ESSES 2003

European Summer School on
Embedded Systems

Lecture Notes
Part X

Embedded Sysems:
Introduction and Overview

European Summer School on

Enbedded Systems

Jul 14 - Oct 10 2003
Vaster8s Sweden

Editors: Ylva Boivie, Hans Hansson, Jane Kim, Sang Lyul Min

Stringnds, August 20-22, 2003

M ISSN 1404-3041
ISRN MDH-MRTC-106/2003-1-SE

MALARDALEN REAL-TIME
RESEARCH CENTRE www.mrtc.mdh.se



LUND INSTITUTE
OF TECHNOLOGY
Lund University

Design of Embedded Systems

Kris Kuchcinski
Dept. of Computer Science
Lund University

Sweden

http://www.cs.Ith/~kris

Examples of Embedded Systems




LUND INSTITUTE
OF TECHNOLOGY
Lund Universi ty

Constraint Programming
Approach

Kris Kuchcinski

Dept. of Computer Science
Lund University

Sweden

http://www.cs.Ith/~kris

Quotations

"Constraint programming represents one of the
closest approaches computer science has yet made
to the Holy Grail of programming: the user states
the problem, the computer solves it."

Eugene C. Freuder
CONSTRAINTS, April 1997




Introduction and Motivation

Synthesis of the following code

(inner loop of differential equation integrator)

while c do
begin
x1 :=Xx + dx;
ul :=u - (3*x*u*dx);
yl =y + u*dx;
c:=x<a,

x:=Xx1; y:=yl, u:=ul;
end;

Introduction and Motivation

b

scheduled
data-flow graph data-flow graph




Register Allocation as
Graph Coloring

Constraints:

[r1,F,F3,F e, Tg] 12 0..2,
[ F Iy, I #I3 I, #15,

Mo F Iy, I3 F 1y, Iy 7 T,
s # I

Register Allocation as
Clique Finding

for all r;, r; which are not connected by an edge:

nF10rj#1

The maximal clique can found by maximizing the
following cost function:

cost =2, 1;




Constraint Consistency

All constraints are stored in the constraint store

Consistency methods are applied to find inconsistent
values and prune variables’ domains
Different types of consistency methods:

Node consistency

Arc consistency

Path consistency

Consistency Properties

Node consistency

A network is node consistent if in each node
domain each value is consistent with unary
constraint (e.g., X > 7)

Arc consistency

A network is arc consistent if for each arc
connecting variables V; and V, for each value in
the domain of V, there exist a value in the domain




Node and Arc Consistency

Example
0..10 0..10 1.6 0.5
; > 3 ; > 3
V<7 V<7
Not node consistent node consistent
Not arc consistent arc consistent

Need for search

Node, arc and path consistency are in general not
complete (complete for some problems with particular
structures)

Complete algorithm: N-consistency for N variable
problems — exponential complexity

Example:

"2 [r1,r2,r3] :: 0..1,




Search

Solver is not complete and search for a solution is
needed

1.6 0.5

% > 3
1<7

Constraint properties

may specify partial information — need not uniquely
specify the values of its variables,

non-directional — typically one can infer a constraint
on each present variable,

declarative — specify relationship, not a procedure to
enforce this relationship,

additive — order of imposing constraints does not
matter,




More realistic example

Scheduling
Scheduling of the data-flow graph
Constraints:
X dx dx dx

for all op; and op; such that op;

ax | v | | a before op;

{ TaD=T
yll ¢ for all op; and op; that can use

the same resource
T.eD =TT R = ER R
1 i T s Hini]

Problems

Constraint propagation for
T,+D;sT,0T;+D,; < T, OR; # R; is weak

Not all solvers support disjunctive constraints.
Other solution (reified constraints):

T,+D,<T, = Bl,
T,+D,< T, = B2,
Ri#R; = B3,

Bl1+B2+B3=1.




Propagation problems

resources “

} 5.7

time

T,+D, T, 0T, +D,sT, R, #R,
T,+D,sT,0T7,+D,<T,UR,#R,

Global constraints

Non-overlapping rectangles
Y

j diff2([ [X,,Y;,DX,,DY],
[X,,Y,DX,DY] 1)

X

All knowledge in one "place” — makes it possible to
define good consistency methods (OR, mathematics,
geometry, etc.)

Specific algorithms for consistency — more effi¢ier




Global Constraints -
Scheduling

diff2 constraint
Y (resources)

duration (Di)

Ri _I !

Ti

diff2([ [T1, R1, D1, 1], [T2, R2, D2, 1]], ...)

Scheduling Example Constraints

T1+2<T6,T2+2=<TE6,

T3+2<T7,T4+2=<TS,

T5+1<T9 T6+2=<T10,

T7+2<T11, T10+1<T11,

diff2([ [T1,R1,2,1], [T2,R2,2,1], [T3,R3,2,1],
[T4,R4,2,1], [T6,R6,2,1], [T7,R7,2,1],
[T5,R5,1,1], [T8,R8,1,1], [T9,R9,1,1],
[T10,R10,1,1], [T11,R11,1,1] D).




registers
A

Registers

di f f 2 for register

f.u.

di f f 2 for operations

/  X=A+Y
m =

can be done together with or after functional
units allocation/binding and scheduling,

High-level synthesis:

System design

Other Synthesis Problems
Defined with Constraints

Chaining,

Conditional execution,

Pipelined components,

Algorithmic pipelining,

Switching activity reduction (power consumption)

different aspects of design space exploration
scheduling

component assignment

memory allocation/data assignment
power/energy consumption

10



Design Space Exploration

Mapping

.

HP/DSP

.

Communication facility

Architecture

Additional Constraints
element

Element constraints
element(N, [X;, X, ..., X,], Value)

propagation from N to Value

N=i — Value = X;
propagation from Value to N

Value = x — N=iand Xi = x ...

Examples- element(N, [2, 3, 4, 4], V)
N:1.2,V:{2 3}
V=4,N:3.4

relations

11



Additional constraints
cumulative

Cumulative constraint

Resources

ResourceLimit

Time

cumulative([Tk, Tn, Tm], [Dk, Dn, Dm], [1, 1, 1], ResourceLimit)

Cumulative propagations

Execution interval which will always be occupied by a
task.

task

R
esources T-1.3 D=4 LST < LCT

min(T) LST = max(T)

12



Cumulative propagations —
profile based

Resources

ResourceLimit

Time
for each [t;, t)

for each task, whose exec. interval overlaps with [t; t)
if (ResourceLimit - resource_usage < task(reso
T, in { complement(t, - min(D,) +1 .. t;- 1) }

check D, ... Res,...

Cumulative propagations —
edge finding

| ]
[ ]
( ]
est(tl)” lct(t1)

t3 cannot be between t1 and t2 iff
Ict(tl) - est(tl) < D1 + D2 + D3

> t3 must be last !!!

t3 cannot be before t1 and t2 iff
Ict(tl) - est(t3) < D1 + D2 + D3

13



Edge Finding Algorithm

Martin-Shmoys algorithm with O(n?) complexity.
Up phase

for each unique Ict we create a set

S = {t| LCT(t) <= Ict} and make checking whether
a task can be the first or before

Down phase

similar but using est and checking whether a task
can be the last one or after all tasks.

System Synthesis Example

‘ l original MILP formulation- 47 timing
variables, 225 binary (bus 153)
and1081 constraints (bus 416)

commercial linear programming
l 1 package used to solve the problem
’ ‘ (XLP, developed by XMP Software,

Inc.)

Execution time
Processor Cost S1 S2 S3 S4 S5 S6 S7 S8 S9

P1 4 2 2 1 1 1 1 3 - 1
P2 5 3 1 1 3 1 2 1 2 1
P3 2 1 1 2 3 1 4 1 4

14



Modeling of cost and
execution time

Execution time
element(P1, [2, 3, 1], D1)

element(P9, [1, 1, 4], D4)

Cost
(P1=10P2=10...0P9=1) = C1,

(P1=6 OP2=60... UP9=6) -~ C6,

System synthesis results

Performance Performance optimization Cost optimization
Design Cost (time MILP (s)  CLP (s) B&B CLP (s) B&B Nodes
units) Nodes

10 6 6438.00 0.43 84 0.55 92

Bus 6 7 5371.80 0.53 114 0.68 144
5 15 3691.20 0.43 68 0.70 103

15 5 3732.00 0.43 20 1.67 125

point-to-point 12 6 26710.20 1.42 98 2.18 169
links 8 7 32320.20 1.00 58 2.59 198
7 8 4510.80 1.64 75 2.02 112

5 15 38501.20 1.50 32 1.48 77

15



System synthesis results with
local memory

Performance Performance optimization Cost optimization
Design Cost (timeunits) MILP (s) CLP B&B CLP B&B Nodes
(s) Nodes (s)

28 6 6592.20 0.71 76 2.58 252
23 7 5371.80 1.07 193 1.94 266
Bus 22 8 123252.60 0.95 124 14.85 856
21 10 316860.60 114.92 4534 119.55 8799
18 11 236724.00 88.23 7015 2.37 477
17 12 138004.20 0.93 268 10.39 3076
14 15 3581.40 0.54 22 9.89 3076
38 5 - 0.56 24 2.08 107
30 6 - 0.99 59 3.75 155
point-to-point 25 7 - 1.60 79 5.58 314
links 23 8 - 1.82 57 3.21 184
22 10 - 4.50 84 59.25 855
19 11 - 27.34 794 101.03 2851
18 12 - 97.72 2686 8.66 1047
14 15 - 1.18 14 4.95 328

An Example

FB1
'\‘ IQ IDCT REK FB2
~ FIR

‘%4 BMA PRAE Q /% .

N 9% % < 9% ‘m
DCT

C + Dc=< 2500

Video Coding Algorithm H.261

16



Task Mappings to Processors

Task Uni- BMA PAR1 DCT FIR BMA FIR FIR DCT DCT
versal array array _array  pipe seq pipe seq pipe

IN - - - - - - - - - -
FB1 - - - -
BMA 7234 484 3617 - -
FIR 7234 - - 510 - 3461 1170
PRAE 1280 128 - - - - - -
DCT 12312 - 132 6156 474
Q - - - - -
1Q - - - -
IDCT 12312 - 132 - 6156 474
REK 1536 256 - - -
C 132 - -
FB2 - -

Scheduling with Memory

File Processor Bus Task Data Solve View Visualize |

[ TaskGraphEditor =

Draw

Layout

GIF Capture

Postscript

Print

annotated task graph

Constraints

ROM RAM Link1 ROM RAM

CPU1 <—— CPU2

i [ o

ROM RAM Ljnk2 RAM
<>
CPU3 ASIC1

|@

target architecture

17



(o} C, |C, Ef
P1

task graph

P1 L1 P2

architecture

Schedule

= .

Memory importance

gt
6l P1 P2
4

Data Memory

gt
6l
4L

t

Experimental results

H.261 example

= w
Wy lY w5 <
= U] w <
: HEREHH IR
Q o g g oG Q=
é a < aj =
1 both 2871 | 2871 | 2683 - -
greedy 4 6743 | 1686 | 3812 0 0
memory 4 6781 1696 | 3259 | 1% | -16%

18



Scheduling of Mars Path Finder under
Power Consumption Constraints

The mars rover operates on very limited power supply. The power
is given by solar panels. The power obtained from solar panels was
measured at different temperatures and the results were the
following: 14.9W at -40°C, 12.0W at -60°C and 9.0W at -80°C.
There is a battery power source too, which gives maximal 10.0W
and it is not replenishable energy so the battery power should be
used as little as possible. The mars rover has 6 driving and 4
steering motors, which need to be warmed up before respective
driving and steering can be performed.

Steer2

Scheduling of Mars Path Finder under
Power Consumption Constraints

Operation Duration

Heating steering motors 5s At least 5s and at most 50s before
(HSM1&2, HSM3&4) steering starts

Heating wheel motors 5s At least 5s and at most 50s before driving
(HWM1&2, HWM3&4, HWM5&6) starts

Hazard detection (HD1 & HD2) 10s At least 10s before steering starts

Steering (Steerl, Steer2) 5s At least 5s before driving

Driving (Drivel, Drive2) 10s At least 10s before next hazard detection
starts




Scheduling of Mars Path Finder under

Power Consumption Constraints

Task Duration | Power -40°C | Power -60°C | Power -80°C
Heat two 5s 7.6W 9.5W 11.3W
motors

Drive 10s 7.5W 10.9wW 13.8W
Steer 5s 4.3W 6.2W 8.1W
Hazard 10s 5.1W 6.1W 7.3W
Detection

CPU Constant 2.5W 3.1W

Modeling

Precedence constraints:
t hdl+d_hdl <t steerl,

t steerl + d_steerl <t _drivel,
t hwml2 <t steerl + 50,
Power consumption constraints:
cumulative([t_hd1, ..., th_sm12],

Optimize “Power”

[p_hd1, ..., p_sm12],
[d_hd1, ..., d _sm12], Power)

20



Cycle (circuit) constraint

cycle(2, [ [2,6], [3,4], [1], [2,3], [2,6], [2,5]])

[ [2],[4], [1], [3], [6], [5]]

Search

Standard search uses depth-first-search with
backtracking.

Optimization uses branch-and-bound or similar
methods.

21



Typical branch and bound search
(TSP problem)

City 1 c.cy 2 City3 City4

City 1 6 41
City 2 - 40 5 {1}
iy 3 B L>0
{12} {13} ,
L>3 L>6 >
{123} {124} {132 {1,34}
L>43 L>8 L =46 L=10
{1,234 {1243 {1342
L=88 L=18 L=18

Search with restart
(CLP typical)

City 1 Clty 2 City3 City4
City 1 6 41

City 2 - {1}
a4 L>0
{122 {12 {13 {13 {14
L >3 L>3 L=6 L>6 L>41

{1,2,3} {1,2,4 {1,3,2} {134} +
L=>43 L=8 L=>46 L =10

{1,2,3,4 {1,2,4,3} {1,3,4,2}
L=88 L=18 L=18

22



Search (cont’d)
[City1::2..4, City2::{1,3..4}, City3::{1..2,4}, City4::1..3]

How to select order of variable assignment?
dynamic vs. static
criteria
How to select values to be assigned from variable’s
domain?
a single value
sub-domain

Variable Selection

Static and dynamic
input order (static)
first-fail principle (smallest size of the domain)
smallest value in the domain
largest value in the domain

largest difference between the smallest and
second smallest value in its domain

smallest max value in the domain

23



Value Selection

Single value
minimum in the domain and then upwards
maximum in the domain and then downwards
middle and then towards smallest and largest
random

Domain split
split into two sub-domains
splitinto N

Search improvements

Partial enumeration algorithms (instead of labeling)
Credit Search,
Limited Discrepancy Search (LDS).

Assignment of subintervals instead of values to
domain variables — possibly examines a bigger part
of a solution space.

Problem-dependent specific heuristics.

Neighbourhood search...

24



Credit search

initial credit = 8

. credit search
credit(T, S

8, % credits

local search

3, % backtracks
part(1,2)),

solution (¢

Limited discrepancy search

min_max( lds ([X,Y,Z], 1, input_order, indomai

25



Interval splitting

Interval splitting

// \\ For each task:

Origin :: min..max
duration

|
|
|
Rest .2 0..duration-1,

Quotient :: 0..max,
Quotient*duration+Rest #= Origin.

| |
|
| i | #tl Enumeration procedure:

1234567831011 labeling(Origins, Quotients) :-

1<Origin<3 7<0rigin<9 labeling(Quotients, first_fail, indomain),
labeling(Origins, first_fail, indomain).

4<0rigin < 6 10<Origin < 11 g

Summary and conclusions

Advantages:

focus on a specification of the problem, not on a
solution method.

unified framework for different algorithms to be
used to solve a problem (by encapsulating them
as constraints).

easy definition of problems with many
heterogeneous constraints.

easy extension of a problem by adding new
constraints.




Summary and conclusions

Limitations:
NP-hard problems.
often non-predictable behavior of a solver.

difficult to define and add new constraints:
into existing systems — interface problems.
new propagation algorithms need to be developed.

difficult to match constraints with actual problems.

CP finite domain systems

SICStus Prolog

CHIP from COSYTEC
IF/Prolog

ILOG

Mozart/Oz

Gnu Prolog

JaCoP — Java based our own solver

27



Selected CP Web resources

Constraints archive
http://www.cs.unh.edu/ccc/archive

Guide to constraints programming
http://kti.ms.mff.cuni.cz/~bartak/constraints

Sicstus manual
http://www.sics.selisl/sicstus/sicstus_toc.html

Gnu Prolog
http://www.gnu.org/software/prolog/prolog.html

Mozart/Oz
http://www.mozart-oz.org/

Other resources

Book

K. Mariott and P. J. Stuckey Programming with
Constraints: An Introduction, The MIT Press, 1998.

Conferences

Principles and Practice of Constraint Programming
(CP)

The Practical Application of Constraint Technologies
and Logic Programming (PACLP)

Journal
Constraints (Kluwer Academic Publishers)

28



Selected Papers

Kuchcinski, K., Embedded System Synthesis by Timing
Constraints Solving, Proc. 10th International Symposium on
System Synthesis, Antwerp, Belgium, September 17-19, 1997.

Gruian, F. and Kuchcinski, K., Operation Binding and
Scheduling for Low Power Using Constraint Logic
Programming, Proc. 24th Euromicro Conference, Workshop on
Digital System Design, Vasteras, Sweden, August 25-27, 1998.

Kuchcinski, K. and Wolinski, Ch., Global Approach to
Assignment and Scheduling of Complex Behaviours based on
HCDG and Constraint Programming, Journal of Systems

Architecture, 2003, Elsevier Science.

Selected Papers (cont’d)

Kuchcinski, K., Constraints Driven Design Space Exploration for
Distributed Embedded Systems, Journal of Systems
Architecture, vol. 47, no. 3-4, pp. 241-261, 2001, Elsevier
Science.

Szymanek, R. and Kuchcinski, K., A Constructive Algorithm for
Memory-Aware Task Assignment and Scheduling, Proc. 9th
International Symposium on Hardware/Software Codesign,
Copenhagen, Denmark, Apr. 2001.

Szymanek, R. and Kuchcinski, K., Partial Assignment
Technique for Task Graph Scheduling, 40th DAC, Anaheim,
USA, June 2003.

Kuchcinski, K. Constraint-driven scheduling and resource

Systems, vol. 8, no. 3, pp. 355-383, 2003.

29



LUND INSTITUTE
OF TECHNOLOGY
Lund University

Methodologies for
Embedded System design

Kris Kuchcinski
Dept. of Computer Science
Lund University

Sweden

http://www.cs.Ith/~kris

General Methodology




Input to System Design

Executable specification (functional requirements):
usually provided as interacting processes/tasks,
very often multi-language specifications,
can be simulated and verified,
can be used to perform analysis, e.g, estimation.

Specification languages: C, C++, VHDL, Verilog,
SystemC, Esterel, SDL, etc.

Set of (non-functional) design requirements (cost,
speed, 1/O rate, power consumption, etc.).

Output from System Design

A set of system modules assigned to system
components (CPU’s, DSP’s, ASIC's, etc.).

Communication modules.

Each module can be further synthesized to hardware
using high-level synthesis or compiled to software.




Traditional design

flow

HW/SW Co-design

Detailed SW
design

Compilation

Compilation

Basic Characteristics of the
Methodology

Behavioral specification is given for the complete
heterogeneous system, regardless of how different
parts will be later implemented.

Analysis techniques are provided; specially different
estimation techniques.

Synthesis tools are used to automatically explore a
design space.
high-level synthesis, RTL synthesis,
compilers, cross-compilers,
interface generators,
etc.




Estimation of Design Parameters

Estimation of parameters such as size, cost, power
consumption.

Does not need to be very precise but has to be
“consistent” — follows real design parameters.

Usually 15%-20% inaccurate.

Trade-off between accuracy and estimation time.

Improvements of the Design
Process

High-level specification is made before architecture
selection and implementation decisions can be made
more accurate (better exploration of architectures).

A uniform description of HW and SW makes it
possible to move parts of the systems between HW
and SW.

HW and SW development is moved closer and the
integration cost is reduced.

An early evaluation of system characteristics is
possible.




An Example of a Design Flow

compilation

partitioning

v

component
allocation

communication
synthesis

7 low-level
synthesis --..__

Specification Example

“Extended” VHDL

port(IP1,IP2:in INTEGER; OP1,0P2:0ut INTEGER);

signal S1,S2,53,54,S5,S6:INTEGER,;

P1:process

receive(IP1);

send(S1,/.)

send(S3,/.)

receive(SB)

end process P1;

P2 : process

receive(IP2);

receive(S1),

send(OP2,...);

end process P2

P3: process P5 : process
;e::e.ive(s4); ;e::e.ive(SLSS);
.se.n(;(SZ,...); s.er:d.(S4,...);

end.p.ro.cess P3; en:j ;Jr.ocess P5;

P4 : process P6 : process

receive(S3); receive(S2);
send(Ss5....,S6,...); send(OP1,...);
end process P4; end process P6;




Representation Example

Process communicati

Allocation of System Components

Decides about the kind and number of components
for implementation of the system

processing elements: pprocesosrs, micro-
controllers, DSP’s, ASIP’s, ASIC’s, FPGA's, etc.
storage elements: memories, register files,
registers, etc.

communication devices: buses, point-to-point
links, networks, etc.

specialized 1/0O devices: A/D, D/A, frame grabbers
etc.




Partitioning

Functional partitioning vs. structural partitioning.

Abstraction level.

Partitioning granularity (fine or course):
= modules,

= processes and procedures,

= instructions.

Partitioning objective:
performance,

minimal communication,

low power,

combination of several criteria.

Partitioning Example




Communication Synthesis

= Creation of abstract communication channels by
communication clustering.
= Communication refinement
= selection of communication lines width,
= protocol selection,
= etc.

= Interface generation:
= device drivers,
= communication hardware,
= etc.

Communication Synthesis
Example

access
routines

= |

interface
hardware




Design Decisions

Different types of design decisions

selection of components, partitioning,
assignments, scheduling, etc.

decisions regarding runtime system done off-line
or are postponed to runtime (e.g., static vs.
runtime scheduling)

Design decisions are mutually dependent

Huge design space

Design Automation

Uses internal representations which are usually
based on graphs.

Graph algorithms (shortest path, Hamiltonian circuit,
topological sort, depth-first-search, breadth-first-
search, SAT, etc.).

Optimization methods — (M)ILP, CLP, heuristics, etc.
Tractable and intractable problems.

Decidable and undecidable problems.

Decision problems and combinatorial optimizatio s
problems. AT




Design Automation
Consequences

Most of the problems which need to be solved in
design automation are NP-complete or NP-hard.

Usually only small problems can be solved exactly.

Need for algorithms which do not guarantee optimal
solutions but “good enough” solutions

approximation algorithms — guarantee a solution
with a cost that is within some margin of the
optimum,

heuristics — algorithms that are constructed
based on “rules-of-thumb”; nothing can be s
advance about the quality of the result.

10



Examples of Embedded Systems

Anti-lock brakes
Auto-focus cameras
Automatic teller machines
Automatic toll systems
Automatic transmission
Avionic systems

Battery chargers
Camcorders

Cell phones

Cell-phone base stations
Cordless phones

Cruise control

Curbside check-in systems
Digital cameras

Disk drives

Electronic card readers
Electronic instruments
Electronic toys/games
Factory control

Fax machines
Fingerprint identifiers
Home security systems
Life-support systems
Medical testing systems

(cont’d)

Modems

MPEG decoders
Network cards

Network switches/routers
On-board navigation
Pagers

Photocopiers
Point-of-sale systems
Portable video games
Printers

Satellite phones
Scanners

Smart ovens/dishwashers
Speech recognizers
Stereo systems
Teleconferencing systems
Televisions

Temperature controllers
Theft tracking systems
TV set-top boxes

VCR’s, DVD players
Video game consoles
Video phones

Washers and dryers

Source: Embedded Systems Design: A Unified Hardware/Software
Introduction, (c) 2000 Vahid/Givargis

Embedded Systems

"A device that includes a programmable computer but
is not itself a general-purpose computer.”

Embedded

Real-Time
System

Actuators ~
_Envwonment
Sensors

Execution deadlines,
Power consumption constraints,




Embedded Systems (cont’d)

Computing systems embedded within electronic
devices

Hard to define. Nearly any computing system other
than a desktop computer

Billions of units produced yearly, versus millions of
desktop units

Perhaps 50 per household and per automobile

Source: Embedded Systems Design: A Unified Hardware/Software
Introduction, (c) 2000 Vahid/Givargis

Embedded Systems (cont’d)

Non User-Programmable.

Based on programmable components (e.g., Micro-
controllers, DSP's...) but often contain application
specific hardware (IC's, ASIC's).
Reactive Real-Time Systems:

React to external environment,

Maintain permanent interaction,

Ideally never terminate,

Are subject to external timing constraints (re
time).




Characteristics of Embedded
Systems

Sophisticated functionality.

Real-time operation.

Low manufacturing cost.

Low power.

Designed to tight deadlines by small teams.

“Resource conscious” vs. “Unlimited resources”
programming

SoC Embedded System

m = Assembly of “prefabricated

OO0ooooooooooog

components” often purchased from

0000000000000
O external vendors (“IP”)
O .
P Video Unit g . k?lack box. .hler.archy
o - Design & Verification at the System
o level
ustom| O .
|8 O = rather than the logic level
Graphicgl| o O .
O ||DSP S = Interface and communica on-
= 1
0ogooooooogogo| = Great Importance of Soffy

RV,

Source: Alberto Sangiovanni-Vincentelli, 35th DAC




A Digital Camera Example

|:‘j>| A/D I—-|CCD preprocessor| | Pixel processor| D/A

JPEG codec Microcontroller | Multiplier/Accum |

DMA controller Display ctrl

Memory controller | | ISA bus ir;terface | |UART| | LCD ctrl | %
L) L) L)

v v
/<
O
Source: F. Vahid and T. Givargis, Embedded System Design: A Unified Hardware Software

Real-time gas turbine testing
system

MI-2 helicopter engine “Minicomputer”

8kB RAM
cassette ta




TELEX-1 and TELEX-Il systems

WiTas

WITAS project

= Autonomous system.

= Real-time system.

= Image processing.

= Mission planning.

= Incorporation of GIS systems.

= Interface with ground operator.

http://www.ida.liu.se/ext/witas




Typical Hardware Components
of DSP System

Component class Implements Compiler Specification
DSP processor Low data-rate DSP (Retargetable) Assembly

Slow control loops code generator C

Appl. Spec. alg. High level synth. DFL
Microcontroller User interface C compiler C

Slow control loops
Hardware High data-rate DSP  High level synth.  C, DFL
accelerator RT level synth. VHDL
Communication Internal & external Memory mgmt. Data-sheets
blocks and communication (A)synchronous STG
memory Storage & buffering interface synth.
Others Usually FSMD’s RT level synth.

- clock generators Asynchronous

- DMA blocks synth.

VHDL ~/ * 57
V\é‘ RVl 3
o || g 2o
L7 & 5
D

Source: H. de Man, et. al. “Co-design of DSP S sﬁ \J// f\
Hardware/Software Co-design, Kluwer 1995. ?3« ’ n ;

Importance of Embedded System
Design Methodologies

Hardware complexity.

Heterogeneous systems containing hardware (both
digital and analog) and software.

Heterogeneous components (CPU’s, DSP’s, ASIC's,
buses, point-to-point links, etc.).

Heterogeneous requirements — performance, cost,
power consumption, etc.

System-on-chip.

Shorter design cycles required by time-to-market
constraints.




Logic Transistors/Chip (K)

Design Complexity and Designer
Productivity Gap

10,000,000 100,000,000 _
1,000,000 ——— Complexity 10,000,000 £
0, .

=
100,000 growth rate \ / 1,000,000
10,000 %. 100,000 &
1,000 )‘/( P 10,000 3
100 : " 1 1,000 3
10 T 1ovr =
Productivity growth rate | 100 =

1 — 1 10

1998 2003

Source: Bryan Preas, Xerox PARC, 35th DAC

Software vs. Hardware Design
short summary

Software
flexibility,
reconfigurability, easy update, etc.,
complex functionality,
cost,

Hardware
speed,
power consumption,
cost in large volumes,




Design of Embedded Systems

Need to be done using high-level specification,
programming and hardware description languages —
not assembly languages and gate/transistor level
design.

Requires efficient design space exploration and
synthesis/compilation tools.

Different design requirements has to be taken into
account, e.g., cost, performance, testability, quality of
service, power consumption.

Multi-language design framework.

Importance of High-Level
Design Methods

System Verification Processing Speeds

System Implementation Processing time (s/frame) ‘
Behavioral model 1 200 (20 min/frame)
RTL model 144 000 (1.6 days/frame)
Gate model 228 000 (2.6 days/frame)

Gate model on hardware accelerator 1 200

Rapid Prototype 0.5

LSEf* STON

Target Hardware 0.05 /;V\\q‘/ RVMQQ%
g MLEEAE]

3 £ &
: 1
WL

Source: Paul Clemente, Ron Crevier, Peter Runstadler ‘R
Synthesis A Case Study”, VHDL Times, vol. 5, no. 1. CANTIT




General Design Flow

. Design tools
Design and Technology  System Specification g

Constraints

~ Estimation

Designer’s

/ Decisions

Refine

--» Mapping I

e ;
|« Partitioning I

T Schedulingl

N
N
W

Specify-Explore-Refine

Specification and Programming

Specification languages, such as UML, SDL.

Programming languages, such as C, C++, Java,
Esterel, assembly languages.

Hardware description languages, such as VHDL,
Verilog, SystemC.

Example: combining SystemC and C++ gives unified
simulation environment for hardware and software.

10



Hardware Description Languages

Cover several levels of design abstraction as well as
behavioral and structural description domain.

Contain typical features of programming languages,
such as data types and program statements.

Special features:
time concept,
structure description,

parallelism.

VHDL (IEEE standard), Verilog, SystemC.

Design Representations
(Computational Model)

Used to represent/model digital systems under
design.

Generated by a compiler from system specification or
coded directly in the model.

Represent the semantics, structure and timing of the
system.

Usually based on some kind of annotated graph
representation.

Used internally by design automation systems
the modeler/designer.

11



Design — Synthesis

Software translation into target code for a processor
(real-time operating system might be used).

Hardware synthesis — translation of a behavioral
representation of a design into a structural one.

Communication synthesis — generates hardware
and software which interconnects system
components.

Pareto points

time

12



Discrete Cosine Transform
Partial Design Space

40
30
Cl
ock2 -
steps
10 Add 2
0- Add 4

Mul Mul Mul Mul
1 2 3 4

Design Space Exploration

Speed Cost

13



Time-to-market constraint

= Need time for new

Profit
rofi product development,

= the biggest profit is in
the market window
time,

= missing the market
window can be costly.

| ‘

Market window

time

Summary

Embedded systems are important class of electronic
systems which can be found everywhere,

Combine hardware and software solutions,

Cover several engineering and research areas:
microelectronics,
real-time systems,
software development,
etc.

parameters.

14



ESSES 2003

European Summer School on
Embedded Systems

Lecture Notes
Part XIl

Embedded Sysems:
Introduction and Overview

European Summer School on

Enbedded Systems

Jul 14 - Oct 10 2003
Vaster8s Sweden

Editors: Ylva Boivie, Hans Hansson, Jane Kim, Sang Lyul Min

Stringnds, August 20-22, 2003

M ISSN 1404-3041
ISRN MDH-MRTC-106/2003-1-SE

MALARDALEN REAL-TIME
RESEARCH CENTRE www.mrtc.mdh.se



Embedded Computing
Examples

Wayne Wolf
Dept. of Electrical Engr.
Princeton University

The multimedia processing
funnel

pixel processing

Edge extraction
Data Data

) lum
abstraction volume

principal component analysis,
hidden Markov models




The Parapet Project

oal: design SoC networks for real-time
distributed vision.

i~IThe best way to get a good design example
is to create our own.

Parapet goals

Igorithms (gesture recognition).

How do we adapt algorithms to the needs of real-
time embedded video.

& Distributed systems.
Communicating cameras.

¢ Embedded software.
Middleware, code optimization.
oC architecture.
Heterogeneous multiprocessors.




Smart cameras for smart

Ozer et al: human activity
recognition algorithm




Real-time analysis

sl

Original

g N et

>

|

Region finding Ellipse fitting




Tuning the smart camera
software

Initial C/Trimedia was direct translation
from Matlab.

Goals:
Increase frame rate.
Reduce latency.

Identify bottlenecks for next-generation
architecture.

Real-time vs. just fast

Real-time computing adheres to
constraints:
Must perform at a given rate.

To satisfy the rate, must minimize variations
in processing time.




Stage times before
optimization

Processing Time (%)

Region Contour Super  Match

Smart camera CPU times

Skin " . . . Co:mour Folkw:nng
T T

Frame number

Skin detection Contour detection




Smart camera CPU times,
cont’d.

250 ms 35 ms

Superellipse Fitting Graph Matching
T T T T

Processing time (msec)
T T

L L L I L L L L
o 5 10 15 20 25 30 35 40 45
Frame number 0

L L L L L I L L
o 5 10 15 20 25 30 35 40 45
Frame number

Superellipse fitting Graph matching

Normalized standard
deviation of stage times

region  contour  super match all




Optimization

hange the algorithm.
:Change the program structure.
>Change the instructions.

Algorithmic changes

overkill.
~IReplaced with ellipse fitting.
s Improved adjacency algorithm.




Region finding

i

perates on 3 x 3 window.
oughly linear in frame size.

equential algorit
pixel per step.

Program changes

ontour fitting is very control intensive:
[~ICompares local configurations of bits.

#Transformed into data-parallel operations
for VLIW: T
R

g B
1 » Table

- O
e
I

Control-oriented Data-oriented




Instruction changes

#Trimedia provides library of intrinsic
functions that map onto Trimedia
instruction sequences.

>Goal: eliminate branches.

Special instructions.

Loop unrolling.

Before and after stage
times

Processing Time(ms)

Region = Contour  SuperFit = Match Total

B Original B Optimized




Results

_

#Before: 5 frames/sec.

s After: 31 frames/sec w/o HMM, 25
frames/sec with HMM.

cLatency approx. 100 ms.

¥Smaller variation in frame processing
time.

Intel port runs well.

Architectural experiments

FFritts/Wolf:
characterize applications;

compare architectural styles (VLIW,
superscalar);

(~levaluate architectural parameters (clock rate,
pipelining, etc.).




S —

.

VLIW processor model

Workload characteristics

ts

experimen

S
M
O
Q
3
B a
Or
A |
Y O
S L
2 5
.Bm
D O
mm
5 0
Q 3
£E5
o 3
= ®
©

o
O

%)
Y,
| -
©
£
<
]
-
@
o
<
o]
c
@
(a0
©
G
0]
=
§e
@
(%]

'Compiled on Impact compiler, measured

with with Impact simulator.




Basic characteristics

~(ALU, mem, branch, shift, FP, mult) => (4, 2,
1,1,1,1)

Lower frequency of memory and floating-point

operations

More arithmetic operations

Larger variation in memory usage

8 Basic block statistics

Average of 5.5 operations per basic block

(~INeed global scheduling techniques to extract
ILP

Basic characteristics,
cont’d

& Static branch prediction
training input
~JAverage of 85.9% static branch prediction on
evaluation input
¢t Data types and sizes

Nearly 70% of all instructions require only 8
or 16 bit data types




Multimedia looping
characteristics

'Highly loop centric
95% of CPU time in two innermost loop levels
Significant processing regularity

~IAbout 10 iterations per loop on average
'.Complex loop control

~1= average # of instructions executed per loop
invocation/total # of loop instructions

Average iterations per loop
and path ratio

g

- average number of
loop iterations

Average Number of Iteration

& & & & FH &

Media Type

Path Ratio

- average path ratio

video image graphics audio speech security average
Medi Type




Instruction level
parallelism

i

Instruction level parallelism

base model: single issue using classical
optimizations only

parallel model: 8-issue

xplores only parallel scheduling

performance
[~lassumes an ideal processor model

no performance penalties from branches, cache
misses, etc.

ILP results

[ 8-issue classical only

Bl 8-issue classical w/ inlining
B 8-issue superblock

3 H 8-issue hyperblock

video image  graphics audio speech  security = average
Media Type




Multiprocessor
architectures for video

st Interested in high-speed video
processing.

#£Want reasonably low-power operation for
pervasive applications.

capture.

#Frame rate of 150 frames/sec is
considered desirable.

s Stanford CMOS camera can digitize at
10,000 frames/sec.




Why heterogeneous
archtectures make

abstraction

principa

sense

pixel processing

Data  Edge extraction

volume

1 component analysis,

hidden Markov models

Algorithm flow

-

L .

L




Memory structure

eed-forward data communication.
ot much global memory required.

llocating memory depends on data
volumes, access patterns, flexibility.

Average processing time
by stage

clock cycles/frame

region contour ellipse match  hmm

algorithm stages




Average IPC by stage

IPC

region contour ellipse match  hmm

Algorithm Stages

Tiehan’s VLIW
implementation

nroll loop to perform multiple
comparisons in parallel.

>Pack results into bit vector to address
results table.

egister file, cache provide for reuse of
pixel values.




Contour crawler machine

stHardware implementation of VLIW code:

Crawler and memory




Memory system design

sWant to minimize number of partitions to
reduce row/column overhead.

nly memory organization that allows for
all parallel accesses is one-word partition.

cAssume we fetch one row or column at a
time---3 fetches/cycle.

Single contour crawler

Assuming row/column access pattern,
crawler is faster than VLIW by a relatively
small constant.




Multiple crawlers

Full-frame SIMD

an build a large SIMD array with one
processor per pixel.

rea*delay:
Speed is roughly constant.

PE is probably about the same size as the
crawler.




Heterogeneous system

Region:
Stream processor with current algorithm.
Stream processor + RISC for others.

~ISuperscalar/RISC.

32 Graph:
RISC.

Stage pipelining

Significant amount of time in non-streaming
stages.

B U
o o O

Processing Time(ms)
N W
S O

—_
o o

Region Contour SuperFit Match Total

@ Original B Optimized




Heterogeneous vs. VLIW

VLIW:

|Off-the-shelf IP.

Easy to program.

10 mm? in 0.13 micron.

Heterogeneous:

______________ Requires more design of blocks, memory.
_______________ Pipelineable for 2.3X speed-up.

Heterogeneous
multiprocessor size

area
stage PE (mmA2)
MIPS32
background 4Km 0.9
contour custom 0.001
ellipse, graph MIPS64 5Kf 5
total frame processor 5.901
classification MIPS64 5Kf 5
number of frame processors 3
grand total 22.703




Research problems in
embedded computing

Wayne Wolf
Dept. of Electrical Engr.
Princeton University

Networks-on-chips

#Link technology.

Irregular network architectures.
Network synthesis.

#£Qo0S.




Platform architectures

#Choose a problem, design a platform.

H$Figure out how to measure the reusability
of a platform.

Memory systems

s Controllable caches.
Distributed memory architectures.
s£Software methods for exploiting memory.




Low power design

3£ System-level power strategies.
£ Effects of leakage.

Processor architecture

#Choosing specialized instruction sets.
‘Multiple data widths.
# Adaptations for networks-on-chips.




Software

3 Exploiting specialized instruction sets.
$Exploting configurable caches.

Networks of SoCs

conditions.




Kris Kuchcinski

Lund University



LUND INSTITUTE
OF TECHNOLOGY

Lund University

Design of Embedded Systems

Kris Kuchcinski
Dept. of Computer Science
Lund University

Sweden

http://www.cs.Ith/~kris

Examples of Embedded Systems




Examples of Embedded Systems

(cont’d)

Anti-lock brakes
Auto-focus cameras
Automatic teller machines
Automatic toll systems
Automatic transmission
Avionic systems

Battery chargers
Camcorders

Cell phones

Cell-phone base stations
Cordless phones

Cruise control

Curbside check-in systems
Digital cameras

Disk drives

Electronic card readers
Electronic instruments
Electronic toys/games
Factory control

Fax machines
Fingerprint identifiers
Home security systems
Life-support systems
Medical testing systems

Modems

MPEG decoders
Network cards

Network switches/routers
On-board navigation
Pagers

Photocopiers
Point-of-sale systems
Portable video games
Printers

Satellite phones
Scanners

Smart ovens/dishwashers
Speech recognizers
Stereo systems
Teleconferencing systems
Televisions

Temperature controllers
Theft tracking systems
TV set-top boxes

VCR’s, DVD players
Video game consoles
Video phones

Washers and dryers

Source: Embedded Systems Design: A Unified Hardware/Software
Introduction, (c) 2000 Vahid/Givargis

Embedded Systems

"A device that includes a programmable computer but

is not itself a general-purpose computer.”

Actuators

Embedded
Real-Time
System

Sensors

Execution deadlines,
Power consumption constraints,




Embedded Systems (cont’d)

Computing systems embedded within electronic
devices

Hard to define. Nearly any computing system other
than a desktop computer

Billions of units produced yearly, versus millions of
desktop units

Perhaps 50 per household and per automobile

Source: Embedded Systems Design: A Unified Hardware/Software
Introduction, (c) 2000 Vahid/Givargis

Embedded Systems (cont’d)

Non User-Programmable.

Based on programmable components (e.g., Micro-
controllers, DSP's...) but often contain application
specific hardware (IC's, ASIC's).

Reactive Real-Time Systems:

= React to external environment,

= Maintain permanent interaction,

= |deally never terminate,

= Are subject to external timing constraints (re
time).




Characteristics of Embedded
Systems

= Sophisticated functionality.

= Real-time operation.

* Low manufacturing cost.

= |Low power.

= Designed to tight deadlines by small teams.

= “Resource conscious” vs. “Unlimited resources”
programming

SoC Embedded System

software = Assembly of “prefabricated

components” often purchased from
| 0 external vendors (“IP”)

= “black box” hierarchy

= Design & Verification at the System
level

= rather than the logic level

L1
.

a

.
-
0

L E]

\\\\t

=
-

//
FE
.

2
it w\“N\N\N\N\N\xx =

|
1|
-

-
]
-

]

Source: Alberto Sangiovanni-Vincentelli, 35th DAC




A Digital Camera Example

—p

CCD preprocessor Pixel processor D/A

Microcontroller Multiplier/Accum

Display ctrl

i

i

JPEG codec

DMA controller

Memory controller 1SA bus interface UART

Real-time gas turbine testing
system

MI-2 helicopter engine “Minicomputer”

8kB RAM




TELEX-1 and TELEX-Il systems

/

WiTAS
WITAS project

= Autonomous system.

= Real-time system.

& |mage processing.

& Mission planning.

= Incorporation of GIS systems.
= Interface with ground operator.

http://www.ida.liu.se/ext/witas




Typical Hardware Components
of DSP System

Component class Implements Compiler Specification
DSP processor Low data-rate DSP (Retargetable) Assembly
Slow control loops code generator C
Appl. Spec. alg. High level synth.  DFL
Microcontroller User interface C compiler C
Slow control loops
Hardware High data-rate DSP  High level synth.  C, DFL
accelerator RT level synth. VHDL
Communication Internal & external Memory mgmt. Data-sheets
blocks and communication (A)synchronous STG
memory Storage & buffering interface synth.
Others Usually FSMD’s RT level synth. VHDL > *

- clock generators
- DMA blocks

Asynchronous
synth.

Source: H. de Man, et. al. “Co-design of DSP
Hardware/Software Co-design, Kluwer 1995.

Importance of Embedded System
Design Methodologies

= Hardware complexity.

= Heterogeneous systems containing hardware (both
digital and analog) and software.

= Heterogeneous components (CPU’s, DSP’s, ASIC’s,
buses, point-to-point links, etc.).

= Heterogeneous requirements — performance, cost,
power consumption, etc.

= System-on-chip.

= Shorter design cycles required by time-to-market
constraints.




Design Complexity and Designer

Productivity Gap
g 10,000,000 / 100,000,000 =
2 1,000,000 10,000, £
5 100,000 | 38%/Yr. Complexity -~ 0,000,000 2
@ ’ growth rate | / 1,000,000 =
8 10,000 b3 100,000 B
k'] Rt @
a 1,000 )‘/( P 10,000 F
g 100 x : 1,000 3
o 10 N el 21%/Yr. | £
2 Productivity growth rate | 100 =
el 1 =t 10
1998 2003
Source: Bryan Preas, Xerox PARC, 35th DAC
Software vs. Hardware Design
short summary
= Software
= flexibility,
= reconfigurability, easy update, etc.,
= complex functionality,
= cost,
. amm
= Hardware
= speed,
= power consumption,
= cost in large volumes,
B




Design of Embedded Systems

Need to be done using high-level specification,
programming and hardware description languages —
not assembly languages and gate/transistor level
design.

Requires efficient design space exploration and
synthesis/compilation tools.

Different design requirements has to be taken into
account, e.g., cost, performance, testability, quality of
service, power consumption.

Multi-language design framework.

Importance of High-Level
Design Methods

System Verification Processing Speeds

System Implementation Processing time (s/frame)
Behavioral model 1 200 (20 min/frame)
RTL model 144 000 (1.6 days/frame)
Gate model 228 000 (2.6 days/frame)

Gate model on hardware accelerator 1 200

Rapid Prototype 0.5

Target Hardware 0.05

Source: Paul Clemente, Ron Crevier, Peter Runstadler “R’
Synthesis A Case Study”, VHDL Times, vol. 5, no. 1.




General Design Flow

Design tools

_x Estimation !
” Parﬁtbningl
_____ - Mapping I

Design and Technology
Constraints

Designer's
Decisions

Refine " Refine

* Scheduling

Specify-Explore-Refine W

Specification and Programming

= Specification languages, such as UML, SDL.

= Programming languages, such as C, C++, Java,
Esterel, assembly languages.

» Hardware description languages, such as VHDL,
Verilog, SystemC.

= Example: combining SystemC and C++ gives unified
simulation environment for hardware and software.

10



Hardware Description Languages

Cover several levels of design abstraction as well as
behavioral and structural description domain.

Contain typical features of programming languages,
such as data types and program statements.

Special features:

= time concept,

= structure description,
= parallelism.

VHDL (IEEE standard), Verilog, SystemC.

Design Representations
(Computational Model)

Used to represent/model digital systems under
design.

Generated by a compiler from system specification or
coded directly in the model.

Represent the semantics, structure and timing of the
system.

Usually based on some kind of annotated graph
representation.

Used internally by design automation systems
the modeler/designer.

11



Design — Synthesis

= Software translation into target code for a processor
(real-time operating system might be used).

» Hardware synthesis — translation of a behavioral
representation of a design into a structural one.

= Communication synthesis — generates hardware
and software which interconnects system
components.

Pareto points

time

12



Discrete Cosine Transform
Partial Design Space

Clock
steps

Mul Mul Mul Mul
1 2 3 4

Design Space Exploration

Speed Cost

13



Time-to-market constraint

= Need time for new

v Profit
rofi product development,

= the biggest profit is in
the market window
time,

= missing the market
window can be costly.

. .

Market window time

Summary

Embedded systems are important class of electronic
systems which can be found everywhere,

Combine hardware and software solutions,

Cover several engineering and research areas:
= microelectronics,
= real-time systems,
= software development,
= etc.

parameters.

14



LUND INSTITUTE
OF TECHNOLOGY

Lund University

Methodologies for
Embedded System design

Kris Kuchcinski

Dept. of Computer Science
Lund University

Sweden

http://www.cs.lth/~kris

General Methodology




Input to System Design

Executable specification (functional requirements):
= usually provided as interacting processes/tasks,
= very often multi-language specifications,
= can be simulated and verified,
= can be used to perform analysis, e.g, estimation.

Specification languages: C, C++, VHDL, Verilog,
SystemC, Esterel, SDL, etc.

Set of (non-functional) design requirements (cost,
speed, I/O rate, power consumption, etc.).

Output from System Design

A set of system modules assigned to system
components (CPU’s, DSP’s, ASIC’s, etc.).

Communication modules.

Each module can be further synthesized to hardware
using high-level synthesis or compiled to software.




HW/SW Co-design

Traditional design
flow

Basic Characteristics of the
Methodology

= Behavioral specification is given for the complete
heterogeneous system, regardless of how different
parts will be later implemented.

= Analysis techniques are provided; specially different
estimation techniques.

= Synthesis tools are used to automatically explore a
design space.
= high-level synthesis, RTL synthesis,
= compilers, cross-compilers,
= interface generators,
= etc.




Estimation of Design Parameters

Estimation of parameters such as size, cost, power
consumption.

Does not need to be very precise but has to be
“consistent” — follows real design parameters.

Usually 15%-20% inaccurate.

Trade-off between accuracy and estimation time.

Improvements of the Design
Process

High-level specification is made before architecture
selection and implementation decisions can be made
more accurate (better exploration of architectures).

A uniform description of HW and SW makes it
possible to move parts of the systems between HW
and SW.

HW and SW development is moved closer and the
integration cost is reduced.

An early evaluation of system characteristics is
possible.




An Example of a Design Flow

~~~~ low-level
synthesis --.___

Specification Example

“Extended” VHDL

port(IP{,IP2:in INTEGER; OP1,0P2:0ut INTEGER);

signal S1,52,53,54,55,S6:INTEGER;

P1 : pre 5 P3 : process P5 : process
:e::e.ive(l P1); ;e::e.ive(s4); ;e::e.ive(s1 ,S5);
s.er.ld.(S1, J) ;e.n(;(Sz,...); s.er.\d.(S4,...);
s.er:d.(sa, J) end.p.ro;oss P3; en:i ;)r;cess P5;
:e;e.ive(Sb‘)

en:i ;)r;cess P1;

P2 : process P4 : process P6 : process
r.ec.ei:/e(IF 2}, r.ec.ei:/e(s3); :e;e.ive(sz);
r.ec.ei:/e(s1 ) ;e.n;(ss,...,ss,...); ;e.n(;(OP1 N H
s.er.ld.(OPz,... H en:i ;)r;cess P4; em; ;r;coss P6;

end process P2




Representation Example

Process communicati

Allocation of System Components

= Decides about the kind and number of components
for implementation of the system

= processing elements: uprocesosrs, micro-
controllers, DSP’s, ASIP’s, ASIC’s, FPGA’s, etc.

= storage elements: memories, register files,
registers, etc.

= communication devices: buses, point-to-point
links, networks, etc.

= specialized /O devices: A/D, D/A, frame grabbers
etc. '




Partitioning

Functional partitioning vs. structural partitioning.

Abstraction level.

Partitioning granularity (fine or course):
= modules,

= processes and procedures,

= jnstructions.

Partitioning objective:

= performance,

= minimal communication,

= low power,

= combination of several criteria.

Partitioning Example




Communication Synthesis

= Creation of abstract communication channels by
communication clustering.
= Communication refinement
= gelection of communication lines width,
= protocol selection,
= etc.

= |nterface generation:
= device drivers,
= communication hardware,
= etc.

Communication Synthesis
Example

access
routines

— |

interface
hardware




Design Decisions

= Different types of design decisions

= selection of components, partitioning,
assignments, scheduling, etc.

= decisions regarding runtime system done off-line
or are postponed to runtime (e.g., static vs.
runtime scheduling)

= Design decisions are mutually dependent

= Huge design space

Design Automation

= Uses internal representations which are usually
based on graphs.

= Graph algorithms (shortest path, Hamiltonian circuit,
topological sort, depth-first-search, breadth-first-
search, SAT, etc.).

= Optimization methods — (M)ILP, CLP, heuristics, etc.
= Tractable and intractable problems.

= Decidable and undecidable problems.

= Decision problems and combinatorial optimizatie
problems.




Design Automation
Consequences

Most of the problems which need to be solved in
design automation are NP-complete or NP-hard.

Usually only small problems can be solved exactly.

Need for algorithms which do not guarantee optimal
solutions but “good enough” solutions

= approximation algorithms — guarantee a solution
with a cost that is within some margin of the
optimum,

= heuristics — algorithms that are constructed
based on “rules-of-thumb”; nothing can be s#ig
advance about the quality of the result.

&
J
'@ %

10



LUND INSTITUTE
OF TECHNOLOGY

Lund University

Constraint Programming
Approach

Kris Kuchcinski

Dept. of Computer Science
Lund University

Sweden

http://www.cs.Ith/~kris

Quotations

"Constraint programming represents one of the
closest approaches computer science has yet made
to the Holy Grail of programming: the user states
the problem, the computer solves it."

Eugene C. Freuder
CONSTRAINTS, April 1997




Introduction and Motivation

Synthesis of the following code

(inner loop of differential equation integrator)

while c do
begin

end;

Introduction and Motivation

Y

scheduled
data-flow graph data-flow graph




Register Allocation as
Graph Coloring

Constraints:

[ry,Forarglsle] o2 0.2,
F{# Il F I, [ F I,

Mo # Iy, F3 F Iy, [y F 1,
Is # f.

Register Allocation as
Clique Finding

= for all r;, r; which are not connected by an edge:
nF1vr_j#1
= The maximal clique can found by maximizing the
following cost function:
cost=2,r,




Constraint Consistency

= All constraints are stored in the constraint store

= Consistency methods are applied to find inconsistent
values and prune variables’ domains
= Different types of consistency methods:
= Node consistency
= Arc consistency
= Path consistency

Consistency Properties

= Node consistency

= A network is node consistent if in each node
domain each value is consistent with unary
constraint (e.g., X > 7)

* Arc consistency

= A network is arc consistent if for each arc
connecting variables V; and V; for each value in
the domain of V, there exist a value in the domain

of V, consistent with binary constraint (e.g., X > Y. .
AT,




Node and Arc Consistency

= Example
0..10 0..10 1..6 0.5
9 > @ ; > @
V<7 V,<7
Not node consistent node consistent
Not arc consistent arc consistent

Need for search

= Node, arc and path consistency are in general not
complete (complete for some problems with particular
structures)

= Complete algorithm: N-consistency for N variable
problems — exponential complexity

* Example:

"2 [r1,r2,r3] 2 0..1,




Search

= Solver is not complete and search for a solution is
needed

Constraint properties

may specify partial information — need not uniquely
specify the values of its variables,

non-directional — typically one can infer a constraint
on each present variable,

declarative — specify relationship, not a procedure to
enforce this relationship,

additive — order of imposing constraints does not
matter,

o
o
Qo

<
=
a
o)
gl
@
>
a
o)
=)
=
<
T.
o
o
<
—
=
@
<
®
=y
)
=
®
<
)
=.
()
(J
4




More realistic example
Scheduling

Scheduling of the data-flow graph

il

Problems

= Constraint propagation for
Ti+D;=sT;vT;+D; =T, v R # R, is weak

* Not all solvers support disjunctive constraints.
= Other solution (reified constraints):

T,+D;<T, & B1,
T,+D;=T, & B2,
R # R, & B3,

B1+B2+B3=1.




Propagation problems

resources

time

T +D,sT,vT,+D, =T, VR #R,
Toa+DsT,vT,+D,=sT,vR,#R,

Global constraints

= Non-overlapping rectangles
Y

diff2([ [X, Y, DX, DY],
[X;,Y;;DX,DY;] 1)

X

= All knowledge in one "place” — makes it possible to
define good consistency methods (OR, mathematics,
geometry, etc.)

= Specific algorithms for consistency — more effigjef




Global Constraints -
Scheduling

= diff2 constraint
Y (resources)
duration (Di)

o e

""""

Ti

Scheduling Example Constraints

T1+2<T6,T2+2<T6,

T3+2<T7,T4+2=<T8S,

T5+1<T9, T6+2=<T10,

T7+2<T11, T10+1=<T11,

diff2([ [T1,R1,2,1], [T2,R2,2,1], [T3,R3,2,1],
[T4,R4,2,1], [T6,R6,2,1], [T7,R7,2,1],
[T5,R5,1,1], [T8,R8,1,1], [T9,R9,1,1],
[T10,R10,1,1], [T11,R11,1,1]]).




Registers

registers

diff2 for register

f.u.

diff2 for operations

= can be done together with or after functional
units allocation/binding and scheduling,

Other Synthesis Problems
Defined with Constraints

# High-level synthesis:

Chaining,

Conditional execution,

Pipelined components,

Algorithmic pipelining,

Switching activity reduction (power consumption)

= System design
= different aspects of design space exploration
= scheduling
= component assignment
= memory allocation/data assignment
» power/energy consumption

10



Design Space Exploration

Mapping

Communication facility

Architecture

Additional Constraints
element

= Element constraints
= element(N, [X, X, ..., X,], Value)

= propagation from N to Value
N=i — Value = X|
= propagation from Value to N
Value =x — N=iand Xi=x ...

= Examples- element(N, [2, 3, 4, 4], V)
= N:1.2,V: {2 3}
= V=4, N:3.4

relations

11



Additional constraints
cumulative

Cumulative constraint

Resources

ResourceLimit

Cumulative propagations

= Execution interval which will always be occupied by a
task.

Resources LST < LCT

min(T) LST = max(T)

12



Cumulative propagations —
profile based

Resources

ResourceLimit

Time
for each [t, tj)

for each task, whose exec. interval overlaps with [t;, t)

T, in { complement(t; - min(D,) +1 .. t;- 1) }
check D, ... Res,....

Cumulative propagations —
edge finding
[ T |
| ]
| J

est(t1)" let(t1)

{3 cannot be between t1 and t2 iff
Ict(t1) - est(t1) < D1 + D2 + D3

> t3 must be last II!

t3 cannot be before t1 and t2 iff
Ict(t1) - est(t3) < D1 + D2 + D3

13



Edge Finding Algorithm

= Martin-Shmoys algorithm with O(n2) complexity.

= Up phase
= for each unique Ict we create a set
S = {t | LCT(t) <= Ict} and make checking whether
a task can be the first or before
= Down phase

= similar but using est and checking whether a task
can be the last one or after all tasks.

System Synthesis Example

‘ = original MILP formulation- 47 timing
variables, 225 binary (bus 153)

and1081 constraints (bus 416)

= commercial linear programming
l package used to solve the problem
? (XLP, developed by XMP Software,
Inc.)

Execution time
Processor Cost S1 S2 S3 S4 S5 S6 S7 S8 S9
P1 4 2 2 1 1 1 1 3 - 1
P2 5 3 1 1 3 1 2 1 2 1
P3 2 1 1 2 - 3 1 4 1 4

14



Modeling of cost and
execution time

= Execution time
element(P1, [2, 3, 1], D1)

element(P9, [1, 1, 4], D4)

= Cost

(P1=1 v P2=1v ... vP9=1) & C1,

(P1=6 v P2=6 v ... v P9=6) < C6,
Cost =4*C1 + 4*C2 + 5*C3 + 5*C4 + 2*C5 + 2%

System synthesis results

Performance Performance optimization Cost optimization
Design Cost (time MILP (s) CLP(s) B&B CLP (s) B&B Nodes
units) Nodes

10 6 6438.00 0.43 84 0.55 92

Bus 6 7 5371.80 0.53 114 0.68 144
5 15 3691.20 0.43 68 0.70 103

15 5 3732.00 0.43 20 1.67 125

point-to-point 12 6 26710.20 1.42 98 2.18 169
links 8 7 32320.20 1.00 58 2.59 198
7 8 4510.80 1.64 75 2,02 112

5 15 38501.20 1.50 32 1.48 77

15



System synthesis results with
local memory

Performance ___Performance optimization Cost optimization
Design Cost (timeunits) MILP(s) CLP B&B CLP B&B Nodes

(s) Nodes (s)

28 6 659220 0.71 76 2.58 252
23 7 5371.80 1.07 193 1.94 266
Bus 22 8 123252.60 0.95 124 14.85 856
21 10 316860.60 11492 4534 119.55 8799
18 1 236724.00 8823 7015 237 477
17 12 138004.20 0.93 268 10.39 3076
14 15 358140 0.54 22 9.89 3076
38 5 - 0.56 24 2.08 107
30 6 - 0.99 59 3.75 155
point-to-point 25 7 - 1.60 79 5.58 314
links 23 8 - 1.82 57 3.21 184
22 10 - 4.50 84 59.25 855
19 1 - 27.34 794 101.03 2851
18 12 - 97.72 2686 8.66 1047
14 15 - 1.18 14 4.95 328

An Example

FB1
CT REK FB2

553 96
_~é4+ BMA QOpRAE Q /% % ’ % . % ’
.\) C

N 96 9%6 & 96 3
DCT

C + Dc=< 2500

Video Coding Algorithm H.261

16



Task Mappings to Processors

Task Uni- BMA PAR1 DCT FIR BMA FIR FIR DCT DCT

versal array array array pipe seq pipe seq pipe
IN - - - - - - - - - -
FB1 - - - - - - - - - -
BMA 7234 484 - - - 3617 - - - -
FIR 7234 - - - 510 - 3461 1170 - -
PRAE 1280 - 128 - - - - - - -
DCT 12312 - - 132 - - - - 6156 474
Q - - - - - - - - - -
Q - - - - - - - - - -
IDCT 12312 - - 132 - - - - 6156 474
REK 1536 - 256 - - - - - - -
C 132 - - - - - - - - -
FB2 - - - - - - - - - -

Scheduling with Memory
Constraints

target architecture

annotated task graph

17



Memory importance

Schedule Data Memory

task graph

architecture

Task - 1kB code memory, 4kB data memory, Communication - 2kB |data

Experimental results
H.261 example

1 both 1 2871 | 2871 | 2683 - -

greedy 4 6743 | 1686 |3812| O 0
3 | memory 4 6781 [ 1696 |3259| 1% | -16%




Scheduling of Mars Path Finder under
Power Consumption Constraints

The mars rover operates on very limited power supply. The power
is given by solar panels. The power obtained from solar panels was
measured at different temperatures and the results were the
following: 14.9W at -40°C, 12.0W at -60°C and 9.0W at -80°C.
There is a battery power source too, which gives maximal 10.0W
and it is not replenishable energy so the battery power should be
used as little as possible. The mars rover has 6 driving and 4
steering motors, which need to be warmed up before respective
driving and steering can be performed.

Scheduling of Mars Path Finder under
Power Consumption Constraints

Heating steering motors 5s At least 5s and at most 50s before
(HSM182, HSM38&4) steering starts

Heating wheel motors 5s At least 5s and at most 50s before driving
(HWM1&2, HWM3&4, HWM5&6) starts

Hazard detection (HD1 & HD2) 10s At least 10s before steering starts
Steering (Steer1, Steer2) 5s At least 5s before driving

Driving (Drive1, Drive2) 10s At least 10s before next hazard detection

starts

19



Scheduling of Mars Path Finder under
Power Consumption Constraints

Heat two Bs 7.6W 9.5W 11.3W
motors

Drive 10s 7.5W 10.9W 13.8W
Steer 5s 4.3W 6.2W 8.1W
Hazard 10s 51W 6.1W 7.3W
Detection

CPU Constant 2.5W 3.1wW

Modeling

= Precedence constraints:
t_hd1 + d_hd1 <t_steer1,

t_steer1 + d_steer1 <t_drive1,
t_hwmi2 <t_steer1 + 50,
= Power consumption constraints:
cumulative([t_hd1, ..., th_sm12],
[p_hd1, ..., p_sm12],
[d_hd1, ..., d_sm12], Power)
= Optimize “Power”

20



Cycle (circuit) constraint

cycle(2, [ [2,6], [3,4], [1], [2,3], [2,6], [2,5]])

[[21,[4], [1], [3], [6] [5]]

Search

= Standard search uses depth-first-search with
backtracking.

= Optimization uses branch-and-bound or similar
methods.

21



Typical branch and bound search
(TSP problem)

Cityl City2 City3 City4
- 3 6

City 1 41
City 2 - 40 5 {1}
ity 4 B L>0
{1,2} {1,3} {1,4}
L>3 L26 L>41
{1,2,3} {1,2,4} {1,3,2} {1,3,4} 7< X<
L>43 L>8 L>46 L>10
(1234} {1,243} {1,342}
L=88 L=18 L=18
Search with restart
(CLP typical)
Cityl City2 City3 City4
City 1 - 3 6 41
City 2 - 40 5 {1}
Gy 4 - L0
{12} (1,2} {1,3}  {1,3} {1,4}
L=>3 L>3 L=26 1>6 L>41
{1,2,3} {1,2,4} {1,3,2} {1,3,4}
L=>43 L>8 L>46 L>10
{1234} {1,243} {1,342}
L=88 L=18 L=18

22



Search (cont’d)

[City1::2..4, City2::{1,3..4}, City3::{1..2,4}, City4::1..3]

= How to select order of variable assignment?
= dynamic vs. static
= criteria
= How to select values to be assigned from variable’s
domain?
= a single value
s sub-domain

Variable Selection

= Static and dynamic
= input order (static)
first-fail principle (smallest size of the domain)
smallest value in the domain
largest value in the domain

largest difference between the smallest and
second smallest value in its domain

smallest max value in the domain

23



Value Selection

Single value

= minimum in the domain and then upwards
s maximum in the domain and then downwards
= middle and then towards smallest and largest

= random

Domain split

= gplit into two sub-domains

= gplitinto N

Search improvements

Partial enumeration algorithms (instead of labeling)

= Credit Search,

= Limited Discrepancy Search (LDS).

Assignment of subintervals instead of values to

domain variables

— possibly examines a bigger part

of a solution space.

Problem-dependent specific heuristics.

Neighbourhood search...

24



Credit search

credit(T,
8, % credits
10,
my_delete,
my_indomain,
3, % backtracks
part(1,2)),

initial credit =

credit search

local search

25



Interval splitting

Interval splitting

/ / \\ For each task:

Origin :: min..max
duration

Rest :: 0..duration-1,
Quotient :: 0..max,

T
I
I
I
I
:
| Quotient*duration+Rest #= Origin.

Enumeration procedure:

| [ | [ I
1 234567891011
1<Origin<3 7<Origin<9

labeling(Origins, Quotients) :-
labeling(Quotients, first_fail, indomain),
labeling(Origins, first_fail, indomain).

4<0rigin< 6 10<Origin < 11

Summary and conclusions

* Advantages:

= focus on a specification of the problem, not on a
solution method.

= unified framework for different algorithms to be
used to solve a problem (by encapsulating them
as constraints).

= easy definition of problems with many
heterogeneous constraints.

= easy extension of a problem by adding new
constraints.

26



Summary and conclusions

= Limitations:
= NP-hard problems.
= often non-predictable behavior of a solver.

= difficult to define and add new constraints:
= into existing systems — interface problems.
= new propagation algorithms need to be developed.

= difficult to match constraints with actual problems.

CP finite domain systems

= SICStus Prolog

= CHIP from COSYTEC
* |F/Prolog

= |ILOG

* Mozart/Oz

= Gnu Prolog

= JaCoP — Java based our own solver

27



Selected CP Web resources

Constraints archive
http://www.cs.unh.edu/ccc/archive

Guide to constraints programming
http://kti.ms.mff.cuni.cz/~bartak/constraints

Sicstus manual
http://www.sics.se/isl/sicstus/sicstus_toc.html

Gnu Prolog
http://www.gnu.org/software/prolog/prolog.html

Mozart/Oz
http://www.mozart-oz.org/

Other resources

= Book

= K. Mariott and P. J. Stuckey Programming with
Constraints: An Introduction, The MIT Press, 1998.

= Conferences

= Principles and Practice of Constraint Programming
(CP)

= The Practical Application of Constraint Technologies
and Logic Programming (PACLP)

« Journal
= Constraints (Kluwer Academic Publishers)

28



Selected Papers

Kuchcinski, K., Embedded System Synthesis by Timing
Constraints Solving, Proc. 10th International Symposium on
System Synthesis, Antwerp, Belgium, September 17-19, 1997.

Gruian, F. and Kuchcinski, K., Operation Binding and
Scheduling for Low Power Using Constraint Logic

Programming, Proc. 24th Euromicro Conference, Workshop on
Digital System Design, Vasteras, Sweden, August 25-27, 1998.

Kuchcinski, K. and Wolinski, Ch., Global Approach to
Assignment and Scheduling of Complex Behaviours based on
HCDG and Constraint Programming, Journal of Systems

Architecture, 2003, Elsevier Science.

Selected Papers (cont’d)

Kuchcinski, K., Constraints Driven Design Space Exploration for
Distributed Embedded Systems, Journal of Systems
Architecture, vol. 47, no. 3-4, pp. 241-261, 2001, Elsevier
Science.

Szymanek, R. and Kuchcinski, K., A Constructive Algorithm for
Memory-Aware Task Assignment and Scheduling, Proc. 9th
International Symposium on Hardware/Software Codesign,
Copenhagen, Denmark, Apr. 2001.

Szymanek, R. and Kuchcinski, K., Partial Assignment
Technique for Task Graph Scheduling, 40th DAC, Anaheim,
USA, June 2003.

Kuchcinski, K. Constraint-driven scheduling and resource

Systems, vol. 8, no. 3, pp. 355-383, 2003.

29



Sponsored by:

’B” i* ‘qm




ESSES 2003

European Summer School on
Embedded Systems

Lecture Notes
Part Xl

Embedded Sysems:
Introduction and Overview

European Summer School on

Enbedded Systems

Jul 14 - Oct 10 2003
Vaster8s Sweden

Editors: Ylva Boivie, Hans Hansson, Jane Kim, Sang Lyul Min

Stringnds, August 20-22, 2003

M ISSN 1404-3041
ISRN MDH-MRTC-106/2003-1-SE

MALARDALEN REAL-TIME
RESEARCH CENTRE www.mrtc.mdh.se



Real-Time Communication

Kang G. Shin

The University of Michigan



Real-Time Communication

Kang G. Shin

Real-Time Computing Laboratory
Department of Electrical Engineering and
Computer Science
The University of Michigan
Ann Arbor, Ml 48109, USA
kgshin @ eecs.umich.edu

Kang Shin (kgshin @eecs.umich.edu)

1



Why and What Real-Time Communication?

e Between sensors & control panel and processors
Between processors

e Non RT protocols: throughput
RT protocols: (absolute/prob.) delay guarantees

e Message delay = formatting and/or packetization +
queueing + xmission + depacketization

e How to derive message deadlines?

e Message drop preference in case of congestion.

e RT traffic sources:

— Constant rate
— Variable rate

e Traffic characteristics may change inside the network

Kang Shin (kgshin @eecs.umich.edu)

2



Network Topologies

e Diameter, node degree, fault-tolerance

e Types:
Shared:

Point-to-point:

e Switching
Packet SW: routing, flow control, & scheduling
Circuit SW:
Cut-thru SW: Wormhole, virtual cut-thru

e Interconnections: system and node levels,
I/O connectivity

Kang Shin (kgshin @eecs.umich.edu)

3



Virtual-time CSMA

e 2 synchronized clocks, “real” and “virtual,” for each
station.

RC: to record message arrival times

VC: to count up to a virtual time to start xmission,
VSX(M). freezes when channel is busy and runs

faster than RC when channel is idle.

6
M g
Q 1
L 4 !
® !
g !
‘> t2’ : i
| L
B Y1 I %, Channel Busy BJdle %
Real Clock
e When VC>VSX(M), packet M becomes eligible for
Xmission.

If collision, modify VSX value.

e Question: How to initialize when channel becomes
free, and how to modify VSX(M) when 3 a collision
involving M?

Kang Shin (kgshin @eecs.umich.edu)

4



More on VTCSMA

T.
Ay
Ty
Dy
Ly

AM(t):

VSX (M) = ¢

Signal propagation time

Arrival time of message M

Time required to xmit M

Deadline of M

Latest time M to be sent to meet Dy,
Dy—Ty—1t—t

Ay for VTCSMA-A
Ty for VTCSMA-T
Ly for VTCSMA-L
Dy for VTCSMA-D

\

In case of collision, M is rexmitted immediately with prob p
or not; and VSX(M) is modified to be a random # in

N\

( (currentVC,L,) for VTCSMA-A
(0, Tar) for VTCSMA-T
(current RC,L)) for VTCSMA-L

(current RC,Dy) for VTCSMA-D
\

Kang Shin (kgshin @eecs.umich.edu)

5



More on VTCSMA

e When channel changes from busy to idle

no change for VTCSMA-A
VC=< 0 for VTCSMA-T
RC for VTCSMA-L and -D

o Effects of clock skew
Node M ActualRCat RCatnode Dy Ly

M’s arrival
1 1 8 actual RC-1 32 16
2 2 9 actual RC+1 36 20

VC runs twice faster than RC.

N; and N, xmit M; and M, at their VC values 16 and
20, corresponding to their RC values 8 and 10 which
are identical.

e Lower loss rate than CSMA but wastes net
bandwidth by idling the net.

Kang Shin (kgshin @eecs.umich.edu)

6



Window Protocol

e Use events on the bus to synchronize node
actions

e Each node maintains a time “window”

e When L), of a packet falls in this window
and the channel is idle, the packet is eligible
for xmission.

e Each node maintains a stack of window
history, (upper bound of window, ID of
collided message or 0).

e Shrink or enlarge window based on the
events on the bus.

e \What does a collision even when w =1
mean and what to do?

e What'’s a slot?

Kang Shin (kgshin @eecs.umich.edu)

7



Ethernet-based RT Communication

e Advantages
— low price & simple management
— mature technology

e Diffi cult to provide RT guarantees —
CSMA/CD
— packet collision

— multiple collisions due to bursty non-RT
packets

Kang Shin (kgshin @eecs.umich.edu)

8



Ethernet MAC protocol

e CSMA/CD protocol
— No exclusive medium control
— Listen before transmit
— Stop transmission upon sensing collision

e Binary Exponential Backoff (BEB): backoff
range increases with collisions.

Kang Shin (kgshin @eecs.umich.edu)

9



A New Solution

RT Appls

non-RT Appls

UDP/IP

TCP/IP

Ethernet (MAC)

Prioritization

Rate Smoothing

Kang Shin (kgshin @eecs.umich.edu)

10



Fixed-Rate Traffi c Smoothing

Bl 11

Bursty stream

L/B

I

Smoothed stream

Kang Shin (kgshin @eecs.umich.edu)

11



Disadvantages of Fixed-Rate Smoothing

e Poor scalability due to network-wide input
limit distributed to stations

e Low network utilization by non-RT traffi c
— constant station input limit

e Solution — adaptive-rate traffi c smoothing

Kang Shin (kgshin @eecs.umich.edu)

12



Arrival rate

Fixed-Rate vs. Adaptive-Rate Smoothing

Time

Arrival rate

max

Arrival rate

Time Time

(b) ©

Kang Shin (kgshin @eecs.umich.edu)

13



Harmonic-Increase and Multiplicative-Decrease Adaptation

e Parameter: minimum packet inter-arrival
time or refreshing period (RP)

e Uses NIC-collected collision statistics

e Adaptation
— No collision: RP decreased by A

periodically
— Upon collision: RP doubled

14



Experimental Evaluation of Adaptive-Rate Smoothing

e 11 PCs

e 10BASE-T Ethernet LAN

e Collision domain diameter = 10 m

Kang Shin (kgshin @eecs.umich.edu)

15



Topology

Monitor Station

PC-1 PC-3

PC-2

RT messages

Kang Shin (kgshin @eecs.umich.edu)

16



Traffi c Generation Statistics

e RT traffic
— a 100 byte long message every 0.3 sec
from PC-n
— total RT traffi c generation rate — 53.3
kbps

— roundtrip deadline — 129.6 msec

e non-RT traffic

— non-greedy mode
x a burst (1 MB) every 25 sec from an

activated node
*x 320 kbps from a single node
— greedy mode
x zero burst inter-arrival time
x variable throughput

Kang Shin (kgshin @eecs.umich.edu)

17



Packet loss ratio

RT Message-Loss Ratio (non-greedy mode)

0.1
: I No traffic smo'othing e Keee ! T

Fixed-rate traffic smoothing ---&--

Adaptive-rate traffic smoothing ---x---

No non-real-time traffic &
o ]
E T - ]

B -
"
0.001 F -
T B
,,,,,, .@—‘—'—""" ]
....... e-*""""." ]
R 9
./'/’ —————— o
/,‘::—: ———— N e
0.0001 F ez y _-
[; e’ -
1e-05 | . | |
0 2 8 10

4 6
Number of nodes generating non-real-time traffic

Kang Shin (kgshin @eecs.umich.edu)

18



Mean delay of a burst of non-real-time packets in secs

Avg Xmit Time of non-RT Bursts (non-greedy mode)

26

L —— & e T T T T L — =
S - o T
24 i
22 i
20 i
18 .
16 .
No traffic smoothing ---*---
14 | Fixed-rate traffic smoothing —--&-- |
Adaptive-rate traffic smoothing ---x---
12 i
10 .
8 2
6 | ///’/ i
R e |
N N
3
2 PP,
------------------------------ K mmmmm o mmm e e R n s m oo o n s *
oT | | 1 1 | 1 1
2 3 6 8 9 10

5 7
Number of nodes generating non-real-time traffic

Kang Shin (kgshin @eecs.umich.edu)

19



Round trip delay in secs

RT Traffi ¢ Roundtrip Delays

1.81

1.6

1.4

—
[

—

o
o

No smoothing

— — — —
(M) » ) 0
1 T T T

Round trip delay in secs
o
P -

adaptive smoothing

Kang Shin (kgshin @eecs.umich.edu)

20



Packet loss ratio

RT Message-Loss Ratio (greedy mode)

1 L
T ! No traffic SmOOthir:g - I I |
Adaptive-rate traffic smoothing ---x---
---------- ale*
0.1 _ L _x
o »
X----
0.01 | |
0.001 | |
P 7
———————— e -
_____ x———————————
-
oo : 1 1 1 1 1 1
1 2 3 . 6 8 9 |

4 7
Number of nodes generating non-real-time traffic

Kang Shin (kgshin @eecs.umich.edu)

21



Throughput

Throughput of non-RT Traffi c

0.8

0.6

0.4

0.2

I I I 1 I I 1
_______________ R REEEEEEEEEE S )
ke *---07
//I \\\\\\\\ Rmme
// ~~~~~~~~~~ Hommee
B //’ _________ *"‘"-—————————____.___j
No traffic smoothing ---*---
. Adaptivel-rate trafficI smoothingI ——oX--- . | | .
2 3 4 5 6 7 8 9 10

Number of nodes generating non-real-time traffic

Kang Shin (kgshin @eecs.umich.edu)

22



Summary on Real-Time Ethernet

e Ethernet augmented with middleware for
soft RT guarantees
— compatible with TCP/IP, UDP/IP and
Ethernet standard
— implemented on Linux and Windows NT

e Prioritization and traffi c smoothing
e Fixed-rate traffi c smoothing

e Adaptive-rate traffi c smoothing

23



Token-Passing Protocols

Station

A

________________________ =,
= NI !
N 1!
5 o
g s e —_ - §
S % Z | Z
e oo ] NI | v
A
Y
Station

Overheads: med. propagation time, token xmission time
and capture delay, and NI latency.

Timed-Token Protocol (TTP): 2 types of traffic

e Synchronous/RT: xmit up to % units of time
(UOTs) every T UOTs.

e Asynchronous/non-RT: uses any bandwidth left
unused by synchronous traffic.

Kang Shin (kgshin @eecs.umich.edu)

24



Target Token Rotation Time (TTRT)

e Token cycle time <2 x TTRT
How do you determine TTRT?

e Time available to xmit packets per TTRT
t,=TTRT - 0O

e Node i gets SBA, B x f—lj.

e If cycle time > (<) TTRT token is /ate
(early). Xmit only synch. traffic up to ;4
(AND a certain amount of asynch. traffi c).

e Questions

— How to determine #;?
— Why token early or late?

— Is avg token cycle time still < TTRT?

Kang Shin (kgshin @eecs.umich.edu)

25



Supporting Periodic Communication

e Node i needs to xmit ¢; bits of RT traffi c
every P; UOTs

- TTRT <P/2

— Synch. bandwidth is greater than
thCi/ L% — IJ

e How to deal with token loss?
Claim-token (contains TTRT it requests)
Beacon packet if every node doesn’t
recenditemizeve its own claim-token or a
normal packet within TTRT(:) after xmitting
claim-token.
Station immediately downstream from a
break is the only node that will keep
xmitting.

Kang Shin (kgshin @eecs.umich.edu)

26



IEEE 802.5 Token Ring Protocol

Token

SD | AC ED

SD | AC | ED | DA | SA | Message ECC ED | FS

SD: Starting Delimter SA: Source Address
AC: Access Control FS: Frame Status

ED: Ending Delimiter 00 dest unavailable
DA: Destination Address 10 frame uncopiable

11 frame copied

e FS field checked by the sender
e Sender removes data frame it sent

° Prlorlt% arbitration via AC field
its for current and reserved priorities

— When data frame or a token goes by, a node
checks the reserved priority beginitemizets: do
nothing if higher else write its priority into AC

— Upon completion of current xmission, the sender
issues a token with priority in AC

— Node that increased priority is responsible for
restoring it to prior priority value

e Schedulability Analysis of Token Ring
T, T»,...,T, are schedulable iff Vi Jr < d; such that
“+1¢jl 5| + system overhead + b; < ¢.

Kang Shin (kgshin @eecs.umich.edu)

27



Polled Bus Protocol

e Synchronous contention resolution

e Stations contend for the channel during a
contention period

e The station with the highest priority
message gets access to the medium

e Example: Controller Area Network (CAN)

Kang Shin (kgshin @eecs.umich.edu)

28



Bus Acquisition Algorithm

e Calculate a unique ID of m beginitemizets.

e If bus not busy then

— Write its ID to the bus, one beginitemizet
at a time, starting with MSB

— Wait for a fi nite time and sample the bus

— If the value read by the processor is
different from the value it wrote into the
bus, it drops out

— After m rounds, the processor with the
highest ID has sole control of the bus.

e The bus is assumed to wired-OR all

impinging signals and all stations are
synchronized.

e Key: how to design station IDs?

Kang Shin (kgshin @eecs.umich.edu)

29



Stop-and-Go or Framing Protocol

e Frame = a time interval
Each frame type represents a diff time interval and is
associated with a traffic class.

e Upon arrival of a type-f; pkt at an intermediate node
n, it's held by » at least till the beginning of next
instance of f;.

| | 1 1 1 | xmission end of node n

T | 1 1 1 | receiver end of n
propagation delay

e All nodes eligible for xmission are served in
nonpreemptive priority order, with shorter-frame pkts
having priority over longer-frame pkts

e If netload < a certain limit, a type-m pkt will be
xmitted within f,, time units of benditemizeng eligible
for xmission, i.e., bounded delay at each hop

Kang Shin (kgshin @eecs.umich.edu)

30



Hierarchical Round-Robeginitemizen Protocol

e Guarantees each traffi ¢ class i to xmit m
pkts every T; UOTs.

e Traffi c is classifi ed into n classes, where
each class i is associated with (n;,b;, ®;)

— n;: max # of class-i pkts xmitable during any
given frame of which source j is allocated a
certain max # o;.

— If o; pkts are xmitted or no class-i pkts left for
xmission, class-(i+ 1) pkts if any are xmitted,
etc., for a max of b; pkts during that class-i frame

— ®; = frame associated with class i
DI <D <... <D,

Kang Shin (kgshin @eecs.umich.edu)

31



Point-to-Point Networks

e Attractive because of fault-tolerance
capability

e Allow multiple conversations to go on
simultaneously on different links

e Access to the links can be controlled easily
e Drawback: Higher latency

e Desirable: effi cient broadcast algorithms

Kang Shin (kgshin @eecs.umich.edu)

32



Guaranteed Delivery

e Message generation characteristics
— Source, Destination

— Maximum message length: ;4 (bytes)

— Minimum inter-arrival time: Ry,
(msgs/sec)

— Maximum burst size: By, (MSQS)

— Desired bound on message latency: D

e In any time interval of length ¢, the number
of messages generated may not exceed

Bmax _I_ t ° Rmax.

e A pair of uni-directional real-time channels
should be established between source and
destination before messages can be
transmitted on them.

Kang Shin (kgshin @eecs.umich.edu)

33



Delivery Time Guarantee

e The logical generation time, £(m), for a
message m is defi ned as

l(mg) = 1o
b(m;) = max{€(m;_1) + Ipin, t;}

where t; denotes the actual generation time
of message m;, and I,,;;, is the reciprocal of

Rmax ]

e If D is the end-to-end delay for the channel,
the system guarantees that any message m;
will be delivered to the destination node by
time 4(m;) + D.

Kang Shin (kgshin @eecs.umich.edu)

34



lllustration

10 = Im(0)

rl

Im(1) = Im(0) + Imin

dl =lm(1) + D

4 -

A0

Al

Kang Shin (kgshin @eecs.umich.edu)

35



Channel Establishment

e Select a source to destination route for the
channel

e Compute a feasible worst-case delay at
each link (if possible) based on the
characteristics of all channels in the system

e Check whether the total delay is acceptable
and redistribute the delays

e Compute the buffer requirement at each link
Note: This computation is dependent upon the link
message scheduling algorithm used during

transmission.

Kang Shin (kgshin @eecs.umich.edu)

36



Delay Computation

e should maintain the feasibility of existing
channels

e should obtain the minimum feasible delay

e should be linked to the run-time message
scheduling policy

e distinguish between the feasibility testing
and the run-time message scheduling policy

e use an optimality result proved by
Dertouzos ('74)

Kang Shin (kgshin @eecs.umich.edu)

37



Assignment Procedure

e Arrange the channels in ascending order of
their associated delay d;.

e Assign the highest priority to the new
channel M;_ . Assign priorities to the other
channels based on their delay.

e Compute the new (worst-case) response
times 7/ for the existing channels based on
this priority assignment.

e Find the smallest position ¢ such that 7} < d;
for all channels with priority less than g.

e Assign priority g + 1 to the new channel and
compute the response time r,’c 41

Kang Shin (kgshin @eecs.umich.edu)

38



Response Time

Consider a set of channels
{M; = (C;,d;, pi),i =1,...,m} which share a
common link 2.

Si={d} Jlkpjlj=1,...i— Lk=1,.,|(di/p;)]}

i—1
Wi(t) = ZICJ” [2/pjl+Ci
j=

The worst-case response time for messages
belonging to M; is the smallest value of ¢ such

that w;(r) =+.

Kang Shin (kgshin @eecs.umich.edu)

39



Run-time Scheduling

e Problem with fi xed-priority scheduling:
arrivals are not strictly periodic

— arrival time at a node depends on the
actual delay at the previous node

— model allows burst arrivals

e High priority arrivals can disrupt the
scheduling of lower priority messages

Kang Shin (kgshin @eecs.umich.edu)

40



lllustration

normal arrivals

early arrival

d1 d2

Kang Shin (kgshin @eecs.umich.edu)

41



Run-time Scheduling

e Deadline Scheduling can be used to
overcome this problem

e Based on the logical arrival time of the
message at a node

The logical arrival time for m; at node b, Kc,b(m,-),
is defi ned as

Ec,b (m;) = Ec,a(mi) +dc,a

where d. 4 is the worst-case delay for messages
on channel M, at node a.

e Is the feasibility testing still valid?

Kang Shin (kgshin @eecs.umich.edu)

42



Run-time Scheduling

Uses a multi-class Earliest Due Date (EDD)
algorithm

Queue 1 Packets belonging to real-time
channels with ¢.(m;) < current_time,
arranged in the order of increasing
deadlines.

Queue 2 Other packets arranged in the order of
increasing deadlines.

Queue 3 Packets belonging to real-time
channels with ¢.(m;) > current_time,
arranged in the order of increasing logical
arrival time.

Kang Shin (kgshin @eecs.umich.edu)

43



Buffer Management

e Buffer space is reserved for channels at the
source, destination, and at intermediate
nodes.

— depends on Byux, Rimax, and the link
delays

e Flow—control enforced: time-based

— packets in Queue 3 are considered for
transmission only when their logical
arrival time < current time + horizon

Kang Shin (kgshin @eecs.umich.edu)

44



Buffer Requirement

e min space = Syax - [(dprev + dnode) [ Imin |
o buf space = Syax - [(dprev +dnode + H) [Imin]

e Mmax space
— Smax : |_ dcumul/lmin —| + Smax : Bmax

Kang Shin (kgshin @eecs.umich.edu)

45



Fault-Tolerant Real-Time Channel

e Static routing makes real-time channels
unable to tolerate component failures

e Dynamic routing would make it diffi cult to
guarantee delivery-delay bounds

e Possible solutions:
— Partially-dynamic routing or local detours

— Multiplexed backkup channels

— Reactive approach, i.e., do nothing until
breaks.

Kang Shin (kgshin @eecs.umich.edu)

46



Partially-Dynamic Routing

e Set up a primary real-time channel

e Enhance the channel with some extra links
and nodes

e Use the primary under normal
circumstances, and use the extra
links/nodes when the primary breaks down.

Kang Shin (kgshin @eecs.umich.edu)

47



Single Failure Immune RTC

l DESTINATION NODE 1 l DESTINATION NODE 2
12
o<'-O— O O--=0—O
A A
I

36 12

V

NG T
O
A

12 12

I

\Y
T SOURCE NODE 1 T SOURCENODE2 ~~__ -7

Kang Shin (kgshin @eecs.umich.edu)

48



Isolated Failure Immune RTC

destination

AvA™

Kang Shin (kgshin @eecs.umich.edu)

49



Backup Channels

Approach:
e A dependable connection = a primary
channel + backup channels

e Reservation of spare resources in
advance

e Advance recovery-route selection
(off-line end-to-end rerouting)

Issues:
e Per-connection dependability-QoS
control

e Spare resource alllocation
e Channel failure detection
e Time-bounded failure recovery

e Resource reconfi guration

Kang Shin (kgshin @eecs.umich.edu)

50



Overview of Self-Healing Recovery

Kang Shin (kgshin @eecs.umich.edu)

51



Summary

e E2E real-time communication is achieved
via
— connection establishment
— run-time scheduling

— buffer management

e Extensions for fault-tolerance
— Local detours: SFI and IFI

— Backup channels and their multiplexing

— Reactive approach

References can be found from
http://kabru.eecs.umich.edu

Kang Shin (kgshin @eecs.umich.edu)

52



Wayne Wolf

Princeton University



Challenges in Embedded
Computing

Wayne Wolf
Dept. of Electrical Engr.
Princeton University

The push from Moore’s
Law

transistor chips @ 10 GHz in 2012.

microprocessor transistors/chip

1999 2001 2003 2006 2009 2012
21lM 40M 76M 200M 520M 1.40B




Filling up chips

& Effective use of VLSI manufacturing requires:
~llarge volumes;
standard services, but with product differentiation;

The application push

nternet is a platform for distributed
computing.
But must come up with interesting
applications.
3 Non-PC appliances will become
increasingly important.

[21But they must be cheap.




Potential applications

Wireless

already here

3G pushes more complex applications
#Multimedia

digital cameras with compression popular
more sophisticated applications are possible

One way to use a billion
transistors

Multimedia-rich Internet information
appliances:

i~IMultimedia allows people to use the Internet
for person-person communication.

~IComplex functionality requires large software
content.

Multimedia requires memory.
High-volume market requires single chip.




Characteristics of
embedded systems

¢ Very high performance.

Z~IVision + compression + speech + networking all on
the same platform.

¢ Multiple task, heterogeneous.

'Real-time.

 Often low power.

¢ Highly reliable.

I reboot my piano every 4 months, my PC every day.

System design cha

Single-chip multiprocessor architectures.
'Embedded real-time software.
sEmbedded memory.

-IP-based design.

:Design verification.

> Testing.




Design productivity gap

rom ITRS 99:

1000

100 /
10 'l
—e—chip size
~&— productivity
1981 /1491 001 2009
0.1 /
0.01

transistor count

year

Design costs

4.00E+09 1,000,000

3.50E+09

3.00E+09. 800,000

2.50E+09 600,000

2.00E+09

1.50E+09 400,000 |

1.00E+09 | 200,000 l
5.00E+08

. 7 . : : 0+ . 7 :

0.00E+00 -
1995 2000 2004 1994 1997 2000 2003

Fab line cost Mask costs




What do we do?

_

Move some design tasks to software.

performance, power.

Create platform architectures.
Tweak the platform to create products.

Design reliaiblity, low power, etc. into the
platform for use by software.

Architectures and tools

s Tools:

More domain-specific at higher levels of

abstraction.

Some horizontal abstractions (RTOS,
compiler, etc.)

>Architectures:

'There will be more than one platform.

Domain knowledge is embodied in the
architecture.




Why multipl

platforms?

¥ People still care about cost.
People care about power consumption.

£ Sufficiently general solutions don't fit on
one chip.

Multiprocessor systems-
on-chips

hardwired (or analog).
¥ Custom memory architecture.
Moving toward networks-on-chips.
#Need software development platforms.




Viper set-top-box chip

Apple Newton hardware
architecture

ARM 610
PCMC
inﬁare(‘lm

deE

speaker '

serial l/F

Design Automation for Embedded Systems




Motorola Envoy hardware
architecture

Design Automation for Embedded Systems

InfoPad hardware
architecture

codec

Video
decompressor

Speech

other /O

IEEE Trans. Computers




Priners

High-speed vs. low-cost:
_______________ uniprocessor vs. multiprocessor hardware?

______________ multiprocessor requires more complex
software.

The printing process




()]

63EC000 ® ROM ontroller A
x\\\\\\\\\\

\\ s \\\\\\\\\\N

\\\ a § flash

EE \\ =1
\ \\\§ eicoder
\ \\ \

1/
connector
\ SRAI\/I
HP Jo ; 7al & | \

HP DesignJet hardware
archlt




Tl Open Multimedia
Applications Platform

£ Dual-processor shared memory system:

external memory

DSP

GPP DSP DSP task
OS manager OS & /0
ctrl

http://www.ti.com/sc/docs/apps/wireless/omap/overview.htm

Wireless handset

Generic handset (TI):

http://www.ti.com/sc/docs/psheets/diagrams/gdgradio.htm

|

Power Management

)

1)




ADI ADSL engine

Bus-based multiprocessor (ADI):

+ ADDRESS

TICL RYFASS

http://www.analog.com/industry/signal chains/auto/communications/comms_1.html

Agere StarPro platform

http://www.lucent.com/micro/starpro/arch.html




C-Port C5 network
p rocesso r http://www.cportcorp.com/products/digital.htm

1 600 Mbps
fr

... (16 total)

i
w

to mem

Two phases of platform-
based design




create the system architecture;
~loptimize for performance, power.
3 Platform-based product design:
Imodify hardware architecture;
optimize programs.

Semiconductor vs.
systems house

s Semiconductor house designs the
platform.

for its system:

[~Icustomization may be done in-house or by
contractor.




requirements?

#£1Is it sufficiently customizable? And in the
right ways?

#£1Is it cost-effective?

#How long does it take to turn a platform
into a product?

Platform design
methodology

'How much horsepower? How much power?
¥ Develop an initial architecture.

Evaluate for performance, power, etc.
Evaluate customizability.

stImprove platform after each use.




Platform use ch

nges

design?

#¥How do I modify it to suit my needs?

s6How do I optimize for performance,
power, etc.?

Platform use methodology

differences required for your features.
s Evaluate hardware changes.

st Implement hardware and software
changes in parallel.




Summary

emiconductor houses are taking over
system design functions.

tEmbedded multiprocessors solve a lot of
problems.




Hardware/Software Co-Design 1:
Fundamentals and Beyond

Wayne Wolf
Dept. of Electrical Engineering
Princeton University

Sweden Summer School © 2003 W. Wolf

Outline

Models
Scheduling theory

Tasks in co-synthesis

Classic co-synthesis: hardware/software
partitioning.

Improvement to classic co-synthesis.

Hot swapping.

Sweden Summer School © 2003 W. Wolf 2




What is co-synthesis?

» Use tools to simultaneously generate
hardware architecture and the software
which runs on it.

— Architecture may contain programmable CPUs,
ASICs.

« Different styles of co-synthesis use different
levels of inputs, synthesis steps, types of
results.

Sweden Summer School © 2003 W. Wolf 3

Uses for co-synthesis

 Design space exploration:
— architecture planning;
— planning of multi-generation products;
— marketing planning.

 Prototype creation.
* Implementation generation.

Sweden Summer School © 2003 W. Wolf 4




Terms

® thread, process: a single execution; thread
usually implies no firewalls between threads

® PE: processing element, may be CPU, ASIC
® custom ASIC: designed on the fly

® catalog ASIC: characteristics known in
advance

Sweden Summer School © 2003 W. Wolf 5

Sweden Summer School © 2003 W. Wolf 6




Task graph

T, T2

« Can model late arrivals, early departues by
adding dummy processes.

Sweden Summer School © 2003 W. Wolf

Processor graph

L,
M2
L,
L3
M,

Sweden Summer School © 2003 W. Wolf




Kahn process network

* Process has unbounded FIFO at each input:

channel

process

=

™

» Each channel carries a possibly infinite
sequence or stream.

A process maps one or more input
sequences to one or more output sequences.

Sweden Summer School © 2003 W. Wolf 9

Properties of processes

* Processes are usually required to be
continuous: least upper boundedness can be
moved across function boundary.

» Monotonicity:
— Xin X’ => F(X) in F(X’)

Sweden Summer School © 2003 W. Wolf 10




Networks of processes

» A network of processes relates the streams
of several processes.

 If I = input sequences, X = internal
sequences + outputs, then network behavior
fixed point is

~ X =F(X,])

Sweden Summer School © 2003 W. Wolf 11

Network properties

» A network of monotonic processes is a
monotonic process.

— Even in the presence of feedback loops.

* Can add nondeterminism in several ways:
— allow process to test for emptiness;
— allow process to be internally nondeterminate;

— allow more than one process to consume data
from a channel,

Sweden_Slgl:lgr School © 2003 W. Wolf 12




Processes as software objects

» A process is a unique execution of a
program:
— has its own state.

* A process may have a finite or infinite
lifetime:
— executed once or many times.

» A process may be executed periodically or
aperiodically.

Sweden Summer School © 2003 W. Wolf 13

Process timing characteristics

» Period: interval between successive
initiations.

» Deadline: time at which an initiated process

must complete.

) deadline
period |

| | |

1m
Sweden Summer School © 2003 W. Wolf tme 14




Process timing characteristics,
cont’d

* Initiation time: time at which process goes
into ready state. May come from:
— external indeterminacy (jitter, etc.);
— hidden data dependencies.

@ ©

» Execution time: time required for process to
complete assuming no interruptions.

Sweden Summer School © 2003 W. Wolf 15

Priority-driven scheduling

Each process is assigned a priority. Priority
may be static or dynamic.

Highest-priority ready process becomes
active.

A process runs until completion or
preemption.

Sweden Summer School © 2003 W. Wolf 16




Example

» P1: priority=1, execution time=10
» P2: priority=2, execution time =5
 P3: priority=3, execution time =20

-

0 time 35
Sweden Summer School © 2003 W. Wolf 17

Rate-monotonic scheduling

* Liu and Layland: real-time scheduling with
provable properties.

» Must guarantee that all processes meet their
deadlines, independent of order of initiation.

Sweden Summer School © 2003 W. Wolf 18




RMS model

All processes run on one CPU.

Static priority for each process.

No data dependencies between processes.

Must meet all deadlines for any valid
combination of initiation times.

« Ignore context switch overhead.

Sweden Summer School © 2003 W. Wolf 19

period

RMS initiation times
c1

- -_>

\ N/ 2T,

initiation times depend on system activity

Sweden Summer School © 2003 W. Wolf 20




RMS example

P2 period

D >

P1 period

>

Sweden Summer School © 2003 W. Wolf 21

Rate monotonic analysis

* To meet deadlines, prioritize according to
T,’s, with shortest-period process given
highest priority.

— Fixed-priority scheme.
— Independent of C.’s.

* This priority assignment is optimal-—no
fixed priority scheme does better.

Sweden Summer School © 2003 W. Wolf 22




Critical instant

» The critical instant for a process occurs
when the process and all higher-priority
processes are initiated simultaneously.

[

Sweden Summer School © 2003 W. Wolf

23

CPU utilization under RMS

» QGiven task set of size m, utilization U:
- U= 21<= Ci/Ti

i<=m

» Least upper bound for utilization:
~ U=m(Q2m-1)

 Utilization asymptotically approaches 69%.

» Some CPU cycles cannot be utilized because the
CPU must have enough cycles available to
respond to the tightest critical instant for the

highest-priority process.
Sweden glmmer Sch:E)ol y p © 2003 W. Wolf

24




Earliest-deadline first

Priority is dynamically calculated: process
with deadline occuring soonest has highest
priority.

Liu and Layland showed EDF can achieve
100% utilization until overload occurs.
Cannot guarantee meeting deadlines for
arbitrary data arrival times.

Sweden Summer School © 2003 W. Wolf

25

EDF example

4 |
.
|

N

iE

Sweden Summer School © 2003 W. Wolf

26




Schedule unrolling

To prove that a complex scheduling algorithm
works, must unroll the schedule to the least-
common multiple of all the period times.

MPEG-1 example: 44.1 kHz x 30 Hz requires
132,300 time intervals.

After unrolling, must consider arrival time
combinations.

Sweden Summer School © 2003 W. Wolf 27

Priority inversion

Problem arises when processes can request
outside resources: bus, shared variable, etc.

Prioritization means that low-priority process
can keep high-priority process from getting
the resource, causing deadlock.

Sweden Summer School © 2003 W. Wolf 28




Priority inversion example

Deadlock scenario:
— low-priority process L gets resource;
— preempted by higher-priority process H;
— H requests same resource;

— H can’t get resource until L finishes, but H
won’t let L continue.

Can be solved by priority inheritance: L gets
higher priority while it has the resource.

Sweden Summer School © 2003 W. Wolf 29

Bus communication example

L,

|
1
1
|
- R |

* Communication requires two resources: PE and channel.

|

-

r==---

* Long messages can hog communication resources.
* Bus communication must be prioritized.

Sweden Summer School © 2003 W. Wolf 30




Synthesis tasks

» Scheduling: make sure that data is available when it is
needed.

* Allocation: make sure that processes don’t compete for the
PE.

* Partitioning: break operations into separate processes to
increase parallelism, put serial operations in one process to
reduce communication.

* Mapping: take PE, communication link characteristics into
account.

Sweden Summer School © 2003 W. Wolf 31

Scheduling and allocation

* Must \\\\
schedule/allocate \\
— computation
— communication

 Performance may

vary greatly with e

I i i
allocation choice. L P1 \\\

CPU1

Sweden Summer School © 2003 W. Wolf 32




Problems in
scheduling/allocation

® Can multiple processes execute concurrently?

® [s the performance granularity of available
components fine enough to allow efficient search
of the solution space?

® Do computation and communication requirements
conflict?

® How accurately can we estimate performance?
— software

swearsEMSEOM ASICS 65003 w. worr 33

TigerSwitch: allocation of DTMF

* Where do we put TouchTone (DTMF)
detection?

E & P

CPU

Sweden Summer School © 2003 W. Wolf 34




Partitioning example

before

Sweden Summer School © 2003 W. Wolf 35

Problems in partitioning

® At what level of granularity must
partitioning be performed?

® How well can you partition the system
without an allocation?

® How does communication overhead figure
into partitioning?

Sweden Summer School © 2003 W. Wolf 36




Tigerswitch partitoning problem:
before

« Calls are parallel processes:

Calln

Sweden Summer School © 2003 W. Wolf

37

Tigerswitch partitioning problem:
after

» Implement calls as array elements:

) @l for (i-0: i<n_calls; i++) {
xfer(call[i][0].call[i][1]);
_ xfer(call[1][1],call[1][0]);
1
i

Sweden Summer School

© 2003 W. Wolf

38




Problems in mapping

® Mapping and allocation are strongly
connected when the components vary
widely in performance.

® Software performance depends on bus
configuration as well as CPU type.

® Mappings of PEs and communication links
are closely related.

Sweden Summer School © 2003 W. Wolf 39

Hardware-software partitioning

Architectural template: CPU + 1 or more
ASICs on a bus:

CPU .
| B

Sweden Summer School © 2003 W. Wolf 40




Properties of classic partitioning
algorithms

 Single-rate.
 Single-threaded: CPU waits for ASIC.

» Type of CPU is known; ASIC is
synthesized. Closely coupled to high-level
synthesis.

Sweden Summer School © 2003 W. Wolf 41

Hardware/software partitioning
styles

* Two major styles:

* Vulcan starts with all-ASIC solution and

moves functions to software to reduce cost
(primal method).

e COSYMA starts with all-software solution
and moves functions to ASIC to meet
performance goal (dual method).

Sweden Summer School © 2003 W. Wolf 42




Vulcan

* Gupta and De Micheli: Target architecture:
CPU + ASICs on bus

* Break behavior into threads at
nondeterministic delay points; delay of
thread is bounded

» Software threads run under RTOS; threads
communicate via queues

Sweden Summer School © 2003 W. Wolf 43

Specification and modeling

» Specified in Hardware C. Spec divided into threads at non-
deterministic delay points.

» Hardware properties: size, # clock cycles.

» CPU/software thread properties:
— thread latency
— thread reaction rate
— processor utilization
— bus utilization

Sweden Summer School © 2003 W. Wolf 44




Vulcan thread modeling

Hardware C allows conjunctive, disjunctive
execution:

conjunctive: x=a; y=b; disjunctive: if (c>d) x=e; else y=f;

1

U

.

/ N

HW/SW allocation

+ Start with unbounded-delay threads in CPU, rest of threads
in ASIC.

* Optimization:
— test one thread for move

— if move to SW does not violate performance
requirement, move the thread

— feasibility depends on SW, HW run times, bus
utilization

— if thread is moved, immediately try moving its
successor threads

Sweden Summer School © 2003 W. Wolf 46




COSYMA

Ernst et al.: moves operations from software
to hardware.

Operations are moved to hardware in units of
basic blocks.

Estimates communication overhead based on
bus operations and register allocation.

Hardware and software communicate by
shared memory.

Sweden Summer School © 2003 W. Wolf

47

COSYMA design flow

partitionin  aoee |
[anac])— . _ShES

cost estimation

high-level
synthesis

run time
analysis

Sweden Summer School © 2003 W. Wolf

48




Cost estimation

» Speedup estimate for basic block b:
1 Ac(b) = Wty (b) - taw(D) + tegm(Z) - toom(Z + b)) * It(b)

— w = weight, It(b) = # iterations taken on b

* Sources of estimates:

— Software execution time (tgy ) 1s estimated from source
code.

— Hardware execution time (t;y ) is estimated by list
scheduling.

— Communiation time (t,,,, ) is estimated by data flow

analysis of adjacent basic blocks.

Sweden Summer School © 2003 W. Wolf 49

COSYMA optimization

* QGoal: satisfy execution time. User specifies
maximum number of function units in co-
processor.

» Start with all basic blocks in software.

 Estimate potential speedup in moving a basic
block to software using execution profiling.

 Search using simulated annealing. Impose high
cost penalty for solutions that don’t meet

execution time.
Sweden Summer School © 2003 W. Wolf 50




Two-phase optimization

 Inner loop uses estimates to search through design space
quickly.

* Outer loop uses detailed measurements to check validity of
inner loop assumptions:

— code is compiled and measured
— ASIC is synthesized

* Results of detailed estimate are used to apply correction to
current solution for next run of inner loop.

Sweden Summer School © 2003 W. Wolf 51

SOS ILP formulation

» Prakash and Parker:

— variables represent schedule;
— constraints represent process dataflow;
— 0/1 variables represent allocation.

* Minimize system cost, satisfy performance
requirement.

Sweden Summer School © 2003 W. Wolf 52




Co-synthesis and ASIC
performance optimization

* Need a more accurate model of ASIC
performance.

— Use high-level synthesis in the loop to estimate.

Sweden Summer School © 2003 W. Wolf 53

ASIC performance analysis

+» Monet: a behavior-level architecttg cploration system by Mentor

Graphics, take behavioral descript VHDL or Verilog as input,
output R1L description
Behavioral VHDL ASIC clock rate
Desired Clock-step,

I/O timing constraints
etc.

~

!Extract gchedulmg WCET time
information from SID | —
database ASIC area

Sweden Summer School © 2003 W. Wolf




ASIC performance analysis

* ASIC implementation design 6)2&:)

, Area

fastest + +

+ “+
+ 7

smallest

ET(execution time)

Find out 2 extremes and search intermediate solutions between

these 2 extremes.
Sweden Summer School © 2003 W. Wolf

Proh

System Specification: —

le rmulation

Allocation:

;u;*ll\/\.:sv Lxluytl;us

"'._'. task graph
S grap
>0

—Deadlines
" Periods
~—and other constraints

Schedule:
Processors and
links

Technology Library: Performance:
PE library Cost, power,
Link library delay, etc.

Sweden Summer School © 2003 W. Wolf




@€ Goal of our co-synthesis algorithm :

a. Partition the tasks befween software and hardware
(CPU and ASIC)

b. choose the number and types of CPU and ASIC such
that the deadline is met while the cost is minimized.

c. return the allocation and scheduling of the tasks on the
resultant system.

Sweden Summer School © 2003 W. Wolf

%lorlthm outline
Outline of the algori

1. Pre-process and find an initial solution

2. Iteratively reduce ASIC number and CPU cost
ASIC to CPU procedure
CPU cost reduction
Allocation and scheduling

3. ASIC cost reduction
global slack
local slack

Sweden Summer School © 2003 W. Wolf




[terative improvement
1. ASIC to CPU: 2 hgs ’ :ﬁ:

\ ¢

b. Non-Critical path ASIC
2. CPU_cost reduction: Reduce the existing CPU architecture cost.

a. reduce the number of CPU

b. replace the expensive CPU with a cheaper one
c. reduce cache cost

3. Allocation and scheduling
a. static urgency
b. dynamic urgency

Sweden Summer School © 2003 W. Wolf

CPU1

CPU2
ASICl1

ASIC2

7

local slack global_slack
global slack=Min(deadline —completion_time)

local slack =Min(start time of successors nodes)
—completion_time ASIC j

Sweden Summer School © 2003 W. Wolf




1. Sort ASICs by decreaAgSItg;}ﬂQQSJ (ﬁ@dmgas((zs)iallest)

2. For each ASI_C_i in sorted list
replace the fastest ASIC with the smallest ASIC
if (meet deadline) use the smallest ASIC
else keep the fastest

3. Reduce the fastest ASIC cost:
for each ASIC j{
a Set ASIC j ET=(fastest ET+global slack+local slack j)
b foreach ASIC i in other ASICs
{ calculate local slack i and
set ASIC i ET=fastest ET+local _slack i}
¢ call ASIC analysis tool to get the total ASIC cost COST(i)}

4. Select the minimal COST(i) in step 3 and set corresponding ASIC ET.

Sweden Summer School © 2003 W. Wolf

Results

PP9 example (ASICosyn uses ASICs)

ex1 example ( Li/'Wolf)

& Li/Wolf

P&P
B ASICosyn

ex1-1

Sweden Summer School © ZOO% :!Volf




Characterization 1

» Lee/Henkel/Wolf: A certain task may have
more than one implementation

 Different implementations of a task
typically have different power consumption

» Swapping from one implementation of a
certain task to another implementation of
the same task implies an additional
computation time and power consumption

Sweden Summer School © 2003 W. Wolf 63

Characterization 2

 The basic functionality of the various
implementations of a certain task is the same. At
least one implementation is a superset of the other
implementations

» Swapping can be triggered by two requirements:
constraints and cost minimization

-00

Sweden Summer School Wolf 64




Goal

* It is unlikely that all the most costly implementations of all
tasks are scheduled to run at the same time since the
requirements for swapping are different for different tasks

» Achieve an advantage using hot swapping as opposed to a
system that has only one fixed implementation of a task
which is typically the most costly one (in order to cover the
worst case)

Sweden Summer School © 2003 W. Wolf 65

Cost example

« RMS with Hot Swap
* Result: energy saving

Sweden Summer School © 2003 W. Wolf 66




Scheduling equations

tre uesi +1
Ly = Z C'[%—‘

Vr;c{hp(i)or;}

t,,+1
ty = Z C. ’V"l’;—‘
Vrjc{hp(i)ur,-} T;

Sweden Summer School © 2003 W. Wolf 67

Feasibility test

e Casel

— Task i has not yet started execution. Swapping is
potentially possible if there is enough time left for
conducting the swap (will be discussed later).

e Case?2

— Task ti has already started execution. This case tells us
that the feasibility test from above is not sufficient. We
have to apply a second feasibility analysis

Sweden Summer School © 2003 W. Wolf 68




Feasibility test example

* Swapping task 2 from implementation 1 to 2

Sweden Summer School © 2003 W. Wolf 69

Scheduling Strategy 1

» When is it safe to swap

» When to actually perform the swap
(assumed that there has already been
initiated a request to swap a.s.a.p.)

» How to swap (e.g. using intermediate swaps
etc.)

Sweden Summer School © 2003 W. Wolf 70




Scheduling Strategy 2

» At Design Time
— Create database
— Generate parameters
* At Run time
— Perform feasibility test
— Decide to swap or not

— Decide which implementation to swap

Sweden Summer School © 2003 W. Wolf 71

Summary

» Co-design is one branch of embedded
system design.

* Models include functionality, HW and SW
targets, performance.

» Scheduling real-time embedded systems is
hard.

 Classic co-synthesis partitions functionality
onto a CPU+ASIC template.

Sweden Summer School © 2003 W. Wolf 72




Hardware/Software Co-Design 2:
Techniques

Wayne Wolf
Dept. of Electrical Engineering
Princeton University

ACM Workshop May 2001 © 2001 W. Wolf

Outline

Distributed system co-synthesis.
« Communication.

Reactive system co-synthesis.

Low-power design.

Memory systems.

ACM Workshop May 2001 © 2001 W. Wolf




Why distributed systems?

* CPU cost is a non-linear function of
performance.

— Several small CPUs may be cheaper than one
big one.

* Scheduling overhead must be paid for at the
non-linear rate.

ACM Workshop May 2001 © 2001 W. Wolf 3

CPU cost vs. performance

$200
Cost (USS$, Ko +
June ‘98) si150 Pentium II *
$100
150 200 250 300 speed (MHz)

ACM Workshop May 2001 © 2001 W. Wolf 4




Distributed system co-synthesis

» Can’t take advantage of architectural
template:

— structure;
— component characteristics.

* Generally multi-rate.

ACM Workshop May 2001 © 2001 W. Wolf 5

GCLP algorithm

Kalavade and Lee: global criticality/local
phase; iterative algorithm.

Global criticality: critical path used to identify
nodes to move onto ASIC.

Local phase: identify nodes which can be
much more cheaply implemented in one
medium than the other to reduce cost.

ACM Workshop May 2001 © 2001 W. Wolf 6




Successive-refinement co-
synthesis

* Wolf: scheduling, allocation, and mapping are intertwined:
— process execution time depends on CPU type selection
— scheduling depends on process execution times
— process allocation depends on scheduling
— CPU type selection depends on feasibility of scheduling

* Solution: allocate and map conservatively to meet
deadlines, then re-synthesize to reduce implementation
cost.

ACM Workshop May 2001 © 2001 W. Wolf 7

A heuristic algorithm

1. Allocate processes to CPUs and select CPU types to meet
all deadlines.

2. Schedule processes based on current CPU type selection,;
analyze utilization.

Reallocate processes to CPUs to reduce cost.

3.
4. Reallocate again to minimize inter-CPU communication.
5. Allocate communication channels to minimize cost.

6.

Allocate devices, to internal CPU devices if possible.

ACM Workshop May 2001 © 2001 W. Wolf 8




Example

1—allocate and
map for deadlines:

3—reallocate
for cost:

4—reallocate for
communication:

5—allocate
communication:

ACM Workshop May 2001

{w

CPU1:386

A,

CPU2:8051

£,

L
X F 9

CPU1:486 CPU2:8051

=

.
L | \§ £

<
CPU1:486

© 2001 W. Wolf

CPU2:8051

CPU3:386

PE cost reduction step

 Step 3 contributes most to minimizing implementation

cost. Want to eliminate unnecessary PEs.

» [terative cost reduction:

« reallocate all processes in one PE;

» pairwise merge PEs;

* balance load in system.

» Repeat until system cost is not reduced.

ACM Workshop May 2001

© 2001 W. Wolf

10




Technology mapping: interrupt
allocation

* Rhodes and Wolf: assign limited interrupts
to processes:
— Allocate each process to a resource (processor);
— Determine the priority of each process;

— Decide which arcs should be interrupt driven
and which polled, subject to a limit per
resource.

ACM Workshop May 2001 © 2001 W. Wolf 11

Analysis model used in Design

- POLLED data arrives “silently”

- INTERRUPT driven arc requires interrupt
handling

— Int. handlers assumed to have higher priority
than any process

— Interrupts are turned off while in an interrupt
handler

e Turned back on at conclusion

 No context sw1tch overhead

ACM Workshop May 2001 © 2001 W. Wolf 12




Communication and reactive
systems

» Communication is specified as systems of
communicating finite-state machines.

 Finite-state machine model is important:
determines what designer must write and
what can be synthesized.

ACM Workshop May 2001 © 2001 W. Wolf 13

SOLAR/PARTIF

* Ismail et al: partitioning and refinement for
communication-rich systems.

» Specification in terms of Design Units, written in
StateChart style. Design Unit can be composed of
Design Units and Communication Units. State
Table can be used to specify a Design Unit.

» Three types of architectural components:
hardware, software, communication. Units can be
connected in various topologies.

ACM Workshop May 2001 © 2001 W. Wolf 14




SOLAR design process

® System is specified as a set of Design Units.

® DUs are assigned into hardware and software, but
not allocated to particular units.

® Communication channels are allocated and bound.

® Design units are bound to particular architectural
components.

ACM Workshop May 2001 © 2001 W. Wolf 15

PARTIF

® Interactive partitioning tool. Provides design statistics to
guide partitioning moves.

® Basic transformations:

— move—transfer one process to another point in the
hierarchy

— merge—fuse two processes into one
— split—turn a sequential machine into parallel machines

— cut—cut a set of parallel states into interconnected
Design Units
— map—transform communicating systems into
interconnected subsystems
ACM Workshop May 2001 © 2001 W. Wolf 16




Statecharts

 Harel: Early control-oriented specification

model for reactive systems.

« Commercialized in the Statemate system.

* Provided hierarchical model for

states.

Statechart OR state

\\\\\\\\\\\\\\




Esterel

Berry: language for reactive real-time
systems.

Synchronous specification:

Assumption: zero-time communication.

Implement by forming product machine.

ACM Workshop May 2001 © 2001 W. Wolf

19

TOSCA

Antoniazzi et al: targets control-dominated systems.
System modeled as communicating machines.
Use operators to explore design space:

— unfold entry/exit;

— unfold FSM emabling condition;

— flatten hierarchy;

— replace timers with counters;

— collapse several processes into one.

ACM Workshop May 2001 © 2001 W. Wolf

20




POLIS

Sangiovanni-Vincentelli et al: targets multi-
rate reactive systems.

System modeled as network of Co-design
FSMs (CFSMs).

Uses zero-delay hypothesis: communication
happens instantaneously.

]l T

ACM Workshop May 2001 © 2001 W. Wolf 21

Polis, cont’d

Communiation can be analyzed by forming
product of communicating machines.

Partitioning assigns functions to hardware and
software.

Library components can be described as
CFSMs.

ACM Workshop May 2001 © 2001 W. Wolf 22




Peformance analysis for reactive
systems

Balarin and S-V: validate schedule for reactive
system.

Specification is DAG of tasks with priorities and
execution times.

Events initiate computation. Fpr every critical event
from 1 to j, min time between 2 executions of 1
must be >= max time between exectution of 1 and

]
Compute partial loads to find answer.

ACM Workshop May 2001 © 2001 W. Wolf 23

Chinook

Borriello et al: targets control-dominated systems.
Major steps:
— HW/SW partitioning;
— device driver synthesis and low-level scheduling;
— I/O port allocation and interface synthesis;
— system-level scheduling;
— code generation.

ACM Workshop May 2001 © 2001 W. Wolf 24




Power analysis and optimization

* Must estimate power/energy requirements:
— multi-threaded
— caches

 Are there tradeoffs between power and
performance?

ACM Workshop May 2001 © 2001 W. Wolf 25

Single-process power analysis

Tiwari and Malik: measure
average current for instructions.

First-order model gives energy
per instruction.

Second-order model takes into
account inter-instruction
interactions.

ACM Workshop May 2001 © 2001 W. Wolf 26




TOSCA power estimation
metrics

Types of systems and metrics:
— area-constrained: power*area

— performance-constrained
* fixed-throughput: energy per operation

» maximum throughput: energy per op/max
throughput = Power/T?

* burst throughput: (E, ., + Eq)/T

max max

ACM Workshop May 2001 © 2001 W. Wolf 27

TOSCA power estimation

« Hardware:
— 10 section
— data path
— memory

— control: primary inputs, state, combinational,
outputs

» Software:
— based on average current per instruction

ACM Workshop May 2001 © 2001 W. Wolf 28




Low-power synthesis

Kirovski and Potkonjak: synthesis
concentrates on processor allocation and
task assignment.

Architectural template: multiple PEs on
common bus with common memory.

Uses mixed strategy: power consumption per
process + voltage scaling.

ACM Workshop May 2001 © 2001 W. Wolf 29

Low power synthesis, cont’d

First step: allocate processors in template for
minimum power for the task set:

— eliminate inferior PEs: more expensive, slower,
Or Uses more energy

— iteratively improve to final configuration

Second step: assign tasks to PEs in the
instantiated architecture.

ACM Workshop May 2001 © 2001 W. Wolf 30




Policy optimization

Paleologo et al: describe power management
using stochastic FSMs.

Power management policy determines how
power is managed.

Finding optimal policy to maximize average
performance can be solved in polynomial
time.

ACM Workshop May 2001 © 2001 W. Wolf

31

Stochastic model

Each component is a Markov chain:

ACM Workshop May 2001 © 2001 W. Wolf

32




Stochastic model components

Sample Markov chain for service requestor:
01

PSR=0]0.90.1]
1102084— Probability of two requests in a row

Policy is the sequence of states taken by the
power manager.

Optimal policy is stationary: depends only on
current state of the system.

ACM Workshop May 2001 © 2001 W. Wolf 33

Memory is important

 Relative energy per operation (Catthoor et
al):
— memory transfer: 33
— external I/O: 10
— SRAM write: 9
— SRAM read: 4.4
— multiply: 3.6
—add: 1

ACM Workshop May 2001 © 2001 W. Wolf 34




The cache’s sweet spot

» Energy consumption has a sweet spot as
cache size changes:

— cache too small: program thrashes, burning
energy on external memory accesses;

— cache too large: cache itself burns too much
power.

ACM Workshop May 2001 © 2001 W. Wolf 35

Energy dissipation for embedded
systems

L1 and Henkel: concentrates on power
consumption in memory hierarchy.

Memory models for cache and main memory:
— array
— peripheral logic

ACM Workshop May 2001 © 2001 W. Wolf 36




Software energy and performance
model

Based on behavioral simulation.

Total energy components:
— energy per instruction * instructions
— data cache write miss penalty
— data read miss
— instruction fetch miss

ACM Workshop May 2001 © 2001 W. Wolf 37

Design space exploration strategy

Software transformations:
— procedure in-lining
— loop unrolling
Cache may be made larger to increase

performance at cost of higher energy
utilization.

ACM Workshop May 2001 © 2001 W. Wolf 38




MPEG example

cnergy performance

U /_

I-cache size I-cache size

ACM Workshop May 2001 © 2001 W. Wolf 39

Memory system methodology

e (Catthoor et al:

— optimize storage and transfer between
components;

— then merge components and apply
optimizations to global model;

— use loop transformations, reordering of
computations, data type refinement, etc.

ACM Workshop May 2001 © 2001 W. Wolf 40




Co-synthesis with memory
hierarchies

L1 and Wolf: use hierarchical memory model
in co-synthesis system.

Target architecture:

System architecture

Given processes and characteristics, PE
technology information

Find:
— schedule for processes and allocation to PEs;

— cache sizes and allocation of processes to
cache.

Two phases: parameter extraction for
processes; synthesis.

ACM Workshop May 2001 © 2001 W. Wolf




Cache assumptions




Process characterization

» Characterize each process independently:
— trace-based analysis;
— identify cache footprint.
» Process parameters:
— worst-case execution time;
— best-case execution time;

— average-case execution time.

ACM Workshop May 2001 © 2001 W. Wolf 45

Task allocation and scheduling

Based on hierarchical scheduling algorithm:
— schedule each task independently;
— schedule system with task as atomic unit;
— instantiate tasks and optimize system schedule.

ACM Workshop May 2001 © 2001 W. Wolf 46




Results

MPEG-2 encoder:
— without cache: 6 PEs, 121 CPU seconds
— fixed caches: 5 PEs, 157 CPU seconds
— synthesized caches: 4 PEs, 203 CPU seconds
Most CPU time goes into parameter
evaluation, but this is outside synthesis loop

and may be amortized across multiple
designs.

ACM Workshop May 2001 © 2001 W. Wolf 47

Code placement

 Potkonjak et al:

— place code to minimize dynamic cache
interference through placement and scheduling.

code image
ACM Workshop May 2001 © 2001 W. Wolf 48




Sponsored by:

’B” i* ‘qm




Cycle-Accurate Joulemeter
for CMOS VLSI Circuits

Soo-lk Chae

Seoul National University, Korea



Seoul National University

Cycle-Accurate Joulemeter
for CMOS VLSI Circuits

Soo-lk Chae
Seoul National University
chae@sdgroup.snu.ac.kr
2003. 8. 11

Inter-university Semiconductor Research Center

Seoul National University

Contents

Introduction
CMOS Inverter Model

Energy Estimation in Measurement System
* Energy model 1
* Energy model 2
Energy model 3
Energy model 4
Capacitance ratio constraint

a Second Order Effects

Leakage current
Overlapping current
* Nonlinear capacitance

Experimental Results
Conclusion

a
a
a

(m ]

Inter-university Semiconductor Research Center

2




Seoul National University

Motivation for Low-Power Design

O Scaling of CMOS technology
* Higher functionality with smaller chips
» Higher performance at lower cost
O Cool chips and cool systems
* Low-power desigh may ease the heat dissipation problem
U Recent portable compute-intensive applications
* Multimedia
* Video display and capture
* Notebook computer
* Personal communication systems
* Implantable medical electronics

Inter-university Semiconductor Research Center

Seoul National University

Power/Energy Estimation Techniques

O Low level simulators
* Precise estimation

+ Large amount of simulation time due to the increase of circuit
complexity

U High level energy simulators
* Fast simulation time
* Lower accuracy
U Measurement-based energy estimators

+ Digital multimeters, wattmeters: only can measure average or rms
value

* Oscilloscope: little practical aspects in terms of time complexity and
accuracy

U Need for cycle-accurate power/energy estimator

Inter-university Semiconductor Research Center




Seoul National University

Need for Cycle-Accurate Power/Energy Estimator

O Most digital systems consume very different amounts of energy
for each cycle

U Need for cycle-accurate energy consumption profiles
O Software level energy optimization can be done

U Changing the energy sensitive factors while preserving the
semantics of the original design

Inter-university Semiconductor Research Center

5

Seoul National University

Measurement-Based
Embedded Software Optimization

System Idea

|

Software Coding

|

Programmable
Processor

|

Cycle-accurate
Energy Measurement

Energy
Qptimized 2

yes

Done

Inter-university Semiconductor Research Center

6




Seoul National University

Energy Flow during a Transition of a CMOS Inverter

Inv Model A Inv Model B
AV=V,-V, AV=V,-V,
Rp simplification Rp J— c,
%
Cs 1~ —[:»—_L(o, V,) Cs 1~ -[:*%(0, Vy)
Ry C_=Cp+Cy Ry Cn

Inter-university Semiconductor Research Center 7
Seoul National University
Inv Model A: when the output is rising
AV=V,-V,
Ro in l__T
t 1
Cs = in _D»"_Ut—l_(o, V) ou T_
Vi
Ry Cp*Cy Voo \
LA —
O Before transition,
1
0, =G5V, E = EcsVl2
O After transition,
1
0, =(CS+CP+CN)V2 E, =E(CS +Cp +CN)V22
Inter-university Semiconductor Research Center 8




Seoul National University

Inv Model A: when the output is rising

AV=V,-V,

out

cs ™

vV

Q Charge flow from Cg:

O Charge discharged locally:

O Charge conservation law:

(0! vz)

Cp+Cy,
0= (CP +Cy
Qcancelled = 0

ol

out T__l
Voo \ Vi
7 Vv,
W,

GV, = (Cs +Cp +CN)V2

Inter-university Semiconductor Research Center 9
Seoul National University
Inv Model A: when the output is rising
AV=V,-V,
R in |
. . out
Cs 1~ in —[: out (0,V,) T__l
Vi
Ry Cp*Cy Voo \
A4 < Y
1 1
O Energy consumed: AE=E —-E,= ECSVIZ —E(Cs +Cp+Cy V7
1 1
=5 CH-n) 15 (Cr G,
= lMVIZ _1 {C, //(Cp +C, )}VIZ
2C,+C,+Cy 2
_l(CP +CNXCS +CP +CN)V2
- 2
2 Inter-university Semiconductor Research Center  1¢




Seoul National University

Inv Model A: when the output is falling

Re in l__T
Cs R in—[:»°—“‘_|_(vz,o)
VDD

Vv
Ry Cp*Cy \
< < $ V2
O Before transition,
0 =(Cs+C.+C ), E, =%(CS +Cp+Cy WV,
O After transition,
0, =CV, E, = %CSsz

Inter-university Semiconductor Research Center 11

Seoul National University

Inv Model A: when the output falling

Re in Ll

—4 . out |
Cs 1~ in —[: out (V5 0) _1
Vi
UL

A4 A4 $ vV

O Charge flow from Cg: 0=0
1

O Energy consumed: AE=E -E, = E(CP +Cy W,

QO Charge discharged locally: Q.. ...cs = (CP +Cy )V2

QO Charge conservation law:  C,V, =C,V,

Inter-university Semiconductor Research Center 12




Seoul National University

Inv Model B: when the output rising

AV=V,-V,

Cso= in _D% 0V,) out T__l

RN CN -
<~ A4 g Vs

O Before transition,

1
0 =(Cs +CP)V1 E, =5(Cs +CP)V12
O After transition,
1
Qz = (Cs +CN)V2 E, =E(CS +CN)V22

Inter-university Semiconductor Research Center 13

Seoul National University

Inv Model B: when the output is rising

AV=V,-V,

———

R - ¢, m o[ L] f
O D Q T

\/
v 1
T I —
A4 ~ Y 1 Vs
O Charge flow from Cg: 0=C,V,

O Charge dischargedd locally: Q... = CpV)

O Charge conservation law: C, = (Cs +Cy )V2

Q Energy consumed: AE=E -E, =%CPV12 4 %CNV]V2

Inter-university Semiconductor Research Center 14




Seoul National University

Inv Model B: when the output is falling

AV=V,-V,
— n LS
P
L D
Ry Cx Voo AN V:
g N
A4 A v Vs

O Before transition,
0= (Cs +Cy )Vz
O After transition,

0, = (CS +Cp )V3

Inter-university Semiconductor Research Center 15

Seoul National University

Inv Model B: when the output is falling

AV=V,-V,
o Re < Cp in l——T
Cso< i —D%ﬂ (V,,0) out 1
] i " I e
v v %
QO Charge flow from Cg: 0=C,r,
O Charge cancelled locally: Qeancetiea = CxV2
O Charge conservation law: CyV, = (CS +Cp )V3
O Energy consumed: AE=E -E, = %CNVZ2 + EC,,VZV3

Inter-university Semiconductor Research Center 16




Seoul National University

CMOS Inverter Model A vs Model B

Output | 1 arge from Cq (Co+CV, A

I Energy consumed 112(Co+C)V,V, | 1/2CpV,2 + 112C\V,V,
Output Charge from Cg 0 CpV;

_L Energy consumed 1/2(Cp+Cy)V,2 1/2C\\V,2 + 1/2CpV,V,

Inter-university Semiconductor Research Center 17

Seoul National University

CMOS Inverter Model A vs Model B

Assuming C, =

Output | 1 arge from Cq (Cp+CV C\V

_r Energy consumed 1/2(Cp+Cy)V 2 1/2(Cp+Cy)V 2
Output Charge from Cg 0 CpV

—L Energy consumed 1/2(Cp+C\)V2 1/2(Cp+C\)V 2

Inter-university Semiconductor Research Center 18




Seoul National University

Cycle-Accurate Energy Measurement System

Test Digital IC

Switch
Control

Host
Computer

Inter-university Semiconductor Research Center 19

Seoul National University

Waveforms of Energy Measurement System

Clock

s | L] L

s: || LT 1

vu \ [\
_/

A\

E

L
[ 1

1T

)

Sampling
Points

O Three sampling points for each clock transition

Inter-university Semiconductor Research Center 29




Seoul National University

Settling Time Constraint

T

N—
N5 T

settling

VB ——

O All data points must be sampled after Vy, is settled.

a Tsettlin < TMI 8

Q Ty = 1/fy, (fy: operating frequency during measurement)

O Typically fy < fo to meet the settling constraint. (f5: actual operating frequency)

Inter-university Semiconductor Research Center 21

Seoul National University

| Energy Model 1: Transferred energy under
measurement

Clock WV

Difference of energy stored in C,, |E =§CMV12 s

O Energy transferred from capacitor C,,
U Is this energy equal to the energy consumed in the chip?

Inter-university Semiconductor Research Center 22




Energy Model 1: Cg Effect

Seoul National University

Clock 1 pdge(n-1

edge(n)

1 edge(n+1)

| on |

| on

L

Ton|L___Ten |

J on |

Vi) Vy(n) Vy(n)

Clock

V(n-1)

O Cg: on-chip/off-chip bypass capacitor, parasitic capacitor on PCB or package
O Charge conservation law when S, on

C, Vi) + C, (), (n=1) = (Cy, + C, (M)W, () S 0)
Inter-university Semiconductor Research Center 23
Seoul National University
Energy Model 1: Calculate C; & E(n)
Clock _L;dge n-1) edge(n) 1 edge(n+1)
Vs}nvmﬂizn S, | on | | ond | r_
1 . s, “onl] [on on 1
$ Vi) Viln) Vin)
Clock
VB
V(n-1)
CB (n) = M . CM
Vy(n)=V;(n-1)
B =5 (Cu + G015 -7 ()
Inter-university Semiconductor Research Center 24




Seoul National University

Energy Model 1: Problem

Clock WV

Difference of energy stored in C,;, |E=5Cil/’ _ECMVZZ

U Must consider the supply voltage drop during the energy flow
U Measured energy < real energy consumed with ideal supply

Inter-university Semiconductor Research Center 25

Seoul National University

Energy Model 2: Consumed energy

2

E

consumed ~

CL VDD

O Energy consumption based on effective switching capacitance C_
U Assume that capacitance is time invariant and voltage independent
U No error due to the supply voltage variation

Inter-university Semiconductor Research Center 26




Seoul National University

Energy Model 2: Calculate Cg

Clock led e(n-1 edge(n) ledgegnﬂ)
s, | on | | on | [

SZT—I | on | J on |

Vi) Vy(n) Vy(n)

Clock

V(n-1)

U Charge conservation law when S, on
CoVi(m)+ Cy(mVy(n=1) = (Cy + Cs ), (m) = @

0 Same with energy model 1
RACRAGEPE

=3 -1 ¥

Inter-university Semiconductor Research Center 27

Seoul National University

Energy Model 2: Calculate C;

Clock ladge n-1) edge(n) 1edge(n+1)
s, [ on | | on | [

s, on|| [on | [on |__
Vi(n) Vy(n) Vyn)

Clock

V,(n-1
O Charge conservation law at the n-th edge of clock (1)

(Cys +C@W, () = (Cyy + C, () + CL (M) V5 () @

O Load capacitance for the n-th edge

C,(n)= %-(CM +Cy(m)

Inter-university Semiconductor Research Center 28




Seoul National University

Energy Model 2: Calculate E(n)

Clock led e(n-1 edge(n) ledgegnﬂ)
s, | on | | on | [

SZT—I | on | J on |

Vi) Vy(n) Vy(n)

Clock

V(n-1)

Q Energy consumption for the n-th edge

E(n)=C,(n)-Vyp"

Inter-university Semiconductor Research Center 29

Seoul National University

Comparison between Models 1 and 2

O Model 1:
B =5 o+ o)1) -1 (0)

d Model 2:
E(n)=C,(n)V,°
=C,(n)-V,'(m) (assume V., =V, (n))
- V(m=Vi) 2
=(Cy +Co(m) TOROL
Q AE = E(n) of Model 1 - E(n) of Model 2
_1 20 o) ARAORE
M) =3 (Cu+ CoWFE )15 )= (Ca+ €y ) 202 SE2 120
_1 T I V()
= (Cu+Ca(m) (AV)[ wr-5 (n)] AV =V, (n) -V, ()
= —%(CM +Cy(m)-(AV)

Model 1 underestimates the consumed energy.
Inter-university Semiconductor Research Center 3¢




Seoul National University

Simplification In Energy Models 1 and 2

[

>~ Cw ~Cs l\L E
Ld 1 T*

U Each load capacitor has only the capacitance to the ground line,
not to the power line.

O CMOS inverter model A is used.

Inter-university Semiconductor Research Center 31

Seoul National University

Load Capacitors in CMOS VLSI Circuits

BUS $

O N: total number of load capacitors

Inter-university Semiconductor Research Center 32




Seoul National University

More realistic Models 3 and 4

I: ;: cP,1—)1 or0 [ ;: cP,O—)1 or0
L. L. 1 1.1 1 1 1
T T o]0 Eo -\'o o/o

i ~ cN,1—)1 or0 i ~ cN,O—)1 or0
v < < <

O All the output nodes considered.

O Group 1: stay low

O Group 2: stay high

O Group 3: switch from low to high

O Group 4: switch from high to low
QO The load capacitors in the group 2 acts like Cg
O CMOS inverter model B is used

Inter-university Semiconductor Research Center 33

Seoul National University

Classification of Load Capacitors

1 Cin(n) /1 Cyp(n) C,(n)/ Cy(n) Stay in the low state

2 Con(n)/Cp(n) | C,n)/Cyn) | Stay in the high state

3 %”“(n) ! C¢(n) 1 C4(n) | Switch from low to high
ap(N)

4

C.n(n)/ Cyp(n) Cy(n) / C,{(n) | Switch from high to low

Inter-university Semiconductor Research Center 34




Seoul National University

Energy Model 3: Transferred energy

Vs(n) >§ Vu(n), VL(n)

S
2 J— C,(n) cg(n) cs(n) c7(n>
: Cs : CB
i cz(n) Cd,(n) ics(n) Cs(n)
A\ V4 A v

U Group 1 (stay low) :C,(n), C,(n)
O Group 2 (stay high) : C;(n), C,(n)
O Group 3 (low to high): C5(n), C4(n)
O Group 4 (high to low): C,(n), C4(n)

AY!
A}

Inter-university Semiconductor Research Center 35

Seoul National University

Energy Model 3: Simplified

O Cy(n) = Cg + Cy(n) + Cy(n)

Inter-university Semiconductor Research Center 3¢




Seoul National University

Energy Model 3: Calculate C,(n)

V,(n) > V,(n) > V;(n-1) -5 V,(n) >
Vy(n) -5 ¥, {n+1) V,(n) -5 ¥V, in+1)

edge(n-1) edge(n+1)

Csn) / & ZKCn)
~Cu ~1~Cu(n) f

Ce(n) A1~ Cg(n)
L R ) %

O Charge conservation law before and after the clock edge
(CM +Cy (n))Vz (n)= (CM +Cyg (n))Vs (n) = @
¢ LGt Can @) _ [Va(n) (V](nﬂ)—n(n)J_l]CM
Vy(n) Vom)\V,(n+1)=V;(n)
Q Cyer(n) = Cy(n) + Cg(n) + C,(n). It will be calculated in next phase.

Inter-university Semiconductor Research Center 37

Seoul National University

Energy Model 3: Calculate C(n)

V,(n) > V,y(n) > V;(n-1) - V,(n) >
V,(n) > V,(n+1) V;(n) - Vy(n+1)
>€ edge(n-1) edge(n) edge(n+1)
S,
~~ Cy(n)
T~ Cm ~~Cy(n)
~~ Cg(n)
A4 A V4

O Open S, and close S, to charge Cy,
O Charge conservation law when S, is closed (S, open) after the edge n
Coti(n+ D)+ Cgy (V3 (1) = (Cyy + Crg MWy (n+1) -+ @

c (n)_Vl(n+1)—V2(n+l)'
T VAT

Inter-university Semiconductor Research Center 38




Seoul National University

Energy Model 3: Calculate C,(n) & E(n)
Vu >§n

S,
~ C+(n)
1~ Cu '
~~ Cg(n)
AV 4 S v e

) —_— \\:2 E=(Cs+C,) V'
Vy(n) \ Vi(n+1)—V,(n)
O From Cey(n) = Cyer(n) - =17 : o)
C:():)I 67(N) = Cyez(N) Cer () (l V,(n) j[ V,(n+1) -V, (")J O

Inter-university Semiconductor Research Center 39

Seoul National University

Energy Model 4: Consumed energy

Vs(n) Vu(n), VL(n)

J‘c4m Calm) cam cam
L .

;E‘%m’ Cdn ;Léwﬁ cam
v v

O Group 1 (stay low) :C,(n), C,(n)
0 Group 2 (stay high) : C,;(n), C,(n)
0 Group 3 (low to high): C(n), C4(n)
0 Group 4 (high to low): C,(n), C4(n)

\
/
o
»
AY|

Inter-university Semiconductor Research Center 49




Seoul National University

Energy Model 4: Simplified

S
i C.n)
~~ Cs
Cg(n)
A4
Clock | 1 R
N v, E:E(C5+C6+C7+C8)-VDD

U Heat dissipation
0 Cy(n) = Cg + C,(n) + C,(n)

Inter-university Semiconductor Research Center 41

Seoul National University

Phase 1 of Model 4: Calculate Cz5(n)

V,(n) - Vy(n) - V;(n-1) - Vy(n) -» @ O
Vo) - Y {net) Yin -3 ¥, (nt) p
edge(n) edge(n+1)
S,
Cs(n) A~ Ci(n)
T~ Cm 1~ Cu(n) [
% 7= Cq(n)
v A4 N
O Cpysg(n) = Cy(n) + Cs(n) + Cg(n)
O Charge conservation law when S, is closed before the edge n
CVi(m)+Cys(n)V;(n-1) = (CM +Cyss (n))Vz (n) =@

Vim-v,(n)

Crn ) =5 (=D

M

Inter-university Semiconductor Research Center 42




Seoul National University

Phase 2 of Model 4: Calculate Cy(n)

V,(n) > V,(n) > V;(n-1) -5 V,(n) >
Vy(n) -5 ¥, {n+1) V,(n) -5 ¥V, in+1)

edge(n+1)

Csn) / & ZXCqn)
1~ Cum ~~Chu(n) f

Ce(n) A1~ Cg(n)
L R &) %

O Charge conservation law during the clock edge
(Cor +C MW, (W)= (Cyy +Crrg M3 () @
¢ = (Gt Coa Vi) _ (. _ {m(n) [Vl(nﬂ)—Vs(n)]_l}.cM
Vy(n) Vm)\Vy(n+1)-V3(n)
Q Cyer(n) = Cy(n) + Cg(n) + C,(n). It will be calculated in the next phase.

Inter-university Semiconductor Research Center 43

Seoul National University

Energy Model 4: Calculate C(n)

V,(n) > V,y(n) > V;(n-1) - V,(n) >
Vy(n) > V,(n+1) Vy(n) > V,{n+1)

edge(n-1) edge(n) edge(n+1)

Csn) / & ZXCqn)

1~ Cn A~ Cx(n) < : < |
Ce(n) A1~ Cg(n)
[ E K,

O Charge conservation law when S, is closed after the edge n
CVi (4 D)+ Cg(V3(m) =(Cy + Crg @MW (n+1) - Q@

c (n)_Vl(n+l)—V2(n+l).C
T ) -v,m) M

Inter-university Semiconductor Research Center 44




Seoul National University

Energy Model 4: Calculate C, (n) (n-th edge)
AORAONPE =[Vl(n)—ra(n—l)_l}c
A ACE R VAR ACE N

A RAG A R AN =
Vn+D)-V,(m) M| VDY) |

Cyss(m) =

Cyer(n) =

T _[nm(na+n-rm)
E=5Clp'| 1 [Vz(n)[n(nﬂ)—n(n)] I}CM

AORAGR MAQIRAGHRAON]E
Vim)-V,(n—1) V,(m)\V,(n+D)-V,(m) )|

C.(n) = Crpe(m)—C,y = | 1= 20D [ Al D) =Fo(m) | -
67 H6T H V,(m) \V,(n+1)-V,(n) M

AORAGR INAIAO) SAGVR AR
Vy(m)—Vy(n-1) Vy(m) \V,(n+D)-V,(n) )|

Cy3(n) = Cys(m)—Cyy = |:

Cr (n) =Csge(n) = |:

Inter-university Semiconductor Research Center 45

Seoul National University

Energy Model 4: Capacitance Ratio Constraint (1)

O In the energy model 4, we obtained the following equation

Nm-Vi(n-1) V()| Vi(n+)-Vi(m) ||~
Vm=V,(n=1) V,(m)\Vy(n+)~V,(m) )|

Cy(n) = |:

= |:A(n) —MA(n + l):|CM
Va(n)
QO But if the target chip is consists of large bypass capacitor Cg, relatively, the ratio
of (C_/Cg) becomes very small.
Q And it results in very small signal level, that is, V,(n)-V,(n)=0.
Q If V5(n)-V4(n)=0, then we may obtain the negative capacitance value of Cs5(n) for
the small noise level.

Inter-university Semiconductor Research Center 46




Seoul National University

Energy Model 4: Capacitance Ratio Constraint (2)

0

20 "~/ - - - -7 - - - - - === =

J o I e e

60—/ " -—"—-—"——""""""—7/F " ~"~—~"~"—~"—"—"———— -

80} 4/~ —"—"—"""""""~"~"7F9"~"~—~"—"—=——— === ===

B T I e ettt

%error of Gs(n)

B T TN & e

40 (- - T T T T oo oo
—*—Noise in V2 case
—%—Noise in V3 case

B T I ettt

-160

-200
0.01 0.1 1

O This plot is for the fixed noise level of 0.2mV.

O Consequently, in case that (C,/Cg) ratio is small, energy model 4 requires very
precise measurement system.

Inter-university Semiconductor Research Center 47

Seoul National University

Energy Model Summary

Energy transferred from capacitor Cy.

Energy consumed from supply.

U Model 1, 2, 3 are related to the energy from supply, but model 4 is the
energy consumed in the chip.

Inter-university Semiconductor Research Center 48




Seoul National University

Appendix (1): £, vs %,

O Definition
+ X, total energy transferred from supply
+ X,;: total energy consumed in the chip

Q0 Using our energy models, we can write X, and X, as follows
N ) N
Zo=D E(m)=V,, - Y Cyy(n)
n=1 n=1

N 1 2 N
X, =) E(n= P Voo Z Csg75(n)
n=1

n=1

Inter-university Semiconductor Research Center 49
Seoul National University
Appendix (1): Z,vs X
0 1
O For simplicity, we define as follows
NAQ)
ERAQ]
RAORACS)
" V() -Vy(n-1)
O Then the C4;(n) and C,4,5(n) in the previous section can be rewritten,
C67 (n) = (l - an )An+ICM
Cors(n) = [An + (1 -2a, )An+1 ]CM
Inter-university Semiconductor Research Center 59




Seoul National University

Appendix (1): £, vs %,

1 2 2N
% =EVDD ‘chms(n)

n=1

1 N
= E VDD2 : Z [Css7s (2k =1+ Cyqp (Zk)]
k=1

N
= 2 VDD2 : [(Azk—l + (1 =20y, )Azk ) + (Azk + (1 —20y; )A2k+1 )]CM

k=1

1 N
= 2 VDD2 : [(Azk—l —Ay+ 2(1 — )Azk )+ (Azk —Apu 2(1 — )A2k+l )]CM

k=1

1 N
= EVDDZ : [(Azk—l = Ay )CM +2C;(2k-1)+2C (Zk)]

k=1
N 1 N
= VDD2 ) kz [C67 (2k - 1) + C67 (Zk)]+ E VDD2 : Z [(Azk—l - A21«:+1 )CM]
=1 k=1

1
=3, +ECMVDDZ : (Al - A2N+l)

O Thus we can say that X, = 3, for large N, that is, (total transferred energy)=(total
consumed energy).

Inter-university Semiconductor Research Center 51

Seoul National University

Appendix (2): £, vs Z,

O Definition
« X total energy consumed in the chip
+ Z,: total energy consumed in the chip when V,(n+1) is affected by noise

Q X, - X, can be written as follows because the C;,5(n) and Cy¢;5(n+1) are
related with V,(n+1) and others are not.

Z,-% = ﬁ:E;(n)—iEAn)

n=1 n=1
1 ) N N 1 ) N
= 5 Voo™ Z Cses (1) _5 Voo™ Z Cser5(n)
n=1 n=1
1

= EVDD2 [Csm*(”) + C5678*(n +1) = Cyg5(n) — Cye(n + 1)]

Inter-university Semiconductor Research Center 52




Seoul National University
Appendix (2): £, vs Z,

O For simplicity, we define as follows

=C58(n)=A —a A

n n—n+l
Cu

0, =20 (1=, =, +(8,4-4,)
M

AV, =V, (n+1)~-V,(n+1) (AV, :noise)

Inter-university Semiconductor Research Center 53

Seoul National University

Appendix (2): £, vs Z,

O Then (Z, - X,) can be rewritten,

%,-% = %CMVDDZ [(pn* + qn* + pn+1* + qn+l* )_ (pn +q,t Dy TG )]

1

= EC'MVDD2 [(An+l* - An* + 2pn* + An+2t - An+1t + 2pn+1*)_ (A - An + an + An+2 - An+l + 2pn+1 )]

n+l

_1
2

= CMVDDZ [(pn* + pn+1* )_ (pn + Dyt )] Tt @

CMVDD2 [(An+l* - An + 2pnt + An+2 - An+1t + 2pn+lt )_ (A - An + 2pn + An+2 - An+l + 2pn+1 )]

n+l

O Note that A=A, and A_,,’= A,,, because they have no dependency on
V,(n+1).

Inter-university Semiconductor Research Center 54




Seoul National University

Appendix (2): £, vs Z,

O p,.4 can be written

* * * *
Pua = An+1 —Chy An+2
*

A -p Vim+), -
= * - * An+2
a v, (n+1)

n

P, +anAn+ _pn* V(n+1)
_ ( 1) _ 3 A, ( p,=A, _anArH-l)
a, Vy(n+1)+AV,

= An+1 + Py~ Py - VS(n+1) N ! An+2

PR AT S A

V,(n+1)

=A 4 b= Py Vi(n+DA,,, J1- AV, ( AV, << V2(n+l))

a, V,(n+1) V,(n+1)

pn _pn‘ AV2

= An+1 - an+1An+1 + a +a

n

A [— S
n+l=n+2 V2 (n + 1)
1 * AV,
P — +a A 2 ann
a J(pn pn ) n+1=n+2 V2 (n + 1) ®

=Puat PP, +(l—
n
Inter-university Semiconductor Research Center 55

Seoul National University

Appendix (2): £, vs Z,
Q In order to calculate AV, in Eq. @, we solve the following equation for V,(n+1)
Vi(n+1)-Vi(n)

P, = An _anAn+1 = An —-a,
V(n+ D)~V (m)
Q Then
[24
Vant D=V + (D V()=

O In the same way

*

V;(n+1)=m‘(n)+(n‘(n+1)—n‘(n))-%

n n

=T+ (D V)

n n

Inter-university Semiconductor Research Center 56




Seoul National University

Appendix (2): £, vs Z,
O AV, can be written
AV, =V, (n+1)=V,(n+1)

={V;(n)+(vl(n+1>—n(n>)- X e *}—[Vs(n)+(Vl<n+1)—V3(n))~Ai}
-P

- n n

n n

=a,,(V]<n+1)—V3(n))[ LE— J

A,-p, A-p,
1 1 1
=a,(V,(n+1)~V,(n))— _—
A, 1-Pn 1-P»
A A,

n

*

sa,,(Vl<n+1)—V3<n))Ai p—"—&J (- V,(m)=V,(n)= p, <<A,)

A, A

n n n

~a,(4n+D-7,0)-5(p, - 5,)

n

Inter-university Semiconductor Research Center 57

Seoul National University

Appendix (2): £, vs Z,

Q InEq. @,

a ! ! )-a,,(Vl(n+1>—V3(n))ﬁ(p:—pn)

A,,——AV,=a, A, ,————
n+1=n+2 Vz(n+1) 2 n+1="n+2 sz(n+1

1 1 .
=(A = P )mﬂn V(n+1)- Vs(n))F (Pn - Pn)

n

n

_[A—p. | B 1 .
—{ . p,,ﬂJVz(nH) @, () -V m)=(p, - )

n n

+a,p,, \Vin+D)-Vi(n) 1 ( -
{1_1’" pj D Vo) ()

A Vy(n+1) A, V"

n

Inter-university Semiconductor Research Center 58




Seoul National University
Appendix (2): £, vs Z,
O From Eq. @ and @, we write (2, - %,),

%,-% = CMVDD2 I_(pn* + pn+l* )_ (Pn + Do )J

_ 2 _L Pt Pan V1(n+l)_V3(n)_L t_
=C,Vmp [[l an]+[l A J V.ne ) A}(Pn Pn)

n n

Q If Vy(n) = V4(n) then o, =1 and A, = L. (L:large number)
O And you can see that (2, -X,) = 0.
0 Concluding remark

If Vy(n) = V5(n), Cse75(n) is very sensitive to noise(AV,) and it sometimes goes
to negative capacitance value.

But the total consumed energy is almost not changed by the noise(AV,).
From this, we can fix the error of Cy;5(n) when it goes to the negative value.

Inter-university Semiconductor Research Center 59

Seoul National University

Energy Model 2: Leakage Current Effect

Clock

' edge(n) | edge(n+1)
S T ] | on I
S, | | I on
Vy(n) Vy(n)  Vyn)
VM

I;}v(n_ 1) Voltage dropj \V

due to |, Vs'(n)

Q I, static current independent of clock. Leakage of static CMOS, analog
sub-block current, and so on.

Inter-university Semiconductor Research Center  gg




Seoul National University

Energy Model 2: Calculate Cg with |,

Clock led e(n-1 edge(n) ledgegnﬂ)
s, | on | | on | [

SZT—I | on | J on |

Vi) Vy(n) Vy(n)

Clock
Vy(n-1) Ve
O Charge conservation law when S, on
3T,
Cul i)+ Cy Vs (1=1) = (Coy + Co W)+ L =2 )

O Same with energy model 1 3l T
Coy((m) =V, (m)) - =eaat

Va(m)=Vs(n—1)

Cy(n)=

Inter-university Semiconductor Research Center g1

Seoul National University

Energy Model 2: Calculate C, with |,

Clock ladge n-1) edge(n) 1edge(n+1)
s, [ on | | on | [

s, on|| [on | [on |__
Vi(n) Vy(n) Vyn)

Clock

O Charge conservation law at the n-th edge of clock vil-)

(Cort CoWa) = (Coy + Co)+ CL W)+ 22 e
O Load capacitance for the n-th edge
(Co + MWV, (1) V() -
Vi(n)

LieaTy
C.(n)= 8

Inter-university Semiconductor Research Center g2




Seoul National University

Energy Model 2: | .., Measurement

No clock 0 t 7

O Assume constant |

leak TOr simplicity
U No clocking
O Two measurements with two different capacitor C,,, C;,to determine Cg

O Voltage Vs slightly above Vi,

Inter-university Semiconductor Research Center

63

Seoul National University

Energy Model 2: Calculate |,

VTEST

(CTI + CB )A V=1 leakAt

(CTZ +Cy )AVrz = Lj 4 At

No clock

C. = CTzAVn _CTIAVTI
AV, —AV,,

B

CT2 — CTI . AVTlAVrz
AV, —AV,, At

leak =

Inter-university Semiconductor Research Center




Seoul National University

Energy Model 2: Frequency Compensation

O Energy consumption for the n-th clock edge

1
E(m)=C,(n)- VDD2 + ElleakTOVDD

Q T, = 1/i,, fo: actual operating frequency
Q C,(n)Vpp?: effective switching energy
Q (1/2)I_ ToVpp: energy due to static current during a half period

Inter-university Semiconductor Research Center g5

Seoul National University

Energy Model 4: Calculate C.4(n) with |,

V,(n) - Vy(n) - V;(n-1) - Vy(n) —»
Viin) —> Vi{ns1) Voln) —» Vy(n+1)

edge(n+1)

Cs(n) <% A~ C4(n)

L
ey A~ Cg(n)

=< Cu =< Cy(n) G)l.eak< :

A4 A A VAR VAR v ~
O Charge conservation law when S, on
31,.7,
Cu i)+ Crsy (MY (n=1) = (Cy + Cra (M) () + =22 SO

Cy (W) -V, (m))- ?’IleaTkTM
Crss(n)= D

Inter-university Semiconductor Research Center g6




Seoul National University

Energy Model 4: Calculate Cy(n) with |,

V,(n) > V,(n) > V;(n-1) > V,(n) >
Vy(n) -5 ¥, {n+1) V,(n) -3 ¥, {n+1)

edge(n-1) edge(n) edge(n+1)

Csn) / ¥ X Cy(n)

>~ Cu = Cuin) (Dhiea < ! < :
Ce(n) 2 Csln)
(AR E T,

O Charge conservation law during clock edge

(Cyy +Co MW, (1) = (Cyy + Crrs M)V (1) + feag )
(Cyy + Coper () () + Lt Tar
Cy(n)= 8 _¢,
V,(n)

Inter-university Semiconductor Research Center g7

Seoul National University

Energy Model 4: Calculate C,(n) with |,

V,(n) > V,y(n) > V;(n-1) -5 V,(n) >
Vy(n) > Vy(n+1)  Vy(n) > V,(n+1)

>{ edge(n-1) edge! edge(n+1)

~~ Cy(n)

N Cu R Cun) MDlieak
I~ Cg(n)

A4 A V4 A4

O Charge conservation law when S, on
31,7
Culi(m+ D+ CorgVs(m) = (Coy + Cra MP3 (14D +=224 o0 @)

Cy (i +1) =V, (n+1))-
V,(n+1)~V,(n)

31 IeakT M
8

Cyer(n) =

Inter-university Semiconductor Research Center g8




Seoul National University

CMOS Short-Circuit Current

|
$ 0 Vppl2 Voo :VIN

During transition from 0 to 1 or from 1 to 0.

Both NMOS and PMOS are on for a short period of time.

This results in a short current pulse from VDD to GND.

Isc may be misunderstood as load capacitance C, in the measurement system.

ODoo0Do

Inter-university Semiconductor Research Center g9

Seoul National University

Ereal(n) with ISC

[
$ 0 Vol2 Voo Vi

O If we assume that the total charge loss by Ig¢ is Qgc(n), the consumed energy
E(n) in real operation

E, .(n)=Cg () VDD2 +Qsc(m)-Vpp - O

Inter-university Semiconductor Research Center 79




Seoul National University

Emeas(n) with ISC

Q Eneas(n) can be written

E,..s(n)= C67,e/f (n)- VDD2 o ®

Q In the CCL for the n-th edge

(Cor +CoMWVy (1) =(Cyy +C () + Cgy o (W) V5 ()
—(Cy +CaM) + Coproa MW (M+Qse(n) =+ B

d Assume that

Vi(n)=Vp, AV,

Inter-university Semiconductor Research Center

71

Seoul National University

Emeas(n) with ISC

O From Eq.@ and Eq.® E s (1) = Cgy 1y (1) ‘VDDZ

Osc(m) . VDDZ
Vi(n)

E, .(n)=Cq(n)- Vz)132 +Osc (MVpp
AE(n)=E;(n)-E,,(n)

Voo

= V.(n) _IJQSC )V pp

=Cg(n)- VDD2 +

1
= TV3 -11Qsc MV,

DD

= Osc(MAY;

Inter-university Semiconductor Research Center

72




Seoul National University

Ereal(n) Vs Emeas(n) Example

U Assumptions:
*  Qgc(n)-Vpp in Eq.Q is 10% of E,(n)
© Vpp=3.0V
© Vy(n)=28V

Q Then, the % error

Emeas (n) _ Ereal (n) ~ 0.7%
Ereal (n)

% error =

Q Consequently, the error from calculating Ig; as C, in our measurement
system is not large.

Inter-university Semiconductor Research Center 73

Seoul National University

Voltage dependent Load Capacitance

—_| I
— o
Re Cp = kiCp gateox * K:Cpqirr + K:Cpwire

Ry $ CN k4Cn,gateox + k5cn,diff+ kticn,wire

/ l \

I ~—

Inter-university Semiconductor Research Center 74




Seoul National University

Differential Capacitance vs Static Capacitance

¢ _d0

Rl : dynamic C, =% : Static

O Q(v) and C(v) curves
Q) C()
+

v

Inter-university Semiconductor Research Center 75

Seoul National University

C d0

=7 dynamic C,= : static

O Relationship between C, & C,

00)= [Zay - [ c.7ar+00)

C,()dv +Q(0
CZ(V)=Q§/V)=.[, ( )V +0(0)

Inter-university Semiconductor Research Center  7g




Seoul National University

Energy stored in the pMOS capacitance

Re V. I C,,: PMOS gate capacitor
$»ﬂ
v, c
Lp
Q

! > Vo
;; DD Tp DD

[stored J‘ V. do

p.gateox

>

= ("¢, ) vy, Cy

= f’”chdeV+ CHdeV Vil V-

-Gl syl f) T ol bl b

Inter-university Semiconductor Research Center 77

Seoul National University
Energy stored in the nMOS capacitance

a | c1||
R

" cHn
—D v° an

Ry C,,: nMOS gate capacitor
>V,
& 7
d transferral __
B, oee = V0 Oraon” = CoaVra+ sV =V

= ” Cln (V) : I/odI/o

= f me vdv + [ C, vav

1 1
= ECLnVTnz +5CHn (VDD2 - VTn2)

Inter-university Semiconductor Research Center 78




Seoul National University

Energy Flow for Gate Capacitance Load

O When Vout isrising, Eee, (D =E" +E .
0 When Vout is falling, gioss ()= grored 4 glos

gateox n,gateox p,gateox

Inter-university Semiconductor Research Center 79

Seoul National University

Energy Flow when the output is rising

Before transition

1 et =2l + b - f |
(\ cpgate

After transition

E fransferred (T) - thnsjﬂerde {CLn VTn + CHn (VDD - VTn )}VDD

gateox n,gateox

gsored  _ 1 1 CLnVTn +CH,,( DD2 _VTn2)]

n,gateox 2

Floss (T) [ transferred (T) stored | prstored

gateox gateox n,gateox p.gateox

Inter-university Semiconductor Research Center  gg




Seoul National University

Energy Flow when the output is falling

Before transition

stered =1 C,Vn, +CH,,(VDD _VTn2)]

n,gateox 2

After transition

transferred transferred
Egateox (J') Qp gateox V _{ Lp| |+CHP( DD |VTP|)}VDD

pstored _ 2 [C Vi ‘yC, ( _Vsz)]

p gateox

Floss (J,) Etransferred(l/) [ystored | prstored

gateox gateox p,gateox n,gateox

Inter-university Semiconductor Research Center g1

Seoul National University

Approximation of Energy Related to CMOS Gate

U For simplicity
* The load consists of the gate oxide capacitance only
V= VTp Vin
* Cy= ch =Chn: CL= ch =Cyp,
* (V{Vpp)=k, (C,/Cy)=a
QA Then, for each transition

E transferred = CH VDD2 [(]' - k ) + ak]
1

Estored = E C'I-II/DDZ [ak2 + (1 - k2 )]

E loss — E transferred

Inter-university Semiconductor Research Center g2




E

gate

vs k, o

Seoul National University

Etransferred 1 00% 87-5%
Estored 50% 48-4%
Eoee 100% 87.5%

U With the typical MOS parameters today, we have k=0.25, 0=0.5

Inter-university Semiconductor Research Center

83

Seoul National University

Cgate VS Supply Voltage Scaling

Coate™Cogate*Crgate

As k is larger

Cate=Corgate7C

4

h

gate

pgate

ngate

U With the technology scaling, the supply voltage has been lowered.
Q then, k(=V;/V,p) becomes larger.

U Voltage dependency of C

gate

is not negligible any longer.

Inter-university Semiconductor Research Center

84




Seoul National University

Etransferred VS k

Q fV;<<Vp,ork=0

2
E transferred ,0 = C’H VDD
Etmmferred
. E pongerred,0
O Then, the ratio .
E 1
transferred — (1 _ k) +ak 0.:-7,5
Etransferred,O 75
=1-(1-a)k
» k
0.25 0.5
‘When a=0.5

85

Inter-university Semiconductor Research Center

Seoul National University

Estored VS k

Q FV;<<Vppork=0 -
1 stored
E stored,0 — ECHVDDZ Ej:ored,o
1 —
0.97
O Then, the ratio -
Estared — a]CZ + (l_kz) )
Estored ,0 0% G >
:l_(l_a).kz Wh =0.5

Inter-university Semiconductor Research Center  gg




Seoul National University

Diffusion Capacitors

Q C, = Area* Cp yom + Perimeter* C
U Two types of junctions
O Abrupt junction: bottom (m=1/2)
O Graded junction: sidewall (m=1/3)

sidewall

dQ Eg
depl (V) dV Ts
v 26, N, + N
Lot = kabm v, kabru — [ZZSi_ D 4
" " v e N DN A4

,128 :
— 3/ _3 S
tgmded - kgmded v ’ kgraded_ eGl
where N,—-N,=Gx

Inter-university Semiconductor Research Center g7

Seoul National University

Capacitance for Abrupt Junctions
v-d2__k NN,
Car v 2y’ 'N,+N,
Q=k«/?, QVDD =k\/¢+VDD: Q():k\/E
Qtransferred ? > V Qtransferred = QVDD - QO = k (V ¢ + VDD - '\/E)

¢ ¢ +Vpp i

+Vop
Eps @)= [VdQ = [ Cy 0)-VaV

E transferred = Qtransferred VDD

k ¢+ k ¢+
7,52 P 1 S T
Eama = [,V 0 B N A VRN el
- _d 1[(¢+VDD)QVDD %0, =§[(¢+VDD )0, —40,]

Inter-university Semiconductor Research Center  gg




Seoul National University

Capacitance for Graded Junctions
o 2 k k_3 eg, G

Cor =25 =3 3 12
0=kV)§ 0, =kp+VE, 0,=k(p)
Ly v =0y ~0, =k[(¢+V)§—(¢)ﬂ

Epes @)= [VaQ = [ Cp 0)-vaV

Etransferred = Qtransferred VDD
2 2 +Vop +VDD
SAEAE] s L
571¢+Vop 5
Estored = EDD VdQ 25k |:V3:| 2k |:(¢ + VDD) ¢ :|
¢

_ EVDD [%]EdQ = %[(¢ +Vop )QVDD - ¢Q0] = %[(¢ +Vpop )QVDD - ¢QO]

Inter-university Semiconductor Research Center

Seoul National University

Energy Flow for Junction Capacitance Load

0O When Vout is rising, Er (M =ES +Ery,

O When Vout is falling, EZ}S W)= Esn;r/;d + Elo;sﬁ
i n p

Inter-university Semiconductor Research Center




Seoul National University

Energy Flow when the output is rising

CJ_ cpdiff

Vs C—? Vout

cndiﬂ

A4

v —i 0 1-
Qp?rz =Rpm (¢p + VDD)I m, Qp,m = kp,m¢p "
V; 1— 0 1
Qn,Dr:: = n,m (¢n + VDD) m’ Qn,m = kn,m¢n "

Before transition

store 1-m DD
Byt =5 02 (8, Vo) = 0} 08,

After transition

transferred __ ytransferred _
Ediﬁ’,m (T) - Qn,diﬁ’,m VDD - (Qr‘ll,%:ﬁ’,m - Qr?,diﬁ’,m )/DD
1-m [ ]
stored
En,diﬁ’,m = Q:ﬁ;ﬁ,m (¢n + VDD )_ rg,diﬁ’,m¢n
2-m

loss __ rtransferred stored stored
Eagr.m (T) = Eigm (T)_ Erigon Ep.agm

Inter-university Semiconductor Research Center 91

Seoul National University

Energy Flow when the output is falling

Before transition

1-m
d
B =208y (0,4 Vi)~ Oty o]

After transition

transferred (| \_ A Ay

Eigm (‘l’)— Oy Vo = (Q;f’ﬁﬁ,m = Oy dif.m )’ D
1-m [ ]

= 2 —m Q;?gtﬁ’,m (¢pn + VDD )_ Qz,diﬁ’,m¢n

loss __ rtransferred stored tored
Epp V)= B (V)= By + B

stored
E P, diff m

Inter-university Semiconductor Research Center 92




Seoul National University

Load Capacitance

R -
P Cp = kiCp gateox * K:Cp difr,0.5 + K:Cp airro3 + KCp wire

Ry i Cn = KsC,, gateox * KsCp aitr0.5 + K:Ch difr,0.3 + KeCrwire

E, transferred transferred (T) rrans/erred (‘L)
_ piransferred (T) [iransferred (J,) [transferred (T) [transferred (\L)

gate gate wire wire

Etransferred (T) E:mnslfmed (J,) Etransferred (T) + Etrans{erred (J,)

diff aiff /f 2 aiff

We need to find 16 constants to find the voltage dependency of the
energy consumption. ?!

Inter-university Semiconductor Research Center 93

Seoul National University

Typical CMOS Load Capacitance (1)

1.81 1.00 2.80
Cante Fall 3.58 1.99 2.59
Rise 2.06 1.00 4.22

Ciunction Fall 6.38 3.16 4.22
Rise 2.00 1.00 2.00

Cneta Fall 2.00 1.00 2.00

O Assumptions
© Vpp=3.0V
o Wy :Wp=1:2
* Vq,=0.5V, |V, |=0.55V

Inter-university Semiconductor Research Center 94




Seoul National University

Typical CMOS Load Capacitance (2)

U Assumptions
) CL=KQate'cate+ Kjunction'cjunction+ Kmetal'cmetal
Kgate: Kjunction t Kipeta = 2:1:3
* (# of 01 transition nodes) : (# of 01 transition nodes) = 1:1 for every edge.
O Then,
Eiransferred © Estored : Econsumed = 1:93 : 1 : 1.93 for each edge.

O From this we can rewrite the consumed energy E(n) in model 4,
approximately,

1
E EE(CS +C +C,+C,)-V,,)°

Inter-university Semiconductor Research Center g5

Seoul National University

Cycle-Accurate Energy Measurement System

Test Digital IC

Switch
Control

Host
Computer

Inter-university Semiconductor Research Center  9¢




Seoul National University

Cycle-Accurate Energy Measurement Board

Test Circuit

- Host Interface Connector

Inter-university Semiconductor Research Center 97

Seoul National University

Data Processing Software

[Monitoring and Data Aceuisition Program) [Energy Calenlation Excel Program)

Inter-university Semiconductor Research Center 98




Seoul National University

Simulation Setup

Vs o Wm

|: 300u/0.25u < 300pF

~ -~ Cg Clock

i1 00u/0.25u =T 300pF
A4 A4 A4 $

O In order to verify energy models, we simulated for an inverter
with C,_gyp and C, \pp-

D
<V
AY|
/
(2]
=
\

Inter-university Semiconductor Research Center 99

Seoul National University

Simulated Waveforms

=
Clock f .

Switch , --

#

Control #

Inter-university Semiconductor Research Center 1gg




Seoul National University

Simulation Results (1): % Error vs Vg

O Model 1 is very sensitive to Vg variation.
U Model 3 and 4 provide small errors.

Inter-university Semiconductor Research Center 101

Seoul National University

Simulation Results (2): % Error vs C,,

Model 1 Model 2 Model 3, 4
CL Energy CL Energy CL Energy

- -8.42 9.78 9.38 -0.19 -0.55
- -2.03 7.47 7.08 -0.03 -0.39
- 0.98 6.01 5.63 0.01 -0.35
- 2.72 5.08 4.70 0.07 -0.29
- 3.82 [ 441 4.04 0.12 -0.24
- - 4.52 3.86 3.49 0.11 -0.25

O Model 1 and 2 are very sensitive to C, variation.
U Model 3 and 4 provide small errors.

Inter-university Semiconductor Research Center 102




Seoul National University

Measurement Results: % Error vs C,,

U Using our measurement system, we measured for an inverter with C, ¢\,
and C, ypp.

O As the simulation results, model 3 and 4 provide small errors.

Inter-university Semiconductor Research Center 103

Seoul National University

Comparison with Ammeter (1)

1~ CrLvpp=934pF

Vg=3.5V C_D Clock —D,‘c

~ Cienp=934pF
Y Y $

U In order to compare our measurement system with the ammeter,
we measured an inverter with C, 5\, and C pp.

Q Theoretical E =11.441nJ

consumed

Inter-university Semiconductor Research Center 104




Seoul National University

Comparison with Ammeter (2)

U Note that although ammeter shows small error but it cannot
measure the cycle-accurate energy.

Inter-university Semiconductor Research Center 1g5

Seoul National University

FPGA Test Setup

Cycle-accurate Energy

Measurement Circuit

Inter-university Semiconductor Research Center 10g




Seoul National University

FPGA: Energy Consumed by Logic Operation

O If the circuits in FPGA are composed of rising edge triggered logic, we
can write as follows

E. = —-FE

rising logic clock
E

falling = ~clock

O Where

E,ogic: €nergy consumed by logic operation
E.iock: €nergy consumed by clock tree circuit
O Then we can write

E _.=E,

ogi rising E falling

Inter-university Semiconductor Research Center 197

Seoul National University

FPGA: 4-Bit Counter Test Results (1)

,,,,,,,, B Counter Sea (Rise)
£ Counter 15ea (Rise) s
B Counter 25ea (Rise) o
E3 Counter Sea (Fall)
B Counter 15ea (Fall) [ -=---
B Counter 25ea (Fall)

[ Counter 10ea (Rise)
B Counter 20ea (Rise)
B Counter 1ea (Fall)

Load Capacitance {nF)

Counter 25ea (Fall)
. Counter 20ea (Fall)
n.a00 =7 . Counter 15ea (Fall)

. Counter 10ea (Fall)

Counter 5ea (Fall}

0.200 k=” Counter 1ea (Fall)

d Counter 25ea (Rise)

Counter 20ea (Rise)

0.000 Counter 15ea (Rise)

' Counter 10ea (Rise)
Counter Sea (Rise)
Counter 1ea (Rise)

Hamming Distance

Inter-university Semiconductor Research Center 1gg




Seoul National University

FPGA: 4-Bit Counter Test Results (2)

e+ F s | 8 | 4 |
Energy.rise 3.38 3.49 3.67 3,81
Counter fea 4 Eneray.fall 3,25 3.25 3.21 3,15

| Epergwlosic ! pi3  posl pdasl DES]

- Energy.tise 3.71 4,33 4.75 5,22
Counter Bea 16 Energw.fall 3,22 3.19 314 3.09
(Enemavlosic | 0a8T tisl 1ElT ot

- Energy.rise 4,02 5.10 5.96 6. 71
Counter 10ea 34 Energy.fall 3.19 3.13 3.08 3.00
.. . s

Energy.fise 4,15 5.62 6.77 7.79
Counter 15ea a6 Energy.fall 3.15 3.08 3.01 2.93
Eneovigee, to0, 2% 4B, AE

Energy.rise 4,27 £.35 8.41 10,14
Counter 20ea 61 Energy.fall 310 3.02 2.95 2.87
| Energviogic ] LBl asl o BapL 707

Energy.rise 4.43 5.85 9.23 11.38
Counter 25ea 76 Energy.fall 3.06 295 2.87 279
Ensray.ioaic

Inter-university Semiconductor Research Center 1g9

Seoul National University

FPGA: 4-Bit Counter Test Results (3)

0.140
0.128

IRT 1) FI— | -
S 0100 b 0097 &
8
IR Y1 [ U ——— e B
o
3
< 0.061
N SRR, . . B
L M Ml =
u 0.028

e . ---------------------------------------------

0.000 ' : '

1 2 3 4

Hamming Distance

U Elogic vs Hamming distance plot

Inter-university Semiconductor Research Center 11¢




Seoul National University

Conclusion

Inter-university Semiconductor Research Center 111




How to break software

James Whittaker

The Center for Information Assurance at Florida Tech



Brought to you by:
The Center for Information Assurance (CIA) at Florida Tech

Your host today:

o b Tt T

Any fool can stumble across bugs

Testing requires:

* efficiency: finding bugs faster than normal
use

* effectiveness: finding bugs that users care
about and that developers will fix

* thoroughness: leaving no stone unturned




To tind them you could:

* Seek out the weak developers!

¢ Seek out the bad managers!

¢ Seek out the doomed projects!

* Create them yourself!
Understanding where bugs are requires
that we understand how and why
software fails

Fault models can be based on:

* Process maturity

¢ Programming language constructs

¢ Software behavior
How do we understand problematic
behavior?

* Read bug reports

* Recognize patterns of failure




Environment

The software misinterprets or cannot
handle its environment

» What are all the environmental
considerations that we must face?

Capabilities
The software incorrectly performs one or
more of its capabilities

What are software’s general capabilities?




59 calls to 29 different functions
(GetTickCount called nearly 700 times)

1

any of these calls can succeed or fail

establish
interfaces
to:
ms09.dll «
user32.dlly
gdi32.dll
advapi.dil
comctl32.dll > corrupt
ole32.dll

ns and closes initialization files, persistent
store, temy files and working files

inputs can be stored internally

outputs are produced via computation
with inputs and stored data




Although there are only four basic
capabilities:

¢ accepting input

¢ producing output

¢ storing data

¢ performing computation

Software can combine these capabilities
to perform very complicated tasks

Confronting such complexity in a
massive frontal testing assault is often
unproductive

Instead, exploratory testers wage small
(winnable) battles until the enemy
submits




The enemy: bugs in the software

Bugs prevent capabilities

Drive capabilities and you find bugs

Method:

Determine your enemy’s strengths and remove
them

Wage small wars on input capabilities, output
capabilities, data storage and computation

Software should only accept input that
it can handle...

... But ensuring that this is the case is
problematic




How does software filter erroneous
input?
* GUIs

1 by preventing input data of incorrect type

by preventing input data that is too small or
too large

by forcing the user down specific control flow
paths

How does software filter erroneous
input?
¢ Error checking code

“if” statements

by ensuring that inputs received can actually
be processed
but error checking code can also have errors!
writing error code might introduce errors

writing error code also means diverting your
attention from the main-line code




How does software filter erroneous
input?
* Exception handlers

3 failing gracefully is extremely difficult

error routines must reset state and cleanup
side-effects...a very difficult endeavor

Testing

Software should generate only those outputs

that are acceptable to its users
Displayed data must fit in its display area
Software cannot pass incorrect data types
Data must be correctly computed, software must never

pass incorrect values to its users

Testing output requires domain expertise
We must understand wrong answers and
ensure that our software does not produce
them




Inputs and computation results are
often stored internally

Software will fail if it stores illegal data

Stored data values must be acceptable
individually and in combination with
other data

The major difference between data and
inputs is that data is persistent

Persistence needs to be tested

* data retrieval, data modification, data
access

* we must test that data structures can be
operated on without failure

accessed, retrieved, modified, overflowed,
underflowed, ...




Software can correctly filter inputs, validate
outputs and store data...

... and still fail

x=x+1 will fail if it is executed enough times
to overflow the value x

Correct computation depends on operators,
operands and result

Another aspect of computation is
feature interaction

¢ Features can interact in ways that affect
computation

* One feature can get in the way ot another
feature’s computation




Software possesses 4 basic capabilities

Attack each capability by staging
situations that commonly cause failure
input attacks
output attacks
data attacks
computation attacks

Determine which attacks apply to your
app and apply them, one-at-a-time

Banging on the keyboard is largely a
waste of time, a strategy for rookies

Each test should have a specific purpose

A tester with clear goals is more likely
to find a problem than a tester who is
simply hacking away

Testers must learn to target problematic
input scenarios




Explore the application under test

* Apply the inputs that a user would apply
to get real work done

Observe the inputs

Watch for attack opportunities

1. Force all error messages to occur

2. Force the software to establish default values

3. Explore allowable character sets and data types
4. Overflow input buffers

5. Find inputs that interact with other inputs

6. Repeatedly apply the same input/input sequence




When to apply the attack
What faults make the attack successful

How to determine if the attack exposes
failures

How to conduct the attack
Example and analysis

Force Error Messages to
When to apply this attack:

* Whenever an application must
respond to erroneous input

* Testers should consider the type of
response:
Input filter
Input checking
Exception handling




What faults make this attack successful:

* Programming error cases is difficult

Additional code must be written — where there
is code, there is often bad code

Writing error code takes the programmers
attention away from writing functional code

¢ Failing gracefully is difficult

What data needs to be saved?
What state is the app in?

How to determine if the software fails:
» This attacks finds

Missing error cases
Nonsense error messages
Uninformative error messages

¢ Thus, manifestation of the defect ranges
from crash to fully functional code




How to conduct this attack:

* Look thru the (ahem) specification for
message definition
* Consider properties of inputs
[type] entering invalid types often causes error
messages

[length] a few too many characters in an input
string will often elicit an error message

[boundary values] often represent special cases

Target: Word® 2000
Feature: Insert Index

Reproducibility: Works on all PC
versions of Word® and all versions of
Windows® 9x, NT, 2000

Synopsis: Probably a duplicated block
of code, very sloppy programming




e g

Questions before we move to the next attack?

When to apply this attack:

» All software uses variables

¢ The lifecycle of a variable is
Declaration
Initialization
Use
* Variables must be initialized before they
are used




What faults make this attack successful:

¢ Compilers are often good at catching these

mistakes
But the compilers must be used properly

¢ Implicit declaration can often get a
programmer into trouble

* When users skip input fields or leave them
blank, defaults must be established in case
those variables are used in computation

How to determine if the software fails:

* Best case (for ease of verification) is that
use of an un-initialized variable causes a
memory violation

* Harder to detect is that a random value
gets assigned to the variable

Look for garbage characters/”strange things”
Incorrect results

Too many values/too few values displayed
Incorrectly typed data being displayed




How to conduct this attack:

* Determine the data that has defaults
Look for “options” or “configuration” buttons
Consult the source code’s declaration section

* Force the app to use its defaults
Accept any displayed data as defaults

Enter a null value, if a value is displayed then
delete it

Change settings from their default values to a
valid value and then back again

Target: Word® 2000
Feature: Insert Table of Contents

Reproducibility: Works on all PC
versions of Word® and all versions of
Windows® 9x, NT, 2000

Synopsis: Frankly, I would have
ditficulty coding this behavior if I
wanted to!




Questions before we move to the next attack?

Explore Character S

When to apply this attack:

¢ Target: variable input

* Special cases based on:
Operating system reserved words

Programming language reserved words

Character set boundaries (ASCII, UNICODE,
etc.)

spaces, quotation marks, delimiters, etc.




What faults make this attack successful:

¢ Special cases require special handling
¢ Either:

Developers fail to recognize a special case
Developers put too much trust in interface
controls

Developers fail to handle errors properly
(we've already discussed that error code is
hard to get right)

How to determine if the software fails:
¢ Unhandled exceptions cause a system to crash
¢ Generalized error handlers often present
nonsensical or uninformative messages

Watch out for loss-of-state often caused by exception
handlers
¢ Since we are dealing with character data, watch
for rendering problems

* Watch for “Easter eggs”




How to conduct this attack:
* Spend some time researching:

* Operating system, programming language
and character set keywords and ranges

¢ Study documentation of each of the above
* Beware outdated keywords

Target: Microsoft® Internet Explorer®
Yoo

Feature: File Open

Reproducibility: Works only on early or
recent versions of IE

Synopsis: AUX is an old DOS device,
device names were not considered when
the file open program was created




Questions before we move to the next attack?

ack:

¢ The idea is simple: enter long strings into
input fields

* Don’t neglect APIs/exposed internal
objects

¢ This is the hacker’s choice because many
buffer overtlows create exploitable failure
scenarios




When to apply this attack:

¢ This is an important bug because:

copy/ paste into inputs fields is a fairly common practice

Buffer overruns result in crashes, risking data loss and costly
rework

* be sure to check with developers to find
out tolerance for fixing long string
bugs...thousands characters can get
ridiculous

What faults make this attack successful:

* Developers simply fail to constrain the
amount of text the software will accept in
an input sting

* When the text is read input memory, fixed-
sized buffers are overflowed




w Input b

How to determine if the software fails:

* This bug almost always causes the
software to crash
* Other possibilities are extreme application

instability (since memory is often
overwritten by the long string)

How to conduct this attack:
¢ Identify where strings are read as input

¢ Start small and then grow the string to its
maximum length

* This attack is very repetitive
¢ It's helpful to count 12345678901234567890




w Input b

Target: Word® 2000
Feature: Find /Replace

Reproducibility: Works on all PC
versions of Word® and all versions of
Windows® 9x, NT, 2000

Synopsis: Find field is string-length
constrained but the Replace field is not

Questions before we move to the next attack?




Up to now, we have dealt with inputs one-
at-a-time
Find a spot where input is accepted and poke it until
something breaks

This next attack deals with combinations of
inputs

Multiple inputs on a single input dialog

An APIT call with more than one input
Constraining a single input is hard enough
for developers...

. g Inputs
When to apply this attack:

* Some inputs affect other inputs
They might represent different properties of
the same piece of data
They might be used in a single internal
computation
¢ Thus, individually correct inputs might be
problematic when combined
¢ These relationships should be watched for
while executing the previous attacks




What faults make this attack successful:

* Obviously, input relationships are hard to
determine for both testers and developers

¢ The logic involved in handling a single
erroneous input is hard enough...

¢ ...multiple error cases often require
complex nested IF statements

¢ Code changes make this situation worse

How to determine if the software fails:

¢ Since inputs are often stored internally,
slipping a bad input in means corruption
of internal data

* Once you suspect you tricked the app into
accepting bad input, force that input to be
used as much as possible

¢ Carefully verity it every time it is
displayed or used




How to conduct this attack:
* Explore the app, identity possible
relationships between inputs
Are they properties of a single data structure?
Are they used together in a single computation?
¢ Select boundary and extreme combinations:

Large/small, small/large, large/large,
small/small

Target: Word® 2000
Feature: Insert a Table

Reproducibility: Works on all PC
versions of Word® and all versions of
Windows® 9x, NT, 2000

Synopsis: These two parameters can be
small-large, large-small, small-small but
not large-large




Questions before we move to the next attack?

@;ﬁ?@ﬁﬁ npu ts Numerous Time

When to apply this attack:

¢ This attack is applicable whenever the app
accepts input inside a loop:

Accept an input
Process it
Repeat




What faults make this attack successful:

* Repetition has the effect of gobbling up
resources

* Many applications are unaware of
available resources and assume unlimited
memory and storage

* Low resources can cause undesirable side-
effects

How to determine if the software fails:

¢ It is difficult to predict how memory stress
will manifest

» Watch for:

Screen refresh problems

Slow performance

* Consider:

Using a memory leak detector




How to conduct this attack:
¢ Pick an input or a sequence of inputs

* Apply them over and over to test for
undesirable side-effects

(@

¢ Pick an object and apply the same input to
it over and over

¢ Pick multiple objects and apply the same
series of inputs to each object

Target: Word®
Feature: Equation Editor

Reproducibility: Works on all PC
versions of Word® and all versions of
Windows® NT, 2000

Synopsis: The number of parentheses is
constrained at 10, but that number
should, perhaps, be lowered




Questions before we move to the next attack?

1. Force all error messages to occur

2. Force the software to establish default values

3. Explore allowable character sets and data types
4. Overflow input buffers

5. Find inputs that interact with other inputs

6. Repeatedly apply the same input/input sequence




Some bugs are too difficult to find by
concentrating on inputs alone

Which inputs will generate incorrect
results?

Why not concentrate on what incorrect
results could occur and then find the
inputs to force them?

7. Force different outputs to be
generated for each input

8. Force invalid outputs to be generated

9. Force output properties to change

10. Force the screen to be refreshed




When to apply th1s attack:
¢ Inputs are not independent of each other

* Applying some inputs before (or after)
other inputs can affect behavior

* A good way to think about the most
important cases is to ensure that you see
every output that an input can cause

What faults make this attack successful:
* Input — Output is simple to code

* Inputs that cause different outputs require
complex logic to be coded

* Complexity leads to bugs




How to determine if the software fails:

* The main bug is that there are behaviors

that the developer miscoded or forgot to

code

¢ These are usually severity 1 problems that
get found and fixed before release

How to conduct this attack:

¢ Testers must identify which inputs can
cause multiple behaviors and understand
the context in which these inputs can be
applied




To illustrate, consider a telephone
switch

How many outputs can the input “pick
up the receiver” cause?

* The switch could generate a dial tone ...

.

* The switch could connect two callers...

s
= —
////i ¥ //////////////////

Juestions before we move to the next attack?




When to apply this attack:
* Domain expertise is essential to effectively
carry out this next attack
It’s hard to test a flight simulator without
knowing how to fly an airplane
¢ Testers must know the product well
enough to enumerate wrong answers...

¢ ...and then figure out how to drive the
application to produce them

ree Invali

What faults make this attack successtul:
* Just as testers can misunderstand the
problem domain...so can developers
When this happens, they write bugs

* In most cases, the problem is over-looked
special cases




How to determine if the software fails:

* This is a hard one...the software rarely
fails in a spectacular (or even noticeable)
manner

¢ Testers should ignore type and format and
concentrate instead on the value being
displayed

ree Invali

How to conduct this attack:

* Testers need to focus on known bad results

Enumerate wrong answers and then create the
situation that forces them

* Learn as much about the problem domain
as you can




Target: Windows NT System Clock
Feature: Calendar

Reproducibility: Works on Windows®
NT, Service Pack 4 and prior

Synopsis: The calendar works fine as
long as the cursor isn’t fixed on day 29
of February

Choose Month as February
Choose Year as 2000

12345 Click on the 29t

B 7 8 9 10 11 12
13 14 15 16 17 18 19

20 21 22 23 24 25 26 g C AOT 9) i
o | Change Year to 2001
(using spin control)

VOILA! We have a whole
new calendar!

Windows NT4 Clock

The bug has since been fixed!




Force Invali

Questions before we move to the next attack?

When to apply this attack:

¢ This attack requires persistent outputs be
present in the application (which often
precludes its use on APIs)

* An output is generated and then we change
some property of the output




What faults make this attack successful:

* Generating the output once tests that the
software works with initial data settings
These are settings that the developer established

These are settings that the developer has
anticipated

¢ Changing the output ensures that the
software will work user-detined setting
These settings might not be anticipated

How to determine if the software fails:

¢ Since outputs are necessarily visually-
intensive, this often requires manual
verification

» But since testers have had to determine
output properties in advance, it is easy to
determine what to look for




Output Properties

How to conduct this attack:
* First determine the property of interest
Size, value, type, color, shape, direction, ...
¢ Cause it to be displayed, then change it
Size (bigger to smaller, smaller to bigger,...)

Value(s) (high to low, positive to negative,...)
Type (char to int, int to float,...)

Target: PowerPoint® 2000
Features: Insert Word Art

Reproducibility: Works on all PC
versions of PowerPoint® and Word®
and all versions of Windows®

Synopsis: First time through, two things
happen; next time through, something
is forgotten




Ou tput Proj erties

Questions before we move to the next attack?

When to apply this attack

¢ This attack is applicable only to GUI
software with editable display areas

* The attack is most useful at the boundaries
of screen objects
Objects created by the user

Partitions of the display area (frames, etc.) set
by the software




What faults make this attack successful:

¢ Refreshing the contents of a window, after
those contents have changed, is problematic
* Refresh too often:
Performance degrades
The screen flickers to annoy the user
* Refresh too seldom
The screen becomes messy

* Hitting the sweet spot is challenging

How to determine if the software fails:

¢ Sigh...you guessed it...labor-intensive
visual verification is the only resort




GO 1 e ) e

How to conduct this attack:
¢ Add things to the screen

* Move them around (varying the distance
you move them)

¢ Delete them
* Edit them
Do all these things with a mix of

features and at or around object
boundaries

Target: Word® 2000

Features: Entering text at the page
boundary

Reproducibility: Works on Word® 2000
on any OS. The problem is much worse
on prior versions of Word

Synopsis: Removal of a similar bug in
Word 97 caused this one




Force the Screen to .

Questions before we move to the next attack?

7. Force different outputs to be
generated for each input

8. Force invalid outputs to be generated

9. Force output properties to change

10. Force the screen to be refreshed




While executing the input and output
attacks, keep notes on persistent
(stored) data

¢ Data you see over and over is stored

¢+ Data you see over multiple executions is

persistent

Think about where this data comes
from and how it can get corrupted

If you have the source code, data is easy
to find

If you don’t have the source, you must
be able to look through the interface
and identify data

¢ Put yourself in the shoes of the developer
* How would you program it?




Preview of S

. Apply inputs using a variety of initial
conditions

. Force a data structure to store too

many/too few values

. Investigate alternate ways to modify

internal data constraints

When to apply this attack:

* Inputs are often applicable in a variety of
circumstances (states of the software)

* This attack investigates the application of
inputs from a variety of initial states

* Try to pick states that might cause errant
behavior

Pick states that are as different from each other as
possible
Pick states that differ by only one data element




What faults make this attack successful:
¢ Checking that inputs are valid is tricky

» Checking that inputs —combined with
internal state - are valid is even harder

¢ The result is that some inputs only work
on specific initial conditions

How to determine if the software fails:
¢ Since some cases of this bug mean missing
code (failure to consider a specific case)

Watch for crashes
Watch for nonsense error messages




How to conduct this attack:

* Enumerating states is a time consuming
endeavor:

* Does an input cause different behavior in
different circumstances?

¢ Is an input applicable sometimes but not
other times?

For more information read about model-based testing

visit: www.model-based-testing.org

Vary .

Target: Word® 2000
Features: Draw Group/Ungroup

Reproducibility: Works on all PC
versions of Word® and all versions of
Windows® 9x, NT, 2000

Synopsis: Certain configurations of
grouped objects do not ungroup cleanly




Questions before we move to the next attack?

el

w Data Structures

When to apply this attack:

¢ Fixed size structures can be overflowed by
forcing the software to store too many
values

* Testers must be able to detect size
constraints and then find ways to violate
them




1 Structures

What faults make this attack successful:

* Developers are often good at checking
content and failing to consider size

* Every program that adds or removes
elements from a structure must have code
to check that size constraints are not
broken as a result of the add/remove
operation

¢ It only takes one program to forget...

ata Structures

How to determine if the software fails:

* Reading or writing beyond the bounds of a
data structures almost always causes the
software to crash

¢ But be alert for the usual signs of data
corruption (performance, anomalous
output/computation, etc.)




a Structures

How to conduct this attack:

* A structure can be underflowed by
removing more values than the structure
contains

* Strategy:
add x number of values to a structure
delete x+1 values from the structure

¢ Try this on internal structures and also list
boxes that store persistent data

Target: Word® 2000
Features: Tables

Reproducibility: Works on all PC
versions of Word® and all versions of
Windows® 9x

Synopsis: failure to constrain the upper
bound on the number of rows




a Structures

Questions before we move to the next attack?

Joors to S

When to apply this attack:
* Whenever data is supposed to be
constrained in any way:

A month must fall between 1 and 12
A year must fall between 1980 and 2095
The limit on undo operations is 20




ck Doors to Storea

What faults make this attack successful:

¢ Plain and simple: a lack of good software
engineering practice

¢ Information hiding (object-orientation)
cures this problem:
All data is private to a set of access routines
These access routines enforce data constraints

A program must use the access routines to
access or modify data

Storec ta

How to determine if the software fails:

* Broken data constraints are serious, often
resulting in system instability or crash

» Also, look for:
System sluggishness
Incorrect error messages
Incorrectly computed results




0ors to Store

How to conduct this attack:
¢ Identity data structures

* Explore various ways to modify the
contents or properties of the data structure

Target: PowerPoint® 2000
Features: Insert Table

Reproducibility: Works on all PC
versions of PowerPoint® and all
versions of Windows® 9x, NT, 2000

Synopsis: Table size is constrained at
creation but can be expanded on edit




Questions before we move to the next attack?

11. Apply inputs using a variety of initial
conditions

12. Force a data structure to store too

many/too few values

13. Investigate alternate ways to modify

internal data constraints




While executing the input and output
attacks:

* make a feature list

* keep notes on what computation is

happening inside the application

Think about ways to “get in the way” of
the computation, using inputs, outputs,
data, or even other features

14. Experiment with invalid operand and
operator combinations

15. Exploit recursion

16. Force computation results to be too
large or too small

17. Find features that share data or
interact poorly




When to apply this attack:
* Some operands cannot be used with
certain operators
Divide by zero
Adding a character to a real number
* Some operators conflict with each other

Operators with an inverse relationship
Ex: [SQRT(x)]?

What faults make this attack successful:

¢ Developers have to write error code to
weed out invalid operator/operand
combinations

¢ Consider divide-by-zero

if (x !'= 0)
v = z / x;
else
cout (“cannot divide by zero”);




Experiment w/ Operator/C

How to determine if the software fails:

* Become a problem domain expert to learn
about the domain and range of the
functions computed by your software

* Apply invalid combinations and watch for:
Crashes (for unhandled exceptions)
Incorrect results

Null or nonsensical values appearing as output

Experiment w/ O

How to conduct this attack:

* Must be able to identify computation
(operators) and the data objects (operands)
on which the computation operates

¢ Computation isn’t just assignments

Graphical rendering
Screen layout, WYSIWYG




Target: Windows® Calculator

Features: Square Root/Exponent

Reproducibility: Works on all versions
of Windows® 9x, NT, 2000

Synopsis: Round-off error

Questions before we move to the next attack?




When to apply this attack:

+ Recursion occurs when a function calls itself

long int factorial (long int n)
{
if (n <= 1)
return(l) ;
else
return(n * factorial(n - 1));

1
S

¢ If this occurs too many times, stack overflow will
occur

What faults make this attack successful:

* Developers fail to write code that ensures
loop or recursive call termination

* Since recursion only requires one line of
code, constraining it often seems
unnecessary to developers




Recursion

How to determine if the software fails:

* Infinite recursion causes a heap overflow
in the computer’s memory

¢ This will almost always result in the
application crashing or hanging

How to conduct this attack:

¢ Recursion can be thought about in terms of
black box objects too:
Can a document reference itself?
Can a hyperlink point to itself?
Can an email message contain itself?
Can a program that spawns processes call
itself?
Determine these objects and create the
self-referencing situation




Recursion

This demo will shows how such a
program behaves on Windows 2000...

...However, we will wait until the end
of the session because the computer
will not be usable after this program
executes

Questions before we move to the next attack?




Sixteenth Attack:
Force Results to be too Large/S

When to apply this attack:

* Review:

Inputs need to be constrained

an app should never permit invalid input to enter
the system

Data needs to be constrained
an app should never store invalid data
* But even if all inputs and data are correct,
computation can still fail

Force Results to be too Large/Small

What faults make this attack successful:

X=x+l;

This simple line of code will fail if it is
executed enough times

Developers often focus on operators
and operands and ignore the result




How to determine if the software fails:

* Since the result of this attack is underflow
or overflow, the software most often
crashes

Force Results to be too Large/Small

How to conduct this attack:

¢ Usually, you have to force a computation
to occur over and over and over

¢ If you have control over the data used in
the computation, rig it to begin at or
around boundary values




Given the program:

#define count 2

main() {
int sum, value[count];
sum = 0;
for (1 = 0; 1 < count; ++1) |

sum = sum + valuelil;

}

}

Consider the values:
value[0] = 32700, value[1] = 70
count = 33000, value[0..32999] = 1

be too Large/S

Juestions before we move to the next attack?




Seventeenth A

Feature Interaction

When to apply this attack:

¢ This is the attack that distinguishes novice
testers from the pros

* Given two or more features that work fine
individually, can you make them break
when they work together

on the same data
at the same time
getting in the way of each other

Feature Interaction

What faults make this attack successful:

* Features often work well in isolation
because they are developed in isolation

* But two features may share data but

require that different constraints on that
data be enforced

» Failure to enforce such constraints causes
this class of failure




Feature Interactior

How to determine if the software fails:

* Here is yet another example of painstaking
manual verification

* Keep a sharp eye out for:
Improperly formatted output
Incorrect computation
Corrupted data

¢ Failures often manifest long after the fault
has been tripped over

How to conduct this attack:

* Pick two or more features
That might interact with the same user input

That might contribute to computing a single
output

That might share the same data

¢ Try to make them “get in each other’s
Way//




Target: Word® 2000
Features: Footnotes/Dual Columns

Reproducibility: Works on all PC versions
of Word® and all versions of Windows®
Ox, N'T, 2000

Synopsis: The footnote adopts the
properties of the reference point, which
can be incompatible with the page layout

14. Experiment with invalid operand and
operator combinations

15. Exploit recursion

16. Force computation results to be too
large or too small

17. Find features that share data or
interact poorly




Software testing requires
understanding of and control over four
interfaces:
Kernel
* File System
Software

Each interface presents number of
challenging problems

Testing any of the interfaces is formidable

Testing them thoroughly is exquisitely
difficult

Some interfaces are well-understood,
some we are just beginning to study




Testing each interface:

* The user interface
study the attacks
execute the attacks
meet often, share best practices

L]

clusions

Testing each interface:

* The kernel interface
acquire the tools
acquire the knowledge

study field bug reports and make sure you
understand real stressed environments




Testing each interface:

¢ The tile system interface
understand your app’s file formats

understand how storage media can fail and
determine your customer’s tolerance for losing
their data

1clusions

Testing each interface:

* The software interface

understand the other apps that your software
depends upon

understand the data that your app gets from
these resources

determine how this communication can fail

determine if failure of the resource will cause
failure of your app




Know your app’s environment

¢ Understand what might go wrong and test
that it doesn’t

Know your app’s capabilities

¢ Understand how it can screw things up, test
that it doesn’t

Practice the attacks...always have a goal
Brain on, eyes open, Test!

How To Contact James Whittaker
Snail Mail

Department of Computer Sciences
150 W. University Boulevard
Melbourne, Florida 32901-6975
. E-mail & Web
Questions? woes fibeds
http:/ / www .se.fit.edu
Comments? http:/ / www howtobreaksoftware.com
Telephone

Suggestions? e

Fax

Bug Stories?  ax-e7-70i




Sponsored by:

’B” i* ‘qm




LUND INSTITUTE
OF TECHNOLOGY
Lund University

Design of Embedded Systems

Kris Kuchcinski
Dept. of Computer Science
Lund University

Sweden

http://www.cs.Ith/~kris

Examples of Embedded Systems




LUND INSTITUTE
OF TECHNOLOGY
Lund Universi ty

Constraint Programming
Approach

Kris Kuchcinski

Dept. of Computer Science
Lund University

Sweden

http://www.cs.Ith/~kris

Quotations

"Constraint programming represents one of the
closest approaches computer science has yet made
to the Holy Grail of programming: the user states
the problem, the computer solves it."

Eugene C. Freuder
CONSTRAINTS, April 1997




Introduction and Motivation

Synthesis of the following code

(inner loop of differential equation integrator)

while c do
begin
x1 :=Xx + dx;
ul :=u - (3*x*u*dx);
yl =y + u*dx;
c:=x<a,

x:=Xx1; y:=yl, u:=ul;
end;

Introduction and Motivation

b

scheduled
data-flow graph data-flow graph




Register Allocation as
Graph Coloring

Constraints:

[r1,F,F3,F e, Tg] 12 0..2,
[ F Iy, I #I3 I, #15,

Mo F Iy, I3 F 1y, Iy 7 T,
s # I

Register Allocation as
Clique Finding

for all r;, r; which are not connected by an edge:

nF10rj#1

The maximal clique can found by maximizing the
following cost function:

cost =2, 1;




Constraint Consistency

All constraints are stored in the constraint store

Consistency methods are applied to find inconsistent
values and prune variables’ domains
Different types of consistency methods:

Node consistency

Arc consistency

Path consistency

Consistency Properties

Node consistency

A network is node consistent if in each node
domain each value is consistent with unary
constraint (e.g., X > 7)

Arc consistency

A network is arc consistent if for each arc
connecting variables V; and V, for each value in
the domain of V, there exist a value in the domain




Node and Arc Consistency

Example
0..10 0..10 1.6 0.5
; > 3 ; > 3
V<7 V<7
Not node consistent node consistent
Not arc consistent arc consistent

Need for search

Node, arc and path consistency are in general not
complete (complete for some problems with particular
structures)

Complete algorithm: N-consistency for N variable
problems — exponential complexity

Example:

"2 [r1,r2,r3] :: 0..1,




Search

Solver is not complete and search for a solution is
needed

1.6 0.5

% > 3
1<7

Constraint properties

may specify partial information — need not uniquely
specify the values of its variables,

non-directional — typically one can infer a constraint
on each present variable,

declarative — specify relationship, not a procedure to
enforce this relationship,

additive — order of imposing constraints does not
matter,




More realistic example

Scheduling
Scheduling of the data-flow graph
Constraints:
X dx dx dx

for all op; and op; such that op;

ax | v | | a before op;

{ TaD=T
yll ¢ for all op; and op; that can use

the same resource
T.eD =TT R = ER R
1 i T s Hini]

Problems

Constraint propagation for
T,+D;sT,0T;+D,; < T, OR; # R; is weak

Not all solvers support disjunctive constraints.
Other solution (reified constraints):

T,+D,<T, = Bl,
T,+D,< T, = B2,
Ri#R; = B3,

Bl1+B2+B3=1.




Propagation problems

resources “

} 5.7

time

T,+D, T, 0T, +D,sT, R, #R,
T,+D,sT,0T7,+D,<T,UR,#R,

Global constraints

Non-overlapping rectangles
Y

j diff2([ [X,,Y;,DX,,DY],
[X,,Y,DX,DY] 1)

X

All knowledge in one "place” — makes it possible to
define good consistency methods (OR, mathematics,
geometry, etc.)

Specific algorithms for consistency — more effi¢ier




Global Constraints -
Scheduling

diff2 constraint
Y (resources)

duration (Di)

Ri _I !

Ti

diff2([ [T1, R1, D1, 1], [T2, R2, D2, 1]], ...)

Scheduling Example Constraints

T1+2<T6,T2+2=<TE6,

T3+2<T7,T4+2=<TS,

T5+1<T9 T6+2=<T10,

T7+2<T11, T10+1<T11,

diff2([ [T1,R1,2,1], [T2,R2,2,1], [T3,R3,2,1],
[T4,R4,2,1], [T6,R6,2,1], [T7,R7,2,1],
[T5,R5,1,1], [T8,R8,1,1], [T9,R9,1,1],
[T10,R10,1,1], [T11,R11,1,1] D).




registers
A

Registers

di f f 2 for register

f.u.

di f f 2 for operations

/  X=A+Y
m =

can be done together with or after functional
units allocation/binding and scheduling,

High-level synthesis:

System design

Other Synthesis Problems
Defined with Constraints

Chaining,

Conditional execution,

Pipelined components,

Algorithmic pipelining,

Switching activity reduction (power consumption)

different aspects of design space exploration
scheduling

component assignment

memory allocation/data assignment
power/energy consumption

10



Design Space Exploration

Mapping

.

HP/DSP

.

Communication facility

Architecture

Additional Constraints
element

Element constraints
element(N, [X;, X, ..., X,], Value)

propagation from N to Value

N=i — Value = X;
propagation from Value to N

Value = x — N=iand Xi = x ...

Examples- element(N, [2, 3, 4, 4], V)
N:1.2,V:{2 3}
V=4,N:3.4

relations

11



Additional constraints
cumulative

Cumulative constraint

Resources

ResourceLimit

Time

cumulative([Tk, Tn, Tm], [Dk, Dn, Dm], [1, 1, 1], ResourceLimit)

Cumulative propagations

Execution interval which will always be occupied by a
task.

task

R
esources T-1.3 D=4 LST < LCT

min(T) LST = max(T)

12



Cumulative propagations —
profile based

Resources

ResourceLimit

Time
for each [t;, t)

for each task, whose exec. interval overlaps with [t; t)
if (ResourceLimit - resource_usage < task(reso
T, in { complement(t, - min(D,) +1 .. t;- 1) }

check D, ... Res,...

Cumulative propagations —
edge finding

| ]
[ ]
( ]
est(tl)” lct(t1)

t3 cannot be between t1 and t2 iff
Ict(tl) - est(tl) < D1 + D2 + D3

> t3 must be last !!!

t3 cannot be before t1 and t2 iff
Ict(tl) - est(t3) < D1 + D2 + D3

13



Edge Finding Algorithm

Martin-Shmoys algorithm with O(n?) complexity.
Up phase

for each unique Ict we create a set

S = {t| LCT(t) <= Ict} and make checking whether
a task can be the first or before

Down phase

similar but using est and checking whether a task
can be the last one or after all tasks.

System Synthesis Example

‘ l original MILP formulation- 47 timing
variables, 225 binary (bus 153)
and1081 constraints (bus 416)

commercial linear programming
l 1 package used to solve the problem
’ ‘ (XLP, developed by XMP Software,

Inc.)

Execution time
Processor Cost S1 S2 S3 S4 S5 S6 S7 S8 S9

P1 4 2 2 1 1 1 1 3 - 1
P2 5 3 1 1 3 1 2 1 2 1
P3 2 1 1 2 3 1 4 1 4

14



Modeling of cost and
execution time

Execution time
element(P1, [2, 3, 1], D1)

element(P9, [1, 1, 4], D4)

Cost
(P1=10P2=10...0P9=1) = C1,

(P1=6 OP2=60... UP9=6) -~ C6,

System synthesis results

Performance Performance optimization Cost optimization
Design Cost (time MILP (s)  CLP (s) B&B CLP (s) B&B Nodes
units) Nodes

10 6 6438.00 0.43 84 0.55 92

Bus 6 7 5371.80 0.53 114 0.68 144
5 15 3691.20 0.43 68 0.70 103

15 5 3732.00 0.43 20 1.67 125

point-to-point 12 6 26710.20 1.42 98 2.18 169
links 8 7 32320.20 1.00 58 2.59 198
7 8 4510.80 1.64 75 2.02 112

5 15 38501.20 1.50 32 1.48 77

15



System synthesis results with
local memory

Performance Performance optimization Cost optimization
Design Cost (timeunits) MILP (s) CLP B&B CLP B&B Nodes
(s) Nodes (s)

28 6 6592.20 0.71 76 2.58 252
23 7 5371.80 1.07 193 1.94 266
Bus 22 8 123252.60 0.95 124 14.85 856
21 10 316860.60 114.92 4534 119.55 8799
18 11 236724.00 88.23 7015 2.37 477
17 12 138004.20 0.93 268 10.39 3076
14 15 3581.40 0.54 22 9.89 3076
38 5 - 0.56 24 2.08 107
30 6 - 0.99 59 3.75 155
point-to-point 25 7 - 1.60 79 5.58 314
links 23 8 - 1.82 57 3.21 184
22 10 - 4.50 84 59.25 855
19 11 - 27.34 794 101.03 2851
18 12 - 97.72 2686 8.66 1047
14 15 - 1.18 14 4.95 328

An Example

FB1
'\‘ IQ IDCT REK FB2
~ FIR

‘%4 BMA PRAE Q /% .

N 9% % < 9% ‘m
DCT

C + Dc=< 2500

Video Coding Algorithm H.261

16



Task Mappings to Processors

Task Uni- BMA PAR1 DCT FIR BMA FIR FIR DCT DCT
versal array array _array  pipe seq pipe seq pipe

IN - - - - - - - - - -
FB1 - - - -
BMA 7234 484 3617 - -
FIR 7234 - - 510 - 3461 1170
PRAE 1280 128 - - - - - -
DCT 12312 - 132 6156 474
Q - - - - -
1Q - - - -
IDCT 12312 - 132 - 6156 474
REK 1536 256 - - -
C 132 - -
FB2 - -

Scheduling with Memory

File Processor Bus Task Data Solve View Visualize |

[ TaskGraphEditor =

Draw

Layout

GIF Capture

Postscript

Print

annotated task graph

Constraints

ROM RAM Link1 ROM RAM

CPU1 <—— CPU2

i [ o

ROM RAM Ljnk2 RAM
<>
CPU3 ASIC1

|@

target architecture

17



(o} C, |C, Ef
P1

task graph

P1 L1 P2

architecture

Schedule

= .

Memory importance

gt
6l P1 P2
4

Data Memory

gt
6l
4L

t

Experimental results

H.261 example

= w
Wy lY w5 <
= U] w <
: HEREHH IR
Q o g g oG Q=
é a < aj =
1 both 2871 | 2871 | 2683 - -
greedy 4 6743 | 1686 | 3812 0 0
memory 4 6781 1696 | 3259 | 1% | -16%

18



Scheduling of Mars Path Finder under
Power Consumption Constraints

The mars rover operates on very limited power supply. The power
is given by solar panels. The power obtained from solar panels was
measured at different temperatures and the results were the
following: 14.9W at -40°C, 12.0W at -60°C and 9.0W at -80°C.
There is a battery power source too, which gives maximal 10.0W
and it is not replenishable energy so the battery power should be
used as little as possible. The mars rover has 6 driving and 4
steering motors, which need to be warmed up before respective
driving and steering can be performed.

Steer2

Scheduling of Mars Path Finder under
Power Consumption Constraints

Operation Duration

Heating steering motors 5s At least 5s and at most 50s before
(HSM1&2, HSM3&4) steering starts

Heating wheel motors 5s At least 5s and at most 50s before driving
(HWM1&2, HWM3&4, HWM5&6) starts

Hazard detection (HD1 & HD2) 10s At least 10s before steering starts

Steering (Steerl, Steer2) 5s At least 5s before driving

Driving (Drivel, Drive2) 10s At least 10s before next hazard detection
starts




Scheduling of Mars Path Finder under

Power Consumption Constraints

Task Duration | Power -40°C | Power -60°C | Power -80°C
Heat two 5s 7.6W 9.5W 11.3W
motors

Drive 10s 7.5W 10.9wW 13.8W
Steer 5s 4.3W 6.2W 8.1W
Hazard 10s 5.1W 6.1W 7.3W
Detection

CPU Constant 2.5W 3.1W

Modeling

Precedence constraints:
t hdl+d_hdl <t steerl,

t steerl + d_steerl <t _drivel,
t hwml2 <t steerl + 50,
Power consumption constraints:
cumulative([t_hd1, ..., th_sm12],

Optimize “Power”

[p_hd1, ..., p_sm12],
[d_hd1, ..., d _sm12], Power)

20



Cycle (circuit) constraint

cycle(2, [ [2,6], [3,4], [1], [2,3], [2,6], [2,5]])

[ [2],[4], [1], [3], [6], [5]]

Search

Standard search uses depth-first-search with
backtracking.

Optimization uses branch-and-bound or similar
methods.

21



Typical branch and bound search
(TSP problem)

City 1 c.cy 2 City3 City4

City 1 6 41
City 2 - 40 5 {1}
iy 3 B L>0
{12} {13} ,
L>3 L>6 >
{123} {124} {132 {1,34}
L>43 L>8 L =46 L=10
{1,234 {1243 {1342
L=88 L=18 L=18

Search with restart
(CLP typical)

City 1 Clty 2 City3 City4
City 1 6 41

City 2 - {1}
a4 L>0
{122 {12 {13 {13 {14
L >3 L>3 L=6 L>6 L>41

{1,2,3} {1,2,4 {1,3,2} {134} +
L=>43 L=8 L=>46 L =10

{1,2,3,4 {1,2,4,3} {1,3,4,2}
L=88 L=18 L=18

22



Search (cont’d)
[City1::2..4, City2::{1,3..4}, City3::{1..2,4}, City4::1..3]

How to select order of variable assignment?
dynamic vs. static
criteria
How to select values to be assigned from variable’s
domain?
a single value
sub-domain

Variable Selection

Static and dynamic
input order (static)
first-fail principle (smallest size of the domain)
smallest value in the domain
largest value in the domain

largest difference between the smallest and
second smallest value in its domain

smallest max value in the domain

23



Value Selection

Single value
minimum in the domain and then upwards
maximum in the domain and then downwards
middle and then towards smallest and largest
random

Domain split
split into two sub-domains
splitinto N

Search improvements

Partial enumeration algorithms (instead of labeling)
Credit Search,
Limited Discrepancy Search (LDS).

Assignment of subintervals instead of values to
domain variables — possibly examines a bigger part
of a solution space.

Problem-dependent specific heuristics.

Neighbourhood search...

24



Credit search

initial credit = 8

. credit search
credit(T, S

8, % credits

local search

3, % backtracks
part(1,2)),

solution (¢

Limited discrepancy search

min_max( lds ([X,Y,Z], 1, input_order, indomai

25



Interval splitting

Interval splitting

// \\ For each task:

Origin :: min..max
duration

|
|
|
Rest .2 0..duration-1,

Quotient :: 0..max,
Quotient*duration+Rest #= Origin.

| |
|
| i | #tl Enumeration procedure:

1234567831011 labeling(Origins, Quotients) :-

1<Origin<3 7<0rigin<9 labeling(Quotients, first_fail, indomain),
labeling(Origins, first_fail, indomain).

4<0rigin < 6 10<Origin < 11 g

Summary and conclusions

Advantages:

focus on a specification of the problem, not on a
solution method.

unified framework for different algorithms to be
used to solve a problem (by encapsulating them
as constraints).

easy definition of problems with many
heterogeneous constraints.

easy extension of a problem by adding new
constraints.




Summary and conclusions

Limitations:
NP-hard problems.
often non-predictable behavior of a solver.

difficult to define and add new constraints:
into existing systems — interface problems.
new propagation algorithms need to be developed.

difficult to match constraints with actual problems.

CP finite domain systems

SICStus Prolog

CHIP from COSYTEC
IF/Prolog

ILOG

Mozart/Oz

Gnu Prolog

JaCoP — Java based our own solver

27



Selected CP Web resources

Constraints archive
http://www.cs.unh.edu/ccc/archive

Guide to constraints programming
http://kti.ms.mff.cuni.cz/~bartak/constraints

Sicstus manual
http://www.sics.selisl/sicstus/sicstus_toc.html

Gnu Prolog
http://www.gnu.org/software/prolog/prolog.html

Mozart/Oz
http://www.mozart-oz.org/

Other resources

Book

K. Mariott and P. J. Stuckey Programming with
Constraints: An Introduction, The MIT Press, 1998.

Conferences

Principles and Practice of Constraint Programming
(CP)

The Practical Application of Constraint Technologies
and Logic Programming (PACLP)

Journal
Constraints (Kluwer Academic Publishers)

28



Selected Papers

Kuchcinski, K., Embedded System Synthesis by Timing
Constraints Solving, Proc. 10th International Symposium on
System Synthesis, Antwerp, Belgium, September 17-19, 1997.

Gruian, F. and Kuchcinski, K., Operation Binding and
Scheduling for Low Power Using Constraint Logic
Programming, Proc. 24th Euromicro Conference, Workshop on
Digital System Design, Vasteras, Sweden, August 25-27, 1998.

Kuchcinski, K. and Wolinski, Ch., Global Approach to
Assignment and Scheduling of Complex Behaviours based on
HCDG and Constraint Programming, Journal of Systems

Architecture, 2003, Elsevier Science.

Selected Papers (cont’d)

Kuchcinski, K., Constraints Driven Design Space Exploration for
Distributed Embedded Systems, Journal of Systems
Architecture, vol. 47, no. 3-4, pp. 241-261, 2001, Elsevier
Science.

Szymanek, R. and Kuchcinski, K., A Constructive Algorithm for
Memory-Aware Task Assignment and Scheduling, Proc. 9th
International Symposium on Hardware/Software Codesign,
Copenhagen, Denmark, Apr. 2001.

Szymanek, R. and Kuchcinski, K., Partial Assignment
Technique for Task Graph Scheduling, 40th DAC, Anaheim,
USA, June 2003.

Kuchcinski, K. Constraint-driven scheduling and resource

Systems, vol. 8, no. 3, pp. 355-383, 2003.

29



LUND INSTITUTE
OF TECHNOLOGY
Lund University

Methodologies for
Embedded System design

Kris Kuchcinski
Dept. of Computer Science
Lund University

Sweden

http://www.cs.Ith/~kris

General Methodology




Input to System Design

Executable specification (functional requirements):
usually provided as interacting processes/tasks,
very often multi-language specifications,
can be simulated and verified,
can be used to perform analysis, e.g, estimation.

Specification languages: C, C++, VHDL, Verilog,
SystemC, Esterel, SDL, etc.

Set of (non-functional) design requirements (cost,
speed, 1/O rate, power consumption, etc.).

Output from System Design

A set of system modules assigned to system
components (CPU’s, DSP’s, ASIC's, etc.).

Communication modules.

Each module can be further synthesized to hardware
using high-level synthesis or compiled to software.




Traditional design

flow

HW/SW Co-design

Detailed SW
design

Compilation

Compilation

Basic Characteristics of the
Methodology

Behavioral specification is given for the complete
heterogeneous system, regardless of how different
parts will be later implemented.

Analysis techniques are provided; specially different
estimation techniques.

Synthesis tools are used to automatically explore a
design space.
high-level synthesis, RTL synthesis,
compilers, cross-compilers,
interface generators,
etc.




Estimation of Design Parameters

Estimation of parameters such as size, cost, power
consumption.

Does not need to be very precise but has to be
“consistent” — follows real design parameters.

Usually 15%-20% inaccurate.

Trade-off between accuracy and estimation time.

Improvements of the Design
Process

High-level specification is made before architecture
selection and implementation decisions can be made
more accurate (better exploration of architectures).

A uniform description of HW and SW makes it
possible to move parts of the systems between HW
and SW.

HW and SW development is moved closer and the
integration cost is reduced.

An early evaluation of system characteristics is
possible.




An Example of a Design Flow

compilation

partitioning

v

component
allocation

communication
synthesis

7 low-level
synthesis --..__

Specification Example

“Extended” VHDL

port(IP1,IP2:in INTEGER; OP1,0P2:0ut INTEGER);

signal S1,S2,53,54,S5,S6:INTEGER,;

P1:process

receive(IP1);

send(S1,/.)

send(S3,/.)

receive(SB)

end process P1;

P2 : process

receive(IP2);

receive(S1),

send(OP2,...);

end process P2

P3: process P5 : process
;e::e.ive(s4); ;e::e.ive(SLSS);
.se.n(;(SZ,...); s.er:d.(S4,...);

end.p.ro.cess P3; en:j ;Jr.ocess P5;

P4 : process P6 : process

receive(S3); receive(S2);
send(Ss5....,S6,...); send(OP1,...);
end process P4; end process P6;




Representation Example

Process communicati

Allocation of System Components

Decides about the kind and number of components
for implementation of the system

processing elements: pprocesosrs, micro-
controllers, DSP’s, ASIP’s, ASIC’s, FPGA's, etc.
storage elements: memories, register files,
registers, etc.

communication devices: buses, point-to-point
links, networks, etc.

specialized 1/0O devices: A/D, D/A, frame grabbers
etc.




Partitioning

Functional partitioning vs. structural partitioning.

Abstraction level.

Partitioning granularity (fine or course):
= modules,

= processes and procedures,

= instructions.

Partitioning objective:
performance,

minimal communication,

low power,

combination of several criteria.

Partitioning Example




Communication Synthesis

= Creation of abstract communication channels by
communication clustering.
= Communication refinement
= selection of communication lines width,
= protocol selection,
= etc.

= Interface generation:
= device drivers,
= communication hardware,
= etc.

Communication Synthesis
Example

access
routines

= |

interface
hardware




Design Decisions

Different types of design decisions

selection of components, partitioning,
assignments, scheduling, etc.

decisions regarding runtime system done off-line
or are postponed to runtime (e.g., static vs.
runtime scheduling)

Design decisions are mutually dependent

Huge design space

Design Automation

Uses internal representations which are usually
based on graphs.

Graph algorithms (shortest path, Hamiltonian circuit,
topological sort, depth-first-search, breadth-first-
search, SAT, etc.).

Optimization methods — (M)ILP, CLP, heuristics, etc.
Tractable and intractable problems.

Decidable and undecidable problems.

Decision problems and combinatorial optimizatio s
problems. AT




Design Automation
Consequences

Most of the problems which need to be solved in
design automation are NP-complete or NP-hard.

Usually only small problems can be solved exactly.

Need for algorithms which do not guarantee optimal
solutions but “good enough” solutions

approximation algorithms — guarantee a solution
with a cost that is within some margin of the
optimum,

heuristics — algorithms that are constructed
based on “rules-of-thumb”; nothing can be s
advance about the quality of the result.

10



Examples of Embedded Systems

Anti-lock brakes
Auto-focus cameras
Automatic teller machines
Automatic toll systems
Automatic transmission
Avionic systems

Battery chargers
Camcorders

Cell phones

Cell-phone base stations
Cordless phones

Cruise control

Curbside check-in systems
Digital cameras

Disk drives

Electronic card readers
Electronic instruments
Electronic toys/games
Factory control

Fax machines
Fingerprint identifiers
Home security systems
Life-support systems
Medical testing systems

(cont’d)

Modems

MPEG decoders
Network cards

Network switches/routers
On-board navigation
Pagers

Photocopiers
Point-of-sale systems
Portable video games
Printers

Satellite phones
Scanners

Smart ovens/dishwashers
Speech recognizers
Stereo systems
Teleconferencing systems
Televisions

Temperature controllers
Theft tracking systems
TV set-top boxes

VCR’s, DVD players
Video game consoles
Video phones

Washers and dryers

Source: Embedded Systems Design: A Unified Hardware/Software
Introduction, (c) 2000 Vahid/Givargis

Embedded Systems

"A device that includes a programmable computer but
is not itself a general-purpose computer.”

Embedded

Real-Time
System

Actuators ~
_Envwonment
Sensors

Execution deadlines,
Power consumption constraints,




Embedded Systems (cont’d)

Computing systems embedded within electronic
devices

Hard to define. Nearly any computing system other
than a desktop computer

Billions of units produced yearly, versus millions of
desktop units

Perhaps 50 per household and per automobile

Source: Embedded Systems Design: A Unified Hardware/Software
Introduction, (c) 2000 Vahid/Givargis

Embedded Systems (cont’d)

Non User-Programmable.

Based on programmable components (e.g., Micro-
controllers, DSP's...) but often contain application
specific hardware (IC's, ASIC's).
Reactive Real-Time Systems:

React to external environment,

Maintain permanent interaction,

Ideally never terminate,

Are subject to external timing constraints (re
time).




Characteristics of Embedded
Systems

Sophisticated functionality.

Real-time operation.

Low manufacturing cost.

Low power.

Designed to tight deadlines by small teams.

“Resource conscious” vs. “Unlimited resources”
programming

SoC Embedded System

m = Assembly of “prefabricated

OO0ooooooooooog

components” often purchased from

0000000000000
O external vendors (“IP”)
O .
P Video Unit g . k?lack box. .hler.archy
o - Design & Verification at the System
o level
ustom| O .
|8 O = rather than the logic level
Graphicgl| o O .
O ||DSP S = Interface and communica on-
= 1
0ogooooooogogo| = Great Importance of Soffy

RV,

Source: Alberto Sangiovanni-Vincentelli, 35th DAC




A Digital Camera Example

|:‘j>| A/D I—-|CCD preprocessor| | Pixel processor| D/A

JPEG codec Microcontroller | Multiplier/Accum |

DMA controller Display ctrl

Memory controller | | ISA bus ir;terface | |UART| | LCD ctrl | %
L) L) L)

v v
/<
O
Source: F. Vahid and T. Givargis, Embedded System Design: A Unified Hardware Software

Real-time gas turbine testing
system

MI-2 helicopter engine “Minicomputer”

8kB RAM
cassette ta




TELEX-1 and TELEX-Il systems

WiTas

WITAS project

= Autonomous system.

= Real-time system.

= Image processing.

= Mission planning.

= Incorporation of GIS systems.

= Interface with ground operator.

http://www.ida.liu.se/ext/witas




Typical Hardware Components
of DSP System

Component class Implements Compiler Specification
DSP processor Low data-rate DSP (Retargetable) Assembly

Slow control loops code generator C

Appl. Spec. alg. High level synth. DFL
Microcontroller User interface C compiler C

Slow control loops
Hardware High data-rate DSP  High level synth.  C, DFL
accelerator RT level synth. VHDL
Communication Internal & external Memory mgmt. Data-sheets
blocks and communication (A)synchronous STG
memory Storage & buffering interface synth.
Others Usually FSMD’s RT level synth.

- clock generators Asynchronous

- DMA blocks synth.

VHDL ~/ * 57
V\é‘ RVl 3
o || g 2o
L7 & 5
D

Source: H. de Man, et. al. “Co-design of DSP S sﬁ \J// f\
Hardware/Software Co-design, Kluwer 1995. ?3« ’ n ;

Importance of Embedded System
Design Methodologies

Hardware complexity.

Heterogeneous systems containing hardware (both
digital and analog) and software.

Heterogeneous components (CPU’s, DSP’s, ASIC's,
buses, point-to-point links, etc.).

Heterogeneous requirements — performance, cost,
power consumption, etc.

System-on-chip.

Shorter design cycles required by time-to-market
constraints.




Logic Transistors/Chip (K)

Design Complexity and Designer
Productivity Gap

10,000,000 100,000,000 _
1,000,000 ——— Complexity 10,000,000 £
0, .

=
100,000 growth rate \ / 1,000,000
10,000 %. 100,000 &
1,000 )‘/( P 10,000 3
100 : " 1 1,000 3
10 T 1ovr =
Productivity growth rate | 100 =

1 — 1 10

1998 2003

Source: Bryan Preas, Xerox PARC, 35th DAC

Software vs. Hardware Design
short summary

Software
flexibility,
reconfigurability, easy update, etc.,
complex functionality,
cost,

Hardware
speed,
power consumption,
cost in large volumes,




Design of Embedded Systems

Need to be done using high-level specification,
programming and hardware description languages —
not assembly languages and gate/transistor level
design.

Requires efficient design space exploration and
synthesis/compilation tools.

Different design requirements has to be taken into
account, e.g., cost, performance, testability, quality of
service, power consumption.

Multi-language design framework.

Importance of High-Level
Design Methods

System Verification Processing Speeds

System Implementation Processing time (s/frame) ‘
Behavioral model 1 200 (20 min/frame)
RTL model 144 000 (1.6 days/frame)
Gate model 228 000 (2.6 days/frame)

Gate model on hardware accelerator 1 200

Rapid Prototype 0.5

LSEf* STON

Target Hardware 0.05 /;V\\q‘/ RVMQQ%
g MLEEAE]

3 £ &
: 1
WL

Source: Paul Clemente, Ron Crevier, Peter Runstadler ‘R
Synthesis A Case Study”, VHDL Times, vol. 5, no. 1. CANTIT




General Design Flow

. Design tools
Design and Technology  System Specification g

Constraints

~ Estimation

Designer’s

/ Decisions

Refine

--» Mapping I

e ;
|« Partitioning I

T Schedulingl

N
N
W

Specify-Explore-Refine

Specification and Programming

Specification languages, such as UML, SDL.

Programming languages, such as C, C++, Java,
Esterel, assembly languages.

Hardware description languages, such as VHDL,
Verilog, SystemC.

Example: combining SystemC and C++ gives unified
simulation environment for hardware and software.

10



Hardware Description Languages

Cover several levels of design abstraction as well as
behavioral and structural description domain.

Contain typical features of programming languages,
such as data types and program statements.

Special features:
time concept,
structure description,

parallelism.

VHDL (IEEE standard), Verilog, SystemC.

Design Representations
(Computational Model)

Used to represent/model digital systems under
design.

Generated by a compiler from system specification or
coded directly in the model.

Represent the semantics, structure and timing of the
system.

Usually based on some kind of annotated graph
representation.

Used internally by design automation systems
the modeler/designer.

11



Design — Synthesis

Software translation into target code for a processor
(real-time operating system might be used).

Hardware synthesis — translation of a behavioral
representation of a design into a structural one.

Communication synthesis — generates hardware
and software which interconnects system
components.

Pareto points

time

12



Discrete Cosine Transform
Partial Design Space

40
30
Cl
ock2 -
steps
10 Add 2
0- Add 4

Mul Mul Mul Mul
1 2 3 4

Design Space Exploration

Speed Cost

13



Time-to-market constraint

= Need time for new

Profit
rofi product development,

= the biggest profit is in
the market window
time,

= missing the market
window can be costly.

| ‘

Market window

time

Summary

Embedded systems are important class of electronic
systems which can be found everywhere,

Combine hardware and software solutions,

Cover several engineering and research areas:
microelectronics,
real-time systems,
software development,
etc.

parameters.

14



	
	11111111 chae.ps.rdo
	

	chae 1.ps.rdo
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	2whit.ps.rdo
	

	whittaker1.ps.rdo
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	baksida X.ps.rdo
	

	XI.pdf
	
	3shin.ps.rdo
	

	kang 1.ps.rdo
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	4wolf.ps.rdo
	

	wolf 1.ps.rdo
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	wolf 2.ps.rdo
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	wolf 3.ps.rdo
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	baksida X.ps.rdo
	


	XII.pdf
	
	wolf 4.ps.rdo
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	wolf 5.ps.rdo
	
	
	
	

	5kris.ps.rdo
	

	kris1.pdf.rdo
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	kris2.pdf.rdo
	
	
	
	
	
	
	
	
	
	

	kris 333333.ps.rdo
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	baksida X.ps.rdo
	



