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Abstract

Models are extensively used in many areas of software engineering to represent the behaviour of software systems at
different levels of abstraction. Because of the involvement of different stakeholders in constructing these models and
their independent evolution, inconsistencies might occur between the models. It is thus crucial to detect these incon-
sistencies at early phases of the software development process, and especially as soon as refined models deviate from
their abstract counterparts. In this article, we introduce a containment checking approach to verify whether a certain
low-level behaviour model, typically created by refining and enhancing a high-level model, still is consistent with
the specification provided in its high-level counterpart. We interpret the containment checking problem as a model
checking problem, which has not received special treatment in the literature so far. Because the containment check-
ing is based on model checking, it requires both formal consistency constraints and specifications of these models.
Unfortunately, creating formal consistency constraints and specifications is currently done manually, and therefore,
labour-intensive and error prone. To alleviate this issue, we define and develop a fully automated transformation of
behaviour models into formal specifications and properties. The generated formal specifications and properties can
directly be used by existing model checkers for detecting any discrepancy between the input models and yield corre-
sponding counterexamples. Moreover, our approach can provide the developers more informative and comprehensive
feedback regarding the inconsistency issues, and therefore, help them to efficiently identify and resolve the problems.
The evaluation of various scenarios from industrial case studies demonstrates that the proposed approach efficiently
translates the behaviour models into formal specifications and properties.

Keywords: Containment Checking, Consistency Checking, Model Checking, Model Transformation, Behaviour
Models, LTL

1. Introduction

During the modelling phase of a software system, behaviour models such as UML activity diagrams, sequence di-
agrams, statecharts [1], Business Process Model and Notation (BPMN) [2], and Event Driven Process Chain (EPC) [3]
are often used to describe how the system behaves. Because of the involvement of different stakeholders in construct-
ing these models and their independent evolution, inconsistencies might occur between the models at different levels
of abstraction [4]. This issue becomes extremely relevant for software development processes in which different mod-
els are used to derive or generate the system’s implementations from its specifications in a stepwise manner. That is, in
the long run, the inconsistencies might make the implementations drift apart from the specifications. The inconsisten-
cies that are detected at later stages, when the system is already implemented and tested require huge amounts of time
and effort for correction, revision, and verification. Therefore, it is crucial to detect and fix the inconsistencies at early
phases of software development, and especially as soon as refined models deviate from their abstract counterparts.
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This has led to a rich body of work for checking and managing model consistency in the literature [4–6]. Of these
existing approaches, only a few deal with consistency checking of behavioural models for software systems [4, 5],
for instance, checking behavioural models against non-behavioural models [7–9], or checking different types of be-
haviour models [10–13]. Nonetheless, there are very few studies on checking the deviation of software behavioural
models at different abstraction levels.

This work investigates the problem of containment checking for software behaviour models instead of aiming to
solve more general consistency checking problems. Containment checking is a special type of consistency checking
that verifies whether the behaviour (or functions) described by the low-level model encompasses those specified in
the high-level counterpart [14–16]. It improves the quality and reduces the complexity of big and complex system by
determining and resolving the deviations between the low-level behaviour models and its high-level counterpart in the
design phase. However, an unsatisfied containment relationship could break the design rather than improve its quality.
The containment relationship mainly aims at unidirectional consistency because the low-level behaviour models are
often constructed by refining and extending the high-level model. To date, however, none of the published studies has
performed a comprehensive exploration of the containment checking problem in software behaviour models.

A general technique employed by most of the existing consistency checking approaches in the literature (c.f. [4])
is to describe the behaviour models under study in form of formal specifications and derive consistency constraints
that these specifications must satisfy. There are two key shortcomings that hinder the wider applicability of the current
state-of-the-art consistency checking approaches. Firstly, these approaches often presume that formal specifications
of the systems under consideration and consistency constraints can be easily created. Unfortunately, this makes
the approaches hard to apply in practice because creating formal specifications and consistency constraints requires
considerable knowledge of the underlying formalisms and formal techniques [11]. Moreover, this task is often ac-
complished in a laborious and manual manner, which is also error-prone [13, 17]. Secondly, the results produced by
existing model checkers (e.g., counterexamples) are rather cryptic and verbose. As a consequence, they are difficult
for the developers, who—as mentioned above—often have limited knowledge of the underlying formal techniques, to
interpret and understand [18, 19]. It is also necessary to investigate the applicability and technical feasibility of the
approach for realistically sized of models.

Our approach presented in this article aims to address the aforementioned key shortcomings, which can be sum-
marised by the following fundamental research questions:

• RQ1: How to perform automated transformation of behaviour models into formal specifications and descrip-
tions?

• RQ2: How can we effectively communicate the containment checking results to the developers?

• RQ3: Can we design a containment checking approach that offers an acceptable performance for realistically
sized input models?

We interpret the containment checking problem of software behaviour models as a model checking problem. That
is, the behaviour described in the high-level model can be considered as consistency constraints that the execution
of the corresponding low-level model must conform to. This way, the first research challenge involves two primary
tasks: (T1) deriving formal specifications from the behaviour described by the high-level model; and (T2) deriving
formal descriptions from the corresponding low-level behaviour model. The model checkers will be fed with the
outcomes of these tasks to verify their satisfaction. A positive result yielded from the model checker implies that the
formal descriptions (resp. the behaviour of the low-level model) satisfy the specification (resp. the behaviour of the
high-level model), and vice versa.

Unlike existing model checking based techniques, our approach does not presume the presence of specifications
and descriptions. We aim at enabling the automated transformation of the input behaviour models into the corre-
sponding formal specifications and descriptions. This way, our approach can help to alleviate the burden of manually
encoding consistency constraints, and therefore, increase productivity and avoid potential translation errors. Whilst
Task T2 might be efficiently achieved by adapting and extending existing approaches on transforming behaviour
models to formal descriptions accepted by the model checkers such as those presented in [20–23], no existing tech-
niques can be leveraged for accomplishing Task T1. We propose an automated method for transforming the high-level
and low-level behaviour models into temporal logic based consistency constraints and formal behaviour descriptions,
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respectively. In particular, Linear Temporal Logic (LTL) [24] and the state based SMV (Symbolic Model Verifier) lan-
guage are used for formalising the input models, and the NuSMV (New Symbolic Model Verifier) model checker [25]
is used for verification. The behaviour models studied in our work are Unified Modeling Language (UML) 2.4.1
activity diagrams [1] as they are widely used in both academia and industry for modelling and analysing behaviours
of software systems.

To address the second research question, our third Task T3 concentrates on extracting more meaningful informa-
tion from the containment checking results produced by model checking in order to facilitate better understanding and
resolving of the violations revealed by containment checking. For this purpose, one can choose to either intervene
in the model checking process or analyse the model checking outcomes to achieve the necessary information. The
former method is more direct and can be better optimised (due to close integration with the model checkers) but likely
leads to tight dependence with a particular model checker or underlying model checking techniques, and therefore,
will be less generalisable. Hence, in this work we opt to focus on analysing the outcomes of model checking. In par-
ticular, we present an automated method for analysing the counterexamples in the context of containment checking
and produce an appropriate set of guidelines to countermeasure the containment violations.

In order to address the third research question, we have applied our approach in scenarios of different sizes and
complexity from four industrial case studies representing real systems from the banking and e-business domains. The
scenarios with few dozens to hundreds of elements including multiple interleaving and iterative activities are typical
sizes of models used in industry by developers [26]. Specifically, we investigated the performance of the proposed
approach on these scenarios as well as synthetic larger model to assess whether it supports the developers to verify
the containment relationship during their development tasks.

In our earlier works, the initial ideas were discussed for addressing the containment checking problem for be-
haviour models using model checking techniques [27, 28]. The contributions presented in this article significantly
extend the prior works in several aspects. First, we devise a more efficient method for transforming the input be-
haviour models to formal specifications and descriptions. In particular, the formalisation of activity diagrams is based
on the explicit representation of the control nodes in the formal models rather than implicit encoding as in [27]. Sec-
ond, this work covers a more comprehensive set of modelling constructs used for describing software behaviour. Apart
from the fundamental set of modelling constructs considered in [27, 28], we investigate complex structures such as
exception handlers, interruptible activity regions, parameterized tasks, event actions, and loops, that are widely used
for modelling complex circumstances in software systems. Third, we present in detail the counterexample analysis
method for locating the cause(s) of inconsistency and presenting the appropriate suggestions and guidelines to aid
developers in resolving containment inconsistencies. Fourth, we applied our approach in scenarios from four indus-
trial case studies in order to evaluate the applicability and technical feasibility of our approach, and to measure its
performance in a typical developer’s working environment. Finally, we discuss the generalisation of our approach
including the applicability for other kinds of behaviour models, such as statecharts and business process models, as
well as the possibility to realise our approach for different formalisations and model checking techniques.

The rest of this article is structured as follows. Section 2 discusses the state-of-the-art regarding behavioural con-
sistency checking techniques in general and containment checking in particular, and formal semantics of behavioural
models. Section 3 discusses the background information. In Section 4, we describe our approach for containment
checking based on model checking in detail. The scenario extracted from industrial case study is described in depth
to illustrate our approach in Section 5. In Section 6, we present performance evaluations of the approach using four
scenarios from industrial case studies in order to examine the feasibility and applicability of our technique in an in-
dustrial context. In Section 7, we discuss various aspects and challenges of supporting containment checking. Finally,
Section 8 concludes with some final remarks and future research directions.

2. State-of-the-Art

Several approaches have been proposed in the literature for model consistency checking. In the subsequent sec-
tions, we briefly summarise the existing works related to our approach, in particular, approaches that focus on consis-
tency checking and containment checking as well as those approaches that provide the mapping of models into formal
descriptions, specification of formal constraints and formalisations of activity diagram.
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2.1. Existing Approaches for Consistency Checking

In the literature, many approaches tackled different types of models and/or model checking techniques [4–6].
Some of them focus on checking the consistency of behavioural models against structural models or checking dif-
ferent types of behaviour models (models and other representations of the same reality such as the requirements or
implementations). For instance, Yeung proposes an approach for checking the consistency between UML class di-
agram (i.e., structural model) and statechart model (i.e., behavioural model) by applying a pair of integrated formal
methods, namely B method and Communicating Sequential Processes (CSP) [9]. The models are manually translated
into B and CSP and also no discussion regarding the automation level of verification is provided. Van der Straeten et
al. present an approach for checking the consistency of different UML models by using description logic [29]. This
approach tackled the UML version 1.5 and concentrates on evolution consistency (i.e., consistency between different
versions of the same model). Graaf and van Deursen introduce a model-driven consistency checking approach for
checking the consistency between several behaviour models [30]. The approach first normalises the input models,
then performs an automated model transformation to UML statecharts, and afterwards compares the different state-
charts to identify inconsistencies. Knapp et al. check the consistency between two views of a system by verifying the
state machines with sequence diagram [11, 12]. The authors propose an encoding system, namely, HUGO, for trans-
lating state machines into PROMELA (Process or Protocol Meta Language), the formal input language of the SPIN
(Simple Promela Interpreter) model checker [11]. In another study, the authors present the transformation of timed
UML state machines and collaborations into timed automata using the HUGO/RT tool, and consistency checking is
performed using the UPPAAL model checker [12]. Amálio et al. [31] developed a modelling framework to construct
UML class, state and snapshot diagrams (i.e., object diagrams) and analyse models of sequential systems using Z
notation. However, models are manually translated into Z but formal analysis is supported by the Z/Eves theorem
prover.

Lam and Paget propose an algebraic approach for verifying the consistency between sequence diagrams and
statecharts. In this approach, behaviour models are encoded into π-calculus to support the verification of model con-
sistency [13]. Wang et al. introduce an approach for consistency checking between UML 1.5 statecharts and sequence
diagrams [10]. In this approach finite state processes are used to express statecharts whereas a trace of messages
is used for sequence diagrams. Heimdahl et al. propose deviation analysis approach using existing model check-
ers, related to the identification and analysis of changes in system behaviour between two similar control systems in
slightly distinct environments [32]. The RSML−e (Requirements State Machine Language) is used for the specifica-
tion of the systems which is then translated into NuSMV input language, whereas constraints are manually specified
in Computation Tree Logic (CTL).

The aforementioned approaches concentrate on consistency between different models, typically from different
development activities (such as requirements elicitation and implementation) or between different views of the system.
The major difference of these approaches and our approach is that we consider the consistency of the same model at
different levels of abstraction, i.e., “vertical consistency” [6, 33]. In particular, we focus on checking the consistency
of the containment of the high-level model in the low-level model, rather than checking the consistency of elements
of two different representations. These approaches introduce the formalisations for class, sequence, or statecharts but
not for activity diagrams. Their formalisations might be used when it is important to consider the connection among
different diagrams in the verification process but not for verifying the containment relationship for activity diagrams.

In the field of business process management, several approaches on computing the similarity of process models
have been presented [34]. Some approaches concentrate on retrieving process models in the large repository that are
similar or even identical models of a given process model or fragment thereof (the search model) [35, 36]. Dijkman et
al. focus on three perspectives of similarity: text similarity based on a comparison of the labels, structural similarity
based on the topology of the process models, and behavioural similarity based on the causal relations between activ-
ities in a process model. However, a search query involves determining the degree of similarity between the search
model and each model in the repository.

While other approaches focus on a trace theory to validate the conformance of two process models or process
models against their execution traces recorded in the event logs. An approach presented in [37] measures the degree
of behavioural similarity between Petri net based process models and their execution traces ranging from “completely
different” to “identical”. Another approach aims at verifying whether two process models are similar using their
corresponding event traces mined from process execution logs [38]. Bae et al. propose quantitative process similarity
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metric for measuring mining process similarity and difference [39]. In this method, dependency graphs are extracted
from process models and converted into normalized matrices. Afterwards, metric space distances are calculated
based on the difference between the normalized matrices. However, these approaches produce an estimated degree of
similarity of these models and are useful for finding similar or alternative behavioural descriptions but not applicable
for verifying the containment relationship.

2.2. Containment Checking

In recent years, the notion of behaviour inheritance has been studied in the realm of consistency checking of
behaviour diagrams, in particular, the inheritance of object life cycles in statecharts. Stumptner and Schrefl intro-
duce specialisations of object life cycles by examining extension and refinement in the context of UML statecharts.
The approach introduced a one-to-one rule-based mapping of statecharts into some semantic domains but does not
support automation [17]. Van der Aalst presents a theoretical framework for defining the semantics of behaviour
inheritance [40]. In this work, four different inheritance rules, based on hiding and blocking principles, are defined
for UML activity diagram, statechart and sequence diagram. However, the application of these inheritance concepts
in the context of actual scenarios is not clarified, such as the formal semantics of the consistency constraints or the
automatic generation of these formal descriptions. In addition, this approach only considers some selected parts of
UML diagrams. Engels et al. [41] deal with the consistency of models made up of different submodels: UML-RT
capsule and protocol statecharts. They used CSP as a mathematical model for describing the consistency requirements
with respect to deadlock freeness and protocol conformance; the FDR tool is used for checking purposes. However,
the trace model can only be used for expressing that some actions will not occur and also not all actions indeed occur.
CSP does not support state variables; however, they can be simulated to some extent by using a recursive process with
parameters.

A closely related work is proposed by Egyed for structural models. In particular, Egyed’s approach aims to check
whether a UML class diagram conforms to another more abstract class diagram based on structural transformation
rules [42]. This approach alone is not applicable for containment checking, as behaviour models contain control
constructs that cannot be matched only structurally. Arcaini et al. [43] and Krings and Leuschel [44] focus on mathe-
matical proof of a logical relation between an abstract model and its refined models. The former approach concentrates
on a proof of stuttering refinement between two Abstract State Machines (ASMs). Specifically, the translation of ASM
to SMT (Satisfiability Modulo Theories) instances is proposed, and the SMT solver Yices is used to prove refinement
correctness. The later focusses on the implementation of BMC (Bounded Model Checking), k-Induction and IC3
(Incremental Construction of Inductive Clauses for Indubitable Correctness) symbolic model checking algorithms for
B and Event-B. In particular, they included the proof information to improve the algorithms’ performance and inte-
grated them in the nightly builds of ProB. However, these approaches consider formal specification languages (i.e., B,
Event-B and ASM) to describe a system architecture instead of software behavioural models. Therefore, in contrast
to our approach, these approaches require a strong mathematical background from the user.

So far, none of the published studies have considered the containment checking problem for behaviour models,
as well as the counterexample analysis for locating the cause(s) of containment problems and their resolutions. The
idea with this research is to solve this particular problem for a comprehensive set of modelling constructs used for
describing software behaviour such as exception handlers, interruptible activity regions, parameterized tasks, event
actions, and loops.

2.3. Mapping of Models into Formal Descriptions and Specification of Formal Constraints

The existing consistency checking approaches mainly focus on the manual mapping of input models into formal
descriptions, in addition, the consistency constraints (in the form of formal specifications) are provided by the users.
These approaches require a substantial time and effort, and therefore, are not favourable by developers and non-
technical stakeholders. For example, Koehler et al. propose a model checking approach for a business process model
and its implementation [45]. The approach uses automata as the basis of the operational models through which
the behaviour of the processes and their implementing systems are specified; however, automated transformation of
automata into the input language of NuSMV is not supported. Engels et al. check contracts between business processes
(modelled as UML activity diagrams) and Web services (specified by visual contracts), i.e., they check the consistency
between behavioural and structural properties [46]. The approach uses graph-based algorithms for checking the
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consistency. Martens’ technique verifies the consistency between a locally specified executable model and a globally
described abstract process model based on the simulation relation [47]. To perform verification, Business Process
Execution Language (BPEL) [48] models are manually transformed into Petri nets. Ehrig and Tsiolakis use attributed
graphs to represent sequence diagrams and attributed type graphs with graphical constraints for class diagrams [7].
This approach considers only the existence, correct multiplicity, and valid scoping for checks of model elements.
In contrast to these approaches our approach introduces transformation rules grounded on formal expressions. In
our approach, the high-level behaviour models are automatically translated into consistency constraints (i.e., LTL
formulas) and low-level behaviour models into formal descriptions using the transformation rules. The generated
consistency constraints and formal descriptions are used by model checkers to verify the containment relationship.

There are only few approaches that introduce process patterns to provide help for specifying the formal constraints,
for instance, Förster et al. introduce an approach to visualise the modelling of business process constraints through
the PPSL (Process Pattern Specification Language) [49]. To perform the conformance checking, the corresponding
process constraints are further translated into temporal logics whilst business processes are translated to transition
systems by using DMM (Dynamic Meta Modelling) rules and GROOVE (GRaphs for Object-Oriented VErification).
Janssen et al. present the business query patterns to support specification of process requirements, afterwards, these
patterns are translated into LTL formulas, whereas, business processes modelled using Testbed modelling language
AMBER (Architectural Modelling Box for Enterprise Redesign) that are further translated into PROMELA for per-
forming verification [50]. Wasylkowski and Zeller propose the concept of operational preconditions along with a tool
named Tikanga [51]. In the approach, first a Java program is provided as an input and Kripke structures are derived
from them. Then, for each Kripke structure a set of CTL formulas are derived from user-given templates. Afterwards,
these specifications are generalised into operational preconditions for detecting violations. Despite of the few attempts
to support the specification of requirements or formal constraints using patterns, these approaches still require a con-
siderable amount of knowledge of formal specifications/patterns. In particular, these approaches do not eliminate the
need for translating the requirements directly into formal constraints.

In our approach we considered LTL, as its formulas are defined over Kripke structures such that every state must
have at least one successor state. Furthermore, LTL past operators provide a more concise and intuitive way to
reason about previous states and transitions. LTL model checkers can be classified as explicit or symbolic. Explicit
model checkers such as SPIN1 construct the state-space of the model explicitly and create the automaton. However,
constructing and searching the state space explicitly requires a considerable amount of space [52]. Therefore, the
number of states in the finite state representation increases exponentially with the number of variables (i.e., the state
explosion problem). The NuSMV [25] model checker used in this work is based on the symbolic model checking
technique, and therefore, is able to support the verification of large systems up to 1020 states [53]. A major difference
between our approach and existing works is that our approach provides automatic translation of the high-level input
model into formal consistency constraints (i.e., LTL formulas) and analysis of the counterexample for locating the
causes of inconsistencies, thus, does not require the strong knowledge of formal methods.

2.4. Formalisations of Activity Diagram
Many attempts have been made to give a formal definition for UML activity diagrams to enable model checking.

For instance, Yang and Zhang present an approach for formalising the UML 1.4 activity diagrams into π-calculus to
check the consistency between requirements and business processes, modelled using activity diagrams [54]. Guelfi
and Mammar introduce formal semantics for activity diagrams enriched with timing aspects and translate them into
PROMELA. In this approach the temporal logics for verification of activity diagrams are specified by the users [55].
Eshuis and Wieringa present the formal semantics of UML 1.3 activity diagrams for workflow models based on
STATEMATE semantics (see [56]) of statecharts and also introduce data integrity constraints [8]. In [20], they also
propose a verification approach for verifying workflow models represented in UML 1.4 activity diagrams. In this
approach, first an activity diagram is converted into an activity hypergraph, then the hypergraph is encoded into a
Kripke structure. In another work [21], Eshuis extends prior work by refining existing translations and introducing
another translation based on the statechart semantics of UML 1.5 to check data integrity constraints for an activity
diagram and a set of class diagrams. In the translation, the author handles fork and join nodes as transitions rather than

1See http://spinroot.com
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Table 1: Overview and Comparison of Related Work

Reference Consistency Type Model Type UML Version Translation to For-
mal Descriptions

Automation of Con-
sistency Checking

Yeung [9] horizontal statechart, class diagram UML 1.4 manual -

Van der Straeten et al. [29] evolution-
horizontal

statechart, class diagram,
sequence diagram UML 1.5 manual automated

Graaf and Van Deursen [30] horizontal statechart, sequence dia-
gram UML 1.4 semi-automated manual

Amálio et al. [31] horizontal statechart, class diagram,
snapshot diagram − manual automated

Knapp et al. [11, 12] horizontal statechart, collaboration di-
agram UML 1.4 semi-automated automated

Lam et al. [13] horizontal statechart, sequence dia-
gram UML 2.0 semi-automated automated

Wang et al. [10] horizontal statechart, sequence dia-
gram UML 1.5 semi-automated automated

Heimdahl et al. [32] horizontal RSML−e − semi-automated automated
Dijkman et al. [35, 36] horizontal process model − semi-automated automated
Bae et al. [39] horizontal process model − semi-automated automated
Stumptner and Schrefi [17] vertical statechart UML 1.3 semi-automated automated

Van der Aalst [40] vertical statechart, activity diagram,
sequence diagram UML 1.4 semi-automated automated

Egyed [42] vertical-structure
containment class diagram UML 1.3 automated automated

Arcaini et al. [43] vertical abstract state machine - automated automated
Krings and Leuschel [44] vertical - - - automated
Van der Aalst et al. [37] horizontal process model − manual automated
Van der Aalst et al. [38] horizontal process model − semi-automated automated

Engels et al. [46] horizontal activity diagram, visual
contracts UML 2.1 semi-automated automated

Engels et al. [41] horizontal-vertical capsule and protocol state-
charts UML 1.4 manual automated

Koehler et al. [45] vertical process model − semi-automated automated
Förster et al. [49] horizontal process model UML 2.0 automated automated
Wasylkowski and Zeller [51] horizontal Java program − semi-automated automated
Janssen et al. [50] horizontal process model − automated automated
Martens [47] vertical process model − semi-automated automated

Tsiolakis and Ehrig [7] horizontal class diagram, sequence di-
agram UML 1.3 manual automated

Yang and Shensheng [54] horizontal activity diagram UML 1.4 manual automated

Eshuis and Wieringa [8] − class diagram, activity dia-
gram UML 1.3 − −

Eshuis [21] horizontal class diagram, activity dia-
gram UML 1.5 semi-automated automated

Eshuis and Wieringa [20] horizontal activity diagram UML 1.4 semi-automated automated
Guelfi and Mammar [55] horizontal activity diagram UML 2.0 manual automated
Lam [23] horizontal activity diagram UML 2.1 manual −
Lam [22] horizontal activity diagram UML 2.1 manual automated

Our Approach vertical-behaviour
containment activity diagram UML 2.4.1 automated automated

nodes. These approaches tackle UML 1.x semantics based on statecharts; although activity diagrams and statecharts
seem syntactically similar, every activity diagram cannot be transformed into a statechart [55]. Besides that, UML
2 activity diagrams have different semantics based on Petri nets [55, 57]. Furthermore, the modelling capability of
UML 2.0 allows unrestricted parallelism, whereas in UML 1.x, the entire state machine (activity) performed a run-
to-completion step. For these reasons the translation of activity diagrams into formal languages is not considered as
feasible and applicable [55].

Lam introduces theoretical foundations for specifying and classifying different equivalence notions of a subset of
UML activity diagrams [23]. In [22] the author also provides the semantics of UML 2 activity diagram into input
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language of NuSMV model checker to check the correctness of the activity diagram. In the formalisation activity
edges are directly encoded as tokens of typed boolean variable. The aforementioned approach uses similar concepts
for formalisation of activity diagram, however, comparing to our proposal, it does not provide clear information for
dealing with data.

In our approach, we create a state variable of type boolean in the SMV descriptions (i.e., input language of NuSMV
model checker) for each construct of a UML activity diagram. Similar to Eshuis and Wieringa’s technique [20], we
abstract and encode guards and constraints that are associated with nodes or edges as boolean variables. Compared to
these previous works, our formalisation makes several different choices, such as our treatment of merge and decision
nodes. In this research, we not only focus on a fundamental set of modelling constructs, but also complex structures
such as exception handlers, interruptible activity regions, parameterized tasks, event actions, and loops. The complex
structures are, although highly useful in certain modelling situations to enhance the maintainability of the overall
system, rarely considered in existing other approaches. For instance, exception handlers and interruptible activity
regions can be used to describe exceptional circumstances that might occur during the execution of a system [58], and
loops are used for handling the situations that require certain action(s) to be executed more than once. Our approach
is based on UML 2 activity diagram rather than statechart based semantics. None of these semantics, in our opinion,
achieves the desired simplicity and conceptual clarity of verifying the containment relationship for activity diagrams.
They are only useful for verification of activity diagrams against safety and/or liveness properties such as deadlock
freedom. Besides the automated transformation of the low-level activity diagram into formal SMV descriptions,
we consider high-level activity diagram as an input model which is automatically translated into formal consistency
constraints.

Table 1 summarises the related works and compares them to our work in the context of model consistency check-
ing, especially containment checking, activity diagram formalisation, modelling support and mapping of models into
formal descriptions and consistency checking. However, the details for manually specifying the formal consistency
constraints (e.g., rules specified through Assertions, LTL, CTL, and TCTL subset etc.) and counterexample analy-
sis are not presented in this table. The minus (−) symbols in the table represents the unavailability of information
regarding a particular activity. The table demonstrates that none of the published approaches have considered the
containment checking problem for behaviour models. Most of the existing approaches use UML version 1.x instead
of UML 2. It might be noted that automatic translation to formal consistency constraints and counterexample analysis
have also not been considered in existing approaches. Accordingly, this research focuses on automatic translation
of behaviour models into consistency constraints and formal descriptions, containment checking and counterexample
analysis.

3. Preliminaries

3.1. Linear Temporal Logic

In our study we choose Linear Temporal Logic (LTL) [24] for specifying the temporal relationships between the
involved elements of the high-level activity diagram. In LTL, for each state there is a single successor state, and
thus, a unique possible future. This can be represented using linear traces (state sequences), which corresponds to
describing the behaviour of a single execution of the system. These features of LTL are useful in the context of
UML models because they enable explicit reasoning about states and transition executions of the input models for
containment relationships. In the mapping scheme of constructs of UML activity diagrams into LTL, we adopt a
syntactical definition of a well-formed LTL formula ϕ in terms of the following BNF grammar (note that p is a
primitive proposition).

ϕ ::=>|⊥|p|¬ϕ|ϕ1∧ϕ2|ϕ1∨ϕ2|ϕ1→ ϕ2|Xϕ|Fϕ|Gϕ|ϕ1 Uϕ2|ϕ1Rϕ2|Yϕ|Oϕ|Hϕ|ϕ1 Sϕ2

In the context of containment checking, we consider the appearance of each basic action of a UML activity diagram
in the execution path under study as a primitive proposition. The syntax and standard semantics for LTL operators are
as follows: The negation (¬ϕ) states that formula ϕ holds if and only if it does not hold in the first state of the path.
The conjunction in LTL formula ϕ1 ∧ ϕ2 holds if and only if both ϕ1 and ϕ2 are true; however, the disjunction ϕ1 ∨
ϕ2 according to the DeMorgan’s rules is equivalent to ¬(¬ϕ1 ∧ ¬ϕ2). Xϕ (“neXt”) states that ϕ will hold in the next
state. Fϕ (“Future/Finally”) means that formula ϕ will hold in some future state. Gϕ (“Globally/Always”) indicates
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that formula ϕ will continuously hold in all future states. The formula ϕ1 U ϕ2 (“Until”) holds if ϕ2 holds now or
at some state in the future; ϕ1 also holds at every point in time until ϕ2 holds. ϕ1 R ϕ2 (“Release”) states that ϕ2 is
true until ϕ1 becomes true, or ϕ2 is true forever. The operator Yϕ (“Yesterday/Previous”) means that formula ϕ held
in the previous state. Oϕ (“Once”) states that formula ϕ has happened at sometime in the past. Hϕ (“Historically”)
indicates that formula ϕ always held in the past. The formula ϕ1 S ϕ2 (“Snice”) holds if ϕ2 held at some moment in
the past and, since then, ϕ1 held all the time. It might be noted that, ϕ2 must have been true at some point in the past
in order to hold ϕ1 S ϕ2.

We adopt the conventional semantics of LTL as defined in the field of model checking [59]. For the sake of
readability, we have also used the logical exclusive OR operator (hereafter xor) which is not part of the traditional
LTL definition but often supported by several model checking tools as a useful abbreviation, for instance, a xor b ≡
(a∧¬b)∨ (¬a∧ b). To make the formulation of some formulas significantly more concise and intuitive, we have
also used the LTL past operators, to reason about previous states and transitions. The LTL past formulas, although
they do not add expressive power, compared to future only LTL, allow to write more succinct formulas [60]. The size
explosion in removing the past operators affects the complexity of containment because the size of the formula is part
of the complexity. However, it can be easily converted into future time LTL formulas. For instance, “G(a→ Ob)”
means that every a is preceded by b. This can be converted into pure future LTL formula by using the U operator
“(¬b U (a∧¬b))”.

3.2. NuSMV Overview

The NuSMV model checker supports symbolic model verification [61] and is widely used in both academia and
industry [52]. The language that underpins the formal descriptions is hereafter called SMV specification language,
which allows the description of Finite State Machines (FSMs). The basic purpose of the SMV description language
is to describe the transition relation of a finite Kripke structure. The SMV description language consists of one main
module, and a set of state variables and predicates on these variables. A module can contain instances of other mod-
ules, allowing a structural hierarchy to be built. In particular, each instance of a module is processed synchronously by
default with the others during an execution. However, NuSMV can also support interleaving concurrency in module
instantiation. To get different instances of a module, instantiations can be parameterized. The variables can be of type
boolean, enumerative or integers. For example, a variable c is declared as a boolean (c : boolean;), which can
take either the value 0 or 1; the variable e is a scalar (e: e1,e2,e3;), which can take one of the symbolic values
e1, e2, or e3. The variable cal is declared as a signal (cal : 0..5;), which can take any value inclusively in
the range from 0 to 5. SMV also supports array as a data type (ar : array 2..0 of boolean;). The predicates
use the logical operators AND (“&”), OR (“|”) and NOT (“!”). The complete syntax and semantics definitions of SMV
description can be found in [62].

The UML activity diagram is translated into one main module. In our approach, each node of the UML activity
diagram will be represented by a boolean state variable in the section VAR and its corresponding state transitions will be
defined in the section ASSIGN by a combination of two functions provided by NuSMV, that are init()—for assigning
the initial state of a variable— and next()—for describing the transition to the next state. The function next() is
often combined with the branching structure “case/esac” for selecting one of many possible choices. Normally a
state variable will be initialised with a false value (except Initial Nodes). It can move to a different state (e.g.
true) if the incoming conditions are satisfied. The incoming guard conditions can comprise a guard expression and/or
the finishing of preceding nodes. A state variable evaluating to true implies that the corresponding node of the UML
activity diagram is activating. After finishing its execution, the node’s state will be switched back to false. An
assignment can be a non-deterministic choice by putting the multiple expressions in curly brackets ({}). Another way
of defining the transition relation is to use a predicate that can refer to the current and next values of the variables.
This transition predicate is preceded by keyword TRANS.

3.3. Activity Diagram

The definition of an activity diagram is based on the definition of classical transition systems [63]. An activity
diagram needs to be adequately accommodate relevant concepts of a UML activity diagram such as different kinds of
nodes, edges, and guards. Actions are the basic elements of an activity diagram and they are always atomic (i.e., they
cannot be broken down further within the activity).

9



Definition 1 (Activity model). An activity model A is a tuple (N,E,G) where

• N is a finite set of nodes, derived from the UML 2 specification [1, Sec. 12]

• E ⊆ N×N is an ordered finite set of edges,

• G is a finite set of guard expressions,

• N→{InitialNode, ActivityFinalNode, FlowFinalNode, Action, DecisionNode, MergeNode, ForkNode, JoinN-
ode, LoopNode, ConditionalNode, ParameterNode, Interruptible Activity Region}.

• An edge e connects a source node s to a target node t: this is represented by e(s, t) in which e ∈ E and s, t ∈ N.

4. Containment Checking Approach

Our study aims to address the problem of checking whether the behaviour (or functions) described by the low-
level model encompasses those specified in the high-level counterpart, in order to improve the quality of software
systems. That is, the “execution” of the low-level model must embrace the “execution” prescribed in the high-level
model. However, a containment violation could break the system’s quality. By assuming that the low-level behaviour
model can be represented in terms of a formal description, we could achieve containment checking by verifying that
the desired specifications encoded in the corresponding high-level model are satisfied by this formal description.
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Figure 1: Overview of the Containment Checking Approach

An overview of our approach is shown in Figure 1. The main focus of our approach is represented by the solid
lines, while the relevant modelling and developing activities of the involved stakeholders are highlighted by the dashed
lines. The proposed containment checking approach consists of three automated steps. First, the high-level behaviour
model is transformed into formal consistency constraints (i.e., LTL formulas in this work). Then, the low-level be-
haviour model is mapped into formal SMV descriptions. Finally, containment checking is performed on the generated
constraints and descriptions using the NuSMV model checker [61]. If the generated formal description of the low-level
model does not satisfy certain constraints generated from the high-level model, then counterexamples are produced
by the NuSMV model checker. Next, the generated counterexamples are scrutinised to uncover the causes of contain-
ment inconsistencies and provide feedback to help the developers to resolve the issues. In the subsequent sections, we
explain these steps in detail. The behaviour models considered in our study are UML activity diagrams [1]. Please
note that the opposite direction is not essential in containment checking because the low-level behaviour models are
often constructed by refining and enriching the high-level model.
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4.1. Step 1: Generating Consistency Constraints from the High-Level Model

The first step involves an automated transformation of high-level activity diagrams into formal specifications. The
main idea is to represent the diagram’s elements and their relationships in an appropriate formalism such that the
execution order of the activities will become the consistency constraints for the corresponding low-level model in
order to incorporate containment of behaviour of activity diagrams. That is, given a certain execution path derived
from the input high-level activity diagram, we need to describe the temporal relationship of the involving elements
(e.g., actions).

According to OMG UML 2 specification [1], an activity diagram contains different constructs for expressing the
behaviour of software systems. One of the biggest challenges is that the semantics of UML 2 activity diagrams are
informal and ambiguous, although it is based on token semantics alike to those of Petri nets [64], where the execution
of one node affects the execution of another through directed connections called flows. Thus, our proposed mapping
of the constructs of UML 2 activity diagrams to LTL constraints (and formal SMV descriptions presented in the sub-
sequent section) can also be seen as one of few automated approaches in formalisation of UML 2 activity diagrams
for supporting model checking. Note that the containment of activity diagrams defines rather a loose temporal re-
lationship. The new action(s) in the low-level model, for example, can be inserted between two directly succeeding
actions (serial insert), in parallel to one another using fork and join (parallel insert), or with an additional condition
using decision and merge (conditional insert).

The creation of LTL formulas for containment or consistency checking is a very knowledge intensive endeavour.
Therefore, we perform the automated creation of the formal constraints by defining LTL-based rules for formally
representing constructs of activity diagrams based on containment relationship. Then our approach can take an input
UML activity diagram and automatically transform it into corresponding LTL formulas using the LTL-based trans-
formation rules. Table 2 summarises the constructs of UML activity diagrams along with their informal descriptions
extracted from the UML 2 specification [1].

Table 2: Transformation Rules for Generating LTL Formulas for Containment of UML Activity Diagrams

UML Constructs Modelling Notation LTL-Based Transformation Rules

Sequencing of Actions: A set of actions (transi-
tively) executed in sequential order. For instance,
the execution of a1 will trigger the execution of a2.

a1 a2 G (a1 -> F a2)

Fork Node: The execution of a Fork Node leads
to the parallel execution of subsequent actions
(a1...an) [1, p. 387]. The semantics of Fork Node
describes that all actions are executed simultane-
ously without any restriction.

a1

an

Fork

Node

...

G (ForkNode -> F (a1 & ... & an))

& G ((a1 & ... & an)-> O ForkNode

)

Join Node: The concurrent execution of multiple
actions (a1...an) are followed by the execution of a
Join Node [1, p. 393]. Specifically, a Join Node is
used to synchronize incoming concurrent flows.

a1

an

Join

Node

... G ((a1 & ... & an)-> F JoinNode)

Decision Node: The semantic represents the case
in which the execution of a Decision Node is spawn
in two or more branches, which branch is actually
traversed depends on the evaluation of the guards
on the outgoing edges [1, p. 370]. It is assumed
that only one of the guards of the outgoing control
flows evaluates to true at a time.

a1

an

Decision

Node

[guard_1]

[guard_n]

...

G (DecisionNode -> F (a1 xor ...

xor an)) or equivalently, but more
complex (DecisionNode -> F ((a1 &

! ... & ! an)| (! a1 & !... & an)

))

(continued on next page)
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Table 2: Transformation Rules for Generating LTL Formulas for Containment of UML Activity Diagrams

UML Constructs Modelling Notation LTL-Based Transformation Rules

Merge Node: The execution of exclusively one ac-
tion among a set of alternative actions will lead to
the execution of a Merge Node [1, p. 398].

a1

an

Merge

Node

...

G (a1 xor ... xor an -> F

MergeNode) or equivalently, but more
complex G (((a1 & ! ... & !an)|

... | (!a1 & !... & an))-> F

MergeNode)

Send Signal Action: The Send Signal Action is en-
abled after the occurrence of the action from which
it takes inputs and sends the signal to the target ob-
ject. [1, p. 421]. In particular, the semantics shows
that Send Signal Action instantly read the event
from its inputs.

a1 a2 G (a1 -> X a2)

Accept Event Action: 1) Accept Event Action with
no input causes an invocation of next action. The
Accept Event Action is enabled upon entry to the
activity containing it [1, p. 317].
2) Accept Event Action with incoming flows waits
to receive an input and enables only after the signal
is sent by the prior action [1, p. 317]. Afterwards,
Accept Event Action leads to the execution of next
action.

a2a1

1) Accept Event Action with no input

a3a1 a2

2) Accept Event Action with incoming
flows

1)G (a1 -> X a2)& G !(a1 & a2)

2)G (a1 -> G (a2 -> X a3))

Exception Handler: Exception Handler leads to
execution of the handler body in case the speci-
fied exception occurs during the execution of the
protected node [1, p. 373]. A variable, namely,
ExceptionType_i is specified for handling the
exception (i is an incrementally generated number).

ExceptType_1

a1
a2 G ((a1 & ExceptionType_i =

ExceptType_1)-> X a2)

Interruptible Activity Region: When a token
leaves an interruptible region via edges designated
by the region as interrupting edges, all tokens and
behaviours in the region are terminated [1, p. 391].
Interrupting edges of a region have their source
node in the region and their target node outside
the region. A boolean condition, namely, “isInter-
rupted” is specified for handling the interruptions.
When the event occurs the condition becomes true,
and the action connected through interrupting_edge
will be executed. Otherwise, negation of the con-
straint (i.e., !isInterrupted) is true and remaining ac-
tivities will be executed.

a1 a3

a2
ac

1)G (ac & isInterrupted -> X

interrupting_edge)& G !(ac &

interrupting_edge)

2)G (interrupting_edge -> X a2)

3)G (InitialNode & !(

isInterrupted)-> F a1)

Activity Parameter Node: The execution of input
Activity Parameter is enabled when the activity is
invoked, to provide input values to the connected
nodes through outgoing edges. During the execu-
tion of the activity an output Activity Parameter
Node accepts all tokens offered to it. We abstracted
activity parameter nodes into boolean.

an...in_pn out_pna1

1)(G (in_pn -> X a1)& G (a1 -> Y

in_pn))

2)(G (an -> X out_pn)& G (out_pn

-> Y an))

Loop: The execution of one or more elements is re-
peated a number of times until a specified condition
is reached. A loop can be considered equivalent to
a cyclic execution flow including a Decision Node
and a Merge Node. To deal with the loop, a control
variable, namely “max” is initialised with an initial
value of zero. When the maximum iterations (max
= 2) are reached, a new iteration cannot start and
execution of the loop will terminate.

a1

a2

[guard_1 & max >= 0 & max< 2 ]

[guard_2]

Merge 

Node

Decision 

Node

[guard_3 | 
max = 2]

(DecisionNode -> F a2)| (

DecisionNode & (max >= 0 & max <

2)-> F MergeNode)| ((DecisionNode

& max = 2)-> F FlowFinal)& ! F(

MergeNode)| F(a1)
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The mapping of a UML activity diagram into LTL formulas and SMV descriptions (presented in the subsequent
section) are achieved using an extended version of the breadth-first search algorithm as shown in Algorithm 1. To facil-
itate the representation of an activity diagram in LTL, we define a collection of helper functions to access information
of an activity diagram, namely, get_initial_nodes(), generate_ltl_code(), and get_outgoing_nodes().
The function get_initial_nodes(A) returns a set of Initial Nodes of the input UML activity diagram. An ini-
tial node indicates the starting execution point of an activity diagram, and therefore, has no incoming edges. Given
a certain node n, its outgoing nodes can be achieved by using the function get_outgoing_nodes(n). A node m is
called “outgoing node” of n if there is a control flow going from n to m. Thus, a set of outgoing nodes of n can be
achieved by following all of its outgoing edges.

Algorithm 1 Mapping UML Activity Diagram A into LTL Formulas
1: procedure TRANSLATE(A)
2: Q← ∅ . Q is the queue of non-visited nodes
3: V ← ∅ . V is the queue of visited nodes
4: Q← Q ∪ get_initial_nodes(A) . we start with the initial nodes
5: for all n ∈ Q do
6: V ← V ∪ {n}
7: Q← Q \ {n}
8: generate_ltl_code(n) . for mapping of SMV descriptions we use generate_smv_code(n)
9: Noutgoings ← get_outgoing_nodes(n)

10: for all m ∈ Noutgoings do
11: if (m <V ) then
12: Q← Q ∪ {m}

The generate_ltl_code(n) function is responsible for generating LTL formulas for each construct of a UML
activity diagram. We illustrate the skeleton of the function generate_ltl_code(n) in Algorithm 2. LTL-based
transformation rules that constitutes the individual function generate_ltl_code(n) are presented in Table 2. The
pair of triple apostrophes (''') denotes the string templates used for generating code in the our implementation based
on Eclipse Xtend framework2. A pair of guillemots (« and ») is used to denote the parameterized placeholders that
will be bound to and substituted with the actual values extracted from the input model elements by the Xtend engine.
The generate_ltl_code(n) function is not realised as a single function but rather a polymorphism of multiple
functions. That is, depending on the type of the input node n, a particular function for generating LTL formulas for
that node type will be invoked. The LTL-based transformation rules for initial nodes and sequence of actions, and join
nodes are presented in Algorithm 2. In particular, LTL formula for join node requires visited predecessors (incoming
flows) that are joined using the logical AND operator (“&”) and offered to a join node. The join node cannot execute
until all incoming flows have been received.

In our prior work [27], we introduced LTL-based transformation rules for a small basic set of activity diagram con-
structs including actions, sequences, fork, join, decision, and merge. The transformation rules presented in [27] were
not yet sufficient to cover complex containment relations for composite control flows. In particular, transformation
rules without the explicit representation of the control nodes increase the complexity and size of LTL formulas. For
instance, if a decision node occurs in between two fork nodes then LTL formulas will be of a rather complex and long
form, like the following example: “G(a1→ F(b1∧b2∧F(c1 xor F(d1∧d2))))”. In particular, this formula does not
clarify the relationships among the elements of the activity diagram. In this work, we extend and refine these transfor-
mation rules by introducing control nodes which decrease the complexity and length of the LTL formulas and provide
better understandability of the relationships among the elements of the model. For instance, a Decision Node has
two outgoing branches, we use the operator “xor” to describe the outgoing branches of a Decision Node. However,
this strategy cannot be effectively generalised for Decision Nodes that have more than two outgoing control flows
because the operator “xor” with n operands (n ≥ 3) is an odd function which yields true not only when one of its
operands is true but also when the odd numbers of the operands are true [65]. Therefore, a Decision Node can be
implemented using the “xor” operator or its equivalent but more complex form “(a∧¬b)∨ (¬a∧b)”.

2See https://eclipse.org/xtend
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Algorithm 2 Generating LTL Formulas for a Modelling Construct n of a UML Activity Diagram
1: procedure GENERATE_LTL_FORMULAS(n);
2: extracts node information;

3: binds input values and generates ltl formulas using the following templates:

4: for all n ∈ initial_node | n ∈ action do
5: if m ∈ Noutgoings then
6: '''

7: LTLSPEC G(«n» -> F «m»)
8: '''

9: for all n ∈ JoinNode ∧ i ∈ Nincomings do
10: if (i≥ 0) ∧ V ← V ∪ {i} then
11: '''

12: LTLSPEC G((«i» & «i») -> F «n»)
13: '''

Similar to the Decision Node, the “xor” operator is used to describe the incoming guard condition of a Merge

Node, but we implement it to its equivalent but more complex form. The LTL formula for sequential order of actions is
formalised as “(a1→ Fa2)” which describes that each time a1 is executed it is eventually followed by the execution
of a2. The semantics of sequential order defines rather loose temporal relationship; particularly, in the low-level
model new action(s) can be inserted between two directly succeeding actions. If an action is enabled immediately
after the previous element terminates, the X operator is used, for instance, activity parameter nodes lead to immediate
execution of connected nodes. Please note that most of the formulas for different constructs are surrounded by the G
operator to express the meaning of all possible execution scenarios.

Beyond the basic constructs of activity diagrams, we consider complex structures such as exception handlers,
interruptible activity region, accept event actions, send signal actions, activity parameter nodes and loops in this
article. In our implementation, we consider a loop equivalent to a cyclic execution flow including a decision node
and a merge node. In particular, the decision node (termination condition) decides whether to continue the repetition
process or terminate the process. In the UML 2 specification [1, p.396], a Loop Node represents a loop with setup,
body and test sections. The test section may precede or follow the body. The setup section executes only once,
when first entering the loop whilst the test and body sections execute each time through the loop until the test section
evaluates to false. The test section is similar to the decision condition whereas the setup section is similar to the
incoming (e.g., action) of the merge node (that executed once before entering the loop). The condition (i.e., maximum
number of iterations) can be applied with a guard, for instance the edge with condition (max >=0 & max < 2) leads to
the merge node shown in Table 2.

We note that an LTL formula can be as simple as G(a1→ Fa2) in case of representing the temporal relationship
between two actions. Nevertheless, an LTL formula can also be quite complex, like G(((JoinNode∧¬a1∧¬a2)∨
(¬JoinNode∧a1∧¬a2)∨(¬JoinNode∧¬a1∧a2))→FMergeNode) for describing composite structures of complex
models that embraces two or more control structures or actions. Our approach supports the automated generation of
formal constraints for the combination of control structures.

4.2. Step 2: Mapping a UML Activity Diagram into SMV Descriptions
In this step, a low-level UML activity diagram is automatically transformed into formal descriptions accepted by

the NuSMV model checker. The generated descriptions will be used as input for the NuSMV model checker to verify
against the LTL-based constraints generated from the high-level counterparts (as explained in the previous step). On
the one hand, the translation of UML activity diagrams into SMV descriptions should comply with the informal
semantics of UML activity diagrams as described in UML 2 specification [1]. On the other hand, the encoding of
the low-level activity diagram in terms of SMV description language should enable better interpretation of the model
checking results (e.g. counterexamples). In summary, the translation of a UML activity diagram to SMV descriptions
should provide the infrastructure to facilitate the verification of the containment relationship, and especially, analysing
verification results to provide useful feedbacks for aiding the developers in resolving containment inconsistencies.

We achieve the mapping of a UML activity diagram into SMV descriptions using an extended version of the
breadth-first search. We have developed another algorithm similar to Algorithm 1 for mapping of a UML activity
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Algorithm 3 Generating SMV Descriptions for a Modelling Construct n of a UML Activity Diagram
1: procedure GENERATE_SMV_CODE(n);
2: extracts node information;

3: binds input values and generates SMV descriptions using the following templates:

4: '''

5: VAR

6: «n» : boolean; . State variable declaration
7: ASSIGN

8: init(«n») := «node-initial-state» . Definitions of state transitions
9: next(«n») := case

10: «incoming-guard-condition(s)» : TRUE;

11: «n» : FALSE;

12: esac;
13: '''

diagram into SMV descriptions. In particular, we developed three helper functions, namely, get_initial_nodes(),
get_outgoing_nodes(), and generate_smv_code(). First two functions are mentioned in Algorithm 1, whereas
the most important function generate_smv_code(n), responsible for generating SMV descriptions for each con-
struct of a UML activity diagram is depicted in Algorithm 3. We note that generate_smv_code(n) is not realised
as a single function but rather a polymorphism of multiple functions. That is, depending on the type of the input node
n, a particular function for generating SMV descriptions for that node type will be invoked. This can be achieved in
traditional programming languages by using a typical “if/then/else” or “switch/case” construct. In our pro-
totypical implementation, we leverage the powerful polymorphic method invocation technique provided by Xtend3,
which is used to realise the transformation of UML activity diagram to SMV descriptions. Using this technique, we
devise multiple functions for generating SMV descriptions with respect to the input node types. The functions have
the same name but require different input types. According to the particular type of the input node at execution time,
Xtend will dispatch the execution to the corresponding function.

In the subsequent sections, we will present and discuss in detail the rules for generating SMV descriptions for
each node type that constitutes the individual function generate_smv_code(n).

4.2.1. Dealing with Data
The UML activity diagram can contain variables such as integer, real, or string [1]. Thus, directly mapping

variables of these types to NuSMV increases a finite state space which might lead to the state space infinite [20].
Nevertheless, we note that the constraints that are associated with nodes or edges can affect the behaviour of a UML
activity diagram. The range of constraints in a UML activity diagram, regardless of their domains, is B = {true,
false}. Therefore, we need to explore execution paths corresponding to both truth values yielded by each constraint,
which can be done automatically by the NuSMV model checker.

An efficient encoding strategy would therefore be to abstract all data and to introduce for each constraint expres-
sion a boolean representative variable [20]. A constraint evaluates to true (resp. false) iff its boolean representative
is true (resp. false). This encoding decision can help reducing significantly the state space under consideration.
In this work, we opt to abstract and encode each constraint respectively in SMV as a boolean variable, for example,
as shown in the LTL formula corresponding to a loop in Table 2. The predicates are also used to handle infinite
state space [20]. However, in cases when the different types of variables may have dependencies among constraints,
temporary variables of enumerated types can be introduced to handle them (see Sections 4.2.4, 4.2.5 and 4.2.6).

4.2.2. Initial Node
The mapping of a UML activity diagram to SMV starts with the Initial Nodes and follow their outgoing nodes

using a breadth-first search. An Initial Node is special node that denotes a starting point of a UML activity diagram
and does not have any incoming edges. Thus, each Initial Node is represented by a boolean state variable whose
initial state would be assigned as true (see Figure 2).

3See https://eclipse.org/xtend/documentation/202_xtend_classes_members.html#polymorphic-dispatch
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(a) Initial Node

1 VAR

2 «InitialNode» : boolean;

3 ASSIGN

4 init(«InitialNode») := TRUE;

5 next(«InitialNode») := case

6 «InitialNode» : FALSE;

7 esac;

(b) SMV Generation Rules for Initial Nodes

Figure 2: Translation of Initial Nodes into SMV Descriptions

4.2.3. Action, Fork Node, Join Node, and Final Node
In this section, we consider a set of nodes including Action, Fork Node, Join Node, and Final Node that

can be encoded rather similarly in SMV because they will be triggered with respect to their incoming control flows.
Please note that UML allows for multiple incoming edges of the nodes. In case a node has multiple incoming edges,
the semantics of triggering the node’s execution is implicit join [1]. Therefore, we use the logical AND operator (“&”)
to represent the implicit “and-join” guard for all tokens going through the incoming control flows. Figure 3 describes
the translation of Action, Fork Node, Join Node, and Final Node into SMV descriptions based on the templates
shown in Algorithm 3. The ASSIGN section defines the transition relation of nodes. The node is initially set to false.
However, if the incoming condition(s) are satisfied, it is changed to a true state (see Line 10 in Algorithm 3). The
node’s state shall be switched back to false after the execution.

According to the UML 2 specification [1] the semantics of Send Signal Action and Accept Event Action

inherit from an Action. Thus, we can implement the state transitions of Send Signal Action and Accept Event

Action similar to that of an Action node. Note that an Accept Event Action can be enabled with or without in-
coming flows. If an Accept Event Action has no incoming flows, it is always enabled to accept events. Moreover,
it does not stop after accepting an event and providing output, but continues to wait for other events. This indicates
an exception to the normal execution rules in activity diagrams. Thus, in our approach, we consider both an Accept

Event Action that is enabled using an incoming control flow and the case of Accept Event Action with no in-
coming edge. We introduce a boolean variable, isEventOccur to capture semantics of Accept Event Action with
no incoming edge. The isEventOccur initialises to false and is set to true when an event arrives.

1 VAR

2 «node» : boolean;

3 ASSIGN

4 init(«node») := FALSE;

5 next(«node») := case

6 «incoming_1» & «incoming_2» & ... & «incoming_n» : TRUE;

7 «node» : FALSE;

8 esac;

Figure 3: Generic Rules for Mapping UML Constructs to SMV Descriptions

4.2.4. Merge Node
A Merge Node brings together multiple alternative control flows and exclusively accepts one among them [1,

p. 398]. In case a Merge Node has two incoming control flows, a straightforward naive encoding strategy is to use the
logical exclusive OR operator “a1 xor a2” (or its equivalent but longer form “(a1∧¬a2)∨ (¬a1∧ a2)”) to describe
the incoming guard condition of a Merge Node. However, this strategy cannot be effectively generalised for Merge
Nodes that have more than two incoming control flows because the operator “xor” with n operands (n ≥ 3) yields
true not only when one of its operands is true but also when the odd numbers of the operands are true [65].
This semantics does not precisely reflect the (semi-)formal description of Merge Nodes presented in the UML 2
specification [1, p. 399]. Moreover, in case of some k of the incoming nodes a1...an (k ≤ n) are simultaneously
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activated, the UML 2 specification states that b should be activated k times respectively [1, p. 400]. As the UML
2 specification does not define clearly the execution order of multiple instances of b in this particular case, we can
assume it follows an interleaving execution semantics.

a1

an

Merge

Node

...

(a) Merge Node

1 VAR

2 «a1» : boolean;

3 ...

4 «an» : boolean;

5 «MergeNode»: boolean;

6 -- temporary variable

7 «merge_flag_i» : {undetermined, «in_a1»,...,«in_an»}
8 ASSIGN

9 ... -- the initializations and transitions of a1...an are omitted

10 init(«merge_flag_i») := undetermined;

11 next(«merge_flag_i»):= case

12 («merge_flag_i» = undetermined) & («a1» | ... | «an»): {«in_a1»,...,
«in_an»};

13 TRUE : undetermined;

14 esac;

15 init(«MergeNode») := FALSE;

16 next(«MergeNode») := case

17 «a1» & !«a2» & ... & !«an» : TRUE; -- only a1 is true

18 !«a1» & «a2» & ... & !«an» : TRUE; -- only a2 is true

19 ...

20 !«a1» & !«a2» & ... & «an» : TRUE; -- only an is true

21 «merge_flag_i» = «in_a1» | ... |«merge_flag_i» = «in_an» : TRUE;

22 «MergeNode» : FALSE;

23 esac;

(b) SMV Generation Rules for Merge Nodes

Figure 4: Translation of Merge Nodes into SMV Descriptions

In this article, we devise a novel encoding of Merge Nodes in SMV that satisfies the “exclusive choice of multiple
alternate flows” semantics described in the UML 2 specification as shown in Figure 4b. For each Merge Node, we
introduce a temporary variable, namely, merge_flag_i, where i represents an incrementally generated number to
avoid name conflicts. This temporary variable has an enumerated type that comprises “undetermined”—to denote
its normal state— and “in_ax” where x = 1, ...,n—to represent the state values that correspond to the incoming
control flows from a1 to an, respectively. The variable merge_flag_i will be used to handle the case when some
of the incoming nodes a1...an are simultaneously activated, i.e., some k, where 1≤ k ≤ n, of the corresponding state
variables yield true at the same time. In this case, merge_flag_i will choose non-deterministically and exclusively
one among these activated nodes as shown in Line 12. We note that the non-deterministic assignment (Line 12) is
a powerful means provided by the NuSMV model checker for exhaustively exploring multiple possible execution
paths yielded by the values of an enumerated state. That is, in order to verify in case some k incoming nodes are
activated, NuSMV will bind merge_flag_i to a certain value “in_ax” in the first place, to “undetermined” in the
next transition, then to another value “in_ay” in the subsequent transition, and so forth. In combination with the
branching construct “case/esac” (Line 16–23), we can see that the Merge Node is activated if and only if either one
of the incoming nodes is true or the variable merge_flag_i is assigned to a state value “in_ax”, where x = 1, ...,n.

4.2.5. Decision Node
A Decision Node is a special case in which its execution will trigger one of the outgoing control flows according

to the corresponding guard conditions. In theory, more than one outgoing nodes can be activated following a Deci-

sion Node if their guard conditions evaluate to true. However, the UML 2 specification states that the execution
traversing through a Decision Node will be passed to only one outgoing node but does not dictate the order of eval-
uation and execution in case multiple guard constraint hold simultaneously [1, p. 371]. In reality, it is often assumed
that the developers are responsible for the exclusiveness of the guard conditions of the outgoing control flows. We opt
for this assumption and assume that only one of the guards of the outgoing control flows evaluates to true at a time.
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a1

an

Decision

Node

[guard_1]

[guard_n]

...
(a) Decision Node

1 VAR

2 «DecisionNode»: boolean;

3 «a1» : boolean;

4 ...

5 «an» : boolean;

6 -- temporary variable

7 «post_decision_i» : {undetermined, «guard_1»,..., «guard_n»};
8 ASSIGN

9 -- if this Decision Node is not an initial node, FALSE must be used

instead.

10 init(«DecisionNode») := TRUE;

11 next(«DecisionNode») := case

12 «DecisionNode» : FALSE;

13 esac;

14 init(«post_decision_i») := undetermined;

15 next(«post_decision_i») := case

16 «DecisionNode» & («post_decision_i = undetermined») : {«guard_1
»,..., «guard_n»};

17 TRUE : undetermined;

18 esac;

19 -- the first outgoing branch

20 init(«a1») := FALSE;

21 next(«a1») := case

22 «post_decision_i» = «guard_1» : TRUE;

23 «a1» : FALSE;

24 esac;

25 ...

26 -- the n(th) outgoing branch

27 init(«an») := FALSE;

28 next(«an») := case

29 «post_decision_i» = «guard_n» : TRUE;

30 «an» : FALSE;

31 esac;

(b) SMV Generation Rules for Decision Nodes

Figure 5: Translation of Decision Nodes into SMV Descriptions

Figure 5 illustrates the rules for mapping a Decision Node into SMV descriptions. Similar to the case of a
Merge Node, we introduce a temporary variable, namely, post_decision_i (i is an incrementally generated num-
ber) for exclusively choosing one of many alternative outgoing control flows. The variable post_decision_i has
an enumerated type including a normal state “undetermined” and the values corresponding to the outgoing control
flows (guard conditions) (Line 7). The evaluation of the guard conditions is made using a “case/esac” construct
(Line 14–17). The next state of post_decision_i will be either guard_1, guard_2 or guard_n (Line 22, 29). For
the purpose of verification, it is possible to initialise guard/constraint with the boolean values that are evaluated at
execution time. Nevertheless, we can leverage the ability of NuSMV to exhaustively inspect all execution paths with
respect to two boolean values of each variable to verify the satisfaction between the generated SMV descriptions and
LTL constraints. However, in cases when the different types of variables may have dependencies among constraints,
temporary variables of enumerated types can be introduced to handle them.

4.2.6. Exception Handler
An Exception Handler describes a body to execute when a particular exception is caught. In particular, if an

exception occurs during the execution of the action (protected node), the set of execution handlers on the action is
examined for a handler that matches the exception. If a match is found, the handler catches the exception and executes
its body. The exception object is placed in the exceptionInput node as a token to start execution of the handler
body. The execution of the handler body may access the caught exception via the exceptionInput node. A handler
matches if the type of the exception is the same as, or a descendant of, one of the exceptionTypes of the handler [1,
p. 374]. However, theory proposed in the standard does not clearly define how to declare the type of the exception or its
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ExceptType_1

a1
a2

(a) Exception Handler

1 VAR

2 «a1» : boolean;

3 «a2» : boolean;

4 «ExceptionType_i»: {undetermined, «no_Exception», «ExceptType_1»
,..., «ExceptType_n»};

5 ASSIGN

6 init(«a1») := FALSE;

7 next(«a1») := case

8 «incoming_1» & «incoming_2» & ... & «incoming_n» : TRUE;

9 «ExceptionType_i» = «no_Exception» : FALSE;

10 «ExceptionType_i» = «Exception_1» : FALSE;

11 ...

12 «ExceptionType_i» = «Exception_n» : FALSE;

13 «a1» : FALSE;

14 esac;

15 init(«ExceptionType_i») := undetermined;

16 next(«ExceptionType_i») := case

17 («ExceptionType_i» = undetermined) & «a1» : {«no_Exception»,
«ExceptType_1»,..., «ExceptType_n»};

18 TRUE : undetermined;

19 esac;

20 --the handler body

21 init(«a2») := FALSE;

22 next(«a2») := case

23 «ExceptionType_i» = «ExceptType_1» : TRUE;

24 «a2» : FALSE;

25 esac;

(b) SMV Generation Rules for Exception Handlers

Figure 6: Translation of Exception Handlers into SMV Descriptions

parameters. An Exception Handler contains a Protected Node (where the exception is raised), a Handler Body

(where it is handled), the Exception Input (ObjectNode), and the Exception Type (Classifier) of the exception.
An exception in the protected node could be raised either by triggering external event or as a consequence of a branch
trigger. A Handler Body is not enabled to execute in any case other than in response to an exception being caught
by its handler.

Figure 6 illustrates the rules for mapping an Exception Handler into SMV descriptions. For handling the
exception, we introduce a temporal variable, namely, ExceptionType_i (i is an incrementally generated number)
for more than one handlers connected to the protected node. ExceptionType_i has an enumerated type including an
initial state “undetermined” and types of exception that a handler have, for instance, ExceptType_1 and so on (Line
4). The absence of an exception is represented no_Exception by assigning the value to ExceptionType_i. The
next state of ExceptionType_i will be either no_Exception, ExceptType_1 or ExceptType_n. The execution of
the Handler Body (a2) starts when ExceptType_1 matches with a exception raised by a protected node (Line 23).

4.2.7. Interruptible Activity Region
An Interruptible Activity Region is a group of nodes, where all tokens and behaviours in the region

are terminated, if an edge (designated by the region as interrupting edge) traverses an interruptible activity, before
leaving the region [1, p. 391]. During the execution of an Interruptible Activity Region, the reception of an
event triggers the block abort of that part of the Activity and resumes execution with another action (target node)
outside the interruptible region. However, other actions outside the interruptible region can not be executed before the
handling of particular event.

Figure 7 illustrates the rules for mapping an Interruptible Activity Region into SMV descriptions. For
handling the interrupting event, we introduce a boolean variable, namely, isInterrupted that evaluates to true if
the event occurs; otherwise, it evaluates to false. More specifically, the execution of an interrupting_edge starts
when Accept Event Action (ac) receives an event (Line 8–17) which leads to the execution of action a2 out-
side the region (Line 20–23). If isInterrupted is false (i.e., negation of isInterrupted is True), then all
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a1 a3

a2
ac

(a) Interruptible Activity Region

1 VAR

2 «a1» : boolean;

3 ...

4 «ac» : boolean;

5 «isInterrupted» : boolean;

6 «interrupting_edge» : boolean;

7 ASSIGN

8 init(«isInterrupted») := {TRUE, FALSE};

9 init(«ac») := FALSE;

10 next(«ac») := case

11 «isInterrupted» : TRUE;

12 «ac» = : FALSE;

13 esac;

14 init(«interrupting_edge») := FALSE;

15 next(«interrupting_edge») := case

16 «ac» & «isInterrupted» : TRUE;

17 «interrupting_edge» : FALSE;

18 esac;

19 --the target node outside the interruptible region

20 init(«a2») := FALSE;

21 next(«a2») := case

22 «interrupting_edge» : TRUE;

23 «a2» : FALSE;

24 esac;

25 init(«a1») := FALSE;

26 next(«a1») := case

27 «InitialNode» & ! «isInterrupted» : TRUE;

28 «a1» : FALSE;

29 esac;

30 init(«a3») := FALSE;

31 next(«a3») := case

32 «a1» : TRUE;

33 «a3» : FALSE;

34 esac;

(b) SMV Generation Rules for Interruptible Activity Region

Figure 7: Translation of Interruptible Activity Region into SMV Descriptions

the nodes within the region complete their execution (Line 25–33) other than the source and target nodes of the
interrupting_edge.

4.2.8. Activity Parameter Node
The Activity Parameter Nodes are the “Object Nodes” that provide the means of an activity to accept inputs

and supply outputs. When the activity is invoked the input values are placed as tokens on input activity parameter
nodes (with no incoming edges) and are accessible within the activity via the outgoing edges of those nodes. After
completing the execution of an activity, the output values held by output activity parameter nodes (with no outgoing
edges) are given to the corresponding parameters of the activity [1, p. 346].

Activity Parameter Nodes are abstracted as boolean variables (Line 2–3). As mentioned in section 4.2.1
directly mapping of a node that contains data leads to the state explosion. Therefore, we introduce temporary variables
namely, in_par and out_par for holding the actual parameter values (Line 5–6). These temporary variables have
an enumerated type that comprises “undetermined”—to denote its normal state— and “in_valx” and “out_valx”
where x = 1, ...,n—to represent the input values and output values that correspond to the input activity parameter node
and output activity parameter node, respectively. The transformation rule for Activity Parameter Nodes with no
incoming edges i.e., in_pn (Line 8–17) and Activity Parameter Nodes with no outgoing edges i.e., out_pn
(Line 20–29) are shown in Figure 8.
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an...in_pn out_pna1

(a) Activity Parameter Node

1 VAR

2 «in_pn» : boolean;

3 «out_pn»: boolean;

4 -- temporary variables

5 «in_par» : {undetermined, «in_val1»,..., «in_valn»};
6 «out_par»: {undetermined, «out_val1»,..., «out_valn»};
7 ASSIGN

8 init(«in_par») := undetermined;

9 next(«in_par») := case

10 («in_par» = undetermined) : {«in_val1»,..., «in_valn»};
11 TRUE : undetermined;

12 esac;

13 -- the input parameter node

14 init(«in_pn») := FALSE;

15 next(«in_pn») := case

16 «in_par» = «in_val1» & ... & «in_par» = «in_valn» : TRUE;

17 «in_pn» : FALSE;

18 esac;

19 ...

20 init(«out_par») := undetermined;

21 next(«out_par») := case

22 («out_par» = undetermined) : {«out_val1»,..., «out_valn»};
23 TRUE : undetermined;

24 esac;

25 -- the output parameter node

26 init(«out_pn») := FALSE;

27 next(«out_pn») := case

28 «out_par» = «out_val1» & ... & «out_par» = «out_valn» : TRUE;

29 «out_pn» : FALSE;

30 esac;

(b) SMV Generation Rules for Activity Parameter Nodes

Figure 8: Translation of Activity Parameter Nodes into SMV Descriptions

4.2.9. Dealing with Loops
Describing loops in terms of state-based formal descriptions like SMV is a very challenging task. Generally, a

loop allows repeated execution of one or more actions until a specified condition is not met. Loops may produce fixed
or variable cyclic execution flows. In the latter case, a loop might execute indefinitely and hence cause a state space
explosion for model checking. However, it is unrealistic for most loops that they really execute indefinitely. The model
checking techniques are not able to prove the correctness of the model, unless an upper limit is known, that unfolds all
loops to their maximum iteration. In order to prevent an indefinite loop and ensure that loop will eventually stop, we
created a way to terminate the loop. In particular, we consider a loop equivalent to a cyclic execution flow including
a Decision Node and a Merge Node, as illustrated in Figure 9 as inspired by [20, 55]. Eshuis and Wieringa use
strong fairness (also known as compassion) constraints to exit loops eventually [20], whilst Guelfi and Mammar only
consider loops with predefined limited iterations [55].

The execution of a loop would be repeated only if the maximum number of allowed iterations is not yet reached.
To enable model checking, we impose a limit on the number of loops such that a loop will iterate at least once and at
most a defined maximum number of iterations. The condition (i.e., maximum number of iterations) might be applied
to an additional guard. The conditional edges labelled with max >=0 & max < 2 and max = 2 are shown in Figure
9a. If the maximum number of iterations is not specified by the user, then the loop will terminate after repeating
three times. To deal with loops, we initialise the control variable, namely max, which is 0 initially (i.e., equal to
minimum iteration). Its value is incremented each time the action a1 is executed (Line 22–25). If max become equals
to maximum number, a new iteration cannot start and execution of the loop will terminate. The transformation rule
for loops is shown in Figure 9. We apply the similar rules for a decision node (choice of outgoing Line 38–41) and a
merge node (Line 10–20) as we presented in Sections 4.2.5 and 4.2.4, respectively. As mentioned in Section 4.1, the
test and setup sections of a UML 2 Loop Node are similar to the decision condition and the incoming (e.g., action) of
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[guard_3 | 

max = 2]

(a) Loop Structure

1 VAR

2 «MergeNode»: boolean;

3 «DecsisonNode»: boolean;

4 «a1» : boolean;

5 ...

6 «max» : «0..2»; -- control variable

7 «merge_flag_i» : {undetermined, «in_a1», «in_guard_1»};
8 «post_decision_i» : {undetermined, «guard_1», «guard_2», «guard_3»};
9 ASSIGN

10 init(«merge_flag_i») := undetermined;

11 next(«merge_flag_i»):= case

12 («merge_flag_i» = undetermined) & («incoming_1» | «DecsisonNode»
): {«in_incoming_1»,«in_guard_1»};

13 TRUE : undetermined;

14 esac;

15 init(«MergeNode») := FALSE;

16 next(«MergeNode») := case

17 «incoming_1» & !«DecsisonNode» : TRUE;

18 !«incoming_1» & «DecsisonNode» : TRUE;

19 «merge_flag_i» = «in_incoming_1» | «merge_flag_i» = «in_guard_1»
: TRUE;

20 «MergeNode» : FALSE;

21 esac;

22 init(«a1») := FALSE;

23 next(«a1») := case

24 «MergeNode» : TRUE;

25 «a1» : FALSE;

26 esac;

27 init(«DecisionNode») := FALSE;

28 next(«DecisionNode») := case

29 «a1» :TRUE;

30 «DecisionNode» : FALSE;

31 esac;

32 init(«max»):= (0);

33 next(«max»):= case

34 («max» >= 0) & («max» < 2) : «max» +1;

35 («max» = 2) : «max»;
36 TRUE : «max»;
37 esac;

38 init(«post_decision_i») := undetermined;

39 next(«post_decision_i») := case

40 «DecisionNode» & («post_decision_i» = undetermined) : {guard_1,

guard_2, guard_3};

41 TRUE : undetermined;

42 esac;

43 .....

44 init(«FlowFinal») := FALSE;

45 next(«FlowFinal») := case

46 «post_decision_i» = «guard_3» | «max» = 2 : TRUE;

47 «FlowFinal» : FALSE;

48 esac;

(b) SMV Generation Rules for Loops

Figure 9: Translation of Loops into SMV Descriptions

the merge node. Therefore, aforementioned mapping rules for the loop can be applied on the Loop Node.

4.3. Step 3: Containment Checking and Dealing with Containment Inconsistencies
The main goal of our approach is to assess the containment relationship between a high-level and low-level activity

diagram. More specifically, containment checking aims to verify whether the elements and structures of a high-level
model, such as actions, control nodes and edges/guards correspond to those of a refined low-level model. Note that
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the refined and extended low-level model may contain new actions that are inserted between two directly succeeding
actions (serial insert), in parallel to another one using fork and join (parallel insert), and/or with in separate path using
decision and merge (conditional insert). In addition, the low-level model can have new loops, exception handlers and
event actions, and so on, but the elements should not be inserted arbitrarily. Therefore, it is necessary to check the
containment consistency between the low-level model and its high-level counterpart to correctly build the software
system.

In our approach, containment checking is performed using the NuSMV model checker. NuSMV takes the LTL
properties (generated in Step 1) and the SMV descriptions (generated in Step 2), and exhaustively explores violations
of a property by traversing the complete state space. In case the SMV descriptions satisfy the LTL properties, it implies
that the behaviour described in the high-level model can be embraced by the low-level model’s behaviour. Otherwise,
the low-level model deviates improperly from the high-level counterpart. In particular, each LTL formula/property
represents a part of the high-level model. If a certain property does not satisfied the SMV descriptions, it means
that the corresponding part of the high-level model is not contained in the low-level model. In this case, NuSMV
will generate a counterexample that consists of the execution traces of the SMV descriptions leading to the violation.
The counterexample can help the developers to locate and resolve the containment inconsistencies. Note that the
counterexample provides only limited information for understanding the causes of inconsistencies but not how to fix
the inconsistencies. Unfortunately, it is often difficult for the developers who have limited knowledge of the underlying
formal methods to comprehend the counterexamples that may contain numerous information such as states numbers,
input variables over tens of cycles and internal transitions, and so on [18, 19]. The developers might have to devote
considerable time analysing an error trace in order to understand the causes of inconsistencies. Understanding the
causes of containment violations is a prerequisite to resolve the inconsistencies in the models.

To alleviate these issues, an efficient analysis of the generated counterexample is supported in our proposed con-
tainment checking approach. Please note that the containment inconsistencies may occur due to a variety of reasons,
such as missing and misplacement of elements in the low-level model and so on. The analysis of counterexample
in our proposed approach consists of two steps. In the first step, the actual causes of the unsatisfied containment
relationship are located based on the generated counterexamples and appropriate guidelines to resolve the particular
violations are produced. In the second step, the concise descriptions of the isolation’s causes and potential counter-
measures, produced in the previous step are annotated in the low-level model.

4.3.1. Locating Causes of Containment Inconsistencies
In order to locate the causes of containment inconsistencies, the output trace file is scrutinised and parsed to

determine the unsatisfied LTL formulas. The extracted formulas and SMV descriptions together with LTL-based
transformation rules are traversed to find out why the elements of the high-level activity diagram are not matched
by their corresponding low-level counterparts. This is performed in two steps: Firstly, the counterexample analyser
verifies whether all the elements (e.g., actions, control nodes and edges/guards) that exist in the high-level activity
diagram are also present in the low-level activity diagram by using the function match() (see Algorithm 4). Note that
match() essentially compares the nodes’ names, types, and/or guard conditions. For this, the missing element cause
(either one, multiple, or all elements could be missing) is detected and the countermeasure (i.e., insert the missing
element at a particular position in the low-level model) is suggested. Secondly, the rules related to unsatisfied LTL
formulas for different possible kinds of elements in the activity diagram are evaluated. For this, the exact position of
the corresponding elements in the high-level model related to unsatisfied LTL formulas are matched with elements in
the low-level model. In particular, the sequence (of elements of the low-level model) from the SMV descriptions is
scrutinised and corresponding element (e.g., action, control node and so on) causing the violation of the LTL formulas
is located. The preceding and succeeding elements of that element are matched with the elements of LTL formulas to
locate the causes of inconsistencies (i.e., misplacement of elements) as shown in Algorithm 5.

We report typical possible causes of a containment inconsistency by presenting a set of reasons why the specific
LTL formula is false and what strategies can be used to resolve it. For instance, consider a Send Signal Action (a2)
in a low-level activity diagram (shown in Figure 10b), Send Signal Action (a2) is not preceded by Action a1 as
compared to the high-level diagram (shown in Figure 10a). In this case, the results produced by NuSMV indicate that
G (a1 -> X a2) is false. This containment inconsistency occurs due to a violation of the containment relationship
at Send Signal Action, because its semantics specifies that whenever Action (a1) is executed it will immediately
enable the execution of Send Signal Action (a2). This can imply either one or both actions are misplaced. This
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Algorithm 4 Verifying Missing/Deleted Elements in the Low-Level Activity Diagram
1: procedure FIND_MISSING_ELEMENTS(HL,LL);
2: extracts nodes information from output trace file, SMV descriptions and LTL-

based transformation rules;

3: takes two model elements . where n ∈ HL(high− level model) ∧ m ∈ LL(low− level model)
4: for all n ∧ m do
5: match(n, m)
6: if type(n) = type(m) ∧ (n.name = m.name) then
7: returns true
8: else
9: returns false

10: generate missing element cause and countermeasure (insert the missing element)

containment inconsistency can be resolved by adding a2 immediately after a1 or by swapping the occurrence of a1
and a2 in the low-level model. If either a1 or a2 does not appear (i.e., deleted) in the low-level model, then the
containment violation occurs due to missing Action (a1) or Send Signal Action (a2). In case of missing a2 the
violation can be resolved by adding a2 immediately after a1, or in case of missing a1 the violation can be resolved by
adding a1 before a2.

a1 a2

(a) The High-Level Activity Diagram

a3 a2 a1

(b) The Low-Level Activity Diagram

Figure 10: Send Signal Action Preceded by Different Action

Algorithm 5 Verify Misplacement of Elements in the Low-Level Activity Diagram
1: procedure FIND_MISPLACEMENT_ELEMENTS(HL,LL);
2: extracts nodes information from output trace file, SMV descriptions and LTL-

based transformation rules;

3: takes nodes/elements (n) of unsatisfied LTL formula and node (m) from SMV descriptions

4: for all unsatisfied(n, m) do
5: match(n, msucceeding_elements)
6: if n = msucceeding_elements then
7: m← msucceeding_elements
8: generate violation causes and countermeasures
9: else match(n, mpreceding_elements)

10: m← mpreceding_elements
11: generate violation causes and countermeasures

Table 3 shows the violations occur due to a misplacement of elements for each LTL-based transformation rule and
relevant countermeasures for changing the input models to satisfy the containment relationship. In Table 3, a state
sequence is denoted by k−1,k,k+1, ....,kn, where k is the current state of the element, k−1 and k+1 are preceding
and succeeding states of the element respectively, and kn is the last state. The nodes a1, ...,an and b1, ...,bn will be
parameterized with the actual node names.

Table 3: Tracking Back the Causes of Violation Due to Misplacement of Elements and Possible Countermeasures

Unsatisfied Rule Causes of Violation Due to Misplacement Possible Countermeasure(s)

G (a1 -> F a2)

Action a1 exists at k position but Action a2 does not
exist in future k+1 to kn (i.e., a2 does not eventu-
ally follow a1) in the low-level model.

• Swap the occurrence of a2 and a1.
• Add a2 after a1 in the low-level model, where (a1)
and (a2) are nodes that will be parameterized with
the actual action names.

(continued on next page)
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Table 3: Tracking Back the Causes of Violation Due to Misplacement of Elements and Possible Countermeasures

Unsatisfied Rule Causes of Violation Due to Misplacement Possible Countermeasure(s)

G (ForkNode -> F (a1 &

... & an))& G ((a1 &

... & an)-> O ForkNode)

The Fork Node rule is violated because Fork Node
is not followed by the elements.

•Add elements (a1...an) in the low-level model after
the particular Fork Node.
• Elements (a1...an) must exist after the particular
Fork Node.

G ((a1 &...& an)-> F

JoinNode)

The Join Node rule is violated when elements
(a1...an) exist as succeeding elements of a Join
Node, but are not followed by a Join Node.

• Elements (a1...an) shall be followed by a particu-
lar Join Node.
• Remove element(s) (a1...an) from the low-level
model.
• Replace flawed elements(s) (b1...bn) with the cor-
responding correct elements (a1...an).

(DecisionNode -> F ((a1

& !a2)| (!a1 & a2)))

The Decision Node rule is violated, when both of
the branches return either true or false. It means
that the Decision Node is not followed by branch-
es/elements (i.e., a1 and a2) in the low-level model.

• Replace the flawed branches (e.g., b1 and b2) with
the corresponding correct branches a1 and a2 after
the particular Decision Node.
• Remove flawed branches (b1 and b2) from the low-
level model, respectively.
• Put corresponding Decision Node before a1 and a2.

G (((a1 & !a2)| (!a1 &

a2))-> F MergeNode)

The Merge Node rule is unsatisfied, because ele-
ments (i.e., a1 and a2) are not followed by a Merge
Node, but one or both elements exist as the suc-
ceeding elements of a Merge Node in the low-level
model.

• Put the particular Merge Node after a1 and a2 in
the model.
• Replace the flawed elements b1 and/or b2 with cor-
responding correct elements a1 and a2 before the
particular Merge Node.

G (a1 -> X a2)

The Send Signal Action rule is violated, if Send
Signal Action a2 either exists in the low-level
model as an eventually succeeding element of Ac-
tion a1 (i.e., exits at (k+2) to (kn), but not at (k+1)
next element of the a1) or preceding element of the
a1 (i.e., exits at (k−1) to (k−n)).

• Add a2 immediately after a1 in the low-level
model.
• Swap the occurrence of a1 and a2.

1)G (a1 -> X a2)& G !(

a1 & a2)

2)G (a1 -> G (a2 -> X

a3))

Accept Event Action a2 (transitively) exists in the
low-level model as a preceding element of Action
a1 but not after a1. In the second rule, the Action
a3 is not at next position k + 1 (i.e., a3 exists as
an eventually succeeding element of a2 (k+ 2) to
(kn)).

• Replace the flawed action b1 with the correspond-
ing correct action (a1 or a3).
• Put a2 after a1 in the low-level model.
• Put a3 immediately after a2 in the low-level model,
where a1...a3 and b1 are action nodes that will be pa-
rameterized with the actual action names.

G ((a1 &

ExceptionType_i =

ExceptType_1)-> X a2)

The rule is violated, because a2 (i.e., exception han-
dler) does not exist after a1 (i.e., protected node)
and Exception Type.

• Put the correct handler body a2 after the corre-
sponding protected node and Exception Type in the
low-level model.

1)G (ac & isInterrupted

-> X interrupting_edge

)& G !(ac &

interrupting_edge)

2)G (interrupting_edge

-> X a2)

3)G (InitialNode & ! (

isInterrupted)-> F a1)

The first rule is unsatisfied, because the element
interrupting_edge is not at next position k + 1 of
Accept Event Action ac (i.e., it exists as an eventu-
ally succeeding element of ac (k+2) to (kn)). The
second rule is violated, because interrupting_edge
and/or a2 are misplaced. The third rule is violated,
because a1 is misplaced.

• Put interrupting_edge immediately after Accept
Event Action ac.
• Remove interrupting_edge and a2 from the low-
level model.
• Remove element a1 from the low-level model.
• Replace flawed elements b1...b3 with correspond-
ing correct elements interrupting_edge, a1 and a2.

1)(G (in_pn -> X a1)& G

(a1 -> Y in_pn))

2)(G (an -> X out_pn)&

G (out_pn -> Y an))

The first rule is violated, because Action a1 (tran-
sitively) exists in the low-level model as an eventu-
ally succeeding element of input Activity Parameter
Node in_pn, but not as next element of the in_pn.
The second rule is violated, because the output Ac-
tivity Parameter Node out_pn (transitively) exists
in the low-level model as a preceding element of
Action an, but not as next element of an.

• Put a1 immediately after in_pn in the low-level
model.
• Put out_pn immediately after an in the low-level
model.

(DecisionNode -> F

a2)| (DecisionNode &

(max >= 0 & max <

2)-> F MergeNode)| ((

DecisionNode & max = 2)

-> F FlowFinal)& ! F(

MergeNode)| F(a1)

The rule is unsatisfied, because the elements that
consist of the loop (e.g., decision node, merge node,
actions) are not present in the correct order, for in-
stance, Action a2 exists before a DecisionNode, but
not followed by a DecisionNode. The MergeNode
does not exist before Action a1.

• Replace flawed elements (action, decision node,
or merge node) with the corresponding correct ele-
ments, such as a1 and a2.
• Put action a1 before a Decision Node.
• Put action a2 after a Decision Node.
• Add corresponding MergeNode and a1 in the low-
level model.
• Add the flow final in the low-level model.
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Receive Loan Request Send Starter Account Contract Kit Create Loan File

Check Customer Bank Privilege Verify Liquid Assets Verify Employment Status
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Receive Supporting DocumentsDeclined Due to Unsatisfied Condition

Dispatch Approval TaskCheck Credit Worthiness
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Review High-Risk Loan by Manager
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[high_risk_approved]

[risk_low]

Send Account Id and Welcome Message

Figure 11: High-Level Activity Diagram of Loan Approval System

4.3.2. Visualisation of Containment Causes and Relevant Countermeasures
In this section, we explain how the discordance between high-level model and its low-level counterparts are pre-

sented to the developers in a user friendlier manner in comparison to the generated counterexamples. We opt to
implement the visualisation in Eclipse Papyrus4, which is an Eclipse based open source UML 2 tool. Nevertheless,
the same visualisation technique can be integrated with other UML tools given the input from the counterexample
analyser. The visual representation is based on the information produced in the aforementioned step along with the
low-level model as input. In particular, the description of the cause(s) along with the relevant potential counter-
measures to address the containment inconsistency is annotated with the UML construct whose corresponding LTL
formula is violated, for instance, fork node, merge node and accept event action. In order to enhance the visibility
and understandability of the counterexample analysis results, the elements related to unsatisfied LTL formulas are
also visually presented. For instance, the UML construct that corresponds to the violated LTL formula is highlighted
in blue whilst the elements responsible for causing the containment inconsistencies are highlighted in red, and the
elements that satisfied the corresponding LTL formula appear in green. After locating the causes of containment
inconsistencies, the low-level activity diagram is updated based on the countermeasures and re-mapped to its formal
description, and then will be re-verified. This process iterates until no more containment inconsistencies are detected.
To differentiate more than one unsatisfied formula, the elements areas are highlighted with shades of the particular
colour making areas of interest better visible.

5. Scenario from Industrial Case Study

In this section, a representative case, namely, the loan approval, will be described in detail to illustrate how our
approach works to detect and resolve the containment inconsistencies. This scenario is extracted from an e-business

4See https://www.eclipse.org/papyrus
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application in the banking sector. The banking domain must enforce security and must be in conformity with the
regulations in effect. The core functionality of the loan approval system can be described as follows: It starts after
receiving a new customer’s loan request, and then preliminary inspections are performed to assure that the customer
has provided valid information about the credit (e.g., saving or debit account). Afterwards, the customer’s credit
worthiness is evaluated. Finally, the evaluation of loan risk is carried out. If the loan inquired by the customer is low,
the loan contract is initialised otherwise a loan declined. The first two subsections describe the automated translation
of high-level loan approval system into LTL formulas and low-level (refined and enhanced) loan approval system into
SMV descriptions respectively. The last subsection presents analysis of containment checking results.

Table 4: LTL Formulas Generated from the High-Level Loan Approval Activity Diagram

UML Constructs Generated LTL Formulas

Sequence

LTLSPEC G (InitialNode -> F ReceiveLoanRequest);

LTLSPEC G (ReceiveLoanRequest -> F SendStarterAccountContractKit);

LTLSPEC G (SendStarterAccountContractKit -> F CreateLoanFile);

LTLSPEC G (CreateLoanFile -> F SendAccountIdandWelcomeMessage);

LTLSPEC G (SendAccountIdandWelcomeMessage -> F ForkNode);

LTLSPEC G (JoinNode -> F DecisionNode);

LTLSPEC G (RequestBankInformation -> F ReceiveSupportingDocuments);

LTLSPEC G (ReceiveSupportingDocuments -> F DecisionNode1);

LTLSPEC G (DispatchApprovalTask -> F CheckCreditWorthiness);

LTLSPEC G (CheckCreditWorthiness -> F DecisionNode2);

LTLSPEC G (EvaluateLoanRisk -> F DecisionNode3);

LTLSPEC G (ReviewHigh_RiskLoanbyManager -> F DecisionNode4);

LTLSPEC G (MergeNode -> F InitializeLoanContract);

LTLSPEC G (MergeNode1 -> F ForkNode2);

LTLSPEC G (MergeNode2 -> F ActivityFinalNode);

Fork Node

LTLSPEC G (ForkNode -> F (CheckCustomerBankPrivilege & VerifyLiquidAssets &

VerifyEmploymentStatus)) & G ((CheckCustomerBankPrivilege & VerifyLiquidAssets &

VerifyEmploymentStatus) -> O ForkNode);

LTLSPEC G (ForkNode2 -> F (NotifyBank & NotifyCustomer & NotifyLoanOfficer)) & G ((

NotifyBank & NotifyCustomer & NotifyLoanOfficer) -> O ForkNode2);

Join Node
LTLSPEC G ((CheckCustomerBankPrivilege & VerifyLiquidAssets & VerifyEmploymentStatus) -> F

JoinNode);

LTLSPEC G ((NotifyBank & NotifyCustomer & NotifyLoanOfficer) -> F JoinNode2);

Decision Node

LTLSPEC (DecisionNode -> F (DeclinedDuetoInvalidPrivilege xor RequestBankInformation));

LTLSPEC (DecisionNode1 -> F (DeclinedDuetoUnsatisfiedCondition xor DispatchApprovalTask));

LTLSPEC (DecisionNode2 -> F (DeclinedDuetoBadCredit xor EvaluateLoanRisk));

LTLSPEC (DecisionNode3 -> F (ReviewHigh_RiskLoanbyManager xor MergeNode));

LTLSPEC (DecisionNode4 -> F (DeclinedDuetoHighRisk xor MergeNode));

Merge Node

LTLSPEC G (((DecisionNode3 & ! DecisionNode4) | (! DecisionNode3 & DecisionNode4)) -> F

MergeNode);

LTLSPEC G (((DeclinedDuetoInvalidPrivilege & ! DeclinedDuetoUnsatisfiedCondition & !

DeclinedDuetoBadCredit & ! DeclinedDuetoHighRisk) | (! DeclinedDuetoInvalidPrivilege &

DeclinedDuetoUnsatisfiedCondition & ! DeclinedDuetoBadCredit & !

DeclinedDuetoHighRisk) | (! DeclinedDuetoInvalidPrivilege & !

DeclinedDuetoUnsatisfiedCondition & DeclinedDuetoBadCredit & ! DeclinedDuetoHighRisk)

| (! DeclinedDuetoInvalidPrivilege & ! DeclinedDuetoUnsatisfiedCondition & !

DeclinedDuetoBadCredit & DeclinedDuetoHighRisk)) -> F MergeNode1);

LTLSPEC G (((JoinNode2 & ! InitializeLoanContract) | (! JoinNode2 & InitializeLoanContract)

) -> F MergeNode2);

5.1. Generating LTL Formulas from the High-Level Model

The high-level representation of the loan approval system in terms of a UML activity diagram is shown in Fig-
ure 11. LTL formulas are automatically generated from the high-level activity diagram of the loan approval system us-
ing our LTL-based transformation rules presented in Table 2. For instance, the LTL formula “LTLSPEC (DecisionNode

-> F (DeclinedDuetoInvalidPrivilege xor RequestBankInformation))” is generated for the Decision Node (as
discussed in Section 4.1). The high-level loan approval activity diagram contains 78 elements including 14 control
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nodes and 21 actions. For these elements, 27 LTL formulas are generated. Each generated LTL formula is used as
input for containment checking. Table 4 shows the generated LTL formulas from the high-level loan approval system.

5.2. Generating SMV Descriptions from the Low-Level Model

The low-level loan approval model is a refined and extended version of the high-level model that provides more
detailed information about the system. For instance, the contract documents are sent to the customer for a final
decision. If the customer agrees with loan terms and contract then manager and customer both officially sign the
loan contract. Otherwise loan terms and contract are revised. Finally, if no negative reports have been filed, the loan
settlement task is performed otherwise the loan approval process will be closed. The low-level model is automatically
converted into SMV descriptions using our aforementioned transformation rules.

Listing 1 shows an excerpt of the SMV descriptions resulting from the translation of the low-level loan approval
system. Some repetitive parts that produced from the similar types of nodes, have been omitted in the listing. Without
going into excessive detail, the SMV description can be summarised as follows: The SMV description consists of two
parts, the variables declaration part and the variable assignment part. All the elements of the loan approval activity
diagram are declared as variables under the “VAR” keyword. The nodes of the loan approval activity diagram are rep-
resented by boolean variables except temporary variables for decision and merge nodes to handle outgoing branching
and incoming nodes, respectively. These temporary variables are represented as scalar variables (enumerative type)
as discussed in Section 4.2. Furthermore, the control variable max is initialised for handling loop. The corresponding
present states and next states of these variables are declared under the keyword “ASSIGN”. Inside the next expression
of the variable, a “case...esac” expression is created for every state that lists all possible subsequent states.

5.3. Containment Checking Results

The containment checking is achieved by using the NuSMV model checker to check the generated SMV descrip-
tions (as illustrated in Listing 1) against the LTL formulas generated from the high-level model (as presented in Ta-
ble 4). The LTL formulas and SMV descriptions are combined into one NuSMV input file and executed by the NuSMV
model checker. The NuSMV performs the containment checking on the semantics of activity diagram by exploring
the reachable state-space of a model. However, the syntactic analysis considers that the specification of an activity
diagram conforms to the abstract syntax specified by the metamodel. In particular, it only ensures that identifier names
used in the high-level diagram must be defined in the low-level diagram. The semantics of elements such as fork node
rule violation cannot be identified by syntactic analysis. Therefore, NuSMV Model checker is used for the contain-
ment checking. Listing 2 shows the verification result including the list of satisfied and unsatisfied LTL formulas. The
NuSMV model checker generates a counterexample demonstrating a sequence of permissible state executions leading
to a state in which the violation occurs in LTL formula. By looking at the violation reported as a counterexample
by NuSMV, we find that LTL formulas “G (SendStarterAccountContractKit -> F CreateLoanFile)”,“G
(CreateLoanFile -> F SendAccountIdandWelcomeMessage)” and “G (ForkNode2 -> F (NotifyBank &

NotifyCustomer & NotifyLoanOfficer))& G ((NotifyBank & NotifyCustomer & NotifyLoanOfficer)

-> O ForkNode2)” are false. In particular, three LTL formulas of Table 4 are false out of twenty-seven generated
formulas. It means that this sequence of formal properties specified by the high-level loan approval model is not
contained in its low-level counterpart. Despite the size and execution traces of this counterexample, the exact cause
of the containment inconsistency is unclear, for instance, “is the containment violation caused by a missing element,
or a misplacement of elements, or both of them?”.

After the generation of the counterexample, it is important to analyse the generated counterexample to find the
actual source of the inconsistency and correct the responsible elements in the model. Here, the question arises why
formulas regarding sequential order and fork node rules are violated. It is tedious and challenging for the developers to
manually navigate and locate the relevant states because they have to exhaustively walk through all of these execution
traces. In order to interpret the generated counterexample, we applied our counterexample analysis technique that vi-
sualises the involved elements in the low-level activity diagram along with annotations containing violation causes and
suggestions, discussed in Section 4.3. In this case, the sequential rules are violated because CreateLoanFile does
not eventually follow the SendStarterAccountContractKit and does not precede the SendAccountIdandWel-

comeMessage. However, it exists as the succeeding element of RequestBankInformation and preceding element
of ReceiveSupportingDocuments. This might indicate that a misplacement of CreateLoanFile in the low-level
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1 MODULE main

2 VAR

3 InitialNode : boolean;

4 ReceiveLoanRequest : boolean;

5 ReviewRequest : boolean;

6 GenerateAccountId : boolean;

7 ForkNode : boolean;

8 JoinNode : boolean;

9 MergeNode : boolean;

10 merge_flag_629 : {undetermined, in_DecisionNode4, in_DecisionNode3};

11 ...

12 ASSIGN

13 --

14 init(InitialNode) := TRUE;

15 next(InitialNode) := case

16 InitialNode : FALSE;

17 TRUE : InitialNode;

18 esac;

19 init(ReceiveLoanRequest) := FALSE;

20 next(ReceiveLoanRequest) := case

21 InitialNode : TRUE;

22 ReceiveLoanRequest : FALSE;

23 TRUE : ReceiveLoanRequest;

24 esac;

25 ...

26 init(SendStarterAccountContractKit) := FALSE;

27 next(SendStarterAccountContractKit) := case

28 GenerateAccountId : TRUE;

29 SendStarterAccountContractKit : FALSE;

30 TRUE : SendStarterAccountContractKit;

31 esac;

32 init(SendAccountIdandWelcomeMessage) := FALSE;

33 next(SendAccountIdandWelcomeMessage) := case

34 SendStarterAccountContractKit : TRUE;

35 SendAccountIdandWelcomeMessage : FALSE;

36 TRUE : SendAccountIdandWelcomeMessage;

37 esac;

38 ...

39 init(post_decision_975) := undetermined;

40 next(post_decision_975) := case

41 DecisionNode & (post_decision_975 = undetermined) : {guard_1, guard_2};

42 TRUE: undetermined;

43 esac;

44 init(DeclinedDuetoInvalidPrivilege) := FALSE;

45 next(DeclinedDuetoInvalidPrivilege) := case

46 post_decision_975 = guard_1 : TRUE;

47 DeclinedDuetoInvalidPrivilege : FALSE;

48 TRUE: DeclinedDuetoInvalidPrivilege;

49 esac;

50 init(RequestBankInformation) := FALSE;

51 next(RequestBankInformation) := case

52 post_decision_975 = guard_2 : TRUE;

53 RequestBankInformation : FALSE;

54 TRUE : RequestBankInformation;

55 esac;

56 init(CreateLoanFile) := FALSE;

57 next(CreateLoanFile) := case

58 RequestBankInformation : TRUE;

59 CreateLoanFile : FALSE;

60 TRUE : CreateLoanFile;

61 esac;

62 ...

Listing 1: Excerpts of the SMV Description for the Low-level Loan Approval Model
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$ NuSMV LoanApproval.smv

-- specification G (InitialNode -> F ReceiveLoanRequest) is true

-- specification G (ReceiveLoanRequest -> F SendStarterAccountContractKit) is true

-- specification G (SendStarterAccountContractKit -> F CreateLoanFile) is false

-- as demonstrated by the following execution sequence

Trace Description: LTL Counterexample

Trace Type: Counterexample

-> State: 1.1 <-

InitialNode = TRUE

ReceiveLoanRequest = FALSE

ReviewRequest = FALSE

GenerateAccountId = FALSE

SendStarterAccountContractKit = FALSE

...

-> State: 1.20 <-

merge_flag_322 = undetermined

-- specification G (CreateLoanFile -> F SendAccountIdandWelcomeMessage) is false

-- as demonstrated by the following execution sequence

Trace Description: LTL Counterexample

Trace Type: Counterexample

-> State: 2.1 <-

InitialNode = TRUE

ReceiveLoanRequest = FALSE

...

-- specification G (MergeNode1 -> F ForkNode2) is true

-- specification ( G (ForkNode2 -> F ((NotifyBank & NotifyCustomer) & NotifyLoanOfficer)) & G (((NotifyBank

& NotifyCustomer) & NotifyLoanOfficer) -> O ForkNode2)) is false

-- as demonstrated by the following execution sequence

Trace Description: LTL Counterexample

Trace Type: Counterexample

-> State: 3.1 <-

InitialNode = TRUE

ReceiveLoanRequest = FALSE

...

Listing 2: NuSMV Containment Checking Result along with a Counterexample

model can be seen as a reason for the sequential violation. Therefore, this violation can be resolved by putting the
CreateLoanFile after action SendStarterAccountContractKit and before SendAccountIdandWelcomeMes-

sage in the low-level loan approval model. In addition, involved elements are highlighted to complement the textual
descriptions by easing the understanding, and not overloading the developer with text. For instance, CreateLoan-
File causing the violation is highlighted in red colour, whereas SendStarterAccountContractKit action of the
formula is highlighted in green colour. As we can see in Figure 12, the first two boxes display the actual causes and
potential countermeasures of the unsatisfied sequential formulas.

In a similar way, the fork node rule G (ForkNode2 -> F (NotifyBank & NotifyCustomer & NotifyLoan

Officer))& G ((NotifyBank & NotifyCustomer & NotifyLoanOfficer)-> O ForkNode2) is violated be-
cause actions (NotifyBank, NotifyCustomer and NotifyLoanOfficer) do not follow the ForkNode2 concur-
rently, in particular, NotifyLoanOfficer action exists before the ForkNode2. This violation can be addressed by
adding NotifyLoanOfficer after the ForkNode2 as shown in Figure 12, insert by in the third box. The element re-
sponsible for causing the containment inconsistency is highlighted in red, whereas the elements that satisfied the rule
are highlighted in green. Once the causes are located, causes are eliminated by updating the responsible elements of
the low-level activity diagram and rerunning the containment checking process yielded no further violations. Without
the counterexample analysis, users would have to study and investigate the syntax and semantics of the trace file in
order to determine the relationship between the execution traces and the UML model, and then locate the correspond-
ing inconsistency within the UML model, meaning that the complex matching between the variables and states in the
counterexample and the elements of the activity diagrams must be performed manually.
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Cause: CreateLoanFile does not exist after 
SendStarterAccountContractKit.
Countermeasures: (1) Put CreateLoanFile after 

the SendStarterAccountContractKit.

Cause: ForkNode2 is not followed by NotifyLoanOfficer.
Countermeasures: (1) NotifyLoanOfficer must exist after the ForkNode2.  
(2) NotifyBank, NotifyCustomer & NotifyLoanOfficer must exist after ForkNode2.

Cause: SendAccountIdandWelcomeMessage does not exist after CreateLoanFile.
Countermeasures: (1) Swap the occurrence of CreateLoanFile and 
SendAccountIdandWelcomeMessage. (2) Put CreateLoanFile before the 
SendAccountIdandWelcomeMessage. (3) Put SendAccountIdandWelcomeMessage 
after the CreateLoanFile.

Figure 12: Low-Level Activity Diagram of Loan Approval System After Running Counterexample Analysis

6. Performance Evaluation

So far, we have presented a scenario from industrial case study representing real systems from the banking sector
that illustrate how our approach works and demonstrate its applicability in real cases. As our approach aims to support
the developers to verify the containment relationship during their development tasks, it is crucial to assess whether
our approach’s performance is reasonable in a normal working environment. The sizes of the input models used
for performance evaluation are ranging from a few dozens to hundreds of elements, which are the typical sizes of
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software behaviour models that developers can efficiently work with [26]. It might be noted that multiple interleaving
and iterative activities have been covered in the particular scenarios.

We evaluate the performance of our approach using five different cases. Four of them are taken from the indus-
trial scenarios. One of them is the loan approval mentioned in the previous section. The other three are itinerary
management, CRM fulfilment system [66] and billing renewal system [67]. The itinerary management provides the
services for booking airline tickets, hotels, and cars, respectively. The CRM fulfilment scenario is a part of a customer
relationship management (CRM) system concerning the customer care, billing, and provisioning of an Austrian In-
ternet Service Provider. The billing renewal system concerns a billing and provisioning system of a domain registrar
and hosting provider. Due to the space limitation, we omit the detail of these scenarios. Furthermore, we artificially
increased the size of the billing renewal system by adding a number of control nodes, actions and edges to evaluate a
model with close to 100 elements in the high-level model and more than 300 elements in the low-level model. This
case is called Synthetic Larger Model. While the Synthetic Larger Model is in our point of view already a model that
is too large for efficiently working with it, this model provides a useful data point in terms of an upper bound. The per-
formance evaluation is conducted on a regular computer equipped with an 2.6 GHz i5 processor and eight gigabytes
of memory running Windows 8. The approach under consideration is implemented using Java and executed with the
Java VM 1.7, in particular, the automated transformation UML activity diagrams into formal descriptions/consistency
constraints has been realised using Eclipse Xtend5. Note that we used the NuSMV model checker version 2.5.4 for
verifying the containment relationship.

The time taken for model loading, transforming and verification of models are measured in milliseconds. Before
measuring each task, sufficient warming up executions are performed to eliminate potential confounding factors of
class loading in Java. The first part of Table 5 shows the complexity of the input UML activity diagrams (HL =
high-level model, LL = low-level model) with regard to their elements including control nodes (i.e., those nodes that
can change the flow of the execution), action nodes (including special actions that represent data handling tasks), and
edges (representing the links between nodes). The second part of the table presents the evaluation results for loading
and transforming activity diagrams into formal constraints and descriptions. Table 6 shows the containment checking
time, total time (i.e., verification plus loading and translation time) and violated formulas.

Table 5: Model Size and Translation Time

Input Size Itinerary Management CRM Fulfillment Billing Renewal Loan Approval Synthetic Larger Model
HL LL HL LL HL LL HL LL HL LL

Control Nodes 12 14 7 8 12 17 14 20 23 53
Action Nodes 7 13 12 16 14 22 21 33 29 92
Edges 21 35 23 30 35 54 43 66 70 179
Total Elements 40 62 42 54 61 93 78 119 122 324
Model Loading (ms) 1.308±0.54 2.442±0.28 2.680±0.65 2.955±0.72 3.115±0.41 3.457±0.57 3.374±0.72 3.396±0.64 3.559±0.54 6.904±0.58
Translation Time (ms) 0.202±0.07 0.437±0.34 0.274±0.07 0.467±0.14 0.646±0.22 0.411±0.04 0.460±0.12 3.115±0.41 0.697±0.15 4.798±0.31

The evaluation results show that the containment checking time spent by NuSMV for the loan approval is longer
than for the itinerary management, CRM fulfilment system and billing renewal system. It is because NuSMV found
inconsistencies between the formal properties of the low-level model and the LTL formulas of the high-level model
and thus NuSMV needed to generate a counterexample. Three out of twenty-seven LTL formulas specified in Table 4
are not satisfied. Specifically, the fork node rule and sequential rules are violated in the loan approval system. The
causes of containment violations and their resolutions are explained in the case study (Section 5).

We note that the NuSMV model checker consumes more time for verification than is used for translation of the
models. The results show that the loading and translation times of the itinerary management system are lower than
for the other models because the activity models of the other three systems contain a greater number of control and
action nodes. In summary, all realistic cases are handled in a total time below or around two seconds which is quite
acceptable for practical purposes.

We also applied our approach on a Synthetic Larger Model which contains a wide range and larger number of
model elements. The time taken for containment checking of the Synthetic Larger Model (HL=122 and LL=324) is

5See http://www.eclipse.org/xtend
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around 35630 ms (i.e., about 0.59 minutes). The model checking time, although it grows for such a large number
of elements, is still reasonable in the context of a typical working environment. In the Synthetic Larger Model, the
containment relationship is not satisfied for two out of thirty-six LTL formulas; the fork node and decision node rules
are violated. Likewise, the causes of the violations and appropriate guidelines to resolve the particular violations might
be identified based on the counterexample analysis method described in Section 4.3. The verification of the Synthetic
Larger Model has allowed us to evaluate the scalability of our containment checking approach. The evaluation results
show that our approach efficiently translates activity diagrams into formal specifications for supporting containment
checking. The analysis and evaluation results also demonstrate that our approach works well for larger realistic
scenarios. Our approach can also handle composite controls (combinations of two or more control structures) quite
well. For instance, activity diagrams of the loan approval system contain a Merge Node after a Decision Node that
have been adequately mapped into LTL formulas. Moreover, after locating the causes of containment inconsistencies
for loan approval system and systematic lager model, the low-level activity diagrams of these models are updated
based on the countermeasures and re-mapped to their formal descriptions, and then re-verified. As expected, the
rerunning of the containment checking process on these models yielded no further violations.

Table 6: Performance Evaluation Results

Containment Checking Itinerary Management CRM Fulfillment Billing Renewal Loan Approval Synthetic Larger Model
Verification Time (ms) 177.5±12.817 97.5±4.629 190±16.035 1728.75±64.017 35615±1319.762
Total Time (ms) 181.889 103.876 220.258 1739.095 35 630.958
Violated Formulas 0 out of 11 0 out of 11 0 out of 18 3 out of 27 2 out of 36
Reachable States 98 (2ˆ6.61471) 40 (2ˆ5.32193) 221 (2ˆ7.7879) 5.6776e+006 (2ˆ22.4369) 931 (2ˆ9.86264)
Total States 2.37763e+013 (2ˆ44.4346) 3.71085e+012 (2ˆ41.7549) 2.00386e+015 (2ˆ50.8317) 1.89108e+022 (2ˆ74.0016) 5.68419e+036 (2ˆ122.096)

One of the issues of our approach is to rely on model checkers which can suffer from the “state space explosion”
problem. The number of states examined by the model checkers can grow exponentially with the size of the input [59,
68]. This problem can be partially alleviated by using predicates instead of enumeration types [20]. The size of
models can negatively affect the verification time of containment checking. This is because symbolic model checking
allows verification of large systems that have over 1020 states [53]. In this work constraints are abstracted and encoded
as boolean representatives (see Section 4.2). This encoding decision can help reducing significantly the state space
under consideration. The translation in our previous work consumes approximately three seconds for verification of
the loan approval system. Our improvements reduced the verification time of the loan approval system from three
seconds to one and half a second (see Table 6).

7. Discussion

In this section, we discuss various aspects of our model checking based approach for the containment relationship
between a low-level activity diagram and its high-level counterpart. The research questions are revisited and briefly
discussed below:
RQ1: How to perform automated transformation of behaviour models into formal specifications and descrip-
tions?

We have introduced a set of transformation rules to facilitate the automated transformation of high-level and low-
level UML activity diagrams into LTL constraints and SMV descriptions, respectively. Our proposed translation tech-
niques provide effective means for automated generation of formal specifications for large and complex behavioural
models. These techniques aim at reducing the burden on the developers for manually specifying the consistency con-
straints and formal descriptions of behaviour diagrams to check for containment inconsistencies. In the scope of this
article, we covered complex structures of UML activity diagrams along with basic constructs. The more complex
structures of activity diagrams are often used for modelling complex software system behaviour but have not been
adequately considered by most of the existing studies in the literature so far.

Because containment checking is performed on generated SMV descriptions and LTL constraints, we present a
simple sketch of a proof. The idea is to prove that an activity diagram and SMV descriptions derived from it are
behaviourally equivalent. Let’s assume that an activity diagram A is a tuple (N,E,G) as mentioned in Section 3.3.
Note that the semantics of SMV corresponds to a finite state machine tuple M = (V,S,R, I) where S and V are set
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of states and variables respectively. Specifically, a state s assigns a value s(v) to each variable v ∈ V . The transition
relation R ⊆ S×S specifies the possible state to state transitions; I ∈ S is the initial state. The SMV translation rules
mentioned in Section 4.2 might also be considered for mapping of activity diagrams to finite state machines. An
execution (or trace) of finite state machine is a finite sequence of states (s0,s1, ..,sn) so that s0 = I and each pair si,si+1
in the sequence, (si,si+1) ∈ R. Therefore, the SMV descriptions for the activity diagrams are derived by translating
each N into a state S in M – they have same content. The next sequential node is replaced by the next state. That
is an edge e = (s, t) will have the same semantics to (si,si+1) ∈ R. It is however rather straightforward that activity
diagrams and derived SMV descriptions are behaviourally equivalent. In LTL a path is an ordered sequence of states,
such that each state is followed by its next state via a transition. Accordingly, we have derived several formulas from
the high-level model that have similar semantics to the derived SMV descriptions. A simple transition, in an activity
diagram, from an action or an activity ai to another action or activity ai +1, is formalised as (ai -> ai +1), i.e., action
ai leads to action ai +1. In the case, we need to be sure that every execution path going through ai also goes through
ai+1. An LTL formula ϕ is true in state s if and only if ϕ holds for all paths starting in s. s |= ϕ ≡ ∀π ∈ Paths(s).π|=
ϕ , where |= is the satisfaction relation for formulas. For a finte state machine, a formula ϕ is valid for state machine
M if and only ϕ holds in all the initial states of M. This means that ϕ holds in all paths starting from any initial state
M |= ϕ ≡ ∀s0 ∈ I.s0 |= ϕ .

Our approach makes use of the existing model checkers for formally verifying the containment relationship. Un-
fortunately, one of the drawbacks of model checking techniques is that they are not scalable to very large systems.
The number of states in the finite state representation increases exponentially with the number of variables (i.e., the
state explosion problem). The NuSMV model checker used in our study is based on the symbolic model checking
technique, and therefore, is able to support the verification of large systems up to 1020 states [53]. One of the biggest
advantages of using the NuSMV model checker is that SMV’s finite state based encoding of the input behaviour
models is rather straightforward. That is, each model element is represented by a boolean variable in the SMV de-
scription and LTL formulas. However, this also implies that our technique is only applicable for other model checkers
that support similar encoding techniques, such as SPIN. Like NuSMV, the SPIN model checker has similar concepts
regarding LTL formulas and exhaustive verification options; hence, it is possible to easily modify the encoding with
reasonable extra efforts.
RQ2: How can we effectively communicate the containment checking results to the developers?

The erroneous results reported by the model checkers (i.e., counterexamples) are not quite informative to the users.
On the one hand, it requires reasonable knowledge of the underlying formalism to analyse the counterexamples. On
the other hand, they show only parts of the chain of execution states leading to the cause of the inconsistency. There-
fore, it is difficult for developers to track the entire evidence. This process requires considerable amount of time and
effort to identify the root causes of the containment inconsistencies in order to fix the input models. To address this
problem, we introduce counterexample analysis approach for locating the root causes of a containment inconsistency
and producing appropriate guidelines as countermeasures based on the information extracted from counterexample
trace file, formalisation rules, and the SMV descriptions of the low-level model. Automatically analysing and present-
ing the root causes of inconsistencies in intuitive forms support the developers to better comprehend and resolve the
problems and it also significantly reduces the time and effort of manually locating the causes of an inconsistency. The
stakeholders are expected to update the low-level activity diagram based on the produced countermeasures; after that,
the formal descriptions from updated diagram are generated, and containment checking is performed using NuSMV.
RQ3: Can we design a containment checking approach that offers an acceptable performance for realistically
sized input models?

In order to illustrate the applicability and feasibility of the overall approach, we conducted industrial case studies
in the banking sector and e-business domains from previous industry projects of our team [66, 67] and also performed
performance evaluations of our approach in these cases. By analysing the evaluation results we found that our ap-
proach efficiently translates activity diagrams into formal specifications and works well for larger realistic scenarios.
The time taken for both transformation and verification of all these realistic scenarios is less than 2 seconds. It is
decided to perform performance evaluation to check whether the approach is applicable to very large models and
feasible for situations in which immediate results are needed. The evaluation results show that even with the input
models having about 300 model elements, the verification time stays within less than 1 minute. Several interleav-
ing and iterative activities have been contained in the industrial cases and synthetic larger model. In summary, the
proposed containment checking approach can be used for practical purposes.
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One of the most challenging issues, among others, in comparing behaviour models is to deal with various types
of loops. In our approach we currently consider one case to handle loops which are formed by combing decision
nodes and merge nodes. However, the derived mapping rules for the loop can be easily applied on the Loop Node

as mentioned in the UML 2 specification [1]. Another issue is that a loop structure, especially an unconditional loop
(i.e., the number of iterations may be nondeterministic), cannot be efficiently described by temporal logics. A loop
with a predetermined number of iterations can be represented using temporal logics such as k-bounded existence [69].
Nevertheless, Dwyer et al. [69] show that even in the case k = 2, the bounded existence structure already becomes
rather sophisticated. Thus, automated generation of complex temporal formulas like our approach does can help
to efficiently deal with such complex structures. Furthermore, the containment relationship between two behaviour
models at different abstraction levels is based on the assumption that element names of a high-level model and its
corresponding low-level counterparts are aligned to a common ontology respected by all stakeholders. The assumption
is rather realistic because a low-level model is mainly achieved through a refinement of a high-level model where
existing high-level elements are often enriched with more details and elements [70].

8. Conclusion and Final Remarks

In this article, we have investigated the problem of containment checking for software behaviour models at dif-
ferent levels of abstraction in order to improve the quality and correctness of the software system. The containment
checking of behaviour models using formal verification techniques requires both formal descriptions and consistency
constraints of these models. In our approach, on the one hand, automated transformation of high-level UML activ-
ity diagrams into LTL formulas is provided. On the other hand, low-level activity diagrams, often resulting from
various steps of refinement and enriching of the high-level counterparts, are transformed into formal SMV descrip-
tions. Therefore our automated translation strategy is useful to bridge the gap between manual specification of formal
properties as well as consistency constraint for containment checking.

The containment checking relationship between high-level and low-level activity diagrams can be verified by using
existing model checking tools. However, the model checking techniques do not produce concrete and comprehensive
information about the violation of the containment relationship and the problem of finding the cause of containment
inconsistencies is usually delegated to the developers. In this context, we introduce our counterexample interpretation
approach to analyse counterexamples, understand the cause of inconsistencies and provide developers with supporting
evidences for resolving the cause of inconsistencies between high-level and low-level behaviour models. Therefore,
the strong knowledge of formal methods is not required. To illustrate the applicability of the proposed approach, we
realized five different use cases. Four of them are taken from the industrial scenarios and one is the Synthetic Larger
Model. The performance evaluation is also carried out in those particular cases. The evaluation results demonstrate
that the proposed approach performs for typical activity diagram size reasonably well in a typical working environ-
ment. Through the evaluation of industrial scenarios, we also show that automated transformation of activity diagrams
into formal constraints and/or descriptions significantly increases the usability of formal languages in practice.

The fundamental constructs of the behaviour models described in this article are also supported in different other
behaviour models such as BPMN and BPEL that are widely used for describing behaviours of process-centric infor-
mation systems. As a result, our approach can be easily adapted to support the other behaviour models. For other
types of behaviour models such as UML state machines, communication diagrams, and EPC that have significantly
different constructs, the proposed transformation rules cannot be used straightforwardly. However, with extra efforts
in defining transformation rules for these behaviour models, we may gain the same benefit from the automated gen-
erations of formal specification and properties as presented in this article. At the current level of development, our
work has not incorporated the automated transformation of hierarchical model compositions of the input behaviour
models. In the future we plan to investigate an efficient way to support such hierarchical model compositions. Another
direction for future work is to extend our approach for other UML behaviour models such as statecharts.
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