ESSES 2003

European Summer School on
Embedded Systems

Lecture Notes
Part IV

Low Power Systems:
Dynamic Voltage Scheduling

European Summer School on

Enbedded Systems

Jul 14 - Oct 10 2003
Vister8s Sweden

Editors: Ylva Boivie, Hans Hansson, Jane Kim, Sang Lyul Min

Visteras, July 21-25, 2003

M ISSN 1404-3041
ISRN MDH-MRTC-104/2003-1-SE

MALARDALEN REAL-TIME
RESEARCH CENTRE www.mrtc.mdh.se

ESSES 2003

European Summer School on
Embedded Systems

Lecture Notes
Part V

Low Power Systems:
Dynamic Voltage Scheduling

European Summer School on

Enbedded Systems

Jul 14 - Oct 10 2003
Vister8s Sweden

Editors: Ylva Boivie, Hans Hansson, Jane Kim, Sang Lyul Min

Visteras, July 21-25, 2003

M ISSN 1404-3041
ISRN MDH-MRTC-104/2003-1-SE

MALARDALEN REAL-TIME
RESEARCH CENTRE www.mrtc.mdh.se

Dynamic Voltage Scaling
for Hard Real-Time Systems

Jihong Kim

School of Computer Science & Engineering
Seoul National University, Korea

Dynamic Voltage Scaling
for Hard Real-Time Systems

Jihong Kim
School of Computer Science & Engineering
Seoul National University

ESSES 2003
Vasteras, Sweden

July 22, 2003

Course Organization

* Low-power systems 101
* Low-power binary encoding
* Power-aware compiler techniques
« Dynamic voltage scaling techniques
* OS-level DVS: Inter-Task DVS
* Compiler-level DVS: Intra-Task DVS
* Application-level DVS
—Low-power convolution

ESSES 2003
2003/7/22 (Jihong Kim) 2

Why Low Power?

Battery

Capacity

A

required

expected

ESSES 2003

year

2003/7/22 (Jihong Kim)

-Limited Battery Capacity

Why Low Power?

1000

100

Wattsicm®

-Heat Dissipation

Nuclear Reactor

Pentium Pro ® processor
{386 Pentium ® processor
i486

ESSES 2003
2003/7/22 (Jihong Kim)

150 i 0.7p 0.58 0.35% 0.254 0.18p 0138 0.18 0.67p

Power density getting worse

From F. Pollack

4

Low Power S/W Research

* Goal: Power-Aware Computing

Transistor/Circuit/Logic

ESSES 2003
2003/7/22 (Jihong Kim) s

Why S/W Techniques for Low Power?

* S/W techniques require no H/W modifications

* Many low-power H/W techniques require concurrent
engineering between H/W and S/W.

 Examples: DPM, DVS, ...

» Efficiency of S/W Techniques are Critical for
overall high energy efficiency

Algorithms
Applications

Operating Systems
Compiler

ESSES 2003
2003/7/22 (Jihong Kim) s

Power Consumption in CMOS

* Dynamic Power Consumption
* Charging and discharging capacitors
+ Short circuit currents

» Short circuit path between supply rails during
switching

 Leakage current
* Leaking diodes and transistors

ESSES 2003
2003/7/22 (Jihong Kim) 7

Dynamic Power Consumption

P =K x C,y X Vg2 x f

dynamic
K: activity factor

C..:: total chip capacitance

V442 supply voltage
f: clock frequency

ESSES 2003
2003/7/22 (Jihong Kim) 8

+ Dynamic voltage scaling techniques
* intraDVS
* interDVS
* Low-power convolution

ESSES 2003
2003/7/22 (Jihong Kim) ’

Low Power Binary Encoding

+ Switching activity reduction

« Switching activity can account for over 90% of
power dissipation of CMOS circuit.
[Chandrakasan ef al, ‘92]

+ Goal of Low power binary encoding

* Modify the binary encoding/representation so
that the switching activity is reduced.

* Target Areas:
—Op-code field
—Register field
—Bus

ESSES 2003 \
2003/7/22 (Jihong Kim) 0

Register Relabeling

+ Goal
* Assign register numbers to minimize the switching
activities in register field
’ ADD 1 (0001) ‘ 12 (0010) ‘ 13 (0011) ‘ 1> 12
r2->r2
’ suB ‘ r14 (1110) ‘ M3 (1101) ‘ 2 (1100) ‘ r3->r0
M2->r1
M3 ->r3
‘ MUL ‘ r3 (0011) ‘ r12 (1100) ‘ r3 (0011) ‘ r14 ->r8
. . . . ADD r12 (1100) ‘ r2 (0010) r0 (0000) ‘
Switching Activity ‘ ’ ‘
Above : 20bit
‘ SuB ‘ r8 (1000) ‘ r3 (0011) ‘ r1 (0001) ‘
Right : 6bit
‘ MUL ’ 10 (0000) ‘ 1 (0001) ‘ 10 (0000) ‘
ESSES 2003
2003/7/22 (Jihong Kim) "

Register Relabeling

* General Approach
» Collect the trace of register field usage information

« Construct the Register Field Transition Graph
(RFTG)

— Nodes: registers
— Edges: transitions

— Edge weights: relative frequency of
corresponding edges

* Find new register number assignment that
minimize the total bit changes.

ESSES 2003
2003/7/22 (Jihong Kim) 12

Problem Formulation

* Aregister field transition graph (RFTG)
« G=(V,Ew):V=V, vV,

mm

* Arelabeling function

* find £V, 2 Vi to minimize the following
cost metric

PG,)=
ZM(e)xh(f . f(m)+ Zm(e)xh(f W)+ Zu(e)xh(vl,f)

VoL ium V2 eVreg

where, w(e) is the weightof edge e

ESSES 2003
2003/7/22 (Jihong Kim) 13

Register Relabeling

« Alternatives:
« Mehta’s method: Immediate field not considered
« Woo’s method: Immediate field considered

Beg A
@09}

Total Switching activities

Imm
{114

Reg B
{01

100

1x100i+ 1%3 + 1x100=203

Mehta 2x%100 + 1x3 + 1x100=303

ESSES 2003 »
2003/7/22 (Jihong Kim)

Register Relabeling Heuristics

* Relabeling is a NP-hard problem

nC, possible choices for each pair of exchanging
candidates

+ Slack-based heuristic [Woo, '01]
Define slack value for each node (encoding)

slack(v,,v;) = lh(vi,vj) —1]’ we)

« Gree

ESSES 2003

Exchange the encoding between most promising
candidates until no more reduction is obtained from
exchanging encoding

dy method [Woo, ’01]

Exchange randomly but undo the exchange if no gain
is obtained from it

2003/7/22 (Jihong Kim)

15

Experiment (Switching Activity)

. Simu

* Resu

ESSES 2003

lation environment
SimpleScalar simulator is used
Benchmark
— SPEC95 int and SPEC95 fp
— UTDSP benchmark
— MPEG2 decoder with video only streams
It
% of switching activity

No relabeling | Mehta relabelling | New relabelling
S woneremen | 10| 0% | T |

applu 1.0 0.96 0.90
compress 1.0 0.96 0.89
gce 1.0 0.98 0.93
adpcm 1.0 0.93 0.92
histogram 1.0 091 0.87
turbo3d 1.0 0.96 0.93
Total average 1.0 0.94 0.89

2003/7/22 (Jihong Kim)

16

Experiment (Energy Reduction)

* Environment
* Target architecture : ARM7TDMI

* Measurement Tool : SES (SNU Energy Scanner)
board

ESSES 2003
2003/7/22 (Jihong Kim) 17

Experiment (Energy Reduction)

+ Effect of register relabeling at Instruction level

D/l Inst/Data Energy DAl Inst/Data Energy

€0222008 1011.946950
o1d380/8 1064.020688
o1dc00f8 906.189522
€0222008 1077.069527
o1d300fa 1062.568274
o1dcB0fa 944.328240
©0222098 1010.444222 Relabeling
e1d300fc 1065.396874

e1dcs0fc 899.009519 |:">

1 00288092 1100.673882
1

1

1

1

1

1

1

1

1 00222098 1083.144593
1

1

1

1

1

1

1

1

o1d3z0f8 997.394383
1dc00f8 941.629293
00288092 1055.144933
o1d300fa 982.343107
e1dc0fa 932.772563
00285092 1080.059544
01d200fc 1010.521764
e1dciOfc 922.440499
00288092 994.389910
e1d200fe 1002.936386
e1dc20fe 902.043706
00288092 1016.250972
o1d821f0 1006.228806
e1dc01f0 903.564458
60285092 992.725140
02838012 977.829571
01580004 1155.485459

01d300fe 1062.473957
e1dci0fe 950.174787
0222098 1088.944918
01d381f0 1052.254592
01dc01f0 928.342904
00222098 1075.622301
02833012 1068.433202
01520001 945.908777

e N N QN U U QO G U (i G e

ESSES 2003 Gk eneray s 460800 | otalenergy 4s653mi. |

2003/7/22 (Jihong Kim) 18

Experiment (Energy Reduction)

« Result
« Benchmark : TI C6000 Benchmark
—Up to 5% energy reduction

LARM llar(Mahta ralahelinal New Relabaling |
Vactor Max. 1 0978 0.975
| _Block MSE 1 0.993 0.981
Mini Error 1 1.028 0.950
LuR cascada ha 1 1.023 09968

BARM compiler
BMehta relabeling
ONew Relabalina

Vector Max Block MSE Minimun Error IIR cascade bq

ESSES 2003
2003/7/22 (Jihong Kim) 19

Related Work

* Register Relabeling

« Kandemir [Kandemir et al, ’00]

« Similar to Mehta

* Give more time efficient heuristics
 Low power opcode encoding [Kim et al, '99]

ESSES 2003
2003/7/22 (Jihong Kim) 20

Conclusion

Register relabeling with immediate values.
Energy reduction without H/'W modification

Energy reduction with simple modification of binary
codes

Energy reduction up to 5% in CPU

2

2

@

ESSES 2003
2003/7/22 (Jihong Kim) 21

References

B

Chandrakasan, T. Shyng, and R. W. Brodersen, “Low power
CMOS Digital Design”, IEEE Journal of Solid State Circuits,
1992

S. Kim, and J. Kim, “Opcode Encoding for Low Power
Instruction Fetch”, IEE Electronic Letters, 1999

H. Mehta, R. M. Owens, M. Irwin, R. Chen, and D. Ghosh,
“Techniques for Low Energy Software”, Proc of ISLPED, 1997

Ching-Long Su, Chi-Ying Tsui, and Alvin M. Despain, “Low
Power Architecture Design and Compilation Techniques for
High-Performance Processors”, Proc of COMPCON, 1994

M. Kandemir, N. Vijaykrishnan, M. J. Irwin, W. Ye, and I.
Demirkiran, “Register relabeling : A post-compilation
technique for energy reduction”, Proc of the Workshop on
Compilers and Operating Systems for Low Power, 2000

S. Woo, J. Yoon, and J. Kim, “Low-Power Instruction
Encoding Techniques”, Proc of SoC Design Conference, 2001

ESSES 2003
2003/7/22 (Jihong Kim) 22

. Dynamlc voltage scaling techniques
* intraDVS
* interDVS
* Low-power convolution

ESSES 2003
2003/7/22 (Jihong Kim) 23

Power-aware compiler techniques

(for VLIW processors)

* Many mobile devices are designed using V
processors for high performance, which usually
consume more power than single-issue processors.

/ instruction fetches

. A post-past optimization technique

* Reduce switching activities by rearranging
operatlons in each VLIW mstructlon

» Effective battery utlllzatlon depends on current
fluctuation

—Less fluctuation leads to longer battery
lifetime
* Reduce power fluctuation

ESSES 2003 i
2003/7/22 (Jihong Kim)

Operation Rearrangement in
VLIW Instruction Fetches

Basic idea

Instruction Cache

000101 0 100101 0 100110

1 14 it transitions

” "
1000111000000 1000111

£ 12 bit transitions

. 0 :)
100?11 1001100 100100 \
I 13 bit transitions
1010010100011

Ho00111
Total 39 bit transitions

W

(a) Before operation rearrangement

ESSES 2003
2003/7/22 (Jihong Kim)

Instruction Cache

00010108§1001010/10011008

{8 bittransitions
0001110481000111] 000000
1 10 bit transitions

0010008
§\; §\\§ i
1000111 9{)111 01901

£ 11 bit transitions
Total 29 bit transitions

L

(b) After operation rearrangement

The total # of bit changes are reduced by 25%

26

VLIW instruction encoding:
uncompressed

i s | 7 | o e et oo or
IADD /intl/

1 £0AD /el 100 | NOP |00 | NoP |LoaD [noP | noe |
| STORE WEN"/ B sus TmuL | NoP | NoP | Nop | NoP | Nor | NoP_
ymot 7oy [lo0 TNoP Top | wop | oP | Wop | Nor | e |

IADD /IntU*/
|| BEG /BruYy

[Nop | oo | o | rAoo | TLoAD] oP | nor
Aternative - ol so or | wor | Nor | wor | wor | vor
o0 Tor [wor [wor [wor | wor | oz | wor |

ESSES 2003

2003/7/22 (Jihong Kim) 27

VLIW instruction encoding:
compressed

Parallel bit
IADD |, FADD ,|LOAD .STORE | ISUB |, IMUL || IADD |,| BEG
|| FADD fff.f’,ﬁ;'ff i llilﬁla

| LOAD /'MemlU/ : >
i| STORE /" MEMU Y/ Instruction 1 Instruction 2 Instruction 3

=z . Possible choices = 4! 2! 2!
IMUL ZintUY

1ADD /intly
HBEG /Bri)/

FADD TOR IADD LOAD MUL ISUB BEG | | IADD
Alternative Epl Mem IntU Mem IntU IntU Bru IntU
encoding iy

Which encoding is the best for low-power consumption?

ESSES 2003
2003/7/22 (Jihong Kim)

28

Machine model

External Memory

on cache-miss.

OP
b _-bit oP Memory block is fetched from the main memory
width bus e through the b, -bit width instruction bus

Internal Cache
Because of the compressed encoding
b -bit format, several VLIW instructions are
w?é?ﬁ i;us fetched together in a single fetch
from the instruction cache.
VLIW A fetch packet consists of N operations,
Processor Core and b, = bacne/N
ESSES 2003 i

2003/7/22 (Jihong Kim)

Problem formulation

Problem

Solutions

ESSES 2003
2003/7/22 (Jihong Kim) 30

LOR problem

a is the load capacitance ratio of the external
instruction bus to the internal instruction bus.

SWf’ache is the number of bit changes at the

| instruction bus

B
SW, ., is the number of bit changes at the
external instruction bus.

ESSES 2003
2003/7/22 (Jihong Kim) 31

LOR problem

External Memory

SWgp™

i swmter

» SW » SW

Processor Core 7
SWB = st:;tra + stlnter

ESSES 2003
2003/7/22 (Jihong Kim) 32

cache

Solution for LOR

EQ(FP)

SWgp?

inter
SWFP

EQ(FPiB) : The set of equivalent fetch packets of FP?.

ESSES 2003

2003/7/22 (Jihong Kim) 33

Solution for LOR

+ We find the shortest
path from START to
END, which is the
solution of operation
rearrangement to
minimize the SWEB

* Anodev,, in graph
finds the node v,
through which the
shortest path from
START to the node v;,,
should pass.

ESSES 2003
2003/7/22 (Jihong Kim)

34

GOR problem

* All the basic blocks in a program are
simultaneously considered

* how many times each basic block is executed.

* how often each basic block experiences cache
misses.

« how basic blocks are related each other.

SWS = T TSW"(bb,bb)) + ZSW':*(bb;)

: SWi,;‘%e’ and SWge™ is represented by SWire",
SWr:'?, weight of each basic block, and cache
miss rate.

ESSES 2003
2003/7/22 (Jihong Kim) 35

Solution for GOR
=5

Graph

Construction {branch merging, woliion

This method may require an excessive amount of
memory and cycles.

We need a heuristic solution.

ESSES 2003
2003/7/22 (Jihong Kim) 36

Heuristic for GOR

* All the basic blocks are not equally treated.

+ Basic blocks with larger effects on the total
switching activity are more thoroughly
reordered than ones with smaller effects.

* Not all the equivalent basic blocks in EQ(bb,) are
tried to find an optimal solution.

* Only N_,,,equivalent basic blocks are created
and included in graph.

ESSES 2003
2003/7/22 (Jihong Kim) 37

TMS320C6201

- - e -

256-bit width 32-bit width

ESSES 2003
2003/7/22 (Jihong Kim) 38

Experimental results

B default
@) 0RrR
0 GOR-H

vector FIR8 IR lattice W_vec minerror average
multiply analysis
Benchmark Programs

For our benchmark programs, the bit transitions
was reduced by 34% on an average.

ESSES 2003
2003/7/22 (Jihong Kim) 39

Conclusion

* Described a post-pass optimal operation
rearrangement method for low-power VLIW
instruction fetch.

» The switching activity was reduced by 34% on
an average.

* Future works

* The phase-ordering problem between the
operation rearrangement and other compiler
optimization steps.

* Operation rearrangement problem in super-
scalar processors.

ESSES 2003
2003/7/22 (Jihong Kim) w0

Battery-Aware Modulo
Scheduling for VLIW Processors

Power Fluctuation

* In VLIW processors, power fluctuation
significantly depends on the parallel schedule
generated by compilers

+ Closely related to battery-lifetime

» As current fluctuation becomes larger, battery
lifetime becomes shorter
dulo scheduling

* Traditional power-unaware modulo scheduling

algorithm is modified so that the power
fluctuation is reduced

* No performance loss nor additional energy
consumption

ESSES 2003
2003/7/22 (Jihong Kim) 42

Power Fluctuation

Step power

Power

Cycle

* step power

+ differences in the instantaneous power
between consecutive cycles

* Inductive noise Ledi/dt (voltage glitch induced
at power/ground buses) = timing & logic errors

ESSES 2003
2003/7/22 (Jihong Kim) 43

Step-power Aware Compilation

* Programs spend most of the execution time in
loops

. Optlmlzmg compilers (for VLIWs) perform
ning to shorten the execution
tlme of loops

* The traditional power-unaware software pipelining
can be modified so that the power fluctuation is
reduced

* Quite effective in reducing the power fluctuation

* The compiler can fully control the usage of all
the FUs in a VLIW processor

ESSES 2003
2003/7/22 (Jihong Kim) “

VLIW machine model &

power model

« MIPS-like integer pipeline, UltraSPARC-like FPU
pipeline
« 8-issue VLIW model

* 1 integer ALU, 2 load/store unit, 1 integer
MPY/DIV

-« 2FP ALU, 2 FP MPY/DIV
+ 16-issue VLIW model : # of each FU is doubled

« Use instruction-level power model
* ignore inter-instruction effect
* The proposed algorithm can be easily extended to
work with more accurate power model

* does not depend on a particular power model

ESSES 2003
2003/7/22 (Jihong Kim) 45

Software pipelining

+ Aggressive fine-grained loop scheduling technique
* For VLIW processors (e.g., Intel I1A-64, Tl C6x, ...)

« Essentially, equivalent to retiming technique used
in VLSI synthesis

+ Overlaps the execution of multiple iterations in a
pipelined fashion

+ Modulo scheduling is one of the scheduling

algorithms for implementing software pipelining
ESSES 2003
2003/7/22 (Jihong Kim) "

Traditional modulo

scheduling formulation

« |l : the length of an iteration of parallelized loop body

» o(op,i) : execution cycle when the instance of operation op
in iteration i is begin to execute

» Periodicity constraint : o(op,i) = c(op,0) + 1l i

» Goal : find the minimum |l and a corresponding schedule
o(op,0) for each v subject to dependence constraint and
resource constraint

« o(0p1,2) = o(opl,0) +Ile2=1+6=7

ESSES 2003
2003/7/22 (Jihong Kim)

47

Power-aware modulo scheduling

* Our goal

Given the II (found by traditional MS algorithm),

find the schedule such that the power
consumption distribution is as flat as possible

* No performance loss; no additional energy
consumption

Traditional
power-unaware power-aware
schedule schedule

ESSES 2003
2003/7/22 (Jihong Kim) .

2003/7/22 (Jihong Kim)

schedule

Power-unaware
schedule

Power-aware

Cycle-by-cycle power dissipation

Power

Power

cycle

Power

No power
fluctuation

cycle

49

2003/7/22 (Jihong Kim)

Experiment setting

* Base algorithm

* Iterative Modulo Scheduling (I
MICRO’94]

* Outperforms most of other MS algorithms
Our power-aware algorithm : Balanced IMS (

[Rau,

Battery lifetime model [Pedram, DAC’99]

SPEC95 FP benchmark programs
SPARC-based VLIW testbed [Moon, MICRO’97]
8 & 16-issue VLIW

50

Power distribution for 8-issue

VLIW

20% r
18%
16% 77 IMS
14% N BIMS
: = IMS-CDF
12% — BIMS-CDF

10% -

8% r

percentage of cydes

6% |) &t .
4% |

2%

0%

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

normalized power

Battery lifetime: 28% increased

ESSES 2003
2003/7/22 (Jihong Kim)

1 80%

1 60%

1 40%

1 120%

4 100%

percentage of cydes

1 20%

0%

51

Power distribution for 16-issue

VLIW

25%

20%

2 IMS

N BIMS

e IMS-CDF
— BIMS-CDF

15%

10% -

peroentage of cydes

5%

- .

i o .
0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

0%
normalized power

Battery lifetime: 31% increased

ESSES 2003
2003/7/22 (Jihong Kim)

7 120%

1 20%

0%

52

Conclusion

* Quite effective in reducing the power
fluctuation

* The compiler can fully control the usage of
all the FU in a VLIW processor

« Battery lifetime increases significantly
* 29% for 8-issue VLIW
* 31% for 16-issue VLIW

ESSES 2003
2003/7/22 (Jihong Kim) 53

References

* D. Shin and J. Kim, “Operation Rearrangement for Low Power
VLIW Instruction Fetch”, Proc of DATE, 2001

¢« H.-S. Yun and J. Kim, “Power-Aware Modulo Scheduling for
High-Performance VLIW Processors”, Proc of ISLPED, 2001

ESSES 2003
2003/7/22 (Jihong Kim) s

* interDVS
* Low-power convolution

ESSES 2003 s
2003/7/22 (Jihong Kim)

Voltage, Frequency & Energy

Voltage

ESSES 2003 55
2003/7/22 (Jihong Kim)

DVS 101

" 2
E o Ncycle VDD
Power Deadline
5.0 (a) No * 12.5x108 cycle
power-down < 5.0V
> * 31.25J
25
5.02 (b) Power-down + 5x108 cycle
* 5.0V
> b 12.5J
10 25
(c) Dynamic * 5x108 cycle
20MHz voltage « 2.0V
2.02 scaling «2.0J
25| Time
ESSES 2003
2003/7/22 (Jihong Kim) 57

Key Issues for successful DVS

« Efficient Detection of Slack/ldle Intervals
« Efficient Voltage Scaling Policy for Slack Intervals

slack
interval

HOW to detect vvvvvvvvvvvvvv HOW to Scale Voltage

ESSES 2003
2003/7/22 (Jihong Kim) 58

Commercial DVS Processors

* Transmeta Crusoe

* AMD K2+ (PowerNow Technology)
* Intel SpeedStep

+ XScale

ESSES 2003
2003/7/22 (Jihong Kim) 59

Voltage Scaling Processors

Commercial Academic

Transmeia AMD

. intel UC Berkely Ubicom
Processors Crusoe Mobile K6

PXAZED (ARMB) LART(SIongARM)
{Longkun) (Powerlow)

200-700MH, | 192-B8BMH, 100-400MHy 5-80MHL b9-h 1ML

Scaling Level
g 11168y 0920y 0851 5y 1238y 079-1 65y

99,201 MH> 14008
079 168y 40us
079« 165V 55me

11 ¢ 1B8Y 09¢,20V Eachslen 12 38¢

Scaling Time
< 300us 200 500us H20us

Scaling Power . 2 . 1301 .

ESSES 2003
2003/7/22 (Jihong Kim) o0

DVS in XScale

* Use Two Registers in PXA250 Xscale Core
* CCCR (Core Clock Configuration Register):
— Specify memory clock & core clock

* CCLKCFG (Core Clock Configuration) Register

—Set FCS (Frequency Change Sequence) bit to
change the clock speed

CP14 register 6 : CCLKCFG

T

Change if FCS bit = 1

ESSES 2003
2003/7/22 (Jihong Kim)

0x41300000 : CCCR

o
995 | .8sv| | |
118.0 F
132.7 e
147.5 | 1.0V \\\\\\\\\\\\
o B e e e
199.1 298.6 | 1.1V | 398.1 L
235.9 \\\\\\\\\\\\\\\\\\\\\\\\\\\
2satav) | 0 F 0 1]
204.9 -
g A 3 R R .

2003/7/22 (Jihong Kim)

AlWIN~lO | PO |IN| =] =

NININININ (A =

Ex) DVS on PAX250

i
i i
i
E 1 | #include <machine/pmu.h> void Main(void)
P2 i #include <machine/cpl4.h> {
E 3 i int i, bb, cc, j;
| 4 ! int thread_args[3] = {0, 1, 2};
o5] for (k=1; k<13 ; k++) {
E b ! void change_clock_speed(k) ;
E 7 i change_clock_speed(int speed) bb = get_os_time();
Esi{ for (i =0 ;1 <10000 ; i++) j = 10;
£ 9 i int settings[20]={ O, Ox121, O0x122, Ox123, 0x124, 0x125, Oxla2, cc = get_os_time();
E 10 | 0x141, Oxla4, 0x142, Oxla5, 0x143, Ox144, 0x145 }; printf("%d : %d \n", k, cc - bb);
i 11 § int cccr_val = 0x121, clkcfg_val = 2; }
P }
E 13 i ccer_val = settings[speed];
£ 14 1 switch (speed) {
E 15 | case 6 : clkcfg_val = 3; break;
{18 ! case 8 : clkcfg_val = 3; break;
E 17 | case 10 : clkcfg_val = 3; break;
i 18 i default : clkcfg_val = 2; break;
P19 i }
| 20 | mencpy(0x40000000+0x1300000, &cccr_val, 4);
P21 CP14_WRTIE_CCLKCFG(clkcfg_val);
E 2 |
.
1in

E iz g %et_os_t'ime()
i i
E 27 i int ostime;
P2
E 25 i memcpy (&ostime, 0x40000000+0xa00010, 4);

30 1 return(ostime);
i3 iy
|
i i
B

ESSES 2003
2003/7/22 (Jihong Kim) s

DVS Outline

* DVS for Real-Time Systems
* Intra-task DVS design techniques
* Inter-task DVS design techniques
« DVS-aware algorithm development

ESSES 2003
2003/7/22 (Jihong Kim) o

Non Real-Time Jobs

* Non Real-Time Jobs
* No timing constraints
* Non-periodic execution
* Unknown WCET

It is hard to predict the future workload!!

ESSES 2003
2003/7/22 (Jihong Kim) 65

DVS for Non-Real-Time Jobs

» Usually based on Interval Scheduler

. PAST, FLAT
- LONG_SHORT, AGED_AVERAGE
- CYCLE, PATTERN, PEAK

ESSES 2003
2003/7/22 (Jihong Kim) o6

Major Issues

How can we predict the future ?

» Based on long term history:
Hard to adapt quickly for the changed workload

» Based on short term history:
Too many clock/voltage changes

ESSES 2003
2003/7/22 (Jihong Kim) 67

PAST

* Looking a fixed window into the past

* Assume the next window will be like the previous
one

 If the past window was
* mostly busy = increase speed
* mostly idle — decrease speed

ESSES 2003 .
2003/7/22 (Jihong Kim) 8

Example - PAST

busy time

Utilization = — -
window size

PAST FUTURE

; fime
low utilization l low utilization l ?
Decrease Decrease
speed speed
ESSES 2003
2003/7/22 (Jihong Kim) 69

FLAT

+ Try to smooth speed to a global average

« Make the utilization of next window to be <const>

» Set speed fast enough to complete the predicted
new work being pushed into the coming window

ESSES 2003
2003/7/22 (Jihong Kim) 70

Example - FLAT

<Const>=0.7

ESSES 2003
2003/7/22 (Jihong Kim)

fime

4l

LONG-SHORT

* Look up the last 12 windows
« Short-term past : 3 most recent windows
* Long-term past : the remaining windows

* Prediction

« the utilization of next window will be a weighted
average of these 12 windows’ utilizations

ESSES 2003
2003/7/22 (Jihong Kim)

72

Example — LONG-SHORT

utilization = # cycles of busy interval / window size
o 3 5 1 1 1 8 5 3 1 0 0

0+3+.5+1+1+1+.8+.5+.3+4(.1+0+0) current
=0.276 time
9+4(3)

‘fclk = 0276 x fmax

ESSES 2003
2003/7/22 (Jihong Kim)

AGED-AVERAGE

+ Employs an exponential-smoothing method

* Prediction

* The utilization of next window will be a weighted
average of all previous windows’ utilization

—geometrically reduces the weight

ESSES 2003
2003/7/22 (Jihong Kim)

Example —- AGED AVERAGE

utilization = # cycles of busy interval / window size
,0 3 5 1 1 1 8 5 3 1 0 0

0 1 2 3 4 5 6 7 8 9 10 11 12

10 20 4 0.1 8 03 current
=—0+=0+—(0.)+—(0.3) +--- ti
average 3075 27() 81() ime

fop =averagex f.

ESSES 2003
2003/7/22 (Jihong Kim) 75

CYCLE

* Prediction

« Examine the last 16 windows
—Does there exist a cyclic of length X?
—If so, predict by extending this cycle
— Otherwise, use the FLAT algorithm

ESSES 2003
2003/7/22 (Jihong Kim) 76

ESSES 2003
2003/7/22 (Jihong Kim) 77

Example - CYCLE

utilization = # cycles of busy interval / window size
,0 4 8 1,3 5 7 .0,

time
current
time
errormeasur:|0_'3|+|'4_'5|Z|'8_'7|+|'1_0| 015
Predict : The next utilization will be .3

ESSES 2003
2003/7/22 (Jihong Kim) 78

PATTERN

+ Generalized version of CYCLE

* Prediction

e Convert the n-most recent windows’ utilization
into a pattern in alphabet {A, B, C, D}.

* Find a same pattern in the past

- Set the speed based on the prejudication

ESSES 2003
2003/7/22 (Jihong Kim) 79

Example - PATTERN

A B C D
I T T S

0 025 05 725 10

Pattern= ABCD Pattern= ABCD
. 0 3 5 1 1 1 35 6 9

R ——) (/7)€
1 2 3 4 4 8 9 10 11 12

. 5 g , current
Predict : The next utilization will be D time
ESSES 2003

2003/7/22 (Jihong Kim) 80

DVS Outline

* DVS for Non-Real Time Systems
eal-Tir
* Intra-task DVS deS|gn techniques
* Inter-task DVS design techniques
« DVS-aware algorithm development

ESSES 2003 o
2003/7/22 (Jihong Kim)

Two Types of DVS Algorithms

» Inter-task DVS algorithms

* Determine the supply voltage and clock speed
on task-by-task basis

* Intra-task DVS algorithms

* Determine the supply voltage and clock speed
within a single task boundary

ESSES 2003 02
2003/7/22 (Jihong Kim)

Related Work : Inter-task DVS

¢ Inter-Task Voltage Scheduling for Hard Real-Time
Systems [Ya095, Hong98, Okuma99, Shin99, Lee99].

n : Given a set of tasks, how to assign the
proper speed to each task dynamically while
guaranteeing all their deadlines.

» Task-by-task Speed Assignment

— The slack time due to a task used by following
tasks, not by the current one.

* Practical Limitations
— Requires OS modifications

— Cannot be applied to a single-task environment
— Can be ineffective in a multi-task environment

ESSES 2003
2003/7/22 (Jihong Kim) 83

An Example of Ineffective Inter

<= Dominant task

slack

0 2 4 6 8 0 2 4 6 8
offline schedule Run-time schedule
¢ A dominant task (C)

e Exploits small slack times from other tasks.
e Cannot use its own.

ESSES 2003
2003/7/22 (Jihong Kim) 84

Related Work : Intra-task DVS

¢ Run-time voltage hopping [Lee00]
e Each task is partitioned into N timeslots.
¢ Frequency and voltage determined for each timesiot.
¢ Voltage scheduling embedded in application programs.
e Can be applied to conventional nion-DVE OS.
— No systematic guideline
— Manual selection of scaling points

— Too much burden for average programmers

T Task (partitioned into 4 timeslots)

deadﬁne

ESSES 2003

2003/7/22 (Jihong Kim) 85

Overview

¢ A novel intra-task voltage scheduling framework
based on a static timing analysis of RT programs.
e The clock speed is adjusted ir1 a task by embedded codes.

Fully exploits aii slack times coming from execution time
variations within a single task

No OS modification
Applicable to a single-task environment.

Provides a systematic methodology for developing DVS-
aware programs

= Automatic Voltage Scaler Tool

ESSES 2003
2003/7/22 (Jihong Kim)

Basic Ildea : Inter-task DVS

task t
(WCEC,Deadline) = (160 cycles, 2usec)

32 different execution paths (p,,P3)

The task completes
its execution at

deadline
7
WCEP —~— .
ESSES 2003 Non-WCEP : there is a slack time
2003/7/22 (Jihong Kim) 87

Basic Idea : Optimal DVS

task 1
(WCEC,Deadline) = (160 cycles, 2usec)
32 ditterent execution paths (p,,P3))

WCEP

Non-WCEP : there is no slack time

But we cannot know the execution path in advance [l

ESSES 2003
2003/7/22 (Jihong Kim) s

Basic ldea : Intra-task DVS

CFG

ESSES 2003
2003/7/22 (Jihong Kim) 89

Remaining Execution Cycle

program CFG [160]— Cawec(by) : the remaining
worst case execution cycles

[150,110,70,30]

[1X0,100,60]

Maximum #
of loop
iterations = 3

C..(b) : the # of clock
cycles needed to execute b,

ESSES 2003
2003/7/22 (Jihong Kim) 920

[10] [120,80,40]

Speed Assignment Algorithm

¢ Branching edges
are candidate for
speed changes :

e Branches : The (150—30)
execution control
follows the shorter
path at if-then-eise 307
node. => B-type VSEs

e Loops : The
execution control
exits a loop after it
iterates by the
smaller number of
times than the
maximum iteration
number. => L-type
VSEs

ESSES 2003
2003/7/22 (Jihong Kim)

[160]

[150,110,70,30]

1140,100,60]

[120,80,40]

91

The Effect of Intra-Task

80MHz |
2.5v) | deadline

idle state

0.44 psec 2 usec
(a) without the intra-task scheduling

(b) with the intra-task scheduling 2 psec

Energy Consumption of (b

f(
Energy Consumption of (a

ESSES 2003
2003/7/22 (Jihong Kim)

deadline
(&) 01

) =
) 0.34

92

The Change of Crywec

Cruec(t) (cycles)
N

100F ~.....'.'- 80MHz

. desclive

1 |
0 1 2 time

(usec)

execution time idle time

essebahMo intra-task scheduling
2003/7/22 (Jihong Kim)

100

50

ec(t) (cycles)
N,
- '...._".. 80M H V4
i 16MHz .
. deadline

......

.,
P - TP

1 2 time
(usec)

execution time

(b) Intra-task scheduling

93

B-type VSE

e Speed
® S(bj) & S(bl) X 1/58

I

Speed updalte ratio

ESSES 2003
2003/7/22 (Jihong Kim)

94

L-type VSE

¢ When the actual loop
iterations measured at run

time is 2
EZ%Q;EE{}??@,&}E

@ CRWEC

¢ oV —
e Speed

" S(by) < Sl x 73 20

] Maximum # of
loop iterations = 3
Speed update rafio

= The transition overhead is considered to determine a new speed.

ESSES 2003
2003/7/22 (Jihong Kim) 95

VSE Selection

M = Max Speed x D

ESSES 2003 -

2003/7/22 (Jihong Kim) 96

Code Generation for VSEs

ESSES 2003
2003/7/22 (Jihong Kim) 97

Automatic Voltage Scaler

ESSES 2003
2003/7/22 (Jihong Kim) 98

Simulation Results

=&-MPEG4 encoder ~#—MPEG4 decoder

normalized energy consumption

0 50 100 150 200
voltage transition time (Ksec)

+ Less than 25% and 7% of the original program

+ There is a large difference between WCET and ACET of
the MPEG-4 decoder

ESSES 2003
2003/7/22 (Jihong Kim)

99

Simulation Results

—&— MPEG4 encoder ~*~ MPEG4 decoder

0 50 100 150 200
voltage transition time (Ksec)

¢« How many times voltage scaling code were executed

increase rapidly.
* How many copies of voltage scaling code ?

e 20 VSEs are inserted when C,,;o > 50 psec.
ESSES 2003
2003/7/22 (Jihong Kim)

* When C,;, < 30psec in MPEG-4 encoder, the number of voltage
transitions decreases sharply, and energy consumption does not

100

A Profile-Based Intra-Task

¢ IntraVS algorithm based on average-case execution
information

* Average-case execution paths (ACEPs) are the most
frequently executed paths

e More effective than the original intraVS algorithm

¢ The timing constraints of a hard real-time program
is still satisfied, even if the ACEPs are used for
voltage scaling decisions.

ESSES 2003
2003/7/22 (Jihong Kim) 101

General IntraVS Algorithm

predicted reference

prediction miss

raised lowered

ESSESS0 "
2003/7/22 (Jihong Kim) o

RAEP-based IntraVS

¢ Motivations

e To make the common case more energy-
efficient

¢ If we use one of hot paths as a reference path
for intraVS, the speed change graph for the hot
paths will be a near flat curve with little changes
in clock speed.

e Even for the paths that are not the hot paths,
they are more energy-efficient because they can
start with a lower clock speed that RWEP-based
IntraVs.

e RAEP is the best representative of the hot
paths.

ESSES 2003
2003/7/22 (Jihong Kim) 103

RAEP-based IntraVS

Craec(b,) : the remaining
average case execution cycles

[95]—

Frequently executed path

[25] [85,55,25]

[75,45]

average # of loop
iterations = 2

[65,35] -
ESSES 2003

2003/7/22 (Jihong Kim) 104

[15]

[10]

RAEP-based IntraVS

80MHz (2.5V) deadline
16MHz (0.7V)
2
(a) with the RWEP-based IntraVS hsee
b, deadline
47.5MHz (1.35V) b, b, bs b, |

2 usec

(b) with the RAEP-based IntraVS

¢ There are Up-VSEs as well as Down-VSEs at the RAEP-based
IntraVs.

» The RAEP-based IntraVS achieves 55% more energy reduction.
¢ But, the deadline can be missed.

ESSES 2003
2003/7/22 (Jihong Kim) 105

Reference Path Modification

-~ r=1.43

[10]

Deadline : 0.5usec

M-RAEP deadiine IEE%
B ™ {00M Rz
i 1 :
RWEP I S vamansnsansesasassesasas]
RAEP RAEP
ESSES 2oope? th (b;,bs,bs) Path (b,,b;,b,)

2003/7/22 (Jihong Kim) 106

Experimental Results

0.3 T T T T T

T T T T
Modified RAEP-based —+—
RWEP-based --<--

025 . T

o
02 i

Nomalzed Energy Consumption

0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1.0
Slack Factor

Slack Factor = (deadline-WCET)/deadline

ESSES 2003
2003/7/22 (Jihong Kim) 107

Conclusion

* Presented a novel intra-task DVS algorithm using
static timing analysis on RWECs

e Provides a framework for automatic DVS-aware low-
power program generation

e The RAEP-based IntraVS algorithm exploits the fact
that the average-case execution paths are more
likely to be followed at run time than the WCEP.

¢ Demonstrated the effectiveness of the approach
using MPEG-4 encoder/decoder programs

ESSES 2003
2003/7/22 (Jihong Kim) 108

Experiments on Itsy

ESSES 2003
2003/7/22 (Jihong Kim) 109

Experimental Environment

¢ Itsy Pocket Computer V2.6
* CPU : Intel StrongARM SA1110

* Frequency scaling: 11 levels (59.0 MHz ~ 206.4
MHz)

» Voltage scaling: 30 levels (1.00 V ~ 2.00 V)
Default setting: 1.55 V/206.4 MHz
+ Linux operating system (ver. 2.0.30)

coding
Computer

ESSES 2003
2003/7/22 (Jihong Kim) 110

Experimental Results

DVS EXPERIMENTS ON ITSY.

MPEG-4 Decoder MPEG-4 encoder
Factors II DVSaware | 1o DVS-aware | normal
Normslized Hm:rg B.3UB62) i 5.35{3.45) i
FEXecution Time ($ec) TI% T35 534 1.5
{se¢) kX 218

" Selected B-VIE 3 1
Vi3Es L-VSE 1]
Fanetion 7 3
Code Loop 3 5

ESSES 2003
2003/7/22 (Jihong Kim)

11

Experimental Results

58 s

a g
o i
B &
28 45
%m gm
Jo» gw
i g
(4]]
L i
w0 i
& B MR BRC G683 @b AP M 83 1 L C T T T - T
P Gl T i
ESSES 2003

2003/7/22 (Jihong Kim)

112

* Low-power convolution

ESSES 2003
2003/7/22 (Jihong Kim) 113

Introduction

» Inter-task DVS algorithms

* Determine the supply voltage and clock speed
on task-by-task basis

* Inter-task DVS

« Is similar to that of imprecise computation in
conventional real-time systems

—Imprecise computation
* Use the slack time to increase the values of results
* While guaranteeing the feasible schedule of tasks

—Dynamic voltage scaling
* Use the slack time to lower the voltage/clock speed
* While guaranteeing the feasible schedule of tasks

ESSES 2003 »
2003/7/22 (Jihong Kim)

Preliminaries

« Computing model
* Non-real-time
—tasks have no timing constraints
* Real-Time
—Timing constraints
—Periodic and(or) aperiodic tasks
—Scheduling policy : EDF, RM, and etc.

» Different DVS algorithms are necessary depending

on different computing models.

ESSES 2003
2003/7/22 (Jihong Kim) 115

Inter-Task DVS

+ “Run-Calculate-Assign-Run” strategy for the
supply voltage determination

Running the current task

Calculating the maximum allowable execution
time for the next task

—WCET plus slack time
Assigning the supply voltage for the next task
Running the next task

ESSES 2003 .
2003/7/22 (Jihong Kim) 6

Generic Inter-DVS Algorithms

* Consist of two parts
» Slack estimation
—Identify as much slack times as possible

—Slack times

« Static slack times

— Extra times available for the next task that can be identified
statically

* Dynamic slack times
— Ones caused from run-time variations of the task executions

* Slack distribution

—Adjust the speed so that the resultant speed
schedule is as flat as possible

ESSES 2003
2003/7/22 (Jihong Kim) 17

Static and Dynamic Approaches

+ Off-line (Static) voltage scheduling approaches

« The execution times are assumed to be known
a priori

* There are several optimal solutions for EDF,
RM, and etc.

» On-line (Dynamic) voltage scheduling approaches

* The execution times are assumed to be not
known

* There cannot be an optimal solution

ESSES 2003
2003/7/22 (Jihong Kim) 118

Slack Estimation Methods

Scaling
Decision

Voltage Scaling Methods

(1) Path-based method

IntraDVS
(2) Stochastic method Off-line
(3) Maximum constant speed
(4) Stretching to NTA
InterDVS

(5) Priority-based slack-stealing On-line

(6) Utilization updating

ESSES 2003

2003/7/22 (Jihong Kim) 119

Maximum Constant Speed

* The lowest possible clock speed that guarantees
the feasible schedule of a task set

* EDF scheduling

—If the worst case processor utilization U of a
given task set is lower than 1.0 under the
maximum speed f, . , the task set can be
scheduled with a new maximum speed

U=zn:i fMSC:U'fmax

P . . Maximum constant speed
* Rate Monotonic scheduling

ik
L= 7;, fMCS=fmaxxm?x{Li(t)|1<iSn,O<t<di}

ESSES 2003
2003/7/22 (Jihong Kim)

120

Static slack time

L o

— time
6

f MCS

U=l+l=0.833
2 3

time

fMCS = 0833 'fmax

> fime

Deadline miss

ESSES 2003

2003/7/22 (Jihong Kim) 121

Stretching to NTA

+ Even though a given task set is scheduled with the
maximum constant speed, since the actual
execution times of tasks are usually much less than
their WCETSs, the tasks usually have dynamic slack
times

* For the task t which is scheduled at time t
« If the next task is later than 7+ WCET (1)

* We can slow down the execution of T so that its
execution completes exactly at this next task
arrival time (NTA)

ESSES 2003
2003/7/22 (Jihong Kim)

122

NTA

] %] ;
current time time current time time

NTA

NTA

current time time

NTA

N current time

current time time

ESSES 2003
2003/7/22 (Jihong Kim) 123

Priority-Based Slack Stealing

+ Exploits basic properties of priority-driven
scheduling such as EDF and RM
* When a higher-priority task completes its
execution earlier than its WCET, the following

lower-priority tasks can use the slack time from
the completed higher-priority task

* Advantage

* Most task instances in a hyper-period may have
chances to utilize dynamic slack times

—Because most task executions complete
earlier than WCETs

—Therefore, many task instances can be
scheduled with lowered voltages and speeds

ESSES 2003
2003/7/22 (Jihong Kim) 124

Period
WCET
Length
2 1 time
3 1
6 1 time
time
ESSES 2003
2003/7/22 (Jihong Kim) 125

Utilization Updating

» The actual processor utilization during run time is
usually lower than the worst case processor
utilization

« This method is to estimate the required processor
performance at the current scheduling point

* By recalculating the expected worst case
processor utilization

—Using the actual execution times of
completed task instances

ESSES 2003
2003/7/22 (Jihong Kim) 126

1 1
U=—+==0.833 t=0.6 i
373 L 061

ESSES 2003 =2
2003/7/22 (Jihong Kim) 127

Slack Distribution Method

* Greedy approach

* All the slack times are given to the next
activated task

* Most inter-task DVS algorithms have adopted it

» Clearly, this approach is not an optimal
solution, but is widely used because of its
simplicity

ESSES 2003
2003/7/22 (Jihong Kim) 128

Existing Inter-Task DVS Algorithms

Category Scheduling Policy DVS Policy Used Method
IppsEDF (3)+(4)
ccEDF (6)
laEDF (6)*
EDF
Inter-task DRA (3)+(4)+(5)
DVS AGR (4)*+(5)
IpSEH (3)+(4)+(5)*
IppsRM 3)+(4
RM pps (3)+(4)
ccRM (4)*
Intra-task | Path-based method intraShin (1)
DVS Stochastic method intraGruian (2)

ESSES 2003

2003/7/22 (Jihong Kim)

129

SimDVS: A Unified DVS Evaluation Environment

I_llnputs Task Set Generator II_Machine specification

InterDVS Module

/- Off-line P I
e | | |\ Slack Estimation
| Task Set Specification I Slack Module I

information

I Executable Program |
\I Profile Information |

IntraDVS Preprocessing Module

Voltage |

Scaler

:
Generator C

. Speed Transition
Stochastic Data Table

Task Execution ll Energy Estimation
Module) Module

A 4
* Energy
consumption
*
ESSES 2003

2003/7/22 (Jihong Kim) 130

IntraDVS Module
Intra-Task l
Simulator

Experimental Results

o
R

0.9 0.8
Pud =
2 0.8 £ 0.8 [
€ =
g 0.v a 0.7 H
[
=]
§ 0.8 S 06
= B
Bos L 05
[~
& o % 0.4
g H o3
= 0.3 [
g % 0.2
2 z

0.1
0 o
2 4 6 8 10 12 14 18
4 8 & 10 12 14 1B Number of Tasks
umber of Tas
Number of Tasks
B lppsRM B ccRM

BippsEDF BocEDF O1:EDF ODRA BAGR BIpSHE

(a) DVS for EDF (b) DVS for RM

ESSES 2003
2003/7/22 (Jihong Kim) 131

Experimental Results

b

o e o 9
)

Nomalized Energy Consumption
(=] (=]
P

Normalized Energy Consumption

0.3
0.2 b
0.1
o
0y 02 03 04 05 068 0.7 08 0.8 1 100 S0 20 0 5 4 3 2
Worst Case Processor Utilization Number of Scaling Levels
AlppsEDF BocEDF OEDF ODRA BAGR ApSHE BippsEDF @ccEDF OlaEDF ODRA BAGR BIpSHE
(a) WCPU (b) Machine Specification
ESSES 2003

2003/7/22 (Jihong Kim) 132

Experimental Results

<
=

«
™

o
ES

©
w

o
¥

Normalized Energy Congsumption
(=]
[+:1

e

=]

G ¢2 03 o4 08 o0& 0¥ 08 08
Speed Bound Factor (0}

=0=[ppsEDE @~ CcEDE - IsEDE
6 DRA == AGR i [y SHE

(a) WCPU=1.0 & ACPU=0.55

ESSES 2003
2003/7/22 (Jihong Kim)

e o o
~ o ® -

o
=3

Nomnalized Energy Consumption
o & o o
[W +a =]

e

[=]

.1 ¢2 ¢3 €4 08 €8 0¥ 68 08
Speed Bound Factor (0

--ippsEDF 8- ccEDF g laEDF
e DRA -#-AGR -~ [pSHE

(b) WCPU=0.6 & ACPU=0.33

133

Experimental Results

Speed Bound Factor

(a) laEDF

ESSES 2003
2003/7/22 (Jihong Kim)

Speed Bound Factor

(b) ccEDF

134

Experimental Results (IntraDVS)

Relative Energy Consumption
Relative Energy Consumption

1 12 14 16 1.8 2 22 24 26 28 3 1 12 14 16 18 2 22 24 26 28 3
Slack Ratio (AvailableTime/WCET) Slack Ratio(AvailableTime/WCET)
MPEG4 Decoder MPEG4 Encoder
ESSES 2003
2003/7/22 (Jihong Kim) 135

Performance Evaluation DVS
Algorithms for Hard Real-Time
Systems Using DEW

DEW - DVS Evaluation Workbench

¢« XScale-based DVS evaluation
environment

* Pros

— Allows to monitor real
system behaviors under
DVS

« Cons
— Slower than software
simulation
¢ Because DEW runs actual
applications
— Less flexible for
experimental studies

* Because DEW represents a
single machine
specification

ESSES 2003
2003/7/22 (Jihong Kim) 137

ESSES 2003
2003/7/22 (Jihong Kim) 138

Evaluation Results Using SimDVS and DEW

e o4
~N ®

o
o

o <
'S

Normalized Energy Consumption
o
w

Normalized Energy Consumption
o
o\

o
)

o
e

(=)

Number of Tasks Number of Tasks
B jppsEDF B ccEDF U laEDF £ DRA B AGR B IpSHE B ppsEDF B ccEDF [1aEDF £ DRA B AGR E IpSHE
SimDVS DEW
ESSES 2003
2003/7/22 (Jihong Kim) 139

Sources of Differences

+ Impacts of
« System overhead

—Basic : context switching overhead and tick
scheduler overhead

—DVS : slack computation and clock/voltage
scaling

« System timing resolution
— Simulator : continuous time model
—Real system : discrete time model
* Memory behavior

— Changes in cache and memory access
behavior

— Datal/lnstruction fetch latency

ESSES 2003
2003/7/22 (Jihong Kim) 140

Example of System Overheads

time
t (t+25) ms
context switching delay
time
tick scheduling
ESSES 2003
141

2003/7/22 (Jihong Kim)

0.30% - 1E pVS S/IW

o o o
o N]
a Q a
x xR x

System Overhead Ratio
5

System Overhead

0.35% s DVS H/W

i The ratio of time delay caused by

EISYS rest the clock/voltage scaling hardware

————————————————————————— =« DVSS/W

************************* The ratio of time delay caused by
the slack computation in a DVS
algorithm

= SYSrest
The ratio of the rest of the system

and timer service

ESSES 2003
2003/7/22 (Jihong Kim) 142

overhead such as context switching

System Overhead Variations

* The system overhead increases very quickly as the
task execution frequency increases

 In particular, DVS parts increase quickly

ESSES 2003
2003/7/22 (Jihong Kim)

Energy Efficiency Variations

* In DRA, AGR, and IpSHE, the increased system
overhead (due to the increased execution frequency)
significantly affect the energy efficiency

4 6 2 4 6 8
4 6
Nurmber of Tasks Nurber of Tasks Number of Tasks
] a o a | a
B 1ppsEDF B coEDF T laEDF = DRA B AGR & IpSHE IopsEDF & ccEDF U laEDF T DRA B AGR & IpSHE & |ppsEDF B ccEDF U laEDF & DRA H AGR 2 IpSHE

ESSES 2003
2003/7/22 (Jihong Kim)

144

Changes in Memory System

= Under a DVS-enabled RTOS,
Task’s execution time
increases due to the lowered
clock speed

* Desirable for reducing
energy consumption

¢ But, it can introduce
negative side effects as
well

— An increase in the
number of task
preemptions which
increases the number
of memory accesses

+ In aggressive algorithms, the
number of preemptions

Normalized Preemption Count

umber of Tasks increases more rapidly than
B |ppsEDF B ccEDF U laEDF & DRA B AGR B IpSHE the Othel's y
ESSES 2003
2003/7/22 (Jihong Kim) 145

Changes in Memory System

+ PXA250
+ Performance Monitoring Unit

« 32-way set-associative cache
of Inst/Data cache

-
@

-
o

-
EN

» Each application
¢ 16-KB program code

-
N

o
@

+ The increases in memory
accesses can be attributed to two
sources

¢ The increase in the number of
preemptions

* The increase in memory

2 4 8 8 accesses from the algorithm
Number of Tasks itself

& IppsEDF B ccEDF U laEDF & DRA B AGR E IpSHE

Normalized Memory Access Count
o
> N

o
S

o
N

[=]

ESSES 2003
2003/7/22 (Jihong Kim) 146

References

¢ Transmeta Corporation. Crusoe Processor.
http://lwww.transmeta.com, June 2000.

« AMD Corporation. PowerNow! Technology.
http://www.amd.com, December 2000.

+ Intel Corporation. Intel XScale Technology.
ggtg‘l:lldeveloper.intel.coml design/ intelxscale/, November

¢ L. Hong, G. Qu, M. Potkonjak, and M. B. Srivastava. Synthesis
Techniques for Low-Power Hard Real-Time Systems on
Variable Voltage Processor. In Proceedings of the IEEE Real-
Time Systems Symposium, pages 178-187, December 1998.

* Y. Shin, K. Choi, and T. Sakurai. Power Optimization of Real-
Time Embedded Systems on Variable Speed Processors. In
Proceedings of the International Conference on Computer-
Aided Design, pages 365-368, November 2000.

*+ H. Aydin, R. Melhem, D. Mosse, and P. M. Alvarez. Dynamic
and Aggressive Scheduling Techniques for Power-Aware
Real-Time Systems. In Proceedings of IEEE Real-Time
Systems Symposium, December 2001.

ESSES 2003
2003/7/22 (Jihong Kim) 147

References

« P. Pillai and K. G. Shin. Real-Time Dynamic Voltage Scaling
for Low-Power Embedded Operating Systems. In Proceedings
of 18th ACM Symposium on Operating Systems Principles
(SOSP'01), October 2001.

* D. Shin, J. Kim, and S. Lee. Intra-Task Voltage Scheduling for
Low-Energy Hard Real-Time Applications. IEEE Design and
Test of Computers, 18(2):20-30, March 2001.

* F. Gruian. Hard Real-Time Scheduling Using Stochastic Data
and DVS Processors. In Proceedings of the International
Symposium on Low Power Electronics and Design, pages 46-
51, August 2001.

* W. Kim, J. Kim, and S. L. Min. A Dynamic Voltage Scaling
Algorithm for Dynamic-Priority Hard Real-Time Systems
Using Slack Time Analysis. To appear in Proceedings of
Design, Automation and Test in Europe (DATE'02), March
2002.

ESSES 2003
2003/7/22 (Jihong Kim) 148

References

* D. Grunwald, P. Levis, and K. I. Farkas. Policies for Dynamic
Clock Scheduling. In Proceedings of the 4th Symposium on
Operating Systems Design and Implementation, pages 73-86,
October 2000.

+ S. Lee and T. Sakurai. Run-time Voltage Hopping for Low-
power Real-Time Systems. In Proceedings of the 37th Design
Automation Conference, pages 806-809, June 2000.

« T.Burd and R. Brodersen. Design Issues for Dynamic voltage
scaling . In Proceedings of the International Symposium on
Low Power Electronics and Design, pages 9-14, July 2000.

= D. Burger and T. M. Austin. The SimpleScalar Tool Set,
version 2.0. Technical Report 1342, University of Wisconsin-
Madison, CS Department, June 1997.

* F.Yao, A. Demers, and A. Shenker. A Scheduling Model for
Reduced CPU Energy. In Proceedings of the IEEE
Foundations of Computer Science, pages 374-382, 1995.

ESSES 2003
2003/7/22 (Jihong Kim) 149

DVS-Aware Algorithm Development

ESSES 2003
2003/7/22 (Jihong Kim) 150

Image Convolution

convolution

« One of the fundamental operations of image processing.
* DVS Unfriendly!!

ESSES 2003
2003/7/22 (Jihong Kim) 151

Direct Implementation:

pxR
keml

» p? multiplications
p?additions for
each convolved
element.

No Workload
Variations!

- = |

SUMMER"

ESSES 2003
2003/7/22 (Jihong Kim) 152

Low-Power Implementation

Variable Workload Algorithm
Based on Kernel Characteristics

ESSES 2003
2003/7/22 (Jihong Kim) 153

Low-Power Implementation

Kernel Analysis and Rearrangement

Property 1. For most kernels, the number of distinct
kernel elements is small.

. ity 2. 0, 1 and —1 are used frequently.

* Property 3. Many kernel elements have the same
absolute values.

ESSES 2003
2003/7/22 (Jihong Kim) 155

Modified Convolution Algorithm: SDMK

* For 1 or -1, no multiplication.
* For 0, no addition & no multiplication.
* For the same absolute values, a single multiplication.

g |1 1
A8 |1
41| 0

Mumber o
tions/pizel

ESSES 2003
2003/7/22 (Jihong Kim) 156

Direct vs. SDMK

Original Oris
ginal
eversed e
Kerme Reversed
HI:'p“t|d1|d2|d3|d4|d5|d6| mput o T @ | & 1 & 1 &] &]
- goesesns geecese o
all KN B Y H I HH D
fesossone
e+ il 7Y R H s EH e
Ll s el -] Rl H o H e B |
T .
il H ey F e HH |
+ o] el H e HEH |
step i+4 | step i+5
Ci - -~ - — — C
5 [T step i | step i+ | step i+2 | step i+3 | step id | | | | | | |]
Direct implementation SDMK unplementation
ESSES 2003 157
2003/7/22 (Jihong Kim)

Exec Time Prediction & Speed Setting

+ By a static method

» Based on the number of required arithmetic
operations

* By a dynamic-method
» Based on actual measurements of execution times

* In glhe direct algorithm, by pre-constructed speed
table

ESSES 2003
2003/7/22 (Jihong Kim) 158

Experimental Environments

» ltsy Pocket Computer V2.6
* CPU : Intel StrongARM 1110

« Linux operating system (ver. 2.0.30)

* Frequency scaling: 11 levels (59.0 MHz ~ 226.4 MHz)
» Voltage scaling: 30 levels (1.00 V ~ 2.00 V)

|

sy
J——1]1 L]
Multimetar Vm: : Regt of Recoding
2 Lo Itsy HW T8 Computer
| I
| I
‘J | VRoail | 4 Rbatt
v ¢ |

ESSES 2003
2003/7/22 (Jihong Kim)

e

159

Results (Energy Dissipation)

LLkkL

62.8% in the whole Itsy system.

ESSES 2003
2003/7/22 (Jihong Kim)

¢ Average 67.6% energy saving in the core processor, and

160

Results (Execution Time)

[] o |

« There is no performance degradation over the direct approach.

ESSES 2003
2003/7/22 (Jihong Kim) 161

Conclusions

* Presented a low-power implementation of image
convolution algorithm for variable voltage
processors.

* The energy efficiency of the proposed
implementation comes from:

« Smaller Ny e

. . 2
Lower Vg4 E o Neyere * Vi

+ Fewer memory references

—i.e., less energy consumed in non-CPU
components

ESSES 2003 12
2003/7/22 (Jihong Kim) &

xecution Time

Al
4

(us)

J—

Energy-Optimal Off-Line
Voltage Scheduling

Off-Line Volt. Sched. Problem

+ Voltage schedule (speed schedule) : S(t)
* the processor speed as a function of time
* The energy consumption under S(t) is given by
E(S) = -I.interval P(S(t)) dt
— P is a convex function from speed to power

« Given N jobs J,, J,, ... , Jy where
* r1,:the release time of J,
* d,: the deadline of J;
* ¢, : the workload (# of execution cycles) of J,
—assumed to be known a priori
* p,: the priority of J,
compute a feasible voltage schedule S(t) that minimizes E(S)

+ S(t) is feasible iff S(t) gives J, its workload c; between r;and d,
forall J,, J,, ..., Jy

ESSES 2003
2003/7/22 (Jihong Kim) 164

Existing Works for the Problem

* Note that the system model covers
* Fixed-| / (RM, DM) periodic/aperiodic task set
* EDF periodic/aperiodic task set
- p;i < p; iff d;<d,

* For EDF job sets (a special case), the problem can be
solved in poly. time by Yao’s algo.[FOCS’95]

» solution space = convex, obj. func. = convex
* For general job sets, the problem becomes much
difficult
* main source of difficulty : feasibility condition
* Quan & Hu [TCAD’03]: exhaustive optimal algo.
* Yun & Kim [TECS’03]: NP-hardness & FPTAS

ESSES 2003
2003/7/22 (Jihong Kim) 165

References

+ Optimal algorithm for EDF job sets

* F.Yao, A. Demers, S. Shenker, “A Scheduling Model for
Reduced CPU Energy”, In Proc. Foundations of
Computer Sciences (FOCS’95), 1995

¢ Heuristic for FP job sets

« G. Quan and X. Hu, “Energy Efficient Scheduling for
Real-Time Systems On Variable Voltage Processor”, In
Proc. Design Automation Conference (DAC’01), 2001.

+ Exhaustive optimal algorithm for FP job sets

* G. Quan and X. Hu, “Minimum Energy Fixed Prioriéy
Scheduling for Variable Voltage Processors”, IEE
;(r)%gsactions on Computer Aided Design and Systems,

* NP-hardness proof & FPTAS for FP job sets

* H.-S. Yun and J. Kim, “On Energy-Optimal Voltage
Scheduling for Fixed-Priority Hard Real-Time Systems”,
ACM Transactions on Embedded Computing Systems,

2003.
ESSES 2003
2003/7/22 (Jihong Kim) 168

A Profile-Based Energy-Efficient Intra-Task Voltage
Scheduling Algorithm for Hard Real-Time Applications’

Dongkun Shin
School of Computer Science and Engineering
Seoul National University

sdk@davinci.snu.ac.kr

ABSTRACT

Intra-task voltage scheduling (IntraVS), which adjusts the supply
voltage within an individual task boundary, is an effective tech-
nique for developing low-power applications. In this paper, we
propose a novel intra-task voltage scheduling algorithm for hard
real-time applications based on average-case execution informa-
tion. Unlike the original IntraVS algorithm where voltage scaling
decisions are based on the worst-case execution cycles, the pro-
posed algorithm improves the energy efficiency by controlling the
execution speed based on average-case execution cycles while still
meeting the real-time constraints. The experimental results using
an MPEG-4 decoder program show that the proposed algorithm
reduces the energy consumption by up to 34% over the original
IntraVS algorithm.

1. INTRODUCTION

Since energy consumption E of CMOS circuits has a quadratic
dependency on the supply voltage Vpp, lowering the supply volt-
age Vpp is the most effective way of reducing energy consump-
tion. However, lowering the supply voltage also decreases the clock
speed, since the CMOS circuit delay T is given by Tp o< Vpp/(Vpp —
Vr)® [6], where V7 is a threshold voltage, and a. is a velocity sat-
uration index. This trade-off introduced various dynamic voltage
scaling (DVS) techniques. DVS techniques change the clock speed
and its corresponding supply voltage dynamically to the lowest pos-
sible level while meeting the task’s performance constraint.

1.1 Dynamic Voltage Scaling

For hard real-time systems, there exist two DVS approaches de-
pending on the scaling granularity. Inter-task voltage scheduling
(InterVS) [9, 2, 8, 5] determines the supply voltage on task-by-
task basis, while intra-task voltage scheduling (IntraVS) [4, 7] ad-
justs the supply voltage within an individual task boundary. Both
approaches can guarantee the required performance constraints of
real-time systems.

*This work is supported by the Ministry of Information & Communication of Korea
(Support Project of University foundation research<’00> supervised by IITA).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ISLPED’01, August 6-7, 2001, Huntington Beach, California, USA.
Copyright 2001 ACM 1-58113-371-5/01/0008 ...$5.00.

Jihong Kim
School of Computer Science and Engineering
Seoul National University

jihong @davinci.snu.ac.kr

Intra-task voltage scheduling [4, 7] has been proposed as a so-
lution to overcome the limitations of inter-task voltage scheduling.
IntraVS algorithms exploit all the slack time from run-time vari-
ations of different execution paths; there is no slack time when
the scheduled program completes its execution, thus significantly
improving energy efficiency. Furthermore, since IntraVS does not
involve OS in adjusting the clock speed, it can be used with an
existing OS without any modifications on a variable voltage pro-
Cessor.

We propose an energy-efficient IntraVS algorithm for hard real-
time applications based on average-case execution information. Un-
like the original IntraV'S algorithm [7] where voltage scaling deci-
sions are based on worst-case execution cycles, the proposed al-
gorithm controls the execution speed based on the average-case
execution paths (ACEPs), which are the most frequently executed
paths. Since the proposed algorithm is optimized for the energy re-
duction in the ACEP(s), which are the most likely path(s) that will
be executed at run time, the proposed algorithm is more effective
than the original intraVS algorithm [7] in reducing the energy con-
sumption. The novel aspect of the proposed algorithm is that the
timing constraints of a hard real-time program is still satisfied, even
if the ACEP(s) are used for voltage scaling decisions.

2. ORIGINAL INTRA-TASK VOLTAGE
SCHEDULING ALGORITHM

For a hard real-time task, the goal of an intra-task voltage schedul-
ing algorithm is to assign a proper clock speed to each basic block
so that energy consumption is minimized while satisfying timing
requirements. In this section, we briefly describe the original intra-
task voltage scheduling algorithm [7] as a short introduction to
intra-task voltage scheduling.

Throughout this paper, we assume the following about the tar-
get variable voltage processor: The processor provides a special
instruction, change_£_V (fcrx) , which changes the current clock
frequency to fcrx and adjusts the supply voltage to the correspond-
ing voltage Vpp. fcrx and Vpp can be set continuously within the
operational range of the processor. When the processor changes the
clock/voltage, there is a clock/voltage transition overhead. During
clock/voltage transition, the processor stops running.

Consider a hard real-time program P with the deadline of 2 usec
shown in Fig. 1(a). The CFG Gp of the program P is shown in
Fig. 1(b). In Gp, each node represents a basic block of P and each
edge indicates the control dependency between basic blocks. The
number within each node indicates Cg¢(b;) which is the number of
execution cycles of the corresponding basic block. The back edge
from b5 to b,,; models the while loop of the program P.

Using a WCET analysis tool, we can find the path pyorss = (b1,by15
b3,b4,b5,by1,b3,b4,b5,by1,b3,b4,b5 by, ,bif,bG,b7) as the worst case

execution path (WCEP) for the example program P, assuming that
the maximum number of while loop iterations is set to 3 by user.
The predicted execution cycles of py,rs is, therefore, 160 cycles,
which is the worst case execution cycles (WCEC) of program P.
If a target processor operates at the maximal 80-MHz clock fre-
quency, the program P completes its execution in 2 usec, resulting
in no slack time.

S1;
if (condl) S2;
else
while (cond2) {
S3;
if (cond3) S4;

5

}
if (cond4) S6;
s .

7

(@)

Figure 1: An example program; (a) an example real-time pro-
gram P and (b) its CFG Gp.

The key observation behind the IntraVS approach is that there
are large execution time variations among different execution paths.
For short execution paths, if we were able to identify them in the
early phase of its execution, we can lower the clock speed substan-
tially, thus saving a significant amount of energy consumption.

For the speed adjustment, intra-task voltage scheduling tech-
nique uses an adaptive approach with the help of a static program
analysis technique on worst case execution times. Assume that
Crwec(b;) represents the remaining worst case execution cycles
(RWEC) among all the execution paths that start from b;. Using
a modified WCET analysis tool, for each basic block b;, we can
compute Crwgc(b;) in compile time. In Fig. 1(b), the symbol |]
contains the Crwgc(b;) values of each basic block. For the ba-
sic blocks related to the while loop (i.e., by, b3,ba,bs), the cor-
responding nodes are associated with multiple Crwgc(b;) values,
reflecting the maximum three iterations of the while loop.

With the Crwgc(b;) values computed, we can statically iden-
tify an edge (b;,b;) (of a CFG G) where [Crwec(bi) — Cec(bi)] #
Crwec(bj). For example, in Fig. 1(b), we can identify four such
edges, ie., (b1,b2), (bwh’bif)’ (b,'f,b7) and (b3,bs), which are
marked by the symbol e. These marked edges form a set of candi-
date Voltage Scaling Edges (VSEs). If an edge (b;, b;) is selected as
a VSE, it means that the clock speed will change when the thread
of execution control branches to b; from b;. For example, the clock
speed will be lowered when the basic block b, is executed after
b1 because the remaining work is reduced by 1/5 (i.e., the ratio of
Crwec(b2) to [Crwec(b1) — Cec(b1)D).

At the selected VSEs, the new clock speed is determined by
how much the remaining work is reduced. For example, when
the thread of execution control meets a VSE (b;,b;), the clock
speed can be lowered because the remaining work is reduced by
[R—CrwEec(bj)] where R = Crwec(bi) — Cec(bi). After b; is exe-
cuted at the clock speed S, the clock speed can be changed to reflect
the reduction in the remaining work. The new clock speed for b;
is set to S X CRWETF(I”'). We call CRWETF(I”') as the speed update ratio
(SUR) for the edge b; — b;, denoted by SUR(b; — b;).

By the original IntraVS algorithm, the clock speed is changed
from 80 MHz to 16 MHz (= 80 MHz X 1532 15) at the edge (b1,b2).
Assuming that no energy is consumed in an idle state and E o< Cf, -

Neycle -Vpp?, when the execution follows the path p; = (b1,b2, by,
bg,b7), the original IntraV'S algorithm reduces the energy consump-
tion by 69%.

Since there exists the transition overhead during speed changes,
not all the candidate VSEs are selected as VSEs. A candidate VSE
is selected as a VSE when the number of saved cycles at the can-
didate VSE is larger than a given threshold value. The threshold
value is determined by a VSE selection policy, which is a function
of the transition time overhead, the transition power overhead, and
the code size increase (by the added scaling code).

3. PROFILE-BASED INTRA-TASK VOLTAGE

SCHEDULING

3.1 Motivation

Before the profile-based IntraVS algorithm is presented, we first
generalize the original IntraVS algorithm described in Section 2. In
order to adjust the clock speed at VSEs, IntraV'S first selects a (pre-
dicted) reference execution path such as the WCEP. Once the ref-
erence execution path is decided, IntraVS sets the initial operating
voltage and its corresponding clock frequency assuming that the
task execution will follow the predicted reference execution path.

When the actual execution deviates from the (predicted) refer-
ence execution path (say, by a branch instruction), the clock speed
can be adjusted depending on the difference between the number of
remaining execution cycles of the reference execution path and the
number of remaining execution cycles of the newly deviated exe-
cution path. If the new execution path takes significantly longer to
complete its execution than the reference execution path, the clock
speed should be raised to meet the deadline constraint. On the other
hand, if the new execution path can finish its execution earlier than
the reference execution path, the clock speed can be lowered to
save the energy consumption. Once the actual execution takes a
different path from the reference path, a new reference path is con-
structed starting from the deviated basic block.

Using a static program-analysis technique, IntraVS identifies the
appropriate program locations where the clock speed should be
raised or lowered relative to the current clock speed. For the clock
speed adjustment at run time, IntraVS algorithm inserts voltage
scaling code to the selected program positions. The candidate posi-
tions for inserting voltage scaling code are the branching edges of
the CFG, which correspond to the branch or loop statements.

We call the original IntraVS as the remaining worst-case exe-
cution path (RWEP)-based IntraVS, because the remaining worst-
case execution path (RWEP) is used as the reference path. In the
RWEP-based IntraVS, the clock speed is monotonically decreasing
at all the VSEs. Depending on how the reference path is selected,
however, the clock speed may be increased as well at some VSEs.
Therefore, we divide VSEs into Up-VSEs and Down-VSEs. The
clock speed is increased at an Up-VSE while the clock speed is
decreased at a Down-VSE.

Although the RWEP-based IntraVS reduces the energy consump-
tion significantly while guaranteeing the deadline, this is a pes-
simistic approach because it always predicts that the longest path
will be executed. A more optimistic approach is to use the average
case execution path (ACEP) as a reference path. The ACEP is de-
fined to be an execution path that is most likely to be executed. The
ACEP can be decided by the execution profile information.

The main motive of using the ACEP instead of the WCEP is to
make the common case more energy-efficient. For a typical pro-
gram, about 80 percent of the program’s execution occurs in only
20 percent of its code, which is called the hot paths [1]. For an In-

traVS algorithm to be energy-efficient, it should be energy-efficient
when the hot paths are executed. If we use one of hot paths as a
reference path for intra-task voltage scheduling, the speed change
graph for the hot paths will be a near flat curve with little changes
in the clock speed, which gives the best energy efficiency under
a given amount of work [3]. Even for the paths that are not the
hot paths, if we take one of hot paths as a reference paths, they
are more energy-efficient because they can start with a lower clock
speed than when the WCEP is used as a reference path.

In the profile-based IntraVS, we take the ACEP, which is the
best representative of the hot paths, as the reference path. We call
such an IntraVS$ algorithm as the remaining average-case execution
path (RAEP)-based IntraVS because the remaining average-case
execution path (RAEP) is used as the reference path.

Figure 2 shows an RAEP-based CFG GRAEP with Cragc(bi)
values that represent the remaining average-case execution cycles
among all the paths that start from b;. The bold edges in G§AEP
means that it has a higher probability to be followed at run time
between two branching edges. In Fig. 2, the initial reference path
is (b1,bywh,b3,b5,byh,b3,bs,byn,bir,b7). With the reference path,
Craec(b;) is computed. For example, Crarc(bir) = Cec(bif) +

Craec(b7). Atthe RAEP-based IntraVs, there are Up-VSEs (marked

by o in Fig. 2) as well as Down-VSEs (marked by e in Fig. 2). Fig-
ure 3 shows how the speed and voltage change by the RAEP-based
scheduling. The speed is changed from 14 MHz to 21 MHz at the
edge (bir,bg) because this is an Up-VSE with the SUR value of

1.5(= ﬁlf—s). Compared to the energy consumption of the RWEP-

based IntraV'S algorithm, the RAEP-based IntraVS algorithm achieves

55% more energy reduction.

Figure 2: A RAEP-based CFG GRAEP,

speed (voltage)

b, deadline
47.5MHz (1.35 V)

bs b,
21 MHz (0.8 V) b, by]
14 MHz (0.7 V) : ! |
0 ’ 2 psec time

Figure 3: Speed and voltage changes by the RAEP-based In-
traVs.

Though the RAEP-based scheduling is more effective in reduc-
ing the energy consumption than the RWEP-based scheduling, the
pure RAEP-based approach cannot meet the timing requirements of
hard real-time applications. This is because it dose not satisfy the
timing constraint for all the execution paths. For example, consider
the case when the WCEP and ACEP take significantly different
number of execution cycles. When the execution takes the WCEP
at the middle of program execution, it is possible that the program
cannot meet its deadline even if the remaining path executes with
the maximum clock speed. The next section describes a novel ap-

proach that is still based on the RAEC but can guarantee the timing
constraint for all the execution paths.

3.2 Reference Path Modification

To overcome the deadline miss problem of the pure RAEP-based
IntraVS algorithm, we modify the reference path whenever the dead-
line miss situations are identified. Assume that the reference path is
Pref = (b1, ,bi,bit1,++ ,by), b; is a branching node whose chil-
dren basic blocks are b; 11 and by,;ss, and the current clock speed at
b; is S. If the clock speed at by,iss, given by S X SUR(b; — bpss),
is larger than the maximal clock speed (MaxS) of the processor, it
indicates that if the current execution branches to b, the dead-
line will be missed. This is because the remaining time 7 to the

deadline is Tg = 42641 and MaxSx Tk < Cragc(bmiss)- There
are M = [CraEC(bmiss) — MaxS x Tg] cycles that miss the deadline.
In order to avoid the deadline miss, we increment Cragc(by) by M
for all k£ <. That is, we modify the reference path by adding a new
virtual basic block b, between b; and b;1. Cgc(by) is set to M.
The virtual basic block is used only to prevent the deadline miss
during the speed assignment and not executed at run time.

Figure 4 illustrates how the reference path modification works.
Given an original GRAEP, the ACEP, (b1,b3,by), is used as the ref-
erence path. (The bold edges indicate higher probability edges to
be selected at run time.) With the 100-MHz maximal clock fre-
quency, the path (b;,b3,bs) misses the 0.5-usec deadline, because
the speed at (b3, b5) should be raised to 120 MHz (i.e., 60 MHz x 2).
Because 139 cycles! are missed from the deadline, we add a virtual
block b, between b3 and by, as shown in Fig. 4(b). Cgc(by) is set
to4 (= [D.

With the added by, Cragc(b1) and Cragc(b3) are modified to 34
and 24, respectively, and the speed update ratios are recalculated.
For example, the SUR at (b3, b5s) is modified to 1.43 (= %%) from 2.

Figures 4(c) and 4(d) compare the speed changes for the RWEP-
based IntraVS, the RAEP-based IntraVS and the modified RAEP-
based IntraV'S for the paths (b1,b3,b4) and (b1, b3, bs), respectively.
The modified RAEP-based scheduling is more energy-efficient than
the RWEP-based scheduling for the hot paths (Fig. 4(c)), which af-
fect most on the overall energy efficiency. It also satisfies the dead-
line requirement (Fig. 4(d)), unlike the pure RAEP-based schedul-
ing algorithm.

4. EXPERIMENTAL RESULTS

We have extended the existing voltage scaling tool, the Auto-
matic Voltage Scaler (AVS) [7], to evaluate the energy efficiency
of the proposed IntraVS over the original IntraVS. AVS takes as
inputs an original DVS-unaware program P and its timing require-
ments, and produces a low-energy DVS-aware program Ppyyg that
satisfies the same timing requirements of P. The converted program
Ppys contains voltage scaling code that handles all the idiosyncrasy
of scaling speed/voltage on a variable voltage processor. The ex-
tended AVS can convert a program using either the RWEP-based
IntraVS or the RAEP-based IntraVS.

To evaluate the power reduction effect of the proposed exten-
sions to the original IntraVS algorithm, we have experimented with
an MPEG-4 video decoder using an energy simulator [7]. We as-
sume that both DVS-aware and DVS-unaware systems enter into a
power-down mode when the system is idle. The energy consump-
tion of a power-down mode is assumed to be 0. The supply volt-
age for a given clock frequency is obtained from ferx = 1/Tp <
(Vop — Vr)*/Vpp [6] where Vpp, Vr, and o are assumed to be
2.5V, 0.5V, and 1.3, respectively. For the RAEP-based IntraVS, the

120 cycles - 100 MHz x %yl\% = % cycles

100 MHz
60 MHz
0.5 psec 0.5 pusec
© @
-~ RWEP-based scheduling —— RAEP-based scheduling —— modified RAEP-based scheduling

Figure 4: Modified RAEP-based IntraVS: (a) an original
GﬁAEP , (b) a modified GﬁAEP , and (c)-(d) the speed change
graphs of three IntraVsS algorithms for the paths (b1,53,b4) and
(bl) b 3y b5)9 respe(iively‘

probability of branch edges and the average number of loop itera-
tions in a CFG of the MPEG-4 video decoder are estimated using
the profiled information. A probability of 0.5 is assigned to the
branch edges for which we cannot collect the execution profiles
with sample test bitstreams. For the experiments, the slew rate of
the clock/voltage transition is assumed to be 1.0V/200usec, which
is typical for state-of-the-art DC-DC converters.

RN e S S S v mrrepr Ly ey
TN RWEP-based --+-- -
08 T E
07} e E

.§. 06 - + 4

)

2 o5t - B

'§ 04 " -

2 o3 + E
02 ‘.]
o1l A

o . | | A
0 ol 02 03 04 05 06 07 08 09 10
Slack Factor

Figure 5: Normalized starting speed changes of the RWEP-
based IntraVS and the RAEP-based IntraVS (varying the slack
factor).

Figure 5 shows how the normalized starting speeds change over
various slack factor values. The slack factor, defined by “477 ="
represents the fraction of time that a processor becomes idle after
WCET. The execution times of modified ACEPs (by the procedure
described in Section 3.2) for the MPEG-4 decoder is up to 35%
smaller than the WCET. This means that the processor can start
initially 35% more slowly than the speed required by the RWEP-
based IntraVS algorithm.

Figure 6 compares the energy consumption of two IntraV'S schedul-

ing algorithms, varying the slack factor. (All the results were nor-
malized over the energy consumption of the original program run-
ning on a DVS-unaware system.) For the MPEG-4 decoder, the
modified RAEP-based IntraVS algorithm reduces the energy con-
sumption up to 34% over the RWEP-based IntraVS algorithm.
Note that there is a large gap between energy consumption of
RWEP-based and RAEP-based IntraVS algorithms, even when the
slack factor is O (i.e. deadline = WCET). This is because, although
the starting speed is set to the same speed as in the RWEP-based
IntraVS, there are many execution paths that still can take advan-

deadline—WCET

" Modified RAEP based ——
RWEP-based -~ -

Normalzed Energy Consumption

L L L L
o 0.1 02 03 04 0.5 0.6 0.7 038 0.9 1.0
Slack Factor

0 L L L L L

Figure 6: Normalized energy consumption of the RWEP-based
IntraVS and RAEP-based IntraVS (varying the slack factor).

tage of the RAEP-based speed settings. That is, in order to meet the
timing constraint, virtual blocks are added so that the initial speed
is set to the same speed as in the RWEP-based IntraVS algorithm.
However, the (partial) paths following the virtual blocks can take
advantage of the ACEP-based speed settings. As the slack factor
increases, the energy consumption gap decreases because supply
voltages of both IntraVS algorithms get lower. Since the energy
consumption is proportional to Vpp?2, the lower voltage values re-
sult in a smaller difference in the energy consumption.

5. CONCLUSION
‘We have presented a novel IntraVS algorithm based on the RAEP

information. The proposed algorithm exploits the fact that the average-

case execution paths are more likely to be followed at run time
than the WCEP, and optimize the energy consumption for such hot
paths. The main contribution of the proposed algorithm is that it
enhances the original IntraVS algorithm by exploiting the probabil-
ity of each execution path, while guaranteeing the worst-case tim-
ing constraints. The experimental results using an MPEG-4 video
decoder show that the RAEP-based IntraVS improves the energy
efficiency up to 34% over the RWEP-based IntraVS.

6. REFERENCES

[1] T. Ball and J. R. Larus. Using paths to measure, explain, and
enhance program behavior. IEEE Computer, 33(7):57-65, 2000.

[2] I Hong, G. Qu, M. Potkonjak, and M. B. Srivastava. Synthesis
techniques for low-power hard real-time systems on variable voltage
processor. In Proc. of the 19th IEEE Real-Time Systems Symposium,
pages 178-187, 1998.

[3] T.Ishihara and H. Yasuura. Voltage scheduling problem for
dynamically variable voltage processors. In Proc. of International
Symposium On Low Power Electronics and Design, pages 197-202,
1998.

[4] S.Lee and T. Sakurai. Run-time voltage hopping for low-power
real-time systems. In Proc. of the 37th Design Automation
Conference, pages 806-809, 2000.

[5] Y. Lee and C. M. Krishna. Voltage-clock scaling for low energy
consumption in real-time embedded systems. In Proc. of the 6th
International Conference on Real-Time Computing Systems and
Applications, pages 272-279, 1999.

[6] T. Sakurai and A. Newton. Alpha-power law MOSFET model and its
application to CMOS inverter delay and other formulas. JEEE
Journal of Solid State Circuits, 25(2):584-594, 1990.

[7] D. Shin, J. Kim, and S. Lee. Intra-task voltage scheduling for
low-energy hard real-time applications. IEEE Design and Test of
Computers, 18(2):20-30, 2001.

[8] Y. Shin and K. Choi. Power conscious fixed priority scheduling for
hard real-time systems. In Proc. of the 36th Design Automation
Conference, pages 134139, 1999.

[9] E. Yao, A. Demers, and S. Shenker. A scheduling model for reduced
CPU energy. In Proc. of the 36th Annual Symposium on Foundations
of Computer Science, pages 374-382, 1995.

An Opcode Encoding Method for Low-Power Instruction Fetch

Sunghwan Kim

Department of Computer Science
Seoul National University
Seoul, Korea 151-742
Tel: +82-2-880-5378
Fax: +82-2-871-4912
e-mail: shift@davinci.snu.ac.kr

Abstract— In designing today’s mobile embedded
systems such as cellular phones and PDAs, power
consumption is an important design constraint. In
a CMOS circuit, switching activity accounts for over
90% of total power dissipation. In this paper, we de-
scribe a method of encoding opcodes for low-power in-
struction fetch by reducing the switching activity from
the instruction fetch logic. To reduce the switching
activity from the instruction-fetch logic, our method
encodes opcodes so that more frequently consecutive
instruction pairs have a smaller Hamming distance
between their opcodes. Our experiment shows that
the switching activity reduction of 36.4% to 66.7% is
achievable over a naive encoding method.

I. INTRODUCTION

Power consumption has become a dominant design con-
straint for mobile embedded systems such as cellular
phones and PDAs. In digital CMOS circuits (that use
well-designed logic gates), switching activity accounts for
over 90% of total power consumption [1]. Therefore, many
techniques have been proposed and developed to reduce
the amount of switching activity in multiple levels of de-
sign abstraction [2].

One papular approach widely used in reducing the
switching activity is to encode digital values so that the
number of bit changes by the values are reduced. For ex-
ample, bus-invert coding tries to minimize the power dis-
sipated in system bus by dynamically inverting the bus
lines if the inversion reduces the number of bits switched
on system bus [3]. Gray code addressing takes advantage
of temporal redundancy in the instruction access patterns
during program execution by using Gray-coded addresses
as instruction addresses [4]. Register relabeling modifies
the register number assignments so that more frequently
consecutive register pairs have a smaller Hamming dis-
tance, reducing the switching activity in the register fields
during instruction fetches and decodes [5].

In this paper, we describe a method of encoding op-
codes for low-power instrucion fetches by reducing the

Jihong Kim

Department of Computer Science
Seoul National University
Seoul, Korea 151-742
Tel: +82-2-880-8792
Fax: +82-2-871-4912
e-mail: jihong@davinci.snu.ac.kr

switching activity from the instruction fetch logic. Many
redundant bit changes between consecutive instructions
can be removed by encoding opcodes so that more fre-
quently consecutive instruction pairs have a smaller Ham-
ming distance between their opcodes. In principle, our
method is similar to Gray code addressing [4] and reg-
ister relabeling [5], in that digital values are statically
encoded to minimize the number of bit changes by the
values. However, we believe that this is the first attempt
applying the low-power encoding scheme for the opcode
encoding. For benchmark programs we tested, we were
able to reduce the switching activity by 36.4% to 66.7%
over a naive encoding method. We explain the opcode en-
coding method in Section IT and report the experimental
results in Section III.

II. Low-PowER OPCODE ENCODING

A. Basic Idea

When a new instruction is fetched from the instruction
cache into the instruction register, many bit positions of
the current instruction cache bus and instruction register
are switched to the opposite state. The switching activity
during the instruction fetch phase is directly proportional
to the number of bits switched in the instruction cache bus
and instruction register between the successively fetched
instructions. In order to reduce the switching activity
from the instruction fetch logic, therefore, it is necessary
to encode each field of an instruction so that more fre-
quently consecutive field values have a smaller Hamming
distance between their values. Our method of encoding
opcodes is based on the observation that the distribu-
tion of instruction transitions is not uniform, but highly
skewed. By assigning opcodes with a smaller Hamming
distance to more frequently consecutive instruction pairs,
the switching activity from the opcode field can be de-
creased.

Fig.1. An Example Instruction Transition Graph G

B. Instruction Transition Graph

Once an instruction set architecture of a microproces-
sor is determined and its compiler is available, using the
benchmark programs of the target application domains
of the microprocessor, we can measure the instruction
transition frequencies for all the pairs of the instructions.
The instruction transition frequencies can be represented
by an instruction transition graph (ITG) G = (V, E,w)
where V is a set of instructions, F is a set of the undirected
edges between all the elements in V', and w is a probability
density function that maps each edge e = (v1,v2) in E to
a real number between 0 and 1. w(e) indicates the relative
frequency of the instruction transitions between v; and vs.
Fig. 1 shows an example instruction transition graph G
with four instructions. Each edge represents the relative
transition frequency between two instructions connected
by the edge. For example, the transition frequency be-
tween instructions v, and vz is 0.25.

An instruction transition graph of a benchmark pro-
gram can be constructed by counting the number of tran-
sitions between all the pairs of the instructions. Once an
instruction transition graph of an individual benchmark
program is obtained, a global instruction transition graph
can be built by merging the individual instruction transi-
tion graphs using an appropriate weighting scheme (e.g.,
equal-time weighting).

C. Optimal Opcode Encoding

Given a global instruction transition graph G =
(V, E,w), our goal is to find an opcode assignment that
minimizes the number of bit changes on the opcode field.
If an instruction set architecture has M instructions, we
need at least [log, M|-bit codes to uniquely identify the
M instructions. An opcode assignment can be repre-
sented by an opcode assignment function f : V — S
where S is a set of binary codes of length [log, |[V|]. The
quality of the opcode assignment function is determined
by our power metric asa(G, f), the average switching ac-

Instruction Opcode Instruction Opcode
(%1 00 (%1 00
v2 01 v2 01
U3 10 U3 11
V4 11 V4 10

b. assignment function f2
asa(@G, f2) = 0.85

a. assignment function fi
asa(@G, f1) = 1.45

Fig.2. Two Opcode Assignment Functions for the Instruction
Transition Graph G shown in Fig. 1

tivity per instruction in G under f, which is defined as
follows:

asa(G,f)= >

e=(v1,v2)€E

w(e) x h(f(v1), f(v2))

where h is a function that returns the Hamming distance
between two binary codes. As an example, consider the
instruction transition graph G shown in Fig. 1. For two
opcode assignment functions f; and f» shown in Figs. 2a
and 2b, we can see that asa(G, f1) is 1.45 and asa(G, f2)
is 0.85. That is, the switching activity in the opcode field
is reduced by 41.4% by changing the opcode assignment
function from f; to f.

Finding an optimal opcode assignment function from
an instruction transition graph is an NP-hard problem [6].
For an approximate solution, we have used three heuris-
tics, 2-opt [7], simulated annealing [8], and slack-based
heuristic [6]. The 2-opt heuristic repeatedly swaps the
opcodes of randomly selected two instructions if the swap
results in the switching activity reduction. When a locally
optimal solution is found, the 2-opt heuristic restarts an-
other local search from a random solution. Simulated an-
nealing is similar to the 2-opt heuristic, but it may swap
the opcodes even if the swap increases the switching activ-
ity. The slack-based heuristic first sorts all the instruction
pairs in the decreasing order based on their contributions
to the total switching activity, then changes the opcodes
starting from the first instruction pair in the sorted list
to reduce switching activity.

D. Decoding Restriction

In practice, for a simpler decoding logic implementa-
tion, we often do not have the complete freedom in as-
signing opcodes to the instructions. For example, the
instructions of similar types may have the same bit pat-
tern for some of their opcodes. In order to reflect this
restriction during the optimization process, the opcode
field is divided into two subfields, the decode-restricted
subfield and decode-free subfield. The decode-restricted
subfield represents the portion of the opcode whose encod-
ing is limited for a simpler decoder implementation. The
decode-free subfield, on the other hand, can be assigned
to any code possible.

TABLE I
ToP 10 INSTRUCTION PAIRS WITH THE HIGHEST TRANSITION
FREQUENCIES

TABLE II
SWITCHING ACTIVITY REDUCTION RESULTS FROM SPEC CPU95

SPEC CPU95 Benchmark UTDSP Benchmark
Inst. Pair | Frequency Inst. Pair | Frequency
sll, addu 6.6% addiu, sw 4.8%
mul.d, 1.d 3.9% addiu, lw 4.4%

Iw, Iw 3.5% Iw, Iw 3.2%
SW, SW 3.3% SW, SW 3.1%
addu, 1.d 2.9% addiu, addiu 2.9%
add.d, 1.d 2.8% addu, sw 2.8%
addu. lw 2.8% lw, bne 2.2%

addiu, addiu 2.4% addiu, addu 2.2%
addiu, sw 2.3% sw, Iw 2.2%
addiu, 1w 2.1% addiu, beq 2.1%

| total [326% | total [29.9% |

To find an optimal opcode encoding under the decod-
ing restriction, we use a two-phase optimization method.
In the first phase, the encoding of decode-restricted sub-
field is determined. Instructions that have the same
value for the decode-restricted subfield form an instruc-
tion group. To minimize the switching activity from the
decode-restricted subfield, information on the transition
frequencies between the instruction groups is necessary.
The transition frequencies between the instruction groups
can be extracted from the global instruction transition
graph and represented by a group transition graph (GTG).
A group transition graph can be constructed in a similar
fashion as an instruction transition graph except that a
vertex represents an instruction group, not an instruction.
Given a group transition graph, we can find the encod-
ing for the decode-restricted subfield with the same man-
ner as the optimal opcode encoding from an instruction
transition graph is found. In the second phase, with the
decode-restricted subfield fixed, the encoding of decode-
free subfield is decided using an appropriate heuristic.

III. EXPERIMENTAL RESULTS

In order to compare the switching activity reduction
over a naive opcode encoding method, we have performed
experiments using the SimpleScalar tool set [9]. The Sim-
pleScalar architecture is a derivative of MIPS architec-
ture and has 119 instructions with the 7-bit opcode field.
Two benchmark suites, SPEC CPU95 benchmark [10] and
UTDSP benchmark [11], were used for the experiments to
evaluate the applicability of the proposed method in the
different application domains. Two ITGs, Gspgc and
Gurpsp, were built from the instruction transition in-
formation collected from the modified SimpleScalar sim-
ulator. As expected, the probability density functions
wsprc and wyrpsp of Gspec and Gurpsp, respec-
tively, were highly skewed: for example, about 1% of the
total instruction pairs accounted for about 90% of the

BENCHMARK
2-opt Simulated | Slack-based
Heuristic | Annealing Heuristic
applu 62.1% 62.1% 59.9%
compress 44.3% 45.8% 46.2%
foppp 50.5% 51.2% 51.0%
gee 39.6% 38.9% 39.3%
m88ksim 45.2% 47.1% 49.2%
perl 40.3% 38.9% 40.7%
tomcatv 45.9% 44.6% 44.1%
wave 53.9% 51.3% 47.1%
[average [49.1% | 495% [48.0% |
TABLE III
SWITCHING AcCTIVITY REDUCTION RESULTS FROM UTDSP
BENCHMARK
2-opt Simulated | Slack-based
Heuristic | Annealing Heuristic
V32 41.7% 38.5% 40.3%
adpcm 43.0% 46.6% 44.5%
edge_detect 37.5% 36.4% 37.0%
histogram 43.9% 40.9% 41.8%
jpeg 45.0% 48.9% 45.9%
Ipc 37.4% 40.8% 38.7%
spectral 66.7% 66.7% 66.7%
trellis 46.3% 50.8% 50.6%
[average [452% [463% [457% |

total instruction transitions. Table I lists the top 10 in-
struction pairs that have the highest transition frequen-
cies. The top 10 instruction pairs (out of the total 7140
pairs) account for 32.6% and 29.9% of the total instruction
transitions for SPEC CPU95 and UTDSP, respectively.
From the ITGs, the optimized opcode assignment func-
tions fsprpc and fyrpsp are obtained using the three
heuristics described in Section II.C. Tables II and III
summarize the switching activity reduction results for the
selected benchmark programs over the original opcode as-
signment used for SimpleScalar. As shown in Tables II
and III, three heuristics performed equally well. With
the 2-opt heuristic, on an average, switching activities
were reduced by 49.1% for SPEC CPU95 and 45.2% for
UTDSP. In order to consider the decoding restriction, we
have performed the experiments with the upper three bits
(out of the 7-bit opcode field) set as the decode-restricted
subfield for a simpler decoding. Tables IV and V show
the switching activity reduction results under the decod-
ing restriction using the 2-opt heuristic. Although the
improvements are smaller than ones reported in Tables II
and III, on an average, the switching activity reduction
of 38.2% and 36.6% is achieved for SPEC CPU95 and
UTDSP, respectively.

TABLE IV
SWITCHING ACTIVITY REDUCTION RESULTS FROM SPEC CPU95
BENCHMARK UNDER THE DECODING RESTRICTION

No Decoding
Restriction | Restriction
applu 62.1% 57.8%
compress 44.3% 32.0%
fpppp 50.5% 39.2%
gce 39.6% 26.0%
m88ksim 45.2% 30.0%
perl 40.3% 30.7%
tomcatv 45.9% 27.1%
wave 53.9% 48.0%
[average | 49.1% [382% |

IV. CONCLUSION

A method of encoding opcodes for low-power instruc-
tion fetch is presented. It is based on the observation that
the distribution of the instruction transitions is highly
skewed. Our method exploits this observation in the op-
code encoding so that more frequently consecutive in-
struction pairs are encoded to have a smaller Hamming
distance between their opcodes. Experimental results
show that we can reduce the switching activity from the
instruction fetch logic by 36.4% to 66.7% over a naive
opcode encoding method. Considering the decoding re-
striction for a simpler decoding, the encoding method is
still effective, reducing the switching activity by 26.0% to
57.8% over a naive encoding method.

ACKNOWLEDGEMENT

This research was supported in part by S.N.U. Posco
Research Fund (98-09-2093).

REFERENCES

[1] A. Chandrakasan, T. Shung, and R. W. Brodersen, “Low power
CMOS digital design,” Journal of Solid State Circuits, Vol. 27,
No. 4, pp. 473-484, 1992.

[2] S. Devadas and S. Malik, “A Survey of optimization techniques
targeting low power VLSI circuits,” Proceedings of the 32nd
Design Automation Conference, pp. 242-247, 1995.

TABLE V
SWITCHING ACTIVITY REDUCTION RESULTS FROM UTDSP
BENCHMARK UNDER THE DECODING RESTRICTION

No Decoding
Restriction | Restriction
V32 41.7% 32.7%
adpcm 43.0% 34.6%
edge_detect 37.5% 33.0%
histogram 43.9% 33.9%
jpeg 45.0% 37.5%
Ipc 37.4% 27.8%
spectral 66.7% 50.0%
trellis 46.3% 42.0%
[average [452% | 36.6% |

[3] M. R. Stan and W. P. Burleson, “Bus-invert coding for low-
power I/0,” IEEE Transactions on VLSI Systems, Vol. 3, No.
1, pp. 49-58, 1995.

[4] L. Su, C. Y. Tsui, and A. M. Despain, “Low power architec-
ture design and compilation techniques for high-performance
processors,” Proceedings of COMPCON’94, pp. 489-498, 1994.

[5] H. Mehta, R. M. Owens, M. J. Irwin, R. Chen, and D. Ghosh,
“Techniques for low energy software,” Proceedings of the 1997
International Symposium on Low Power Electronics and De-
stgn, pp. 72-75, 1997.

[6] V. Veeramachaneni, A. Tyagi, and S. Rajgopal, “Re-encoding
for low power state assignment of FSMs,” Proceedings of the
International Symposium on Low Power Design, pp. 173-178,
1995.

[7] E. Aart and J. K. Lenstra, Local search in combinatorial op-
timization, John Wiley & Sons Ltd., Baffins Lane, Chichester,
1997.

[8] L. Davis and M. Steenstrup, Handbook of Genetic Algorithms,
L. Davis Ed., PHG Van Nostrand Reinhold, 1991.

[9] D. Burger and T. M. Austin, “The SimpleScalar tool set, ver-
sion 2.0,” hitp://www.cs. wisc.edu/ “mscalar/simplescalar.html,
1997.

[10] SPEC, “SPEC CPU95 benchmarks,” http://www.spec.org/
org/cpu95 , 1995.

[11] M. Stoodley and C. Lee, “UTDSP benchmark suite,”
http://www.eecq.toronto.edu/ "corinna/DSP /infrastructure/
UTDSP.html, 1997.

An Operation Rearrangement Technique for
Power Optimization in VLIW Instruction Fetch

Abstract

As mobile applications are required to handle more
computing-intensive tasks, many mobile devices are de-
signed using VLIW processors for high performance. In
VLIW machines where a single instruction contains multi-
ple operations, the power consumption during instruction
fetches varies significantly depending on how the opera-
tions are arranged within the instruction. In this paper, we
describe a post-pass operation rearrangement method that
reduces the power consumption from the instruction-fetch
datapath. The proposed method modifies operation place-
ment orders within VLIW instructions so that the switching
activity between successive instruction fetches is minimized.
Our experiment shows that the switching activity can be re-
duced by 34% on average for benchmark programs.

1 Introduction

As mobile applications are required to handle more
computing-intensive tasks (such as video decoding), many
mobile devices are designed using VLIW processors for
high performance. For example, the Crusoe processors [6]
from Transmeta (which were developed for mobile Inter-
net computing market) are based on 64 bits or 128 bits
VLIW CPU cores. Fujitsu Microelectronics’ FR300 [4]
(whose main application area is in wireless cellular phones)
also has a VLIW architecture. In addition, there are many
VLIW digital signal processors such as Texas Instruments’
TMS320C6x series that can be used for wireless devices
[3, 51.

While VLIW CPU-based mobile devices generally pro-
vide enough computing power to handle many computing
intensive applications, they usually consume a large amount
of power. For example, TMS320C620x processors con-
sume between 1.2W and 2.3W at 1.8V while high-end em-
bedded microprocessors such as StrongArm 110 consume
between 100mW and 1W at 3V [15, 9]. Therefore, in de-
signing VLIW CPU-based mobile devices, low power con-
sumption becomes an important design constraint.

In digital CMOS circuits (that use well-designed logic
gates), dynamic power consumption accounts for over 90%
of total power consumption [1]. Since the dynamic power
consumption is proportionate to the switching activity X ca-
pacitance term, to reduce the overall dynamic power con-
sumption, the switching activity should be reduced from
the components having large capacitances. For example,
system-level off-chip busses are such components. The
power consumption from off-chip driving can reach up to
70% of the total chip power, where bus transitions are the
most dominant factor due to the large capacitances of the
bus lines [7].

Many techniques have been proposed and developed to
reduce the frequency of bit transitions in a system-level off-
chip bus [12, 11, 13, 16]. For example, various bus encod-
ing techniques [12, 11] convert bus data representations, ex-
ploiting the characteristics of bus access patterns, so that the
power consumption from the off-chip bus can be reduced.
On the other hand, low-power instruction scheduling tech-
niques [13, 16] modify instruction placement orders to re-
duce the bit changes from the successive instruction fetches.

In this paper, we propose a post-pass optimization
technique that can significantly reduce switching activity
from both the internal and external instruction busses of
VLIW processors. The proposed method takes advantage
of a VLIW machine’s instruction encoding characteristic:
VLIW CPUs can place the same operation in multiple op-
eration slots within the VLIW instruction.! We reduce
switching activity by modifying operation placement or-
ders within VLIW instructions so that the switching activ-
ity in the instruction-fetch datapath is minimized. The pro-
posed technique also takes into account of the inter-block
switching activity, which was ignored in the existing low-
power instruction scheduling techniques, in scheduling in-
structions for low-power fetches.

The main contribution of this paper is two-fold. First,
as far as we know, our work is the first attempt to re-
duce the power consumption from the VLIW instruction-

1We distinguish between an operation and an instruction in a VLIW
CPU. A VLIW instruction is assumed to consist of several operations.

fetch datapath? by instruction scheduling. Second, the pro-
posed technique, unlike the existing low-power instruction
scheduling such as [13, 16], tries to reduce the overall power
consumption from both the on-chip and off-chip instruction
busses. In reordering instructions for low-power instruction
fetch, existing low-power instruction scheduling techniques
do not consider simultaneously both the on-chip bus con-
sumption and the off-chip bus consumption. For example,
the instruction scheduling technique [16] by Tomiyama et
al. does not take account of the switching activity at the
on-chip instruction bus. For their target processors, since
off-chip bus accesses are the dominating power consumer,
the authors did not consider to reduce the power consump-
tion from the on-chip bus, which contributes much less to
the overall power consumption than the off-chip bus.

On the other hand, in VLIW processors, an instruc-
tion scheduling technique must weigh the switching activity
from the on-chip instruction bus as well as the off-chip in-
struction bus. Since the width of the on-chip instruction bus
is generally much larger than that of the off-chip instruction
bus in VLIW architectures, if an instruction schedule were
produced considering only the bit changes from the off-chip
bus, it might be a bad (thus more bit-changing) schedule for
the on-chip instruction bus. Furthermore, since the on-chip
instruction bus has the large wire capacitance as well as the
large output load capacitance [17] and it is used every cycle
in a high speed, the impact on the total power consumption
of the switching activity at the on-chip instruction bus can-
not be ignored.

The organization of the rest of the paper is as follows.
Before presenting the proposed operation rearrangement
technique, we review prior work on low-power techniques
for instruction fetch in Section 2. In Section 3, we describe
atarget VLIW machine model and define several terms. An
operation rearrangement technique is explained in Section
4. Experimental results are presented in Section 5 followed
by conclusions in Section 6.

2 Related Work

The research to reduce the bit transitions of bus can be
classified by three approaches.

The first approach is the bus encoding. Bus-invert cod-
ing [12] reduces a significant number of bit changes from
bus lines by dynamically inverting the bus lines when the
number of switched bus lines is more than half the number
of bitlines. Shin et al. advanced the bus-invert coding by
selecting a sub-group of bus lines involved in bus encod-
ing to avoid unnecessary inversion of bus lines not in the
sub-group [11].

2This includes an external memory, an off-chip bus, an instruction
cache and an on-chip bus.

The second approach is the instruction scheduling. Su
et al. proposed an instruction scheduling technique, called
cold scheduling, to reduce the amount of switching activity
in the control path [13]. Used in conjunction with a tradi-
tional list scheduling algorithm, cold scheduling schedules
instructions in the ready list based on the power cost of an
instruction. The power cost of an instruction is determined
by the number of bit changes when the instruction in ques-
tion is scheduled following the last instruction. Tomiyama
et al. proposed an instruction scheduling technique which
reduces transitions on an instruction bus between an on-chip
cache and a main memory when instruction cache misses
occur [16]. This scheduling technique schedules instruc-
tions in each basic block in a way that binary representa-
tions of consecutive two machine instructions are less dif-
ferent while maintaining the control/data dependencies of
the original program.

The third approach is the instruction encoding. Regis-
ter relabeling [8] assigns register numbers of instructions so
that more frequently consecutive register numbers have a
smaller Hamming distance, thus reducing the switching ac-
tivity of the instruction bus and decode logic. The instruc-
tion scheduling and instruction encoding techniques also re-
duce the switching activity of the instruction fetch and de-
coding logic.

Most of existing low-power instruction scheduling tech-
niques (including the techniques described above), how-
ever, assume that processors can issue at most one instruc-
tion at each cycle. Therefore, these techniques cannot be
directly applied to multiple-issue machines such as a VLIW
CPU. In a VLIW CPU, since multiple operations are packed
into a single instruction, two levels of scheduling decisions
should be made to reduce power consumption. In the first
level, we have to decide that which operations are packed
into which instructions. Once the first level scheduling de-
cision is made, in the second level, we have to decide which
orders the selected operations are placed in specific instruc-
tions. The technique proposed in this paper solves the
second-level low-power scheduling problem for a VLIW
CPU assuming that the decision for the first-level schedul-
ing problem was already made.

3 VLIW Machine Model and Definitions
3.1 Target VLIW Machine Model

VLIW architectures use long instruction words to exe-
cute multiple operations simultaneously. In specifying mul-
tiple operations within a single VLIW instruction, two en-
coding methods are typically used: uncompressed encoding
and compressed encoding [2]. In a VLIW machine with an
uncompressed encoding, each operation slot of a VLIW in-
struction corresponds to a particular functional unit. The

operation specified in a particular operation slot, therefore,
is executed only in the corresponding functional unit. If a
functional unit is not scheduled to execute an operation at
the given cycle, NOP should be specified in the correspond-
ing operation slot. Under this encoding method, the number
of candidate operation slots for an operation is limited to the
number of corresponding functional units that can execute
the operation.

On the other hand, in a VLIW machine with a com-
pressed encoding, the position of operation slots within a
VLIW instruction does not directly correspond to a partic-
ular functional unit. The assignment of a particular func-
tional unit to an operation is generally decided by the func-
tional unit subfield of the operation encoding. The func-
tional unit subfield specifies which functional unit should
be assigned to the operation. In addition, in order to in-
crease memory utilization, NOP operations are not explic-
itly encoded in the VLIW instruction. In this type of VLIW
machines, an operation can be placed in any operation slot
within the same VLIW instruction.

Figures 1 shows compressed encoding method using a
sample VLIW program sequence S. In the program se-
quence S, three VLIW instructions are shown where “||”
specifies parallel operations that are executed simultane-
ously. For a compressed VLIW instruction encoding shown
in Figures 1.(b) and 1.(c), there are many chances for oper-
ation rearrangements because there is no direct correspon-
dence between the position of an operation slot and a corre-
sponding functional unit. For example, for the first VLIW
instruction of S, 4! different operation rearrangements are
all possible.> Although the proposed operation rearrange-
ment technique is equally effective for a VLIW machine
with an uncompressed encoding, we assume that a target
VLIW CPU was encoded using a compressed encoding
method.

Throughout this paper, we consider a target system with
an architectural organization shown in Figure 2. The VLIW
processor with a compressed encoding has an on-chip in-
struction cache. The VLIW instructions are fetched through
the beqcne-bit width instruction bus. If the instruction is not
found in the on-chip instruction cache, the corresponding
memory block is fetched from the main memory through
the b,,em-bit width instruction bus. Because of the com-
pressed encoding format, several VLIW instructions can be
fetched together in a single fetch from the instruction cache.
We call these instructions a fetch packet as a group. For a
description purpose, we make the following assumptions on
the target system:

3In Figures 1.(b) and 1.(c), parallel operations within the same VLIW
instruction is specified using tail bits (shown in the shaded boxes). If a tail
bit of an operation O is 1, the operation O is executed in parallel with the
next operation. Otherwise, the next operation is executed after the current
instruction is executed.

IADD /TwU%
||FADD /+FpU
||LOAD /*MemU*%/
|| STORE /*MemU*/ ®)

Instruction 1 Instruction 3

ISUB /MU
IMUL Pne%/

ISUB
U

IADD AntU%
|IBEG /BrU¥

@)

Instruction 1 Instruction 2

©

Instruction 3

Figure 1. Compressed VLIW instruction en-
coding; (a) a sample instruction sequence S,
(b) one compressed encoding of S and (c) an
alternative encoding of S.

o In asingle b.,.p-bit fetch packet, exactly N operations
are included. (That is, the width of a single operation
slot is exactly begche /N.)

e No instruction crosses the fetch packet boundary.

® bp,em is equal to the operation width. (That is, byper, =
bcache/N)

o When the external instruction bus is not used, each line
in the external bus is assumed to hold a logic 1 value
to prevent from the high impedance condition.

VLIW Processor

VLIW
CPU Address Bus
core

Address 9

Instruction Main
Cache Memory

Instruction
Bus

\
Bus width

- m

Figure 2. Target system architecture.

3.2 Definitions

In explaining the operation rearrangement technique, we
use the following definitions:

Definition 1 A permutationo : {1,---,n } = {1, ---,
n } is said to be an operation rearrangement function.

Definition 2 Two VLIW instructions I; = (OP}, OP;,
-+, OPYyand I, = (OP2, OPZ, ---, OP2) are said to

be equivalent under operation rearrangement if there exists
an operation rearrangement function o such that OP, (z) =
OPZforalll <i < n.

Definition 3 Two fetch packets FP, = (I1,13,---,I%)
and FP, = (I2,12,- - -, I2) are said to be equivalent under
operation rearrangement if there exist operation rearrange-
ment functions (01,02, -+, 0,) such that I} is equivalent
to I2 under o; forall 1 < i < n. EQ(FP;) is used to rep-
resent the set of equivalent fetch packets for a given F'P;.

Definition 4 Two basic blocks bb; = (FP}, FP;,

, FP!) and bby = (FP2 FP},---,FP2) are said
to be equivalent under operation rearrangement if F'P} is
equivalent to F'P? under operation rearrangement for all
1 < i < n. EQ(bb) is used to represent the set of equivalent
basic blocks for a given basic block bb.

Definition 5 Two programs S; = (bbi,bbl,---,bbL)
and Sy = (bb2,bb2,---,bb2) are said to be equlvalent un-
der operation rearrangement if bb} is equivalent to bb? under
operation rearrangement for all 1 < ¢ < n. EQ(S) is used
to represent the set of equivalent programs for a given pro-
gram S.

In the rest of paper, we use “equivalent” to mean “equiv-
alent under operation rearrangement” where no confusion
arises.

4 Operation Rearrangement Problem

In this section, we introduce the operation rearrangement
problem and present its solution, formulating the problem
into a shortest path problem.

4.1 Basic Idea

In order to reduce the switching activity during the in-
struction fetch phase in a target system, we reduce the num-
ber of bit transitions between successive instruction fetches,
because switching activity is directly proportional to the
number of bit changes. Since, in a VLIW machine with
a compressed encoding, an operation can be placed in any
operation slot within the instruction boundary, the number
of bit transitions between successive instruction fetches can
be reduced by reordering given VLIW instructions to equiv-
alent instructions that have less switching activity. Consider
an example shown in Figure 3. There are four fetch pack-
ets each of which is 32-bit wide (that is, beache = 32). In
the example, each fetch packet consists of a single VLIW
instruction which in turn consists of four operations. Fig-
ure 3.(b) shows the instruction sequence after an operation
placement order was modified to reduce the bit transitions
in the instruction bus. When the four instructions are exe-
cuted sequentially only once, the rearranged instruction se-
quence shown in Figure 3.(b) reduces the total number of

bit changes by about 25% from 39 to 29, while maintaining

the same semantics of the original sequence.

Instruction Cache

Instruction Cache

Fetched values on Instruction Bus
00010101 10010101 10011001 00000000

@ 14 bit transitions
10001111 00000011 00011101 01011100
12 bit transitions
10011101 10011001 10010001 11111110
13 bit transitions
10100101 10001111 00011101 00011100

the total number of bit changes = 39

(a) Before operation rearrangement

Fetched values on Instruction Bus
00010101 10010101 10011001 00000000
8 bit transitions
00011101 10001111 01011101 00000010
10 bit transitions
10011101 10011001 11111111 10010000
11 bit transitions
10001111 00011101 10100101 00011100

the total number of bit changes =29

(b) After operation rearrangement

Figure 3. An operation rearrangement exam-
ple.

4.2 Problem Formulation and Solution

We first consider the operation rearrangement problem
for a single basic block where each basic block is assumed
to be independent. We call this problem the single basic
block (SBB) problem. A complete operation rearrangement
problem is solved by extending the solution for the single
basic block problem.

4.2.1 Single Basic Block (SBB) Problem

For a given execution of a program P, the total number
of bit changes SW2 from a basic block B during the in-
struction fetch phase is given by the sum of two terms,
SWZE . and SWE . SWE . represents the number of
bit changes at the internal instruction bus and SW,,, ¢, in-
dicates the number of bit changes at the external instruction
bus. Usmg the notations explained in Table 1, SW2B
and SW2,, are computed as follows. (In the explanations
below, we use the basic block B,y shown in Figure 4 as
an example. The basic block B, consists of three cache
memory blocks, M B;, M By and M Bs, and each cache
memory block consists of three fetch packets. Each fetch
packet consists of four operations.)

SW2EB . is the sum of all the bit changes incurred dur-

cache
ing successive fetches of fetch packets from the instruction

cache and calculated as follows:
Ntp(B)—1

SWcache = w(B) Z dfP(FPiBYFPSE-I) (1)
=1

Symbol || Meaning

w(B) The number of times that a basic block B is executed.
N¢p(B) The number of fetch packets in a basic block B.
Nop The number of operations in a fetch packet. (This is a fixed value regardless of B.)
1 The bit vector where every bit is 1 and whose length is bynem .
FpB The i-th fetch packet of a basic block B.
B
opFFi The n-th operation of FPZ.

B
(Within a fetch packet FPf , the first operation is OPIF P and the last one is OP;::)

B

dsp(FPE, FPf)

The Hamming distance between the fetch packets FPF and FPP.

B

B FP;
dop(OPy 7% ,OPp, 7)

FP]
The Hamming distance between the operations OPf Pi and OP,, 7 .

B PP

The memory block that contains FPB.

MB(FPF)
MB

miss

The number of cache misses of the memory block M B.

Table 1. Notations used in Section 4.2.1

where w(B) is the number of times that a basic block B is
executed. The upper portion of Figure 4 shows how Equa-
tion (1) is calculated for the example basic block B.,.
SWBem is equal to the sum of all the bit changes be-
tween 5&] acent operation fetches from the main memory be-
cause we assumed that byerm = begene/Nop in Section 3.1.
For the description purpose, if we assume that basic blocks
are aligned by the cache memory block size, and their sizes

are the multiple of cache memory block size, SW.2,,. can
be computedp by adding the bit changes of all the memory
blocks that consist of the basic block B. For such a mem-
ory block M B, if we assume that the memory block has K
fetch packets, the number of bit changes SW,MB from the
memory block M B at the external instruction bus is given

m

K K-1
SWME, = " NME .intra(i) + Y NME, .inter(i) ()
=1 =1

where NMEB_is the number of cache misses of the memory
block M B, and

MB
dop(1,0P] : D)+ Sopli) (%K) =1
dop(OPp 1) +Sop(i) it (%K) =0
Sop(#)

intra(i) =
otherwise

Nop—1
. FPMB FPMB

(where Sop ('L) = E dop (OPn * ’ 0Pn+1i))
n=1

0 if (i%K) = 0
MB FPMEB 4
dop(OPy. ,OP; **') otherwise @

inter(i) = {
In Equations (3) and (4), F P/B represents the i-th fetch

acket of the memory block MB.In Equation (3), the num-

er of bit transitions between the 1 vector and the first oper-
ation of the memory block and the number of bit transitions
between the last operation of the memory block and 1 vector
are included in the calculation. This is because we assumed
that in Section 3.1, each bus line of the external instruction
bus holds a logic 1 value when the bus is not used. The
intra(i) and inter (i) terms above can be easily understood
with an example. For example, for the first memory block
M B; of the Figure 4 that consists of three fetch packets,
the intra(i) and inter (i) terms are as follows:

intra(l) = dop(1,A) + dop(4, B) + dop(B, C) + dop(C, D)

intra(2) =
intra(3) =

dop(E, F) 4 dop(F, G) + dop(G, H)
dop(I,J) + dop(J, K) + dop(K, L) 4+ dop(L, 1)

inter(1l) = dop(D, E), inter(2) = dop(H,I), inter(3) =0
Since SW .2

B can be computed by summing SW B over

SWE, = w(Be) (dp (FPLEP?)
+dg, (FRFRY)
+d, (FRFPy)
Cache Memory
MB1
FR,
FE, \
SWom = dep(1,A)
MB2 mem ” 1234
FR, +d,, (AB) 1234
, +4, B0
P, ces
+dp KL) [abcd]
MB3
FP, +dy @D
FP, 1
FB,

e

Figure 4. An example calculation of bit tran-
sitions at the instruction busses during the
execution of a basic block B,,.

all the memory blocks of B, SW.2, is calculated as fol-
lows:

Ngp(B)

MB(FPE) . .
Swk... = Z N, iss - intra(i)
i=1
Ntp(B)—1

B
+ Z NP inter(i) Q)
=1

Assuming the load capacitance ratio of the external instruc-
tion bus to the internal instruction bus is &, SWE, in the

number of bit transitions at the internal bus, is computed as
follows using the Equations (1) and (2):

SWB =gsw?k

cache
Nip(B)—1
= Y swintr(FPP,FPE,)
=1
pr(B)
+) swintra(FPF) ©)

=1

+a-SWE.,.

where
Swier (PP, FPE,)

MB(FPE
= w(B) - dgp(FPP, FPEy) +a- Ny

miss

- inter(:7)

. B
SWiTEre(FPP) = o N+

miss : intra(i) ®)

Given a basic block B, the SBB problem ils to
find an equivalent basic block B’ such that SWEB <
SWE" for all B" € EQ(B). If operations are re-

B B
arranged, dy,(FPE, FPE,), dop(OPs * ,0Ps?) and

FPP FPZ,, . .
dop(OPNop’ ,OP; "™} in Equations (1), (3) and (4) are
changed.

4.2.2 Solution for the SBB Problem

We compute an optimal solution for the SBB problem
by converting the problem to the shortest path prob-
lem between two special nodes, START and END. Us-
ing the notations described in Table 2, given a basic
block B, we construct a weighted directed graph Gg =
{‘/’ E, Wiode, Wedye}» where

pr(B)
v = {START,END}U |] EQ(FPP)
=1
pr(B)
= {START,END}U U {FP{?I,...,FPfNeq(FPiB)},
=1
E = {(v,w)|v=START,w € EQ(FP)}u

ﬂmw)hu:EMQveEQﬁTﬁ”wﬂ}U

{(v,w) | v € BQ(FPP),w € EQ(FPY,)
for1 <i < Ngp(B)},

intra s _
Wosoae(v) = { OSWFP (v) ifv eV —{START,END}

otherwise ,and
SWinter(y w) ifv,w € V — {START,END
Wedge (v, w) = { 0 #e7l : otherwise. { , ’

Figure 5 shows an example graph Gp constructed by
transforming the operation rearrangement problem to the
shortest path problem. For each fetch packet FPJZ,

Y=N,, (FE%)

Figure 5. A shortest path problem formulation
of the operation rearrangement problem (with
node and edge weights omitted).

Neo(FPE) vertices are created in Gp, and for suc-
cessive fetch packets, FP? and FPE,, every pair of
(FPJB,FPY, /) is connected by an edge. We call the
Ney(FPE) vertices created from the fetch packet F P2 to
be in the level ;. In the graph G g, the distance of a path P =
(START, v, - -, vk, END) is given by 3% | Wy oae (i) +
Zi.:ll Wedge (v, viy1). The distance of path P is equal to
SWE when each fetch packet F PP is reordered to v; for
1<i<k

An optimal solution of the shortest path problem de-
scribed above can be found by using a modified shortest
path algorithm shown in Figure 6. The modified shortest
path algorithm is based on the following theorem whose
proof is trivial.

Theorem 1 Let a path P(FPZ) = (START, vy, - -+, vi_1,

FPJ,) be the shortest path from START to FP? € EQ(FPF?)

and the distance of the path P(FPJ;) be dpppB,)- Then the
2%

minimum distance of the path P(F PS5, ;)=(START, vy, - - -, v,

FIDfi—l,k) dP(FPf'_lyk)’ is given by

min15jgNeq(FPf)[dP(FPfj) + Wedge (F P j, FPiy1,x)
+Wnode(F-Pi+1,k)]- (9)

In Figure 6, SWy,;,, is a variable to store the minimum
distance of a path from START to FPJ, ; (in Line 15)
and SW_,., is a variable to store the minimum distance of
a path from START to F/PJ, , that passes through FP5,.
The shortest path is constructed by visiting MinPath in
reverse order. The complexity of the modified shortest
path algorithm is given by O(Ny,(B) - (N£F?)?) where
NEP? = L S0 ®) Ny (FPE). NLP” is bounded
by Nop!.

[Symbol [[Meaning

Nins(FPEP) || The number of instructions in FPE.
B
i’ The j-th instruction of FPE (1 < j < Nins(FPE)).
FPP . . FPP
Nop(I; ") || The number of operationsin I; "% .
B B B B
Neg (IfP") || The number of instructions that are equivalent to IfP" (Neg (IfPi') = (Nop (IfP" NH.
) B B
Neg(FPP) || The number of fetch packets that are equivalent to F PP (Neq(FPE) = [1ine("F:") Neg(I; 7).
FPF, The n-th fetch packet in EQ(FPE) (1 < n < Neg(FPP)).

Table 2. Notations used in Section 4.2.2

I:fori < 0 to Nsp(B) {

2: /x for each vertex in the level ¢ + 1 %/
3: fork <« 1 to Neg(FPE,){

4. SWnin := 003

5: /% for each vertex in the level 7 */
6 forj « 1 to Neg(FPE){
7

8

SWeur = dP(FPi.Bj) + Weage(FPE;, FPY, ;)
: + Wnode(FPiJil’k);
9: /* find the minimum value */
10: if (SWhin > SWeur) {
11: SWiin:=SWeur;
12: MinNode :=j;
13: }
14: }
15: dP(FPfq.Lk) = SWmins

16: /% store MinNode for the final path construction */

17: MinPath[FPf,_Lk] = FP;'),BMinNode;
18:
19:}

Figure 6. A modified shortest path algorithm.

4.23 Operation Rearrangement Problem for Whole
Program

The operation rearrangement solution for the SBB prob-
lem described above does not take account of inter-block
switching activity. Therefore, simply solving the SBB prob-
lem for each basic block does not minimize the number of
bit changes for a whole program. In order to find a global
(thus better) solution for the complete program, we need
additional information on the dynamic behavior of program
execution as well as ones required for the SBB problem. For
example, we should know how branches are resolved in run
time to compute the relative adjacency frequency between
two basic blocks.

The solution of the operation rearrangement problem for
a whole program can be solved in a similar fashion on the
SBB problem by transforming the problem to the shortest
path problem. The main difference is that in the whole
program, because of branches and loops, nodes in a con-
structed graph for a shortest path problem formulation may

span multiple paths from a given node. We use two tech-
niques, branch merging and loop rolling [10] to convert the
graph with no branches and loops. Once the graph is con-
verted to have no branches and loops, the shortest path al-
gorithm for the SBB problem can be used to find a global
solution [10].

5 Experiments

In order to evaluate how well the proposed operation re-
arrangement technique works on application programs, we
have performed experiments using a VLIW digital signal
processor, TMS320C6201 [14], from Texas Instruments.
The TMS320C6201 is a fixed-point DSP that can specify
eight 32-bit operations in a single 256-bit instruction. The
TMS320C6201 uses a compressed encoding with begene =
256. As benchmark programs, various DSP programs were
used. The proposed global solution was implemented as
a separate post-pass tool, which takes as an input an exe-
cutable file produced by the TI’s TMS320C6x optimizing
C compiler and produces as an output the rearranged low-
power version of the same program.

We have measured the number of bit transitions during
the instruction fetch phase for each benchmark program us-
ing a switching activity counter. Given an executable file
with appropriate input data, a switching activity counter
program computes the number of bit transitions from both
the internal and external busses during the program execu-
tion using instruction address traces.

Table 3 summaries the experimental results with selected
DSP benchmark programs. For each benchmark program,
the average number of bit transitions per instruction fetch
(BT/IF) is computed. For «, we have used 100 [12]. We
have compared BT/IF’s between TI compiler generated pro-
grams (the default column in Table 3), and rearranged pro-
grams by the proposed operation rearrangement technique
(the ORT column in Table 3).

As shown in Table 3, our operation rearrangement tech-
nique reduces the number of bit transitions during the in-
struction fetch phase on an average by 34.3% compared
with the programs generated by the TI compiler.

Benchmark Bit transitions/IF

Program default | ORT || Reduction
vector multiply 68.6 | 43.7 36.3%
FIRS 86.8 | 56.7 34.6%
FIRcx 79.5 | 60.5 24.0%
IIR 71.7 | 51.7 28.0%
lattice analysis 88.4 | 58.2 34.2%
W_vec 89.5 | 57.1 36.3%
dotp_sqr 792 | 443 44.1%
minerror 50.6 | 31.3 38.1%
biquad 78.1 | 52.3 33.0%

[Average [769] 506 34.3% |

Table 3. Experimental results

6 Conclusions

In this paper we have described and evaluated an oper-
ation rearrangement method for power optimization in in-
struction fetches of VLIW machines. The proposed method,
which works as a post-pass tool for compiled programs, re-
organizes the operation placement orders within VLIW in-
structions such that the resulting program has the minimum
number of bit transitions during instruction fetches. The
experimental results show that the proposed rearrangement
technique can reduce the switching activity significantly
from the complete instruction-fetch datapath of VLIW ma-
chines. For our benchmark programs, the switching activity
was reduced by 34% on an average.

The work described in this paper can be extended in sev-
eral directions. One of important future tasks is to quan-
tify the real energy gains, not the simulated ones, from
using the proposed technique. We are currently building
a cycle-accurate measurement-based power profiling tool
for an embedded microprocessor. If this tool works as ex-
pected, we plan to extend it for VLIW processors in the
future.

Although we focused on VLIW processors in this paper,
a similar operation rearrangement technique can be effec-
tive for low-power instruction fetches in superscalar proces-
sors. The preliminary result using a four-way superscalar
processor suggests that the fotal processor energy can be re-
duced by about 7%. We are currently implementing a mod-
ified operation rearrangement algorithm for a superscalar
processor.

In this paper, we considered the problem of modifying
operation orders for pre-compiled VLIW programs. How-
ever, optimization decisions made during the compilation
process can affect the outcome of operation rearrangement.
For example, depending on how instructions are scheduled,
the number of bit changes during the instruction fetch phase
can vary significantly. We plan to investigate the phase-
ordering problem between the operation rearrangement and
other optimization steps as a next research topic.

References

[1] A. Chandrakasan, T. Shung, and R. W. Broderson. Low
power CMOS digital design. IEEE Journal of Solid State
Circuits, 27(4):473-484, 1992.

[2] T. Conte, S. Banerjia, S. Larin, K. N. Menezes, and S. W.
Sathaye. Instruction fetch mechanisms for VLIW archi-
tectures with compressed encodings. In Proc. of the 29th
IEEE/ACM Int. Symp. on Microarchitecture, pages 201-211,
1996.

[3] P. Faraboschi, G. Desoli, and J. A. Fisher. The latest word
in digital and media processing. IEEE Signal Processing
Magazine, 15(2):59-85, 1998.

[4] Fujitsu Microelectronics, Inc.

Fujitsu’s new high-performance VLIW processor cores.
http://www.fujitsumicro.com/.

[5] R. Henning and C. Chakrabarti. High-level design synthe-
sis of a low power, VLIW processor for the IS-54 VSELP
speech encoder. In Proc. of Int. Conf. on Computer Design,
pages 571-576, 1997.

[6] A. Klaiber. The technology behind the Crusoe processor.
Transmeta Corporation White Paper, 2000.

[7] D. Liu and C. Svensson. Power consumption estimation in
CMOS VLSI chips. IEEE Journal of Solid State Circuits,
29(6):663-670, 1994.

[8] H.Mehta, R. M. Owens, M. J. Irwin, R. Chen, and D. Ghosh.
Techniques for low energy software. In Proc. of Int. Symp.
on Low Power Electronics and Design, pages 7275, 1997.

[9] J.-M. Puiatti, J. Llosa, C. Piguet, and E. Sanchez. Low-
power VLIW processors: A high-level evaluation. In Proc.
of Int. Workshop - Power and Timing Modeling, Optimiza-
tion and Simulation, pages 399-408, 1998.

[10] D. Shin and J. Kim. A global operation rearrangement tech-
nique for low-power instruction fetch. Technical Report
SNU-CSE-AE-99-001, Computer Architecture and Embed-
ded Systems Laboratory, Seoul National University, 1999.

[11] Y. Shin, S. Chae, and K. Choi. Partial bus-invert coding
for power optimization of system level bus. In Proc. of Int.
Symp. on Low Power Electronics and Design, pages 127—
129, 1998.

[12] M. R. Stan and W. P. Burleson. Bus-invert coding for low
power I/O. IEEE Trans. on VLSI Systems, 3:49-58, Mar.
1995.

[13] C. L. Su, C. Y. Tsui, and A. Despain. Low power ar-
chitectural design and compilation techniques for high-
performance processor. In Proc. of COMPCON9%4, pages

489-498, 1994.

[14] Texas Instruments. TMS320C62xx CPU and Instruction Set,
1997.

[15] Texas Instruments. TMS320C6000 Power Consumption
Summary, 1999.

[16] H. Tomiyama, T. Ishihara, A. Inoue, and H. Yasuura. In-
struction scheduling for power reduction in processor-based
system design. In Proc. of the 1998 Design Automation and
Test in Europe, pages 855-860, 1998.

[17] Y. Zhang, R. Y. Chen, W. Ye, and M. J. Irwin. System level
interconnect power modeling. In Proc. of the 11th interna-
tional ASIC Conference, pages 289-293, 1998.

Intra-Task Voltage

Voltage Scheduling for Applications

Scheduling for Low-Energy
Real-Time Applications

Seongsoo Lee
Ewha Woman’s University

lard

Dongkun Shin

Jihong Kim

Seoul National University

A novel intra-task voltage-scheduling algorithm

controls the supply voltage within an individual

task boundary. By fully exploiting slack time, it

achieves a high-energy reduction ratio. Using this

algorithm, a software tool automatically converts

an application into a low energy version.

Il IN MODERN VLS| SYSTEM DESIGN, power
consumption is one of the most important design
constraints. For battery-powered portable sys-
tems such as digital cellular phones, personal
digital assistants, and mobile videophones, low
power consumption is a primary design goal
because the battery operation time is one of the
most critical performance measures. Energy con-
sumption £ of CMOS circuits, which is dominat-
ed by total dynamic power consumption in most
VLSl systems, is given by E o< C X Nyye X Vip®! C,
is the load capacitance, N,y is the number of
executed cycles, and Vy;, is the supply voltage.
Because energy consumption £ has a quadratic
dependency on supply voltage Vp,, lowering V;,;,
is the most effective way of reducing energy con-
sumption. However, lowering the supply voltage
also decreases the clock speed, because CMOS
circuit delay T}, is given by Ty, o= Vip/ (Vipp — V%2
where V; is threshold voltage, and o is a veloci-
ty saturation index.

0740-7475/01/$10.00 © 2001 IEEE

When a given task’s required performance is
lower than a VLSI system’s maximum perfor-
mance, the clock speed and its corresponding
supply voltage can be dynamically controlled to
the lowest possible level while meeting the task’s
deadline constraint. This is the key idea behind
the dynamic voltage-scaling (DVS) technique.

For example, consider a task with a deadline
of 25 ms, running on a 50-MHz processor with
a 5.0-V supply voltage. If executing the task
requires 5 x 10° cycles, the processor executes
itin 10 ms and idles for the remaining 15 ms.
However, if the clock speed and supply voltage
are lowered to 20 MHz and 2.0 V, the processor
finishes the given task just at the task’s deadline
(25 ms), resulting in an 84% energy reduction.

Recently, several research groups have inves-
tigated the DVS problem for hard real-time sys-
tems.*® Most research focused on realtime
systems with multiple tasks; in this case, the key
question is how to assign the proper speed to
each task dynamically while guaranteeing all task
deadlines. These techniques exploit the run-cal-
culate-assign-run strategy for the supply voltage
determination. The steps in that strategy include

1. running the current task,

2. calculating the maximum allowable exe-
cution time for the next task,

3. assigning the supply voltage for the next
task, and

IEEE Design & Test of Computers

Table 1. Typical videophone application.

MPEG-4 MPEG-4 VSELP VSELP

Characteristic video encoding video decoding speech encoding speech decoding
Period or deadline (s) 66.667 66.667 40.000 40.000
Worst-case execution time (s) 50.386 9.826 1.844 1.383
Average execution time (s) 13.099 1.460 0.907 0.680

Normalized energy consumption

Inter-task voltage scheduling® 0.826

Offline optimal voltage scheduling 0.106

4. running the next task.

These techniques determine the supply volt-
age on a task-by-task basis, a strategy we call
inter-task voltage scheduling.

While generally effective in reducing ener-
gy consumption of multitask real-time systems,
inter-task voltage scheduling has several prac-
tical limitations. For example, because a task
scheduler in an operating system determines a
task’s supply voltage, using inter-task voltage
scheduling requires OS modifications. Further-
more, these techniques cannot be applied to a
single-task environment, because the supply
voltage is determined as a constant value for a
given task. Because the single-task model is the
basis for many small, embedded mobile appli-
cations, variable-voltage processors may be dif-
ficult to widely use in practice.

Even in a multi-task environment, inter-task
voltage scheduling may not be effective in ener-
gy reduction if the execution time of one task
dominates total execution time. For example,
consider a typical videophone application with
the four tasks shown in Table 1. In this applica-
tion, the MPEG4 video encoding task domi-
nates execution time but has the lowest priority.
For these reasons, inter-task voltage scheduling
cannot take advantage of the slack time caused
by the MPEG4 video-encoding task; these algo-
rithms are thus ineffective in reducing energy
consumption.

For example, using the inter-task-scheduling
algorithm of Shin and Choi® results in only a
17% energy reduction. In contrast, an offline
(theoretical) optimal voltage-scheduling algo-
rithm achieves about a 90% energy reduction.

We propose intra-task voltage scheduling—

March-April 2001

which adjusts the supply voltage within an indi-
vidual task’s boundary—as a solution to over-
come the limitations of intertask voltage
scheduling. For example, a recent work by Lee
et al.” demonstrates that dynamic voltage scaling
within a single task boundary can significantly
reduce energy consumption. Because intra-task
voltage scheduling does not involve the OS in
adjusting the clock speed, it has an advantage in
that existing OSs can be used without modifica-
tion on a variable-voltage processor.

However, at the current state of the art, it is
fully a programmer’s responsibility to apply
intra-task voltage scheduling to applications.
For example, there are no systematic guidelines
for selecting the best program locations for
inserting voltage-scaling code. Average pro-
grammers are generally not familiar with low-
energy software issues and timing analysis
techniques. In practice, therefore, it is difficult
to use intra-task voltage scheduling for real-time
applications without the support of a systemat-
ic programming methodology.

We propose a novel intra-task voltage-sched-
uling algorithm that can automate the develop-
ment of DVS-aware, hard realtime programs on
variable-voltage processors. It is based on static
execution-time analysis techniques commonly
used in developing hard real-time programs.
Using these techniques, the proposed algorithm
selects locations for inserting voltage-scaling
code to reduce the overall energy consumption.

The proposed scheduling algorithm exploits
all the slack time from runtime variations of dif-
ferent execution paths; there is no slack time
when the scheduled program completes its
execution, thus significantly improving energy
efficiency. The novel aspect of our algorithm is

Voltage Scheduling for Applications

S1;
if (cond1) S2;
else
while (cond2) {
S3;

if (cond3) S4;
S5;

}
if (cond4) S6;
S7;

(a)

Maximum
number of
loop
iterations = 3

Figure 1. Example program P (a), a real-time program with a 2-us deadline, has this CFG representation G; (b) and
an augmented CFG G;* with C,,.c(b)) values (c).

that voltage-scaling decisions are made in com-
pile time, although the voltage-scaling code
itself can require some runtime information in
determining an appropriate clock speed.

Furthermore, the proposed algorithm pro-
vides a systematic methodology for developing
an automatic program conversion tool to con-
vert DVS-unaware programs into DVS-aware
ones. This means the original program’s devel-
opers need no knowledge of DVS, making the
proposed algorithm very practical.

Based on the proposed algorithm, we have
developed a software tool called Automatic
Voltage Scaler (AVS). It supports a fully auto-
matic conversion of a DVS-unaware program P
into a DVS-aware, low-energy program P that
satisfies the same timing requirement as P.

Basic idea

Consider hard real-time program P, as
shown in Figure 1a, with a 2 pus deadline. The
control flow graph (CFG) G, for program P is
shown in Figure 1b. In G;, each node represents
a basic block of P, and each edge indicates the
control dependency between basic blocks. The
number within each node indicates the num-
ber of execution cycles for the basic block. The
back edge from b; to b, models the while loop
of program P.

In developing hard real-time systems where

tasks have strict timing constraints (such as
deadlines), the tasks’ worst-case execution
times (WCETs) are estimated in advance
(before runtime) to guarantee that required
timing constraints are met. Such WCETs can be
predicted by existing WCET analysis tools,
which produce safe and accurate WCET pre-
diction results.3®

Using a WCET analysis tool, we can find
path Pworst = (blv bwhv b31 by, b5v bwhv b31 by, bsv bwhv
bs, by, bs, by, by, be, b;) as the worst-case exe-
cution path (WCEP) for the example program
P, assuming that the user sets the maximum
number of while loop iterations to three. The
predicted number of execution cycles in py,
is 160 cycles, which is the number of worst-case
execution cycles (WCEC) of program P.

If a target processor operates at the 80-MHz
maximal clock frequency, program P com-
pletes its execution in 2 ps, resulting in no slack
time. We used execution cycles instead of exe-
cution times because as we adjust the clock
speed on a variable-voltage processor the exe-
cution time changes but the number of execu-
tion cycles remains constant.

Intra-task voltage scheduling is based on a
simple observation: There are large execution
time variations among different execution
paths. In particular, this strategy exploits the
fact that the average-case execution paths

IEEE Design & Test of Computers

(ACEPs) complete Deadline
execution much earli- A
er than the WCEP(s).? __ 80MHz by b, bybs b,
The example pro- % @3v)
gram shown in Figure S P
1b has 32 different 3 P
execution paths. §. oo
While the WCEP p,, s ,
takes 160 cycles, eight 0 o5u 21 Time
of 32 possible execu-
tion paths take less A
than 80 cycles. If we % 80 MHz | P1
can identify such g (2.5V)
short execution paths E Deadline
in the early phase of §
execution, we can 3 16 MHz b, by bg b,
substantially lower (0.72v) ; : ! : o
the clock speed and 0 2u Tim(:
significantly decrease
energy consumption. Figure 2. Speed and voltage changes without (a) and with (b) intra-task scheduling.

Consider the path
1= (by, by, by, bg, by)
of Figure 1b; its execution takes 40 cycles. In the
ideal case—when we can perfectly predict in
advance that the actual execution path will be
p;—Wwe can start the execution with a clock
speed of 20 MHz without violating the 2us dead-
line. Although this will significantly improve
energy efficiency, we cannot start with the 20-
MHz clock speed from b;, because we do not
generally know in advance which execution
path the next program execution will take.

In intra-task voltage scheduling, we take the
second best approach, with the help of a static
program-analysis technique on worst-case exe-
cution times. Assume that Cpyrc(b,) represents
the remaining worst-case execution cycles
(RWEC) among all the execution paths that
start from b,. Using a modified WCET analysis
tool, for each basic block b, we compute
Crwec(b) at compile time. For example, Figure
1c shows an augmented CFG Gy with Gyyec(b)
values. A modified WCET tool statically con-
structs the graph G~

For the basic blocks (such as b,,;, bs, by, bs)
related to the while loop, the corresponding
nodes are associated with multiple Gyyrc(b)) val-
ues, reflecting the while loop’s maximum three
iterations. Once G;* is constructed, we can sta-
tically identify branching edges (of CFG G) that

March-April 2001

drop the remaining worst-case execution cycles
faster than the current execution rate.

For example, in Figure 1c, we can identify
four such edges, (b;, by), (b, by, (by, by), and
(bs, by). In Figure 1c, these edges are bold face.
When the execution control thread branches
to the next basic block through one of these
edges, say (b,, b,), the clock speed can be low-
ered because the remaining work is reduced by
the difference between Cyyrc(b,) and
Crwic(by). By reducing clock speed so that the
Crwec(b2) cycles can be completed exactly at
the deadline, we ensure that the proposed tech-
nique always meets the required timing con-
straint. Because voltage-scaling decisions are
made at compile time—not runtime—there
exists no runtime overhead directly related to
the selection of voltage-scaling edges. In addi-
tion, the compile-time analysis procedure does
not require special programmer intervention
other than that typically required in developing
normal hard real-time programs (such as set-
ting the maximum number of loop iterations).

Figure 2 compares how the speed and volt-
age changes, with and without the use of intra-
task voltage scheduling. Assuming that no
energy is consumed in an idle state and E'e< C,
X Nyqe X Vpp?2 when the execution follows path

cycle

Voltage Scheduling for Applications

80 MHz
16 MHz .
10.7 MHz Deadline
\ b,]
by, by

A A

150 150

§ 100 - 80 MHz §100-
g g
g g
w w
z z

O 50 O 50+

v, Deadline
> > 0
. . 1 2 Time (us) .
'Execution' Idle time ' '
time

(a)

1 2 Time (uTs)

(b)

Execution time

Figure 3. C,,c(f) changes over different speed-scaling algorithms: no intra-task scheduling (a) and RWEC-based
intra-task scheduling (b).

p: = (by, by, by, bg, by), the energy consumption
ratio of Figure 2b to Figure 2a is 0.31. Using
intra-task voltage scheduling reduces the ener-
gy consumption by 69%.

Intra-task voltage-scheduling
algorithm

The intra-task voltage-scheduling algorithm
assigns each basic block a proper speed at
which to execute. For a hard real-time task, this
algorithm’s goal is to assign the speed to each
basic block to minimize energy consumption
while satisfying timing requirements. Through-
out this article, we assume the following about
the target variable-voltage processor:

m The processor provides special instruction
change_f_V(f.x), which can dynamically
control the processor’s clock frequency f. «
and its corresponding voltage Vpp.

m fyx and V, can be set continuously within
the processor’s operational range. When the
processor changes clock and voltage, there
is a clock/voltage transition overhead peri-
od of Cyq cycles.

m During clock/voltage transition, the processor
stops running and enters power-down mode.

Although some processors, such as
Transmeta’s Crusoe,'® can run during voltage
transition, for simplicity we assume that the
processor stops. The techniques described in
this article can support both processor types
with a slight modification of clock/voltage tran-
sition overhead modeling.

Remaining WCET-based speed
assignment

If actual execution path p,, of task T were
known in advance, the optimal execution
speed could be easily computed. For each
basic block b, in p,, S(b) = Cgc(P,)/D, where
S(b,) represents the processor clock speed in
frequency, Cic(p,.» denotes the number of
clock cycles needed to execute p,., and D
denotes the deadline of task t.

However, because the exact execution path
is generally unknown until program execution
completes, we adjust S(b,) based on the remain-
ing worst-case execution cycles Cyyrc(b)). Using
a modified version of the static WCET prediction
algorithm, such as the one developed by S.-S.
Lim and colleagues,® we can estimate Cyyrc(b)
for each basic block b,. S(b,) is set to clock speed
S at which the remaining Cyyrc(b) cycles can be

IEEE Design & Test of Computers

completed exactly at the deadline. The quanti-
ties Gryrc(by) are computed at compile time with-
out incurring any runtime performance penalty.

At entry basic block b;, Crwec(by) is set to
WCEC, and the starting speed is set to WCEC/D.
If Cryec(®) denotes the remaining worst-case
execution cycles at time ¢, as execution pro-
ceeds, Cyyrc(£) decreases linearly at the same
rate as the clock speed when execution follows
worst-case execution path p,,or-

However, if execution deviates from basic
block b, in worst-case execution path p,,, to a
basic block b; not in p,,, Crwec(f) drops after
the execution of b, is completed. It drops by the
difference between Ciypc(b,) — Cic(b) and
Crwec(b)), where Ci(b;) denotes the number of
clock cycles needed to execute b,.

Figure 3 shows how Cyyrc(f) dynamically
changes during execution of path p = (b,, by, by,
b,) from example program P. In Figure 3a,
which illustrates an execution path that uses no
speed scheduling, Guyzc(f) drops at two points:
Cec(b))/80 MHz and [Cyc(b) + Cie(by) +
Cic(b;p]/80 MHz. Because the execution path
of Figure 3a uses no speed scheduling, Cyyrc(9)
decreases at the rate of 80 MHz, resulting in a
slack time interval of 1.5625 ps.

Figure 3b shows the effect of speed sched-
uling for the same execution path. Because
Crwec(f) drops right after executing b,, the
speed changes from 80 to 16 MHz, the mini-
mum speed at which the processor can com-
plete the remaining program execution before
the deadline. When Cyyc(f) drops right after by,
the speed also changes for the same reason.

Because the proposed RWEC-based intra-task
scheduling makes all execution paths complete
execution exactly at the deadline, the RWEC-
based technique provides two benefits. It

m eliminates slack time, thus increasing ener-
gy efficiency; and

m guarantees that the scheduled program
always meets the timing constraint.

We call the points in Figure 3 at which
Grurc(®) vertically drops voltage-scaling edges
(VSEs), because the speed and voltage can be
scaled at these points. The number of cycles
reduced at VSEs is Cy,4.

March-April 2001

B-type voltage-scaling edges

We classify VSEs into two categories: B and
L. B-type VSEs correspond to the CFG edge
between two basic blocks that are part of con-
ditional statements such as the i £ statement.
For the if statement, WCET is predicted to be
the larger of two execution times, one for the
then path and the other for the else path.

Assume that the i £-statement condition is
evaluated in b, 4, the then path starts at b4,
and the else path starts at b,,,. If the i £ state-
ment is true and the then path is shorter than
the else path, Ggyec(f) is decreased by
Guwec(Pase) — Crwrc(Dien)- In this case, before the
by, block is executed, the speed can be
decreased by a ratio of Cyrc(Binen) / Crwrc(Peise)-
We call this ratio a speed update ratio and rep-
resent it by (b onq — Dihen)-

Because the same basic block can be exe-
cuted at several different clock speeds, rather
than associate each VSE with an absolute
speed, we associate it with a speed update
ratio. For example, in Figure 1, if we were to
assign a fixed speed at the VSE between b, and
b;, 53.3 MHz (80 MHz x 10/15) should be
assigned so that p,,,,, can complete before the
2-us deadline. However, if the executed path up
to by is short—say (b,, b, b;)—the execution
will end far earlier than the deadline (resulting
in a long slack time interval) if path (by, b,) uses
a fixed 53.3-MHz clock frequency. By assigning
a speed update ratio r(b; — b;) = 2/3 to the
VSE, we avoid this problem.

In adjusting speed/voltage at VSEs, several
instructions—other than change_f _V(f.x)—
are required. We denote the number of cycles
needed to execute these instructions at a Btype
VSE as Cysop. The total number of overhead
cycles Cyyemmeaa s fOr @ B-type VSE, therefore, is
given by Cyro + Cyso . The speed update ratio
r(b;— b)) for Btype VSE (b, b)) is

(b, - b)=
Grwec(®;)
CRWEC[succworst(bi)] - Coverhead,B ‘ (1)

In this equation, succ,,,(b,) is basic block b,,
an immediate successor of b; with the largest
Crwec(b,) among all b;'s successors.

If CRWEC(bj) 2 CRWEC [succworstcbi)] - Coverhead, B

Voltage Scheduling for Applications

Code B

SpeedUpdateRatio = SpeedTable (b,,b,);
NewSpeed = CurSpeed x SpeedUpdateRatio;
change_f_V (NewSpeed);

Scaling
code

LooplterNum(b,,;,) = 0

Code L

SpeedUpdateRatio =

NewSpeed = CurSpeed x SpeedUpdateRatio;
change_f_V (NewSpeed);

RWEC(by)
RWEC(by) + 40 x [3 — LooplterNum (b,,)];

Scaling

code LooplterNum(b,,;,)+ = 1

(by)

Figure 4. Given the control flow diagram on the right, our technique would insert B- and L-type voltage-scaling

code as shown.

thatisr(b,— b)) > 1, edge (b, b)) is not selected
as a VSE. For a VSE between b, and b, a speed
update ratio r(b; — b)) is multiplied with the cur-
rent speed before b; starts its execution. That is,
S(b)) is set to the current speed xr(b;, —» b).

As an example, consider how the speed
changes at B-type VSEs as the execution pro-
ceeds following the path (b,, b, by, b;) of Figure
1, assuming C,,oeaq 18 0. Just before basic block
b, executes, RWEC decreases from 150 to 30
cycles, so clock speed changes from 80 to 16
MHz (80 MHz x 30/150). The clock speed for
basic block b, also changes from 16 to 10.7 MHz
(16 MHz x 10/15) because RWEC changes from
15 to 10 cycles. Figure 4 shows the code gener-
ated for a B-type VSE (b,, b,) in Figure 1.

L-type voltage-scaling edges

Although our technique predicts WCEC
assuming that a loop will execute the user-pro-
vided maximum number of iterations, a loop is
generally iterated fewer times than the maxi-
mum loop bound. In this case, slack time exists
and clock speed can be scaled down—a tech-
nique we call L-type scaling. L-type VSEs corre-
spond to the loop exit edges in a CFG. In Litype
scaling, saved cycles C,.4 for loop / equal

Csaved [) = CWCEC(D X [Nworst(l) =N, exec([)] (2)

Cucec(D) is the worst-case number of execution
cycles to execute loop / once, N, () is the

user-provided maximum number of loops for
loop /, and N,,.(0) is the number of actual loop
iterations measured at runtime. For L-type scal-
ing, consider the edge (b,,, b;) in Figure 1,
which is an example L-type VSE. When we
denote the total number of overhead cycles at
an Ltype VSE as C, eieaq s S(by) is updated as

vS(bif) =
Crwec (bif)

S(b,,)%
(Wh) CRWEC (bif) + Csaved (l) - Coverhead,L

&)

Assuming S(b,,) = 80 MHz, N,,..(D) = 1, and
Coverneaa. = 0, then S(by) decreases to 16 MHz
before executing by.

Unlike for a B-type VSE, calculating the
speed update ratio of an L-type VSE requires
runtime information such as N,,..(). The speed
update ratio may be larger than 1, depending
on the value of N..(!) and Cyemeaqr- TO avoid
this problem, we select a loop exit edge of loop
[as an L-type VSE if Cyepc(D) > Coremeaay- DOINg
so means that if NV,,..(]) < N,(D), the speed
update ratio is always smaller than 1. When
Noee(D =N,o(D, the speed is not changed.

Despite the increased code complexity for
L-type VSEs, the overall reduction in energy
consumption is still significant. This is because
slack time arising from the execution of loops
is generally far larger than that from condition-
al statements. For an L-type VSE (b,,, b;) in

IEEE Design & Test of Computers

Syntax tree

C program

Modified compiler

User-provided
information

Loop bound

Timing analyzer

B A

Assembly code

S1:

S2:
S3:

Basic block

Transformed
assembly code
S1: | v
Code transformerj [Speed allocator
S2:
S3:

Speed table

Deadline =2 ms

Figure 5. Automatic Voltage Scaler tool’s overall structure.

Figure 1, Figure 4 shows the code sequence
generated.

Automatic Voltage Scaler

We developed a software tool, the Auto-
matic Voltage Scaler, to automate the develop-
ment of hard realtime programs on a
variable-voltage processor. This tool uses the
intra-task scheduling algorithm. AVS takes as an
input DVS-unaware program P and its timing
requirements. It produces DVS-aware low-ener-
gy program Py, which satisfies the same tim-
ing requirements as P. Converted program Py
contains voltage-scaling code that handles all
the idiosyncrasies of scaling speed/voltage on
a variable-voltage processor.

Using AVS, DVS-unaware hard realtime pro-
grams can be converted to DVS-aware low-ener-

March-April 2001

gy programs in a way completely transparent to
software developers. In the current version of
AVS, we used the MIPS R3000 instruction set
architecture as the target processor.

The WCET Prediction module estimates the
Crwrc(by) values of all the basic blocks in an
input program. To estimate Cyygc(b,) of given
basic block b;, AVS uses a modified version of
a timing tool developed by S.-S. Lim and his col-
legues.® Their original timing tool estimates the
WCET of an entire program by traversing the
program’s syntax tree bottom-up and applying
the timing formulas of the extended timing
schema (ETS). Because AVS uses RWEC from
each basic block, we modified the original tim-
ing tool accordingly. As shown in Figure 5, the
WP module, like the original timing tool,® takes
as an input a high-level language program and

Voltage Scheduling for Applications

0.10

0.08

—&— Energy comsumption

---+-- Number of voltage transitions

L 4
L 4
<*
L 4

— 66—

0.06

0.04

Normalized energy consumption

0.02 |-+
4

B Tt S Ep U S S S

5,000 10,000

Transition overhead (cycles)

15,000

given clock frequency

20,000 comes from f., = 1/T;,
which is proportional

16,000 ® to (Voo — Vp)%Vpp,*
s where Vp, Vi, and o

% are assumed to be

12,000 g 2.5V, 0.5V, and 1.3.
g Clock/voltage transi-

° tion overhead Cy is

8,000 g assumed to be 0 to
£ about 20,000 cycles,

4000 2 corresponding to 0 to
about 200 us of transi-

tion time with a 100-

0 MHz clock frequency.

20,000

Figure 6 shows the
energy consumption
of the AVS-converted

Figure 6. Energy consumption of the AVS-converted MPEG-4 decoder program normalized

with respect to a conventional DVS-unaware system.

the user-provided information (such as the loop
bound) to estimate Cryrc(b,) values.

The Voltage Scaler module identifies VSEs
based on Cyygc(b,) values within the program
syntax tree, assigns proper speeds to these
edges, and generates a converted program. The
Speed Allocator module in Figure 5 selects
VSEs using the VSE selection algorithm and
allocates appropriate speed update ratio r to
each VSE. For example, in Figure 5, the speed
update ratio of 0.5 is assigned to edge (b;, bs).

Experimental results

To evaluate the power reduction perfor-
mance of AVS, we have experimented with an
MPEGH video decoder. Because we don’t have
the proper hardware platform (one with a vari-
able-voltage processor), we developed an ener-
gy simulator for the experiment. The energy
simulator takes an assembly program and its exe-
cution trace as inputs and calculates the total
energy consumption of the program’s execution.

In this simulation, we assume that both DVS-
aware and DVS-unaware systems enter into a
power-down mode when the system is idle. We
assume the energy consumption of power-down
mode is 5% of the normal mode running at max-
imum clock frequency.! Supply voltage for a

MPEG+4 decoder pro-
gram. (In converting
the MPEG4 decoder
program, AVS took
less than 100 ms.) Results were normalized over
the energy consumption of the original pro-
gram running on a DVS-unaware system. In
Figure 6, the number of voltage transitions rep-
resents how many times voltage-scaling code
was executed during the program execution.
The AVS-converted program consumes less
than 7% of the original program’s energy con-
sumption.

When Cypo < 1,000 cycles, the number of
voltage transitions decreases sharply, but ener-
gy consumption does not increase rapidly
because the discarded VSEs have little effect on
energy reduction. When Cyp, > 5,000 cycles, the
number of voltage transitions remains nearly
constant. The increase in energy consumption
is due to the increased overhead cycles.

The number of VSEs—which represents how
many copies of voltage-scaling code AVS insert-
ed into the converted program—indicates the
increase in code size caused by inserting volt-
age-scaling code via an inline expansion. For
the AVS-converted MPEG4 decoder, about 10
VSEs are sufficient when Cyr > 5,000 cycles,
meaning that insertion of voltage-scaling code
hardly increases total code size. This is because
only a few voltage-scaling edges are responsible
for a large portion of the total power reduction.

IEEE Design & Test of Computers

By usinG the RWEC information for each basic
block, the proposed technique makes it easier
to apply intra-task voltage scheduling to DVS-
unaware programs. First, it automatically
selects appropriate program locations for per-
forming voltage scaling to decrease overall
energy consumption. Second, the proposed
technique transparently inserts voltage-scaling
code to the selected program locations. By
automating these two steps, our algorithm
makes it possible for programmers to develop
DVS-aware programs on a variable-voltage
processor without any knowledge of DVS.

Our work can be extended in several direc-
tions. We have based the speed assignment on
RWEC but most program executions do not
take the WCEP at runtime. We are currently
devising the improved algorithm where the
speed assignment is based on the ACEP.

We believe that both intertask voltage
scheduling and intra-task voltage scheduling
have relative advantages and disadvantages
over each other. It will be an interesting
research topic to compare the two scheduling
approaches quantitatively. |

Acknowledgment

This work was supported in part by the
Ministry of Information & Communication of
Korea (Support Project of University foundation
research < ‘00 > supervised by IITA). We thank
Sung-Soo Lim for providing us with his WCET
tool and explaining the tool’s intemnals.

M References

1. T. Burd and R. Broderson, “Processor Design for
Portable Systems,” J. VLSI Signal Processing,
vol. 13, no. 2, 1996, pp. 203-222.

2. T. Sakurai and A. Newton, “Alpha-Power Law MOS-
FET Model and Its Application to CMOS Inverter
Delay and Other Formulas,” IEEE J. Solid State Cir-
cuits, vol. 25, no. 2, Feb. 1990, pp. 584-594.

3. . Hong et al., “Synthesis Techniques for Low-
Power Hard Real-Time Systems on Variable Volt-
age Processor,” Proc. 19th IEEE Real-Time
Systems Symp. (RTSS 99), IEEE CS Press, Los
Alamitos, Calif., 1999, pp. 178-187.

4. Y. Lee and C.M. Krishna, “Voltage-Clock Scaling
for Low Energy Consumption in Real-Time
Embedded Systems,” Proc. 6th Int'| Conf. Real-

March-April 2001

Time Computing Systems and Applications
(RTCSA 99), IEEE CS Press, Los Alamitos, Calif.,
1999, pp. 272-279.

5. Y. Shin and K. Choi, “Power Conscious Fixed Pri-
ority Scheduling for Hard Real-Time Systems,”
Proc. 36th Design Automation Conf., IEEE Press,
Piscataway, N.J., 1999.

6. F. Yao, A. Demers, and S. Shenker, “A Schedul-
ing Model for Reduced CPU Energy,” Proc. 36th
Ann. Symp. Foundations of Computer Science
(FOCS 96), IEEE CS Press, Los Alamitos, Calif.,
1995, pp. 374-382.

7. S. Lee and T. Sakurai, “Runtime Voltage Hopping
for Low-Power Real-Time Systems,” Proc. 37th
Design Automation Conf., IEEE Press,
Piscataway, N.J., 2000, pp. 806-809.

8. C.A. Healy, D.B. Whalley, and M.G. Harmon,
“Integrating the Timing Analysis of Pipelining and
Instruction Caching,” Proc. 16th IEEE Real-Time
Systems Symp. (RTSS 95), IEEE CS Press, Los
Alamitos, Calif., 1995, pp. 288-297.

9. S.-S. Lim et al., “An Accurate Worst-Case Timing
Analysis for RISC Processors,” IEEE Trans. Soft-
ware Eng., vol. 21, no. 7, July 1999, pp. 593-604.

10. M. Fleischmann, “Crusoe Power Management:
Reducing the Operating Power with LongRun,”
Proc. Hot Chips 12 Symp., Palo Alto, Calif., 2000.

Dongkun Shin is a PhD
student at the School of
Computer Science and
Engineering, Seoul National
University. His research
interests include low-power
systems, computer architecture, and embedded
and real-time systems. Shin has a BS in com-
puter science and statistics and an MS in com-
puter science, both from Seoul National
University, Korea. He is a member of the ACM.

Jihong Kim is an assistant
professor in the School of
Computer Science and
Engineering, Seoul National
University, Korea. His
research interests include
computer architecture, embedded systems,
Java computing, and multimedia and real-time

Voltage Scheduling for Applications

systems. Kim has a BS in computer science and
statistics from Seoul National University, and an
MS and PhD in computer science and engineer-
ing from the University of Washington. He is a
member of the IEEE and ACM.

Seongsoo Lee is a
research professor in the
Department of Information
Electronics, Ewha Woman’s
University, Korea. His
research interests include

low-power VLSI systems, dynamic voltage scal-
ing, and VLSI implementation of MPEG-2 and
MPEG-4. Lee has a PhD degree in electrical
engineering from Seoul National University,
Korea. He is a member of the IEEE Circuits and
Systems Society.

you@computer.org

All IEEE Computer Society
members can obtain a free,
portable email
alias@computer.org. Select your
own user name and initiate your
account. The address you choose
is yours for as long as you are a
member. If you change jobs or
Internet service providers, just
update your information with us,
and the society automatically
forwards all your mail.

Sign up today at
http://computer.org

The first step in the
D&T Community Project

DesignQliest

of Computers

IEEE Design & Test of Computers

A LOW-POWER IMAGE CONVOLUTION ALGORITHM
FOR VARIABLE VOLTAGE PROCESSORS*

Hyugjin Kwon

School of Computer Science & Engineering
Seoul National University
Seoul, Korea
sonmapsi@davinci.snu.ac.kr

ABSTRACT

We describe a low-power image convolution algorithm for vari-
able voltage processors. The algorithm takes advantages of com-
mon properties of popular kernels. Unlike a direct algorithm of
convolution operation where the dynamic voltage scaling (DVS)
feature of variable voltage processors cannot be used, our algo-
rithm modifies the sequence of computing convolution sums so
that DVS can be effectively utilized. Our implementation on Itsy,
a DVS research platform from Compaq, shows the energy saving
of up to 71% over that of the direct algorithm without any perfor-
mance degradation.

1. INTRODUCTION

For battery-powered portable imaging systems such as digital cam-
eras and video recorders, low power consumption is a primary de-
sign goal because the battery operation time is one of the most im-
portant performance measures. Since the energy consumption E of
CMOS circuits has a quadratic dependency on the supply voltage
Vbp, lowering the supply voltage is an effective way of reducing
the energy consumption of portable imaging systems. However,
lowering the supply voltage also decreases the maximum achiev-
able clock speed; in the CMOS circuit, the delay Tp is given by
Tp =< Vpp/(Vpp — VT)% where Vr is the threshold voltage and o
is a velocity saturation index [1].

‘When a given application’s required performance is lower than
the system’s maximum performance, the clock speed and its cor-
responding supply voltage can be dynamically controlled to the
lowest possible level while meeting the application’s deadline con-
straint. This is the key idea behind the dynamic voltage scaling
(DVS) technique [2]. Several recent microprocessors (e.g., Crusoe
[3], XScale [4], and AMD PowerNOW! processors [5]) support
dynamic voltage scaling in the software level. (We call these pro-
cessors variable-voltage processors.)

Since the key idea of DVS is to reduce the supply voltage when
the required performance of a given application is lower than the
maximum performance of a system, accurately predicting work-
load variation is an important requirement in utilizing the DVS
feature of variable-voltage processors. For example, if a target ap-
plication does not exhibit any workload variation, it is impossible
to take advantage of the DVS feature for reducing the energy con-
sumption.

*This work was supported by grant No. R01-2001-00360 from the Ko-
rea Science & Engineering Foundation.

Jihong Kim

School of Computer Science & Engineering
Seoul National University
Seoul, Korea
jihong@davinci.snu.ac.kr

A convolution operation, which is widely used in image pro-
cessing applications, is such a constant-workload algorithm, mak-
ing it very difficult to implement a convolution operation on vari-
able voltage processors in a power-efficient fashion. (With a fast
expansion of mobile imaging market, it is expected that many fu-
ture mobile imaging products will be based on variable-voltage
processors for an improved energy efficiency.) In this paper, we
describe a low-power image convolution algorithm suitable for
variable-voltage processors.

We consider p X p square kernels. It is convenient to assume
that p is an odd number and to denote ¢ = (p— 1)/2. Let A be an
n X m matrix input image and K be a p X p matrix kernel, where n,
m > p. Then for all i, j satisfyingg<i<rn—qgandg< j<m—gq,
let A; j be the p x p square submatrix of A centered in A[7, j]. We
say that an output n X m matrix B is a discrete convolution of A
with the kernel K:

Bli,jl= Y, AijlkIK[p—k+1,p—1+1]. (1)
1<k,I<p

The boundary elements can be treated as a special case or ignored.
The direct algorithm of computing convolution sums would re-
quire p? multiplications and p? additions for each convolved ele-
ment.

In order to effectively utilize the dynamic voltage scaling fea-
ture of variable voltage processors, we modify the sequence of
computing convolution sums so that there are large fluctuations on
the execution times depending on kernels used. With the modified
convolution algorithm, we propose two DVS heuristics for adjust-
ing the supply voltage and clock frequency under the constraint
that the performance of a low-power algorithm is as good as that
of the direct algorithm. Our implementation on Itsy [6], a DVS
research platform from Compagq!, shows the energy saving of up
to 71% over that of the direct algorithm without any performance
degradation.

The rest of the paper is organized as follows. Section 2 presents
a low-power convolution algorithm based on a modified sequence
of computing convolution sums. In Section 3, the experimental re-
sults on performance/energy measurements are described. Section
4 concludes with a summary.

1 We appreciate a kindly support from Compaq Western Research Lab-
oratory for providing us with two Itsy systems.

2. LOW-POWER CONVOLUTION ALGORITHM

In our low-power convolution algorithm, the key step is to mod-
ify the sequence of computing convolution sums so that the work-
load variation is easily detected in the early stage of computing
convolution sums. Figure 1 shows the overall processing steps of
the low-power convolution algorithm. First, the kernel elements
are analyzed and rearranged, grouping the kernel elements of the
same absolute value together and arranging trivial multiplication
cases separately. Once a decomposed version of the original ker-
nel is constructed, the sequence of computing convolution sums is
modified so that all the kernel elements could be multiplied by the
same data element at each step. Based on the characteristics of the
decomposed kernel, we compute an appropriate clock frequency
and corresponding supply voltage so that the execution time of the
low-power convolution algorithm does not exceed that of the direct
convolution algorithm.

FModiﬁed
Computation

Fig. 1. Overall processing steps of the low-power convolution al-
gorithm.

2.1. Kernel Analysis and Rearrangement

The key observations leading to our low-power convolution algo-
rithm can be summarized by the following three properties from
an analysis of commonly used kernels [7]:

Property 1 For most kernels, the number of distinct kernel ele-
ments is small.

Property 2 0, 1, and -1 are used frequently.
Property 3 Many kernel elements have the same absolute values.

These properties are useful in eliminating redundant multipli-
cations so that the execution time of convolution operation can
vary depending on kernels used. Property 2 is used in reducing
the number of multiplications by skipping multiplications between
input pixels and kernel elements which have a value of O, 1, or -1.
Properties 1 and 3 are useful as well in reducing the number of
multiplications if the sequence of computing convolution sums is
appropriately modified as described in the next section.

2.2. Single-Data Multiple-Kernel Convolution Algorithm

Based on the observations summarized in Section 2.1, the single-
data multiple-kernel (SDMK) convolution algorithm computes con-
volution sums differently from the direct implementation in two
ways [7]. First, each step computes partial sums for the multiple
locations. Second, in each step, all the kernel elements are multi-
plied by the same input data (i.e., a single data).

Kernel
Reversed
Kernel

Topt . [@1 [@ [a5 | as] a5] de]

[*] + [*®]
step ¢ step i+1 | step i+2 | step i+3 step i+4
. 1 1 1 1

(b) SDMK algorithm

Fig. 2. A comparison of the direct algorithm and SDMK algo-
rithm.

Figure 2 illustrates the key differences in computing convolu-
tion sums between the direct algorithm and SDMK algorithm. Un-
like the direct algorithm shown in Figure 2.(a), for each step, the
SDMK works with a single pixel. For example, in the step (i+2),
d3 is multiplied to all the kernel elements and the computed result
is accumulated to three partial sums, respectively. If all three ker-
nel elements had the same absolute values, a single multiplication
is enough, saving two multiplications from the direct algorithm.

In the SDMK algorithm, the number of multiplications per
convolved element is reduced to N, ps_gistincs> the number of ker-
nel elements having distinct absolute values excluding 0, 1 and -1
from the total number of kernel elements, N;y,;. The number of
additions per convolved element is also decreased by the number
of zero elements, N, in kernel elements. For example, in the
example kernel shown in Figure 1, a single multiplication per con-
volved element is sufficient.

2.3. Execution Time Prediction and Speed Setting

Since the execution time of the SDMK algorithm varies depend-
ing on kernels used, the proposed low-power convolution algo-
rithm predicts the expected workload before computing convolu-
tion sums. If the estimated workload is less than one required by
the direct algorithm, the supply voltage/clock frequency is low-
ered so that the resulting execution consumes less energy. We
lower the supply voltage to the extent that the execution time of
the low-power algorithm is less than or equal to that of the direct
algorithm.

‘We use two heuristics in predicting the execution time of the
SDMK algorithm: one based on a kernel analysis and the other
based on the dynamic measurement of the execution time for a
small portion of actual execution.

The static prediction method, SDM K4sic, is based on the num-
ber of required arithmetic operations obtained in the kernel analy-
sis step (see Section 2.1.). Given an n X m input image anda p X p
kernel, let Cyjrecr and Cygpyi be the number of arithmetic operations
required for the direct implementation and the SDMK implemen-
tation, respectively. Then, Cyj c; and Cygpy are given as follows:

Ciiree = (nxm)x P2 X (Nt +Nada))
Csamk = (X m) X Nabs—gistinct X Nmui
+(nxm) x (P2 — Neero) X Naga 3)

where N,,,; and N, are the execution latencies (in cycles) of mul-
tiplication and addition operations, respectively.

Once Cygpy, is computed, we calculate the new clock frequency
[fsdmr as follows:

C,
Frdmic = (ﬁ)‘fmax @

where f4x is the maximum clock frequency of a target system.
The corresponding supply voltage V,,.,, can be determined by the
voltage-frequency formula:

(Vaew —Vr)*

f Vnew
where V¢, is a supply voltage.

The dynamic prediction method, SDMK jynamic, uses actual
measurements instead of the number of arithmetic operations in
estimating the required workload. Convolution operations are per-
formed for the beginning n X .S convolved outputs and the execu-
tion time Ty for n X S outputs is measured during run time. An
execution time estimate 74, for an n x m image is given by:

(6))

nxXm
m] ©)

where Tj..re; is the execution time taken by the kernel analysis and
rearrangement step. In all our experiments, S was set to 3. Once
Tyami is computed, we can determine the execution speed from
a pre-constructed speed table. The speed table specifies how to
adjust the clock frequency using the ratio of Tz, to Tjirec (Where
Tyirect is the execution time when the direct algorithm is used.)

Tsami = (TS - Tkemel) . |_

3. EXPERIMENTAL RESULTS

3.1. Experimental platform: Itsy Pocket Computer

‘We use the Itsy pocket computer v2.6 from Compaq [6] as our ex-
perimental platform. Figure 3 shows the experimental setup with
Itsy. Itsy v2.6 is equipped with a StrongARM SA1100 processor
as a main processor. The SA1100 processor uses the phase-locked
loop (PLL), allowing to change the CPU core frequency to one of
11 levels between 59.0 MHz and 226.4 MHz. Furthermore, Itsy
v2.6 has a programmable core voltage regulator; supply voltage
can scale to one of 30 levels between 1.00 V and 2.00 V.

Itsy runs the Linux operating system (ver. 2.0.30) with a kernel
support for dynamic voltage scaling. Applications can access the
DVS function by the ioctl system call to the “/dev/clkspeed” device
file.

Recoding
Computer

Fig. 3. Experimental setup with Itsy.

3.2. Results

We have implemented three convolution algorithms, the direct al-
gorithm, the SDMKi-based low-power algorithm, and the
SDMK jynamic-based low-power algorithm on Itsy using the C pro-
gramming language. As shown in Figure 3, we have measured the
voltage drops in the current-sense resistors embedded in the Itsy
system. Using Itsy v2.6, we can measure the power consumed in
the processor core only or can measure the power consumption
of the whole system. The energy consumption is computed by
multiplying the execution time by the average power consumption
measured.

kernell kernel2 kernel3 kerneld kernelS

(a) 3 x 3 kernels

i

(b) 5 x 5 kernels

[direct B8 SDMK static [1spMK

Fig. 4. Energy consumption in the StrongARM processor core.

Figures 4 and 5 show the experimental results of three algo-
rithms. Since the performance and energy consumption of three
algorithms do not depend on pixel values, a single 256 x 256 im-
age was used as an input image for all the experiments. For the di-
rect algorithm, we used the clock frequency of 206.4 MHz and the
supply voltage of 1.55 V. Figure 4 compares the energy consumed

1800
1600
1400

? 1200

% 1000

I

kernell kernel2 kernel3 kerneld kernelS

(a) 3 x 3 kernels

Em
fon

(b) 5 x 5 kernels
[ISDMK dyanmic

BB SDMK static

[B

Fig. 5. Energy consumption in the whole Itsy system.

only in the processor core while Figure 5 compares the energy
consumption of the whole Itsy system. As shown in Figure 4, the
core power consumption of the proposed low-power algorithms is
reduced by up to 76.7% over the direct algorithm. Even for the
whole Itsy system, the best reduction ratio of 71.1% is achieved.
On average, the low-power algorithms reduce about 67.6% and
62.8% of energy consumption for the core processor only and the
whole Itsy system, respectively.

In order to understand the high energy efficiency of the pro-
posed low-power convolution algorithms, it is useful to remind
that the energy consumption E of a program P is proportional to
the product of Ny, and VL%D where Ny, is the number of cy-
cles executed for P.2 In the proposed algorithms, both Neyele and
Vpp are reduced, resulting in high energy savings in the processor
core as shown in Figure 4. Furthermore, as discussed in [8], lower-
ing supply voltage in Itsy also decreases the energy consumption
of non-CPU parts (e.g., LCD) as well (although, in theory, DVS
should not affect these parts.). This additional savings contributed
a higher-than-expected energy saving ratio in the whole Itsy sys-
tem as shown in Figure 5.

Figure 6 compares the execution time variations by the pro-
posed algorithms. For most kernels tested, the execution times of
the proposed algorithms are less than that of the direct algorithm
without violating the timing constraint. As shown in Figure 6,
SDMK jynamic always takes less times than the direct algorithm.

4. CONCLUSION

‘We have described two low-power convolution algorithms suitable
for variable voltage processors. Unlike the direct algorithm, the
proposed algorithms intelligently identify and predict the work-
load variations by the modified convolution algorithm. From the

2Note that lowering the clock frequency does not change Neycie- 1t in-
creases the clock cycle time.

AR

o

kernell ~ kernl2 = kermel3 = kernedd = kernelS

(a) 3 x 3 kernels

-
i

(b) 5 x 5 kernels

B airect B SDMK static [IspME

Fig. 6. Execution time comparisons of three approaches.

actual measurements on the Itsy system, we have demonstrated
that the proposed algorithms achieve an energy reduction of up
to 71% over that of the direct algorithm without any performance
degradation.

5. REFERENCES

[1] T. Sakurai and A. Newton, “Alpha-Power Law MOSEFT
Model and Its Applications to CMOS Inverter Delay and
Other Formulas,” IEEE Journal of Solid State Circuits, vol.
25, no. 2, pp. 584-594, 1990.

[2] T. Burd and R. Broderson, “Processor Design for Portable
Systems,” Journal of VLSI Signal Processing, vol. 13, no. 2,
Pp. 203-222, August 1996.

[3] L. Geppert and T. Perry, “Transmeta’s Magic Show,” IEEE
Spectrum, vol. 37, pp. 22-32, May 2000.

[4] Intel Inc, “Intel ~ XScale
http://www.intel.com/design/intelxscale.

[5] AMD Inc, “AMD PowerNow!™ Technology Plat-
form Design Guide for Embedded Processors,”
http://www.amd.com/epd/processors.

[6] R.Hamburgen, D. Wallach, M. Viredaz, L. Brakmo, C. Wald-
spurger, J. Bartlett, T. Mann, and K. Farkas, “Itsy: Stretching
the Bounds of Mobile Computing,” IEEE Computer, vol. 34,
no. 4, pp. 28-36, April 2001.

[71 J. Kim and Y. Kim, “Efficient 2-D Convolution Algorithm
with the Single-Data Multiple Kernel Approach,” Graphical
Models and Image Processing, vol. 57, no. 2, pp. 175-182,
March 1995.

[8] M. Viredaz and D. Wallach, “Power Evaluation of a Hand-
held Computer: A Case Study,” Tech. Rep. 2001/1, Comapq
Western Research Laboratory, May 2001.

Technology,”

On Energy-Optimal Voltage Scheduling for
Fixed-Priority Hard Real-Time Systems

HAN-SAEM YUN and JIHONG KIM
Seoul National University

We address the problem of energy-optimal voltage scheduling for fixed-priority hard real-time
systems, on which we present a complete treatment both theoretically and practically. Although
most practical real-time systems are based on fixed-priority scheduling, there have been few re-
search results known on the energy-optimal fixed-priority scheduling problem. First, we prove
that the problem is NP-hard. Then, we present a fully polynomial time approximation scheme
(FPTAS) for the problem. For any € > 0, the proposed approximation scheme computes a voltage
schedule whose energy consumption is at most (1+¢€) times that of the optimal voltage schedule.
Furthermore, the running time of the proposed approximation scheme is bounded by a polynomial
function of the number of input jobs and 1/e. Given the NP-hardness of the problem, the pro-
posed approximation scheme is practically the best solution because it can compute a near-optimal
voltage schedule (that is provably arbitrarily close to the optimal schedule) in polynomial time.
Experimental results show that the approximation scheme finds more efficient (almost optimal)
voltage schedules faster than the best existing heuristic.

Categories and Subject Descriptors: C.3 [Special-Purpose and Application-Based Systems]: Real-Time and
Embedded Systems; F.2.2 [Analysis of Algorithms and Problem Complexity]: Nonnumerical Algorithms and
Problems—sequencing and scheduling

General Terms: Algorithms

Additional Key Words and Phrases: Fixed-priority scheduling, real-time systems, approximation
algorithms, fully polynomial time approximation scheme, variable voltage processor, dynamic
voltage scaling

1. INTRODUCTION

Energy consumption is one of the most important design constraints in designing battery-
operated embedded systems such as personal digital assistants, digital cellular phones, and
mobile videophones. For such systems, the energy consumption is a critical design factor
because the battery operation time is a primary performance measure. The dynamic en-
ergy consumption E, which dominates the total energy consumption of CMOS circuits, is
given by E o (1, - Neycle * VSD, where Cy. is the load capacitance, Neycle is the number of
executed cycles, and Vpp is the supply voltage. Because the dynamic energy consump-
tion E is quadratically dependent on the supply voltage Vpp, lowering Vpp is an effective
technique in reducing the energy consumption. However, lowering the supply voltage

This work was supported by grant No. R01-2001-00360 from the Korea Science and Engineering Foundation.
Authors’ address: H.-S. Yun and J. Kim, School of Computer Science and Engineering, Seoul National Univer-
sity, Shilim-dong, Kwanak-ku, Seoul, 151-742, Korea; email: {hsyun, jihong} @davinci.snu.ac.kr.

Permission to make digital/hard copy of all or part of this material without fee for personal or classroom use
provided that the copies are not made or distributed for profit or commercial advantage, the ACM copyright/server
notice, the title of the publication, and its date appear, and notice is given that copying is by permission of the
ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific
permission and/or a fee.

© 20 ACM 0000-0000/20/0000-0001 $5.00

ACM Tr: ions on Embedded C« ing Systems, Vol. , No. , 20, Pages 1-35.

P

2 . H.-S. Yun and J. Kim

also decreases the clock speed, because the circuit delay 7p of CMOS circuits is given by
Tp =< Vop/(Vop — Vr)* [Sakurai and Newton 1990], where Vr is the threshold voltage and
a is a technology-dependent constant.

When a given job does not require the maximum performance of a VLSI system, the
clock speed (and its corresponding supply voltage) can be dynamically adjusted to the
lowest possible level that still satisfies the job’s required performance. This is the key
principle of the dynamic voltage scaling (DVS) technique. With a recent explosive growth
of the portable embedded system market, several commercial variable-voltage processors
were developed (e.g., Intel’s Xscale, AMD’s K6-2+ and Transmeta’s Crusoe processors).
Targeting these processors, various DVS algorithms [Yao et al. 1995; Hong et al. 1998;
Pillai and Shin 2001; Aydin et al. 2001; Kim et al. 2002; Shin and Choi 1999; Gruian
2001; Shin et al. 2000; Quan and Hu 2001; 2002] have been proposed, especially for
embedded hard real-time systems.

For hard real-time systems, the goal of voltage scheduling algorithms is to find an
energy-efficient voltage schedule with all the stringent timing constraints satisfied. A volt-
age schedule is a function that associates each time unit with a voltage level (i.e., a clock
frequency).! In this paper, we consider fixed-priority real-time jobs running on variable
voltage processors.

1.1 Previous Work

Previous investigations on the voltage scheduling problem have focused mainly on real-
time jobs running under dynamic-priority scheduling algorithms such as the EDF (earliest-
deadline-first) algorithm [Hong et al. 1998; Pillai and Shin 2001; Aydin et al. 2001; Kim
et al. 2002]. For example, the problem of energy-optimal EDF scheduling has been well
understood. For EDF job sets, the algorithm by Yao et al. [Yao et al. 1995] computes the
energy-optimal voltage schedules in polynomial time. Although the EDF scheduling policy
makes the voltage scheduling problem easier to solve, fixed-priority scheduling algorithms
such as the RM (rate monotonic) algorithm are more commonly used in practical real-time
systems due to their low overhead and predictability [Liu 2000].

Although there exist several voltage scheduling techniques proposed for fixed-priority
real-time tasks (e.g., on-line scheduling algorithms [Shin and Choi 1999; Gruian 2001;
Pillai and Shin 2001] and off-line scheduling algorithms [Shin et al. 2000; Gruian 2001;
Quan and Hu 2001; 2002]), there have been few research results on the optimal voltage
scheduling problem for fixed-priority hard real-time systems; neither a polynomial-time
optimal voltage scheduling algorithm nor the computational complexity of the problem is
known.

Up to now, the only significant research result on the optimality issue of fixed-priority
voltage scheduling is the one presented by Quan ef al. [Quan and Hu 2002], where energy-
optimal voltage schedules for fixed-priority jobs are found by an exhaustive algorithm.
However, Quan ef al. did not justify their exhaustive approach. If they had presented the
computational complexity of the voltage scheduling problem, their result would have been
much more significant. Since the worst-case complexity of Quan’s algorithm is of higher
order than O(N!) where N is the number of jobs, the algorithm is practically unusable for
most real-time applications.

Quan et al. also proposed a polynomial-time voltage scheduling algorithm for fixed-

I Throughout the remainder of the paper, we use the term voltage scheduling instead of DVS.
ACM Transactions on Embedded Computing Systems, Vol. , No. , 20.

On Energy-Optimal Voltage Scheduling for Fixed-Priority Hard Real-Time Systems . 3

priority hard real-time systems [Quan and Hu 2001], which is the best known polynomial-
time heuristic for the problem. Although efficient, being a heuristic, this algorithm cannot
guarantee the quality of the voltage schedule computed.

1.2 Contributions

In this paper, we give a complete treatment on the optimal voltage scheduling problem for
fixed-priority hard real-time systems. As with the work of Quan ef al. [Quan and Hu 2002;
2001], we assume that the timing parameters of each job is known a priori. Our problem is
identical to the one solved by Yao et al. [Yao et al. 1995] except that the priority assignment
is changed from the dynamic EDF assignment to the fixed assignment. As illustrated by
Quan ef al. [Quan and Hu 2001], the voltage scheduling problem for fixed-priority tasks is
more difficult to solve because the preemption relationship among the tasks is much more
complex to analyze.

First, we prove that the optimal voltage scheduling problem is NP-hard, which implies
that no optimal polynomial-time algorithm is likely to exist. Second, we present a fully
polynomial time approximation scheme for the problem. A fully polynomial time approx-
imation scheme (FPTAS) is an approximation algorithm that takes any € (> 0) as an addi-
tional input and returns a solution whose cost is at most a factor of (14 €) away from the
cost of the optimal solution with the running time bounded by a polynomial both in the size
of the input instance and in 1/¢ [Woeginger 1999]. Given the NP-hardness of the problem,
the proposed approximation scheme is practically the best solution. The proposed approxi-
mation scheme computes a near-optimal voltage schedule in polynomial time. By changing
€, the approximation scheme can find a voltage schedule that is provably arbitrarily close
to the optimal solution.

The rest of the paper is organized as follows. In Section 2, we formulate the problem
and characterize feasible voltage schedules. We describe important properties of an energy-
optimal voltage schedule in Section 3, which provide a basis of later proofs. In Section 4,
we present the intractability result of the problem including its NP-hardness. The FPTAS
for the problem is presented in Section 5. Experimental results are given in Section 6 and
we conclude with a summary and directions for future work in Section 7.

2. PROBLEM FORMULATION

We consider a set J = {J1,J2,-+,J)} of priority-ordered jobs with J; being the job with
the highest priority. A job J € J is associated with the following timing parameters, which
are assumed to be known off-line:

—ry: the release time of J.
—dj: the deadline of J.
—cy: the number of execution cycles required for J.

We use p; to denote the priority of the job J. We assume that J has a higher priority than J/
if py < py. In the rest of the paper, we use i instead of J; as a subscript of timing parameters
when no confusion arises. (e.g., 7;,d; and c; stand for r;,,d;, and c;,.) Note that our job
model can be directly applicable to a periodic real-time system by considering all the task
instances within a hyperperiod of periodic tasks.

Since there is a one-to-one correspondence between the processor speed and the supply
voltage, we use S(t), the processor speed, to denote the voltage schedule in the rest of the

ACM Transactions on Embedded Computing Systems, Vol. , No. , 20.

4 . H.-S. Yun and J. Kim

paper. Given a voltage schedule, the job executed at time ¢ can be uniquely determined
and is denoted by job(7,S,t). A voltage schedule S(¢) is said to be feasible if S(t) gives
each job the required number of cycles between its release time and deadline. (An exact
characterization of a feasible voltage schedule is given in Section 2.1.)

As with other related work [Yao et al. 1995; Quan and Hu 2001; 2002], we assume that
the processor speed can be varied continuously with a negligible overhead both in time
and power. Furthermore, we model that the power P, energy consumed per unit time, is a
convex function of the processor speed; given a voltage schedule $(¢), the power can be
written as a function of time by P(S(¢)). For simplicity, we assume that all the jobs have
the same switching activity and that P is dependent only on the processor speed.?

The goal of the voltage scheduling problem is, therefore, to find a feasible schedule S(¢)
that minimizes

ES)= [P(s@) W

where #; and #; are the lower and upper limits of release times and deadlines of the jobs in
7, respectively. For the rest of this paper, the energy-optimal voltage schedule of a job set
J is denoted by 5(?pt.

2.1 Feasibility Analysis

In this section, we derive a necessary and sufficient condition for a voltage schedule to be
feasible, which will provide a basis for the proofs in Section 3. We first introduce some
useful notations and definitions.

W(S,[t1,22]) is used to denote the number of cycles executed under a voltage schedule
S(t) from 1 to 1, ice., W(S, [t1,22]) = [;2 S (¢) dt. Among W (S, [t1,12]) cycles, Wi(S, [t1,2])
denotes the number of cycles between #; and #, used for executing a set of jobs J1,J2,+ ,J;
whose priorities are higher than or equal to pj,. Ry and Dy represent the sets of release
times and deadlines of the jobs in 7, respectively, i.e., Ry = {r;|J € 9} and Dy = {d;|J €
J}. Ty denotes the union of Ry and Dy, i.e., Ty = R;UDjy. Given a job set 7 Cy,
C(J') represents the total workload of jobs in 7', i.e., C(J') = Y;c g c;. Furthermore, I
represents the minimum interval that includes the execution intervals of jobs in 7, i.e.,
I, = [minRy,maxDy]. T7 represents the cartesian product of [ry,,dy,]’s, for 1 <i < 7|,
ie., T7 = [ry,dp] X [rp,dp] X -+ X [rJIJI,dJI]I]. Given voltage schedules $1,5, -+ ,5,
such that

Si(t)=0 forall # ¢ [o;,B;] foralll<i<n and B;<oyy; forall 1<i<n,
the concatenation of $1,.5,---,5, is
LS = 5105005 2L T S50) .

Since jobs should be released before they can be processed, we assume that a voltage
schedule § always satisfies the constraint that forany r >0, W(S,[0,7]) < C({J|r; <t}).
The condition for a voltage schedule $(¢) to be feasible can be expressed as follows:

2See [Yun and Kim 2002] for a more general heterogeneous case where the switching activity of each job is
different.

ACM Transactions on Embedded Computing Systems, Vol. , No. , 20.

On Energy-Optimal Voltage Scheduling for Fixed-Priority Hard Real-Time Systems . 5

Condition I (Feasibility Condition).
There exists a | 7|-tuple (f7,, fr,," - ,fJUl) € 77 such that
Vi<i<|J| Vre{tteRyjAt< f1}
WS, [nfn]) = C{JIpr<piArs€lnfi)}) - ()]

For a |J|-tuple (f1,,fn,**,f1,) € T7, fi; can be considered as a modified deadline of
J;, which is equal to or precedes the original deadline dj. (The meaning of the |7|-
tuple is further clarified in Section 3.) If S(¢) satisfies Condition I for a given |J|-tuple
(frisfnse++ s f1y) € T7, J; completes its execution by fy, for all 1 <i <|J|. Such |J|-
tuples are said to be valid with respect to (7,5(¢)). Theorem 2.1 gives a proof for the
feasibility condition.

THEOREM 2.1. Condition I is a necessary and sufficient condition for $(t) to be feasi-
ble.

PROOE. For the necessary part, suppose that §(¢) is feasible, i.e., J; completes its execu-
tion at fj, € (ry,,dy;] forall 1 <i <|J|. Then, for any r € Ry such that r < f7,, all the higher
priority jobs whose release times are within [r, f7,) complete their executions by f,. So,
the total amount of work that should be done within [r, f7,] must be greater than or equal to
the sum of workload of the jobs. Thus, we have forall 1 <i < |J|:

W(S’ [r,fJi]) > C({J |PJSin Nry € [rafJi)}) .

For the sufficient part, assume that Condition I is satisfied for a | 7|-tuple (f7,, f7,,- -, Tag).
By induction on i, we prove that J; is given its required execution cycles c;, within [ry;, f7,]
for all 1 <i < |J|. The base case holds trivially.

For the induction step, assume that the proposition holds for all k = 1,2,-.- ,i — 1. Let
r < ry, be the earliest time point in Ry such that no lower priority jobs (i.e., J;’s for k > i)
are executed within [r,7;,], i.e., W(S,[rrs]) = Wie1(S,[r7z]). If such r does not exist, r
is set to 7. Then, a higher priority job J' (i.e., J;’s for I < i) released before r (i.e., ry <7)
must complete its execution before r; otherwise, since any lower priority jobs cannot be
executed within [ry, 7], we have

w(s, [rJ’arJi]) = W(S, [rJ’ar])+W(5’ [r’rfi])
VVi—l(S’ [rJ”r])+VVi—1(5’ [r’rfi]) = VVi—l(Sa [rJ’arJi]))
which contradicts the definition of r. Since only higher priority jobs (i.e., J;’s for [< i) are
executed within [7, 7;,], the amount of remaining workload of the higher priority jobs (which
are released within [r,7;,)) at time ry, is C({Ji|1 <k <i A ry € [rry)}) — W(S,[rrs)]).
So, we have
Wit (S, [/1)) < CH{RNL <k <i Ay €nrp)}) — W(S,[rrz)
+C({Jk|1 <k<iAN Ty € [rJi,fJi)})
= C({l <k<inr€lrfp)})- WSkl . 3

To complete the induction, we only need to show that W(S, [, f7]) — Wi—1(S, [z, f7])
is not smaller than cj,. (Note that J; preempts any lower priority jobs.) From (3) and the

ACM Transactions on Embedded Computing Systems, Vol. , No. , 20.

6 . H.-S. Yun and J. Kim

assumption that Condition I is satisfied, we have
W(Sa [rJi’fJi]) _VVi—l(Sa [rJi7fJi])

> WS, [nfr) — C({Ill <k<iArgelnfr)}) (From (3).)
CH{I N <k<inrge[nfr)}) — C{Ill <k<iAryelnf;)}) (From(2).)
= C{Ji}H)=cy -
|

v

A job set 7 is said to be an EDF job set if for any J,J' € J (where p; < py), dj < dy
or dy < ry. When the priority assignment follows the EDF policy, we can prove that
Condition I is simplified as follows:

Condition II (EDF Feasibility Condition).
Forany r € Ry and d € Dy (where r < d)
W(S;[nd)) > C{Jllrr,ds] C[rd]}) -

LEMMA 2.2. Given an EDF job set J, a voltage schedule S(t) of J is feasible if and
only if Condition Il is satisfied.

PROOF. Consider a new job set 9’ = {J],J},- ,J|’]|} where ry =W(S,[0,75)), dpy =
W(S,[0,dp)), ¢y = cj; and py; = py; forall 1 <i<|J|. Because W(S,[0,7]) is a mono-
tonically increasing function of z, 7’ is also an EDF job set (i.e., for any J/,J; € J' where
i<k, dy<dyordy <rp). Let §'(t) =1 (vt > 0) be the voltage schedule of J'.
Then, we can easily verify that the index of the job job(J,S5,t) is the same as that of
job(J',8',W(S,[0,1])). Therefore, J; € 7 finishes its execution by its deadline dj, under
S(¢) if and only if its corresponding job J; € J' finishes its execution by dj; (=W (S, [0,d]))
under §'.

It is well known that all the jobs in an EDF job set meet their deadlines under a constant
speed if and only if the utilization ratio for any time interval is less than or equal to 1
[Liu 2000]. That is, S’ is a feasible voltage schedule of J’ if and only if the following is
satisfied:

Forany ¥ €Ry and d' € Dy (wherer <d'),
CHIV eI N, d)) ClF,d]}) < d—7. “

Since (4) is equivalent to Condition II, Condition II is a necessary and sufficient condition
for $(¢) to be a feasible voltage schedule of 7. [

As shown in Conditions I and II, the complexity of fixed-priority voltage scheduling
mainly comes from the inherent exhaustiveness in finding a valid | J|-tuple. In the EDF
scheduling algorithm, it is sufficient for a single |J|-tuple of the original deadlines to be
checked if it satisfies Condition II.

3. SOME PROPERTIES OF OPTIMAL SCHEDULES

In this section, we explain several properties for a feasible voltage schedule to be an energy-
optimal schedule. These properties provide a key insight in devising a fast approximation

ACM Transactions on Embedded Computing Systems, Vol. , No. , 20.

On Energy-Optimal Voltage Scheduling for Fixed-Priority Hard Real-Time Systems . 7

algorithm described in Section 5. The first property, which was proven by Quan e? al.
[Quan and Hu 2001] is that an energy-optimal voltage schedule should be a piecewise-
constant function.

The existing optimal voltage scheduling algorithm by Quan et al. is based on an ob-
servation that if a given job set satisfies the requirement of an EDF job set, the optimal
voltage schedule can be easily computed by Yao’s “peak-power greedy” algorithm [Yao
et al. 1995]. Simply applying Yao’s algorithm to a fixed-priority job set may cause some
jobs to miss their deadlines. However, if the deadlines of the jobs are appropriately modi-
fied before scheduling, Yao’s algorithm can yield a feasible optimal schedule as shown in
[Quan and Hu 2002]. The efficiency of an optimal voltage scheduling algorithm is, there-
fore, dependent on how efficiently the job set is modified to be an EDF job set. To give a
better insight into our approach for solving the voltage scheduling problem, we derive an
equivalent result to Quan ef al. [Quan and Hu 2002] using Conditions I and II.

3.1 Properties on |J|-Tuples

Given a |J|-tuple f = (1, fr, ", fu,) € 77, 9% represents the job set {J},J5, - ,J|’]|}
where Py = Pi;sCpl = Cipty =13, andel{ = fy, forall 1 <i<|J|. We say that a |J|-
tuple f is EDF-ordered if J% follows the EDF priority. Furthermore, 7% is said to be EDF-
equivalent to J. We first establish a link between Conditions I and IL.

LEMMA 3.1. If Condition I is satisfied for a job set J by a voltage schedule S and an
EDF-ordered |J|-tuple £ = (f1,, f1,, "+, Jag), Condition II is satisfied for a job set J% by
S.

PROOF. Forany r € Ryr and d € Dyt (r < d), we have
re{t|teRy (=Ry) Nt <d} and
d=fy, for 3 f; €Dyt (={fo, f0,-+, fo}) -
Furthermore, since f is EDF-ordered, we have
Vi €It sty (=1 € [nd(=f3),
dp =fr<fr=d ifpy <py(=prp)
d 5= Ji, > f,=d otherwise.
Thus, we have for all J, € gt
Py <py Aty € [nd) = [rp,dy] C [nd]. ®)
Finally, by substituting d for f;, in (2), we have
W(S,[rdl) = C{J € I lpsr < prAr€lrd)})
C{Ji € 3" py < pp (=p5) A1y (=13) €[1d)})
c{V e s |rp,dp] C[rdl}) . (From (5).)

O

LEMMA 3.2. If Condition II is satisfied for a job set % by a voltage schedule S where
f=(fr,fn, > i JI) is an EDF-ordered |J|-tuple, Condition I is satisfied for a job set J
by S.

ACM Transactions on Embedded Computing Systems, Vol. , No. , 20.

8 . H.-S. Yun and J. Kim

PROOF. Letr € {t|t € Ry At < f,}. Then, we have
r€Ry (=Ry), f1, € Dy = fny afJ|]|}) andr < fj,
and substituting f;, for 4 in Condition II gives
WS, [n) = C{J € 5| Iy dp] S 1 f1]}) -
Since f is EDF-ordered, we have for all J,’c € Jf (Refer to the proof of Lemma 3.1.):
pyp<pypAry € [nfy) <= [rpdyl € [nfil. ©)
Therefore, we have
W(S,Infnl) = CHJ € 5| Irmdp] € In f11})
= C({ €9 Iy < py (=ps) Ary (=) €[1))
CHIed|pr<prnrrelnfr)}) .

O

From Lemmas 3.1 and 3.2, we can derive the following useful theorem which states how
a feasible voltage schedule of a job set can be obtained from its EDF-equivalent job sets.

THEOREM 3.3. Given a job set J, let Fy be the set of all feasible voltage schedules for
J. Then, Fy5 = Ugcqy, Fgt where Tipp is the set of all EDF-ordered |9 |-tuples for 7.

PROOF. To show that S € F5 = S € Upeg, 9']; , assume that J; completes its execu-
tion at fy, (< dy,) forall 1 <i<|J|under S € Fy. Let £= (fy, fr, " ,fJIJI). Then, 9% is
an EDF job set. If not, we have for some J;,J; € Jf (where p 7 < Pr)

ry < dJl/ (= le) < dJI/c (= ka) s

which contradicts a fact that once a higher priority job (i.e., Ji) is released during the
execution of a lower priority job (i.e., J;), the higher priority job completes earlier than
the lower priority job (i.e., fj, < f7,). Furthermore, from Lemma 3.1, $(¢) is a feasible
schedule for the EDF job set J%. Thus, we have § € Utegzpe Fot -

Conversely, given an EDF-ordered |7|-tuple £ = (f5;, /5, ,f1,), let S € Fye be a
feasible schedule for the EDF-equivalent job set Jf. Then, from Lemma 3.2, § satisfies
Condition I for J. Thus, we have § € F5. O

COROLLARY 3.4. Givenajob set 9, E (5({pt) <E (5({1;) for any EDF-equivalent job set
9%, Furthermore, there exists an EDF-equivalent job set 9% such that 50]pt = 5£t.

From Theorem 3.3, there is a one-to-one correspondence between feasible schedules of
a fixed-priority job set J and feasible schedules of J’s EDF-equivalent job sets. Since the
energy-optimal schedule 53; for an EDF-equivalent job set Jf can be directly computed (in
polynomial time) by Yao’s algorithm [Yao et al. 1995], the problem of finding an energy-
optimal (feasible) voltage schedule of 7 is reduced to the problem of finding an EDF-
equivalent job set 7% (or to selecting an EDF-ordered | J|-tuple f) that minimizes E (50];).

Figure 1 shows an example of EDF-equivalent job sets and EDF-ordered |J|-tuples.
Figure 1.(a) shows the original job set J = {J;,J>}. In this example, J, has a lower priority
but earlier deadline than Ji, so 7 is not an EDF job set. (So Yao’s algorithm cannot be

ACM Transactions on Embedded Computing Systems, Vol. , No. , 20.

On Energy-Optimal Voltage Scheduling for Fixed-Priority Hard Real-Time Systems . 9

Fig. 1. An example of EDF-equivalent job sets.

directly applied to 7.) In Figures 1.(b) and 1.(c), two job sets are shown, which are EDF-
equivalent to 4. The job sets {J],J5} and {J7,J } are obtained by choosing (r;,,dy,) and
(dy,,dy,) as EDF-ordered |J|-tuples, respectively. Both job sets follow the EDF priority
assignment’ and the optimal voltage schedule for each job set can be computed by Yao’s
algon'}hr/n. (As v\;illnbe explained below, the energy-optimal voltage schedule of 7 is equal
to .Sgt‘ "2} o S(gtl T2} depending on the workload of J; and J;.)

Now we are to restrict the search space of EDF-ordered | J|-tuples (equivalently, EDF-
equivalent job sets). First, an EDF-ordered | |-tuple f = (f1, f2,--, f|5|) does not need to
be considered if for another EDF-ordered | J|-tuple f = (11, f3,"+ » fI/JI) (#1), fi < ff for
all 1 <i<|J|. This is because, for any voltage schedule S(z) which is feasible under f,
S(¢) is also feasible under f'. We define that an EDF-ordered | 7|-tuple f (or 9% is essential
if such f' does not exist. (The term ‘essential’ is equivalent to the term ‘NAP’ in [Quan
and Hu 2002].) Quan’s optimal algorithm [Quan and Hu 2002] finds an optimal voltage
schedule by exhaustively enumerating all the essential (or NAP) job sets and then applying
Yao’s algorithm for each essential job set. Our fast algorithm avoids the exhaustiveness by
carefully enumerating the essential job sets.

3.2 | J|-Permutations

It is easy to check if a | 7|-tuple is EDF-ordered (or essential). On the contrary, it is not ob-
vious how such | 7|-tuples can be enumerated. In this section, we describe how to construct
EDF-ordered | 7|-tuples efficiently using a permutation-based analysis.

Given a | J|-tuple f = (f1, f2,-**, fig)), let o : {1,2,---,|J|} = {1,2,---, ||} be a per-
mutation that maps a new tuple index when the tuple elements are sorted in a non-decreasing
order, i.e., fc;l(l) < fcf—l(z) <. < fc;1(| I Ties are broken by the priority, i.e., if f; = f;
where i < j, o¢(i) < o(j). (From now on, we call such ¢ a | J|-permutation.) For example,
let £ = (f1, 12, f3, fa) = (4,10,2,10). Then, since f3 < fi < fo = f4, we have 6(3) =1,
o(1) = 2, and (from the tie-breaking rule) (6(2),0(4)) = (3,4). (Equivalently, we have
(67 1(1),671(2),671(3),671(4)) = (3,1,2,4).) Note that 5~ (i) denotes the index of the
i-th smallest element in f, i.e., f5-1 0 is the i-th smallest element in f.

The following lemma states that there cannot exist more than one essential | J|-tuples
whose | J|-permutations are the same, that is, each essential | J|-tuple can be uniquely ad-
dressed by its corresponding | 7|-permutation (and, obviously, vice versa).

LEMMA 3.5. Forany two essential |J|-tuplef= (f1,f2,---, fig)) andt = (f{, f3,"--, |’]|)
(£#fF), or#op.

3In Figure 1.(c), J/ need not have an earlier deadline than J4 for the job set to be an EDF job set; d yy =dyy is
sufficient for the job set to be optimally scheduled by Yao’s algorithm [Yao et al. 1995].

ACM Transactions on Embedded Computing Systems, Vol. , No. , 20.

10 . H.-S. Yun and J. Kim

PROOF. Suppose of = op and let i (1 <i < |J|) be the largest integer such that fcf_1 0 #

,1.e.,

Fg
4 @
fsr' @) =f;;1(k) (= f;f_l(k)) foralli<k<|J]|.)

Without loss of generality, we can assume fcf_1 0 < f(’s 1) Let us consider a new | J|-tuple
e

1 1 ol U
f/ —(19 2,"', Ul)Whel‘e

f/f,/={f]£ k=6f_1(i),

fr otherwise.

From the definition of f”, it can be easily seen that 6p» = 6¢ = 6. (We omit the subscripts
in the rest of the proof.) We are now to prove that f’ is EDF-ordered, i.e., for any 1 < j <
k<17l

fI<florfi <ry. ®)

Since fis EDF-ordered, (8) holds forall 1 < j < k < |J| except for j=o6"(i) ork=07"1(i).
So, it remains to show that (8) holds forall 1 < j <6~ !(i) < |J|and 1 <o~ (i) <k < |7|.
Case (a): 1 < j <o~ 1(i) <|J| (whenJ; has a higher priority than Jo-1()")

If ff < fi @ (8) trivially holds. So, we only consider j such that f} > f7_ 0’ ie.,
[i (& fo1(6())) > fom 0 (> fo-1(3))- From the definition of 6, we have 6(j) > i. Thus,
by substituting o(j) for k in Eq. (7), we have f; (= f/) = f}. From the assumption, f
is EDF-ordered, but we have f]’ =fi> fé_l 0" So, it must be the case that fé -1 <ry;.
Therefore, we have

fg-1(,~) =f</;—1(,~) < y; -
Case (b): 1 <o~ 1(i) <k <|J| (whenJ; has alower priority than Js-1(3)-)
First, we can exclude the case when fi = fg-1;). Otherwise, we have 6(k) > o(c71(i)) =i.
(Recall the tie-breaking rule.) But, by the definition of G, £, _, (o) =) = fia 0 and
we finally have
f]é > f(/;—l(i) > fc—l(i) = fi>

which contradicts Eq. (7).
Second, consider k such that fi < fs-1(;). fis EDF-ordered, but we have fo-1(;) > fi. So,
it must be the case that fj < SRS Therefore, we have

fi = fi < Tigigy -
Finally, for k such that fi > fs-1;), we have
fg—l(i) = fé—l(i) < flé =fk= Ig :
Thus, f’ is EDF-ordered. However, since we have
for) <fomiy=Ffap and fi=f foralll<k#c ()<,

f is not essential, a contradiction. Therefore, 6f # op. [
ACM Transactions on Embedded Computing Systems, Vol. , No. , 20.

On Energy-Optimal Voltage Scheduling for Fixed-Priority Hard Real-Time Systems . 11

To1q9) = Dy
for (i:=|J|-1to1)
let 7% be {Jo-149| i<k < |I| A o7 (k) <o7'() }
if (1), > min({rs|/ € T} U{fo-1441)})) return FALSE
else fo"l(i) = min({fc_1(l~+1),d16_1(i) } U {r]|J €]H})
end if
end for

AIEANE U o S

Fig.2. The algorithm to build a | J|-tuple from a | J|-permutation.

The proof of Lemma 3.5 also implies how to build a unique essential job set for a G.

LEMMA 3.6. Given a |J|-permutation G, the algorithm in Figure 2 finds a unique es-
sential | J|-tuple for o if such a |J|-tuple exists. Otherwise, it returns FALSE.

PROOF. First, suppose that the essential | J|-tuple for ¢ exists and denote it by f =
! ! ! ! ! !
(oo |]|). (Note that J_cc—l(l) < f6_1(2) < S_fc—1(|y|)‘) We are to prove that
fé_l(i) = fo-1(;) and the algorithm does not abort in line 4 for all i = |7|,]J| —1,---,1
. , _ _
by induction on i. The base case holds trivially, i.e., fo-1(| = djc_1 o = f6-1(| g))- For

the induction step, assume that the proposition holds for all £ = |J]|,|J| —1,---,i+ 1.
Let J7 = {Jgy | i<k<|J| A o7'(k) <o '(i) } (as in line 3 of the algorithm).
Note that any job in 77 has the higher priority than J,-1; and that f/_, o S, and
fcls—l(i) < f</>"1(i+1)'

Case (a): 77 = 0.

Suppose that f; o< di_, " and f,_, o< foa (i+1)° that is,

fory < S fomp <min{di s fornt S Somrrn <00 S fomigy -

T __ ! A : A A A (]
Let f = (fl,"' 3 G_l(i)_l,m.ln{djc_l(i) 3 6_1(i+1)},f6_1(i)+1,“' 9 |j|). T]len, f/ 1S EDF'
ordered, and f’ is not essential, a contradiction. Therefore, we have

fory = min{ds_y o, forgnt = min{ds_y o forgn} = fomi) -

Case (b): 77 #£0.
For all Jo-1) € JH, we have fé_l(i) < fé_l(k) from the definition of ¢ (Recall the tie-

breaking rule.), and f 1y ST ® since f' is EDF-ordered. Suppose that f(’,_l(i) <
min{ry|J € T}, fooi) < iy and fo_i) < foiy) that s,

oy S+ S fomrp <min({dy_y) o YLV €97 < foripny < S foaqg) -

Letf’ = (f{a Tt ,fé—l(i)_l,min({dlc—l(i),fé—l(i_,_l)}U{rJl‘I GJH})afé—l(i)+17) |/_7|) Then,
it can be easily shown that f’ is EDF-ordered. Thus, f is not essential, a contradiction.
Therefore, we have

fé_l(i) = min({djc—l(i)’f(/S‘l(i+1)}U{rJ|J E]H})
min({dy__, s fo-141) U{rsl €M) = forg -

ACM Transactions on Embedded Computing Systems, Vol. , No. , 20.

12 . H.-S. Yun and J. Kim

L_{z ____________ | I ‘{ 2]
L_{l _______ | L__'(1_|
IR | L 3
ronon A4 b & R T A
@ ®)
Lo fy L a
L fy L fy
LS Lo 3
P non A4 & & M A
©) @

Fig. 3. An example of |J|-permutations. (a) A job set and its EDF-equivalent job sets for which
(671(3),671(2),671 (1)) = (®) (2,3,1), (¢) (2,1,3) ,and (d) (3,2, 1) , respectively. (6~ (3),671(2),671(1)) =
(1,2,3),(1,3,2) and (3,1,2) are not valid J-permutations.)

Furthermore, we have for both cases
ch‘l(i) < fé—l(i) < min({ry|J GJH} U {fé—l(i+1)}) = min({ry|J e]H} U {fo“l(i+1)}) ’

and the algorithm does not abort in line 4 at iteration i, which completes the induction.

If the algorithm does not abort, the | 7|-tuple built by the algorithm is always a correct
EDF-ordered |J|-tuple, implying the existence of such | J|-tuple for . Therefore, if such
|7|-tuple does not exist, the algorithm eventually returns FALSE. [

If a | 7|-permutation ¢ has the corresponding EDF-ordered | J|-tuple f, it is said to be valid.
Furthermore, if f is essential, ¢ is said to be essential. From the above argument, we
can establish one-to-one correspondences between EDF-ordered | J|-tuples and valid |J]-
permutations, and between essential | 7|-tuples and essential | J|-permutations. Figure 3.(a)
shows a job set with three jobs and Figures 3.(b), 3.(c) and 3.(d) show its EDF-equivalent
job sets with their | J|-permutations. Among 3!(= 6) possible | J|-permutations, only three
permutations are valid (and essential).

Based on the algorithm in Figure 2, we describe another way to enumerate |J|-tuples.
In the following, r;, and dj, are interpreted as symbolic values, not as real numbers. Then,
R;UDy has 2-|J| distinct symbolic values. Furthermore, the algorithm in Figure 2 is as-
sumed to assign symbolic values to elements of a | |-tuple with the following tie-breaking
rule in line 5:

@ry=ry; (i<j): rp<ry, O)dj=d;y, (i<j): r;<ry; (©ry=dj: r;<dy;.
Given a |J|-tuple £ = (f1, f2,*+, fis)), let & : RyUDy = {0,1} be a bit-vector of length
2-|J| such that

_J1 t=fiforsomel <k<|J],
gf(t)_{O otherwise.

The algorithm in Figure 4 constructs a | J|-tuple from an arbitrary bit-vector { : Ry UDy =
{0, 1}. The correctness of the algorithm can be proved in a similar manner as the algorithm
in Figure 2.

ACM Transactions on Embedded Computing Systems, Vol. , No. , 20.

On Energy-Optimal Voltage Scheduling for Fixed-Priority Hard Real-Time Systems . 13

J={}LD:={}
foreach (dj, €Dy s.t. {(dy) =1)
fir=dy, 3= 9 U{J;},D:=DU{d;}
end foreach /* return FALSE here if 7’ does not follow the EDF priority. */
foreach (rj; €Ry s.t. {(r;;) = 1 in a decreasing order)
fi:=max{d €D | 7' U{J} follows the EDF priority where p; = pj,,r; = rj,d; = d}
/* return FALSE here if such f; does not exist. */
7= 9'u{J},D:=DU{r;}
end foreach
foreach (J; s.t. f; is not determined (in any order))
fi:=max{d €D | 5’ U{J} follows the EDF priority where p; = pj,,ry =ry,,dj =d}
/* return FALSE here if such f; does not exist. */
11: g = 9'u{J}
12: end foreach

A N T

IS

Fig. 4. The algorithm to build a | J|-tuple from a bit-vector.

3.3 An Alternative Formulation

The problem formulation given in Section 2 is based on the voltage schedule S(¢). In this
section, we describe an alternative formulation, based on the following intuitive property,
which states that each job runs at the same constant speed if the voltage schedule is an
optimal one.

LEMMA 3.7. For an energy-optimal voltage schedule S(t), S(t1) = S(t2) for any 1
and ty such that job(J,S,t1) = job(J,S,t).

PROOF. Given an optimal schedule §(z), suppose that S(#1) # S(t2) for some #, and #,
such that job(J,S,t1) = job(J,S,t;). Given that S(¢) is optimal, there exist #{,#),51,52
and Ar such that S(¢) =Sy for#] <t <t] +Ar, S(r) =S, fortj <t <#),+Ar,and S1 # 5.
Let S(¢)’ be defined by

Sy = St g <t <t 4+M, G <t<th+A,
S(t) otherwise.

Then, it is obvious that S(¢)’ is feasible and E(S’) < E(S), a contradiction. []

From Lemma 3.7, it can be shown that the voltage scheduling problem is equivalent to
determining the allowed execution time a; allocated to each J;. Given a feasible voltage
schedule S, the corresponding tuple of the allowed execution times (a1,a2,- -,), called
a time-allocation tuple, can be uniquely determined. Conversely, given a time-allocation
tuple A = (aj,az,--- N]|), the corresponding voltage schedule Sp can be uniquely con-
structed by assigning the constant execution speed c;/a; to J;. A is said to be feasible if the
corresponding voltage schedule Sy is feasible.

Let us now consider the exact condition for a time-allocation tuple A = (a1, a2, ,a|7))
to be feasible by rewriting Condition I in Section 2 in terms of A.

ACM Transactions on Embedded Computing Systems, Vol. , No. , 20.

14 . H.-S. Yun and J. Kim

Condition III (Feasibility Condition for Time-Allocation Tuples).
There exists a | 7|-tuple (f7,, fr,," - ,fJUl) € 77 such that
Vi<i<|J| Vre{tteRyjAt< f1}

a < fr—r. ®
Je/ Py <py Ny €lnfy)

LEMMA 3.8. Condition 11l is a necessary and sufficient condition for A to be feasible.

PROOF. Givenajobset J={J},Jh,--- ,J|]|} and a time-allocation tuple A = (aj,ay, - -
,a)4)) for 7, consider a new job set 7' = {J{,J5,-- ’JI/JI} where ¢y = aj, 1y =1y, dyy = dy,
and p 7 = DPJ; forall1 <i<|J|,ie., 9 isidentical to 7 except for the workload.

Let S'(t) =1 (V¢ > 0) be the voltage schedule of 7’. Then, it is obvious that the response
time of J; under Sy is the same as that of / under §’. Thus, A is feasible if and only if §’
is a feasible voltage scheudle for J'. After replacing § and ¢y, in Condition I by §’ and a;,
respectively, we have Condition ITII. [

By applying the same argument to Condition II, we have the following condition for
EDF job sets.

Condition IV (EDF Feasibility Condition for Time-Allocation Tuples).
Forany r € Ry and d € Dy (where r <d)

a < d-r.
J/r5,d51C[nd]

Now, the voltage scheduling problem can be reformulated as follows:

Find a time-allocation tuple A = (a1,az,+-,a|y|) such that E(Sa) is minimized
subject to Condition III (or Condition IV for an EDF job set).

The energy consumption of the voltage schedule S5 can be directly computed:
E@Ss) = Y ai-Plei/ai) - (10)

The set of feasible time-allocation tuples represents the solution space for the voltage
scheduling problem stated in terms of time-allocation tuples. For an EDF job set, the
solution space is specified by a conjunction of linear inequalities which can be directly
obtained from Condition IV. However, this is not the case for a fixed-priority job set; the
existential quantifier in Condition III is not always removable. Consequently, the solution
space for an EDF job set is a convex set while the solution space for an arbitrary fixed-
priority job set may not be a convex set.

Before we present an intractability result for the voltage scheduling problem in the next
section, we illustrate the inherent complexity of fixed-priority voltage scheduling based on
the results explained in this section. Figures 5.(a) and 5.(b) show the solution spaces for
an example EDF job set and an example fixed-priority job set, respectively. As a fixed-
priority job set, we use the job set {J1,J2} of Figure 1. As an EDF job set, we use the same
job set {J1,J>} in Figure 1 with the same timing paremeters, but the priority assignment is

ACM Transactions on Embedded Computing Systems, Vol. , No. , 20.

On Energy-Optimal Voltage Scheduling for Fixed-Priority Hard Real-Time Systems . 15

ata,<d;-r,

@ (b)

Fig. 5. Solution spaces for (a) an EDF job set and (b) a fixed-priority job set.

changed such that it follows the EDF priority assignment, i.e., p;, < p;, . For the EDF job
set, we have the following constraint:

a1 <dj—ry N a<d,—r, AN ar+a<dj-—ry
Similarly, we have the following constraint for the fixed-priority job set:

ay <dy—ry, N ax<ry—ry (Figure 1.(b)) V
ar <dj—ry N ai+ay <dj—r;, (Figurel.(c)

In Figures 5.(a) and 5.(b), the solution spaces for the EDF job set and the fixed-priority
job set are depicted as a convex region and a concave region, respectively. (Each point in
the shaded regions represents a feasible schedule.) In general, the solution space of any
EDF job set with N jobs are represented by a convex set in RY, whereas the solution space
of a fixed-priority job set is represented by a concave set. Note that for EDF job sets,
the objective function, the total energy consumption, can be efficiently minimized by an
optimization technique for a convex set (as in Yao’s algorithm). However, optimization
problems defined on a concave set are generally intractable.

4. INTRACTABILITY RESULT

In this section, we present some observations related to the complexity issue of the optimal
fixed-priority scheduling problem. We first show that the decision version of the problem
is NP-hard.

THEOREM 4.1. Given a job set J and a positive number K, the problem of deciding if
there is a feasible voltage schedule S(t) for J such that E(S) < K is NP-hard.

PROOF. Without loss of generality, we assume that the energy consumption (per CPU
cycle) is quadratically depent on the processor speed. That is, the instantaneous power
consumption (per time) is cubically dependent on the processor speed, i.e., P(t) = S(z).
(The reduction can be easily modified for other power functions.) We prove the theorem by
reduction from the subset-sum problem, which is NP-complete [Garey and Johnson 1979]:

SUBSET-SUM
INSTANCE: A finite set U, a size s : U= Z™, and a positive integer B.
ACM Transactions on Embedded Computing Systems, Vol. , No. , 20.

16 . H.-S. Yun and J. Kim

Question: Is there a subset U’ C U such that ¥,cyy s(u) = B?

Given an instance (U (= {u1,---,ujy|}),s,B) of the subset-sum problem, we construct
a job set 7 and a positive number K such that there is a voltage schedule S(#) of J with
E(S(t)) <Kifandonly if IU’' CU, ¥, s(u) = B. The corresponding job set J consists
of 2-|U| 41 jobs as follows:

J = {2y Jau1t where
p; =i forall 1<i<2-|Ul+1,

1

i
T = S@iv1) + X, 3-50)) 5 thpp = Y, 3-5(j)
=1

j=1
i+1 i

dniy = 2‘1 3-5(uy) dpiyy = 2-s(uir) + 2'1 3-s(uy)
j= j=

Chip = 8-v-s(uit1) , Chiyp = 8-s(u;y1) forall 0<i<|U|—1, and

1
3
Thw =05 dpyyy = B+ 21 3-s(uj) , Chp = v4.B .
J:

where vy is the unique positive solution of the following quadratic equation:

4 1
\(2+y=1+W (= 5 <v<l).

Furthermore, X is set to be
P [U|
K = (83+Z -83)-2 s(u;) +2-B.
i=1

From the construction of 7, we have

Thiva <Thip (5 Thy +5Wit1)) <di,y, (S 10,4, +5Win1)) <dp,y, (5dn, t5@iv))
[Mhi238ni] C I J2‘|U|+17dJ2‘|U|+1] forall 0<i<[U|—-1 and

[rJZHZ,dJZHI] N [r]2~i,+2,d]2~i,+l] =0 forall0<i# i< [U]-1.
Letk: {0,1}/U = 77 be a function defined by

K((bl,bZ,"' ,b|U|)) = (f17f2,"') |,‘7|) where
f2~i+1 = dJ2~i+1) f2~i+2 = Thin ifbi+1 =0)
frit1 = frit2 = dJZ‘H_z ifbir1 =1 forall0<i< |U| —1, and

Loqu+1 = dngy, -
Then, the set of essential job sets of 7 is given by:
{7 1£=x(b), be {0,131

To compute the energy consumption of an essential job set by Yao’s algorithm [Yao et al.
ACM Transactions on Embedded Computing Systems, Vol. , No. , 20.

On Energy-Optimal Voltage Scheduling for Fixed-Priority Hard Real-Time Systems . 17

1995], we first compare the intensity of each interval. Let

Chiya Chiv1
L= —"— ,h= d—l)
Thiv1 —Thip Div1 ~ Thip
Ch.; Chi T Chy Clhul1
L = 2it1 I = 2.i+1 242 and 15(8) — | Ig .
Ahii2 —Thin Ahriv2 —Thip B+

Then, we have

8-s(uiv1) 8-v-s(uiy1) 3 V4-B

L="""V_—8 > L=-1""J _gv>2>vV4> = and

! s(u,-+1) 2 2-s(u,~+1) Y 5 B+
8-(1+7) -s(ui+1) 8-v-s(uir1)

Iy = =444y > h=——"-—""-"=8-y > I5.

4 2-s(uiy1) b } s(uiv1) Y ’

So, the energy consumption of 50 for £=1((b1,b2,- - ,bjy])) can be computed as follows:

U]
E (.S},j; =YE + E where
i=1

s(u;))3 ¥-s(u;))3
_ (83+ﬁ 8)-s(w;) (= (Ss(z(t)) +(?21~{s(1(4,‘)§)2) b;=0,
U0 83 5(us) (= %ZM bi=1 and

3
4. B3 h o

i (-).
(B + Z b; - s(u;))2 (B + Zic1 bi'(dfzi—l _dJZ‘i))z
Since we have

3 Y43
(I—ZY) '83's(ui) — w.83.s(ui)
_ 143-(14+4/3-8)+7
4

83 -s(w) = (83 + YZS .83) (i) + s(ui)

we can rewrite E (5{1,'0 as follows:

Y

4-B*
E(Sh) = &+ 73 .83). Z i) + 5+ oy Where x = Y bi-s(u) -
i=1
It can be easily shown thatE(.S‘opt) has the minimum (83+f 83). Z'Ul s(u;)) +2-B (=K)

atx=B. Thatls,E(,S0) < K if and only if

3 (b1,b2,+ b)) € {0,139, T b;-s(u) = B, which s equivalent to
3veU, Y s(u)=B.

uel’
It is obvious that the transformation can be done in polynomial time. Therefore, the prob-
lem is NP-hard. [
From the NP-hardness proof, the problem seems unlikely to have polynomial time algo-
rithms that compute optimal solutions. The NP-hardness of the problem strongly depends

ACM Transactions on Embedded Computing Systems, Vol. , No. , 20.

18 . H.-S. Yun and J. Kim

on the fact that extremely large input numbers are allowed, as with some other NP-hard
problems (e.g., the subset-sum problem and the knapsack problem [Garey and Johnson
1979]). The NP-hardness in the ordinary (but not strong) sense does not rule out possibil-
ity of existence of a pseudo-polynomial time algorithm or an FPTAS. Since our problem is
an optimization problem that handles real numbers, we focus our attention on the FPTAS
in the next section.

5. A FAST APPROXIMATION SCHEME

In this section, we present a fully polynomial time approximation scheme (FPTAS) for
the problem. We first consider a dynamic programming formulation that always finds
the optimal solution, but may run in exponential time. Then, the dynamic programming
formulation is transformed into an FPTAS by using a standard technique, the rounding-
the-input-data technique [Woeginger 1999]. The technique brings the running time of
the dynamic program down to polynomial by rounding the input data so that sufficiently
close input data are treated by a representative data [Sahni 1976]. The relative error of an
approximation scheme depends on how we define the closeness; the smaller the threshold
value for the closeness is, the smaller the relative error is. For a smaller error bound,
however, the computation time becomes longer.

5.1 Algorithm for Optimal Solutions

We first present an exponential-time optimal algorithm based on the properties of optimal
voltage schedules described in Section 3. The exponential-time algorithm essentially enu-
merates all the essential job sets. However, unlike Quan’s exhaustive algorithm [Quan and
Hu 2002], it enumerates the essential job sets intelligently without actually enumerating
all of them. Furthermore, it is based on dynamic programming formulation so that it can
be easily transformed into an FPTAS by the standard technique.

In formulating the problem by dynamic programming, we first identify appropriate
‘overlapping’ (or reusable) subproblems to which dynamic programming can be applied
iteratively. We note that the ‘optimal substructure’ of our problem is naturally reflected
by blocking tuples, which are just sequences of time points in 77 in strictly increasing
order. (We formally define the blocking tuples later in this section.) That is, the optimal
solution of the original problem can be built by just merging the optimal schedules of the
sub-intervals defined by a blocking tuple. Figure 6 shows an example job set and its cor-
responding EDF-equivalent job set whose time interval is partitioned by a blocking tuple
(rv,rN-3,dN_1,--- ,12,d2), which is depicted by a set of the dashed thick lines in Figure
6.(b). Note that jobs in each sub-interval follow the EDF-priority assignment.

The original problem is partitioned into subproblems by partitioning the overall time in-
terval into sub-intervals such that jobs in each sub-interval follow the EDF priority assign-
ment. If a job is released within a sub-interval with its deadline outside the sub-interval, the
deadline can be modified to the end of the sub-interval. Each partitioned interval can be op-
timally scheduled in polynomial time by Yao’s algorithm [Yao et al. 1995]. The challenge
is how to find the set of sub-intervals whose optimal sub-schedules build an energy-optimal
voltage schedule.

5.1.1 Basic Idea: The First Example. We now explain the basic idea of the optimal
algorithm by describing the optimal algorithm on a simple but illustrative job set J =
{J1,J2,- - ,Jy} in Figure 6.(a) where riy; < r; <diy1 <d; for 1 <i < N. (Note that if

ACM Transactions on Embedded Computing Systems, Vol. , No. , 20.

On Energy-Optimal Voltage Scheduling for Fixed-Priority Hard Real-Time Systems . 19

v
v
Vs
LI
L |
o]
"111 er-l I‘N-Iz I'N-3 l}N al'N-l al'N-z 112 7:1 ﬂllz dll
(@)
[[[[[
[[[[£,
[[[[Looeees A
[I bommmmmmee - el
I I I (XXTXY] I I
[Fas [[
[- L [[
[2 [[[
.= | |
L T ! |
N IN-1 IN2 IN-3 dndna dne r. r d 4
®)

Fig. 6. An example illustrating the optimal algorithm. (a) An original job set and (b) an essential job set defined by
a|J|-tuple f= (f1, 2, , fn-3, fv—2, fv—1,fw) = (d2,d2, - ,dn—1,"N—3,7N—3,7N—3). Jobs in each sub-interval
between the thick dashed lines follows the EDF priority assignment and can be optimally scheduled by Yao’s
algorithm.

the priorities of jobs are reversed, the job set follows the EDF priority.) For this job set,
an essential job set J° (such as one in Figure 6.(b)) is partitioned into Jf, 75, - -, J¢ such
that each J¢ (1 <i < k) follows the EDF priority assignment and the union J; of execution
intervals of jobs in Jf (i.e., I; = Ujege[ry,dy]) does not overlap with ; (= Uy 7 [rr,dp])
for all 1 <i## j < k. To be more concrete,

forall 1<i<j<k, VIeJtJ eJt, di<ry.

Therefore, the optimal voltage schedule 55; of J° is equal to the concatenation of the
optimal voltage schedules of J’s, i.e.,

e]ie
567pt (t) = G9£'c=1~5‘opt (t)

Note that 5£t can be directly computed by Yao’s algorithm [Yao et al. 1995] since J7°
follows the EDF priority assignment. Therefore, the energy-optimal fixed-priority voltage
scheduling problem is further reduced to the problem of finding a partition that gives the
energy-optimal voltage schedule for the whole time interval.

In defining a partition, we use a blocking tuple. For example, assume that fy is selected

ACM Transactions on Embedded Computing Systems, Vol. , No. , 20.

20 . H.-S. Yun and J. Kim

as ry—3 as in Figure 6.(b). Then, both fy_; and fy_» should be selected as ry_3, so that
the job set becomes EDF-equivalent and, furthermore, essential. As shown in Figure 6.(b),
these three jobs are separated from the other jobs by a thick vertical line at time ry_3.
These jobs constitues the first partitioned job set J7. The remaining job sets J5,---, J¢ can
be constructed by applying the same argument. In this way, any essential job set can be
partitioned and represented by a blocking tuple.

Letb = (b1,b2,---,b;) (b1 <by <---<by, bjeTy)be ablocking tuple where

Vi<j<li, dJst bij=r; ANbj11 <d;
Then, the corresponding EDF-ordered | J|-tuple £ = (f1, f2,--, fw) is given by
Ji=bj st. € [bj_l,bj) forall 1<k<N.

We call such [b;_1,b;] an atomic interval. For example, the intervals [ry, ry—3] and [ry,dy]
in Figure 6.(a) are atomic, but the interval [ry,dy—1] is not atomic. (Later, we formally
define the term atomic interval in arbitrary job sets other than this example.) Let #;, be the
h-th earliest time point in Ty and let S , represent the energy-optimal voltage schedule
defined within [z,] for the job set J, , defined by

Ihg = {Jz/| 75; € [thitg)} where
1y =15,y = cy, pyy = py; and dy =min{dy,, 1.} .
Then, we have
E(Sq) = E(Syr,) =
k=1
min{ZE(Shj,th) [1=h <h<---<h=|J| and
j=1
[tn;stn;,,] is atomic forall j=1,--- ,k—1}.

Given an atomic interval [ts;, s, ,,], Sh;n;,; can be directly computed by Yao’s algorithm.
In this way, the optimal voltage scheduling problem is reduced to a variant of the subset-
sum problem. That is, for such job sets as in Figure 6, our problem can be formulated as

follows:

Select a tuple (h1,h2,- -+ ,hx) (1 =h1 < --- < b =|J|) of integers such that the sum

Ghy iy T Ahp s+ T Ay iy

is minimized subject to [t;,,,,] is atomic for all 1 <i < k where gy,
E(Sh;,n;,,) (Which can be directly computed by Yao’s algorithm).

h;,, denotes

5.1.2 Basic Idea: The Second Example. The example job set in Figure 6 is illustrative
in showing how our problem can be formulated by dynamic programming. However, the
easily partitionable structure comes from the fact the job set follows the ‘reverse’ EDF
priority. For example, in Figure 6, since fy is set to be ry_3, which is within the execution
intervals of Jy_1 and Jy_2, fyv—1 and fy_» cannot be larger than fy (or ry_3) so that the
modified job set should be EDF-equivalent. Furthermore, fy_1 and fiy_» are set to be the
maximum possible value, fy, for the modified job set to be essential.

ACM Transactions on Embedded Computing Systems, Vol. , No. , 20.

On Energy-Optimal Voltage Scheduling for Fixed-Priority Hard Real-Time Systems . 21

| I |
Lho b Lo fy o
o A o

J,

J L2 1 I £ Lo
!""4"|""'.'"".'"."T""T""l !"'"!'""F""!'"."T""!'"{!l
fl4 l::; flz fll l;:; 1;2 él dy fl4 lls llz fll llls 1;2 dll lllt

@ (®)
I o I | I I I |
SR | Lo F1 |
I f I I A I
o l """" 3| [T 2 [

I fs I s
F--=2 [[bomommenntl 1 [
.L"".L"-'.L""r".".L""r"{!' .L"".L""r""r'J."r""r"{!'
fl4 l::; f'z fll li:; 1;2 dl lllt fl4 l::; liz fll llls 1;2 lil lllt

©) @

1 1
I 1
| 1
| |
; |
rn b nt n d t

non

n n n

® ®

Fig. 8. An example illustrating the algorithm on a job set with background workload. (a) Atomic intervals
(obtained from the job set in Figure 7.(b)). The optimal schedules for two atomic intervals where the speeds
of background workload of J4 are (b) s1, (c) s2 and (d) s3, respectively. The voltage schedules for overall time
intervals where the speeds of Jy are (e) s1, (f) sz and (g) s3, respectively.

If the priority pattern is not the same as the example job set in Figure 6, the partitioning
becomes difficult. For example, the essential job sets in Figures 3.(c) and 3.(d) cannot be
obtained by the partitioning procedure just explained. In Figure 7.(a), J4 has the lowest
priority and the latest deadline, which makes f4 to be d4 for all essential job sets (Fig-
ures 7.(a), 7.(b) and 7.(c)). Therefore, any atomic interval (e.g., [r3,71], [r1,d1] or [r3,d3])
contains partial workload of J4, which we call a background workload. In the following,
we first explain how to extend the dynamic programming formulation to handle the back-
ground workload. Then, we describe how to explore essential job sets of a given arbitrary
job set (as in Figure 3) by dynamic programming.

From Lemma 3.7, the job J4 in Figure 7 runs at the same speed if the voltage schedule

ACM Transactions on Embedded Computing Systems, Vol. , No. , 20.

22 . H.-S. Yun and J. Kim

L fo1qa = Ay

2: bs = (dlc—l(lﬂl)

3: for (i:=|9|—1to1)

4: let 7% be {Jo-14| i<k < |I| A o7 (k) <o7'() }

5: if (g, , > min({rs]J € T} U{fs-1G41)})) return FALSE
6: else fo1(= min({fo-141),ds,_) FU LI € U}

7 end if

8: if (o1 < min{r,c_l(k)| i<k<|J|}) append f;-1(; onto the head of bs
9: end if

10: end for

11: append min Ry onto the head of bg

Fig. 9. The algorithm to build a strongly-blocking tuple from a | J|-permutation.

is an optimal one. For the time being, let us assume that the constant speed is among
Sc = {s1,%2,53}. (For now, Sc is set to be the set of all the possible constant speeds in the
optimal voltage schedule. In section 5.2, we explain how the set Sc is selected such that
the size of Sc is bounded by a polynomial function.) For each s; € Sc, we first compute the
amount of background workload of J for each atomic interval, and then find the minimum-
energy essential job set (among those in Figures 7.(b), 7.(c) and 7.(d)) by using the similar
procedure to the previous case in Figure 6. However, unlike the previous case, we discard
any job set for which the sum of background workloads executed in overall time interval
is less than the total workload of J4.

Figure 8.(a) shows the atomic intervals [r3,71] and [r,d], which are obtained from the
essential job set in Figure 7.(b). Figures 8.(b), 8.(c) and 8.(d) show the optimal voltage
schedules for the atomic intervals where J4 runs at the speed s, s and s3, respectively.
The workloads of jobs Ji, J; and J3 are denoted by c;, ¢; and c3, respectively, and the
background workloads are denoted by w. The amount of the background workload (and
the resultant optimal voltage schedule) for each atomic interval and speed can be easily
computed by a slightly modified version of Yao’s algorithm [Yao et al. 1995]. That is,
when the critical interval is selected, if the speed to be assigned (by the intensity of the
critical interval) is less than or equal to the speed of the background workload, we assign
the speed of the background workload to all the unscheduled time intervals (including the
critical interval). Then, the amount of background workload can be directly computed as
in Figure 8.(b), 8.(c) and 8.(d).

Once the background workload and the optimal voltage schedule is computed for each
atomic interval, we apply the same procedure as in the job set in Figure 6 to find the
minimum-energy essential job set and the energy-optimal voltage schedule. In exploring
the solution space, we should discard any infeasible schedules. Figure 8.(e) shows an
infeasible schedule where J4 runs at s; and cannot complete its execution until its deadline.
The voltage schedule in Figure 8.(g) is feasible, but not an optimal one. Thus, only the
schedule in Figure 8.(f) is not removed in the pruning procedure and is compared with
another schedules obtained from the essential job sets in Figures 8.(c) and 8.(d).

5.1.3 Putting It Altogether. We now describe the optimal algorithm for arbitrary job
sets based on the observations from the example job sets. First, we formally define the
terms strongly-atomic interval and strongly-blocking tuple. Given a valid | J|-permutation

ACM Transactions on Embedded Computing Systems, Vol. , No. , 20.

On Energy-Optimal Voltage Scheduling for Fixed-Priority Hard Real-Time Systems . 23

/*Tﬂz{tl’tZa"' ’tN} */

1: foreach (strongly-atomic interval [t;,#;])

Tlt)]
2 8i,j = E(Soptj)
3: end foreach
4: V:i= {vl,vz,n-,vN}
5: E := {(v;,v;) | [t:,¢j] is strongly-atomic}
6: foreach ((v;,v;) € E) w((v;,vj)):=g;; end foreach /* weight of edges */
7: Find the shortest path from v; tovy in G=(V, E). /* Note that G is acyclic. */

/* The shortest path = (g, ,v4,, - Vg,) (Vg =V1,vg=vn) */
Itg:

8: return GBI;;} Sopqu 95411

Fig. 10. An exponential-time optimal algorithm based on strongly-atomic intervals.

o, the algorithm in Figure 9 builds the corresponding strongly-blocking tuple bs = (b1, b2,
-+, bx) where by < by < --- < by and b; € Ty forall 1 <i < k. The algorithm is identical
to the algorithm in Figure 2 except for lines 2, 8, 9 and 11. In line 8, fc—l(i) is selected as
an element of a strongly-blocking tuple if it partitions the execution interval.

Definition 5.1. Given a valid | J|-permutation o, the tuple bg built by the algorithm in
Figure 9 is called a strongly-blocking tuple. An interval [t,t'] is strongly-atomic if there is a
strongly-blocking tuple b = (b;,b,,- -+ ,bi) such that [t,#'] = [b;, ;1] for some 1 <i < k.
Furthermore, the job set J;) defined by

Ty ='1T €3, 17 €lt,1')} where
ry =ry,cy =cj,py = py and dy =m.il‘l{d],t,} .
is said to be induced by an interval [t,¢].4

For the job set in Figure 3 not only [r3, 73], [r2,d>] (Figure 3.(b)) and [r3,7;] (Figure 3.(c))
but also [r1,dz] (Figure 3.(c)) and [r3,d3] (Figure 3.(d)) are strongly-atomic. Note that the
intervals [r1,dz] and [r3,d3] are not covered by the previous definition in Section 5.1.1.
Furthermore, (73,72,d>) (Figure 3.(b)), (r3,71,d>) (Figure 3.(c)) and (r3,d3) (Figure 3.(d))
are strongly-blocking tuples.

Figure 10 shows an optimal algorithm which is based on strongly-atomic intervals. The
correctness of the algorithm is proved in Appendix A.1. The algorithm may work effi-
ciently for some job sets (e.g., the job set in Figure 6). But, the running time may not
be bounded by a polynomial function; For the job set in Figure 7, there are only one
strongly-atomic interval [r4,ds] and the algorithm cannot but enumerate all the essential
job sets. Furthermore, the algorithm does not have a structure suitable to be transformed
into an FPTAS. So, we consider another optimal algorithm based on weakly-atomic inter-
vals, weakly-bounding tuples, and the background workload. First, we formally define the
terms based on the algorithm in Figure 11, which is identical to the algorithm in Figure 9
except for the boxed code segment (line 8).

Definition 5.2. Given a valid | J|-permutation o, the tuple b¥ built by the algorithm in
Figure 11 is called a weakly-blocking tuple. An interval [t,t'] is weakly-atomic if there is a

4[t,¢] is not required to be strongly-atomic.

ACM Transactions on Embedded Computing Systems, Vol. , No. , 20.

24 . H.-S. Yun and J. Kim

L foiqa) = gy
. A,/ —
2: by = dJG_l(UD
3: for (i:=|9|—1to1)
4: let 7% be {Jo-14| i<k < |I| A o7 (k) <o7'() }
5 if (g, , > min({rs]J € T} U{fs-1G41)})) return FALSE
6: else fo1(= min({fo-141),ds,_) FU LI € U}
7 end if
8: if (fg-1y < min{ry| 7€ 9H) append fs-1;) onto the head of by
9: end if
10: end for
11:

append min Ry onto the head of by

Fig. 11. The algorithm to build a weakly-blocking tuple from a | J|-permutation.

weakly-blocking tuple b¥ = (by,b,,- - ,by) such that [t,#'] = [b;,b;11] for some 1 < i< k.
Furthermore, the job set J, v defined by

T = {IN\Teg,rmelt,d) N GheI,ps, <priry =t Adj€lry,ds))} where
7y =ry,¢p = c,py = py and dp =min{dy,?'} .

is said to be weakly-induced by an interval [t,7'].

Furthermore, given a weakly-blocking tuple b¥ = (b;,b,,- - ,b;) and the corresponding
EDF-equivalent job set 4/, any job in 9’ — u’;;% Jioybjs] is called a background job with
respect to the weakly-blocking tuple b". The workload of background jobs are called
background workload.

Based on weakly-atomic interval, we construct another optimal voltage scheduling algo-
rithm. Figure 12 shows the optimal algorithm which is based on the dynamic programming
formulated by weakly-atomic intervals. The algorithm identifies weakly-atomic intervals
and computes the optimal schedule for the weakly-atomic interval. (Note that jobs in
a weakly-atomic interval follow the EDF priority assignment.) In computing the opti-
mal schedule for a weakly-atomic interval, we consider the background workload, that is,
the algorithm computes the optimal schedule for each candidate background speed in Sc.
Given a job set J, the algorithm first computes the set Sc of candidates for the speed of
background workload. For the optimal algorithm, the set Sc is set to be

c)

2,;(; (tP2i+2 - th:+1)
It is obvious that the speed of the background workload in an optimal voltage schedule is
included in Sc. (In the FPTAS which will be presented in Section 5.2, the set Sc is selected
such that the size of Sc is bounded by a polynomial function.) Given the optimal sched-
ules of weakly-atomic intervals, the algorithm searches the minimum sum of the energy
values of the weakly-atomic intervals. The correctness of the algorithm is proved in Ap-
pendix A.2. The worst-case running time of the algorithm is not bounded by a polynomial
function, but it can be easily transformed into an FPTAS.

Sc = A{ |5/ CI, 1 <tr<--<tp,, t; €Ty} .

5.2 Approximation Algorithm

First, we prove a miscellaneous property which is useful in bounding the error of our
approximation algorithm.

ACM Transactions on Embedded Computing Systems, Vol. , No. , 20.

On Energy-Optimal Voltage Scheduling for Fixed-Priority Hard Real-Time Systems . 25

procedure OPTIMAL_VOLTAGE_SCHEDULE (J)
1Ty ={t1,t2,++ ,tn} s Sci={s1,8, s} ¥/

1: foreach (s €Sc)
2: V= {vl,vz,---,vN}
3: E = {(vi,v;) | [t:,2j] is weakly-atomic}
4: foreach ((v;,v;) € E)
5: W((virvy)) o= W (max{S. 5 (1), 53, [, 5]) — WA (6), 1)) /* weight of edges */
6: end foreach
7 Find longest paths between all pairs of vertices in V. /* Note that G is acyclic. */
8: foreach (1 <i< j <N s.t. [ti,tj] is a concatenation of weakly-atomic intervals)
/* The longest path from v; to vj = (g,,Vg,," " Vg;)
9: ¢ := the weight of the longest path from v; to v;.
10: Buyle] = E(@1 max{ Sop" %" (0,5},)
11: end foreach
12: end foreach
13: for(i:=1toN—1)
14: for (j:=1toN—i)
15: Ej’j_;_i = oot
16: for (k:=j+1to j+i)
17: Cj j+ijk = C({J 6,79 | ry € [tj,tk) Ndj € [tk,tj+,‘]})
18: Ej jvige = Ejglcj,jrijk] + Ex j+i
19 if ity Chiik] :
H (Ej,j+i > Ej jiix and Sopt is feasible for][ti,tj]w u{J E]ﬁHrj,d]] C D
20: Ej,j_;_,‘ =Ljjtik s h:=k
21: end if
22: end for
23: bjyj.,.,‘ = {th} Ub ihY bh,j+,‘
24: end for
25: end for

Ul g us?
PEN = ESa) and Sy = Sopr " where biy = (bi,ba, - br) ¥/

26: Jopt := Uﬁ;ll Tyl Y 9% where b1y = (b1,b2,+++ ,by)

27: return 50’;’,}”” /* Jopt is an EDF job set. So, S 0{,?" can be directly computed by Yao’s algorithm */
end procedure

Fig. 12. An exponential-time optimal algorithm based on weakly-atomic intervals.

LEMMA 5.3. Given a function P: R* = R" and a constant 0 < € < 1, if

€-log2 _ P(x)
0<x <x;m< (1+ m—ax{n(x)|x>0}) x1 where n(x) = _P(x) x,
then P(xp) < (14+¢€)-P(x1) .
PROOF. From the condition, we have
_ €-log2 €-log2
g —logn < log 14+ oty) < sy a
Let y; =logx; and y, = logx,. Then we have
. . d(log P(e”))
log P(xp) — log P(x;) = log P(€?) — log P(&”) < (y»—y1)- -max{ d—y 1.
From (11) and
d(log P(¢¥)) _ P'(¢”) B
dy - P(ey) e}’ - n(ey) 9’

ACM Transactions on Embedded Computing Systems, Vol. , No. , 20.

26 . H.-S. Yun and J. Kim

we have
e-log2

log P(xp) — log P(x1) < W

-max{"N(x) | x>0} = e-log2 .

It follows that
P() < 82.p(x) < elog(1+s).p(x1) = (14€)-P(x;) .
O

For a power function P(s) = o.- 5", we have 1(s) = n. In the following, we use pp to denote
log2/max{n(x)|x > 0}. From Lemma 5.3, we can construct an FPTAS as in Figure 13.
The FPTAS is slightly different from the algorithm in Figure 12. To bring the running time
down to polynomial, we use S¢ instead of Sc:

Sc = {min{Sc}- (1+8'Pp)k |k=0,1,---,1 where
min{Sc}- (1+¢-pp)' "' <max{Sc} <min{Sc}-(1+&-pp)'} .

THEOREM 5.4. APPROX_VOLTAGE_SCHEDULE is a fully polynomial time approxima-
tion scheme for the voltage scheduling problem.

PROOF. Let s; and s, be elements of S’C such that s, =51 - (1+¢€-pp). Given a weakly-
atomic interval [t;,#;], we have for#; <t <1;:

]ti,t 2]ti, 2
max{ Sy (1),52} < (1+€-pp) -max{ Sy (1),51} -

Thus, from Lemma 5.3, we have for#; <t <¢;

Tti47)

Jist i T
P(max{Syi" (1),52}) < (1+€) - P(max{S,p” (t),s1}) , which implies

Tzl Tij)
E(max{5o;:t g (t)7s2}, [tiatj]) < (1 +8) 'E(max{50[:t 7 (t)asl}, [tiatj]) .
Let us compare E; ¢[c] in line 21 of APPROX_VOLTAGE_SCHEDULE and Eji[c; j1ix] in
line 18 of OPTIMAL_VOLTAGE_SCHEDULE. Let s’ and s be the corresponding elements in
S’C and Sc, respectively. Then, from the definition of Si, we have s’ < (1+¢-pp) - s, which
implies E;k['] < (1+¢) - Ejk[c;,j+ix]. Therefore, Ey y < (1+¢) ~E(5gpt).
Finally, since we have

|Scl = 1+ [logyep, (max{Sc}/min{Sc})] (12)

log(max{Sc}/min{Sc}) , (13)

<2
* e-log(1+pp)

the running time is bounded a polynomial function of || and 1/e. O

6. EXPERIMENTAL RESULTS

In order to evaluate how the proposed FPTAS performs, we have performed several exper-
iments using the FPTAS described in Figure 13. For a comparison, we also implemented
Quan’s heuristic [Quan and Hu 2001], which is currently the best polynomial-time voltage

ACM Transactions on Embedded Computing Systems, Vol. , No. , 20.

On Energy-Optimal Voltage Scheduling for Fixed-Priority Hard Real-Time Systems . 27

procedure APPROX_VOLTAGE_SCHEDULE (7,€)
/¥ 7;7 = {tlatZa"' atN} */
¥ St = {min{Sc}- (1 +8)*|k=0,1,--, [log; , 5s(max{Sc}/min{Sc})] where § =¢-pp*/

1: Initialize C; j := {} for 1 <i < j <N.
2: foreach (s € S¢.)
3: V= {vl,vz,---,vN}
4: E :={(v;,vj) | [t:,¢;] is weakly-atomic}
5: foreach ((v;,v;) € E)
6: w((vi,})) = W(max{sf)g';‘ﬂ @), s} ltnt)]) —W(sf,{;';‘f] (), [tstj]) /* weight of edges */
7 end foreach
8: Find longest paths between all pairs of vertices in V. /* Note that G is acyclic. */
9: foreach (1 <i< j <N s.t. [ti,tj] is a concatenation of weakly-atomic intervals)
/* The longest path from v; to vj = (g,,Vg,," " Vg;)
10: ¢ := the weight of the longest path from v; to v;.
11: Euyle] = E(@l max{ Son"* (0,5}, oty
12: Cj =G ;U {c}
13: end foreach
14: end foreach
15: for(i:=1toN—1)
16: for (j:=1toN—i)
17: Ejji:= oot
18: for (k:=j+1to j+1i)
19: Cjjtije = c{J c? | 7y € [tj,8) Ndy € [tes2j14]})
20: ¢’ :=min{c ECjk|C Zcf,f‘*'i»k}
21: Ej jvij = Eji[c'| + Ep jyi
22: if (Ej jyi > Ej jyix and
Sl u114] i feasible for Iy VU €52Ir,ds] € 1,171}
23: Ejjvi:=Ejjiix » hi=k
24: end if
25: end for
26: bj,j_;_i = {th} Ub ihY bh,j+i
27: end for
28: end for

I Eiy < (1+€)-E(Sey) *
29: Je = Uﬁl;ll T bpbpaal* Y 9% where by = (b1,b2,++- ,by)
30: return 50’& /* 9. is an EDF job set. So, 50{; can be directly computed by Yao’s algorithm */
end procedure

Fig. 13. The fully polynomial time approximation scheme.

scheduling algorithm for fixed-priority real-time tasks. We compared the energy efficiency
and computation time between two algorithms.>

In our experiments, we assumed that the energy consumption is quadratically dependent
on the supply voltage. For a given supply voltage V, the corresponding clock frequency
f is proportional to (Vpp — Vru)*/Vbp, where Vry and o are assumed to be 0.5V and 1.3
[Sakurai and Newton 1990].

We constructed test job sets from periodic task sets of three real-world applications:

5We have implemented the exhaustive optimal algorithm by Quan et al. [Quan and Hu 2002] as well for experi-
ments. This algorithm, however, takes an excessive amount of time. For example, it took more than a day when
N =25. Therefore, we cannot include the experimental results for this algorithm.

ACM Transactions on Embedded Computing Systems, Vol. , No. , 20.

28 . H.-S. Yun and J. Kim

MPEG4 Videophone [Shin et al. 2001], CNC [Kim et al. 1996] and Avionics [Locke et al.
1991]. Table I summarizes the experimental results for these job sets. In each experiment,
the execution time of each job (i.e., task instance) was randomly drawn from a Gaussian
distribution® within the range of [WCET/10,WCET] of each task. Results were normal-
ized over the energy consumption of each application scheduled by the proposed FPTAS
with € = 0.1%. As shown in Table I, the FPTAS outperforms Quan’s algorithm spending
reasonable CPU times. In the experiments, actual errors were always less than given €’s.
(We omit CPU times for MPEG4 Videophone because they are less than 0.1 seconds.)

Normalized Energy CPU Time(s)
Applications MPEG4 | CNC | Avionics CNC | Avionics
jobs 22 289 1372 289 1372
£=0.1% 1 1 1 || 44.71 | 4506.63
£=0.5% 1.003 | 1.004 1.003 11.67 1021.48
FPTAS | £€=1.0% 1.006 | 1.008 1.007 6.12 631.15
£=15% 1.012 | 1.013 1.011 5.16 512.32
£=2.0% 1.017 | 1.018 1.018 3.81 313.15
Quan [Quan and Hu 2001] 1.041 | 1.062 1.059 4.76 580.32

Table I. Experimental results for three real-world real-time applications.

We also performed experiments using synthesized job sets with the varying number
of jobs from 50 to 1600. We conjectured that one of the key parameters affecting the
performance of Quan’s algorithm is the degree of interferences among jobs. Since the
degree of interferences is mainly dependent on the lengths of the execution intervals of the
jobs, we generated three classes of job sets as follows: For the first class of job sets (Class
1), the release time and the length of the execution interval of a job are selected under
the uniform distribution within [0,1000] and [50,100], respectively. The workload of each
job was randomly selected from a uniform distribution within [0.2,1.0]. (Note that it is
sufficient to consider only the relative values of workloads since the maximum processor
speed can be always appropriately adjusted.) For the second class of jobs (Class 2) and
the third class of jobs (Class 3), we used [100,300] and [300,500] (instead of [50,100]) for
the length of the execution interval, respectively. Note that Class 1, Class 2 and Class 3
correspond to job sets with low, medium and high degrees of the interferences among the
jobs. Tables II, IIT and IV show the experimental results for Class 1, Class 2 and Class 3.
As shown in tables, in general, the higher the degree of interferences becomes, the larger
the improvement of our algorithm over Quan’s algorithm becomes.

7. CONCLUSIONS

We investigated the problem of energy-optimal voltage scheduling for fixed-priority real-
time systems implemented on a variable voltage processor. First, we proved the NP-
hardness of the problem. Our complexity analysis provided an important new insight into
the problem.

Knowing the NP-hardness of the problem, as the best practical solution, we described a
fully polynomial time approximation scheme for the problem. That is, for any € > 0, the
proposed approximation scheme computes a voltage schedule whose energy consumption

SWith the mean m = WEIIHWCET o4 the standard deviation 6 = W4LCET_?CET 10

ACM Transactions on Embedded Computing Systems, Vol. , No. , 20.

On Energy-Optimal Voltage Scheduling for Fixed-Priority Hard Real-Time Systems

Normalized Energy

Job sets Uil §) i) T J5 Jo

jobs 50 100 200 400 800 | 1600

£=0.1% 1 1 1 1 1 1

£=0.5% 1.003 | 1.003 | 1.004 | 1.004 | 1.003 | 1.003

FPTAS | €=1.0% 1.008 | 1.007 | 1.009 | 1.009 | 1.008 | 1.009

£=15% 1.013 | 1.012 | 1.012 | 1.014 | 1.014 | 1.014

£=2.0% 1.016 | 1.016 | 1.019 | 1.018 | 1.019 | 1.019

Quan [Quan and Hu 2001] 1.044 | 1.047 | 1.051 | 1.054 | 1.052 | 1.071

Table II. Experimental results for synthesized jobs (Class 1).

Normalized Energy

Job sets Yl b)) i Ja J5 Jo

jobs 50 100 200 400 800 | 1600

£=0.1% 1 1 1 1 1 1

£=0.5% 1.004 | 1.004 | 1.003 | 1.004 | 1.003 | 1.004

FPTAS | €=1.0% 1.009 | 1.007 | 1.007 | 1.008 | 1.009 | 1.009

£=15% 1.013 | 1.012 | 1.014 | 1.014 | 1.013 | 1.014

£=2.0% 1.018 | 1.016 | 1.018 | 1.018 | 1.019 | 1.019

Quan [Quan and Hu 2001] 1.055 | 1.062 | 1.070 | 1.079 | 1.103 | 1.127

Table III. Experimental results for synthesized jobs (Class 2).

Normalized Energy

Job sets S b/ 5 A Js Js

jobs 50 100 200 400 800 | 1600

£=0.1% 1 1 1 1 1 1

£=0.5% 1.004 | 1.004 | 1.004 | 1.003 | 1.004 | 1.004

FPTAS | €=1.0% 1.009 | 1.007 | 1.007 | 1.009 | 1.008 | 1.009

£=15% 1014 | 1.013 | 1.014 | 1.013 | 1.014 | 1.014

£=2.0% 1.018 | 1.017 | 1.019 | 1.018 | 1.019 | 1.019

Quan [Quan and Hu 2001] 1.094 | 1.114 | 1.121 | 1.134 | 1.142 | 1.137

Table IV. Experimental results for synthesized jobs (Class 3).

29

is bounded by (1 +€) times of that of the optimal voltage schedule. Furthermore, the
running time of the proposed approximation scheme is bounded as well by a polynomial
function of the number of input jobs and 1/¢. Experimental results show that the proposed

approximation scheme runs sufficiently fast even for a small error bound (i.e., 0.5%).

While the proposed approximation scheme is efficient for general fixed-priority job sets,
the proposed scheme can be further extended in several directions. For example, we are
interested in devising more efficient algorithms for more specialized job sets such as job
sets from periodic task sets. In addition, we plan to modify the proposed approximation
scheme to work under a more realistic processor model with a limited number of voltage
levels and voltage transition overheads.

ACM Transactions on Embedded Computing Systems, Vol. , No. , 20.

30 . H.-S. Yun and J. Kim

A. APPENDIX: PROOFS
A.1 Proof of the Correctness of the Algorithm in Figure 10

We first prove some properties on strongly-blocking tuples and strongly-atomic intervals.
Note that for an interval [¢,#], I o S [t,t'] sincet <7y <dj <t forallJ € J, . Therefore,
for a strongly-blocking tuple b = (b1,by, - ,by), I oy o) ’1»7[b2,b3] Lo ,IJ[bk—l’bk] are disjoint.
Now, we prove that a job set can be partitioned by strongly-blocking tuples as with the job
set in Figure 6 so that the formulation described in Section 5.1.1 can be extended to cover
arbitrary job sets.

LEMMA A.l. Givenajob set J and an essential |J|-tuple £, J% = U’;;i Jj where bg, =
(b1,b2,- - ,by) and J; is an EDF-equivalent job set of T i) foralll <j<k
PROOF. Let 9f={J|,]}, ’JI/JI} andlet J; = {J] € J*| ry (=rp) €[bj,bj1)}- Then,
{5, %, %_1} forms a partition of 7%, i.e.,
J'=UC1g and 5iNJgy=0 forall 1 <j+#j <k.

Thus, it suffices to show that J; is an EDF-equivalent job set of][bj,bj o foralll <j<k.

Letij = max{i| fs-1(; = b;} for all 1 < j <k, and suppose that dJ; > bj;1 for a job
J} € J;. Then, we have 6(I) > i;; since
for1e@y = fi = dpp > bjr1 = fo1(i) -
From line 8 of the algorithm in Figure 9, we have
bist = fo(y < min{ry L <k<|I|} < g, SO =0y

which contradicts 7 (= ry,) € [bj,bjy1). Therefore, dp € [bj,bj41] for all J] € J;. Fur-
thermore, J; follows the EDF priority since it is a subset of the EDF job set gL
It remains to show that | 7;| = | T bjsa] | and there is a bijective function o : Tibpbian) = Jj
such that
V' € Ty pia] s Pr = Pa@ry s €1 = Caqry and 1y = rogry - 14)
For the former, we have
951 = [€ 5 vy € b}l = KU €91 € bpbps)H = Uil -

For the latter, we define o such that o(J') = J” iff py» = pyw. Then, it is clear that o is a
bijective function and (14) holds. [

—‘Iltj»tj+1]

LEMMA A.2. Let S(t)= 69?;} Sopt | for minRy =t; <t <--- <ty=maxDy (t; €

Ty). Then, S is a feasible voltage schedule of J. Furthermore,
E 5) = h—lE Sj[tj,tj+1] > E 5_7
($) = XEGSp ™) = E(Sop) -
j=1

PROOF. Let uj,) (¢) be defined by

_J1 n<t<y,
o 19] (1)= { 0 otherwise ,

ACM Transactions on Embedded Computing Systems, Vol. , No. , 20.

On Energy-Optimal Voltage Scheduling for Fixed-Priority Hard Real-Time Systems . 31
Since Iy, ;..\ C [tj,2j41], S is feasible if S(¢) -y, ., (¢) is a feasible schedule of Ty, ...,

f . o _ Tejtjl . .
orall 1 < j <h. By definition, S(#) -ufs, ,,,1(f) = Sopi * ' is a feasible schedule of

Tt b
foralll< j<h E(S)= z?;% E (501[:{ il) holds trivially from X, ,. 1 C [t),#;11]. Finally,
since § is feasible, E(S) > E (5(,7pt). O

The following lemma implies how an energy-optimal voltage scheduling problem can
be partitioned into subproblems.

LEMMA A.3. Let

tit]

k2l e,
E; = min{) E (SOIl,bt’ 'b’“]) | (b1,b2,-- ,bk) is a strongly-blocking tuple.}
j=1
2l T
E, = min{ ¥ ES™") | minRy =t <t <--- <ty =maxDy, t; € Ty} and
j=1
Wl T
E3 = min{) E (501[;{'t’+1]) | [tjstj+1] is a sub-interval
=1

of a strongly-atomic interval forall 1< j<h}.
Then, E(Syy) = E1 = E; = Es.
PROOF. Let

Jbi b
S = {EB];;i 501[,? Lt | (b1,b2,-+ ,by) is a strongly-blocking tuple. }

and define S, and S3 similarly. Then, from Lemma A.2, E; = min{E(S)|S € S;} for
i =1,2,3. By definition, S; C S3 C S, and consequently E; < E3 < E;. Furthermore,
E (501pt) < E; from Lemma A.2. From Theorem 3.3 and Lemma A.1, .S'ojpt € S1. Thus, we

have E(S7) > Ey, which implies E(S7) = Ey = E; = E3. O

From Lemma A.3, is is obvious that the algorithm in Figure 10 always computes an
optimal voltage schedule.

A.2 Proof of the Correctness of the Algorithm in Figure 12
We start with some lemmas to prove the correctness of the algorithm. First, note that for an
interval [£,7'], I o C Ij[”,] C [t,#] since Jism S Jie)- Therefore, for a weakly-blocking
tuple b¥ = (b1,b,- - ,by), I][blybz]w ’I][bz,bs]w y o ,I][bk_l v ATe disjoint.

LEMMA A.4. Given a weakly-blocking tuple b¥, let ,’lb% represent the set of back-
ground jobs with respect to b%¥. Then,]b?v =]l% for any weakly-blocking tuples b}
and b}

PROOF. Let b} = (by,by,--,by) and bY = (b}, b},--- ,b},). Assume that J € J,g and
ry € [bj,bjt1). From the definition of a background job, we have

Jk>j+1, dy>bjy and p; >max{py|J' € U;C;}.p]][bl,bl_,_l]w} . (15)
Suppose that J ¢]b%. From (15), we have

/ / / /
[bj+1,bj+2] - (bj”bj'+1] for ry € [bj”bj/-i-l) y
ACM Transactions on Embedded Computing Systems, Vol. , No. , 20.

32 . H.-S. Yun and J. Kim

a contradiction. So, ,’lb’z‘;,, C ,’Ib%. Similarly, we have]b’g, -]b?v. O

Lemma A.4 states that we can specify background jobs irrespective of weakly-blocking
tuples. For the rest of this paper, we use 92 to represent the set of background jobs.

LEMMA A.5. Given a job set § and an essential | J|-tuple £, let bg, = (b1,b2,- - ,by).
Then, for any weakly-atomic interval [bj,bj,1] (1 < j < k) and a background job J, we
have the following assuming jobs are executed under .Sojpt.

(@) dj € [bj,bj11): J completes its execution by b;.

(b) 7y € [bj,bj41): J completes its execution by bj 1.

(©) [bj,bjr1] C [r7,dy] executes its partial workload at constant speed.

Furthermore, for any interval [t,t']| C [bj,bj11], Jj v is an EDF job set.

PROOF. Case (a) and Case (b) are obvious from the construction of the weakly-blocking
tuple bg,. Case (c) follows from Lemma 3.7. Finally, suppose that Jje 4 is not an EDF job
set. Then, we have

EIJ,JI e.:][t,t’]w st. py>py, dj€ (rJ’adJ’) P

and the algorithm in Figure 11 selects ry (€ (bj,bj+1)) as an element of by, a contradic-
tion. [J

From Lemma A.5, we characterize the optimal schedule in terms of weakly-atomic in-
tervals, weakly-blocking tuples and background workload.

LEMMA A.6. Given ajob set J and an essential |J|-tuple f,
_ -1 Jj
Sopt = BF71 Sopt (16)
where by, = (b1,b2,--+ ,by) and J; = T bjsa] Y {J}’} such that
T =bj, dJ}? =bjy1, Py =max{py|J Gj[bj,bj+1]}+1 and cp = c'} for some c'} >0.
PROOF. From Lemma A.5, we have

{job(,’l,.s‘gpt(t),t) |t € [b,bj41)} = b Y J"U 3" where

_7/ = {JI €]$|rj/ € [bj,bj+1)} and
J" = {J € 9°|Ibj,bjr1] C [r,dp]} -
From Case (b) of Lemma A.5,][bj,bj+1]w ug = J[bj,bj+1]’ and from Case (c), 9" = {Jp}.
So, we have
Jj .
Sopt(®) Uiy, 0,111 (1) = Sy forall 1< j<k,
which is equivalent to (16). [

From Lemma A.6, the voltage scheduling problem is reduced to the problem of find-
ing a weakly-blocking tuple b¥ = (b1,b,, - - ,b;) and the amount of backgound workload
cﬁj,bﬁl] for each weakly-atomic interval [b;,b;41]. To find the background speed sﬁj,bﬁl]
instead of the amount of background workload makes it possible to exploit Lemma 3.7.

ACM Transactions on Embedded Computing Systems, Vol. , No. , 20.

On Energy-Optimal Voltage Scheduling for Fixed-Priority Hard Real-Time Systems . 33

LEMMA A.7. Given a weakly-atomic interval [t1,1), let I’ = Jp,) U {J°} where
rp=t1, dp=tr, pp =max{ps|J € Jp 1} +1 and cjo =cf; ;) (>0) ,

and let sB] be the constant speed of J® under .S'ojpt Then,

7 ShA @ ot SR > P Stua]
50pt(t)= [tl’tz]

5B

[t102] st Sopt (t)— [t12] °

Furthermore, sgl 5] strictly increases as B . increases, and vice versa.
ks

[1,22]

PROOF. From Lemmas A.5 and A.6, both J, ;) and J' follow the EDF priority and
their optimal voltage schedules are obtained by Yao’s algorithm [Yao et al. 1995]. For an

interval [t{,#)] C [t;,%,] such that .50[4] (t) >sB 7L Yao’s algorithm selects the same speed
for 50 +(2). For the other intervals, SOm(t) = sy since [t1,1] C [rpp,dp].
Because W(.Sopt, [t1,%2]) strictly increases as s[t1 1 increases and cﬁl nl = W(5§1;, [t1,0])—

W(5o[t1) [fl,fz]), cgl,tz]
as Cp 1 increases (and vice versa). [

increases as sB . increases. Hence, it follows that sB _; increases
[tl atZ] [tl ’tZ]
Definition A.8. Given a job set J and background workload c, the job set J with back-

ground workload c is defined as
Jlc] J U {J°} where rp =Ry, dp =Dy, pp =max{ps|J € I} +1andcp =c .
Jlc]

Furthermore, given a job set [c], the constant speed of background workload under Sopt
is called a background speed of J|c] and is denoted by BS(J,c).

def

The following lemma is an extension of Lemma A.7 for arbitrary intervals.
LEMMA A.9. Given a job set J|c]

][b] bj+1][J]

Sl = @zl o
c = 2;':1 cj and BS(][bj,le],cj) =BS(][bj,,bj,+l],cj/) forall 1< j#j <cj.
PROOF. Directly from Lemmas A.6 and 3.7. [

for b1, by € Ty, by < --- < by such that

Along with Lemma A.9, the following lemma implies how the problem can be reduced
to a dynamic programming formulation.

LEMMA A.10. Given t;,tj,t,, € Iy where t; < t, < tj, let
J[]tj,fj]w =][ti,tj]w u{J G,’]Q | [r7,ds] C [titj]} and
= C({J E]Q |rJ € [t,',tm)/\dj € [tm,tj] }) y

B
¢ [ti atm]

,7
and let S(EI;;’) represent Sop brsyl™ . Then,

T am¥ 1B 1] Teoom e,] .
é;;{t’] € {Sop [t’” titm] .S}Eg'{’t’] I.S‘og{” bt feasible for ,’l[g,tm]w})

ACM Transactions on Embedded Computing Systems, Vol. , No. , 20.

34 . H.-S. Yun and J. Kim

PROOF. If all the jobs in {J € 92 | [ry,d;] C [t;,,]} runs at the same speed under .S‘(Ezfj],
[ty _][fi’fjlw[c][?i,tj]] . .
Sopt = Sopt . Otherwise, there must exist t, € Ty g3 | [rr.diICltit]} (€ 7y) such
that all the jobs in {J € 92 | r; € [t;,tm) Ady € [tm,t;] } finish their executions by #,, with the
same constant speed and all the jobs in {J € J% | [r;,d] C [tm,#:]} are not executed before

” 1 T wleB] . Jo, wlcB]
t,, under 5&;’:’]. Therefore, we have S(Eg}t’ = og{’t'”] bitm] @5&;"{”’ | where 501[;{’%] T

feasible for 42 \v. O

COROLLARY A.11. Let E([,tll;’ttj ! denote E (S(Eg{tj]) where éﬁfj Vis defined as in Lemma
A.10. Then,

it . Ty ml¥ Gy o] tmtj
E([>pt]] = min ({E(jol[:t’t I sm))+E([)pt]]l tm €Ty, t; <tm<li,

Tty iV B 1]
501[:? Pl feasible for][2’tm]w}) .
The correctness of the algorithm in Figure 12 directly follows from Lemma A.10 and
Corollary A.11.

ACKNOWLEDGMENTS

We would like to thank Prof. Gang Quan and anonymous referees for their helpful com-
ments and suggestions. This work was supported by grant No. R01-2001-00360 from
the Korea Science and Engineering Foundation. The RIACT at Seoul National University
provides research facilities for the study.

REFERENCES

AYDIN, H., MELHEM, R., MOSSE, D., AND ALVAREZ, P. M. 2001. Dynamic and Aggressive Scheduling
Techniques for Power-Aware Real-Time Systems. In Proc. of Real-Time Systems Symposium.

GAREY, M. AND JOHNSON, D. 1979. Computers and Intractability. W.H. Freeman and Company.

GRUIAN, F. 2001. Hard Real-Time Scheduling for Low-Energy Using Stochastic Data and DVS Processors. In
Proc. of International Symposium on Low Power Electronics and Design. 46-51.

HONG, L., QU, G., POTKONJAK, M., AND SRIVASTAVA, M. B. 1998. Synthesis Techniques for Low-Power
Hard Real-Time Systems on Variable Voltage Processors. In Proc. of Real-Time Systems Symposium. 178-187.

KM, N., RYU, M., HONG, S., SAKSENA, M., CHOI, C., AND SHIN, H. 1996. Visual Assessment of a Real-
Time System Design: A Case Study on a CNC Controller. In Proc. of Real-Time Systems Symposium. 300-310.

KM, W., KIM, J., AND MIN, S. L. 2002. A Dynamic Voltage Scaling Algorithm for Dynamic-Priority Hard
Real-Time Systems Using Slack Time Analysis. In Proc. of Design, Automation and Test in Europe.

L1u, W.-S. 2000. Real-Time Systems. Prentice Hall.

LOCKE, C., VOGEL, D., AND MESLER, T. 1991. Building a Predictable Avionics Platform in Ada: A Case
Study. In Proc. of Real-Time Systems Symposium.

PiLLAI, P. AND SHIN, K. G. 2001. Real-Time Dynamic Voltage Scaling for Low-Power Embedded Operating
Systems. In Proc. of ACM Symposium on Operating Systems Principles.

QUAN, G. AND Hu, X. 2001. Energy Efficient Fixed-Priority Scheduling for Real-Time Systems on Variable
Voltage Processors. In Proc. of Design Automatioin Conference. 828-833.

QUAN, G. AND Hu, X. 2002. An Optimal Voltage Schedule for Real-Time Systems on a Variable Voltage
Processor. In Proc. of Design, Automation and Test in Europe.

SAHNI, S. 1976. Algorithms for Scheduling Independent Tasks. Journal of the ACM 23, 116-127.

SAKURAI, T. AND NEWTON, A. 1990. Alpha-power Law MOSFET Model and Its Application to CMOS
Inverter Delay and Other Formulars. IEEE Journal of Solid State Circuits 25, 2, 584-594.

ACM Transactions on Embedded Computing Systems, Vol. , No. , 20.

On Energy-Optimal Voltage Scheduling for Fixed-Priority Hard Real-Time Systems . 35

SHIN, D., KM, J., AND LEE, S. 2001. Low-Energy Intra-Task Voltage Scheduling Using Static Timing Analy-
sis. In Proc. of the 38th Design Automation Conference.

SHIN, Y. AND CHOI, K. 1999. Power Conscious Fixed Priority Scheduling for Hard Real-Time Systems. In
Proc. of Design Automatioin Conference. 134-139.

SHIN, Y., CHOI, K., AND SAKURALI, T. 2000. Power Optimization of Real-Time Embedded Systems on Variable
Speed Processors. In Proc. of International Conference on Computer-Aided Design. 365-368.

WOEGINGER, G. J. 1999. When Does a Dynamic Programming Formulation Guarantee the Existence of an
FPTAS? In Proc. of ACM-SIAM Symposium on Discrete Algorithms. 820-829.

YAO, F., DEMERS, A., AND SHENKER, S. 1995. A Scheduling Model for Reduced CPU Energy. In Proc. of
IEEE Annual Foundations of Computer Science. 374-382.

YUN, H.-S. AND K1M, J. 2002. On Energy-Optimal Off-Line Scheduling for Fixed-Priority Real-Time Systems
on a Variable Voltage Processor. Tech. rep., School of CSE, Seoul National Univ.

Received February 2002; revised August 2002; accepted September 2002

ACM Transactions on Embedded Computing Systems, Vol. , No. , 20.

Performance Comparison of Dynamic Voltage Scaling Algorithms for
Hard Real-Time Systems

Woonseok Kim* Dongkun Shin' Han-Saem Yun' Jihong Kim' Sang Lyul Min*

School of Computer Science and Engineering
Seoul National University ENG4190, Seoul, Korea, 151-742
wskim@archi.snu.ac.kr, {sdk, hsyun, jihong} @davinci.snu.ac.kr, symin@dandelion.snu.ac.kr

Abstract

Dynamic voltage scaling (DVS) is an effective low-power
design technique for embedded real-time systems. In recent
years, many DVS algorithms have been proposed for reduc-
ing the energy consumption of embedded hard real-time sys-
tems. However, the proposed DVS algorithms were not quan-
titatively evaluated under a unified framework, making it a
difficult task to select an appropriate DVS algorithm for a
given application/system. In this paper, we compare several
key DVS algorithms recently proposed for hard real-time pe-
riodic task sets, analyze their energy efficiency, and discuss
the performance differences quantitatively. Our evaluation
results give quantitative answers to several important DVS
questions.

1 Introduction

Dynamic voltage scaling (DVS), which adjusts the sup-
ply voltage and correspondingly the clock frequency dynam-
ically, is an effective low-power design technique for embed-
ded real-time systems. Since the energy consumption E of
CMOS circuits has a quadratic dependency on the supply
voltage V4, lowering the supply voltage V4 is one of the
most effective ways of reducing the energy consumption.

With a recent explosive growth in the portable and mo-
bile embedded device market, where a low-power consump-
tion is an important design requirement, several commer-
cial variable-voltage microprocessors [19, 1, 8] were devel-
oped. Targeting these microprocessors, many DVS algo-
rithms have been proposed or developed, especially for hard

*This work was supported in part by the Ministry of Education under
the BK21 program, and by the Ministry of Science and Technology under
the National Research Laboratory program.

T This work was supported by grant No. R01-2001-00360 from the Ko-
rea Science & Engineering Foundation.

real-time systems [7,9, 18, 2, 14, 16, 5, 10]. Since lowering
the supply voltage also decreases the maximum achievable
clock speed [15], various DVS algorithms for hard real-time
systems have the goal of reducing supply voltage dynami-
cally to the lowest possible level while satisfying the tasks’
timing constraints.

Although each DVS algorithm is shown to be quite effec-
tive in reducing the energy/power consumption of a target
system under its own experimental scenarios, these recent
DVS algorithms have not been quantitatively evaluated un-
der a unified framework, making it a difficult task for low-
power embedded system developers to select an appropriate
DVS algorithm for a given application/system. A quanti-
tative analysis of the energy-efficiency is particularly impor-
tant because most of these DVS algorithms are based on both
static and dynamic slack analysis techniques whose perfor-
mance is difficult to predict analytically. In addition, their
energy efficiency fluctuate significantly depending on the
workload variations, task set characterizations, and execu-
tion paths taken, further requiring a quantitative comparison
study.

In this paper, we quantitatively evaluate the energy effi-
ciency of several recent DVS algorithms proposed for hard
real-time systems using a unified DVS simulation envi-
ronment called SimDVS [17]. We focus on a preemptive
hard real-time systems in which periodic real-time tasks are
scheduled with the Earliest-Deadline-First (EDF) algorithm
or the Rate-Monotonic (RM) algorithm, the two most widely
used real-time system models [12]. Our study is different
from the previous performance comparisons such as [13, 6].
[13] and [6] focus on aperiodic tasks in hard real-time
systems and non real-time systems, respectively, while our
study focuses on periodic tasks in hard real-time systems.

For the target hard real-time systems, two categories of al-
gorithms are used: inter-task DVS (InterDVS) and intra-task
DVS (IntraDVS). InterDVS algorithms determine the supply
voltage on task-by-task basis, while IntraDVS algorithms

adjust the supply voltage within an individual task bound-
ary. For a comparative study, we use eight InterDVS algo-
rithms [18, 2, 14, 10] and two IntraDVS algorithms [16, 5]
that were recently proposed.

We also evaluate the energy efficiency of HybridDVS al-
gorithms. (If a DVS algorithm uses both the IntraDVS and
InterDVS approaches, we call the algorithm a hybrid DVS
algorithm (HybridDVS).)

Since many factors affect the energy efficiency of DVS al-
gorithms, our comparative study cannot answer all the DVS
performance questions. In this paper, we limit our evalua-
tion goals to the following questions which represent some
of the most important unanswered questions:

o InterDVS: What is the best InterDVS algorithm under
given conditions? How close is the algorithm’s energy
efficiency to the theoretical lower bound? What restric-
tions of variable-voltage processors, if any, limit the
achievable energy efficiency of InterDVS algorithms?

e IntraDVS: Which IntraDVS algorithm performs better
under what condition?

e HybridDVS: Can we achieve better energy efficiency
if we combine an InterDVS algorithm and an IntraDVS
algorithm?

Our comparative study shows that the existing EDF Inter-
DVS algorithms such as [2, 14, 10], are very effective; their
energy consumption is only 9~12% worse than the theoret-
ical lower bound. Moreover, this gap can be further reduced
by using a more intelligent slack distribution method. With
a better slack distribution heuristic, we strongly believe that
the energy efficiency of the current state-of-art EDF Inter-
DVS algorithms is very close to that of the theoretical opti-
mal algorithm. However, in the RM InterDVS algorithms,
there still remains a room for improvement. Also, the en-
ergy efficiency of each algorithm can vary from 10% to 32%
according to the number of voltage levels supported by the
target variable-voltage processor.

For the IntraDVS algorithms, our results indicate that the
path-based IntraDVSS [16] achieves better performance than
the stochastic IntraDV'S [5] when the slack time is limited.
On the other hand, when there is a large amount of slack
time, the stochastic IntraDV'S algorithm works better.

For the HybridDVS algorithms, our experiments show
that the energy efficiency of a HybridDVS is better than the
one that can be achieved by using an IntraDVS algorithm or
an InterDVS algorithm alone.

The rest of the paper is organized as follows; before the
selected DVS algorithms are evaluated, we first classify ex-
isting DVS techniques in Section 2. In Section 3, we sum-
marize the selected DVS algorithms using the classification
framework of Section 2. Simulation environments are de-
scribed in Section 4. We present the performance evaluation

Table 1. Classification of DVS techniques.
[| Voltage Scaling Methods | Scaling Decision |

IntraDVS (1) Path-based method
(2) Stochastic method
(3) Maximum constant speed
(4) Stretching to NTA
(5) Priority-based slack-stealing
(6) Utilization updating

Off-Line

InterDVS

On-Line

results in Section 5, and Section 6 concludes with a sum-
mary.

2 C(lassification of DVS algorithms

In this section, we classify the existing DVS techniques
and briefly describe the key characteristics of each tech-
nique. (See Table 1 for summary.)

For hard real-time systems, there are two kinds of volt-
age scheduling approaches depending on the voltage scaling
granularity: intra-task DVS (IntraDVS) and inter-task DVS
(InterDVS). The intra-task DVS algorithms [16, 5] adjust the
voltage within an individual task boundary, while the inter-
task DVS algorithms determine the voltage on a task-by-task
basis at each scheduling point. The main difference between
them is whether the slack times are used for the current task
or for the tasks that follow. InterDVS algorithms distribute
the slack times from the current task for the following tasks,
while IntraDVS algorithms use the slack times from the cur-
rent task for the current task itself.

2.1 Intra-task DVS algorithm design factors

In scheduling hard real-time tasks, in order to guaran-
tee the timing constraint of each task, the execution times
of tasks are usually assumed to be the worst case execu-
tion times (WCETs). However, since a task has many pos-
sible execution paths, there are large execution time varia-
tions among them. So, when the execution path taken at run
time is not the worst case execution path (WCEP), the task
may complete its execution before its WCET, resulting in a
slack time. In that case, IntraDVS exploits such slack times
and adjusts the processor speed. IntraDV'S algorithms can be
classified into two types depending on how to estimate slack
times and how to adjust speeds.

2.1.1 Path-based method

In the path-based IntraDVS, the voltage and clock speed are
determined based on a predicted reference execution path,
such as WCEP. For example, when the actual execution de-
viates from the predicted reference execution path (say, by a
branch instruction), the clock speed is adjusted. If the new
path takes significantly longer to complete its execution than

the reference path, the clock speed is raised to meet the dead-
line constraint. On the other hand, if the new path can finish
its execution earlier than the reference path, the clock speed
is lowered to reduce the energy consumption.

In the path-based IntraDV'S, program locations for possi-
ble speed scaling are identified using static program analy-
sis [16] or execution time profiling [11].

2.1.2 Stochastic method

The stochastic method is based on the idea that it is better
to start the execution at a low speed and accelerate the exe-
cution later when needed than to start with a high speed and
reduce the speed later when slack time is found. By starting
at a low speed, if the task finishes earlier than its WCET, it
does not need to execute at a high speed. Theoretically, if
the probability density function of execution times of a task
is known a priori, the optimal speed schedule can be com-
puted [5]. Under the stochastic method, the clock speed is
raised at specific time instances, regardless of the execution
paths taken. Unlike the path-based IntraDVS that can utilize
all the slack times of the task in scaling speed, the stochastic
IntraDVS may not utilize all the potential slack times.

2.2 Inter-task DVS algorithm design factors

InterDVS algorithms exploit the “run-calculate-assign-
run” strategy to determine the supply voltage, which can be
summarized as follows: (1) run a current task, (2) when the
task is completed, calculate the maximum allowable execu-
tion time for the next task, (3) assign the supply voltage for
the next task, and (4) run the next task. Most InterDVS al-
gorithms differ during step (2) in computing the maximum
allowed time for the next task 7 which is the sum of WCET
of 7 and the slack time available for 7.

A generic InterDVS algorithm consists of two parts: slack
estimation and slack distribution. The goal of the slack es-
timation part is to identify as much slack times as possible
while the goal of the slack distribution part is to distribute
the resulting slack times so that the resulting speed schedule
is as uniform as possible. Slack times generally come from
two sources; static slack times are the extra times available
for the next task that can be identified statically, while dy-
namic slack times are caused from run-time variations of the
task executions.

2.2.1 Slack estimation methods

(1) Static slack estimation

Maximum constant speed One of the most commonly
used static slack estimation methods is to compute the maxi-
mum constant speed, which is defined as the lowest possible
clock speed that guarantees the feasible schedule of a task
set [18]. For example, in EDF scheduling, if the worst case

time

current time

current time

(a) A single task activation

Casel

. time
current time
Case I NTA

current time

current time time

(b) Multiple task activations

Figure 1. Examples of Stretching-to-NTA.

processor utilization (WCPU) U of a given task set is lower
than 1.0 under the maximum speed f,,, the task set can be
scheduled with a new maximum speed f/,,, = U- fmaz- Al-
though more complicated, the maximum constant speed can
be statically calculated as well for RM scheduling [18, 5].

(2) Dynamic slack estimation

Three widely-used techniques of estimating dynamic
slack times are briefly described below.

Stretching to NTA Even though a given task set is
scheduled with the maximum constant speed, since the ac-
tual execution times of tasks are usually much less than their
WCETs, the tasks usually have dynamic slack times. One
simple method to estimate the dynamic slack time is to use
the arrival time of the next task [18]. (The arrival time
of the next task is denoted by NTA.) Assume that the cur-
rent task 7 is scheduled at time ¢. If NTA of 7 is later than
(t+WCET(7)), task 7 can be executed at a lower speed so
that its execution completes exactly at the NTA.

Figure 1 shows examples of the Stretching-to-NTA
method. When a single task 7 is activated as shown in Fig-
ure 1(a), the execution of 7 can be stretched to NTA. When
multiple tasks are activated, there can be several alternatives
in stretching options. For example, the dynamic slack time
may be given to a single task or distributed equally to all ac-
tivated tasks. Cases I and II of Figure 1(b) illustrate these
two options, respectively.

Priority-based slack stealing This method exploits the
basic properties of priority-driven scheduling such as RM
and EDF. The basic idea is that when a higher-priority task
completes its execution earlier than its WCET, the following

Table 2. Target DVS algorithms.

| Category | Scheduling Policy | DVS Policy | Used Methods™ |
1ppSEDF [18] 3)+@)
ccEDF [14] ©)
EDF 1aEDF [14] [ON
InterDVS DRA [2] B)+@+(5)
AGR [2] @ +(5)
1pSHE [10] B+@+5)*
RM 1ppsRM [18] (3)+4)
ccRM [14] B)+@
IntraDVS | Path-based Method intraShin [16] 1)
Stochastic Method intraGruian [5] ?)

 Numbers indicate corresponding techniques in Table 1.

(n)* indicates an improved version of n.

lower-priority tasks can use the slack time from the com-
pleted higher-priority task. It is also possible for a higher-
priority task to utilize the slack times from completed lower-
priority tasks. However, the latter type of slack stealing is
computationally expensive to implement precisely. There-
fore, the existing algorithms are based on heuristics [2, 10].

Utilization updating The actual processor utilization
during run time is usually lower than the worst case proces-
sor utilization. The utilization updating technique estimates
the required processor performance at the current scheduling
point by recalculating the expected worst case processor uti-
lization using the actual execution times of completed task
instances [14]. When the processor utilization is updated,
the clock speed can be adjusted accordingly. The main merit
of this method is its simple implementation, since only the
processor utilization of completed task instances have to be
updated at each scheduling point.

2.2.2 Slack distribution methods

In distributing slack times, most InterDVS algorithms have
adopted a greedy approach, where all the slack times are
given to the next activated task. This approach is not an
optimal solution, but the greedy approach is widely used be-
cause of its simplicity.

3 Target DVS algorithms

Table 2 summarizes the DVS algorithms selected for the
comparative study. Here, eight InterDVS algorithms are
chosen, two [18, 14] of which are based on the RM schedul-
ing policy, while the other six algorithms [18, 14, 2, 10] are
based on the EDF scheduling policy. For IntraDVS algo-
rithms, two algorithms are selected, one from path-based In-
traDVS algorithms [16], and the other from stochastic meth-
ods [5].

In these selected DVS algorithms, one or sometimes more
than one slack estimation methods explained in the previous
section were used. In 1ppsEDF and 1ppsRM which were
proposed by Shin ez. al. in [18], slack time of a task is es-

timated using the maximum constant speed and Stretching-
to-NTA methods.

The ccRM algorithm proposed by Pillai er. al. [14] is
similar to 1ppsRM in the sense that it uses both the max-
imum constant speed and the Stretching-to-NTA methods.
However, while 1ppsRM can adjust the voltage and clock
speed only when a single task is active (Figure 1(a)), ccRM
extends the stretching to NTA method to the case where mul-
tiple tasks are active (Case-II in Figure 1(b)).

Pillai et. al. also proposed two other DVS algo-
rithms [14], ccEDF and 1aEDF, for EDF scheduling pol-
icy. These algorithms estimate slack time of a task using the
utilization updating method. While ccEDF adjusts the volt-
age and clock speed based on run-time variation in processor
utilization alone, 1aEDF takes a more aggressive approach
by estimating the amount of work required to be completed
before NTA.

DRA and AGR, which were proposed by Aydin et. al. in
[2], are two representative DVS algorithms that are based
on the priority-based slack stealing method. The DRA algo-
rithm estimates the slack time of a task using the priority-
based slack stealing method along with the maximum con-
stant speed and the Stretching-to-NTA methods. Aydin et.
al. also extended the DRA algorithm and proposed another
DVS algorithm called AGR for more aggressive slack esti-
mation and voltage/clock scaling. In AGR, in addition to the
priority-based slack stealing, more slack times are identified
by computing the amount of work required to be completed
before NTA (Case-I in Figure 1(b)).

1pSHE is another DVS algorithm which is based on
the priority-based slack stealing method [10]. Unlike DRA
and AGR, 1pSHE extends the priority-based slack stealing
method by adding a procedure that estimates the slack time
from lower-priority tasks that were completed earlier than
expected. DRA, AGR, and 1pSHE algorithms are some-
what similar to one another in the sense that all of them use
the maximum constant speed in the off-line phase and the
Stretching-to-NTA method in the on-line phase in addition
to the priority-based slack stealing method.

For IntraDVS algorithms, Shin’s intra-task DVS algo-
rithm [16] (intraShin) and Gruian’s’ algorithm [5] (in-
traGruian) are used as representative algorithms of the
path-based method and the stochastic method, respectively.
(The details of these algorithms were described in Section
2.)

4 Simulation environment

In this section, we describe SimDVS [17], a unified DVS
simulation environment, used for the quantitative analysis.
In order to support a wide variety of DVS algorithms and
simulation scenarios, SimDVS was designed to achieve the
following goals: 1) support both IntraDVS and InterDVS

Craseomine |

IntraDVS$ Preprocessing Module

CFG Voltage ll

Figure 2. Overview of the SimDVS simulation
environment.

algorithms, 2) integrate different DVS algorithms easily,
3) support different task workloads, variations in execution
paths taken, and different task set configurations easily, and
4) support different variable-voltage processors easily.

Figure 2 shows an overview of SimDVS, which consists
of three main modules: 1) the InterDVS module, 2) the In-
traDVS module, and 3) the IntraDVS pre-processing mod-
ule. SimDVS takes as an input a task set specification for
an InterDVS algorithm and a DVS-aware control flow graph
(CFQG) for an IntraDVS algorithm. The DVS-aware CFG is
built from the input binary program. As output, SimDVS
reports the energy consumption of the input task set (or the
input CFG).

The InterDVS module is responsible for the overall op-
eration of SimDVS. It simulates a given task set under the
selected scheduling policy using a given slack estimation
heuristic. The IntraDVS module simulates IntraDVS algo-
rithms using the Intra-task simulator. The input to the In-
traDVS module is pre-processed by the tools available in
the IntraDVS pre-processing module. For faster simulations
of IntraDVSS algorithms, the CFG of the input program is
simulated rather than the instructions in the program. For
a comparative study, SimDVS supports all DVS algorithms
described in Section 3.

4.1 Submodules of InterDVS module

The InterDVS module, responsible for scheduling tasks,
plays the role of a real-time scheduler in a hard real-time
system. It takes as an input the specification of a periodic
task set. The task set specification describes the properties
of simulated periodic tasks, such as the period and WCET of
each task and the workload variation factors (e.g., the worst
case utilization and execution time distribution). To simulate

a given InterDVS scheduling algorithm, it has two modules,
one for slack estimation and the other for slack distribution.
Slack estimation is done by the slack estimation module that
computes the total available time of the scheduled task, and
the slack distribution is done by the task execution module
that determines the operating speed of the scheduled task
and simulates the execution of the task instance. To simulate
a new InterDVS algorithm, these two modules for the new
algorithm need to be added.

Slack estimation module This module is highly de-
pendent on the simulated target InterDV'S algorithm. There-
fore, the exact implementation of this module depends on
the DVS algorithm. Currently, all the InterDVS algorithms
described in Table 2 are supported. In addition, an optimal
slack stealing method under EDF scheduling is also sup-
ported to evaluate the effectiveness of the slack estimation
parts of various InterDVS algorithms.

Some DVS algorithms (e.g., [5]) may require off-line
pre-processing steps for a more efficient on-line slack esti-
mation. In this case, the slack estimation module takes such
an off-line information as an additional input.

Task execution module This module has two roles.
First, it determines the voltage and clock speed based on
the available execution time ¢, for the current task. Using
the supported voltage levels by the target machine (speci-
fied in the machine specification file), it sets the voltage and
clock speed so that the activated task finishes its execution
within ¢, time units even in the case where its execution
takes WCEP. Second, it simulates the execution of the task.
It generates the effective workload of each task based on the
input workload variation factor, calculates the elapsed time
and the unused time from the assigned available time inter-
val, and reports this timing/speed information to the energy
estimation module. If an intra-task scheduling is used, this
module calls the Intra-task simulator of the IntraDVS mod-
ule to simulate intra-task voltage scaling.

Energy estimation module This module takes the tim-
ing and speed information from the task execution module,
and computes the energy consumption of the current task ex-
ecution using the current machine configuration. By default,
the energy consumption is estimated based on the equations
described in [3]. The current version of SimDVS supports
the specifications of XScale [8], AMD’s K6-2+ [1], and Cru-
soe [19] processors.

4.2 Submodules of IntraDVS & its pre-processing
modules

The IntraDVS module that contains the intra-task simu-
lator has two roles; it simulates the execution behavior of
real applications, and performs intra-task DVS. To reflect
the execution behavior of real applications, the CFG gener-
ator in the IntraDVS pre-processing module produces CFGs

from SimpleScalar 2.0 [4] binary program. Each node of a
CFG is annotated with extra information (e.g., the number
of instructions in a basic block) necessary for proper simula-
tion runs. In order to support the simulation of path-based
IntraDVS algorithms and stochastic IntraDVS algorithms,
voltage scaling locations within a task should be determined
during the off-line phase. The following two submodules in
the IntraDVS pre-processing module are responsible for this.

Voltage scaler =~ This module takes the CFG of the
target application and extracts the timing information from
the CFG. It analyzes the given CFG and computes the pre-
dicted remaining execution times from each basic block.
Then, it inserts the voltage scaling information at selected
scaling points. Finally, Voltage scaler generates the DVS-
aware CFG, which includes voltage scaling information,
and passes it to the Intra-task simulator for the path-based
IntraDVS.

Speed transition table To simulate stochastic IntraDVS
algorithms, the stochastic data (such as the cumulative dis-
tribution function of task execution times) should be col-
lected from profiling. Based on the stochastic data, the speed
transition table, which describes when the execution speed
is changed to what level, is constructed. Then, the speed
transition table is passed to the Intra-task simulator for the
stochastic Intra-DVS.

5 Experimental results

The DVS algorithms described in Section 3 are evaluated
by implementing them in SimDVS and performing exper-
iments with various key parameters that may affect the en-
ergy efficiency of the DVS algorithms. Three classes of DVS
algorithms were evaluated: InterDVS algorithms, IntraDVS
algorithms, and HybridDVS algorithms.

For the experiments, the energy consumption model
based on the ARMS8 microprocessor core is used. The clock
speed can be varied in the range of [8, 100] MHz with a step
size of 1 MHz and the supply voltage can be varied in the
range of [1.1, 3.3] V. We assume that the system enters a
power-down mode whenever the system becomes idle and
that no energy is consumed in the power-down mode. We
also assume that the voltage scaling overhead is negligible
both in the time and the energy consumed.

5.1 Performance evaluation of InterDVS algo-
rithms

The energy efficiency of InterDVS algorithms depends
significantly on the accuracy of slack estimation and the ap-
propriateness of slack distribution. To evaluate the effective-
ness of the slack estimation method used in each InterDVS
algorithm, extensive experiments while varying the num-
ber of tasks and WCPUs of task sets are performed. Then,

the energy efficiency of the algorithms are measured while
changing the number of available voltage levels, in order
to evaluate their adaptability to different machine specifi-
cations. Finally, to evaluate the effect of slack distribution
methods, experiments were performed while restricting the
amount of slack time that a task can utilize.

5.1.1 Number of tasks

To evaluate the impact of the number of tasks on the en-
ergy efficiency of DVS algorithms, experiments with var-
ious numbers of tasks were performed. For each task set
with n tasks (where n = 2,4,6,---,16), 100 task sets
were randomly generated. The period and the WCET of
each task were randomly generated using uniform distribu-
tion with the ranges of [10, 100] ms and [1, period] ms, re-
spectively. To eliminate the effect of static slack times, we
chose the task sets which have high worst case processor
utilization; WCPUs are equal to 1.0 for EDF InterDVS al-
gorithms and 0.9 for RM InterDVS algorithms. The execu-
tion time of each task instance was randomly drawn from a
Gaussian distribution’ with the range of [- WCET, WCET]
of each task, and the resulting average case processor uti-
lization (ACPU) was set to 0.55.

Figure 3 shows the impact of the number of tasks on the
energy consumption. In the figure, the y axis indicates the
normalized energy consumption value over the energy con-
sumption of an application running on a DVS-unaware sys-
tem with a power-down mode only. As the number of tasks
increases, the energy efficiency of 1ppsEDF, 1ppsRM,
and ccRM that only use the Stretching-to-NTA technique do
not significantly improve, while that of the other more ag-
gressive InterDVS algorithms improves significantly. This
can be explained by the fact that, in the Stretching-to-NTA
method, the slack time that can be exploited is limited to the
time between the completion of a task instance and the ar-
rival time of the next task instance, which is largely indepen-
dent of the number of tasks in the system. On the other hand,
for the other InterDVS algorithms, since the slack times can
be taken from any completed task instance, as the number of
task increases, each task has more slack sources and can be
scheduled with a lowered clock speed.

Since the energy efficiency of each InterDVS algorithm is
not affected by the number of tasks when there are more than
eight tasks, the rest of experiments were performed using
task sets with 8 tasks.

5.1.2 Worst case processor utilization of task set

When the WCPU of a given task set is less than 1.0, the tasks
have inherent static slack times. Figure 4(a) shows the re-

WCET/10+WCET
2

1With the mean m = and the standard deviation o =

0.9~VgCET.

Normalized Energy Cons

2 4 6 8 10 12 14 16
Number of Tasks
EIppsRM B ccRM

(b) RM InterDVS

2 4 6 8 10 12 14 16
Number of Tasks
EIppsEDF B ccEDF IIaEDF DRA BAGR B IpSHE

(a) EDF InterDVS

Figure 3. Impact of the number of tasks.

sults for varying WCPUs of 8-task task sets. The results in-
dicate that, except for 1LppsEDF, the energy consumption of
InterDVS algorithms increases as a linear function of WCPU
of a task set. For 1ppsEDF, the energy consumption in-
creases faster than a linear function of WCPU of a task set.
This indirectly indicates that the dynamic slack estimation
method of 1ppsEDF is not very effective.

One interesting observation from Figure 4(a) is that
1ppsEDF shows better energy efficiency than ccEDF when
WCPU is less than 0.7. This is because, in ccEDF, the clock
speed is determined using the actual processor utilization? at
the scheduling point. Since the actual processor utilization
increases when a low-speed task instance completes its exe-
cution, the next task instance needs to be executed in a higher
speed. Such voltage fluctuation occurs more often as the
WCPU decreases. Thus, as the WCPU decreases, the energy
efficiency of ccEDF becomes worse than that of 1ppsEDF.

Because of the space limitation, the results for 1ppsRM
and ccRM are not included but they are very similar to that
of 1ppsEDF.

5.1.3 Machine specification

Variable-voltage processors provide a finite number of volt-
age levels, from two to as many as 100 levels. To evalu-
ate the impact of the number of scaling levels on the energy
efficiency of the InterDVS algorithms, several different ma-
chine specifications were tested. In the experiments, when
there are k scaling levels, the voltage and the clock speed
can be varied with a step size of 9k—2 MHz within the range of
[8,100] MHz.

Figure 4(b) shows the effect of the number of scaling
levels on the energy efficiency of the InterDVS algorithms.

2The actual processor utilization is computed by summing the individual task pro-
cessor utilization, ie., Uy = > ;—: where p; is the period of task 7; and c; is
assumed to be WCET if 7; is not completed, otherwise the actual execution time of

Ti-

o
©
o
©° =

o
@
ption
o
&

~

e o o ¢
>

o ¢
S

w
T

Normalized Energy Consumption
1
>

s o o
I

o =
o

Normalized Energy Consum

01 02 03 04 05 06 07 08 09 1
Worst Case Processor Utilization
EIppsEDF B ccEDF OlaEDF EDRA BAGR B IpSHE

(a) WCPU

100 5 20 10 5 4 3 2

Number of Scaling Levels
B IppsEDF B ccEDF [JlaEDF EIDRA BAGR &IpSHE

(b) Number of scaling levels

Figure 4. Impact of WCPU and the number of
scaling levels.

As shown, the energy consumption increases as the num-
ber of scaling levels decreases. For more aggressive algo-
rithms (e.g., DRA, AGR, 1aEDF, and 1pSHE), the impact of
the number of scaling levels is relatively marginal (roughly
8%) compared to that of less aggressive algorithms (e.g.,
1ppsEDF and ccEDF).

5.1.4 Speed bound

In the previous experiments, we assumed the greedy method
in the slack distribution. That is, all the slack time identi-
fied is given to the current task instance. While the greedy
policy is simple, it is not the best one. For example, in ag-
gressive InterDVS algorithms such as 1aEDF, AGR and 1p-
SHE, slack times may be distributed unevenly among task in-
stances. When the current task instance exhausts its assigned
slack time by the greedy distribution policy, task instances
that follow may not benefit from slack times at all. In order
to understand the effect of different slack distribution poli-
cies, we experimented by varying the amount of usable slack
times. In the experiments, we specified the lower bound on
the clock speed regardless of available slack times.

Figure 5 shows the experimental results for various min-
imum speeds. In each experiment, it is assumed that the
clock speed can be varied within the range of [fmax, fmax)
with a step size of 1 MHz where fua = 100 MHz and o
is the speed bound factor. As a becomes larger, the task
instances is scheduled with lowered clock speed less aggres-
sively because the clock scaling is restricted by & - fax-
When « - frmax is close to the lowest possible clock speed
of the target machine, it is similar to when the greedy slack
distribution is used. The experiments were performed vary-
ing o from 0.1 to 0.9. In Figure 5, the z-axis indicates the
speed bound factor a. The energy efficiency of InterDVS
algorithms (except for 1ppsEDF and ccEDF) is generally
higher when o values are between 0.3 and 0.5. For exam-

°
©

05

Normalized Energy Consumption
Normalized Energy Consumption

01 02 03 04 05 06 07 08 08
Speed Bound Factor ()

0.1 02 03 04 05 06 07 08 08
Speed Bound Factor ()

o~ IppsEDF ~#-coEDF ~4-|aEDF
%DRA ¥AGR -s-IpSHE

~#~IppsEDF -#-~ccEDF -#-laEDF
~#~DRA - AGR =&~ IpSHE

(a) Under WCPU=1.0 and ACPU=0.55 (b) Under WCPU=0.6 and ACPU=0.33

Figure 5. Impact of speed bound.

Speed Bound Factor Speed Bound Factor
(a) Normalized energy (b) Normalized energy
consumption of 1aEDF consumption of ccEDF

Figure 6. Impact of speed bound.

ple, when the speed bound factor is 0.5 in Figure 5(a), an
improvement of 6~11% was achieved over when the greedy
policy is used.

In Figure 5, it is shown that the energy efficiency of AGR
and 1pSHE is very close to the theoretical lower bound?®
when the speed bound factor is near 0.5. In fact, one in-
teresting observation is that for the aggressive InterDVS al-
gorithms, the energy efficiency is highest when the speed
bound factor was set to ACPU. This trend can be noted in
Figure 5(a) and 5(b).

To show the relationship between the speed bound and
ACPU, extensive experiments were performed for various
task sets while varying ACPU and scaling bound. Fig-
ure 6 shows the results. (Due to the lack of space, only
the results for 1aEDF (an example of aggressive InterDVSs)
and ccEDF (an example of non-aggressive InterDVSs) are
shown. (The results for AGR and 1pSHE are very similar to
that of 1aEDF.) The results confirm that when the selected
speed bound factor is close to ACPU (= 0.55x WCPU), the

d with the complete execution trace in-

'

3The theoretical lower bound is cc p
formation using Yao’s algorithm [20].

best energy efficiency is achieved for 1aEDF. For ccEDF,
however, this trend does not hold as we can notice in Fig-
ure 6(b).

Similar study with the RM InterDVS algorithms show
that the performance gap between the energy efficiency of
the RM InterDVS algorithms and that of the theoretical
lower bound was roughly 35~40%. This result indicates
that there is a substantial room for improvement in devel-
oping more energy-efficient RM InterDVS algorithms.

5.2 Performance evaluation of Intra-Task DVS al-
gorithms

We have evaluated the energy efficiency of intraShin
and intraGruian using an MPEG4 video decoder and an
MPEG4 video encoder that were previously used in [16].
Both applications were pre-processed for speed/voltage
changes as described using the tools in the IntraDVS pre-
processing module described in Section 4.2.

For intraGruian, the execution times of both the
MPEG4 decoder and encoder were assumed to follow a
normal distribution N, = N(m1,(%2)?) where m; =
% XWCET and my = % x WCET.

For intrasShin, we first collected a large number of ex-
ecution paths; in SimDVS, each execution path can be repre-
sented by a pair of parameters [17]. For each execution path,
we estimated the energy consumption of the execution path
using the IntraDVS simulator. The overall average energy
consumption is computed by taking the weighted average
of estimated energy consumptions using the execution path
distributions used for intraGruian.

Since the energy efficiency of intraGruian largely
depends on the slack ratio* given in the on-line phase and
the accuracy of the execution time distribution used in the
off-line profiling, we performed experiments varying these
two factors. Figure 7 shows the relative energy consump-
tion ratio of intraGruian over intraShin. If the ra-
tio is larger (smaller) than 1, intraGruian performs bet-
ter (worse) than intrashin. In Figure 7, the N, line
represents the case when the actual execution times fol-
low the assumed N, distribution. The N,, N, and N,
lines indicate the cases where the actual execution times
follow different normal distributions from the assumed NV,
where Na = N(mla (%)2)? Nb = N(mla (%)2) and
N, =N(1.5-mq, (%2)2)

When the slack ratio is less than 1.2, intraShin
outperforms intraGruian because intraShin spends
more time in the lower speed region than intraGruian.
When the slack ratio is increased, intraGruian spends
more time in the lower speed region than intraShin. Fig-
ure 7 also shows that intraShin works better than in-

4The slack ratio is defined as the ratio of WCET to the assigned execu-
tion time.

»
&

Relative Energy Consumption
Relative Energy Consumption

1 12 1.4 16 1.8 2 22 24 26 28 3 112 1.4 16 1.8 2 2.2 24 26 28 3
Slack Ratio Slack Ratio

(a) MPEG4 Decoder (b) MPEG4 Encoder

Figure 7. Energy consumption ratio of in-
trashin and intraGruian.

traGruian when the distribution of actual execution times
is significantly different from the assumed distribution, as
shown in the IV, line.

5.3 Performance evaluation of hybrid methods

In this section, the question of whether HybridDVS al-
gorithms will perform better than pure IntraDVS algorithms
or pure InterDVS algorithms is investigated. Although both
intraShin and intraGruian can be used for a com-
parative study, we use intraShin as a base IntraDVS al-
gorithm. This is because intraShinis less likely to gener-
ate dynamic slack times, thus making the distinctions among
the different HybridDVS methods clearer.

HybridDVS algorithms select either the intra mode or the
inter mode when slack times are produced during the execu-
tion of the current task instance. In the inter mode, the slack
time is used not for the current task instance but for the fol-
lowing task instances. In the intra mode, all the slack times
are used for the current task instance, allowing it to execute
at a lower speed. Table 3 summarizes four heuristics [17]
for HybridDVS algorithms considered in this section. The
heuristics differ in how close they are to the pure IntraDVS
approach or pure InterDVS approach.

We have experimented four heuristics in Table 3 with
six EDF InterDVS algorithms and two RM InterDVS algo-
rithms in Table 2. H1 and H3 are close to the pure InterDVS
approach and H2 is close to the pure IntraDVS approach.
The performance of HybridDVS algorithms depends on the
dynamic slack estimation methods adopted by each Inter-
DVS algorithm. In 1aEDF, DRA, AGR, and 1pSHE where
slack times are identified more aggressively, it is a good
idea that some (or all) slack times produced by the current
task instance are passed to the following tasks. However, in
lppsEDF/RM and ccEDF/RM where slack times are less
aggressively identified, it is better for the current task in-

Table 3. Four heuristics for HybridDVS algo-
rithms.

[Heuristic | Description |
H1 uses the inter mode as a default but uses the intra mode

if no activated task instance exists.

H2 uses the intra mode first, but changes into the inter mode

when the current task instance has used a predefined amount of
slack time.

H3 uses the inter mode first, but changes into the intra mode

when the unused slack time is more than a predefined

amount of slack time.

H4 alternates the intra mode and the inter mode keeping

the balance of slack consumption in each mode.

9
8
g
8

o
@
3

o
@
8

b
2
3
o
3
3

o
s
8
1N
Y
3

o
®
38

Normalized Energy Consumption
°
3

Normalized Energy Consumption

°
5
8
o
3
8

05 06 07 08 09 1 05 06 07 08 09 1
Worst Case Processor Utilization Worst Case Processor Utilization
BlintraShin BH2 O H4 EIH3 E@H1 B ccEDF BintraShin BH2 O0H4 CIH3 E@H1 ElaEDF

(a) ccEDF (b) 1aEDF

Figure 8. Energy efficiency of HybridDVS al-
gorithms.

stance to utilize most of the slack time generated. There-
fore, if a HybridDVS is based on 1aEDF, DRA, AGR, or
1pSHE, H1 and H3 are better choices. On the other hand,
for 1ppsEDF/RM and ccEDF/RM, H2 and H4 are better
choices.

Figure 8 shows the energy efficiency of the HybridDVS
methods. The graphs show the energy consumption for var-
ious WCPUs. As explained before, if a HybridDVS algo-
rithm is based on a non-aggressive InterDVS algorithm, the
heuristic H2 gives good results as shown in Figure 8(a). For
an aggressive InterDVS algorithm, H1 and H3 give good
results as shown in Figure 8(b). Though the performance
of HybridDVS algorithms is also dependent on the proper-
ties of the task set tested and the execution time variations,
in these experiments, HybridDVS algorithms are shown to
reduce the energy consumption by 5~20% over that of the
pure DVS algorithms.

6 Conclusions

We have compared the energy efficiency of recent DVS
algorithms for hard real-time periodic tasks. The evaluated
DVS algorithms include eight InterDVS algorithms and two

IntraDVS algorithms. We also performed experiments with
four versions of HybridDVS algorithms. For a fair and effi-
cient comparative study, we have also developed SimDVS, a
unified DVS simulation environment.

Our comparative study shows that the existing EDF Inter-
DVS algorithms such as AGR, 1aEDF and 1pSHE are close
to optimal; for our test task sets, their power consumption
is only 9~12% worse than the theoretical lower bound. We
demonstrated that the performance gap from the theoretical
lower bound can be further reduced with a more intelligent
slack distribution policy. However, in the RM InterDVS al-
gorithms, our study indicates that there is still a significant
performance gap from the theoretical lower bound. There-
fore, our findings strongly suggest that more research should
be directed toward developing better RM InterDVS algo-
rithms.

From the evaluation of IntraDVS algorithms, we demon-
strated that two representative IntraDV'S algorithms perform
quite differently depending on available slack times. Our
study indicates that the performance of a HybridDVS algo-
rithm can be better than a pure IntraDVS algorithm or a pure
InterDVS algorithm. However, the differences in energy ef-
ficiency depend on the characteristics of both the IntraDVS
and the InterDVS components used in the HybridDVS algo-
rithm. One of interesting future research topics will be to
devise an intelligent guideline on selecting the best Hybrid-
DVS algorithm for a given task set.

References

[1] AMD Corporation. PowerNow!
www.amd.com, December 2000.

[2] H. Aydin, R. Melhem, D. Mosse, and P. M. Alvarez. Dy-
namic and Aggressive Scheduling Techniques for Power-
Aware Real-Time Systems. In Proceedings of IEEE Real-
Time Systems Symposium, December 2001.

[3] T. Burd and R. Brodersen. Design Issues for Dynamic Volt-
age Scaling . In Proceedings of the International Sympo-
sium on Low Power Electronics and Design, pages 9-14, July
2000.

[4] D. Burger and T. M. Austin. The SimpleScalar Tool Set,
version 2.0. Technical Report 1342, University of Wisconsin-
Madison, CS Department, June 1997.

[5] F. Gruian. Hard Real-Time Scheduling Using Stochastic Data
and DVS Processors. In Proceedings of the International
Symposium on Low Power Electronics and Design, pages 46—
51, August 2001.

[6] D.Grunwald, P. Levis, and K. I. Farkas. Policies for Dynamic
Clock Scheduling. In Proceedings of the 4th Symposium on
Operating Systems Design and Implementation, pages 73—
86, October 2000.

[7] 1. Hong, G. Qu, M. Potkonjak, and M. B. Srivastava. Synthe-
sis Techniques for Low-Power Hard Real-Time Systems on
Variable Voltage Processor. In Proceedings of the IEEE Real-
Time Systems Symposium, pages 178—187, December 1998.

Technology. http://

[8] Intel Corporation. Intel XScale Technology. http:// devel-
oper.intel.com/ design/ intelxscale/, November 2001.

[9] T. Ishihara and H. Yasuura. Voltage Scheduling Problem for
Dynamically variable voltage processors. In Proceedings of
the International Symposium on Low Power Electronics and
Design, pages 197-202, August 1998.

[10] W. Kim, J. Kim, and S. L. Min. A Dynamic Voltage Scal-
ing Algorithm for Dynamic-Priority Hard Real-Time Sys-
tems Using Slack Time Analysis. In Proceedings of Design,
Automation and Test in Europe (DATE’02), pages 788-794,
March 2002.

[11] S.Lee and T. Sakurai. Run-time Voltage Hopping for Low-
power Real-Time Systems. In Proceedings of the 37th Design
Automation Conference, pages 806—809, June 2000.

[12] W.-S. Liu. Real-Time Systems. Prentice Hall, Englewood
Cliffs, NJ, June 2000.

[13] T. Pering and R. Brodersen. Energy Efficient Voltage
Scheduling for Real-Time Operating Systems. In Proceed-
ings of the 4th IEEE Real-Time Technology and Applications
Symposium, Work in Progress Session, June 1998.

[14] P.Pillai and K. G. Shin. Real-Time Dynamic Voltage Scaling
for Low-Power Embedded Operating Systems. In Proceed-
ings of 18th ACM Symposium on Operating Systems Princi-
ples (SOSP’01), pages 89-102, October 2001.

[15] T. Sakurai and A. Newton. Alpha-power Law MOSFET
Model and Its Application to CMOS Inverter Delay and
Other Formulars. IEEE Journal of Solid State Circuits,
25(2):584-594, 1990.

[16] D. Shin, J. Kim, and S. Lee. Intra-Task Voltage Scheduling
for Low-Energy Hard Real-Time Applications. /EEE Design
and Test of Computers, 18(2):20-30, March 2001.

[17] D. Shin, W.Kim, J. Jeon, J. Kim, and S.L. Min. SimDVS: An
Integrated Simulation Environment for Performance Evalua-
tion of Dynamic Voltage Scaling Algorithms. In Proceed-
ings of Workshop on Power-Aware Computer Systems (PACS
2002), February 2002.

[18] Y. Shin, K. Choi, and T. Sakurai. Power Optimization of
Real-Time Embedded Systems on Variable Speed Proces-
sors. In Proceedings of the International Conference on
Computer-Aided Design, pages 365-368, November 2000.

[19] Transmeta Corporation. Crusoe Processor. http://
www.transmeta.com, June 2000.

[20] F. Yao, A. Demers, and A. Shenker. A Scheduling Model for
Reduced CPU Energy. In Proceedings of the IEEE Founda-
tions of Computer Science, pages 374382, October 1995.

Task Level Speed Scheduling on
Dynamic Voltage Supply
Processors

Flavius Gruian

Embedded Systems Design Laboratory
Lund Institute of Technology, Sweden

Task Level Speed Scheduling on
Dynamic Voltage Supply Processors

Flavius Gruian

Embedded Systems Design

Laboratory Lund Institute of Technology

Sweden

« A Taxonomy of Techniques

* Models & Assumptions

* Intrusive DVS (Compiler assisted)
* Non-Intrusive DVS (Stochastic)

« Comparison

* Improvements

» Soft RT Considerations

» Conclusions

July 21-25 ESSES 2003 Task Level DVS

A Taxonomy

* depending on the scheduling decisions
— offline (static) vs. runtime (dynamic)
— OS level vs. user (task) level
» depending on the task characteristics
— fixed vs. variable execution pattern
— hard vs. soft deadlines
» depending on the level of intrusion
— control flow sensitive vs. instance history sensitive

July 21-25 SES 2003 Task Level DVS

MQ§ '

Assumptions

Task:

— consists of atomic computational steps:
clock cycles (C)

— variable execution patterns can be described using
probability distribution functions (n(x))

— allowed to execute for a given time interval (A)
Speed switches (usual but not limiting assumptions):

— time & energy overheads are negligible

— can occur with unlimited frequency

July 21-25 ESSES 2003 Task Level DVS

b)

July 21-25

Ideal-str etch !

WCE-stretch

Switc h
Switc h

Sompmte

Stoc hastic sc hedule

............... Task Level

Com ot e

Deadline

Scheduling

" Schedule types:

w1 @) no voltage scaling

b) known instance run time
c) unknown runtime

~d) accelerated execution
e) decelerated execution

a,b: single” speed, static
.. d,e: multi-speed, dynamic’

ESSES 2003 Task Level DVS

July 21-25

The Dual Speed Model

number of speeds

* running at any virtual speed on processors with limited

* [Ishihara98] any virtual speed: optimal to use only the two

speeds bounding the virtual speed

Cycle Energy (E) Clock Speed (s)

BV1 EBV2 BV3

Task Energy

h N-X cycles

X cycles

Task E)f{ecution Time

ESSES 2003 Task Level DVS

Eanc 2

Intrusive DVS at a &

» Adapts the speed to the instance processor demand

a = b*c;

if (a>d) {
a -= sqgrt(d);
d = a/2;

} else

a +=d/2; long path short path

e after each decision that may reduce the worst case path,
new code for adjusting speed and voltage is inserted

July 21-25 ‘ ESSES 2003 Task Level DVS

Intrusive DVS Methods

» require information about task internals
— block-wise worst case execution time
— control flow graph
* inserts code snippets at specific points
— re-computing the optimal speeds
— switching speeds
— inform the OS about workload variations
 usually compiler assisted

« usually user-level speed switching (not OS)

July 21-25 ESSES 2003 Task Level DVS

=iy

I ﬁf rus N D VS

(1)

[Lee&Sakurai00, Mosse00, Shin&SakuraiO1]

— slice the application in known WCET but arbitrary parts
(loop boundaries, calls)
* how to select these points?

— insert re-scheduling code between each

X Qmpi 2s

usable slack

July 21-25 ESSES 2003 Task Level DVS

=iy

Intrusive DVS Examples (IT)

[Hsu&Kremer01]

— slow-down whenever processor speed has little impact
on performance (memory busy)

— top-down, single region selection
— 10% energy reduction at 2% performance degradation
[AbouGhazaleh(03]

— insert hints rather than rescheduling points and let the
OS select the speed at periodic intervals

— work at groups of basic blocks level

July 21-25 ESSES 2003 Task Level DVS

Non-Intrusive

July 21-25

do not change the tasks

require only information about the execution
pattern: average cycles, probability distribution,...

decide the full schedule (speed sequence) before
the instance starts executing

usually OS level

usually do not require detailed and expensive
offline task analysis

ESSES 2003 Task Level DVS

Non-Intrusive DVS

Examples

[Lorch01]: the PACE approach
[Gruian01b]: stochastic scheduling

July 21-25

both use the cumulative probability distribution function of
execution cycles

minimize the energy over a large number of instances
accelerated execution
PACE chooses the switching points and speeds

Stochastic scheduling uses the existing real speeds to
build the schedule

ESSES 2003 Task Level DVS

Deriving a Stochastic Schedule

n(x) probability of a task finishing at cycle x
cdf(x) probability of a task finishing before x

1. expected energy: E=Y"" (1~ cdf (x))e,
2. energy for the xth clock: L .
/ } L

ref

i) 6 Ty
3. constraint on execution time:

ZWCE k S A
— E Lower Boundfor? 1—cdf (y)
(B=2) k, =4

July 21-25

ESSES 2003 Task Level DVS

Deriving a Stochastic Schedule
(cont'd)

* k, ideal (virtual) clock lengths have to be mapped
to real (available) clock lenghts CK;

© distribute the work of each virtual clock:

k,=w,CK,+w,,,CK

i+l

Wiy + W(i+1)y = 1

e (CK,,CK,,
e real workloacfé‘f (P

w,=2w, jel..VL

July 21-25

ESSES 2003 Task Level DVS

X&mpé A

Obtaining a stochastic schedule for
a processor with clocks speeds f, /2, f/3

Y S,

80% of WCE cycles

0.81 1-cdf function for
0.6} a normal distribution

1« cdf

0'2 mean =70
‘oLstd- dev. =10 cycle : Mean = 70%
0 20 40 60 80 100

July 21-25

Cycle energy

at clock f ' g
100% of WCE cycles

ESSES 2003 Task Level DVS

More on Stochastic Scheduling

July 21-25

algorithmic complexity O(WCE log VL)
— use groups of clock cycles to reduce complexity

can be employed at runtime for every instance, if
the allowed time changes

requires maximum VL-1 speed switches
easy to adapt for soft deadlines
oblivious to task internal structure

ESSES 2003 Task Level DVS

Stochastic vs.

July 21-25

-Stretch

1 3
Energy Estoch = KA_Z(ZZV:C;E Vl - Cdf()C))

consumption: _ 1 -
EWCE _stretch — eWCE —stretchX = K - WCE X

ratio: E.o (ZZE MT

E= = —
E, WCE —stretch WCE 2 X

dependent on the distribution shape
independent on the allowed execution time

ESSES 2003 Task Level DVS

Stochastic vs.

Experiments

July 21-25

Uniform (0, WCE) 0.8419
Normal (un = WCE/2, c = WCE/6) 0.6461
Normal (n = 2WCE/3, ¢ = WCE/9) 0.7417
Normal (n = WCE/3, o = WCE/9) 0.3048
Exponential (A = 10/WCE) 0.2434

ESSES 2003 Task Level DVS

o

Stochastic vs. WCE-Stretch:
More Experiments

Stoc hastic vs. W CE-stretch Levels
Sc hedule Energy 05.5% e
90.8% ——
86. 1% ==
100% 8 1.4%
95% }
90% }
85% }
80% }
75% }

S~
n A———
S s
3 25 == \77 } 3
' 2 1.5
. 1

Allowed/W CE

BCE/W CE

July 21-25 ESSES 2003 Task Level DVS

=iy

Example: a WCE-Stretch and a
Stochastic Schedule on i80200 (I)

: : ‘ A 117ms
[: : : : s 116ms
2 “ITWCE-Stretch -~
__3 L
7 S
A SARRS IRREEEREIERTIRERETE SbS SEPPEERTES o)
o) s e ———_—
= \ : : :
o) : : :
o ‘Stochastic
L : : :
O e
<
RY _ : L T S L
R 200mVV 25ms 6 jul 2002
102:61

July 21-25 ESSES 2003 Task Level DVS

Example: a WCE-Stretch and a
Stochastic Sch&#ui& on BQZQO (II)

2 LT
"TWCE-Stretch - |
.
= R S S g
O .
o :
O Rp
© : : ;
§ ~§tochast!c ****** 4
< L
ngzgﬁ;)sjgvéxt~§_}'uw'§\-ﬁ

Mkl 100myy 25ms

July 21-25 ESSES 2003 Task Level DVS

Intrusive vs.

* Energy:

— Intrusive energy is very much dependent on the
internal task structure and rescheduling points

Example of Energy Efficiency Analysis:
— normal distribution, p = WCE/2, c = WCE/6
— unawareness factor 3 = X,/X
— B =2, ideal processor

2
E_(X) = WeE 9 + -9 Unaware
‘Intr A (WCE/X_ 9)2 (WCET like)

July 21-25 ESSES 2003 Task Level DVS

time

=iy

Analysis Example (cont'd)

E 1-9) ™ x
gm—tm _g, 079 —7(x)dlx
E, WCE —stretch X 0 (WCE / X = '9)
1
Par t of W CE-stretch sc hedule energy

0.9 .
o * numerical
o P integration for
0.6_—_9.§ S n e RS 7?‘_/ Stoc hastic is be : tter 9 In 01
0.5 /// : .
04 _— : sindependent

! e P 1
03 | Intr usive is be tter i of WCE and A
0.2 10.58
0.1 i

| Una war eness f act or]
00 0.1 0.2 03 0.4 0.5 6.6 0.7 0.8 0.9
July 21-25 ESSES 2003 Task Level DVS

=iy

Intrusive vs. Stochastic
Other aspects

Stochastic

Needs compiler/timing tool
support?

4. Can use execution history?

5. Run-time interference:

6. Sensitive to internal task

structure?

variations?

July 21-25 ESSES 2003 Task Level DVS

A ﬂ?s

m

I pPQV

* intrusive:
— online (runtime) profiling
— use hints instead of speed switches
— use hint location cache (at jmps, calls)
* mixed approaches:
— start using average case speed
— increase the speed if over the average case
— decrease the speed if under the average case

July 21-25 SSES 2003 Task Level DVS

Soft RT Considerations

* deadline miss percentage = easier to control in
stochastic scheduling

* deadline overshoot = easier to control in intrusive
scheduling

« discarding specific cases (execution paths) =
easier in intrusive scheduling

July 21-25 SSES 2003 Task Level DVS

Conclusions

* many readily available techniques
* no absolutely best approach

 application specific trade-off:
method complexity vs. energy efficiency

» analyze the whole system: task level benefits may
even out at system level

July 21-25

SSES 2003 Task Level DVS

Hard Real-Time Scheduling
f&p Tas k on
Dynamic Voltage Supply Proce:

ssors

Flavius Gruian

Embedded Systems Design

Laboratory Lund Institute of Technology

Sweden

* Motivation
* A Taxonomy
* Models & Assumptions

» Offline Scheduling
(Proportional Stretch, LEneS, MRS,...)

* Runtime Scheduling (RMS with Slack Management)
* Advanced Methods (Uncertainty Based Ordering)
e Conclusions

July 21-25 ESSES 2003 Task Group DVS

Level DVS

« classic scheduling:

— cannot decide both task timing and duration
» multiple-voltage scheduling (in HLS):

— cannot handle varying processor characteristics
 only task-level DVS + classic scheduling:

— sub-optimal slack management (processor level)

— sub-optimal resource utilization
in heterogeneous systems

July 21-25 ESSES 2003 Task Group DVS

A Taxonomy

* depending on the hardware architecture
— uni-processor vs. multi-processor
— homogeneous vs. heterogeneous
* depending on the task group characteristics
— independent (sets) vs. dependent (graphs)
— fixed vs. variable execution
— hard, firm, soft deadlines
— periodic vs. a-periodic
* depending on the scheduling decisions
— offline (static) vs. runtime (dynamic)

July 21-25 ESSES 2003 Task Group DVS

e task graphs (DA community)
— describe communicating tasks (start:in, end:out)
— usually single rate, single deadline
— mapped on multi-processor architectures
— critical path delay is important
— scheduled using static cyclic executive approach

bus(es)

July 21-25 ESSES 2003 Task Group DVS L 5

 Models (II)

* task sets (RT community)

— emphasize on timing, tasks have different
* periods, deadlines, execution delays, arrival times,...

— on uni-processor systems
— individual response times are important
— offline analysis and runtime scheduling

* hybrids: multi-rate graphs

July 21-25 ESSES 2003 Task Group DVS

Assurr pﬁms

« hard real-time deadlines

 tasks require a rather large number of clock cycles
(coarse granularity)

* the power demand varies little inside a task and over
tasks on a certain processor

« switching overhead is negligible
* intra-processor communication takes zero time (using
shared memory)

* inter-processor communication is handled in parallel
by controllers (the processor can still run tasks)

July 21-25 ESSES 2003 Task Group DVS

« start times and speeds for all tasks decided
before the system becomes operational

» speed switches still occur at runtime
+ simplest to implement (static cyclic executive)
+ smallest runtime overhead

- cannot use the dynamic slack resulted for
tasks with variable execution time

- same problems as in classic static scheduling

July 21-25 ESSES 2003 Task Group DVS

The Si mps 2.

« offline, uni-processor, unique period and deadline
« the ideal schedule is the one with constant speed

exactly finishing at the deadline
power Speed = 11 power speed = C/A

-

time

July 21-25 ESSES 2003 Task Group DVS

Proportional Stretch (T)

» the easy way out: Proportional Stretch

1. find the tightest schedule (L) using a classic algorithm
assuming maximum processor speed

2. for a deadline A use the same constant speed for all tasks,
equal to L/A

Given the clock energy-speed dependency: H(s) = K()- §P
The energy is reduced by: TN
¥~ Simple bound for homogenedtis multi-processor:

processor
utilization

July 21-25 ESSES 2003 Task Group DVS

Proportional Stretch (II)

& optimal for independent, single rate tasks
© optimal for homogeneous architectures with 100% utilization

¢ sub-optimal for dependent tasks on multi-processors
¢ sub-optimal for heterogeneous architectures

Classic List Schedulirlg R Proportional Stretch
3 - O m N

Unused time slack on the non-critical path !

July 21-25 ESSES 2003 Task Group DVS

Schedulin

Task Graphs

« static (offline) hard RT method

« works on graphs already
assigned to processors

* even classic scheduling is a
complex (NP) problem on multi-
processor systems

» DVS even more so

Heuristics based on classic scheduling algorithms:
address both timing and speed (voltage)

July 21-25 ESSES 2003 Task Group DVS

Appmach es

» Voltage assigned according
to local slack

(delay between task end and
next start)

[Luo00, Liu01]; Transform:
shifting start times
[Schmitz01,02]: list
scheduling inside a Genetic
Algorithm, handles different
task power profiles

July 21-25 ESSES 2003 Task Group DVS

Appﬁ@&&h es: LEneS

* Low Energy Scheduling [Gruian01]

* list-scheduling with dynamic priority
recalculation

* works on assigned Enhanced Task-Graphs

2|

July 21-25 ESSES 2003 Task Group DVS

 start and end nodes are scheduled separately with
list-scheduling, allowing task stretching

« priorities reflect the energy change resulted from
delaying end nodes
prio =) AE
Task Energy a c b

_ ASAP Average energy for

ALAP the interval [a,b]]
/ AE

Average energy for
the interval [c,b] .

4

Start End

» Time

July 21-25 ESSES 2003 Task Group DVS

» All nodes start from [ASAP, ALAP]
without resource constraints
* For every scheduling step decide
— the list of schedulable nodes
— the energy variation of scheduling a node now vs. 5t later
— schedule the right nodes
* Finish when:
— all steps considered + all nodes scheduled: SUCCESS
— unscheduled nodes, null interval nodes: FAIL

* Problem: no feedback on schedule length --
cannot find tight schedules for some cases

July 21-25 ESSES 2003 Task Group DVS

The LEnesS Alg

Improved Version

» Solution: include “path-length” in priority
If(node, time}

“node Deadiine — time — Criticalpath@ode)
— o controls the emphasis on timing vs. energy

— use the a set to differently scale different paths
* Procedure:
— startfromalla =0
— try to schedule
— if scheduling fails, increase all a. on the critical path and retry

g node,time)tf node, time

July 21-25 ESSES 2003 Task Group DVS

LEneS Alg Fvaluation

» Execution time, algorithmic complexity?

* Energy reduction?

— without performance degradation?
single voltage (max) schedule using classic LS

— with relaxed deadlines?
vs. classic LS
vs. LS with Proportional Stretch

July 21-25 ESSES 2003 Task Group DVS

LEneS Performance:
Scheduling Time

« Algorithmic Complexity: 0(VN3)

— V: voltage levels (speeds) tomin g
— N: tasks ,
Time
(440Mz
UltraSparclIi
256MB RAM)
5ms
10
2
6 8
Tasks/processor 102 Processors

(with 3 voltage levels)

July 21-25 ESSES 2003 Task Group DVS

LEneS Performance:
Energy Savings, Tightest Deadline
10> . . .
savings >10% * gain increases
581 ... : with parallelism
(7]
§ [4x smaller gains
o6 for processors with
@ only
@ 4 two voltage levels
= (3.3v, 0.9V)
2
2 4 6 8 10
Processors

3.3V, 2.5V, 1.7V, 0.9V

July 21-25 ESSES 2003 Task Group DVS

LEneS Performance:
Energy Savings, Relaxed Deadlines

July 21-25

TG (3tasks x i0progs), _ |

lassic LS R

B ‘T G2 (10tasks x Sprocs)

10 m—

Energy saved by LEneS-PS in %

0 10 20 30 40 50 60 70 80 90 100

Deadline extension in %

ESSES 2003 Task Group DVS

Combining Scheduling and Assignment

July 21-25

Focus on Low Energy

=T ey

satisfactory @

explore

* minimize energy under

time and resource
constraints

The scheduling step:

— INPUT: assigned task-graph
and a deadline

— OUTPUT: scheduled TG

ESSES 2003 Task Group DVS

Simulated Annealing for Assignment

Why SA?
— classic heuristic, easy to implement
— highly tunable

Implementation issues:
— neighborhood:
random(task).processor = random(processor)

— cost:
* quality measure of the final step solutions
« fast to compute (ms)

July 21-25 ESSES 2003 Task Group DVS

The "Speed-up and Stretch”
Design Flow

* ad hoc method Q

* minimize the schedule length
in the assignment step

* list-scheduling with critical-path
priority as a core scheduling
technique

* voltage scheduling is only

performed as the last step L e
using Proportional Stretch 'II

© conventional design algorithms(no special DVS method)
¢ no information about the energy until the very end!

July 21-25 ESSES 2003 Task Group DVS

The "Eye-on-Energy" Design Flow

» uses estimated energy
as feedback

* not much more time
consuming than S&S

* indirect feedback -
estimates

+ special DVS scheduling
method

Unfortunately LEneS is too slow to be used inside the SA loop:
Solution: use a fast estimator instead!

July 21-25 ESSES 2003 Task Group DVS

&

A A
r N 3
Eest = A(Epax/ Pr)(Tin/ Treq)? + b3 + €

e a,b,andc:
— task-graph dependent
— tuned by regression

« fast evaluation (slowest is Tmin - Classic LS)
« under 10% avg. deviation from E final values

July 21-25 ESSES 2003 Task Group DVS

July 21-25

X p@ r § me

* hundred random graphs (20 nodes)
» max four processors (four supply voltages)

x

£ 5

2 4

»n

2 3

w

c

6 2

w N

>

a 1

B

& O

(2]

3 -10 : —

% deadline extension in %
S 0 25 50 75 100

EonE to in average 15% lower energy than S&S

ESSES 2003 Task Group DVS

A Real-Life Application:

Optical Flow Detection

* 32 tasks on DSPs with four Vdd
* 12.5Hz, 78x120 pixels

-

o

o
I

Energy consumption
[$2]
o

0_

Processors
Rate

July 21-25

B single vdd

* >50% energy at half
rate (6.25Hz)

* higher parallelism
allows lower energy
consumption

ESSES 2003 Task Group DVS

* both offline and runtime decisions (laying a complete
schedule offline has exponential complexity for certain multi-rate sets)

— offline (slow): schedulability analysis + assign minimal
required speeds

— runtime (fast): accommodate dynamic slack, tasks with
varying execution time

* build on classic real-time scheduling methods
— uni-processor architectures
— fixed (RM) or dynamic (EDF) priorities
« extends these with assigning speeds to tasks
+ task sets notation: {r,= <C,, T;,D;>}-1

July 21-25 ESSES 2003 Task Group DVS

Typical Offline Decisions

Purposes:
— increase/balance processor utilization
— better use of the variations in task execution

 find the Maximum Require! Speed (MRS) for each
task, while keeping the schedulability

« priority refinement/energy efficient ordering
* insertion of possible preemption points/task splitting

July 21-25 ESSES 2003 Task Group DVS

Maximum Required Speed for EDF

1. Deadlines equal to periods (D, =T))
— feasible schedule if U < 1(necessary & sufficient)
— optimal if all execute at a constant speed: s = U

2. Deadlines shorter than periods (D, < T))
— feasibility analysis becomes intractable [stankovicos]
— assigning optimal speeds is even harder
— sufficient condition — speed upper bound:

ul C
— i
Sup = 2)
i=1 mm{Diaﬂ} Obs. may be > 1!
July 21-25 ESSES 2003 Task Group DVS

Maximum Required Speed for EDF

3. Deadlines shorter than period, unique

common period (D;<T;, T, =T))

» feasibility analysis - polynomial time

+ [Yao095]: method for finding optimal speeds for
tasks with different arrival times (asynchronous)
(extended for fixed priorities in {Quan01])

« similar, but simpler method for tasks having the
same arrival time (synchronous) the sufficient and
necessary condition:

sup {4[11,:2) }S 1

0<t1<t2<Dy

July 21-25 ESSES 2003 Task Group DVS

Obs: loading factors change only at D,
« examine intervals [t,, D;), compute h,

+ the highest h,, defines the required speed for tasks
up to k so that all deadlines are met

* move t, to D,, and repeat the procedure for tasks
starting with k+1
Example:
<C,D>T=20 {<1,4>, <3,8>, <2,9>, <1,14>, <3,20>}

Eyre/Enmay = 0.32

July 21-25 ESSES 2003 Task Group DVS

Maximum Required Speed for RMS

Different periods, deadlines
1) trivial method using the Liu & Layland
sufficient condition for feasibility: 5=

NEY -))

2) Task specific speeds: Scheduling Points Analysis
= speeds are assigned starting with the highest priority task
» each task i has to be executed before one of:

= taski exactl§irﬁe{gf‘}ssd7e§&hne% ﬁ1e t/ Z;stk asS; e

<C/s s,/ Ll/,] |SU/T Es,

1<r<gq y
ESSES 2003 Task Group DVS

July 21-25

» 5tasks <C,T>:
{<1, 5>, <5, 11>, <1, 45>, <1, 130>, <1, 370>}
U =0.687
H =LCM(5,11,45,130,370) = 476190 &~

* =1 E
* Sgpe= U > Egpp=47.20% E
* Sgm = scheduling points analysis & Egy, = 48.15% E .«

max

July 21-25 ESSES 2003 Task Group DVS

accounting for different task power demand
— add weights for each task

accounting for switching overhead

— adjust C to include 1...2 speed switches

accounting for blocking in tasks with
synchronization [Jejurikar02a,b]

July 21-25 ESSES 2003 Task Group DVS

» uses the dynamic slack
(analysis of a full hyperperiod may be impractical at times)

* more efficient for tasks with variable
execution

» should not affect the response times
» should be fast enough (low complexity)

 should work in conjunction with the offline
and task-level techniques

July 21-25 ESSES 2003 Task Group DVS

Runtime Approaches

 EDF

— use the offline methods whenever a new task
arrives in the system or finishes executing

— use faster heuristics, such as AVR [Ya095]

* RM: trickier to keep the timing

— lonely running instances are stretched until the
next task arrival [Shin99]

— if an instance generates slack, run as slow as
possible for that time if computation awaits [Lee39]

July 21-25 ESSES 2003 Task Group DVS

Wéfh SEQQk 21S €I)

* Remaining time slack from early finishing
instances used to slow down future tasks

* Must keep Worst Case Response Time:
— Use slack (priority) levels

— A task instance:
» Will use higher level slack
» Will produce lower level slack
* Lowest level slack is lost

July 21-25 ESSES 2003 Task Group DVS

Aurrival

Slack

- Levels
Task 1

Task 2 T |

Task 3

Lost Slack

July 21-25 ESSES 2003 Task Group DVS

nt Strate

Slack Manageme ay (I)

S, : the slack available at level i
* instance k of task t; starts executing:
0,j<i
S, —ACY,j>i
* instance k of task 7, finishes executing:
k k_ yk S" =< Spi<i
‘ AAi =Ai - f J S +AAk
 idle processor times are subtracted from ali slacks

Af =C,+AC} S =1

July 21-25 ESSES 2003 Task Group DVS

Slack Management Strategy

How to distribute the available slack (AC)
to waiting instances?

+ Greedy: the next instance gets everything

* Mean proportional:
distribute the slack to all waiting instances according
to their mean execution time

* ... ACk:S l

1

; —
er eRe adyQ)(]

July 21-25 ESSES 2003 Task Group DVS

Examined cases:

* 100%
— Tasks run at max speed, NOP during idle.
Upper Bound
— Post-execution analysis, all tasks uniformly stretched to max U
Offline +1stretch
— MRS for RM, stretch lone running tasks to the next arrival
« All
+ Use the described slack management strategy & task-level DVS

Ideal
+ The exact execution time of an instance is known at arrival time

July 21-25 ESSES 2003 Task Group DVS

Some Experiments (II)

randomly generated sets of 100 tasks

NOP power = W t per Bqund

20% of mean

Al L SR,
Power down =
5% of mean

Sireicn

[*2]
o
R
Energy reduction
f
.
I
(&)
)
o)

0O 01 02 03 04 05 06 07 08 09 1
BCE/WCE

July 21-25 ESSES 2003 Task Group DVS

Some tExpe

% energy 90
reduction

80
70
60
50
40
30
20

10

July 21-25

riments (ILI)

UpperBound LI

AL

\\\\\
.
.

\\\\\\

Of f-lineHistretth i \\

0

0.1

02 03

04 05 06 07 08 09
BCE/W CE

ESSES 2003 Task Group DVS

1

Generic
Avionic
Platform

16 tasks

Advanced Methods

« More important changes to classic real-time
scheduling strategies
— Tamper with priorities/task ordering
— Change the task amount/characteristics

» Designed for more realistic task models

— variable execution pattern

» Use more task-level information
— average execution time
— execution time probability distribution

July 21-25

ESSES 2003 Task Group DVS

Uncertainty-Based Ordering (I)

* Problem:
— tasks: period=deadline, variable execution time
— off-line (static) ordering but

— run-time speed selection
N
« speed for the kh task 2. WCE,

Af;ef - Z;:]l)(]
* energy for a period p .
(clock ene. e(s)=Ks?) E(X, ,)=XKs§+2_, XKs(z,,..., 7.,)

S(Tyseees T y) =

EX,)= [[Bx yx,)... (x| ..dx

N

* average energy

July 21-25 ESSES 2003 Task Group DVS

Uncertainty-Based Ordering (II)

Example: 3 tasks, uniform distribution
(BCE,WCE) = {1,:(12,20),7,:(10,30),74:(24,40)}
A =100, K=1, f =1, p=2

<1, 3, 2> 42.094 41.839 134%
<2,3,1> 37.482 36.978 119%
Ideal: always mean 31.443 (speed 0.68) 100%
Offline WCE 55.080 (speed 0.9) 175%

July 21-25 ESSES 2003 Task Group DVS

Uncertainty-Based Ordering (ITII)

« Main ideas:
— achieve a low speed ASAP by ordering tasks wisely
— approximate EI_XIPV HX]
* Priority: =
' P (5) =
ubs \ k) —
sP —sP

* Observations: k

— prioritize short tasks

— prioritize tasks with large variation in execution
— prioritize power efficient tasks

— algorithmic complexity O(N2)

July 21-25 ESSES 2003 Task Group DVS

UBO vs. Full Search

1 % of N o Scalihig A vg. Energy UBS bt
0.95 | Fulpearanmmad © 300 sets of
0 : each size
085 e used the “real”
1 E formula
038 ;I oy !l
SO —
o e
065 i 1 ;! » under 2%
' i [il difference
0.6 |j n| ||
0.5 - ! d
0.5 i E
2 3 4 5 6 7
Task se t size
July 21-25 ESSES 2003 Task Group DVS

0.9

Power (W) e s
—— UBS21.11m]) e
0.8 T I Reverse UBS (2 4.3 4m]) ——
. iy Random (22.78ml} wexse
| WOCE-stiotch (28.58ml) wween
0.7 \ MAX (37.57mi) oo =

0.6

0.5

.............

0.4

0.3

e

0.2

0.1

2 Sk o o o
Time (s)
0 001 002 003 004 005 006 007 008 0.09

“

July 21-25 ESSES 2003 Task Group DVS

ion to EDF

e Use preemption to extract regions
e Push forward uncertain regions
e Algorithm:

1. Start from the latest deadline

2. Between two consecutive deadlines order the
regions according to the already given priorities

3. Preempt the task which does not fit entirely
4. Proceed with the next consecutive deadlines

July 21-25 ESSES 2003 Task Group DVS

Classic EDF

Preemption for Reduced Energy

5+ 10 1:

Reordering

In the long run: 18% less energy than for the class}c EDF!

July 21-25 ESSES 2003 Task Group DVS

Some Soft RT Considerents

Techniques:
* increase the dynamic slack by skipping instances

* modify execution time probability distribution to
account for zero-length instances

Yet:

« avoid discarding tasks in the middle of execution
(don’t waste energy)

» keep the QoS or the rate of completion

July 21-25 ESSES 2003 Task Group DVS

July 21-25

Conclusions

wide range of task group DVS methods
can be combined with task level methods

can be successfully employed on already
existent DVS processors (5-6 speeds)

use more information about the tasks to
obtain better methods

even hard real-time applications can use DVS

SES 2003 Task Group DVS

Dynamic Voltage Scheduling

F. Gruian

July 10, 2003

References

[BPSBOO]

[PBBOO]

[ADI]

[AMDO0]

[Fle01]

(Int01]

[RP96]

1 Introduction

1.1 Recommended

T. D. Burd, T. A. Pering, A. J. Stratakos, and R. W. Brodersen.
A dynamic voltage scaled microprocessor system. IEEE Journal of
Solid State Circuits, 35(11), November 2000.

T. A. Pering, T. D. Burd, and R. W. Brodersen. Voltage scheduling
in the IpARM microprocessor system. In Proc. of the 2000 ISLPED,
pages 96-101, 2000.

1.2 Useful

ADI Engineering. 80200EVB Reference Platform.
http:/ /www.adiengineering.com/product80200EVB.html.

AMD. AMD PowerNow™ Technology Dynamically Manages
Power and Performance, Rev. A, November 2000. Informational
White Paper No. 24404.

M. Fleischmann. LongRun power management - dynamic power
management for crusoe processors. Technical report, Transmeta
Corporation, January 17, 2001.

Intel. Intel® 80200 Processor based on Intel® XScale™ Microar-
chitecture Datasheet, September 2001. Order Number: 273414-003.

J. M. Rabaey and M. Pedram, editors. Low Power Design Method-
ologies. Kluwer Academic Publishers, 1996.

[ACM*+03]

[GruOla]

[Gru01b]

[[Y98]

[LSO1]

[SKLO1]

[SKS01]

[HKO1]

[LS00]

[MAAMO2]

2 Task Level DVS

2.1 Recommended

N. AbouGhazaleh, B. Childers, D. Mosse, R. Melhem, and
M. Craven. Energy management for real-time embedded applica-
tions with compiler support. In ACM SIGPLAN Langauges, Com-
pilers,and Tools for Embedded Systems (LCTES’03), 2003.

F. Gruian. Hard real-time scheduling for low-energy using stochas-
tic data and dvs processors. In Proc. of the 2001 ISLPED, pages
46-51, August 6-7 2001.

F. Gruian. On energy reduction in hard real-time systems contain-
ing tasks with stochastic execution times. In IEEE Workshop on
Power Management for Real-Time and Embedded Systems, pages
11-16, May 29 2001.

T. Ishihara and H. Yasuura. Voltage scheduling problem for dy-
namically variable voltage processors. In Proc. of the 1998 ISLPED,
pages 197-202, 1998.

J. R. Lorch and A. J. Smith. Improving dynamic voltage scaling
algorithms with PACE. In Proc. of ACM SIGMETRICS 2001,
pages 50-61, 2001.

D. Shin, J. Kim, and S. Lee. Intra-task voltage scheduling for
low-energy hard real-time applications. IEEFE Design & Test of
Computers, 18(2), March-April 2001.

Y. Shin, H. Kawaguchi, and T. Sakurai. Cooperative voltage scal-
ing (CVS) between OS and applications for low-power real-time
systems. In Proc. of the 2001 ICICC, pages 553-556, 2001.

2.2 Useful

C.-H. Hsu and U. Kremer. Compiler-directed dynamic voltage scal-
ing based on program regions. Technical Report DCS-TR461, Rut-
gers University, November 2001.

S. Lee and T. Sakurai. Run-time voltage hopping for low-power
real-time systems. In Proc. of the 2000 DAC, pages 806809, 2000.

R. Melhem, N. AbouGhazaleh, H. Aydin, and D. Mosse. Power
Aware Computing, chapter Power Management Points in Power-
Aware Real-Time Systems. Plenum/Kluwer Publishers, 2002.

[MACMOO] D. Mosse, H. Aydin, B. Childers, and R. Melhem. Compiler-

[GKO1]

[GKO3]

[Gru00]

[LCBKO1]

[LJ0O]

[LK99]

[SAHE02]

[SC99]

[YDS95]

assisted dynamic power-aware scheduling for real-time applications.
In Workshop on Compilers and Operating Systems for Low-Power,
October 2000.

3 Task Group Level DVS

F. Gruian and K. Kuchcinski. LEneS: Task-scheduling for low-
energy systems using variable voltage processors. In Proceedings
of the 2001 Asia South Pacific — Design Automation Conference,
pages 449-455, January 30 — February 2 2001.

F. Gruian and K. Kuchcinski. Uncertainty-based scheduling:
Energy-efficient ordering of tasks with variable execution time. In

International Symposium on Low Power Electronics and Design
(ISLPED’08), August 2003.

F. Gruian. System-level design methods for low-energy architec-
tures containing variable voltage processors. In B. Falsafi and T.N.
Vijaykumar, editors, Lecture Notes in Computer Science, number
2008, pages 1-12. Springer, 2000. First International Workshop on
Power-Aware Computer Systems.

J. Liu, P. H. Chou, N. Bagherzadeh, and F. Kurdahi. Power-aware
scheduling under timing constraints for mission-critical embedded
systems. In Proceedings of the 88th Design Automation Conference,
pages 840845, June 2001.

J. Luo and N. K. Jha. Power-conscious joint scheduling of periodic
task graphs and aperiodic tasks in distributed real-time systems. In
Proceedings of the 2000 IEEE/ACM ICCAD, pages 357-364, 2000.

Y.-H. Lee and C. M. Krishna. Voltage-clock scaling for low energy
consumption in real-time embedded systems. In Proc. of the 6th IC
RTCSA, pages 272279, 1999.

M. T. Schmitz, B. M. Al-Hashimi, and P. Eles. Energy-efficient
mapping and scheduling for DVS enabled distributed embedded
systems. In Proceedings of the 2002 Design, Automation and Test
in Europe Conference and Ezhibition, pages 514-521, 2002.

Y. Shin and W. Choi. Power conscious fixed priority scheduling for
real-time systems. In Proc. of the 36th DAC, pages 134-139, 1999.

F. Yao, A. Demers, and S. Shenker. A scheduling model for reduced
CPU energy. IFEEE Annual Foundations of CS, pages 374-382,
1995.

[JGO2a]

[JGO2b]

[Gru02]

[QHO1]

[LSD89)

[SSRBYS]

3.1 Useful

R. Jejurikar and R. Gupta. Energy aware edf scheduling with task
synchronization for embedded real time systems. Technical Report
02-24, CECS, UC Irvine, August 2002.

R. Jejurikar and R. Gupta. Energy aware task scheduling with task
synchronization for embedded real time systems. In Proc. of the
2002 CASES, pages 164-169, 2002.

F. Gruian. Energy-Centric Scheduling for Real-Time Systems. Doc-
toral dissertation, Lund University, December 2002. ISBN 91-628-
5494-1, ISSN 1404-1219.

G. Quan and X. Hu. Energy efficient fixed-priority scheduling for
real-time systems on variable voltage processors. In Proceedings of
the 2001 Design Automation Conference, pages 828—833, 2001.

J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic scheduling
algorithm: exact characterization and average case behavior. In
Proceedings of the 1989 Real Time Systems Symposium, pages 166—
171, 1989.

J. A. Stankovic, M. Spuri, K. Ramamritham, and G. C. Buttazzo.
Deadline Scheduling For Real-Time Systems: EDF and Related Al-
gorithms. Kluwer Academic Publishers, 1998.

Sponsored by:

’B” i* ‘qm

Low Power Circuits/Systems Design
and Dynamic Voltage Scaling

Kiyoung Choi

School of Electrical Engineering and Computer Science
Seoul National University, Korea

Low Power Circuits/Systems
Design and Dynamic Voltage
Scaling

July 21, 2003
ESSES

Kiyoung Choi
School of EECS
Seoul National University

Introduction
Introduction

* Low power design
— Increasing demand on performance and integrity of VLSI
circuits
— Popularity of portable devices
* Low power design at higher levels of abstraction
— Faster design space exploration
— Wider view
— Higher power reduction
— Less cost increase

Introduction

— Opportunities for power reduction at every level of

abstraction

algorithms, HW-SW tradeoffs,

-00°;
System 50-90% supply voltage scaling, bus encoding
. scheduling, resource binding,
Architecture 40-70% operand swapping
clock gating, operand isolation,
Register-Transfer | 30-50% pre-cor_nputatuon, .
dynamic operand interchange,
FSM encoding
technology mapping,
Gate / Logic 20-30% | don’t care optimization,
de-glitching
Transistor 10-20% transistor sizing
Physical 5-10% interconnect capacitance reduction,
= ‘o

clock-tree synthesis

— Power dissipation in CMOS circuits
¢ Dynamic power dissipation (dominant)
e Short-circuit power dissipation
¢ Leakage power dissipation

— Dynamic power dissipation

ceﬁ Vtﬁl fclk

P dynamic

a C,,

2
Vdd fclk

C.r: effective (switched) capacitance

f.: clock frequency
« : switching activity

V,q : supply voltage

: physical capacitance

1 - 1
Physical/Transistor/Gate-Level Design

* Interconnect capacitance reduction
— Signals having high switching activity are assigned
short wires
* Clock-tree synthesis
— Clock is a major source of dynamic power dissipation

— Clock of 200MHz DEC Alpha chip drives 3250pF load,
3.3V supply voltage => 7W (30% of the total power)

— Clock skews must be controlled within tolerable values

Distributed buffers scheme

Single driver scheme - (preferred)

Physical/Transistor/Gate-Level Design
* Transistor sizing
— Compute the slack at each gate

Sizes of the transistors in the gate are reduced until the
slack becomes zero

Reduced size => reduced capacitance => reduced power
Critical path is not affected
Path balancing => reduced glitch => reduced power

¢ Technology mapping

— V. Tiwari, P. Ashar, and S. Malik, “Technology mapping
for low power,” Proc. of Design Automation Conference,
PP- 74-79, June 1993

— Hide nodes with high switching activity inside the gates
where they drive smaller load capacitances

H

L

Physical/Transistor/Gate-lLevel Design
e De-glitching

— Glitch consumes 10% - 40% of the dynamic power in
typical combinational logic circuits

BS AS Bz A2 B1 A1 Bo A0

— Path balancing

¢ Add unit-delay buffers selectively such that the delays of
all paths can be made equal

RTL Design
e Clock gating
— Disable clocks to idle part of the circuit
— Saves clock power and power consumed by registered
value change

data

control

clock

RTL Design

e Operand isolation
— Exploit output don’t cares of large circuit blocks in
unused clock cycles
— Insert latches before the circuit blocks to reduce circuit
activity

control

clock

RTL Design
* Pre-computation
— Pre-compute the results of subsequent pipeline stages

clock

— Comparator example

A[MSB;J__»>C
B[MSB

* Dynamic operand interchange

— T. Ahn and K. Choi, “Dynamic operand interchange for
low power,” Electronics Letters, pp. 2118-2120, Dec.

1997

— Switching activity of 16-bit array multiplier

RTL Design

1800

1600

-
F3
[=]
o

1200

1000

800
600
400
200

0

Switching activity

Tt

tet
let
| <%

— Architecture

tet
tet

-+ ++ =+ + — — — —
R I 2 R R A
-+ — H A+ =+ — H +— + —
Sign change

hk+1) | | b(k+1)

h(K)

Register1 | | Register2

4

4
/]

L(k)

Estimator

Change.

DFF

T

Py

Execution Unit

RIL Design
* FSM encoding

— C.-Y. Tsui, M. Pedram, C.-A. Chen, and A.M. Despain,
“Low power state assignment targeting two- and multi-
level logic implementations,” Proc. of Int’l Conf. on
Computer-Aided Design, pp. 82-87, Nov. 1994

Low power state encoding of FSM

Reduce switching activity on state bit lines

* Cost function: ; p;H(S,S))
sSes

where p; is the transition probability from state S; to state
S;and H(S; to state S) is the Hamming distance between
the encodings of the two states

Also reduce power consumed in the combinational logic

Architecture-Level Design
* Supply voltage reduction
— Quadratic effect of voltage scaling on power

2 2
Paynamic = Cor Vau fon Eoynamicseycie = Cott Vau

5V --> 3.3V => 60% power reduction
— Supply voltage reduction => increased latency
_vV__
V-V,)*
energy delay

T, =K,

Use of optimizing transformation for meeting
throughput constraint even with the voltage reduction
Concurrency increasing transformation (increased
hardware cost) => critical path reduction

Loop unrolling, pipelining, retiming, algebraic
transformation, module selection

¢ A.P. Chandrakasan, M. Potkonjak, R. Mehra, J. Rabaey, and
R.W. Brodersen, “Optimizing power using transformation,”
IEEE Tr. on CAD/ICAS, pp. 12-31, Jan. 1995

YN'1 =AYN-2+XN'1 YN-1 =AYN'2+XN'1

XN
Xy Yn
C=1
Voltage=5 5 C=1.5 A
Throughput=1 Voltage=3.7
Power=25 Throughput=1
A Power=20

Xy
C =15
Voltage=2.9 A
Throughput=1
Power=12.5

X

* Reduction of effective capacitance

— R. Mehra, L.M. Guerra, and J.M. Rabaey, “Low power
architectural synthesis and the impact of exploiting
locality,” Journal of VLSI Signal Processing, 1996

— Buses consume 5-40% of the total power
— Reducing access to global resource thru clustering

-3 Global data transfers
—5 Local data transfers

Adder1

Adder2

* Switching activity reduction
— Increasing data correlation thru operand sharing
¢ Operations sharing an operand also share resource

¢ Actively increase the chance of operand sharing thru loop
interchange, operand reordering, loop unrolling, loop
folding

— Loop interchange

fori
for j
for k
forl

for k
forl
a=f(k, I)

fori

a=f(k, I) for j
b=A(i, j, k, I) b=A(i, j, k, I)
c(i,j)=a-b c(i,j)=a-b

— Operand reordering
e 4th order LMS adaptive filter

i+
i+2
i+3

i+
i+2
i+3

Reordering A
MO M1 M2
(xt; ho) (xe1, 1) (Xe2, h2)
(Xt+1; o) (xe, hy) (xe1, h2)
(Xta2s o) (Xta15 1) (xe h2)
(Xtsas o) (Xts2s 1) (Xe15 h2)
Reordering B
MO M1 M2
(xg ho) (Xt hy) (xe2, h2)
(x 1) (Xt1, ho) (Xt2; hs)
(xg h2) (Xt1, ha) (Xta2s ho)
(xy h3) (Xt43, ho) (Xts2s)

— Loop unrolling
¢ E. Musoll and J. Cortadella, “High-level synthesis

techniques for reducing the activity of functional units,”

(X2, hs)
(X1, ha)
(xt, hs)

M3
(Xe3, ha)
(Xt15 ho)
(Xea1, 1)
(Xe15 h2)

Proc. of Int’l Symp. on Low Power Design, pp. 99-104, Nov.

1995

* Low-pass image filter

a0 al1a2 a3 a4 b0 b1 b2 b3 b4 cO c1¢c2 c3 c4

out0 outl out2

ali+1][j]+

fori=0to M
forj=0to N
out=ali-1][j-1]+ /*a0*/
afi-1][jl+ ra1*
afi-1][j+1]+ /*a2*/
alilj-11+ /b0
a[iljl+ rb1Y
alilj+11+ /b2

a[i+1][j-11+ /*co*/

PFetl*

ali+1][i+1] /*c2*

a0 al azll:ogwbz {0 f1 c2

— Loop folding
¢ D. Kim and K. Choi, “Power-conscious high level synthesis
using loop folding,” Proc. of Design Automation
Conference, pp. 441-445, June 1997
¢ Fold two consecutive iterations in such a way that h(i) *
x[n-i] for y[n] and h(i+1) * x[(n+1)-(i+1)] for y[n+1] are
computed consecutively in one shared multiplier

yinl=Shxln—i] ==p Significant effects on DSP
1
i

applications such as filters

yin]=0 +hxx[n-i]+0
yln+1]=0 +h,, Xx[(r+1)~(i+1)] +0

0

0

(1...N-1)

mO[n-1] =hOx[n]

“outfn-1] = m0[n-1J+m1[n-1]

— Binding

m1[0] = h1x[0]

loop folding { (1, N-2)

s | mO[n-1] = hox[n
minl=hixin

out[n-1] =mO0[n-1]+m1[n-1]

mO[N-2] = hOx{N-1]
out[N-2] =mO[N-2]+m1[N-2]

¢ A. Raghunathan and N. K. Jha, “Behavioral synthesis for
low power,” Proc. of Int’| Conf. on Computer Design, pp.

318-322, Oct. 1994

* Binding based on edge weighted compatibility graph

— weight = (1-W)W,

where W, is transition activity (higher 1-W, -> lower activity)
W, is capacitance weight (higher W, - lower capacitance)
¢ Functional unit and register sharing

¢ Controller optimization to reduce power consumed during
idle time of functional units

— use don’t cares

— select the mux port with least transition activity
— disable loading into registers

txséto!

high low
activity activity

‘X’9‘1 s

— Scheduling and binding

¢ E. Musoll and J. Cortadella, “Scheduling and resource binding for
low power,” Proc. of Int’| Symp. on System Synthesis, pp. 104-109,
Apr. 1995

¢ Resource sharing by sibling operations

¢ Operations sharing the same operand are scheduled in control
steps as close as possible (higher priority is given for list
scheduling)

traditional modified
¢ After functional unit binding, bind registers such that useless
power is reduced (no change of inputs to idle functional unit)
* A few sibling operations available in normal circuits

— Scheduling and binding
¢ A. Raghunathan and N. K. Jha, “An iterative improvement
algorithm for low power data path synthesis,” Proc. of Int’]
Conf. on Computer-Aided Design, pp. 597-602, Nov. 1995
* Thorough power minimization including voltage scaling,
clock selection, and module selection as well as
scheduling and binding
¢ lterative improvement
¢ Pruning for efficiency of the algorithm
— supply voltage pruning:
prune V4, if the lower bound of power at V4, is greater than
the best solution seen
— clock period pruning:
Consider only T, such that T, x i = T, for some integer i,
and sampling period T,

Tok < Tone and [delay/T 1 =[delay/T,,.] for all functional
unit template t => prune T,

SCALP (CDFG G, Sample Period T, Library L) {

V,..=estimate_min_volt(G, T, L);

Viax=3V;

best_dp=null;

cur_dp=null;

for(Vou=Vonins VaaSVmax Vaa=Vaa+AV) {
if(V44_prune(G,cur_dp,V,,)) continue;
for(csteps=max_csteps; csteps>min_csteps;

}
}
}

csteps=csteps-1){

if(clk_prune(G, L, csteps)) continue;
cur_dp-=initial_solution(G, L, V,,, csteps);
iterative_improvement(G, L, cur_dp);
if(power_est(cur_dp) < power_est(best_dp))

best_dp=cur_dp;

} iterative_improvement(G, L, DP) {

do {

for(i=1; i < max_moves; i=i+1) {

gain, = generate_moves(G, L, DP);
append gain, to gain_list;

}

}

find subsequence, gain, _gain, in

if(G>0) {

}
until(G<0);

gain_list so that G=Xgain, is maximized;

accept moves 1...k;

— Scheduling and binding

¢ D. Shin and K. Choi, “Low power high level synthesis by

increasing data correlation,”

Proc. of Int’l Symp. on Low

Power Electronics and Design, pp. 62-67, Aug. 1997

¢ Simultaneous scheduling an

d binding in such a way that

input data correlation between consecutive inputs increase
¢ (Modified) list scheduling is used for efficiency

e DBT (Dual Bit Type) method

for estimating switched

capacitance in execution units
— P.E. Landman and J.M. Rabaey, “Architectural power analysis:
the dual bit type method,” IEEE Tr. on VLSI Systems, pp. 173-
187, June 1995

traditional list scheduling

modified list scheduling

System-Level Design
e System-level power optimization

* Low-power compilation
Power o & * Memory mapping
estimation/simulation - a i Pl - [nstruction compaction

*VSP
* Power-conscious scheduling
* OSPM

:
:
- ;
* Bus coding
« Interface exploration

e Power consumption in processors
— Buses consume significant power

¢ Capacitive load at I/O of a chip is three orders of
magnitude larger than that of internal nodes

— Example
¢ D. Liu and C. Svensson, “Power consumption estimation in
CMOS VLSI chips,” IEEE JSSC, pp. 663-670, June 1994

4 r @ Alpha 21064
35 L] Ointel 80386

[2]
o
T

N
o
T

Power consumption (%)
a 3

-
o o
T T

=)

Clock Wire Offchip Memory

o

System-Level Design

e Power consumption in portable embedded

systems

— Power consumption in processors becomes more
significant as increasing amount of functionality is

realized through software

— Example

e T. Truman, T. Pering, R. Doering, and R. Brodersen, “The
InfoPad multimedia terminal: a portable device for wireless
information access,” IEEE Transactions on Computers, pp-
1073-1087, October 1998

40 -

N W ®
g o O

Power consumption (%)
3

casa

2
k-1
@
o

Processor

Low power design issues

]

Vo

LCD

=
|]

DC/DC

etc.

System-Level Design

— L. Benini and G. De Micheli, “System-level power optimization:
techniques and tools,” Proc. of Int’| Symp. on Low Power
Electronics and Design, pp. 288-293, Aug. 1999

— Memory optimization

¢ Memory hierarchy, cache size, memory size (related with software

transformation), data transfer and placement

¢ E.g. large cache size 2 low cache miss - high speed and low

power, but large capacitance
— Hardware-software partitioning

¢ Power consumption in hardware, software, and interface
— Instruction-level power optimization
¢ Dedicated low-power instruction set, instruction transformation,

— Variable-voltage

¢ Dynamically variable voltage supply

o Effective

— Dynamic power management

* Low-power sleep state
* Predictive, stochastic
e Standard (OnNow, ACPI)

— Interface power minimization

¢ Bus encoding

Bus Encoding

* Reduce number of transitions on high-
capacitance, multi-bit buses by encoding the
signals

e Example
— Bus-invert coding

* M.R. Stan, W.P. Burleson, “Bus-invert coding for low-
power 1/O,” IEEE Trans. on VLSI Systems, Vol. 3, No. 1, pp.
49-58, Mar. 1995

high-capacitance

00110001

toggl
otoo1100 ©to99les

|_)‘D

00110001 0
toggl
10110011 1 > togdles

Narrow Bus Encoding
Narrow Bus Encoding

* Y. Shin and K. Choi, “Narrow bus encoding for
low power systems,” Proc. of Asia South Pacific
Design Automation Conf., pp. 217-220, Jan. 2000

* Previous work

— Bus-invert coding
¢ Appropriate for uncorrelated patterns
* Redundant encoding
— Transition signaling
¢ Logic 1 - transition, logic 0 -> no transition (or vice versa)
¢ Efficient when the signal probability is biased
¢ Reduce number of 1’s -> reduce transitions

Transmitting chip Receiving chip

D L e o -

Narrow Bus Encoding
— Probability-based mapping

¢ S. Ramprasad, N.R. Shanbhag, and N. Hajj, “A coding
framework for low-power address and data busses,” IEEE
Tr. on VLSI Systems, Vol. 7, No. 2, pp. 212-221, June 1999

¢ Appropriate for coding PCM signals
¢ Very high complexity of coding logic
¢ Irredundant encoding

00000101 (60%) 00000000
00001111 (25%) ||~ 00000001
00001010 (10%) 00000010
11110110(3%) 00000100

[) [)

[] []

[] []

Narrow Bus Encoding

* Motivation
— Core-based design

¢ A lot of components integrated into a chip

e QUALCOMM MSM3000: ARM7TDMI, DSP, CDMA processor,
DFM processor, several peripheral interfaces

l Excessive number of pins

Narrow bus
ARM7TDMI (32-bit microprocessor core)
— support different data transfer size
(Byte, Halfword, and Word)

i

How to encode ?

e Coding for a narrow bus

MSB LSB
0000010110101111
0000101010010100
1111101001100000
0000000100000100

time 0000001101111100

MSB LSB
0000010110101111
0000101010010100
1111101001100000
0000000100000100

time 0000001101111100

Temporal correlation disappears
Spatial correlation and randomness interleave

00000101
10101111

00001010
10010100
11111010
01100000
00000001
00000100
00000011
01111100
37 transitions

— Mapping for narrow bus
¢ Low-power: reduced transition
¢ Irredundant: one-to-one mapping

¢ Low-overhead: simple logic
0111 1111 1000 §+s
0110 1110 1001 l:

0101 1101 1010 o, SEMDMIY

Frequency (%)

0100 11ooEi1o11 e e 0 m ek o
0011 1011771100
0010 1010 1101 a0}
0001 1001 11108 [e
Ez.n— ; P
0000 1000 11118,
2
Half Identity Half Reverse *° |
0.0 i
128 96 64 32 0 32 64 9
Pattern value
Narrow Bus Encoding

— How to obtain hihr mapping
¢ If MSB=1, invert lower (n-1) bits
* else, identity

0111 o111 1111 1000
0110 0110 1110 1001
0101 0101 1101 1010

o1oo§§i0100 11005131011
00117 0011 1011 71100

0010 0010 1010 1101
0001 0001 1001 1110
0000 0000 1000 1111

Proposed coding method
hihr mapping + transition signaling

00000101
10101111
00001010
10010100
11111010
01100000
00000001
00000100
00000011
01111100
37 transitions

00000101
10101111
00001010
10010100
11111010
01100000
00000001
00000100
00000011
01111100
37 transitions

- 00000101

00000101
—> 11010101

00000101
10101111
00001010
10010100
11111010
01100000
00000001
00000100
00000011
01111100
37 transitions

00000101
10101111
00001010
10010100
11111010
01100000
00000001
00000100
00000011
01111100
37 transitions

00000101
11010101

— 01011111

00000101
11010101
01011111
10110100
10110001
01010001
01010000
01010100
01010111
00101011
26 transitions

¢ Experimental Results

— Data sets

e 2 sets from speech samples: 16 bit
* 2 sets from music signals: 16-bit
¢ 2 sets from FFT processor: 20-bit
— Width of narrow bus
¢ Half of original width
— Number of transitions

e Hihr+ TS
e pbm

e BI+TS
e Bl

— Coding logic

Savings = 35.7%
Savings = 39.5%
Savings = 42.8%
Savings = 17.9%

Narrow Bus Encoding

¢ Synthesized and mapped onto TSMC 0.35um, 3.3 V gate

library

* Assume 100 MHz clock
— Encoding logic
e Hihr + TS Area= 4659um?, Delay=0.38ns, Power= 411uW

* BI+TS
* Bl

Area=18626um?, Delay=3.87ns, Power=2409uW
Area=19076um?, Delay=3.29ns, Power=2309uW

— Decoding logic

* Hihr+ TS

Area= 9968um2, Delay=0.38ns, Power=1618uW

* BI+TS Area=11392um?, Delay=0.38ns, Power=2102uW

Area= 2662um?, Delay=0.15ns, Power= 120uW

Narrow Bus Enceding
— Overall power savings during off-chip driving

Speech Music

50 50
40 = | .. S 40 ~#—BI+TS
“ - N sz Hihr#TS
30 e BI 30
20 i BI+TS 20
\\\\k\\\\\\- Hihr+Ts
10 10
1] L 0

e Case study
— Digital hearing aid (DHA) system

* DSP core supports special instructions for 8-bit wide
narrow bus communication

¢ Savings = 37.5% (10 pF total off-chip capacitance)
~ 40.8% (30 pF total off-chip capacitance)

P ial -Inv i
Partial Bus-Invert Coding

e Y. Shin, S. Chae, and K. Choi, “Partial bus-invert
coding for power optimization of system level
bus,” Proc. of Int’| Symp. on Low Power
Electronics and Design, pp. 127-129, Aug. 1998

¢ Address patterns
— Instruction address: mostly sequential

— Data address: less sequential than instruction address
and less random than data

¢ Partial Bus-Invert (PBI) coding
— Apply Bus-Invert (Bl) coding to a sub-set of bus lines
— Reduced overhead of coding logic

— Efficient for data address busses of special-purpose
applications

¢ Motivation

B,ooo11010 B, 0001101060
B, 01110001 B, 10001110t
B, 00110001 B, 110011101
B,01001110 B, 0100111060
B, 10100111 B, 010110001
Original patterns (1~ time After Bl coding
8 transitions) (11 transitions)
B, 000110100
B, 046110101

n

010110101
0146011100
1100110061
A A A
After PBI coding
(8 transitions)

W oW

)

Unchanged

Partial -Inv i
* PBI coding
— Partition a bus into two sub-buses S, R
¢ S:involved in Bl coding
* R: unchanged at all times
— Process of PBI coding
e Compute Hamming distance between Si-1’ and Si

« If it is larger than |S|/2, set invert=1 and invert the lines in
Si without inverting the lines in Ri

¢ Otherwise, set invert=0 and let entire bus lines unchanged

S;: value of S at time i
S;: encoded version of S,

e Sub-bus selection algorithm
— Problem
¢ Given a set of patterns

¢ Partition a bus into a configuration (S, R) in a way that
transitions are minimized

— Optimum set Sopt

¢ Infeasible to find because there are 2n possible
configurations

— Observation
* Bl coding is effective when most bus lines make
transitions together
— Heuristic
* Exploit transition probability and transition correlation
e Select a seed line with highest transition probability
* Then perform clustering bus lines

Partial -Inv i

B, 0400110100 B, 00G110100 B, 0oG11010¢0
B, 011100010 B, 00G10001 1 B, 00110011
B, 001100010 B; 016100011 B; 016110011
B, 010011100 B, 0146011100 B, 01¢011100
B, 1410011190 B, 1146001111 B; 116011111

Config. 1 (18 transitions) Config. 2 (15 transitions) Config. 3 (12 transitions)
B, 0o 110100 0001?01{}0 000110100
B, OGG11000 1 0001?010? 000010101
B; 016110001 0101?010? 010010101
B, 016011100 01(}011100 010011100
B, 116011101 11(}0?100§ 1181110061

Config. 4 (9 transitions) Config. 5 (8 transitions) Config. 6 (9 transitions)

B, 00110100 B, 00G1106100
B, 0OsoOo11101 B, 106011101
B; 0106011101 B; 116011101
B, 016011100 B, 106011100
B, 18010061110 B; 016110001
Config. 7 (10 transitions) Config. 8 (11 transitions)

Partial Bus-Invert Coding
— Overhead of encoding/decoding circuits
¢ XOR gates + majority voter
* Models with C,, (average load capacitance of internal
nodes) and T, (total number of transitions in the
encoding/decoding circuits)
— Estimation of T;;
* Approximate to transitions in the majority voter
* Tm=xN(m+1)a, L
— x: gate equivalents of a FA

— N(x): approximate number of FAs in the majority voter and
equals to x-2

— ap: average transition probability of m bus lines
— L: the number of patterns

Total effective bus transitions T = Ty, + C,/Cpus Tint

P ial -Inv i
¢ Experimental Results

— Data sets
e Set 1: Compress, Laplace, Linear, Lowpass, SOR, Wavelt
¢ Set 2: Parser, FFT (patterns from MPEG-2 audio and AC3-
Decoder)
— Total bus transitions
* PBI encoding
— Set 1: savings = 62.6% (62.5% lines encoded)
— Set 2: savings = 48.5% (36.2% lines encoded)
¢ Bl encoding
— Set 1: savings = 38.1%
— Set 2: savings = 1.4%
— Total effective bus transitions (including
encoder/decoder overhead)
* PBI encoding
— Set 1: savings = 59.1% (56.3% lines encoded)
— Set 2: savings = 45.5% (36.2% lines encoded)

Dynamic Voltage Scaling
Dynamic Voltage Scaling
Dynamic power dissipation Gate delay by o power model
_ 2
denamic - Ceﬁ‘VddfcIk Tg = Kd Lﬂ
E | v _Vth)
nergy per cycle .
— (V _Vh)
E per _cycle = Ceﬁ' Vdfi fdk - Kf \% :

Energy consumed by a task that takes n cycles
Etask = Ceﬁ"Vdfin
- not a function of time but a function of # cycles (switchings)

performance

full speed
shutdown

Vaa> fera [1 11, E=CgVin

| %
PG Fus =Car =

0 deadline

* DVS on a Microprocessor System

Dynamic Voltage Scaling

— T. Pering, T., and R. Brodersen, “Dynamic Voltage
Scaling and the Design of a Low-Power Microprocessor
System,” in Power Driven Microarchitecture Workshop
in conjunction with ISCA98, June 1998

— System block diagram (ARM8 architecture)

\\\\

;

]

— System energy breakdown

Cache
33%

Processor Bus
7%

SRAM
2%

\

Core
58%

Benchmark Miss Idle Bus
Rate Time | Activity
AUDIO 0.23% 67% 0.35%
MPEG 1.7% 22% 14%
ul 0.62% 95% 0.52%

— DC-DC Converter
¢ Buck converter

Vi, /. NY\J_VM
I 1

A

¢ 0.6um, 3-metal, 1-poly CMOS -> die size:1.6mmx3.4mm
1.0V-4.0V dynamically adjustable output

o Efficiency: 88% at 1.1V, 5mA, 5MHz
95% at 3.3V, 200mA, 100MHz

1.1V->3.3V transition time=20ms
1.1V->3.3V->1.1V transition energy=20mJ

— Commercial DC-DC Converters
¢ Intersil’s ISL6211

— For LongRun power management of Transmeta’s Crusoe
processor

— 0.6V-1.0V in 25mV steps and 1.0V-1.75V in 50mV steps

— With 5V input and 1.3V output, ~90% efficiency depending on
the output current

¢ TI’'s TPS62200
— With 3.6V input and 1.5V, 1.1V output, >90% efficiency

OMAP1510
TPS62200
15Vor1.1V
2.5V to 6V VIN S J_ VDD VDDS|— 2.8V
Tl -
GND FB T I LP =

:

L

0V or 2.8V

AY
J1

Dynamic Voltage Scaling
— Frequency to voltage feedback loop

e T. Burd, T. Pering, A. Stratakos, and R Brodersen, “A
dynamic voltage scaled microprocessor system,” IEEE
International Solid-State Circuits Conference, 2000

VBAT
P
Digital |— FET [CI \/
Loop Non Control & -
Filter Drivers |
FERR I
£ — =
1MHz ®
5
A
A
V':I;:ar;e _| Desired Freq.
Scheduler Register ¢ ¢
fork Ring CPU
Y Oscillator SRAM, /O
Main CPU Clock

Real:-Time Scheduling on a VSP
Real-Time Scheduling on a VSP
e Y. Shin and K. Choi, “Power conscious fixed
priority scheduling for hard real-time systems,”
Proc. of Design Automation Conf., pp. 134-139,
June 1999
* Two methods for power reduction in processors
— Power-down mode
— VSP (Variable Speed Processor)

How to exploit these features ?
— Scheduling

— Proposed method:

* Combine the two methods to obtain power saving for real-
time systems

¢ Exploit execution time variation and idle interval

Related work
— Power-down mode
¢ Conventional method: power-down after predefined idle period

¢ Prediction-based methods

— M. Srivastava, A. Chandrakasan, and R. Brodersen, “Predictive system
shutdown and other architectural techniques for energy efficient
programmable computation,” IEEE Trans. on VLSI Systems, Vol. 4, No.
1, pp. 42-55, Mar. 1996

— C.-H. Hwang and A. Wu, “A predictive system shutdown method for
energy saving of event-driven computation,” Proc. of Int’l Conf. on
Computer-Aided Design, pp. 28-82, Nov. 1997

— Dynamic voltage scaling on a VSP

¢ Analysis of dynamic voltage scaling schemes

— T. Pering, T. Burd, and R. Brodersen, “The simulation and evaluation
of dynamic voltage scaling algorithms,” Proc. of Int’l Symp. on Low
Power Electronics and Design, pp. 76-81, Aug. 1998

¢ Adaptive scaling of the supply voltage in self-timed circuits

— L.S. Nielsen, C. Niessen, J. Sparso, and K. van Berkel, “Low-power
operation using self-timed circuits and adaptive scaling of the supply
voltage,” IEEE Tr. on VLSI Systems, Vol. 2, No. 4, pp. 391-397, Dec.
1994

¢ Scheduling of real-time tasks

— T. Ishihara and H. Yasuura, “Voltage scheduling problem for
dynamically variable voltage processors,” Proc. of Int’l Symp. on Low
Power Electronics and Design, pp. 197-202, Aug. 1998

Real:-Time Scheduling on a VSP
Priority-based preemptive scheduling
Simple to implement
Many analytical methods for schedulability analysis

Fixed (static) priority (RMS, DMS) — LPFPS (Low Power
Fixed Priority Scheduling)

Dynamic priority 2LPEDF
Implementation of priority-based preemptive
scheduling

— Active task, Run Q, Delay Q

, i
| 100 200 300
a0 : A N A &* A +¢ A

\\ & & &

Active task I i
RunQ ¢ i
i ! ' “— Run Qis empty
The speed of the processor can
Delay Q I | l | be slowed down until time 200,
i E which is min(deadline offf,

next arrival time of Delay Q.head)

0 100 200 300
R g R

The chance for speed control increases
as the variation of execution time increases.

e
N

BCET/WCET
cooooo00
O=MNWhhOO®

jesep
u
posq
yloows
anjq
ejep
-jo0yo
auy

@
2
g
«Q
[}

auosjeym

Variation of execution time [Ernst 97]

0 100 200 300
Active task

Run Q
Delay Q

We can bring the processor
into a power-down mode
because the processor will
be idle until time 200

Whole task resides ip the Delay Q

Next arrival time of Delay Q.head

Real-Time Scheduling on a VSP

e Summary of LPFPS

— Works when the Run Q is empty

— If there is an Active task: speed control

— Else: power-down
* Extension of Basic LPFPS (LPFPS-n)

— Works when |Run Q| =0, 1, ..., n (n < # tasks)

— If there is an Active task: speed control

— Else: power-down

Real-Time Scheduling on a VSP
¢ Experimental results

— Compare average power consumption of VSP
¢ FPS: NOPs are assumed for idle time
* LPFPS: VSP + power-down

e LPFPS-i: VSP + power-down + knowledge of future
execution time > upper bound of power saving

e LPEDF: VSP + power-down
— Applications
¢ Avionics, INS, Flight control, CNC
¢ Timing parameters: period, deadline, WCET

Real-Time Scheduling on a VSP
- VSP

¢ NOP: 20% power consumption compared to typical
instructions

¢ Power-down mode: 5% power consumption of fully active
mode with 10 cycles delay

* Frequency: 100 MHz to 8 MHz with 1 MHz step
e Voltage:3.3Vto 1.1V

— Experimental procedure
¢ Control BCET: 0.1*WCET ~ 1.0*WCET

¢ Execution time: random variable following Normal
distribution with m=(BCET+WCET)/2, ¢=(WCET-BCET)/6

* Run 3 times for each method and take average

¢ Experimental results

% reduction

% reduction

60 Avionics
50 ~#-- FPS+power_down
ca0l - LPFPS
2
S -
ki
®20
L
10 o,
R SR gy
o MR . s,
0.1 0.2 03 04 05 0.6 0.7 08 09 1.0
BCET/WCET
60 Flight control
50 - —4— FPS+power_down
s40 ~a— | PFPS
§ 30
g
x® 20 ’M.,‘M
M
10 | B S
g
0 . . L
0.1 0.2 0.3 04 05 06 0.7 08 09 1.0
BCET/WCET
60 - Avionics ——LPFPS
50 | ~#—|PFPS-|
~#~~ LPEDF
a0 -
30 L
20 L
10
0 P S S U
0.1 02 03 04 05 06 07 08 09 1.0
BCET/WCET
60 Flight control —e—LPFPS
50 | ~&-- LPFPS-|
- LPEDF
40
2.
30
20 |
10
0 A L
0.1 02 03 04 05 06 07 08 09 1.0
BCET/WCET

% reduction

% reduction

60
50
40

30

% reduction

20

10

(=]

% reduction
8 8 8§ 8 8

-
(=]

Real-Time Scheduling on a VOP

60 INS
50 ~4- FPS+power_down
wl ~#—LPFPS
30 -
20 .
10 —*Mww .
i e SN
0 R R
0.1 0.2 0.3 04 05 06 0.7 0.8 09 1.0
BCET/WCET
60 CNC
50 .
40 -
30 L ~4- FPS+power_down
e SN —a—|PFPS
20 + ..,
B,
Gy
10
0 L
0.1 0.2 0.3 04 05 06 0.7 0.8 09 1.0
BCET/WCET
Real-Time Scheduling on a VSP
. INS
—e—LPFPS
L —a— LPFPS-|
N i LPEDF
| By
01 02 03 04 05 06 07 08 09 1.0
BCET/WCET
r CNC o iprps
o ~a LPFPS-|
I S ~4 LPEDF
] e S b

01 02 03 04 05 06 0.7 08 09 1.0
BCET/WCET

Real-Time Scheduling on a VOP

100 - ~4¢~LPFPS 100 - ~-- LPFPS
Avioni INS
% r onieS g LpFps-1 % r 8- LPFPS-1
80 —#-LPFPS-2 80 - ~h~ LPFPS-2
70 f 70 -
Seol Se0
- £
i i
247 <%0 %%MW%
o o o
[+ %0 ¢ R
e
% W 20 -
10 f g = 10t
oL o
01 02 0.3 0.4 05 06 0.7 0.8 09 1.0 01 02 0.3 0.4 05 06 07 08 09 1.0
BCET/WCET BCET/WCET
100 - ' —e—LPFPS 100 1 - LPFPS
o L Flight control - LPFPS 9 CNC —& LPFPS-1
80 iy LPFPS-2 80 e LPFPS-2
70 70
260 f Se0 & .
g0 ¢ gso | g 4
29 | g, 4T ST,
o gy 30t
20 20 |
10 10 |
0 s oL R
01 02 0.3 04 05 06 07 08 09 1.0 01 02 03 04 05 0.6 0.7 0.8 0.9 1.0
BCETWCET BCET/WCET
Real:-Time Scheduling on a VSP

e Computation of Maximum Speed

— Y. Shin, K. Choi, and T. Sakurai “Power optimization of
real-time embedded systems on variable speed
processors,” Proc. ICCAD, 2000

SPmax (T, C) i i =
I 05 0 100 200 300
B (0, 10) N S
(100, 20) .

nSPmax

=0.5SPmax i
u (50, 10) 0 100 200 300
= (80, 20) 1 4 A A A A A ,g.é A
s (100, 40) ® &
O R e g

C.

¢;'=—=2c

Real-Time Scheduling on a VOP

— How to compute n

¢ Schedulability analysis is needed only at scheduling
points
— J. Lehoczky, L. Sha, and Y. Ding, “The rate monotonic
scheduling algorithm: exact characterization and average
case behavior,” Proc. IEEE Real-Time Systems Symposium,

Dec. 1989.
,lklﬂ}
T].

S, = {ij

= {Si,l’Si,Z’Si,j""}
— Task 1; is schedulable if the following inequality is satisfied

=1 i

dte S, such that ZC][TL“ <t

— At reduced speed,

iJj

i S. .
S.; € S; such that Zﬁ[—f} <S

= 1| 1y

i Si]
Sal
7> k=1 T,]
1 Sl’]
i [s. .
Sl
= k
ni =m1nj Si,j
n=max; 7,

ra-

Intra-Task Dynamic Voltage Scaling

e S. Lee, T. Sakurai, “Run-time voltage hopping for
low-power real-time systems,” Proc. DAC, 2000

— DVS system architecture

* Generate fg, , fo /2, fo /3, -

to avoid interface problem

¢ Voltage-frequency Lookup table

is used
DC-DC Voo
Converter
Ring
DC-DC _VDD Oscillator
Converter
T f(:LK
CPU,
Software SRAM, /O CPU,
] Desired Freq. SRAM, VO
Register
Freq. T
Synthesizer [f Software
- i 1
— Run-time voltage hopping
¢ A task is divided into N timeslots.
¢ For each timeslot, calculate
Trar=TweTri-Tace-To
* Select best fy 4
¢ Obtain V,,, from the lookup table
1] 2 | 4| LN
1]2 3
TACC TTAR TD TRS
fyan=foLi/2 3 < Clock frequency for
timeslot 2 was f;, /2
fuar=foL/3 TJ

Intra-Task Dynamic Voltage Scaling
e S.Lee, S. Yoo, and K. Choi, “An intra-task
dynamic voltage scaling method for SoC design
with hierarchical FSM and synchronous dataflow
model,” Proc. ISLPED, 2002
— To cope with productivity issues with ever growing
complexity of SoC design,

¢ Adopt design methodologies based on formal models of
computation to enable shorter design cycle by formal
analysis.

¢ E.g. CFSM in Cadence VCC, hierarchical FSM with dataflow
in Synopsys Cocentric System Studio, etc.

— To reduce power consumption
¢ Use dynamic voltage scaling (DVS) technique
* Lower voltage/frequency when slack occurs

* The effectiveness of DVS depends on the accuracy of
slack estimation.

— Hierarchical FSM
¢ {Input, output, states, transitions}
e Hierarchical nesting of FSM, SDF

— Different from State-charts

]

=

=

Vo
i

(a) Example HFSM/SDF model

if(Al.state==S1) {
A3();
Ad(); st1();
}
else {
AS();
A6(); st2();
}
if(A2.state==S3) {
10 A7();
11 A8(); st3();
12 }
13 else{
14 A9();
15 A10(); A10(); std();
16 }

XA EAR W=

(a) Generated Code Example

WCET of A3, A4

=[1, 4]

[1,1]

if(Al.state==S1) {
A3();
Ad(); stl();
} ~F e
else { \x d \\
AS(); s
A6(); st2();

XA AN AR RWN =

}

if(A2.state==S3) {

10 A7();

11 A8(); st3();

12 }

13 else{

14 A9();

15 A10(); A10(); std();
16 }

(b) Generated Code Example

if(Al.state == S1)

Tru:Alj‘alse

A3,A4 | | A5,A6 [1,4]

S

if(A2.state == S3)

Tru:/\lj‘alse

A7,A8 | [A9,A10

[1,4]

(b) Generated Code Structure

— HFSM/SDF property

¢ Exact execution paths are identifiable from the HFSM/SDF
operational rules, by exploring current states.

If current states are i
n S$1, S3, we know th
at corresponding SD
F graphs {A3, A4}, {A C /
7, A8} will be execute \

d for current state tra

nsition. B8 || Al-ad | | B || AR

— Runtime Path Identification

N RIAAUNT A W -

¢ Code Example

if(Al.state==S1) {

Q.append(A3);
Q.append(A4);
}
else {
Q.append(A5);
Q.append(A6);
}
if(A2.state==S3) {
Q.append(A7);
Q.append(A8);
}
else {
Q.append(A9);
Q.append(A10);
Q.append(A10);

WCET

Slack (S)
Freq. for A, (F) }‘—’{

»la R

" WCETforA, | Remainingworkload (W)

le R

Time to deadline (D)

Speedratio: R = E
D

. — | re (W)
Freq.for A,: F,=RXF, |re e

if(Al.state == S1)
False

Supply
voltage

VnIax
whio | Ww=2

1 True

| 144
|+ maxy i+, 1443

ASA6 | 1,4)

if(A2.state == S3)

True False

time [1,1] A9410([1 4

|A3 |VS| Ay |VS| Asg

if(Al.state == S1)

Supply
lt \WWH D
voltage §\\\\Q\ (A4) True False
v ax. A5,A6 [1,4]
W=7

wW=2 if(A2.state == S3)

False

True

time= [1,1] A9A10| 11, 4)

LAy [vs| A, [VS] A

- i 1

— Dynamic Voltage Scaling with RPI
¢ Example

Al sl Aa] Al

(a) Execution path identified during runtime

== - I DVS w/o RPI
Supply V1 V2 e - .
9
voltage v, v, :
1
DVS w/ RPI V3

v

v

time t, t t, ot 5t bt ot
(b) Intra-task DVS based on exact execution paths

Slack (S)
Freq. for A, (F,) }4—’{

»ld »

" WCET for A, T Remaining workload (W)]

|A .

Time to deadline (D)

: w
Speedratio: R = k: 1 if this is the first

D=k Ty —n-Tyg invocation of voltage
scaler, 0 otherwise.

Freq. for Al : Fl =RX FO n: # of remaining actors

Intra-Task Dynamic Voltage Scaling
— HFSM-SDF model of MPEG4
¢ 9 hierarchical FSMs, 31 states, 44 state transitions
¢ 89 SDF actors (10 hierarchical, 79 leaf actors)
* Target architecture
— Energy simulator based on commercial ISS (ARMulator)
augmented with ARM8 variable voltage processor energy
model
— Include energy model of underlying (cacheless) memory
subsystems

Intra-Task Dynamic Voltage Scaling
e Comparison of energy consumption

Power WCEP ACEP Proposed
down

214 m]J 174 m]J 158 mJ 138 m]J

4 4 Power down
38 EoE WCEP
ey |
N
Supply _-L.I] 1
Voltage 2.5 -_L e lt’ ACEP
1
(V) 2 - 1 :
! Proposed
1.5 —
|
1 Time
References
References

V. Tiwari, P. Ashar, and S. Malik, “Technology mapping for low power,” Proc. of
Design Automation Conference, pp. 74-79, June 1993

T. Ahn and K. Choi, “Dynamic operand interchange for low power,” Electronics
Letters, pp. 2118-2120, Dec. 1997

C.-Y. Tsui, M. Pedram, C.-A. Chen, and A.M. Despain, “Low power state assignment
targeting two- and multi-level logic implementations,” Proc. of int’| Conf. on
Computer-Aided Design, pp. 82-87, Nov. 1994

A.P. Chandrakasan, M. Potkonjak, R. Mehra, J. Rabaey, and R.W. Brodersen,
“Optimizing power using transformation,” IEEE Tr. on CAD/ICAS, pp. 12-31, Jan. 1995
R. Mehra, L.M. Guerra, and J.M. Rabaey, “Low power architectural synthesis and the
impact of exploiting locality,” Journal of VLSI Signal Processing, 1996

E. Musoll and J. Cortadella, “High-level synthesis techniques for reducing the activity
of functional units,” Proc. of Int’l Symp. on Low Power Design, pp. 99-104, Nov. 1995
D. Kim and K. Choi, “Power-conscious high level synthesis using loop folding,” Proc.
of Design Automation Conference, pp. 441-445, June 1997

A. Raghunathan and N. K. Jha, “Behavioral synthesis for low power,” Proc. of Int’|
Conf. on Computer Design, pp. 318-322, Oct. 1994

E. Musoll and J. Cortadella, “Scheduling and resource binding for low power,” Proc.
of Int’l Symp. on System Synthesis, pp. 104-109, Apr. 1995

A. Raghunathan and N. K. Jha, “An iterative improvement algorithm for low power
data path synthesis,” Proc. of Int’| Conf. on Computer-Aided Design, pp. 597-602, Nov.
1995

D. Shin and K. Choi, “Low power high level synthesis by increasing data correlation,”
Proc. of Int’l Symp. on Low Power Electronics and Design, pp. 62-67, Aug. 1997

References

D. Liu and C. Svensson, “Power consumption estimation in CMOS VLSI chips,” IEEE
JSSC, pp. 663-670, June 1994

T. Truman, T. Pering, R. Doering, and R. Brodersen, “The InfoPad multimedia
terminal: a portable device for wireless information access,” IEEE Transactions on
Computers, pp. 1073-1087, October 1998

L. Benini and G. De Micheli, “System-level power optimization: techniques and tools,”
Proc. of Int’l Symp. on Low Power Electronics and Design, pp. 288-293, Aug. 1999
M.R. Stan, W.P. Burleson, “Bus-invert coding for low-power I/O,” IEEE Trans. on VLS|
Systems, Vol. 3, No. 1, pp. 49-58, Mar. 1995

Y. Shin and K. Choi, “Narrow bus encoding for low power systems,” Proc. of Asia
South Pacific Design Automation Conf., pp. 217-220, Jan. 2000

S. Ramprasad, N.R. Shanbhag, and N. Hajj, “A coding framework for low-power
address and data busses,” IEEE Tr. on VLSI Systems, Vol. 7, No. 2, pp. 212-221, June
1999

Y. Shin, S. Chae, and K. Choi, “Partial bus-invert coding for power optimization of
system level bus,” Proc. of Int’l Symp. on Low Power Electronics and Design, pp. 127-
129, Aug. 1998

T. Pering, T., and R. Brodersen, “Dynamic Voltage Scaling and the Design of a Low-
Power Microprocessor System,” in Power Driven Microarchitecture Workshop in
conjunction with ISCA98, June 1998

T. Burd, T. Pering, A. Stratakos, and R Brodersen, “A dynamic voltage scaled
microprocessor system,” IEEE International Solid-State Circuits Conference, 2000

Y. Shin and K. Choi, “Power conscious fixed priority scheduling for hard real-time
systems,” Proc. of Design Automation Conf., pp. 134-139, June 1999

M. Srivastava, A. Chandrakasan, and R. Brodersen, “Predictive system shutdown and
other architectural techniques for energy efficient programmable computation,” IEEE
Trans. on VLSI Systems, Vol. 4, No. 1, pp. 42-55, Mar. 1996

References

C.-H. Hwang and A. Wu, “A predictive system shutdown method for energy saving of
event-driven computation,” Proc. of Int’l Conf. on Computer-Aided Design, pp. 28-82,
Nov. 1997

T. Pering, T. Burd, and R. Brodersen, “The simulation and evaluation of dynamic
voltage scaling algorithms,” Proc. of Int’| Symp. on Low Power Electronics and
Design, pp. 76-81, Aug. 1998

L.S. Nielsen, C. Niessen, J. Sparso, and K. van Berkel, “Low-power operation using
self-timed circuits and adaptive scaling of the supply voltage,” IEEE Tr. on VLSI
Systems, Vol. 2, No. 4, pp. 391-397, Dec. 1994

T. Ishihara and H. Yasuura, “Voltage scheduling problem for dynamically variable
voltage processors,” Proc. of Int’l Symp. on Low Power Electronics and Design, pp.
197-202, Aug. 1998

R. Ernst and W. Ye, “Embedded program timing analysis based on path clustering
and architecture classification,” Proc. of Int’| Conf. on Computer-Aided Design, pp.
598-604, Nov. 1997

Y. Shin, K. Choi, and T. Sakurai “Power optimization of real-time embedded systems
on variable speed processors,” Proc. ICCAD, 2000

J. Lehoczky, L. Sha, and Y. Ding, “The rate monotonic scheduling algorithm: exact
characterization and average case behavior,” Proc. IEEE Real-Time Systems
Symposium, Dec. 1989.

S. Lee, T. Sakurai, “Run-time voltage hopping for low-power real-time systems,” Proc.
DAC, 2000

S. Lee, S. Yoo, and K. Choi, “An intra-task dynamic voltage scaling method for SoC
design with hierarchical FSM and synchronous dataflow model,” Proc. ISLPED, 2002

Sponsored by:

’B” i* ‘qm

	
	lecturer.ps.rdo
	

	low power dvs.ps.rdo
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	baksida IV.rdo
	

	V.pdf
	
	Jihong Kim omslag.ps.rdo
	

	JK1.ps.rdo
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	ithm for Hard Real-Time Applications.pdf.rdo
	
	
	
	

	
	thod for Low-Power Instruction Fetch.pdf.rdo
	
	
	
	

	
	timization in VLIW Instruction Fetch.pdf.rdo
	
	
	
	
	
	
	
	

	
	w-Energy Hard Real-Time Applications.pdf.rdo
	
	
	
	
	
	
	
	
	
	
	

	
	ithm for Variable Voltage Processors.pdf.rdo
	
	
	
	

	
	ixed-Priority Hard Real-Time Systems.pdf.rdo
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	lgorithms for Hard Real-Time Systems.pdf.rdo
	
	
	
	
	
	
	
	
	
	

	Flavius Gruian omslag.ps.rdo
	

	FG1.ps.rdo
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	Fg2.ps.ps.rdo
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	FGesses_ref.pdf.rdo
	
	
	
	

	bak.ps.rdo
	

