Tl| eyeq mey

Ayjeurpied [uw)

|euondo nﬂ

aAnewIdl |y /AV\

Aiorepuepy ﬁ

Fig. 3 The taxonomy of data aggregation processes

14 Simin Cai et al.

In the following subsections, these features are discussed in details with concrete
examples. More precisely, the discussion is organized in order to reflect the logical
separation of features. We explain Fig. 3 from the top-level features under “Aggrega-
tion Process”, including “Raw Data Type”, “Aggregate Function” and “Aggregated
Data”, which are the main constituents of an aggregation process. Features that char-
acterize the entire DAP are also top-level features, including the “Triggering Pattern”
of the process, and “Real-Time (P)”, which refers to the timeliness of the entire pro-
cess. Sub-features of the top-level features are explained in a depth-first way.

Raw Data

One of the mandatory features of real-time data aggregation is the raw data involved
in the process. Raw data are the data provided by the DAP data sources. One DAP
may involve one or more types of raw data. The multiplicity is reflected by the cardi-
nality [1..*] next to the feature “Raw Data Type” in Fig. 3. Each raw data type may
have a set of raw data. For instance, a surveillance system has two types of raw data
(“sensor data” and “camera data”), while for the sensor data type there are several
individual sensors with the same characteristics. Each raw data may have a set of
properties, which are interpreted as its sub-features and constitute a sub-tree. These
sub-features are: Pull, Shared, Sheddable, and Real-Time.

Pull. “Pull” is a data acquisition scheme for collecting raw data. Using this scheme,
the aggregator actively acquires data from the data source, as illustrated in Fig. 4a.
For instance, a traditional DBMS adopts the pull scheme, in which raw data are ac-
quired from disks using SQL queries and aggregated in the main memory. “Pull”
is considered to be an optional feature of raw data, since not every DAP pulls data
actively from the data source. If raw data have the “pull” feature, pulling raw data ac-
tively from the data source is a necessary part of the DAP, including the selection of
data as well as the shipment of data from the data source. If the raw data do not have
the “pull” feature, they are pushed into the aggregator (Fig. 4b). In this case, in our
view the action of pushing data is the responsibility of another process outside of the
DAP. From the DAP’s perspective, the raw data are already prepared for aggregation.

We recognize several sub-features that are often involved in the pull of raw data.
An optional sub-feature is “Persistently Stored”, since raw data to be pulled from
data source may be stored persistently in a non-volatile storage, such as a disk-
based relational DBMS. The retrieval of persistent raw data involves locating the
data in the storage and the necessary I/O. The optional sub-feature “Locating” rep-
resents the locating of the raw data, to which a selection condition could be applied.
“Transformation” is an optional sub-feature regarding the necessity to transform
the raw data into a normalized form. The optional sub-feature “Transportation” in-
dicates the shipping of raw data from the data source. These aforementioned sub-
features of “pull” all contribute to the overhead in time and thus can influence the
timing properties.

Shared. Raw data of a DAP may be read or updated by other processes at the
same time when they are read for aggregation [29]. The same raw data may be ag-
gregated by several DAP, or accessed by processes that do not perform aggregations.
We use the optional “shared” feature to represent the characteristic that the raw data
involved in the aggregation may be shared by other processes in the system.

Data Aggregation Processes: A Survey, A Taxonomy, and Design Guidelines 15

1. request
Data |° Data raw data
Source Aggregator S > Aggregator
2. raw data ource
(a) Pull scheme (b) Push scheme

Fig. 4 Raw data acquisition schemes

Sheddable. We classify the raw data as “sheddable”, which is an optional feature,
used in cases when data can be skipped for the aggregation. For instance, in TAG [43],
the inputs from sensors will be ignored by the aggregation process if the data arrive
too late. In a stream processing system, new arrivals may be discarded when the
system is overloaded [1]. For raw data without the sheddable feature, every instance
of the raw data is crucial and has to be computed for aggregation.

Real-Time (RD). The raw data involved in some of the surveyed DAP have real-
time constraints. Each data instance is associated with an arrival time, and is only
valid if the elapsed time from its arrival time is less than its Absolute Validity Inter-
val. “Real-time” is therefore considered an optional feature of raw data, and “absolute
validity interval” is a mandatory sub-feature of the “real-time” feature. We name the
real-time feature of raw data as “Real-Time (RD)” in our taxonomy, for differenti-
ating from the real-time features of the aggregated data (“Real-Time (AD)”) and the
process (“Real-Time (P)”).

Raw data with real-time constraints are classified as “Hard”, “Firm” or “Soft”
real-time, depending on the strictness with respect to temporal consistency. They are
represented as alternative sub-features of the real-time feature. As we have explained
in Section 2, hard real-time data (such as sensor data from a field device [39]) and
firm real-time data (such as surveillance data [27]) must be guaranteed up-to-date,
while outdated soft real-time data are still of some value and thus can be used (e.g.,
the derived data from a neighboring node in VigilNet [27]).

MINT and MAXT. Raw data may arrive continuously with a MINimum inter-
arrival Time (MINT), of which a fixed arrival time is a special case. For instance, in
VigilNet [27], a magnetometer sensor monitors the environment and pushes the latest
data to the aggregator at a frequency of 32HZ, implying a MINT of 32.15 millisec-
onds. Similarly a raw data may have a MAXimum inter-arrival Time (MAXT). We
consider “MINT” and “MAXT"” optional features of the raw data.

Aggregate Function

An aggregation process must have an aggregate function to compute the aggregated
result from raw data. An aggregate function exhibits a set of characteristics that we
interpret as features.

Duplicate Sensitive. “Duplicate sensitivity” has been introduced as a dimension
by Madden et al. [43] and Fasolo et al. [20]. An aggregate function is duplicate sen-
sitive, if an incorrect aggregated result is produced due to a duplicated raw data. For
example, COUNT, which counts the number of raw data instances, is duplicate sen-
sitive, since a duplicated instance will lead to a result one bigger than it should be.
MIN, which returns the minimum value of a set of instances, is not duplicate sensi-

16 Simin Cai et al.

tive because its result is not affected by a duplicated instance. “Duplicate sensitive”
is considered as an optional feature of the aggregate function.

Exemplary or Summary. According to Madden et.al [43], an aggregate function
is either “exemplary” or “summary”’, which are alternative features in our taxonomy.
An exemplary aggregate function returns one or several representative values of the
selected raw data, for instance, MIN, which returns the minimum as a representative
value of a set of values. A summary aggregate function computes a result based on
all selected raw data, for instance, COUNT, which computes the cardinality of a set .

Lossy. An aggregate function is “lossy”, if the raw data cannot be reconstructed
from the aggregated data alone [20]. For example, SUM, which computes the sum-
mation of a set of raw data, is a lossy function, as one cannot reproduce the raw data
instances from the aggregated summation value without any additional information.
On the contrary, a function that concatenates raw data instances with a known delim-
iter is not lossy, since the raw data can be reconstructed by splitting the concatenation.
Therefore, we introduce “lossy” as an optional feature of aggregate functions.

Approximate. An aggregate function may generate an approximation, instead of
an exact result of an aggregation, especially when the raw data set is large, and the
time or computation resource is limited. We refer to such an optional feature as “Ap-
proximate”. For instance, Yun et al. [62] have applied approximate aggregate func-
tions to generate estimations used for the final aggregated value. The time spent by
the DAP is reduced thanks to the approximation.

Holistic or Progressive. Researchers have classified aggregate functions based
on whether or not the computation of aggregation can be decomposed into sub-
aggregations. Using this differentiating criteria, Lenz et al. [41] classify aggregate
functions as summarizable or non-summaraizable, and checks the semantic correct-
ness (summarizability) of the aggregation. Using the same criteria, Gray et al. [25]
and Madden et.al [43] classify them as holistic and non-holistic, when they analyze
the operational performance of aggregation with respect to response time. In this pa-
per, we inherit the classification terms from the latter (Gray et al. [25] and Madden et
al. [43]), since we focus on the timing constraints of DAP, while assuming the seman-
tic correctness of the aggregate functions. In DAGGTAX, an aggregate function can
be classified as either “progressive” or “holistic”. The computation of a progressive
aggregate function can be decomposed into the computation of sub-aggregates. In
order to compute the AVERAGE of ten data instances, for example, one can compute
the AVERAGE values of the first five instances and the second five instances respec-
tively and in parallel, after which the AVERAGE of the entire set can be computed
using these two values. The computation of a holistic aggregate function cannot be
decomposed into sub-aggregations. Such an example is MEDIAN, which finds the
middle value from a sequence of sorted values. The correct MEDIAN value cannot
be composed by, for example, the MEDIAN of the first half of the sequence together
with the MEDIAN of the second half.

Aggregated Data

An aggregation process must produce one aggregated result, denoted as mandatory
feature “Aggregate Data” in the feature diagram. Aggregated data may have a set of
features, which are explained as follows.

Data Aggregation Processes: A Survey, A Taxonomy, and Design Guidelines 17

Push. In some survey DAP examples, sending aggregated data to another unit
of the system is an activity of the aggregator immediately after the computation of
aggregation. This is considered as an active step of the aggregation process, and is
represented by the feature “push”. For example, in the group layer aggregation of
VigilNet [27], each node sends the aggregated data to its leading node actively. An
aggregation process without the “push” feature leaves the aggregate results in the
main memory, and it is other processes’ responsibility to fetch the results.

The aggregated data may be “pushed” into permanent storage [6,39]. “Locating”
and “Transportation” are optional sub-features, when these activities matter to the
timing properties. The stored aggregated data may be required durable, which means
that the aggregated data must survive potential system failures. Therefore, “Durable”
is considered as an optional sub-feature of the “push” feature.

Shared. Similar to raw data, the aggregated data has an optional “shared” feature
too, to represent the characteristic of some of the surveyed DAP that the aggregated
data may be shared by other concurrent processes in the system. For instance, the
aggregated results of one process may serve as the raw data inputs of another aggre-
gation process, creating a hierarchy of aggregation [1,27]. The results of aggregation
may also be accessed by a non-aggregation process, such as a control process [22].

Time-to-live. The “time-to-live” feature regulates how long the aggregated data
should be preserved in the aggregator. For instance, Aurora system [1] can be config-
ured to guarantee that the aggregated data are available for other processes, such as
an archiving process or another aggregate process, for a certain period of time. After
this period, these data can be discarded or overwritten. We use the optional feature
“time-to-live” to represent this characteristic.

Real-Time (AD). The aggregated data may be real-time, if the validity of the data
instance depends on whether its temporal consistency constraints are met. Therefore
the “real-time” feature, which is named “Real-Time (AD)”, is an optional feature of
aggregated data in our taxonomy. The temporal consistency constraints on real-time
aggregated data include two aspects, the absolute validity and relative validity, as ex-
plained in Section 2. “Absolute Validity Interval” and “Relative Validity Interval”
are two mandatory sub-features of the “Real-Time (AD)” feature.

Similar to raw data, the real-time feature of aggregated data has “Hard”, “Firm”
and “Soft” as alternative sub-features. If the aggregated data are required to be hard
real-time, they have to be ensured temporally consistent in order to avoid catastrophic
consequences [6]. Compared with hard real-time data, firm real-time aggregated data
are useless if they are not temporally consistent [27], while soft real-time aggregated
data can still be used with less value (e.g., the aggregation in the remote server [39]).

Triggering Pattern

“Triggering pattern” refers to how the DAP is activated, which is a mandatory feature.
We consider three types of triggering patterns for the activation of DAP, represented
by the alternative sub-features “Periodic”, “Sporadic” and “Aperiodic”.

A periodic DAP is invoked according to a time schedule with a specified “Period”.
A sporadic DAP could be triggered by an external “Event”, or according to a time
schedule, possibly with a “MINT” or “MAXT”. An aperiodic DAP is activated by
an external “event” without a constant period, MINT or MAXT. The event can be an
aggregate command (e.g. an explicit query [44]) or a state change in the system [6].

18 Simin Cai et al.

Real-time (P)

Real-time applications, such as automotive systems [22] and industrial monitoring
systems [39], require the data aggregation process to complete its work by a speci-
fied deadline. The process timeliness, named “Real-Time (P)”, is considered as an
optional feature of the DAP, and “Deadline” is its mandatory sub-feature.

DAP may have different types of timeliness constraints, depending on the conse-
quences of missing their deadlines. For a “Soft” real-time DAP, a deadline miss will
lead to a less valuable aggregated result [16]. For a “Firm” real-time DAP [39], the
aggregated result becomes useless if the deadline is missed. If a “Hard” real-time
DAP misses its deadline, the aggregated result is not only useless, but hazardous [8].
“Hard”, “firm” and “soft” are alternative sub-features of the timeliness feature.

We must emphasize the difference between timeliness (“Real-Time (P)”) and
real-time features of data (“Real-Time (RD)” and “Real-Time (AD)”), although both
of them appear to be classified into hard, firm and soft real-time. Timeliness is a
feature of the aggregation process, with respect to meeting its deadline. It specifies
when the process must produce the aggregated data and release the system resources
for other processes. As for real-time features of data, the validity intervals specify
when the data become outdated, while the level of strictness with respect to temporal
consistency decides whether outdated data could be used.

5 Design Constraints and Heuristics for Data Aggregation Processes

In this section, we formulate a set of design constraints and heuristics, following the
design implications imposed by the features. The design constraints are the axioms
that should be applied during the design. Violating the rules will result in infeasible
feature combinations. Design heuristics, on the other hand, suggest that certain mech-
anisms may be needed, either to implement the selected features, or to mitigate the
impact of the selected features.

5.1 Design Constraints

The real-time features of data and process are commonly desired features of DAPs
among real-time applications. Among these features there exist dependencies, which
should be respected when one is selecting and combining these features. In our pre-
vious work [11], we have formulated some of such dependencies as constraints in
propositional formulas, which can be checked by SAT solvers. However, in the de-
sign of real-time systems, many features have numeric attributes, and are not covered
by the existing constraints. For instance, deadlines and validity intervals are numeric
values in time units. The execution of aggregate functions, as well as the pull and
push of data, may have worst and best case response times, which can be specified
in the early stage. In this section, we advance the dependency check by proposing a
set of quantitative constraints for real-time properties, including timeliness of DAP,
as well as absolute data validity.

Let us assume that a DAP DAP; aggregates k raw data, denoted as RD}, -
RDF, whose AVI are RD}.avi, ..., RDE.avi, respectively. For a raw data RD!",

Data Aggregation Processes: A Survey, A Taxonomy, and Design Guidelines 19

the worst (best) case response time for pulling the data, if applicable, is Pull]™.wert
(Pull}™ .bert). The worst (best) case response time for D A P; to execute the aggregate
function is denoted as AF;.wert (AF;.bert). The worst (best) case response time
to push the aggregated data, if applicable, is denoted as Push;.wert (Push;.bert).
Further, we use DAP; — DAP; to denote the dependency that the aggregated data
of DAP; is used as raw data of DAP;.

5.1.1 Timeliness of DAP

For a real-time DAP, the worst case response time from the beginning of the DAP to
the generation of the aggregated value, denoted as W C' R1T}, can be calculated as:

WCRT; = summ=5{ Pull™ wert} + AF,.wert + Push;.wert.

In this calculation, the worst case delay is the summation of all overheads includ-
ing the pulling, aggregating and pushing data. Similarly, the best case response time
BCRT; can be calculated as:

BCORT; = sum™=k{ Pull™.bert} + AF;.bert + Push;.bert.

The deadline of the D A P;, denoted as Deadline;, should satisfy:
Deadline; > WCRT;.

5.1.2 Propagation of real-time data

Derivation of AVI. The AVI of D AP;, denoted as AD;.avi, can be derived by:
AD;.avi = min™=¥{RD™.avi — Pull™.wert — AF;.wert — Push;.wert}.

This is because the absolute validity of aggregated data is dependent on the absolute
validity of its raw data. When the aggregated data is generated, the raw data has
already aged for the amount of time spent on the pulling of raw data, execution of
the aggregate function, and pushing of the aggregated data. Therefore, the AVI of the
aggregated data should subtract these overheads from the AVI of the raw data.

Let us assume DAP; — DAP;, that is, the aggregated data AD; used as a real-
time raw data D7 . The AVI of RD} is equal to the AVI of AD;:

RD?.avi = AD;.avi.

Derivation of MINT/MAXT of raw data. Letus assume DAP; — DAP;. Given
the WCRT and BCRT of a sporadic or periodic DAP;, we can calculate the MINT
and MAXT of RD?, which are actually the minimum and maximum interval of two
instances of AD;, respectively.

Fig. 5 illustrates the MINT and MAXT of RD?, in case DAP; is a sporadic
process. The minimum interval occurs, when DAP; is triggered with its minimum
interval, and the first instance completes in its WCRT, while the second instance
completes in its BCRT. The maximum interval occurs, on the contrary, when D AP;
is triggered with its maximum interval, while the first and second instance complete
in its BCRT and WCRT, respectively. Therefore, we get the following equations:

20 Simin Cai et al.

DAPi.mint DAPi.mint
DAPi [WCRTi BCRTi time

RDj.mint ———»|

() MINT of RD?

Fi DAPi.maxt — ¢ DAPimaxt |

DAPi
BCRTi WCRTi time
[4— RDj.maxt —b‘

(b) MAXT of RD”

Fig. 5 Tllustration of MINT and MAXT of RD?

RD?Y.mint = DAP;.period — WCRT; + BCRT;.
RD? .maxt = DAP;.period — BOCRT; + WCRT;.

Similarly, to derive the MINT and MAXT of RD;L, in case of a periodic DAP;:

RD;I.mint = DAP;.mint — WC Delay; + BC Delay;.
RD?.maxt = DAP; maxt — BCDelay; + WC Delay;.

Worst case age of raw data. The worst case age of raw data RD} when the
aggregation completes, denoted as W' Age, can be calculated as the summation of
the MAXT of RD7 and the worst case response time of DAP;:

WC Age! = RD?.maxt + WCRT}.
To ensure that the data are still valid, the specification must satisfy the following:
WCAge] < RD?.avi.

5.2 Design Heuristics

Accomplishing the design of a DAP involves the design of appropriate supporting
run-time mechanisms. These mechanisms either achieve the selected features of the
DAP, or mitigate the impact of the selected features in order to ensure other proper-
ties of the system. Such properties could be, for instance, the logical data consistency
characterized by the ACID properties of the processes. In this subsection we intro-
duce a set of design heuristics, which are suggestions of mechanisms that could be
implemented in order to enforce certain features and system properties. The heuristics
are organized as suggested mechanisms as follows.

Synchronization for “pull” and “push” features. Pulling raw data from a data
source may involve locating the data source, selecting the data and shipping data into
the aggregator. Pushing aggregated data may involve locating the receiver and trans-
mitting the data. These activities introduce risks of delayed and missing data that may
breach the temporal and logical data consistency. Overheads in time and computation
resource are also introduced, which are impacting factors of the overall timeliness
of the process. When designing for such systems, one may consider developing a
synchronization protocol to mitigate such impacts and ensure the consistency.

Data Aggregation Processes: A Survey, A Taxonomy, and Design Guidelines 21

Indexing for “pull” and “push” features. Appropriate indexing of data can con-
siderably reduce the time to locate and fetch data. If data need to be pulled from
or pushed to a data storage, creating an efficient indexing mechanism can reduce
response times, hence improving timeliness and temporal data consistency.

Load shedding for “sheddable” feature combined with real-time features. Sit-
uations could occur when the DAP is not able to meet the real-time constraints, due
to, for example, system overload. If the raw data are sheddable, one may consider
implementing the load shedding mechanism [1], which allows raw data instances to
be discarded systematically.

Approximation for “sheddable” feature combined with real-time features. An
alternative mechanism for sheddable raw data is to implement approximation tech-
niques, with an “approximate” aggregate function. For example, Deshpande et al.
introduce an approximation technique into sensor network to improve the efficiency
of aggregation [18]. Instead of reading data from all sensors, the DAP only collects
raw data from some of the sensors that fulfill a probabilistic model.

Concurrency control for “shared” feature. An implication of shared data is the
concern of logical data consistency, which is a common consideration from concur-
rent data access. A certain form of concurrency control needs to be implemented
to achieve a desired level of consistency. For example, the aggregate process may
achieve full isolation from other processes, i.e., they can only see the aggregated re-
sult when the DAP completes, using serializable concurrency control [7]. To improve
performance or timeliness, one may choose a less stringent concurrency control that
allows other processes to access the sub-aggregate results of the DAP, which may
lead to a less accurate final result. Without any concurrency control, the aggregation
process may produce incorrect results using inconsistent data [26].

Logging and recovery for “durable” feature. In order to ensure the “durable”
aggregated data, logging and backward failure recovery techniques, which are com-
monly used to achieve durability in data management systems, may be applied to the
DAP. For example, the operations on the aggregated data are logged immediately, and
the actual changes are written into the storage periodically.

Filtering for “duplicate sensitive” aggregate functions. Using a duplicate sensi-
tive aggregate function indicates a higher risk of inconsistency caused by duplicated
values sent to the aggregator. A filtering mechanism may be implemented to identify
the duplicates and filter them away.

Caching for “lossy’ aggregate functions. Lossy aggregate functions disallow
the reconstruction of raw data from the aggregated data. However, raw data may be
needed to redo all changes when errors occur, in order to ensure the atomicity of a
process. A caching mechanism may be implemented for the DAP as a solution, that
raw data instances are cached in the aggregator until the process completes.

Decomposition of aggregation for “progressive’ aggregate functions. The im-
plication of using a progressive aggregate function is that one may decompose the
entire aggregation into sub-aggregates. Computing the sub-aggregates in parallel may
benefit the performance of the entire DAP. Another useful application of the decom-
position is error handling, especially when it is combined with a caching mechanism.
Consider an aggregate process fetching data from several sensors. The process can
perform aggregation upon the arrival of each sensor data and cache the sub-aggregate
result so far. If an error occurs during the fetching of next sensor, the process can

22 Simin Cai et al.

[Debugger Function] <:> ‘ Dedicated System Memory |

/\

| PTM Cluster Buffer l | STM Cluster Buffer l
/\
ardware 3} | tordwaren |
Instrumentation
Program Trace Macrocell (PTM) System Trace Macrocell (STM)

Fig. 6 General architecture of the Hardware Assisted Trace system

return the cached sub-aggregate result as an approximation [43], or only restart the
fetching of the failed sensor, instead of restarting the whole process.

Buffers for raw data and aggregated data. Raw data arrive in the aggregator
with their “MINT”, which could be different from the aggregation interval imposed
by the“triggering pattern”. Buffers may be necessary to keep the raw data available
for aggregation. Buffers may also be necessary for the aggregated data, since the ag-
gregated data are generated according to the “triggering pattern”, and must be avail-
able for a specified period defined by the “time-to-live” feature. Buffer management
is crucial for the accuracy of aggregation as well as the resource utilization. For in-
stance, circular buffer is a common mechanism in embedded systems for keeping
data in limited memory. When the buffer is full, the program will just overwrite the
old content with new data from the beginning. With the features presented in our
taxonomy, one may calculate the buffer size based on worst-case scenarios for non
sheddable data, or suffice buffer size for sheddable data, given the size of each data
1nstance.

6 Case Studies

In this section, we evaluate the usefulness of our taxonomy in aiding the design of
data aggregation via two industrial projects, in Section 6.1 and Section 6.2, respec-
tively.

6.1 Case Study I: Analyzing the Hardware Assisted Trace (HAT) Framework

In our first case study we apply DAGGTAX to analyze the design of the Hardware
Assisted Trace (HAT) [61] framework, together with the engineers from Ericsson.
HAT, as shown in Fig. 6, is a framework for debugging functional errors in an em-
bedded system. In this framework, a debugger function runs in the same system as the
debugged program, and collects both hardware and software run-time traces continu-
ously. Together with the engineers we have analyzed the DAP in their current design.
At a lower level, a Program Trace Macrocell (PTM) aggregation process aggregates
traces from hardware. These aggregated PTM traces, together with software instru-
mentation traces from the System Trace Macrocell (STM), are then aggregated by a
higher level ApplicationTrace aggregation process, to create an informative trace for
the debugged application.

Data Aggregation Processes: A Survey, A Taxonomy, and Design Guidelines 23

Aggregation Process
(PTM)

Aggregate Function
(Encoding)

Raw Data
(Branches)

Real-Time

(P)

Raw Data
(Exception)

Triggering
Pattern

Aggregated Data
(EncodedTrace)

Raw Data
(Ti

I
[rar] | | e] oo]| | oy] [(o] L] [Foerosc] [omdine] [5ot

Fig. 7 The aggregation process in the PTM

Aggregation Process
(ApplicationTrace)
Raw Data Raw Data Aggregated Data
(AggregatedPTMTrace) (AggregatedSTMTrace) (AggregatedTrace)
<« --s
Shared | [_Pull | [shared)
Pesistently Stored .+ [_Pesistently stored Holistic
:
Summary

Triggering Real-Time (P)

Pattern

Aggregate Function
(AnalysisFunc)

Aggregation Process

(PTM) (STM)

‘ Aggregation Process

Fig. 8 The aggregation processes in the investigated HAT system

We have analyzed the features of the PTM aggregation process and the Applica-
tionTrace aggregation process in HAT based on our taxonomy. The diagram of the
PTM aggregation process created using DAPComposer is presented in Fig. 7. Trig-
gered by computing events, this process pulls raw data from the local buffer of the
hardware, and aggregates them using an encoding function to form an aggregated
trace into the PTM cluster buffer. The raw data are considered sheddable, since they
are generated frequently, and each aggregation pulls only the data in the local buffer
at the time of the triggering event. The aggregated PTM and STM traces then serve
as part of the raw data of the ApplicationTrace aggregation process, which is shown
in Fig. 8. The dashed arrows represent the data flow between DAP. The Application-
Trace process is triggered sporadically with a minimum inter-arrival time, and aggre-
gates its raw data using an analytical function. The raw data of the ApplicationTrace
should not be sheddable so that all aggregated traces are captured.

Problem identified in the HAT design. With the diagrams showing the features of
the aggregation processes, the engineers could immediately identify a problem in the
PTM buffer management. The problem is that the data in the buffer may be overwrit-
ten before they are aggregated. It arises due to the lack of a holistic consideration on
the PTM aggregation process and the ApplicationTrace aggregation process at the de-
sign time. Triggered by aperiodic external events, the PTM process could produce a
large number of traces within a short period and fill up the PTM buffer. The Applica-
tionTrace process, on the other hand, is triggered with a minimum inter-arrival time,
and consumes the PTM traces as unsheddable raw data. When the inter-arrival time of
the PTM triggering events is shorter than the MINT of the ApplicationTrace process,
the PTM traces in the buffer may be overwritten before they could be aggregated by
the ApplicationTrace process. This problem has been observed on Ericsson’s imple-
mented system, and awaits a solution. However, if the taxonomy would have been
applied on the system design, this problem could have been identified before it was
propagated to implementation.

Solutions. Considering the resource-constrained nature of the system, we and Erics-
son engineers have come up with two alternative design solutions to fix this problem

24 Simin Cai et al.

Aggregation Process
(PTM)

Aggregation Process
(PTM)

Aggregated Data
(EncodedTrace)

Aggregated Data
(EncodedTrace)

Triggering
Pattern

Triggering
Pattern

Sporadic

Aggregation Process

Aggregation Process (ApplicationTrace)

(ApplicationTrace)

Triggering Pattern

(a) Solution 1 (b) Solution 2

Fig. 9 Illustration of the solutions. Unchanged features from the current design are marked in gray

based on the taxonomy. Both solutions reuse most of the features in the current de-
sign, and allow bounded buffer size.

Solution 1. To be able to derive the worst-case buffer size, one solution is to
ensure more predictable behaviors of the aggregation processes, by adjusting the fol-
lowing features in the diagram (see Fig. 9a): (i) Instead of selecting the “aperiodic”
feature, the PTM process should select “sporadic”, with a defined MINT; (ii) the
“sporadic” feature of the ApplicationTrace process should be replaced by “periodic”,
so that the frequency of consuming the aggregated PTM traces can be determined;
and, (iii) a “time-to-live” feature, whose value equals to the period of the Applica-
tionTrace process, should be added to the PTM process. These new features allow
the designer to analyze the worst-case production and consumption of the aggregated
PTM traces, and therefore derive the worst-case buffer size for the system. It also
ensures that all PTM traces are aggregated by the ApplicationTrace process.

Solution 2. An alternative is to allow overwriting in a controlled manner, as illus-
trated in Fig. 9b. On one hand, as in Solution 1, we suggest to replace the “aperiodic”
feature of the PTM process with “sporadic”, so that the worst-case buffer size for
PTM trace production can be determined. On the other hand, the triggering pattern
of the ApplicationTrace process remains unchanged (“sporadic’’). However, a “shed-
dable” feature from the taxonomy is added to the raw data of the ApplicationTrace
process, while a “time-to-live” is added to the PTM process. With the knowledge of
the worst-case production of the PTM traces, and the “time-to-live” value of each
trace, the designer is able to derive the needed buffer size.

Both solutions guarantee bounded buffers, while they require just a few features to
be changed, and mechanisms introduced accordingly in the current design. Compared
with Solution 2, which could lose traces, Solution 1 ensures all generated traces to
be aggregated. However, to enforce a periodic triggering pattern, more efforts are
required to provide real-time support, such as a real-time operating system.

6.2 Case Study II: Timing Analysis for a Brake-By-Wire System

We illustrate the analysis of high-level timing specifications during DAP design, via
a Brake-By-Wire (BBW) system [32]. A BBW system is part of an automotive sys-
tem that controls the torques for the wheels in case the brake pedal is pressed by the
driver. Both the wheel speed and the press of pedal are monitored by respective sen-
sors, and transmitted to the computer in the vehicle via network. The braking torque

Data Aggregation Processes: A Survey, A Taxonomy, and Design Guidelines 25

DAP
(GBC)

AggregatedData
(TorqueSpeed)

Real-Time

(P)

Aggregate Function
(GBCCalc)
(40ms)

Holistic
Transpor-

Triggering
Pattern

RawDataType RawDataType

(P)

Real-Time
(AD)

Aperiodic

Events
(PedalPress)

tation

Deadline
(50ms)

Fig. 10 DAP in the Global Brake Controller (GBC) of the BBW system

DAP
(ABS)

Aggr Data
(ABSTorque)

ggreg: tion
(ABSCalc)
(30ms)

Real-Time
(P)

RawDataType
(GBCSignal)

Triggering

RawDataType
Pattern

(WheelSensors)

Real-Time
(AD)

Push

(1.4 Wheelspeed | [[Torauespeed | (10ms)

‘ Aperiodic ‘

L
M Holistic

Transpor-
Summary tation
AVI Hard
(50ms)

Fig. 11 DAP in the Anti-lock Braking System (ABS) of the BBW system

Real-Time
(RD)

Real-Time

(RD) Events Deadline

(GBCSignal) (50ms)

is then calculated using these data, and sent to the actuator for braking. In order for
the braking to take place in the right moment and guarantee safety, stringent timing
requirements must be enforced on the DAP in the system. The processes must meet
their deadlines, while the data used by the calculations have to be fresh. Otherwise,
traffic accidents could occur. Therefore, validating the correctness of the DAP speci-
fications with respect to the timing properties is crucial.

We identify two essential DAP in this BBW system. The first DAP, presented
in Fig. 10, is performed in the Global Brake Controller (GBC). Triggered by the
press on the brake pedal, the GBC calculates the estimated vehicle speed and torque,
by aggregating the wheel speed from four wheel speed sensors, together with the
requested torque from the pedal sensor. The results of the GBC DAP are sent to the
Anti-lock Braking System (ABS) controller, which performs another DAP (Fig. 11)
that calculates the actual braking torque by aggregating the estimated vehicle speed
and torque, with the current wheel speed. DAGGTAX provides a structured way to
specify these DAP, especially their timing constraints, shown in Fig. 10 and Fig. 11.

In addition, we apply the formulas in Section 5.1 to check whether the specifi-
cation is consistent. By applying the calculation in Section 5.1.1, we obtain that the
worst-case response times of GBC-DAP and ABS-DAP are 50ms and 40ms, respec-
tively. Since their deadlines are both 50ms, this specification satisfies the timeliness
requirements. We also apply the formulas in Section 5.1.2 to calculate the validity
intervals and ages of the propagated data. One important piece of data is the wheel

26 Simin Cai et al.

speed. We calculate that the worst case age of the wheel speed data is 90ms during the
entire GBC and ABS DAP. Since the AVI of wheel speed is 100ms, we can conclude
that this specification satisfies temporal data validity for the wheel speed data.

6.3 Summary

We have implemented a tool called SAFARE (SAt-based Feature-oriented dAta ag-
gREgation design) [11] for the DAGGTAX-based specification of data aggregation
processes. SAFARE provides a graphical interface to selecting the features, and inte-
grates a SAT solver to check whether any design constraints are violated. In addition
to the aforementioned case studies, we have also applied DAGGTAX and SAFARE
to the design of a cloud-monitoring system [11].

The engineers in the evaluation acknowledge that our taxonomy bridges the gap
between the properties of data and the properties of the process, which has not been
elaborated by other taxonomies. Our taxonomy enhances the understanding of the
system by structuring the common and variable features of data aggregation pro-
cesses, which provides help in both identifying reusable DAP and constructing new
DAP. By applying analysis based on our taxonomy, design flaws can be identified
and fixed prior to implementation, which improves the quality of the system and re-
duces costs. Design solutions can be constructed by composing reusable features, and
reasoned about based on the taxonomy, which contributes to a reduced design space.

7 Related Work

Many researchers have promoted the understanding of data aggregation on various
aspects. Among them, considerable effort has been dedicated to the study of aggre-
gate functions. Mesiar et al. [46], Marichal [30], and Rudas et al. [52] have studied
the mathematical properties of aggregate functions, such as continuity and stability,
and discussed these properties of common aggregate functions in detail. A procedure
for the construction of an appropriate aggregate function is also proposed by Rudas
et al. [52]. In order to design a software system that computes aggregation efficiently,
Gray et al. [25] have classified aggregate functions into distributive, algebraic and
holistic, depending on the amount of intermediate states required for partial aggre-
gates. Later, in order to study the influence of aggregate functions on the performance
of sensor data aggregation, Madden et al. [43] have extended Gray’s taxonomy, and
classified aggregate functions according to their state requirements, tolerance of loss,
duplicate sensitivity, and monotonicity. Fasolo et al. [20] classify aggregate functions
with respect to four dimensions, which are lossy aggregation, duplicate sensitivity, re-
silience to losses/failures and correlation awareness. Jesus et al. [31] formally define
and characterize different types of aggregate functions, and also organize the relevant
techniques for aggregation as a taxonomy. Our taxonomy builds on such work that
focuses on the aggregate functions mainly, and provide a comprehensive view of the
entire aggregate processes instead.

Summarizability is important to the correctness of data aggregation, that is, the
selected aggregate function can yield the correct aggregated results from the tar-
get raw data [50]. To analyze summarizability, Lenz et al. [41] have classified raw
data into “stock”, “flow” and “value-per-unit”, based on the semantics of the raw

Data Aggregation Processes: A Survey, A Taxonomy, and Design Guidelines 27

data. They have also classified aggregate functions into “summarizable” and “non-
summarizable”, which is based on the same criteria as the “progressive” and “holis-
tic” categorization in DAGGTAX. Based on their classifications, conditions are pro-
posed to check the summarizability of the aggregation, that is, whether the aggregate
function is suitable for the raw data. For instance, an aggregation that generates the
total population of a state by adding up the populations of a list of areas is not sum-
marizable, if the list of areas is not complete. Niemi et al. [47] have further proposed
more aggregation types, as well as rules to detect their summarizability. These classi-
fications emphasize the semantics of data and the aggregate functions, and hence are
important for deciding the correct aggregate functions to achieve the desired goals
of data analysis. Our taxonomy, on the contrary, assumes that summarizability has
already been analyzed and achieved. Our work focuses on the next step, that is, to
design the process that performs aggregation using the decided aggregate function,
such that the steps of the aggregation process are well understood, and the desired
timing constraints can be satisfied.

A large proportion of existing work has its focus on in-network data aggregation,
which is commonly used in sensor networks. In-network aggregation is the process of
processing and aggregating data at intermediate nodes when data are transmitted from
sensor nodes to sinks through the network [20]. Besides a classification of aggregate
functions that we have discussed in the previous paragraph, Fasolo et al. [20] clas-
sify the existing routing protocols according to the aggregation method, resilience to
link failures, overhead to setup/maintain aggregation structure, scalability, resilience
to node mobility, energy saving method and timing strategy. The aggregation proto-
cols are also classified by Solis et al. [56], Makhloufi et al. [45], and Rajagopalan
[51], with respect to different classification criteria. A more recent work is proposed
by Pourghebleh and Navimipour [49], which classifies the data aggregation architec-
tures and mechanisms in the Internet-of-Things. In contrast to the aforementioned
work that focuses mainly on aggregation protocols, Alzaid et al. [2] have proposed a
taxonomy of secure aggregation schemes that classifies them into different models.
Sirsikar and Anavatti [55] have investigated and classified the common issues in in-
network aggregation. All the existing related work differ from our taxonomy in that
they provide taxonomies from a different perspective, such as network topology for
instance. Instead, our work strives to understand the features and their implications
of DAP and its constituents in design.

8 Conclusions and Future Work

In this paper, we have investigated the characteristics of data aggregation processes
in a variety of applications, with a particular focus on the real-time properties. The
survey has inspired a taxonomy of DAP called DAGGTAX, which presents the com-
mon and variable characteristics as features. The taxonomy provides a comprehensive
view of data aggregation processes for the designers, and allows the design of a DAP
to be achieved via the selection of desired features and the combination of the selected
features. In addition, a set of design constraints and heuristics have been proposed,
which can reduce the design space and guide the realization of the selected features,
so that the timing constraints can be satisfied. The usefulness of the taxonomy has

28 Simin Cai et al.

been demonstrated on two industrial case studies. Flaws can be identified at design
time, and solutions can be proposed at design level, by applying the taxonomy to the
analysis.

DAGGTAX covers all the constituents of a DAP (raw data, aggregate function,
and aggregated data), the activities in the general steps of a DAP, as well as timing
properties that are widely considered crucial for real-time data management. The spe-
cific activities that are involved in the DAP and have impact on the timing properties,
such as transportation and transformation of data, are also represented as features in
DAGGTAX. However, we cannot claim that DAGGTAX covers all possible features
of DAP in real-time applications, as some applications may include unique activities
within the DAP that greatly affect timing, or particular properties such as distribution
of triggering time are considered of special interest for some systems. In this case,
DAGGTAX can serve as a basis, as it includes the basic constituents and steps of
DAP, to develop an evolved feature model incorporating the particular features of the
special case.

Our taxonomy can be viewed as a framework for analyzing the dependencies
between features and between DAP. Our future work aims to derive more constraints
that can guide the design of DAP. In addition, a tool that automates the reasoning will
be useful for designers, which we have started in [11]. In the future, more advanced
analysis techniques, such as model checking and schedulability analysis, could be
integrated to detect conflicting features and provide guidance for trade-offs.

References

1. Abadi, D.J., Carney, D., Cetintemel, U., Cherniack, M., Convey, C., Lee, S., Stonebraker, M., Tat-
bul, N., Zdonik, S.: Aurora: A new model and architecture for data stream management. The VLDB
Journal 12(2), 120-139 (2003)

2. Alzaid, H., Foo, E., Nieto, JM.G., Park, D.: A taxonomy of secure data aggregation in wireless sensor
networks. International Journal of Communication Networks and Distributed Systems 8(1-2), 101-
148 (2012)

3. Arai, B., Das, G., Gunopulos, D., Kalogeraki, V.: Approximating aggregation queries in peer-to-
peer networks. In: Proceedings of the 22nd International Conference on Data Engineering. pp. 4242
(2006)

4. Babcock, B., Datar, M., Motwani, R.: Load shedding for aggregation queries over data streams. In:
Proceedings of the 20th International Conference on Data Engineering. pp. 350-361 (2004)

5. Bar, A., Casas, P, Golab, L., Finamore, A.: Dbstream: An online aggregation, filtering and processing
system for network traffic monitoring. In: Proceedings of the 2014 International Wireless Communi-
cations and Mobile Computing Conference. pp. 611-616 (2014)

6. Baulier, J., Blott, S., Korth, H.F,, Silberschatz, A.: A database system for real-time event aggrega-
tion in telecommunication. In: Proceedings of the 24rd International Conference on Very Large Data
Bases. pp. 680-684 (1998)

7. Botan, 1., Fischer, PM., Kossmann, D., Tatbul, N.: Transactional stream processing. In: Proceedings
of the 15th International Conference on Extending Database Technology. pp. 204-215 (2012)

8. Biir, K., Omiyi, P., Yang, Y.: Wireless sensor and actuator networks: Enabling the nervous system of
the active aircraft. IEEE Communications Magazine 48(7), 118-125 (2010)

9. Buttazzo, G.C.: Hard real-time computing systems: predictable scheduling algorithms and applica-
tions, vol. 24. Springer Science & Business Media (2011)

10. Cai, S., Gallina, B., Nystrom, D., Seceleanu, C.: Daggtax: a taxonomy of data aggregation processes.
In: International Conference on Model and Data Engineering. pp. 324-339. Springer (2017)

11. Cai, S., Gallina, B., Nystrom, D., Seceleanu, C., Larsson, A.: Tool-supported design of data aggrega-
tion processes in cloud monitoring systems. Journal of Ambient Intelligence and Humanized Com-
puting (Feb 2018)

Data Aggregation Processes: A Survey, A Taxonomy, and Design Guidelines 29

12.

13.

14.

15.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Chaudhuri, S., Dayal, U.: An overview of data warehousing and olap technology. SIGMOD Record
26(1), 65-74 (1997)

Czarnecki, K., Helsen, S., Eisenecker, U.: Formalizing cardinality-based feature models and their
specialization. Software process: Improvement and practice 10(1), 7-29 (2005)

Czarnecki, K., Helsen, S., Eisenecker, U.: Staged configuration through specialization and multilevel
configuration of feature models. Software Process: Improvement and Practice 10(2), 143—169 (2005)
Czarnecki, K., Ulrich, E.: Generative Programming: Methods, Tools, and Applications. Addison-
Wesley (2000)

. Defude, B., Delot, T., Ilarri, S., Zechinelli, J.L., Cenerario, N.: Data aggregation in vanets: The vespa

approach. In: Proceedings of the 5th Annual International Conference on Mobile and Ubiquitous
Systems: Computing, Networking, and Services. pp. 13:1-13:6 (2008)

. Demiris, G., Hensel, B.K.: Technologies for an aging society: a systematic review of 4AIJsmart home-

aAl applications. Yearbook of medical informatics 17(01), 33—40 (2008)

. Deshpande, A., Guestrin, C., Madden, S.R., Hellerstein, J.M., Hong, W.: Model-driven data acqui-

sition in sensor networks. In: Proceedings of the 13th International Conference on Very Large Data
Bases. pp. 588-599 (2004)

. Eichler, S., Merkle, C., Strassberger, M.: Data aggregation system for distributing inter-vehicle warn-

ing messages. In: Proceedings of the 39th Annual IEEE Conference on Local Computer Networks.
pp. 543-544 (2006)

Fasolo, E., Rossi, M., Widmer, J., Zorzi, M.: In-network aggregation techniques for wireless sensor
networks: a survey. IEEE Wireless Communications 14(2), 70-87 (2007)

Golab, L., Johnson, T., Seidel, J.S., Shkapenyuk, V.: Stream warehousing with datadepot. In: Pro-
ceedings of the 2009 ACM SIGMOD International Conference on Management of Data. pp. 847-854
(2009)

Goud, G., Sharma, N., Ramamritham, K., Malewar, S.: Efficient real-time support for automotive
applications: A case study. In: Proceedings of the 12th IEEE International Conference on Embedded
and Real-Time Computing Systems and Applications. pp. 335-341 (2006)

Graefe, G.: Query evaluation techniques for large databases. ACM Computing Surveys (CSUR) 25(2),
73-169 (1993)

Gray, J., Reuter, A.: Transaction Processing: Concepts and Techniques. Morgan Kaufmann Publishers
Inc., Ist edn. (1992)

Gray, J., Chaudhuri, S., Bosworth, A., Layman, A., Reichart, D., Venkatrao, M., Pellow, F., Pirahesh,
H.: Data cube: A relational aggregation operator generalizing group-by, cross-tab, and sub-totals. Data
Mining and Knowledge Discovery 1(1), 29-53 (1997)

Giirgen, L., Roncancio, C., Labbé, C., Olive, V.: Transactional issues in sensor data management. In:
Proceedings of the 3rd Workshop on Data Management for Sensor Networks. pp. 27-32 (2006)

He, T., Gu, L., Luo, L., Yan, T., Stankovic, J., Son, S.: An overview of data aggregation architecture
for real-time tracking with sensor networks. In: Proceedings of the 20th International Parallel and
Distributed Processing Symposium. pp. 8 pp.— (2006)

Hellerstein, J.M., Haas, P.J., Wang, H.J.: Online aggregation. SIGMOD Record 26(2), 171-182 (1997)
Iftikhar, N.: Integration, aggregation and exchange of farming device data: A high level perspective.
In: Proceedings of the 2nd International Conference on the Applications of Digital Information and
Web Technologies. pp. 14-19 (2009)

Jean-Luc, M.: Aggregation functions for decision making. In: Decision Making Process: Concepts
and Methods, chap. 17, pp. 673-721. Wiley-Blackwell

Jesus, P, Baquero, C., Almeida, P.S.: A survey of distributed data aggregation algorithms. IEEE Com-
munications Surveys & Tutorials 17(1), 381-404 (2015)

Kang, E.Y., Enoiu, E.P., Marinescu, R., Seceleanu, C., Schobbens, P.Y., Pettersson, P.: A methodology
for formal analysis and verification of east-adl models. Reliability Engineering & System Safety 120,
127-138 (2013)

Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, A.: Feature-oriented domain analysis
(foda) feasibility study. Tech. Rep. CMU/SEI-90-TR-021, Software Engineering Institute, Carnegie
Mellon University, Pittsburgh, PA (1990), http://resources.sei.cmu.edu/library/
asset-view.cfm?AssetID=11231

Kang, K., Kim, S, Lee, J., Kim, K., Shin, E., Huh, M.: Form: A feature-oriented reuse method with
domain-specific reference architectures. Annals of Software Engineering 5(1), 143—-168 (1998)
Karkouch, A., Mousannif, H., Al Moatassime, H., Noel, T.: Data quality in internet of things: A state-
of-the-art survey. Journal of Network and Computer Applications 73, 57-81 (2016)

Kitchin, R.: The real-time city? big data and smart urbanism. GeoJournal 79(1), 1-14 (2014)

30

Simin Cai et al.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

Krishnamurthy, S., Wu, C., Franklin, M.: On-the-fly sharing for streamed aggregation. In: Proceedings
of the 2006 ACM SIGMOD International Conference on Management of Data. pp. 623—-634 (2006)
Kulik, J., Heinzelman, W., Balakrishnan, H.: Negotiation-based protocols for disseminating informa-
tion in wireless sensor networks. Wireless networks 8(2/3), 169-185 (2002)

Lee, A.N,, Lastra, J.L.M.: Data aggregation at field device level for industrial ambient monitoring us-
ing web services. In: Proceedings of the 9th IEEE International Conference on Industrial Informatics.
pp. 491-496. IEEE (2011)

Lee, J.: Smart factory systems. Informatik-Spektrum 38(3), 230-235 (2015)

Lenz, H.J., Shoshani, A.: Summarizability in olap and statistical data bases. In: Proceedings of the 9th
Scientific and Statistical Database Management. pp. 132—143 (1997)

Lopez, LEV.,, Snodgrass, R.T., Moon, B.: Spatiotemporal aggregate computation: A survey. IEEE
Transactions on Knowledge and Data Engineering 17(2), 271-286 (2005)

Madden, S., Franklin, M.J., Hellerstein, J.M., Hong, W.: Tag: A tiny aggregation service for ad-hoc
sensor networks. ACM SIGOPS Operating Systems Review 36(SI), 131-146 (2002)

Madden, S.R., Franklin, M.J., Hellerstein, J.M., Hong, W.: Tinydb: An acquisitional query processing
system for sensor networks. ACM Transactions on Database Systems 30(1), 122-173 (2005)
Makhloufi, R., Doyen, G., Bonnet, G., Gaiti, D.: A survey and performance evaluation of decentral-
ized aggregation schemes for autonomic management. International Journal of Network Management
24(6), 469-498 (2014)

Mesiar, R., Kolesdrova, A., Calvo, T., Komornikovd, M.: A review of aggregation functions. In: Fuzzy
Sets and Their Extensions: Representation, Aggregation and Models, vol. 220, pp. 121-144. Springer
Berlin Heidelberg (2008)

Niemi, T., Niinimiki, M., Thanisch, P., Nummenmaa, J.: Detecting summarizability in olap. Data &
Knowledge Engineering 89, 1-20 (2014)

Oyamada, M., Kawashima, H., Kitagawa, H.: Data stream processing with concurrency control.
SIGAPP Applied Computing Review 13(2), 54-65 (2013)

Pourghebleh, B., Navimipour, N.J.: Data aggregation mechanisms in the internet of things: A sys-
tematic review of the literature and recommendations for future research. Journal of Network and
Computer Applications 97, 23-34 (2017)

Rafanelli, M., Shoshani, A.: Storm: A statistical object representation model. In: International Con-
ference on the 5th Scientific and Statistical Database Management. pp. 14-29. Springer (1990)
Rajagopalan, R., Varshney, P.: Data-aggregation techniques in sensor networks: A survey. IEEE Com-
munications Surveys Tutorials 8(4), 48—63 (2006)

Rudas, 1.J., Pap, E., Fodor, J.: Information aggregation in intelligent systems: An application oriented
approach. Knowledge-Based Systems 38, 3—-13 (2013)

Santana, E.F.Z., Chaves, A.P., Gerosa, M.A., Kon, F., Milojicic, D.S.: Software platforms for smart
cities: Concepts, requirements, challenges, and a unified reference architecture. ACM Computing
Surveys (CSUR) 50(6), 78 (2017)

Schweppe, H., Zimmermann, A., Grill, D.: Flexible on-board stream processing for automotive sensor
data. IEEE Transactions on Industrial Informatics 6(1), 81-92 (2010)

Sirsikar, S., Anavatti, S.: Issues of data aggregation methods in wireless sensor network: a survey.
Procedia Computer Science 49, 194-201 (2015)

Solis, I., Obraczka, K.: In-network aggregation trade-offs for data collection in wireless sensor net-
works. International Journal of Sensor Networks 1(3-4), 200-212 (2006)

Song, X., Liu, J.: How well can data temporal consistency be maintained? In: Proceedings of the 1992
IEEE Symposium on Computer-Aided Control System Design (CACSD). pp. 275-284 (1992)
Srivastava, D., Dar, S., Jagadish, H.V., Levy, A.Y.: Answering queries with aggregation using views.
In: Proceedings of the 22th International Conference on Very Large Data Bases. pp. 318-329 (1996)
Thiim, T., Késtner, C., Benduhn, F., Meinicke, J., Saake, G., Leich, T.: Featureide: An extensible
framework for feature-oriented software development. Science of Computer Programming 79, 70-85
(2014)

Vaisman, A., Zimanyi, E.: Data Warehouse Systems: design and implementation. Springer, 1st edn.
(2014)

Vitucci, C., Larsson, A.: Hat, hardware assisted trace: Performance oriented trace & debug system.
In: Proceedings of 26th International Conference on Software & Systems Engineering and their Ap-
plications (2015)

Yun, X., Wu, G., Zhang, G., Li, K., Wang, S.: Fastraq: A fast approach to range-aggregate queries in
big data environments. IEEE Transactions on Cloud Computing 3(2), 206-218 (2015)

