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Overview

1. The Problem
2. Components
3. Koala

4. Architecture

5. A Pattern

. Product Line
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The Problem
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The TV Domain

Portable
o Direct View

Projection
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A Brief History of TV...
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TV Diversity

Price

Connectivity

Region

Data
Processing

Storage
Device

User
Interface
Video Output Device
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There’s more than just TV...

Audio Portable
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Problem Statement

Software Grows Neod |
Exponentially Need more f_eOP e...
(Moore’s Law) eed more time...

Shorter lead time...

Market demands... I — More product variation...
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Solution: Use Components

10

‘ Use software components... | ... to create a diversity of products
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A Paradigm Shift

Application
Domai

Product

Everything
1

Product
Population

Family

Product
M

Separate product information from component information
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Part I

Components
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What is a Software Component?

13

A software component is:
* a unit of composition with
» contractually specified interfaces and

» explicit context dependencies only

A software component can be:

» deployed independently and is

* subject to composition by third parties
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Looking for a Component Model...

(1) Hardware (3) Visual Basic
Device y . ) Glue CodeI

14

core cell
chip
PCB
chassis

product m

(2) Microsoft's COM

IApe INut [Mary
O O O
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Independent Deployment - The 4 Issues

client

15

variation
over space

variation
over time

server
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Examples in Windows

Reusability

16

Downward
Compatibility

variation
over space

variation
over time

gy

© 2003 Koninkijjke Philips Electronics NV The Koala Component Model, Overview, September 2003, RvO

PHILIPS




Browser Examples

17

Reusability

variation
over space %
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Downward Compatibility |

variation
over time

Portability

Upward Compatibility
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Using Inheritance...

PHILIPS

Tony Williams
1990

gives

Third

party
binding

invokes

B:: overriden

creates

18
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COM and OLE 19

tibl
compatible Capability
checking

by client

Capability
checking
by client

Capability
checking
by client

Capability
checking
by client

gy
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Koala... 20
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Part Il

Koala
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The Koala Component Model

Koala offers:

{ | a. Provides interfaces and
interfaces as first class
citizens

b. Requires interfaces and
3rd party binding
c. Aggregation and Gluing

d. Parameterization,
optional interfaces and
‘dynamic’ binding

© 2003 Koninkijjke Philips Electronics NV The Koala Component Model, Overview, September 2003, RvO




Provides Interfaces

tun: ITuner

Evolution

tun: ITuner

=
o
)
2
(m]

tun: ITuner  stun: ISearchTuner

23

tun2: ITuner2

(© 2003 Koninkijke Philips Electronics NV The Koala Component Model, Overview, September 2003, RvO

Requires Interfaces

PHILIPS

All context dependencies are made explicit...
...and are bindable by a third party

...so they can be bound differently in another product |

24
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Connectors 25
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Compound Components 26

The composition
process is
recursive...

Component instances
are encapsulated.

Component types
are not (necessarily)
(see later).
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Third Party Binding 27

(© 2003 Koninkijke Philips Electronics NV The Koala Component Model, Overview, September 2003, RvO

PHILIPS

Requires Interfaces and Binding 28

Software is like...

Reuse of a single
component outside
its original context

is virtually impossible
in practice without
explicit context

Type 3 dependencies
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Diversity Interfaces

29

Components can only be made usable
and reusable if they are parameterized
over a (large number of) items.

Parameters (functions) in
diversity interfaces can be
glued with modules.

!

This allows to express inner
diversity in terms of outer
diversity!

Diversity
interfaces

Compare diversity
interfaces with Visual
Basic property lists!
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PHILIPS

30

© 2003 Koninkijjke Philips Electronics NV The Koala Component Model, Overview, September 2003, RvO




Late Compile Time Binding

| Koala separates the model from the implementation

The current implementation minimizes footprint by
utilizing late compile-time binding :
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PHILIPS

32

Part |V

Architecture
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Architecture: Layers 33

OS Software
* need OS people
*— buyin

Application software
* need Ul peope
* 5 added value herel

e ]

‘Development’ hierarchy

Multi-dimensional <—

Applications

Calling hierarchy

(O

os

The Koala Component Model, Overview, September 2003, RvO
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Architecture: APIs 34

uP API

Applications

AV API

Computing
platform (OS)
uP hardware

The Koala Component Model, Overview, September 2003, RvO
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Architecture: Subsystems 35

The following subsystems are currently defined:

Computing
Platform Computing Platform &
APl Development Environment

| .
uims
\\"

Still layered, but applications

will be part of services soon! Applications & Services

Standard OS
architecture

1l

Platform
API

infra

A/V and Data Platform
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Architecture: Packages

To streamline this, the notion

of package is needed.

A package is a collection
of private and public
component and interface
definitions

Private [
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Multi Threading

37
‘ Problem: many (>100) activities but few (<10) threads I
Step 1: use message pumps
created on virtual pump engines
required through a diversity interface
Different thread,
Step 2: bind these to pump engines Synchronisation
(a real dispatcher loop) required

Same thread,
No synchronisation required

(© 2003 Koninkijke Philips Electronics NV The Koala Component Model, Overview, September 2003, RvO
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PHILIPS

IA IB IA IB*IC

‘ Provide more...

IA IB IC IA 1B

Require less...???

38

Koala subtypes
interfaces based on
set inclusion of
functions

Koala reports an
error if a non-
existing interface is
bound...!
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Encapsulation revisited 30

A

Added Functionality has to be
passed through B.

COM solves this with down and
up casts...

component C

within m
d.p = div.iPresent ? Div.p : 42;

Added requirements have to be
passed through B.

New diversity has to be passed
through B.

COM solves this in a registry... Can also be solved by

(© 2003 Koninkijke Philips Electronics NV The Koala Component Model, Overview, September 2003, RvO
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Part V

A Pattern
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What'sina TV? a1
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The Inside of a TV

42
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The Small Signal Panel 43
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Example Design Problem 44

| ]

| 1. BlankOutput |
|3. UnblankOutput I
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Example Design Problem (2)

45
Tune(t,f) l

2. BlankOutput
4. UnblankOutput |

3. SetFrequency

antenna

(© 2003 Koninkijke Philips Electronics NV The Koala Component Model, Overview, September 2003, RvO

Control software is difficult to decompose...

\

... unless ...
Product
Specific l
Code

oo | 4 0 1
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Solution: Horizontal Communication 47

| 1. SetFrequency(f) i

2. DropRequest

antenna | —-

(© 2003 Koninkijke Philips Electronics NV The Koala Component Model, Overview, September 2003, RvO
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Part VI

Product Line
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The MG-R Approach

49

‘ Under a common architecture...

Architecture

... a set of subsystems
is developed...

... executed in projects!

...with which products
can be built...

© 2003 Koninkijjke Philips Electronics NV
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A Product Line for Bears...

PHILIPS

50
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Reuse Approaches Compared

51
No ) Platform
systematic development
reuse with central
integration
]| s
| HP Owen | | | MGR |
Reusable
subsystems
Reusable
product
software

(© 2003 Koninkijke Philips Electronics NV The Koala Component Model, Overview, September 2003, RvO

PHILIPS

Roadmapping

52

Product and subsystem releases are carefully planned:

Architecture
Project

Subsystem
Evolution
Projects

Product
Realization
Projects

PR IR R TR T S SR B T

1 l | 1 4 1
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Documentation 53

WG-R Software Component.

MG-R Software Components

INTERFACE DATA SHEET COMPONENT DATA SHEET

<linterface> (<shorthame>) <Component> (<shortname>)

<Short description of the interface> <one line description>

«ststus> Specification March 15,1939 Draft Specification March 15,1999
Version: <version= (15) Version: <version> (13)

<author> <author»
Approved by: Approved by:
Conmes Eeciroics @ PHILIPS S AR— & PHILIPS

Separate component information from interface information
Separate component external behaviour from component implementation
Use does instead of shall.

(© 2003 Koninkijke Philips Electronics NV The Koala Component Model, Overview, September 2003, RvO
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Configuration Management ca
Distinguish between:
& temporary variants ﬁ
& permanent variants L
of components.
We use our CM system for:

& versions
& lemporary variants

But we use the component model for:
& permanent variants
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Web Sites

55

Every project, subsystem and
product has its own web site.

These sites can be reached from
the home page, ...

... but they are physically
distributed over the world

Proj/coretv

sub/tvsve

sub/tvplf

sub/infra

Formats:

project: own house style
platform: use directory structure
product: use directory structure
architecture: free

SDE: free

Update daily!!!

L 2R 2R R 2R 4

(© 2003 Koninkijke Philips Electronics NV The Koala Component Model, Overview, September 2003,

RvO

PHILIPS

56

The End
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Koala

The
Koala
Component Model

Rob van Ommering
Maarten Pennings

September 2003

Koala, Sep 2003, RvO, 1 Koala Workshop

Koala Concepts
Contents

Koala supports the following concepts:
* why component model

* components
+ interfaces

2. The Basic Model
3. More on Interfaces

modules
binding

4. Function Binding
5. Constants

6. Optional Interfaces
7. Switches

Koala, Sep 2003, RvO, 2 Koala Workshop



Koala Concepts

Koala’s Concepts

A component is a unit of encapsulation.

An interface is a small and coherent
set of functions.

A module 1s a unit of code.

A binding is a connection between
interfaces.

Koala, Sep 2003, RvO, 3 Koala Workshop

Koala Concepts

Components

A component is a piece of software that is non
trivial in size (an asset to the company), but that
does not contain any configuration specific
information.

A component provides and
requires interfaces, and can
interact through these
interfaces only.

Koala, Sep 2003, RvO, 4 Koala Workshop



Koala Concepts

Interfaces

We treat interfaces as first class citizens.

* interfaces are unidirectional,
« each interface has a definition;

Interface definitions are units of reuse.

« an interface definition is always shared between
a ‘provider’ and a ‘requirer’;

* variants of components may provide or require
the same interfaces.

Koala, Sep 2003, RvO, 5 Koala Workshop

Koala Concepts

Modules

For Koala, a module is a hand-written C file and a
generated header file.

* not all modules in a component need to be
declared to Koala;

* header files for undeclared modules must be
hand written (of course);

e communication between modules within a
component is completely free;

e communication with the environment must go
through interfaces.

Koala, Sep 2003, RvO, 6 Koala Workshop



Koala Concepts

Compound Components

A group of components can be
seen as a component again...

This allows us to create reusable subsystems
(or standard designs).

A subcomponent in a compound component is
a copy (instance) of a reusable component

(type).

Koala, Sep 2003, RvO, 7 Koala Workshop
Koala . Concepts
Configurations
Definitions:

* a basic component is a component
without subcomponents;

* acompound component is a
component with one or more
subcomponents;

* a configuration is a component
without provides and requires
interfaces, a top-level component.

Koala, Sep 2003, RvO, 8 Koala Workshop



Koala Concepts

Naming
Before we proceed, let’s discuss naming: o
&
» acomponent has a globally unique §é & Q§o
long name and short name (aka prefix) NN §<°°

« each interface has a local (or instance)
name unique to the component

» each interface is associated with an
interface definition

Note that two or more interfaces in a
single component may have the same
definition!

Koala, Sep 2003, RvO, 9 Koala Workshop

Koala Basic

2. The Basic Model

Koala supports three ‘lansuages :
* DD: data type definitions

» 1D interface definitions

* CD: component definitions

1. Concepts
2. The Basic Model
3. More on Interfaces

4. Function Binding
5. Constants

6. Optional Interfaces
7. Switches

Koala, Sep 2003, RvO, 10 Koala Workshop



Koala Basic

Languages

 CD - Component definition
describes components referring to component
definitions and interface definitions

* ID - Interface definition
describes function prototypes and constants referring
to datatype definitions

DD - Datatype definition
describes datatypes referring to other datatypes

Koala, Sep 2003, RvO, 11 Koala Workshop

Koala Basic

DD

An datatype definition declares a datatype that is
used for typing parameters in functions
(occurring in interfaces)

Ordinary C header file with
machine readable comments @
embedded

Koala, Sep 2003, RvO, 12 Koala Workshop



* Koala Basic

DD - rules

header file with

datatype
definitions only Normal C Die
declarations

datatype file is

assigned a name Datatype name must Datatypes may be
for others to use be globally unique based on others

Koala, Sep 2003, RvO, 13 Koala Workshop

Koala Basic

DD — advise

Avoid data types on your interfaces because they
* have global scope (so at least prefix them)
 can’t evolve (win32 struct trick)

 can’t be copied into variant package

But

 ones from C are ok (int, char, void)

 ones from infra are ok (Bool, Nat8, Int32, ...)

Koala, Sep 2003, RvO, 14 Koala Workshop



Koala Basic

ID

An interface definition describes the syntax and
semantics of a small set of functions:

Syntax: names and types of
functions and arguments.

Semantics: a (simple) logical
model of the behaviour.

Interfaces consist of functions
(in a broad sense — see later).

Koala, Sep 2003, RvO, 15 Koala Workshop

Koala Basic

ID - rules

Interface definition
name must be
olobally unigue

Parameter list
may be void ..
...or must consist of pped
named parameters.

Result type
must be void

or simplel

Parameter names
must be unique
per function

Every datatype and
lag must be
known to Koala

Function names
must be unique
per interface

Parameter type
must be simpief:éj
- datatype tas *

Koala, Sep 2003, RvO, 16 Koala Workshop




Koala Basic
ID - rules

Datatypes referenced

in interface are
automatically #included
by Koala

But if everybody
providing/requiring
this interface must have
access to a datatype it can
explicitly be referenced.

This is bad style

Koala, Sep 2003, RvO, 17 Koala Workshop

Koala

CD

In a component definition, the interfaces

provided and required by the component can
be declared.

A component is implemented as
pl

component 1

a set of C and H files. {

. provides
It is mandatory to have a i

directory per component.

requires
b vl

Part of the internal structure is
also described to Koala.

rl:Tb r2:Ic «r3:Ic

Koala, Sep 2003, RvO, 18 Koala Workshop

Basic



Koala Basic

CD - rules

Component name
must be globally
There may be unique
multiple sections
in any order
{not recommended)

Interface names
must be unique

per component

provides 1a pl,

b v3;
requires [b r1;
1o 2,

pl:Ia p2:Ia

Interface definitions

must be known
to Koala rl:Ib r2:Ic r3:Ic

Koala, Sep 2003, RvO, 19 Koala Workshop

Koala Basic

Binding

Interfaces must be bound fip to base:

component C1
.
requires | r;

contains
component Cl s1;
component C2 s2;

connects

= r = a0 o2

Note, components get a local name...

Koala, Sep 2003, RvO, 20 Koala Workshop



Koala Basic

Gluing

Code may be inserted in a binding in the
form of a module...

 the header file of m is contains
component Cl1 si;
generated; component C2 s2;
. module m; - - --
 the C file of m is hand connects

e
m = 352.p;

written.

This allows to fine tune components at
the level of configurations.

Koala, Sep 2003, RvO, 21 Koala Workshop

Koala Basic

Tips and bases - 0

An interface is a contract. So, if a component provides an
interface, it must somehow implement it.

A component should implement
* its provided interfaces

* the required interfaces of its
subcomponents

To formalize this, we have
introduced the notion of tips and bases.

Koala, Sep 2003, RvO, 22 Koala Workshop



Koala Basic

Tips and bases - 1

Which interfaces

should C3
implement?

Koala, Sep 2003, RvO, 23 Koala Workshop

Koala Basic

Tips and bases - 2

This is
“the world”
of C3

Koala, Sep 2003, RvO, 24 Koala Workshop



Koala Basic

Tips and bases - 3

We are looking at
interfaces that must be
implemented by C3,
not at for whom.

Koala, Sep 2003, RvO, 25 Koala Workshop

Koala Basic

Tips and bases - 4

When focusing on
interfaces, this is
the border of C3

Koala, Sep 2003, RvO, 26 Koala Workshop



Koala Basic

Tips and bases - 5

Koala, Sep 2003, RvO, 27 Koala Workshop

Koala Basic

Tips and bases - 6

The containing component must provide code for
all tips and it can use all bases.

Containing
component

Koala, Sep 2003, RvO, 28 Koala Workshop






Koala Basic

Example

No runtime
nor size

penalty!

handerafted

Koala generated

Koala, Sep 2003, RvO, 31 Koala Workshop
* Koala . . . Basic
Name mangling by binding
Comp
prefix pr
This is
not pp!

Koala, Sep 2003, RvO, 32 Koala Workshop



Koala Basic

Naming

A package has a so-called long and short prefix;
e.g. Edu and edu for course package.

Every component has a long and a short name;
e.g. CEduHelloMgr and eduhm. t be
¢ ¢

Note that component CEduHelloMgr
 the component long name starts with { specials

the package long prefix; prefix "eduhm";
» the component short name starts with

the package short prefix;

Both names are specified in the cd file.

Koala, Sep 2003, RvO, 33 Koala Workshop

Koala Basic

CD - rules

I you need access
component C1 { to a datatype that
. is not available
. through referenced

uses

Bool, Pump; interfaces

}

Koala, Sep 2003, RvO, 34 Koala Workshop



Koala Basic

Exercise
Hello, MG-R!
Koala More

3. More on Interfaces

1. Concepts
2. The Basic Model
3. More on Interfaces

We discuss
» functions in broad sense
* private interfaces

* intertace compatibility

4. Function Binding
5. Constants

6. Optional Interfaces
7. Switches

Koala, Sep 2003, RvO, 36 Koala Workshop




Koala More

ID - rules

.

L

... or they drop the
parenthesis all topether,
A constant may be
defined with a value ...

.

Functions may refer
{in which iabsee Ie{ze% im;}lg;:;g}taﬁm to other funetions
mus ala constant), .
This is handy if you want to in this mterface

write a switch/case statement.

Koala, Sep 2003, RvO, 37 Koala Workshop

Koala . More
Interface Chains

* binding = connecting modules to interfaces to
interfaces to modules.

» components only serve as scope restrictors
during the binding.

 each 7ip should be connected to

precisely one base or module;

each base may be connected to
zero or more tips or modules;

* modules cannot be bound to
modules (un-typed connection)!

Koala, Sep 2003, RvO, 38 Koala Workshop



Koala . More
Implementing Components

P, P, P; Py, Ps

An example implementation of
a component:

* m, implements p, in terms
of ry;

* m, and m,; communicate
outside Koala domain
(in C using header file);

* m, and ms communicate
through private interfaces.

Koala, Sep 2003, RvO, 39 Koala Workshop

Koala . . More
CD - private interfaces

definition
must be known
to Koala

names must
be locally

sections may
be in any interface I i; -
order (not module ml, m2; «
recommended)

the tip must
be bound once

Koala, Sep 2003, RvO, 40 Koala Workshop

the hase may be bound
zero or more fimes



Koala More

Interface Compatibility

Once defined, an interface definition

may not be changed any more...

(unless all components referring to the definition are changed
simultaneously)

but it is allowed to define new interfaces that are
supersets (or subsets) of old interfaces.

Koala allows to connect such new interfaces to
the old interfaces.

Koala, Sep 2003, RvO, 41 Koala Workshop

Koala More

Compatibility Rules

Rule: a fip may be connected to any base, if for
every function in the tip interface there is a
function in the base interface with:

* the same function name

* the same result type

 the same parameter list, where each formal parameter has:

— the same name
— the same type
* the same or more “constantness”
 (for constants: have the exact same definition 2+3 = 3+2)
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Koala . More
[1lustration

The pictures show how old and new interfaces
may be connected.
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Koala . . More
Exercise: more on interfaces
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Koala . More
Answer: more on interfaces

2
11=I2

:I1

M BeIl
:I3 = noh
TzI4 411
g(c)#g(ch) g(c)#g(ch)
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Koala . . . FuBi
4. Function Binding

1. Concepts
2. The Basic Model
3. More on Interfaces

We discuss
+ diversity interfaces

* native Koala expressions
+ in-line expressions

4. Function Binding
5. Constants

6. Optional Interfaces
7. Switches
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Koala . . FuBi
Implementing Functions

Rule: every function in every interface that is
connected with the tip to a module should be
implemented by that module.

Implementation can be:
e either in C,

e or in Koala

The latter is sometimes called function binding; its
main purpose is to support diversity.
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Koala . . FuBi
Diversity Interfaces

Component diversity may be controlled
through diversity interfaces.

These are requires interfaces, allowing us to:

* assign values to diversity parameters using the

binding mechanism; ool s rg o

* delay static/dynamic decision ! e

 optimise on certain constant values. }

connects
s.d = m;
within m {
s.d.Flag ()= true;
1
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Koala . . FuBi
Diversity Interfaces

Diversity interfaces are not provided interfaces
(using SetColor instead of required with Color)

* hard to optimize away
(now a #define suffices)

» provided needs notification
(propagate changes)

* initialisation problems
(when can a component use property)
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Koala FuBi

Diversity Spreadsheet

Compound components may have
diversity interfaces as well.

The inner diversity interfaces may be
expressed in terms of constants,
functions and parameters in the outer
diversity interface.

This allows to use different ‘languages’ for| connects
. . . Bl o= b oo o
diversity depending on the level of ithin
decomposition.

Catch: re-evaluated every time }

Koala, Sep 2003, RvO, 50 Koala Workshop



Koala v FuBi
CD - within clause

multiple
within sections,
any order

component C {
provides I p;

module
must be
declared

 must be
bound with
the basetom

{ may not
be bound
twice!

parameter
names must
be unique

parameter names
may differ from
interface definition
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Koal o< FuBi
CD - examples of within clause

Full ¢ expression
language

Abbreviates
0. = rB g




Koala . . FuBi
CD — native expression

function calls
must have the

right number of

within m |
p.L(x)

all C operators
are available in
Koala expressions
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Koala . FuBi
Inline

To achieve full expressional power in Koala,
the inline operator was added.

The inline operator allows one to refer to
the C domain from a within clause.

This allows for efficient implementations,
wrapping and an assortment of hacks.

within m {
p.f(x,y) = r.f( x+ty, (inline " (unsigned)x"}>> y );
}
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Koala . . . FuBi
CD - inline expression

p.L(x)
inline °

.. s

Note the difference
%69y 9

. resp

Yextern void my f{int x);
Yextern Int8 my var;”

all C declarations
necessary should
be put here

this should be proper C
{don't forget the *;')
external linkape: use prefix
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Koala . . FuBi
Inline expressions

Ingredients of inline expressions are
 constants (0, 1,... , NULL, TRUE);

 operators (+, &);
. . Not needed,
« foreign functions*tegacy—func; already possible
- in Koala

 optimizations my var andmy func.

Make unique with
component

shortname (prefix)
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Koala . FuBi
Koala expression =» macro

Koala expressions, native as well as inline
ones, are mapped to macro’s, not functions.

This makes them interesting from an efficiency
point of view (slide+1, slide+2).

This makes them dangerous from a syntax
point of view (slide+3).

This makes them problematic from a function-
address point of view (slide+4).
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Koala . . . FuBi
Native expression - efficiency

component CBbComponent
{

specials
prefix "bbc";
requires
ihetter get;
component CAaComponent contains
{ - module m;
specials connects
prefix "aac"; = t
provides
lGetter get;
contains
module m;
connects
get = m;

within m {
// get.Vall in C
get.Val2() = 3;
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Koala . . . FuBi
Inline expression - efficiency

component CSsComponent
{

specials
prefix "ssc";
provides
IInit iri;
IAccess acc;
contains
module m;
connects
init= m;
acec = m;
within m {
acc.Get () =
inline "ssc MyVal'
using "int ssc MyVal;";
acc.Set (v) =
inline " (ssc MyVal=v)"
using "int ssc Myval;":
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Koala . . FuBi
Inline expression - syntax

When stubbing, don’t write p. f (v) =inline " "

+ a function is an expression, within m {

. . // Use either old style:
 and the empty expansion is not p.f(v) = inline "((void)0)";
¢ example X= ( r_f (3) ’ S ) // or better, the new style:
* won’t compile p.f(v) = void;

Don’t write p.Dup (v) =inline "v+v"
* inline is implemented as macro e

* so you get the macro-( )-hell p.Dup(v) = inline " (v+v)";
. example x= 3*r_Dup (5) . // Koala parenthesizes args!

e xis now 20, not 30
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Koala . . FuBi
Expression - addressing

Sometimes it is desired to take the address of a
required function.
« this not allowed, because

* it could be a macro! requires
. IInterface rl;
» if needed, use addressable IInterface r2;
. . contains
* however: ROM size increase module m;

connects
m = ri;

m= r2;
within m {
addressable 11 £ 2 T

}
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Koala . . FuBi
Implementation choices

possibilities:

— C (a function in a c file)

. . /
— Koala (an expression ina

within in a cd file): o

o native / . p.E(x) = xtx;
* inline

within m {
— p.f(x) = x + inline " (char)x";

}
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Koala Opt
5. Constants

1. Concepts
2. The Basic Model
3. More on Interfaces

We discuss
+ Constant folding

* lsing constantness

+ CONSIANI maco

* const operator and
declarator

4. Function Binding

5. Constants

6. Optional Interfaces

7. Switches
Koala, Sep 2003, RvO, 63 Koala Workshop
Koala . FuBi
Constant Folding

Koala understands native expressions, their
constants, operators and binding.

Koala can optimize these expressions, this is
referred to as constant folding.

Koala can not fold c-implementations or
inline expressions.
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Koala FuBi

Constant Folding Examples

e ifix)y=3+4 has value 7

e iglx)=35+if(x) has value 712

s iLh(x)=x+1 1s not constant folded
o ip(x) =1ih(5) has value 6

* i.b=0&& true has the value false

ic()=ib?jd():je() optimizes i.c( ) to j.e()
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Koala . FuBi
Using constantness

When a function is constant certain optimizations
are possible:

» Removing dead statements

» Removing dead definitions

 Using static arrays, switch/case

» Removing dead components

Some optimizations go automagically,
others need help from you.

Koala, Sep 2003, RvO, 66 Koala Workshop



Koala FuBi
Dead statements

Koala, Sep 2003, RvO, 67 Koala Workshop

Koala FuBi

The CONSTANT Macro

Whenever Koala determines that a function f in interface
i is boolean or integer constant, it generates a macro
with the name i £ CONSTANT that has the value of
the function as expansion.
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Koala FuBi

Dead definitions

Lise i © CONSTANT for pre-processor,
and 1 £ for C-compiler
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Koala FuBi

The const operator

In a Koala expression, we can use the const operator.
It evaluates to true when Koala can compile-time fold
the operand to an integer constant.

component CComponent

provides
I P
requires
t e e
IDiv div:
contains
module m;

connects

b = m;
S e s e e
within m {
p.f(x) = (const div.A) ? rl.f(x) : r2.f(-%);
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Koala FuBi
The const declarator

Sometimes, a required function (typically an interface
parameter) should be compile-time constant, for the
C-code to be correct. Use the const declarator.

component CComp

provides

I i
requires
i £y
Ibiv div;
contains
module m;
connects
b = m;
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Koala FuBi
Dead components

When a component is dead this is detected by
Koala’s reachability algorithm
(see last chapter).

Switches (see last chapter) help making
components dead.
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Koala . O
6. Optional Interfaces :

1. Concepts

2. The Basic Model
3. More on Interfaces
4. Function Binding

5. Constants We discuss
. + optional imterfaces
6. Optional Interfaces L e

7. Switches
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Koala . Opt
Evolving Components

Interfaces must be connected at the tip, unless they
are declared optional.

Optional interfaces allow
components to evolve
over time, without having
to change existing
configurations.
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Koala Opt

Optional - Well Formedness

component C [
provides I pl, p2 optional;

requires [ rl, r2 optional;
eontaing interfgea . (1 1

module ml, m2;
connects pl = ml; p2 =

ml -

il = m2; 12 =

m2 = rl; m2
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Koala . Opt
1Present

Every optional interface is augmented with a nullary integer
function iPresent (witha CONSTANT macro).

Koala sets iPresent Only allowed if the iPresent must be
to false lower interface can defined by the module

be guaranteed to be (in Koala expressions

present at compile orinC)
time

iPresent is passed iPresent can be
through used by the module
(in Koala expressions

Koala sets iPresent
to true

orinC)
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Koala . _
1Present optimised away

o If iPresent 1s statically known
the compiler will optimise

— remove guard

— remove either then or else part

* If iPresent i1s dynamic
code still works
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Koala .
Exercise

Hello you

(twice)
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Koala Switch

7. Switches

1. Concepts

2. The Basic Model
3. More on Interfaces
4. Function Binding

We discuss

5. Constants

* switches

* compatibility and optionality
» reachablility

+ [CONNECTED

6. Optional Interfaces
7. Switches
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Koala . . Switch
Flexible Connections

A switch allows to create bindings that depend on
the value of certain functions.

In the example, p is connected through
the switch to either pp or 1,
depending on the value of the control
function in interface d.

Koala optimises switches if the setting is
known at compile time, and generates
switch code otherwise.
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Koala . Switch
Switch - Well Formedness t

these are bound

a Koala expression that
18 allowed to refer to
any interface of the
containing component.

must be an expression that
Koala can compile time fold
{0 an integer constant
b1 P2

component C {
provides I pl,p2;
requires I d;
contains component C sl,s2;
interface 1 i1,1i2;
module m;
connects switch d.f

}
}
| . i2 } on 7
by the tip }
}

these are bound
by the base
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otherwise;

the “catch-all”’
choice

have the same
16‘]} 3

Koala Switch

Interface Compatibility

A switch is a special form of binding.
The compatibility rules are the
same. This means that any function
in any interface in the in clause
must have an implementation in the
corresponding interface in every b e
out clause!
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Koala . Switch
Optional Interfaces

Rules for connecting optional interfaces can be
derived from the general binding rules:

Koala calculates iPresent to be:
d.f()?true:j.iPresent()
switch d.f

in {p}
out { i } otherwise
» { 3 } on false

Is allowed, provided that Koala can

guarantee at compile time that:
-d.£() holds, or
- j.iPresent() holds
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Koala Switch

Reachability

Some functions are called by
‘Magic’, i.e. outside the
Koala domain:

e main ()

* interrupt handlers

If a module contains such a ceoponent C
function, declare it as present Pt

module m0 present;
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Koala

Reachability

» Koala generates header files for all modules in
reachable components.

 Informally: a component is reachable if it is
(indirectly) called from a present module.
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Koala Switch

Reachability

» modules marked present are reachable;

* if a module is reachable, then an interface
bound with its base to the module is reachable;

 if an interface is reachable, then an interface or
module bound to its tip (directly or via a
switch) is reachable;

« acomponent is reachable if at least one of its
modules is reachable;

* amodule is reachable if its container
component is reachable.
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Koala

Reachability

Webuild C1.
Which components
are reachable from

e o
Which modules are built
and hinked from

mla m%?
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Koala

Reachability
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Koala Switch

Reachability

« However, reachability
stops when reaching
an optional interface

e This allows us to have
optional initialisation
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Koala Switch

ICONNECTED

For every interface i bound with the tip to a module, a macro
i ICONNECTED is generated if that interface is bound with the
base (possibly through other interfaces) to a reachable module.

This macro can only be used in C; there is no native Koala
equivalent.

pl p2 p3
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The Problem
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Testing Software is a Bottleneck

© Henrik Thane 2003 henrik.tha

Cost

Distribution of Life Cycle
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The Cost of Defects

Finding Bugs Late is very Expensive and Tiﬂze-Consuming

- No Defects Created

Development ° Integration

The Cost of Defects

Facts:

#= Software team: 100 people
# Maintenance team (40%): 40 people
# Cost 600 SEK/h

45 MSEK

Bug complexity:

i

e o

[Cost in KSEK] Development integration
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Fundamental problem: Discontinuity

Testing programs, debugging programs ?

Inputs causing
erroneous
outputs ‘

Erroneous
oufputs
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Testing in general

Reliability improvement
Basic testing techniques

Black box or White box testing

specification based or implementation based
Functional testing (Black-box)
Ve 2sting (all possible inputs)

Structural tests (White-
Equivalence class testing
Boundary value testing
Transaction testing

Fault injection
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utline

Testing components and architectures
Why Component Reuse? @
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Reuse: A growing problem?
Therac-25

Computer controlled radiation

+ 6bit counter turned 0 + hardware
interlock removed

Reuse: A growmg problem’-’

The controlling software was written in ADA but is in
essence equivalent with the following C code:

“This happened: « ;

A 64 bit float was truncated to a 16 bit integer.int a “non-critical” s emp&nen‘t. :

When the mteger overflowed the ADA program ran an exception hamlla\ t shut down the entire sy
oqk ‘

it had no function in A
Lesson learned???
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Controlled Reuse and Controlled Testing
Non overlapping input-output domains

Telephone A+B
-17..1027

Controlled Reuse and Controlled Testing
Overlapping input-output domains

-12 000... 5010
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Outline
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The constructive approach:
Design and measure for testability !!

Testability = The inverse to test effort
Testability factors

= Coverage

The number of possible inputs to the system
= E.g,INT32f(INT32 a, INT32 b, INT32 c) --> 2%

(test&metho d) The number of paths through a program

Observability

*  Data extraction

= Intrusivness

= Controllability

= Determinism

= Reproducibility

A Metric for Testability: The DRR

The Domain Range Ratio (DRR):

= The DRR of a unit (module, function, operation) is the ratio between the cardinality of the damam
(mput} to the cardinality of the range (output).

DRR indicates a high potential of the module to hide errors ==> low testability.

if € than A= ( X+ )% K1 else A:=( X+ Y)* K2;
B:= A> 1000; . *
end;

DRR (F)
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A Metric for Testability: The DRR (Cont’d)

A high DRR indicates modules of the program that are less likely to expoée existing errors
= Errors are hidden because of “low observability”

Testability has to be improved by
1. Adding new output parameters ==> increase
2. Introducing ASSERTIONS =

A Metric for Testability: The DRR (Cont'd)
Improved testability

function F( in integer X, ¥Y; out boolean B; out integer A);

r

! funection F (in integer X, ¥; out boolean ‘3) :

if C then A:=( X+ Y)* Kl else
ASSERT( cond( A), “erroneous state in function F”)
B:= A> 1000; ‘

end;
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The constructive approach:
Design and measure for testability !!

Testability = The inverse to test effort
Testability factors

= Coverage

ce to explore

(test method)

Observability

= = Data é}iiraction

= Intrusivness

= Controllability

Determinism

The constructive approach:
Design and measure for testability\ "

Testability = The inverse to test effort
Testability factors

= Coverage

(test\ method)
. Observability:“

= - Data extraction
= Intrusivness
= - Controllability

Determinism
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Another picture:

Error Size and Location

Module A » Module B

To find an error

= Choose a test case which executes the
erroneous statements o

=  Notice the failure caused by the error
Large errors easier to find
Size varies with location
The error is arg at fhe boundary of

Design for High Testability (Increased obervability)
Defensive programming _

assert <pre-condition>;

statement 1;

+——— Program Location —

statement n;

assert <post-condition>;
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Design for High Testability (Increased obervability)
Defensive programming (Cont’d) _

(GY =odnput? = “PY) 3} // pre condition

statement n;

assert (345 < output < 640 ) // post-condition

Design for High Testability (Increased obervability)

Defensive programming (Cont’d)

Telephone A+B

assert ( (=17 < inputl < 1027) && (7A” < ingutzx_
statement 1; ‘
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Design for High Testability
BIST - Built In Self Test

Include test cases in Object structure Ui &

BISTObject::TestCasel
BISTObject: :TestCase?

Class class-name

{

s

BISTObject: :TestCaseN

Destructor declaratiaﬁf
Function declarations;
Test declarations;
// Implementation
Constructor;
Destructor;
Functions;
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You always test against the specification

‘The radar system bf HMS Sheffield identifie a}i inco,

missile as non-Soviet and thus friendly. No alarm so

i

i

© Henrik Thane 2003 henrik.than




Outline
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Monitoring, Testing and Debugging of RTS
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Multitasking and distributed systems
The probe effect

Multitasking and distributed systems
The probe effect

i
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Monitoring

Embedded real-time systems are hard to observe
» Few interfaces to the outside world
» Observations may change the dynamic behavior (the probe effect)

Non Intrusive Hardware Monitors

Hardware in-circuit emulators \ .
using dual port ram (e.g., , ICE RTOS awareness .
Lauterbach, AMC) / e.g., Lauterbach [~ DATA awareness |

PC Target System

Target Program Target

Program

A
Detect[Events

Download & Start Hardwarer Monitor

Event Buffer
Read Event Buffer v u

Monitoring Client
{Event
Analysis and Sending)
Visualization

henrik.thane@mdh.se
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Non Intrusive Hardware Monitors

Thane 2003 henrik.th:

The target operating system
and software is automatically
instrumented for storage, of
histories, in circular memory Pre deployment:
buffers of programmable Periodically upload
length. buffers

Post deployment and cras|
Store in ram, flash memory
equivalent.

Download & Start

PC Target System

Instrumented
Target
Program

Target Program

instrumentation

instrumented
Target Program

Detect|Events

g t Buffy
Read Event Buffer vent Butler

Monitoring Client <
{Event

Analysis and Sending)
Visualization

henrik.thane@mdh.se
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Hybrid Hardware Software Monitors.

Hardware in-circuit emulators or
logic analyzers collect —
histories using bus Logicanaiyzer
snooping and minimally ‘ . | e.g., Agilent

instrumented software.

Instrumented RTOS Logic analyser or
and software write to a > pod shoop data
buffer . .

written to the buffer

PC Target System

Instrumentecd
Target
Program

Target Program

Instrumentation

instrumented

Target Program Detect|Events

Download & Start Hardware Monitor

Event Buffer
Read Event Buffer

Monitoring Client -
e {Event

Analysis and Sending)
Visualization

i
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Software Monitoring

o
.
.

1

Sample

Sample |

i

Sample /
2

Period = 5 ms

Actuate

Period = 30 ms

Design Rules for Minimal Intrusiveness




Elimination of software monitors?

A

B
e

|."
2 4 6 8 10 > 4 6 8 10

Figure 4-9. Probe task B can be . Figure 4-10. Low priority probe
removed due to fixed release times .
task A can be removed without

of A and C. side effects.

T

Outline




Software testing for embedded systems
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Embedded Testing

Problems with Embedded Testing




The Controllability and Determinism problem

Test of sequential software
* Need only control sequence of inputs (easy :-)

The Controllability and Determinism problem

Gufp Ut(x Ynew 'Znew)

(I 3 Receive(task C &2)
Quiputixry -7}

Task B

Sanple (&value),

Senditask A value)

\ Sample f&vaIueZ}
% Senditask A valuel)

© Henrik Thane 2003




Task A

' e== [ he same scenario =2

Ottoit( X tY -4

Qtifpilf (X ty new 'Znew)

= Deterministic output

Sample (Svalue?)
b Sendilask A valuel)

© Henrik Thane 2003 henrik.thane@mdh.se

A viable approach _

Sequential prgs. _ System level control-flow

emxen dwews lwews fowew oeow
3
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A Deterministic Testing Method
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Improving testability
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Outline
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Debugging with Monitoring

Approaches

» Real-time display
[ tem state in real-time

Debugging with Monitoring 2
Approaches (cont.)
= Deterministic replay

imulate ¢ itio
* Dynamic simulation -
= extension to deterministic Fépfay
» limited modification capabilities baée‘d\on ! no toring log-
= but: simulation does not match the real world 100%

enrik.thane@mdh.se
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Debugging in

Reality

Robots in the process industry:

» Debugging in prod. environment not
possible

Detection of the correct bug in LAB?

© Henrik Thane 2003 henrik.tha

 o-\testlidle.c
node_t+ n,

job_t* rdy_set,
time_t a, time t h,

cimet o1, time t or) CyC"C debugg|ng Of sequential

time t t, alfa, beta, & prime, b_prime, A,B, u;

A software (Easy :-)

long call;

e Implicit reproducibility

rdy = copy set (rdy set);

e tnts, o, 5, s1,oc) » Breakpoints,
1f (rdy == NULL) L WatChes,
o e, o = Traces (single stepplng)

3

else

4
Arc(n, a, b, NULL, call):
orderings++:

¥

else
{

T = X(srdy):

A = a < 0? EXCL{a) :a;
B = b < 0? EXCL(b) th:

alfa = T->r > A? T->r: A;
beta =(T->r > B? T->r: B) + w_max(T->wcet):




The Debugging Problem

Cyclic debugging of sequential real-time software
= Problem of timely reproduction of inputs/outputs.
= How to breakpoint the world???1!!

» The probe effect.

node_t* n,
3job_t* rdy_set,
time_t a, time t b,
time v 81, time_t sr)

time t t, alfa, beta, a_prime, b_prime, A,B
job_t  *rdy, *T.
node_t* n prime;
long. call;

recur++;

call = recur;

rdy = copy set(rdy set):

. ey Py S Y

Fitdes _TRACE
print_trace(n,rdy, a, b, sl,sc);
Fendif
I 1f (rdy == NULL)
o i
1f ((rdy=make_ready(t, rdy))!= NULL)
{
eog(n, rdy, a, b, EXCL(t), sr);

else

Arc(n, &, b, NULL, call);
orderings++:

3
else
i
T = X(srdy);

A = a < 07 EXCL(a) :a;
B = b < 02 EXCL(b) :b;

alfa = T->r > A2 T->
beta =(T->r > B? T-:

© Henrik Thane 2003

Cyclic debugging of multi-tasking real-time
software
= Additi

1a

onal problem of reproducing
terleavings

>
IIIIIIIII'

II|I|I|I|I|I|I|I
60 70 80 920 100 110 120
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The Debugging Problem

Cyclic debugging distributed real-time systems

= Distributed breakpoints?
‘Need also correlate observations between
‘node: : .

Deterministic Reexecution:
»  Reexecutes the target system exactly
according to the recording

# mixes recording of real behavior with
Minimal resource requirements reexecution of control system software

Replay the exact behavior of the control
system over and over again

*® travel back and forth in time to observe what
happened

# - “in existing standard development environment

Software ”black-box” Recorders:

Records behavior and stimuli during operation
1 Compared to traditional "black boxes”

Find the correct bug causing the failure

The BlackBox

The TimeMachine

© Henrik Thane 2003




Deterministic Replay Debuggmg of RTS

Related work Wym ~

*Thane H. and Hansson H. Using Deterministic Replay for \ f
Concurrent Systems debugging of Distributed Real-Time Systems. 2000. :

sks in ADA - Tai et al. 1991 S :
*Problem: Specialized real-time kernel

eZambonelli and Netzer. An Efficient )
Incremental Replay of Message-Passing Applic ons,

| _Problem: Handle only synchronoué eventé like \:M‘O\St Referen? s are old > 10 years
'rendezvous ‘

- l\I:::

ReaI-Tlme Systems

Reproduction of interrupts and task-switches usmg special
hardware - Tsai et al. 1990

Reproducing interrupts and task switches usi
special hardware and softwa dd and Ravishankar
1992.

No Industrial Appllcat|on

»The Idea has been around for 20 years
=Still no Industrial application

us olutjons do not scale
pecial compilers, special RTOSs, or significant

=A Deterministic Replay Teg:
=Based on Standard Com

© Henrik Thane 2003 henrik.thane@mdh.se




Our Approach

Define the industrial problem » ldentified success factors

» Assume standard commercial RTOS Use existing "hooks” in RTOSs
- 7 No reliance on instruction counters
#  Cannot be used with standard RTOSs

Use context checksums based on
. accessible task context for markers
Language independent

‘» Assume multi-million lines of code
» Cannot manually instrument source

# Recording performance penalty must be
low (and constant)

Our Solution

The Recorder TheHistorian  The Time Tra‘i?éllel:

§

e Target
Tine System
Traveler
e | Wb task

\ e
g *
Target septver

Hfomado 2 IDE and {ools
o

© Henrik Thane 2003 henrik.thane@mdh.se




Our Solution

# The Recorder

»The Historian
» Control-Flow: sCorrelate Data-Flow with Con
#= Asynchronous Preemptions generate Time Line
# Scheduled Task-Switches
terruy \

L

® ® W W W W W e W

= Data-flow:
I = Selective Inter-process communication -

# External non-deterministic stimuli
» Taskstate

# Use Hardware, Software or hybrid
recorders :

© Henrik Thane 2003 henrik.thane@mdh.se




Industrial Case-Study

Motion Control Software

Motion Control Software
+70 tasks

© Henrik Thane 2003 henrik.thane@mdh.se

*Most frequent task: T=4ms
*Plenty of interrupts
2.5 Million LOC

+Tornado




Implementation

= Black-Box/Monitoring infrastructure for VxWorks
Task switches

* Up/downloa
. BIack-BoxIMonltorlng mfras ture for Appl
= Data structure e.g., state
* Replay tool / Time Machlne
= Preemption, semaj

Integ rati\on

With Tornado via WTX
Replay engine
Target server

o

Time
Traveler

xX4s

///%

— Systemcalls Taf@e‘ -

—~IPC et e s

— Data strucfui*é‘é Tornado 2 IDE and tools

Execution time an h _ \\

measurements

© Henrik Thane 2003 henﬂk.ﬂlam@mdh.so




i

. Data-flow bandwidth 2MB/s. 1
not disabled, i.e., interrupt overhead not deducted. Non-optimized code (neither al

Additional benefits with TM & Black-Boxes

© Henrik Thane 2003
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THE TIMING BEHAVIOR OF EMBEDDED SYSTEMS:
SPECIFICATION, PREDICTION, AND CHECKING

Alan Shaw

1. Introduction *
Overview (1.1, 1.1.1, pp.1-4)
AppTlications of time and clocks (8.1, pp.136-137;
2.1, 2.1.1, pp-15-18

2. Keeping Time on Computers
Properties of clocks (8.2, pp.137-139)
Time servers (8.3, pp-139-140; 8.3.2, pp.142-143)
Clock synchronization (8.4, pp.144—149)

3. specifications with Time
Imperative and declarative methods (3.1, pp.33-35; 5, p.76)
State machines (3.4, pp.45-49)
Communicating real- ~time state machines (4.1, pp.50-65)
Regular expressions and extensions (5.1, 77—81)
Real-time logic (5.3, pp. 87-90)

4. Predicting Program Execution Times
Issues and approaches in timing prediction (7.1, pp.110-114)
Measurement techniques (7.2, pp.118-129)
Program analysis with timing schema (7.3, pp.118-129)
software and architectural complexities (7.5, pp.134-135)
Prediction using optimization methods (7.4, pp.130-133)

5. Software Support for Time
Programmimg language features (9.1, pp.150-151)
Ada as an embedded systems Tanguage (9.2, pp.151-162)
Java and real-time Java (9.4, pp.168-171)
Operating systems support (10.1, pp.182-183;
10.2.1. pp.184-186; 10.3.3, pp-190-192)

* The parenthesized parts refer to section and page numbers 1in the book:
Alan C. Shaw, "Real-Time Systems and Software"
John wiley & Sons, Inc., 2001.
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L1
L1
INTRODUCTION

* pefinitions: Embedded and Real-Time Systems

* Applications of Time and Clocks

KEEPING TIME ON COMPUTERS
* Properties of Real and Ideal Clocks
* Clock servers

* Clock Synchronization
with a Centralized Standard

Distributed Internal Synchronization:

Sida 1

Averaging Algorithm



L2_1
L2.1

SPECIFICATIONS WITH TIME
* Imperative vs Declarative Methods

* State Machines
Finite State Machines

Extended Machines

* Communicating Real-Time State Machines
Basic Distributed Machines
Timing and Clocks
Examples: Alarm Clock, Mouse Clicker, Philips Defibrillator

Semantics, Tools, and Extensions

Sida 1



L2.2
L2.2

SPECIFICATIONS WITH TIME (cont'd)

* Regular Expressions and Extensions
Regular Expressions and Finite State Machines

Extensions for Concurrency

* Real-Time Logic
Predicate Logic with Events
Event Occurrence Function

Application to Run-Time Checking

Sida 1



L3
L3

PREDICTING PROGRAM EXECUTION TIMES

* Approaches and Issues
Reasoning about Time with Assertions
Measurement vs Simulation vs Analysis

Underlying Hardware and Software
* Measurement Techniques

* Program Analysis with Timing Schema
Concepts: Static Analysis
Dynamic Path Analysis with Extended Regular Expressions

Schema Practice: Tools and Experiments

e

Prediction by Optimization

Integer Linear Programming Approach

* System Interferences and Hardware Complexities

Sida 1



L4
L4

SOFTWARE SUPPORT FOR TIME
* Programming Language Features

* Ada as an Embedded Systems Language
Core Facilities: Concurrency, Exceptions
Real-Time Annex

Interrupt Model

* Java and Real-Time Java
Real-Time Threads

Timing Mechanisms

* Operating Systems Support
Real-Time Features
Real-Time UNIX and POSIX

Synchronization and Communications

Sida 1
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Features and Internals of
Embedded Linux for Real-
Time Operations

Hyuk-Jae Lee
Seoul National University

2% Seoul National University Computer Architecture and Parallel Processing Lab

aring towards the Futume —

Contents

= Embedded Systems and Device Driver
Programming

= Embedded SW Architecture

= Linux Device Driver Interface

= Linux Features

= Linux Kernel Internals

= Real-time scheduling

» Linux Device Driver Programming
= Block Driver Interface

= Real-time Synchronization

i 5coul Nationol University Computer Architecture and Parallel Processing Lab
ML Souing towards he Riture ————




Embedded Systems and
Device Driver Programming

Seoul National University Computer Architecture and Parallel Processing Lab

Saaiing towsrds the Fature —

Leon: An mbedded System

|
LEON SPARC V8 _l FRY E

Dby integer unit
mmwi— * |

|
t-Cache D-Cache |
AHB interface |
I ANEBA AHE |
|
|
Drebug Timers | rgqClrt
Ll soriar Lok Moimon AHBAPE I
I < UARTS | ¥O port Bridge |
|
: [ aveases | | |
B — i ol i i e e e e i e e —— -4
B/16/32-bits memory bus.
| paom| I SRAM| | e ] |
oul Nationd Usivensity Computer Architecture and Parallel Processing Lab
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Peripheral Example: UART

= Data frames with 8 data bits, one optional
parity bit, one stop bit.

_|Start DO| D1)| D3| D4 | D5 [ D6 | D7 Stop|

Data frame, no parity

"~ |start| Do [ D1 ]3[4 [D5 [D6 | 07 |Parity|stop

Data frame with parity

Computer Architecture and Parallel Processing Lab
b

<«—J CTSN
Serial port

Baud-rate 8*bitclk > Controller
generator

—[1 RTSN

Y

RXDLCI» Receiver shift register |« Transmitter shift register [ TXD

v 1

Receiver holding register Transmit. Holding register

Internal I/O Bus T

oul Nationd Usivensity Computer Architecture and Parallel Processing Lab
ang Cowards the Rituee e |




UART Operation

* Transmitter:
= Enabled through the TE bit in the control register.

» Data is transferred from the transmitter holding register
to the transmitter shift register

= Converted to a serial stream on the output pin (TXD)
= Receiver:

* Enabled thru the RE bit in the control register

= ook for a start bit (high to low transition)

= Data transferred to the receiver holding register (RHR)
Data ready (DR) bit is set in the status register

= QOverrun error: receiver holding & shift registers contain
an un-read character when a new start bit detected

oul Mational Universiyy Computer Architecture and Parallel Processing Lab
: atng towands the Fulure
b

Control and Status Registers

» Basic interface between processor and peripheral
= Part of the peripheral hardware

» Locations, size, and individual meanings are features of the
peripheral.
* Memory-mapped: located in the processor’s memory space
= Easier to work with and are increasingly popular.

* [/O mapped: located in the processor’s memory space

* Memory mapped peripherals are generally easier to work
with and are increasingly popular.

oul Nationd Usivensity Computer Architecture and Parallel Processing Lab
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UART Control Register

31 § 76543210
RESERVED [Ec|vLB]F|pE|ps| 11 |1 |1 RE

Figure 25: UART control register

s 0: Receiver enable (RE) - if set, enables the receiver.

*+ 1: Transmitter enable (TE) - if set, enables the transmitter.

+ 2: Receiver interrupt enable (R1) - if set, enables generation of receiver inferrupt.

*  3: Transmitter inferrupt enable (T1) - if set, enables generation of transmitter interrupt.
+ 4 Parity select (PS) - selects parity polarity (0 = odd parity, 1 = even parity)

+ 5: Parity enable (PE) - if set, enables parity generation and checking,

6 Flow control (FL} - if set, enables flow control using CTS/RTS.

+ 7: Loop back (LB) - if set, loop back mode will be enabled.

+ &: External Clock - if set, the UART scaler will be clocked by PIO[3]

' Seoul Mational University Computer Architecture and Parallel Processing Lab
4 Scaring towards the Ruture —

UART Status Register

3 76543210
| RESERVED |FE| PE| 0 BR{TH| 15| DR

Figure 26: UART status register

+ 0: Data ready (DR) - indicates that new data is available in the receiver holding register.

+ 1: Transmitter shift register empty (TS) - indicates that the transmitter shift register is empty.
*  2: Transmitter hold register empty (TH) - indicates that the transmitter hold register is empty.
* 3: Break received (BR) - indicates that a BREAK has been received.

4 Overrun (OV) - indicates that one or more character have been lost due to overrun.

s 5: Parity error (PE) - indicates that a parity error was detected.

+  6: Framing error (FE) - indicates that a framing error was detected.

oul Nationd Usivensity Computer Architecture and Parallel Processing Lab
i, Soasing towaids ihe iture e




Device Driver

Main function: access the control and status registers

Goal: hide the hardware

= The only piece of software that reads or writes that particular
device’s registers.

= Device driver programming interface would not need to be
changed even if the peripheral were replaced with another
* Memory-mapped registers look just like ordinary variables.
= Declare a pointer to the register/set the value of the pointer

= For example, Timer2 Count Register at 0x80000050
unsigned int* timer2CntReg = (unsigned int*)0x80000050
*timer2CntReg "= FFFFFFFF; // Read, XOR, Modify
Difference between registers and ordinary variables:

= The content may change = use volatile
volatile unsigned int* timer2CntReg = (unsigned int*)0x80000050

s Seoul Nationol University Computer Architecture and Parallel Processing Lab
srng towaeds the Fotue
b

Interrupt

= Response time issue:
= The embedded system needs to react rapidly to external events,
even in the middle of doing something else.
= Interrupts:
= Microprocessor to suspend the current job
= Execute some different code (interrupt service routine) to respond
to whatever event caused the interrupt.
= Peripheral operations:need help from microprocessor

= For example, when a serial port chip receives a character, it needs
the microprocessor to read that character from the serial port chip
itself and to store it somewhere in memory.

= Peripheral has a pin that it asserts when it requires service.

= This pin is attached to an input pin on the microprocessor called an
interrupt request, or IRQ, that lets the microprocessor know that
some other chip in the circuit wants help.

oul Nationd Usivensity Computer Architecture and Parallel Processing Lab
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Leon Interrupt Control Block

IRQ
Pendin
11 .
PER_IRQ[10:0] —~—] ¢ | 15 l;r;ztgr
4 |lrq&trgf 4 IRL[3:0]
P10O[15:0] ] select ran g
IRQ IRQ Priority
Forc as select
Seoul National Universily Computer Architecture and Parallel Processing Lab

Scaing towards the futume

b

Leon Interrupt Assignment

Interrupt Sonrce

user defined

user defined

user defined

user defined

DSLY trace buffer

Second interrupt controller

—
LA

s

o
143

%]

—
s

—
o

Timer 2

Timer 1
Parallel O[3
Parallel T/0[2]
Parallel O[]
Parallel 1A
VART 1
TIART 2

AR error

b b e | e || | e o [

: Seoul Nationdl Usiversity Computer Architecture and Parallel Processing Lab
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Interrupt Table

Q: How does the microprocessor know where to find the
interrupt routine when the interrupt occurs?

» A: Sparc has a Trap Base Register (TBR)

TBA it Zero
31:12 11:4 3.0

* TBA (trap base address): most-significant 20 bits of the
trap table address

= tt (trap type): offset into the trap table; written by the
hardware when a trap occurs.

Seoul Mational University Computer Architecture and Parallel Processing Lab
Seafing towads e R b

Trap Table Offset
Trap TT Pri | Description
reset (i 1 | Power-on reset
wiribe error Ux2b 2 | write buifer emror
instruction,_acoess emor xii] 3 | Emor during instruction feich
illegal instruction 2 5 | UNIMP or other un-implemented instruction
privileged insimction i3 4 | Execution of privileged instruction in user mode
i disabled x4 6 | FP instmetion while FPL disabled
ep_disshled x24 6 | CP instroction while Co-processor disabled
watchpoint, detected x0B 7 | Instroction or data watchpoint mabeh
window_cverflos Oxls 8 | BAVEinto imealid window
windew _underflow (il 8 | RESTORE into invalid window
register, hadreare_groor 0x20 8| register file EDAL error (LEON-FT only)
e, address_poi_aligned Oxli7 10| Memory access to un-sligned address
fp_exception (=08 11 | FPLY exception
ep, exception (%28 11 | Co-processor exceplion
Seoul Notional Usiversity Computer Architecture and Parallel Processing Lab

Sowmdng towards the futuee
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Two 24-bit timers, one 24-bit watchdog, one 10 bit

shared prescaler.

Prescaler reload

; A 4

Prescaler value

A 4

fick

Design of Timer Unit Driver

Timer1 reload

Timer2 reload

—

Timer1 value — Irq 8
Timer2 value —>

-1

|

Seoul Mational University

Scaing towards the futume

Irq 9
> watchdog
v WDOG
-1
|

Computer Architecture and Parallel Processing Lab
b

= Prescaler

= Decremented on each clock

= When underflow

= Timer tick generated
= Reloaded from the prescaler reload register
= Effective division rate: prescaler reload register+1

= Timer

= Enabled by setting the enable bit (EN) in the control register
= Decremented each time prescaler generates a timer tick

= When underflow

= Interrupt generated

= if reload bit (RL) is set, reloaded with the timer reload register
= Otherwise, stop at Oxffffff and reset the enable bit

L

soul Nationd Ushvensiy

Sowmdng towards the futuee

Timer Unit Operation

Computer Architecture and Parallel Processing Lab
———————————




Timer Unit Operation

= Watchdog
= Similar to the timers
= Always enabled
= WDOG is generated when underflow
= Used to generate a system reset
* Timer %2 control register
= LD: load counter
= RL: Reload register
= EN: Enable the timer

Computer Architecture and Parallel Processing Lab
b

Data Structure

struct timerRegister
{
unsigned int ctrl;
unsigned int reload,

unsigned int cnt;
35
struct timerRegister® timerZReg = (struct timerRegister®) 0x8000005¢,;
#define TIMER _ENABLE 0x0001

#define TIMER LOAD_ COUNTER 0x0004 // load the timer
// reload register

// into the timer counter register

#define TIMER_RELOAD_COUNTER 0x0002 // counter
// automatically reloaded

/! w/ the reload value after underflow
#define TIMER2 TRQ NUMBER 9

oul Nationd Usivensity Computer Architecture and Parallel Processing Lab
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Variables

enum timerTypeType { oneShot=1, periodic };
enum timerStateType { idle=1, active, done };

static unsigned int timerLength;
static unsigned int timerCount;
static unsigned int timerState;
static unsigned int timerType;

Computer Architecture and Parallel Processing Lab
b

Initialization Routine

void timerInitialize() {
// install interrupt handler
catch_interrupt(timer2IrqHandler, TIMER2 _IRQ_NUMBER);
// make the hardware to a known state
timerState = idle;
timerType = oneShot;
timerLength = 0;
// enable Timer 2
timer2Reg->reload = 0x01FFFF;
timer2Reg->ctrl = TIMER _LOAD_COUNTER;
// load the reload register value
// to the counter register
timer2Reg->ctrl = TIMER_RELOAD_COUNTER | TIMER _ENABLE,;
// enable Timer 2
enable_irq(TIMER2 IRQ NUMBER);
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API Routines

#define MS PER TICK 10 // assume one milliseconds take 10
ticks

void timerStart(unsigned int nMilliSeconds, unsigned int timerTypeParam)

{

timerLength = nMilliSeconds/MS_PER_TICK;
timerType = timerTypeParam;

timerCount = timerLength;

timerState = active;

Computer Architecture and Parallel Processing Lab
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API Routines

int timerWaitFor()

{

if (timerState != active) return (-1);
while(timerState != done) {}

if(timerType == periodic) {
timerState = active;
timerCount = timerLength;
} else
timerState = idle;

return (0);
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Interrupt Service Routines

void timer2IrqgHandler(int irq) {
timerCount--;
if(!timerCount) timerState=done;
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Application Program Example

main() {
timerInitialize();
timerStart(200, periodic);
while (1) {

timerWaitFor();
printf("Timer Expired \n");

% Seoul Naotiondd Usiversity Computer Architecture and Parallel Processing Lab
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Embedded SW Architecture

oul National University Computer Architecture and Parallel Processing Lab
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Support of Multiple Devices

Device A

Device B

Processor

Device Z

Computer Architecture and Parallel Processing Lab
———————————




Round-Robin

void main (void) {
while (TRUE) {
if(!! I/O device A needs service) {
I! Take care of I/O device A
!! Handle data to or from I/O device A

}
if(!! I/O device B needs service) {
1! Take care of I/O device B
1! Handle data to or from I/O device B
}
if(!! I/O device Z needs service) {
1! Take care of I/O device Z
1! Handle data to or from I/O device Z
}
%ﬂ%’y Computer Architecture and Parallel Processing Lab
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Round-bin

= Simple architecture: no interrupts, no shared data, no
latency concerns

= Suitable device example: digital multimeter that measures
electrical resistance, current, and potential
= Only 3 I/O devices, no particularly length processing, no tight
reésponse requirements
* Disadvantages of round-robin

= [f a device needs response in less time than the microprocessor to
get around the main loop in the worst scenario, then the system
won’t work.

= The system may not work if any single lengthy processing exits.
= This architecture is fragile. A single device may break everything.
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Round-Robin w/ Interrupts

void main (void) {
while (TRUE) {

if (fDeviceA) {
fDeviceA = FALSE;
! Handle data to or from I/O Device A

¥

if (fDeviceB) {
fDeviceB = FALSE;
! Handle data to or from I/O Device B

if (fDeviceZ) {
fDeviceZ = FALSE;
1! Handle data to or from I/O Device Z

}

. 3& Na%mgt iﬁvziverziy Computer Architecture and Parallel Processing Lab
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Round-Robin w/ Interrupts

= Interrupt routines deal with the very urgent needs
of the hardware and then set flags

* The main loop polls the flags and does any follow-
up processing required by the interrupts.

= Interrupt routines get good response.

= Priority

= Interrupt service routines always have higher priority
than main function

= Disadvantage

= Shared data problem: fDeviceA, fDeviceB, ...
fDeviceZ
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Function-Queue Scheduling

= Queue of functions: the pointers to functions to be
executed.

= Interrupt routines add function pointers to the queue
= Main function calls the function in the queue

* Advantage:
= Can give priority in the function call
=  Any function that needs quicker response can be executed earlier
by putting the function on the queue in a given priority.
» Higher priority task can have reduced response time while
lower priority task may have increased response time.
= [f lower-priority task is long, the response time for the
higher-priority task might be still quite long.
-> real-time operating system needed
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Function-Queue-Scheduling

void interrupt vHandleDeviceA (void) {
Il Take care of I/O Device A
! Put function_A on queue of function pointers

¥
void interrupt vHandleDeviceB (void) {

Il Take care of I/O Device B

! Put function B on queue of function pointers
}

void interrupt vHandleDeviceZ (void) {
Il Take care of I/O Device Z
! Put function_Z on queue of function pointers

ee} Nationdd Usiversity Computer Architecture and Parallel Processing Lab
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Function-Queue-Scheduling

void main (void) {
while (TRUE) {
while(!!Queue of function pointers is empty)
1! Call first function on queue

}
o3
void function A (void) {
! Handle actions required by device A
}
void function B (void) {
! Handle actions required by device B

void function Z (void) {
!! Handle actions required by device Z

: Seoul Mational University Computer Architecture and Parallel Processing Lab
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Real-time Operating System

= Can suspend one task code subroutine in the
middle of its processing in order to another =
Potential response time is zero.

= [ssue:
* When the currently running task needs to be suspended

* The context of the suspended needs to be saved =
additional overhead by the OS.

= How to take care of the priority ?
= At what point, OS needs to reschedule ?

: Seoul Nationdl Usiversity Computer Architecture and Parallel Processing Lab
L Souing towards e Ruture e |




Overview of Linux &
Embedded Linux

Seoul National University Computer Architecture and Parallel Processing Lab
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* freely available
= Linus Torvalds, Copyleft
= 1991 version 0.01 (November 1999, version 2.2.13)
= Redhat, Debian, Slackware, Alzza
= supported many companies

* Main characteristics
= multi-tasking
= multi-user access
= multi-processor
= support various architecture (80*86, sparc, mips, alpha, smp, ..)
= demand load executables
= paging
= dynamic cache for hard disk
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* main characteristics (cont’)

= shared library

= support for POSIX 1003.1

= various formats for executable files
= true 386 protected mode

= emulating maths co-processor

= support for national keyboards and fonts
= support diverse file system (ext2, ..)

= TCP/IP, SLIP, PPP

= BSD sockets

= System V IPC

= Virtual Console

Computer Architecture and Parallel Processing Lab
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drawbacks

= monolithic kernel (currently micro kernerlize in many research)

= not for beginners (for system programmers)
= not well structured (performance-oriented)

Key attraction
= ‘experimenting’ with the system (handle the kernel by yourself)
= supported many companies

free: solution business & add on features

thanks to the INTERNET & GNU (special thanks to Anti-MS
feeling)




Embedded Linux

»  Embedded System

= Those systems to control specialized hardware in which the computer
system is installed

=  Hardware Evolution
= Complex Software -> require OS

» Linux
= Full-featured general OS

= Portability
= Kemel architecture
= Open source

= Relatively small kernel
= Cost effective

Computer Architecture and Parallel Processing Lab
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Embedded Linux - Pros

= A variety of functions & Expandability
»  Multiple CPU platforms support
»  Cost effective
= No royalty
= Stability
= Fast bug fix
= Easy application development
= Same development environment as Desktop and Server
»  Multi-Vendor OS

= Independent from vendors
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Embedded Linux - Cons

= Size
= Smaller than General OS, but bigger that commercial RTOS

Real-time Scheduling
= Research efforts on Real-Time Scheduler
= Limited preemption yet, (not fully preemptible)

Lack of Integrated Development Environment
= In general, text based development environment

Difficult to start with
= Too many open source sites and vendors

soul Mational University Computer Architecture and Parallel Processing Lab
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Embedded Linux Packages

G

4

®

L

»  hitpe/fwvenesfacom

© puecat
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Embedded Linux Packages

& KURT & yClinux
»  htp:ffwww.ittc.ukans.edu/kurt »  bttp e aclinuorg
# Linux Router Project ¢ ulinux (a.k.a muLinux)
»  htpffwww. linmneooter.org = hitp:f/sunsite auc.di/mulinux
# Linuxy/RK « PeeWeelinux
» hitpifiwww.cs.omuedu/~riumar/l »  hitp:/fwww.pesweslinux.com
inux-rk. el ® Qlinux
& LOAF {Linux On A Floppy) » hitp://www.cs.umass.edu/~lass/softw
»  hitp://loaf.ecks.org arefqlinux
& LinweSRT ¢ RED-Linux
» hitpiiwww.ukresearch.atto » htpif/linux.ece.ud.edu/RED-Linux
mi/linuxestt/ & RTAI
* LinwcWR > http://www.rtai.org

3 htpfwweinu-vrorg

: Seoul Mational University Computer Architecture and Parallel Processing Lab
Seafing towads e R b

Embedded Linux Packages

# Linux on Assabet
> hitp:/pevew cs cmu.edu/~wearable/ software
Jassabet htmi
COMPAQ IPAQ Linux
» hitpi//handhelds.org

L

»  hitpifimesh.gb.net
»  hitpi/fwvw.m17n.org/linwesh
# ARM Linux Project @ EIKS
» Dt/ fvven.arm.finux.org.uk/ »  hittpy/jwew, elks.ecs.soton.acuk
: Seoul Nationdl Usiversity Computer Architecture and Parallel Processing Lab
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Package (cont’'d)

CPU porting project
= Linux-VR, Linux SH, Linux PPC org, ARM Linux Project

Function enhancement project
= Real-time Linux
= KURT, Linux-SRT, QLinux, RED-Linux, ...

Small-footprint Project
= LOAF, ThinLinux, ELKS,...

Open Source Product
= Hard Hat Linux (Montavista)

b
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Packages

®  Proprietary product
= Embedix (Lineo), BluecatLinux (LynuxWorks), ...

« ]DE
= Embedix (Lineo), BluecatLinux (LynuxWorks), ...

» Real-Time Scheduler Provider

= Micro Kernel Approach — Not True Linux
= RTLinux, RTAIL ...

L
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Linux Device Driver

Seoul National University Computer Architecture and Parallel Processing Lab

Saaiing towsrds the Fature —

Classes of Devices

» Character devices:
= Character-based input/output

= Accessed by means of filesystem nodes
= Use open, close, read, write,,, system calls
= The difference from a regular file
— Regular file: can move back and forth
— char devices: access sequentially
» Block devices
= Like char devices, but accessed as multiples of a block (eg. disk).

= Network devices
= Device exchanges data with other hosts
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Linux File System Calls

int main()
{
int fdi, fdo;
char buf[100];
ssize tn;
fdi = open("test.in", O_RDONLY);
fdo = open{"'test.out", O_RDWR | O_CREAT);
n = read(fdi, buf, 10);
write(fde, buf, n);
Iseek(fdi, 2, SEEK_CUR); // move the position of the file pointer by 2
n = read(fdi, buf, 10);
write(fde, buf, n);
close(fdi);
close(fdo);
}

Seoul Mational University Computer Architecture and Parallel Processing Lab
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First Module Program

#define MODULE
#include <linux/module.h>
int init module(void) { printk(‘“Hello, world\n”; return 0; }
void cleanup _module(void) { printk(“Goodbye, world\n”; }
= printk():
= defined in Linux kernel
= behaves simlarly to standard C library function printf()
= Kernel does not use C library, thus needs its own print function
* Loading/unloading the module

» gcc —c hello.c // compile the module
» insmod ./hello.o  // loading the module
Hello, world // when the module loaded, execute init_module
» rmmod hello // unloading the module
Goodbye, world // when the module lunoaded, execute
// cleanup _module
Seoul Notional Usiversity Computer Architecture and Parallel Processing Lab
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S

printk(KERN DEBUG “Here I am %s:%I\n”, FILE , LINE & );
printk(KERN_CRIT “I'm trashed; giving up on %p\n”, ptr);
= Similar to printf
= Difference: classify messages according to their severity by associating
different loglevels
= Loglevels:
= KERN EMERG: emergency, preceding a crash
= KERN_ ALERT: requiring immediate action
= KERN_CRIT: critical condition, related to HW or SW failures
= KERN ERR: error condition, related to HW difficulties

= KERN WARNING: problematic situation, may not create serious
problems with the system

= KERN NOTICE: worthy of note. Security related conditions
= KERN_INFO: informational message
= KERN DEBUG: used for debugging

: Seoul Mational University Computer Architecture and Parallel Processing Lab
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Second Module Program

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/malloc.h>

static int mrdrv_open(struct inode *inode, struct file *file)
{ MOD_INC _ COUNT; return 0; }

static int mydrv_release(struct inode *inode, struct file *file)
{ MOD DEC_COUNT; return 0; }

static ssize_t mydrv_read(struct file *file, char *buf, size t
count,

loff t *ppos)
{ printk(“mydrv_read is invoked\n”); }

: Seoul Nationdl Usiversity Computer Architecture and Parallel Processing Lab
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Second Module Program

static ssize_t mydrv_write(struct file *file, char *buf, size t
count, loff t *ppos)

{ printk(“mydrv_write is invoked\n”); }

struct file operations mydrv_fops = {
read: mydrv_read, write: mydrv_write, open: mydrv_open,
release: mydrv_release }

int init_module(void) {
int result;
result = register _chrdev(250, “mydrv”, &mydrv_fops);
return result; }

void cleanup module(void)

{ unregister chrdev(250, “mydrv”);
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Second Module Program

= Compile

>gcc—D KERNEL -DMODULE — mydrv.c
= Load the module

> insmod mydrv.o
= Make the special device file

> mknod /dev/mydrv ¢ 250 0
% Seoul Naotiondd Usiversity Computer Architecture and Parallel Processing Lab
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Second Module Program

= Test program
#include <fcntl.h>
#include MAX BUFFER 26
char buf in[MAX BUFFER], buf outfMAX BUFFER];
int main() {
int fd;
fd=open(“/dev/mydrv’,0_RDWR);
read(fd, buf in, MAX BUFFER);
write(fd, buf out, MAX BUFFER);

close(fd);
return (0);
: ieeei N“‘%f%f‘ iiv:ivemiy Computer Architecture and Parallel Processing Lab
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= Simple Character Utility for Loading Localities
» Character driver that acts on a memory area as a device

» Properties of the memory area:
= Global: the data is shared by all the file descriptors that opened it.
= Persistent: if the device is closed and reopened, data isn’t lost.

= Scull0-scull3:
= Four devices controlled by a single device driver
= Basic type of device
= Scullpipe0-3, scullsingle, scullpriv, sculluid, scullwuid:
other variations of scull for the explanation of various
Linux features
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Device Structure of scull

typedef struct Scull Dev {
void **data;
struct Scull Dev *next; /* next listitem */
int quantum; /* the current quantum size */
int gset; /* the current array size */
unsigned long size;
devfs_handle thandle; /* only used if devfs is there */
unsigned int access_key; /* used by sculluid and scullpriv
*/
struct semaphore sem;  /* mutual exclusion semaphore
*/
} Scull_Deyv;
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Initialization in init_module()

* You need to register your device driver
» Example in the “mydrv” (the previous example)
int<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>