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Controlling the Performance
of

Networked Information Servers

Lui Sha
Irs@cs.uiuc.edu
Sept 2003

Controlling Computers

= Feedback control was embedded in the TCP protocol in the 70's to
solve the congestive failure problems that had brought down the
network.

= Since then, we have not experienced system-wide congestive failures
again even though the network has grown orders of magnitude. This
is a testament of the effectiveness of feedback control in a highly
dynamic, decentralized, and fast changing environment.

= However, except under heavy workload conditions that allow
effective fluid approximations, the application of control theory to
control the performance of computing systems has been slow. But the
need of performance control becomes more pressing.




Web Service
Performance Control

End Users Web Servers Application Servers

y

Courtesy of Joe Hellerstein, IBM
Research

The Problem

= From a control theory perspective, a networked information
server’s behavior is highly non-linear. The parameters of the
stochastic process, e.g., request rates, can change abruptly
without warning. They are:
= Not deterministic processes perturbed by random events like

LQG

= Not just the long term equilibrium behavior control like MDP
= Not just an isolated plant but networked servers

= Yet, we want to tightly control both the long term average and
the transient behaviors of these random processes.




The Difficulties

Linearized controller provides only
mediocre performance. A direct D :
application of adaptive control or
hybrid control does not provide much
improvement
= Workloads are as fickle as Web
servers’ attention spans N
= Random fluctuations in key N
variables makes state estimation
time consuming g N
= Control action itself pushes the
system away from the 05
selected/updated model at
runtime.

Key Ideas - _:.

= Model accuracy impacts control performance. And all the
difficulties point to a single problem: the actual plant
deviates from the plant model used by control.

= Queueing model is a “natural” to model the non-linear
behaviors of an information server over a wide range of
parameter values

=  Why not using a queueing model’s solution as a feed
forward control to “lock” the system into a desired
equilibrium operating point, in spite of workload changes?




Delay Control
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= Consider the M/M/1 model where D = 1/(u—A). The feed forward

control from queueing model, p(t) = 1/D_ref + A(x), “locks” the

system in an equilibrium state in the neighborhood of linearization.

= This makes the life of a feedback control easier. In return, the
feedback controller suppresses approximation errors in the
queueing model and the transients that cannot be reduced by

queueing modeled based tuning.

= To the best of our knowledge, this is the first framework that has
successfully integrates two powerful theories.




New Perspectives

Control Physical Plants | Control Web Servers
(Changing Eigenvalues) | (Changing Probability)

Periods measured in Units of time Number of events

Sampling rate for signal | Faster than Nyquist Slower than

processing rate 1/Large_Sample_Size

Observations High frequency jumps | All the fluctuations are
are usually noise part of data

Modeling identification | Large excitation is good | Small excitation for
as long as it does not | many epochs
cause saturations

Controlling Probabilities

sSuppose we want to correct a biased coin with prob(head)= 0.4. We begin by
soldering a small weight to the side of head of the biased coin, and then do
some experiments and adjust the weight...

=sHow frequently should we adjust the weight? Obviously, we cannot succeed if
we change the weight, just flip the coin once, and change the weight again

= The problem here is that we are dealing with probability, and not with an
instantly measurable quantity such as temperature or pressure.

sFrom a control perspective, the transfer function (relationship) between the
change of weight and the change of probability of head manifests itself only

when the sample variance becomes negligible.

10
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Small Excitation
and Slow Sampling (|

= The horizontal axis is the sample

. R 0
variance in log scale.

sUnder a small excitation of Ay =
#0.01, when the sample contains
many epochs, the sample
variance becomes very small and
Matlab’s estimation using
experimental data converges
towards the theoretical value of
—4.

maodel identification result
[

sUnder a large excitation, e.g., 4u
= #0.1, the estimation would B e
converge to a wrong value, o4 3 2 4 0 1 23
variance of residual eror in log scale
because the asymmetry
response of queueing system. Sample Variance and Model Accuracy
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Sliding Window Control Action

Long observation window does not imply
SIOW COntrOI actlon - : m.aan nf.mnr.s wariince. nfdela.r

o1t

For example, a 1000 events window but
change control output every 10 events

= X-axis is step size (also shows avg
control effort Ap)

= Y-axis is delay variance

=
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=
=
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=
=

Quick update step reduces variance & 05|
control efforts.
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Effect of Control Update Rates with a
Suitably Long Observation Window
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Experimental Setup

Objective: Control absolute delay of premium clients on an Apache
web server

= Sensor: averages response time of all requests
= Actuator: Number of processes (C. Lu, RTAS 2001)
Load generation: SURGE web benchmark

Platform: Linux-based PC cluster on Ethernet LAN

13

Experimental Results

G/M/1 model with PI controller produces much better results

—e— G/M1

——o— G/M/1 with PI
controller

reference

connection dela;

---x--- GIM/1 with P controller

-1 6 500 1000 1500 2000

time (sec)
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Asymmetric Control

The effect of reducing resource is much more profound than
adding resources, especially when workload is heavy.

Asymmetric | Symmetric Delay
Control Control Ad,
Ref Delay | 3.0 3.0
Mean 2.9942 3.0850 5
ref
, Ad,
Variance 0.0821 0.2342 ]\
—Ap B Ap Service Rate
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Asymmetric Control —

-Ap Ap

The effect of reducing resource is much more profound than
adding resources, especially when workload is heavy.
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Summary

Providing high quality performance control in a single server is an
important first step.

Looking ahead, we will address issues:
. Non-linear controllers
. Adding queue size prediction, measurement and control
. Performance control of server farms and network of servers
. Testing results in real system, e.g., servers at IBM Research

Sha, L., Li, X., Lu, Y., and; Abdelzaher, T. “Queueing model based network server
performance control”, the proceedings of IEEE Real-Time Systems Symposium, 2002

Lu, Y., Abdelzaher, T., Lu, C., Sha, L., and Liu, Xu, “Feedback Control with Queueing-
Theoretic Prediction for Relative Delay Guarantees in Web Servers”, to appear in The 9th
IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS 2003)
Liu, X., Sha, L., Diao, Y., Froehlich, S., Hellerstein, J., and Parekh, S., “Online Response
Time Optimization of Apache Web Server" proceedings of the 11th International
Workshop on Quality of Service
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Updating
RT Embedded Software
in the Field

Lui Sha
Irs@cs.uiuc.edu
September, 2003

Irs@cs.uiuc.edu

Reactor
&
Surface
Dynamics

in situ
Sensors

Multivariable
Controller

RT embedded systems have a long life span. How to
develop real time systems that can:

* be easily changed in the field, even on the fly?
* maintain stability and controllability in spite of
« arbitrary errors in the new software?

» malicious attack by insiders disguised as
upgrades?

Irs@cs.uiuc.edu




Job 1 is Robust Against Bugs

-We shall begin with an investigation on the principle of developing
software systems that are robust against bugs. Leaving them
alone, bugs may destroy:

 Correctness
» Performance
* Reliability

» Security

* any software property that you care.

Irs@cs.uiuc.edu 3

The Software Reliability Conundrum

If history is any guide, formal methods can only handle software with
moderate complexity in the foreseeable future.

How about using software tolerance based on diversity?

But wait. What if the fault tolerance system is itself too complex to
verify and have faults?

For example, the Six Western States Blackout incident in US was

« triggered by the shorting of 1 power line at Oregon
« spread by the flawed “self healing” architecture at the time

Irs@cs.uiuc.edu 4




Complexity, Diversity and Reliability

To build a robust software system that can tolerant arbitrary
application software faults, we must understand the relations
between software

» Complexity: the root cause of software faults
 Diversity: a necessary condition for software fault tolerance.
» Reliability: a function of complexity and diversity

We shall begin with postulates based self-evident facts

Irs@cs.uiuc.edu 5

Software Development Postulates

We assert that the following postulates self-evident

« P1: Complexity Breeds Bugs: Everything else being equal, the
more complex the software project is, the harder it is to make it
reliable.

* P2: All Bugs are Not Equal: You fix a bunch of obvious bugs
quickly, but finding and fixing the last few bugs is much harder.

* P3: All Budgets are Finite: There is only a finite amount of effort
(budget) that we can spend on any project.

How can we model “software complexity”?

Irs@cs.uiuc.edu 6




Logical Complexity

Computational complexity => the number of steps in computation.
Logical complexity => the number of steps in verification.

A program can have different logical and computational
complexities.
» Bubble-sort: lower logical complexity but higher computational
complexity.
* Heap sort: the other way around.

Residue logical complexity. A program could have high logical
complexity initially. However, if it has been verified and can be used
as is, then the residue complexity is zero...

Irs@cs.uiuc.edu 7

The Implications of the 3 Postulates

P1: Complexity Breeds Bugs: For a given mission duration {,
the reliability of software decreases as complexity increases.

P2: All Bugs are Not Equal: for a given degree of complexity,
the reliability function has a monotonically decreasing rate of
improvement with respect to development effort.

P3: Budgets are finite: Diversity is not free. That is, if we go for
n version diversity, we must divide the available effort n-ways.

One simple model that satisfies P1, P2 and P3

» Sum of efforts used in diversity = available effort
* Reliability function: e — (complexity/ effort) ¢

Irs@cs.uiuc.edu 8




Diversity, Complexity and Reliability

Beliakhilitcy

3-version programming
1-version programming

A reliable core with 10x
complexity reduction

Effortc

=) i0 15 =20 25

Analysis shows that what really counts is not the degree of diversity. Rather it is
the existence of a simple and reliable core that can guarantee the stability of the

system. This result is also robust against change of model assumptions.

--- Using Simplicity to Control Complexity, IEEE Software 7/8, 2001, L. Sha

Irs@cs.uiuc.edu 9

Putting the Principle to Work

- Complexity is
» The side effect of features and performance
» The root cause of software faults

Itis kind of like money ... a source of many evils but something we
cannot live without.

So let’s find a way to control complexity, instead of letting it control
our systems.

Irs@cs.uiuc.edu 10




An Example

Once upon a time, there was an exam on sorting programs. Grades
are given as follows:

* A: Correct and fast: n log (n) in worst case
» B: Correct but slow
* F: Incorrect

Joe can verify his bubble sort, but has only 50% chance to write
Heap Sort correctly.

What is his optimal strategy?

Irs@cs.uiuc.edu 11

Requirement Decomposition

Often, requirements can be decomposed into

« Critical (correctness) requirements
+ Sorting: output numbers in\correct order;
» TSP: visit every city exactly\once
» Control: stable and controllaple

» Performance optimization
* Sorting: faster
» TSP: shorter path
+ Control: less time/error/energy

Joe can exploit software he cannot verify safely ...

Bubble Sort

Irs@cs.uiuc.edu 12




Stability Control

Stability control is a mechanism that ensures that errors are bounded
in a way that satisfies the preconditions for the recovery operations.
Stability control must be simple or it will be self defeating.

What if the untrusted sorting program alters an item in the input list?
1. Create a verified simple primitive called “permute”

2. Untrusted sorting software is not allowed to touch the input list
except use the permute primitive.

3. Enforce the restriction using an object with (only) method
“permute”

Under stability control, the untrusted Heap-sort can only produce “out
of order” application errors.

Irs@cs.uiuc.edu 13

Using Simplicity to Control Complexity

The high assurance control subsystem

* Application level: well-understood controllers to keep the control
software simple.

o System software level:. certified OS kernels

e Hardware level. well-established and fault tolerant hardware
o System development: high assurance process, e¢.g. DO178B

* Requirement management: critical properties and essential services.

The high performance control subsystem
* Application level: advanced control technologies,
o System software level: COTS OS and middleware
* Hardware level: standard industrial hardware

o System development: standard industrial development processes.

* Requirement management: features, performance & rapid innovation

Irs@cs.uiuc.edu 14




Stability Control for Control Systems

- Having a reliable controller, we identify the
recovery region within which the controller
can operate successfully. Recovery region operational consits|
is a subset of the states that are admissible
with respect to operational constraints

- The largest recovery region can be found Stability
using LMI. This approach is applicable to
any linearizable systems. They cover most
of the practical control systems.

envelope

The system under new complex
controller must stay within recovery
region

Irs@cs.uiuc.edu 15

Simplex Architecture for Control

|
o

Online upgradeable
complex controller

Stability
Monitoring

Data Flow Block Diagram

Irs@cs.uiuc.edu 16




Dynamic Component Replacement

Application Cgmplex feature
layer Rich components

Monitoring and switching logic
eSimplex
middlewagpé
Operating System

Hardware

Runtime Component
Replacement Middleware

Irs@cs.uiuc.edu 17

Interactive Demo on the Web

Lynx0S

é Q AV Streams
Simplex

LX)
!,D I annotated, pre-recorded

presentation (c.g. HTML)
(in case of communication failures)

Q0

ANV Streams [ [ |
Win98/NT Win98/NT

Ciamr et
Oook b 1
[

oook

s Tawss i b

l : Telelab Screen Shot ‘

http://www-rtsl.cs.uiuc.edu/ click project, click drii, click telelab download
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Protect Against Attacks Disguised as Upgrades

Attack on

Exec env
—_— Development

Environment

Code Safety Checks

appl. Logic

Bugs + attacks
—_—

v v A v \4 A

» Appl. Domai
Safety Controller + Stability Control Té)fhnolzg; .

Resource Depletion attacks

—
A A
RT Resource Management Middleware

Irs@cs.uiuc.edu 19

C Code Safety Checks

Due to the large installed base of C, we working with colleagues to define a
subset of C, called Control C, that can be statically checked for safety and
expressive enough for control and signal processing.

* + {strong-typing }

+ { Java-style pointers }

* + {region-based heap with only I region }
+ { “bounded” arrays }

e — {system calls except memory allocation }
* — {embedded assembly }

| Code |—'| Compiler Analysis I I GCC I

Ensure Code Safety without Runtime Checks for Real Time Control Systems,

Kowshik, Dhurjati, & Adve, CASE 2002

Irs@cs.uiuc.edu 20




Reactor
&
Surface
Dynamics

in situ
Sensors

Multivariable
Controller

RT embedded systems have a long life span. We are
developing technologies that allows a RT system that

* can be easily changed in the field, even on the fly
* maintain stability and controllability in spite of
« arbitrary errors in the new software

» malicious attack by insiders disguised as upgrades

Irs@cs.uiuc.edu 21
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Rate Monotonic Scheduling

Lui Sha
Irs@cs.uiuc.edu
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Prerequisite

The basic operating systems concepts including

processes, threads and execution priorities
context switching

mutual exclusions and locks

interrupt handling

Commonly used OS scheduling algorithms such as

FIFO
Round-robin
Foreground/background

Real Time Systems and You

Embed real time systems enable us to:

manage the vast power generation and distribution
networks.

control industrial processes for chemicals, fuel,
medicine, and manufactured products.

control automobiles, ships, trains and airplanes.
conduct video conferencing over the Internet and
interactive electronic commerce.

send vehicles high into space and deep into the sea to
explore new frontiers and to seek new knowledge.




Outline

* Real time systems and you
=>» + Fundamental concepts
* Independent tasks
* Homework
» Task synchronization and aperiodics
* Summary
* Homework

What is Real Time Systems

The correctness of real time computing depends upon not
only the correctness of results but also meeting timing
constraints:

*deterministically: (hard real time)

sstatistically: (soft real time)




Periodic Tasks

A task 7; is said to be periodic if its inter-arrival time
(period), T, is a constant.

N

Periodic tasks are common in real time systems because
the sampling actions.

(Can you give some examples?)

The utilization of task t;, is the ratio between its
execution time C; and its period T;: U,=C,/ T,

The default deadline of a task is the end of period.

Importance and Priority

Task 1, : if it does not get done in time, the world will end.

Task 1,: if it does not get done in time, you may miss a
sweet dream.

Quiz: presume that the world is more important than
your dream, should task 7, has a higher priority?




Why Ever Faster Hardware is Not Enough

i | important

E E E E | less important

If priorities are assigned according to importance, there
is no lower bound of processor utilization, below which
tasks deadlines can be guaranteed. Why?

C,T,+C,IT,=U

U—> 0, whenC,—> 0 and T, > ©

Task 1, will miss its deadline, as longas C,> T,

Measure of Merits

Time-Sharing Real-Time

Systems Systems
Capacity High throughput Schedulability
Responsiveness Fast average Ensured worst-

response case response
Overload Fairness Stability

is utilization level at or below which
tasks can meet their deadlines
in overload means the system meets critical
deadlines even if all deadlines cannot be met (critical
tasks are assumed to be schedulable.)




Dynamic vs “Static” Priorities

An instance of a task is called a job.

Dynamic priority scheduling adjust priorities in each task
job by job.

“Static” priority assigns a (base) priority to all the jobs in
a task.

Deadline vs Rate Monotonic
Scheduling

An optimal dynamic scheduling algorithm is the earlier
deadline first (EDF) algorithm. Jobs closer to deadlines
will have high priority.

An optimal “static” scheduling algorithm is the rate
monotonic scheduling (RMS) algorithm. For a periodic

task, the higher the rate (frequency), the higher the
priority.




Timeline 1

Timeline 2

[ [T (11100
A Historical Note

For a given set of independent periodic tasks[Liu73],

+ earliest deadline first (EDF) can ensure all tasks’
deadlines, if the processor utilization is not greater 1.0.

* rate monotonic algorithm can ensure all the tasks’
deadlines if processor utilization is not greater than

0.69.

Since the early 90’s, RMS was generalized into GRMS
and caught on, but EDF is still used infrequently.




An Open Problem

Under EDF, if a processor has a transient overload, it is
not clear which task can ensure its the deadline, since
each job of a task can have a different priority.

This problem is solvable. So far, no efficient algorithm
has been found to make it worthwhile to implement for
majority of the applications. On the other hand,

* RMS has a simple solution to the stability problem.

» The 0.69 worst case number is rarely seen in practice.
When encountered, it can be engineered away.

* Processor cycles, which cannot be used by real time
tasks under RMS, can be used by non-real time tasks
with low background priority.

GRMS in The Real World

“The navigation payload software for the next block of Global
Positioning System upgrade recently completed testing. ...
This design would have been difficult or impossible prior to
the development of rate monotonic theory", Doyle, L., and
Elzey, J., , Technical Report, ITT, Aerospace & Communication
Division, 1993, p. 1.

"A major payoff...System designers can use this theory to
predict whether task deadlines will be met long before the
costly implementation phase of a project begins. It also eases
the process of making modifications to application software."

DoD 1991 Software Technology Strategy. pp. 8-15.
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* Real time systems and you
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* Summary
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A Sample Problem

Periodics

100 msec

T1 £ 20 msec

150 msec
T

]

350 msec

T

|

Servers

Data Server

Aperiodics

Emergency
50 msec

Deadline 6 msec
after arrival

Routine
40 msec

Desired response
20 msec average




Schedulability: UB Test

Utilization bound(UB) test: a set of n independent periodic tasks
scheduled by the rate monotonic algorithm will always meet its
deadlines, for all task phasing, if

C1 Cn 1n

-_-I:1+ e F -_I-_-n <Um=n(2 -1)
U(1) = 1.0 U(4) = 0.756 u(7) = 0.728
U(2) = 0.828 U(5) = 0.743 U(8) = 0.724
U(3) = 0.779 U(6) = 0.734 U(9) = 0.720

For harmonic task sets, the utilization bound is U(n)=1.00 for all n.
For large n, the bound converges to In 2 ~ 0.69.

Conventions, task 1 has shorter period than task 2 and so on.

Sample Problem: Applying UB Test

Cc T U
Task t1: 20 100 0.200
Task 12: 40 150 0.267
Task 13: 100 350 0.286

Total utilization is .200 + .267 + .286 =.753 < U(3) =.779

The periodic tasks in the sample problem are chedulable
according to the UB test.

20




Toward a More Precise Test

UB test has three possible outcomes:

0 < U < U(n) => Success
* U(n) < U <£1.00 ==> Inconclusive
+1.00< U =

=> Overload

UB test is conservative.

21

Example: Applying Exact Test -1

Taking the sample problem, we increase the compute
time of 7, from 20 to 40; is the task set still schedulable?

Utilization of first two tasks: 0.667 < U(2) = 0.828
« first two tasks are schedulable by UB test

Utilization of all three tasks: 0.953 > U(3) = 0.779
* UB test is inconclusive

* need to apply exact test

22




The Exact Schedulability Test

If a task meets its first deadline when all higher priority
tasks are started at the same time, then all this task’s
future deadlines will always be met[Liu73]. The exact test
for a task checks if this task can meet its first deadline.

v, _[III [T [ [

4 |

l Timeline

[ [ [ [
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Schedulability: Exact Test

Intuition: let t = a; be the instance at which task t; and all
higher priority task execute once.

If there is no new arrival from higher priority tasks during
a,, T; actually completes its execution at t = a, . If there is
new arrivals, the compute a, and check if there is new
arrivals...

The arrivals are counted by the ceiling function.

i-1 i

a

= n =

a = C,+ X {T_k’. where a o = Y C,
j=1 j j=1

Test terminates when a,,, > T; (not schedulable)
or when a,,, = a, <T,(schedulable).

24




Example: Applying Exact Test -2

Use exact test to determine if 1, meets its first deadline:

3
a, = ch: C +C,+C, = 40+40+100 = 180
j=1

Jj=

2
a
= 0
ap = 3+ | Lc
il T

J

=100 + | '8 | (40) + | 8% | (40) = 100 + 80 + 80 = 260
100 150

25

Example: Applying the Exact Test -3

2 |a 1 1
ay=Cy+ 3 |1 G, =100 + 260 140 + | 260 | (40) = 300
T 100 150
J=1y
2 [a,] 300 ] 300 |
ay=Cy+ 3 | 2|6 =100 + 2% a0y + |20 10) = 300
T 100 150
J=1y
a3 = a2 =300 Done!

Task 1, is schedulable using exact test

a3=300 < T = 350

26




Timeline

0 100 200 300

T2

3
T 3completes its work at t = 300

27

Pre-period Deadline

Note that task 1, default deadline is at 350, but its worst
case finishing time is 300. Thus, its deadline can be
moved earlier by 50 unit before its end of period.

Under GRMS, addressing pre-period deadline is simple,
just replace a task deadline from T to (T - D) in the exact
schedulability analysis.

T

28




Stability Under Transient Overload

Rate monotonic scheduling requires assigning task
priorities according to periods (rates).

Question: “How does one ensure the deadline of a
critical task with a long period, resulting in a low
priority.

Solution: Period Transformation.

For example, give the task a T/2 period, which
increases its priority for RMS, but suspend the task
after C/2 worst case execution.

After all, importance and rate monotone priority
assignment can be made consistent.

(But don’t buy a knife and slice up the program... It
can done invisibly to the program ... Stay tuned.)

29

When Schedulability is low

T 4 4

0 10
T, 6 6

0 14

Home work: task 1, has execution time 4 and period 10, while task
T, has execution 6 and period 14. Deadline of task T, will be missed if
we increase execution time of task t, from 6 to 8.

How can we ensure both tasks’ deadlines without reducing task
execution time? (Hint: period transformation.)

30




Context Switching Overhead

Period transformation is not a free lunch, it increases
context switching overhead.

Context switching cost comes in pairs, preemption and
resuming.

You need to add the context switching overhead cost, 2S,
into the execution of each tasks for more precise
schedulability analysis.

The context switching overhead of task 1;is (2S / T;). The
total system context switching overhead is thus the sum of
tasks’ context overheads.

The impact of context switching time in an OS is inversely
related to the periods of application tasks.

31

Homework

1) Write a simple program to compute schedulability
(Hint: to save time, you may want to use a spread sheet
program).

2) Change the numbers and tasks in the example and
apply the formula.

32
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33

A Sample Problem

Periodics

100 msec

T1 £ 20 msec

150 msec
© ozl
350 msec

o

Servers

Data Server

Aperiodics

Emergency
50 msec

Deadline 6 msec
after arrival

Routine
40 msec

Desired response
20 msec average
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Priority Inversion

Ideally, under prioritized preemptive scheduling, higher
priority tasks should immediately preempt lower priority
tasks.

When lower priority tasks causing higher priority tasks to
wait due to the locking of shared data, priority inversion
is said to occur.

It seems reasonable to expected the duration of priority
inversion (also called blocking time), should be a
function of the duration of the critical sections.

Critical section: the duration of a task using shared
resource.

35

Unbounded Priority Inversion

Legend

S Locked 11:{...P(S)...V(S)...}
Executing[ | 13:{...P(S)...V(S)...}
Blocked g
S Locked S Unlocked
Attempt to Lock S
t1(h) LB
2(m)

T

S Locked /‘7—4 S Unlocked
3(0) 77 L

time
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Basic Priority Inheritance Protocol

Let the lower priority task to use the priority of the

blocked higher priority tasks.

In this way, the medium priority tasks can no longer
preempted to low priority task that blocks the high

priority tasks.

Priority inheritance is transitive.

Basic Priority Inheritance Protocol

Legend ~%
S Locked
Executing B

k) —

12:{...P(S)...V(S)...}
14:{...P(S)...V(S)...}

Attempts tolock S S Locked S Unlocked

Ready
5 | s WL\—
Ready
3 | I
S Locked S Unlocked
() Wy, e

time
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Chained Blocking

cdend >:§~ 11:{...P(S1)...P(S2)...V(S2)...V(S1)...}
$2 Locked [~ 12:{...P(S1)..V(S1)...}

Executing - 3:{...P(82)...V(S2)...}
Blocked

Attempts to lock S2

$1 Locked S2Locked S2Unlocked
Attempts to lock S1 S1 Unlocked
1(h) B 7
S1 Locked S$1 Unlocked
12 N |_|
J’%é////////////éﬂ?f o 1
3(1) A
time

Deadlock Under BIP
Legend ::.\\/
o pocked ©1:{...P(S1)...P(S2)...V(S2)...V(S1)...}
Excouting B 12:{...P(S2)...P(S1)...V(S1)...V(S2)...}
Blocked

$1 Locked
Attempts to lock S2

o T

S2 Locked Attempts to lock S1
2(1) ] EZZWZEW

time
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Property of Basic Priority Inheritance

OS developers can support it without knowing
application priorities.

There will be no deadlock if there is no nested locks, or
application level deadlock avoidance scheme such the
ordering of resource is used.

Chained priority is fact of life. But a task is blocked at
most by n lower priority tasks sharing resources with it,
when there is no deadlock.

Priority inheritance protocol is supported by almost all of
the real time OS and is part of POSIX real time extension.

41

Priority Ceiling Protocol

A priority ceiling is assigned to each semaphore, which is
equal to the highest priority task that may use this
semaphore.

A task can lock a semaphore if and only if its priority is
higher than the priority ceilings of all locked
semaphores.

If a task is blocked by lower priority tasks, the lower
priority task inherits its priority.
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Blocked at Most Once (PCP)

Legend

SN
S1Locked 7, 1:{...P(S1)...P(S2)...V(S2)..V(S1)..}
Exomutine 1 12:{...P(81)...V(S1)...}
Blocked B 13:{...P(S2)...V(S2)...}

S1 Locked S2 Locked S2 Unlocked

Attempts to lock S1 $1 Unlocked
t1(h) B A

S1 Locked S$1 Unlocked
Attempts to lock S1
B
12 =
S$2 Locked S2 Unlocked
3(1) ] Eﬁm,ﬁmﬁ
time
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Deadlock Avoidance: Using PCP

Legend

WY
S1 Locked 7 .
$2 Locked[— 11:{...P(S1)...P(S2)...V(S2)...V(S1)...}
Executing B 12:{...P(S2)...P(S1)...V(81)...V(S2)...}
Blocked

Attempts to lock S1 Locks S1 Locks S2 Unlocks S2

| |
) e NN/

Unlocks $1

Locks S1 Unlocks S1

Locks S2 Unlocks S2
2(1) ] EZZ%Z&E&?L

time
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Schedulability Analysis

A uni-processor equation using BIP
preemption execution  blocking

/

+ .
Vil<i<n, Z C (Bint--B,)
Jj=1 Tj Ti

< l.(21/i_ 1

A uni-processor equation usinq PCP
preemption execution  blocking

/
Vil<i< Z:I C +maX(B,+1 B")Si(zm—l)
T,
Sample Problem: Using BIP
C T D B
1 20 100 30

T2 40 150 20 10
13 100 350

i—1
W(k+1)= B+C+Z(
Jj=1
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Schedulability Model Using BIP

S8 vy 22 50«10

T T 100 100

C c+D B 20 40420 10

et e R — —0667<0828
T T et s M

c ¢ G 20 40 100
T2 B et =0753<0779
YO Twtiso s 0
Modeling Interrupts

A hardware interrupt can have higher priority than
software.

When an interrupt service routine, R, is used to capture
data for longer period task, it will still preempt the
execution of shorter period tasks.

From the perspective of GRMS, the time spentin Ris a
form of priority inversion. Thus, we can add R into the
blocking time from an analysis perspective.

Quiz: If R is long, what should we do in software?
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A Sample Problem

Periodics Servers Aperiodics
100 msec Emergency
50 msec
T Data Server [ s msec |

Deadline 6 msec
after arrival

Routine
40 msec

350 msec
2 mecc |

y— o L
Desired response

20 msec average

49

Concepts and Definitions

Aperiodic task: runs at irregular intervals.
Aperiodic deadline:

hard, minimum interarrival time
soft, best average response

50




Scheduling Aperiodic Tasks

Polling
0 100
| m Average Response
@ m Time = 50 units
99

Interrupt Handler

| m Average Response
@ }%m Time = 1 units

Aperiodic Server

| Average Response
tZZZZZZZZ?JJ IZZZZZZZZZ.'I kZZZZf]]ZZZZ.‘I Time = 1 units
\/ Legend

A4 Periodic Task

. . L Polling Task =
Ticket deposited at beginning Interrupt Handler =)
of period. Aperiodic Server m

51

Sporadic Server (SS)

Modeled as periodic tasks
Fixed execution budget (C)
Replenishment interval (T)
Priority is based on T, adjusted to meet requirements

Replenishment occurs one “period” after start of use.

Execution Budget

/57 100 £5/ 200 /57 300
L[4 | b 9] b
t ) 1 )

100 ms 100 ms (SS period)
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Sample Problems: Aperiodic

Emergency Server (ES)
» Execution Budget,C=5
* Replenish Interval, T= 50

General Aperiodic Server (GS) Design guideline: Give it
as high a priority as possible and as much “tickets” as
possible, without causing periodic tasks missing
deadlines:

» Execution Budget, C =10
* Replenish Interval, T = 100

Simulation and queuing theory using M/M1
approximation indicates that the average response time
is 2 msec (See Real Time Scheduling Theory and Ada).

53

Implementing Period Transformation

Recall that period transformation is a useful techniques
to ensure:

+ stability under transient overload

* improve system schedulability
But it is undesirable to slice up the program codes.

(Thou shalt separate timing concerns with functional
concerns.)

For example, a task with period T and exception time C,

can be transformed as a sporadic task with a budget C/2
and periodic T/2. This is transparent to the applications.
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Homework

Try to apply GRMS to your lab work, if you are working a
real time computing project.

55

Summary

We have reviewed

* the basic concepts of real time computing
* the basics of GRMS theory

- Independent tasks

- synchronization

- aperiodic tasks

"Through the development of [Generalized] Rate Monotonic
Scheduling, we now have a system that will allow [Space
Station] Freedom's computers to budget their time, to choose
between a variety of tasks, and decide not only which one to do
first but how much time to spend in the process",

--- Aaron Cohen, former deputy administrator of NASA,
"Charting The Future: Challenges and Promises Ahead of

Space Exploration”, October, 28, 1992, p. 3.
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Additional Results

In networks, distributed scheduling decision must be made
with incomplete information and yet the distributed
decisions are coherence - lossless communication of
scheduling messages, distributed queue consistency,
bounded priority inversion, and preemption control.

From a software engineering perspective, software
structures dealing with timing must be separated with
construct dealing with functionality.

To deal with re-engineering, real time scheduling
abstraction layers (wrapper) are needed so that old
software packages and network hardware behavior as if
they are designed to support GRMS.

57

References

Liu, C. and Layland, J., “Scheduling Algorithms for
Multiprogramming in a Hard-Real-Time Environment,” Journal
of the ACM, Vol. 20, No.1, January 1973, pp.46-61. [Classic]

Sha, L. and Goodenough, J., “Real-Time Scheduling Theory
and Ada,” Computer, Vol. 23, No.4, April 1990, pp. 53-62. [uni-
processors GRMS Tutorial]

M. Klein et al., A Practitioner’s Handbook for Real-Time
Analysis: Guide to Rate-Monotonic Analysis for Real-Time
Systems, Kluwer Academic Publishers, Boston, July, 1993.

Sha, L., Rajkumar, R., and Sathaye, S., “Generalized Rate
Monotonic Scheduling Theory: A Framework of Developing
Real-Time Systems”, Proceedings of The IEEE, January, 1994
[Distributed GRMS tutoriall].

58




"It is difficult to say what is impossible, for the dream
of yesterday is the hope of today and the reality of

tomorrow."”

Robert H. Goddard
Elements of Research

Lui Sha
CS, UlUC

Lui Sha, Feburary 2002 1

The entrance to graduate school marks a critical

phase of transition for most graduate students from
absorbing knowledge to creating knowledge ...

+ To excel in research, we must sharpen
our skills in
+ positioning R&D strategically
« identifying and formulating high
impact problems
« communicating ideas and results
effectively

Lui Sha, Feburary 2002 2




Three Basic Elements
of Successful R&D

Positioning your research

Developing a R&D Roadmap

Getting your ideas across

Lui Sha, Feburary 2002 3

The path to success consists of three simple elements.
Find what interests you that you can do well, and is

needed by the people. --- Lui Sha

Your
Interests

Societal
Needs

Research
focus

Lui Sha, Feburary 2002 4




Understand others is intelligence.

Understand yourself is wisdom.
--- Lao Tze

What is easier for you, writing a complex software
program or proving a difficult theorem?

What excites the community at large and what
excites you?

Does it play into your strength?

Lui Sha, Feburary 2002 5

Elements of Successful R&D

» Positioning your research

«  Developing a R&D road map

* Getting your ideas across

Lui Sha, Feburary 2002 6




Creating an Exciting Application Scenario

“as a mathematical discipline travels far from its empirical source, or
still more, if it is a second and third generation only indirectly inspired
by the ideas coming from ‘reality’, it is beset with very grave dangers.

... that the stream, so far from its source, will separate into a multitude
of insignificant branches, and that the discipline will become a
disorganized mass of details and complexities."

John Von Neumann, "The Mathematician" , 1957

Exciting application scenarios will
* motivate you,
+ expose the limitations of existing solutions,
+ help you to focus your efforts.

Lui Sha, Feburary 2002 7

Great advancements in science and engineering often are
the repudiation of generally accepted beliefs.

Anonymous

Most researches are constrained by models and generally accepted
assumptions of the real world. But our knowledge of the nature is never
perfect, and the underlining technologies are rapidly changing...

» Velocity of light is constant. ... embrace it as a law of physics and
we have the theory of relativity.

» Clients request and server computes ... Why not send some of the
code to client instead? ... and we have JAVA & mobile code.

Is TCP appropriate for wireless communication?
» Isfairness a good metric for real time computing?
Is load balance is always a good idea?

Lui Sha, Feburary 2002 8




Pick the Right Problems to Work on

«  What is the difference between a theorem and a homework problem
to be proven by students?

+ Both were proven to be correct.

* In fact, some homework problems are harder than some of the
theorems.

* If we decide to spend time on a problem, shouldn’t we work on a
problem with greater potential impacts?

Lui Sha, Feburary 2002 9

Know what has been Done
and Estimate the Impacts

* New directions
+ challenging long-held beliefs and pioneering a new path

+ Broad Applicability
« for the further development of the theory
» for solving practical problems

+ Unification / Integration

» Proving a unifying structure or theory and give deeper
understanding to seemingly diversified approaches

» Advancement along an established line of inquiries

* You need to significantly improve performance, reliability, or
scale

Lui Sha, Feburary 2002 10




A Recent Example of a R&D Roadmap
by J. Hou, R. Zhang & others in the wireless group

Application
Layer

Important R&D Opportunities
Transport
Layer

Admission
Control

e Maximize information
throughput instead of data
throughput

Error
Control

elntegrated real time scheduling
and topology control

eService Differentiation
Contention
Resolution

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Network
Layer

MAC
Layer

Physical
Layer

Directional
Beam-Forming

Channels Selection
(frequency/code)

Adjustment

Lui Sha, Feburary 2002 11

Learn what makes classics classic

» Learning what makes a classic papers classic
» The state of research prior to the classic paper
+ The impacts made by the classic paper
» Compare the classic paper with good papers

+  Examples

* On the Criteria To Be Used in Decomposing Systems into
Modules. David L. Parnas CACM, Vol. 15, No. 12, December
1972.

* Public key cryptography, R. L. Rivest, A. Shamir and L. Adleman,
CACM (21)120--126, 1979. ...

Lui Sha, Feburary 2002 12




Elements of Successful R&D

» Positioning your research
» Developing a R&D roadmap

«  Getting your ideas across

Lui Sha, Feburary 2002 13

Impart an Understanding

» Understanding is an act that builds a bridge between what your
audience already know to what they need know.

» Focus on key ideas and key results, go from specific to general and
from concrete to abstract.

* Most people learn inductively.
* Ask questions and involve them in the problem-solving process.

Lui Sha, Feburary 2002 14




Managing Human “cache memory”

Human short term memory can only hold about 5 unfamiliar items
» Don't load it up with unimportant details

Suppose you need to present an OS overhead formula unfamiliar to your
audience, (2S + ...).

+ Don’t say we now add “two S” to .... This forces others to remember
what S means. Poor use of human short term memory.

« Say we add “round trip context switching time to ...
Think carefully about the new ideas you want your audience to absorb.

Keep them in the “cache” by periodic refreshing during your talk, until your
audience “write the new ideas through” into their long term memory.

Techniques that reduce “unfamiliarity” and help “write through”.
Read out the physical meaning of the terms .

Use analogy familiar to your audience

Lui Sha, Feburary 2002 15

Getting Your Ideas Across:
Sha’s P Model

An ideal presentation is one that is

informative,

interesting and

Insightful

Lui Sha, Feburary 2002 16




Being Informative

* Inform: give new knowledge...

+ “New” is relatively to your audience.
» what they already know?
» what they should know after your presentation?
» what are the steps in-between?

* For example:

+ Managers: the key ideas, expected impacts, and costs
» Experts: new challenges and new insights/results

Lui Sha, Feburary 2002 17

Being Interesting

» Interesting: unexpected, counter intuitive, difficult to believe
» Seemingly unimportant fact that actually holds the key
» Seemingly true but it is in fact false...
+ A “difficult” problem is solved with ease and elegance.

Lui Sha, Feburary 2002 18




Being Insightful

Insight: impart a deeper understanding...

Explain a seemingly complex and confusing problem in a way that
is easy to understand.

Unearth hidden/unstated assumptions... And quickly put an
argument to rest.

Show things in new angles, new lights and new forms and gain
new understandings.

Demonstrate subtle but important connections/inter-dependencies
between seemingly unrelated subjects.

Lui Sha, Feburary 2002 19

The entrance to graduate school marks a critical

phase of transition for most graduate students from
absorbing knowledge to creating knowledge ...

To excel in research, we must sharpen

our skills in

+ positioning R&D strategically

* identifying and formulating high
impact problems

« communicating ideas and results
effectively

Lui Sha, Feburary 2002 20
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OUTLINE

= Real-world constraints and limitations

* Reasons for using commodity platforms

» Gaps between abstract models and real-
world workloads and environment

» Typical real-time features of common
platforms

» Closed versus open environments

33
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5

Applications such as medical instruments,
factory automation, C3l, etc. can

T

 exploit available building blocks,

» work with a wider variety of devices and
configurations,

* be easily built to evolve with advances in
hardware and software technologies.

34
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ESSES 2003

Most desired attribute of RT OS:

General OS CW:

» Optimize for average response time and
throughput

Be greedy and conserve work
Allocate resources fairly

The faster, the better
The more, the better

35

ESSES 2003

Real-time qualities

Time granularity

Multiprocessor scheduling
Scheduling and synchronization
Conflicts among components

Questions: Why they are so?
Are they likely to be corrected?

How to live with them?

36




(A Cause of Unbounded Blocking)

DPC gueues

Interrupts

ISRs

DPCs

Threads

Tasklets & bottom-halves are similar .

ESSES 2003

e Processors are alive

« DPCs execute within timeout interval
* No DPC executes too long
* No run of DPCs executes too long

= Tools for capturing and logging
* |ateness of time-critical executions

» Histograms of ISR, processor stall,
DPC times, etc.

38
ESSES 2003




Timeout perceived

I

Timer
interrupts

g g3, g0

M////////// i o 5

Your timer
settings

Timer
interrupts

Starts of
periods

t? For more determinism:
ution and query resolution x

/ meout intervals to integer

jos /////////////}/;




#include <windows.h> 5
#include <stdio.h> Si ng le-Threaded

. Avionics
#define FRAME_LENGTH 34 7 ~ 301 #iz .
#define FRAMES PER MAJOR FRAME & (Cycle-executive)
n;r;a;in {int arge, char *argv])

{

LARGE_INTEGER CurrentTime;

ULONG Frame = FRAME_LENGTH;

ULONG FrameNumber = 0;

ULONG FrameRatio = FRAMES_PER_MAJOR_FRAME;
LARGE_INTEGER Phase;

BOOLEAN Run = TRUE;

LARGE INTEGER StartTime;

HANDLE Timer;

@l er resoltion o s, and

LL, FALSE, NULL);

e.QuadPart;

if ( (NULL == Timer} || case 5.
ISetWaitableTimer (Timer, Phase, Frame, OuterYawCollectiveControlLaw(};
NULL, NULL, FALSE) ) { break;
# Clean up and return default:
returm; break;
3 }
while (Run) { 5 D0 e redbuy oale aske
WaitForSingleObject(Timer, INFINITE), (0 l= FrameNumber/2) {
InterPitchControlLaw();
telse {
InterRoliCollectiveControlLaw();

U R sten ol svery e, do e llowing
ValidationSensorData();
DetectFailureAndReconfigure();
G D e lowiesl et ask onee B ity Bae 1
switch (ErameNumber) { Jilmoat e end ol overy hang
case O: FrameMNumber +=1;
SampleKeyboardinputAndModeSelect(); FrameNumber %= FrameRatio;
break; InterYawControlLaw();
case 1 OutputCommands();
BuiltinTest();
ContinueToRun{&Run);
}
4 Clean up and rebn,

return;
}

Single-Threaded Avionics

| £ 4
i, i




Ready
Threads

Processors

‘commosommcansosonmossnnsessi

* When a thread becomes ready, it preempts the
lowest priority running thread if it has a higher
priority and no processor is idle.

» When a thread stops running, the scheduler
replaces it with the highest priority ready thread.

43
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Ready
Threads

Processors

* When a thread becomes ready, the scheduler may not choose to
dispatch it on the processor running the lowest priority thread.

» A newly ready thread is put in the local queue of its chosen
processor if it cannot preempt the running thread.

« When a thread stops running, the scheduler replaces it by the
highest priority thread in the local queue.

+ Threads migrate among processors only during load balancing.
44
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g
Ready lll

Threads xm Processors
Ll
» Dispatch-thread function
may not select the
highest priority thread. priority inversion
« Ready-thread function in dyn
may not preempt the systems

lowest priority thread.
45

ESSES 2003

Config

= Examples from Windows:
» loConnectinterrupi(... ,ProcessorEnableMask, ...)
allows the choice of processors on which
interrupts of the device can occur.

» KeSetTargetProcessorDpc(Dpc, Number) targets
a DPC to be queued and executed on a specified
processor, other than the processor where the
interrupt occurs.

» KeSetAffinityThread(Thread, Affinity) constraints
where a thread executes.

= Similar functions on other platforms.

48
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lti-Threaded Avionics

Cyclic Tasks
Asynchronous Event
s Every 1/30 seconds, do: Handiers
» Sample keyboard input;
» Update tracking reference,; On StarteD On Failure

» Quter yaw-collective law;

= Every 1/90 seconds, do:

!nner pitch mr*ztrjol law; -
» inner roll-collective law;

= Every 1/180 seconds, do:
» Validate sensor data;
= Inner yaw control law;
» Qutput commands;
» Built-in-self-test;

.
.

Worker Threads

at are the radeofifs?

47
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S
= _
« Similarity among OS
Y fixed priority The Kemel
L E E * Does not decrement or
(real-time) levels boost priority of a thread
_ at these levels, and
T'mef%ha'jeq _ » Offers choice of FIFO or
(dynamic) priorities round-robin policies
= Differences
* Number of real-time priorities Y ( 2 32 or < 32)
* Required privilege, way to set policy, etc.
in Windows, Y = 16 -

ESSES 2003




v to Liv

= Make the problem go away:

» Divide threads into partitions and make priorities
across partitions incomparable (with OS support)

* Divide periodic tasks into rate groups
= Use constant-ratio mapping (Lehoczky and Sha)

Decreasing
of =9 2}9 28 27 System Priorities
P, Py P, P, P, RM Priorities

s B PP =g<lforallsis 16

= Schedulable utilization = g ifg<05
h2g)+1-g g>05

L4
ESSES 2003

Waitable Objects

= \Waitable objects include event, timer, mutant,
semaphore, queue, /O completion port, etc.

= A caller waits for an object in FIFO or priority
order depending whether the object is real-time.

No priority inheritance; why? '®
ESSES 2003 ﬁ




Path Finder Scenario

2
o . SN

An Alternative

LI

u

20 On Priority Inversion
4\ .

» Objects with no owners:
= They include events, queue, timer, IO completion
port, semaphore, process, thread, etc.

= Priority inheritance & ceiling priority protocols are
not applicable even on UP

» Use NPCS protocol for mutant and resources:
= An implementation by application is:
» Raise priority to the highest level
« Wait for and acquire object (or objects)
* Release the object
» Restore priority to original level

= Blocking can be more than one critical section.
52
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ore on Priority Inversion

b
i, S e

» User-mode objects:
= Critical section for threads in a single process
= Mutex, semaphore, event, timer for all threads
= A performance tradeoff: to track ownership of a
critical section (object) or not to track
» Pro: required for priority inheritance & fairness
» Con: performance degradation

B Wl e

User-kernel transition |:| CS code

» Lock-free stack, queue, efc.

» User-mode ceiling priority protocol v
ESSES 2003 %

Lock-Free Queue

e[

Enqueue(Head, NewValue)
{ Degueue(Head)
Node = InterlockedPop(Head->Freelist); {
if (Node == NULL) First = Head;
return error; // if (First->Next == NULL)
Node->Value = NewValue; retumn error; / Gusus s smply

Node-=Next = NULL; Succ = FALSE;

Suce = FALSE; do {

do{ Suce = C8W(Head, First, First->Next};
Last = Tail; } while (Succ == FALSE},

Suce = CBW(Last->Next, NULL, Node); return First->Next->Value,
if (Suce == FALSE }

CSW(Tall, Last, Last->Next); CSW InterlockedCompareExchange
3 while {Suce == FALSE);
CSW(Tail, Last, Node);
return;

}

{4 D Valols, Froceedings of Parallel and

Distribuded Computing Systems, 1994
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Prioritized

work items T———>

(messages)

Worker
Threads

Increasing
priority

Each thread do until terminated:

Message-Based = Waits at the highest priority

Priority Inheritance | ® Upon removal of an item, sets its
priority to the priority of the item

Programming for POSIX
4,by B. O. Gallmeister = Upon completion of the item, raise
priority to highest and go wait for
the queue
55
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v J Y Prioritized Messages
without priority queues

‘ —
| Work items Worker
g f,:) queued in T * threads at
re i0 FIFO priorities
o queuesof TTTT of the

i:»; It their. T respective
nly respective i queue or
g priorities queues

— [lll—

HOL Queues

56
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OLITLINE

= State-of-art techniques

¢ Processor bandwidth-latency guarantee

dth reservation
¢ Network rate-latency guarantee

e Disk I/O bandw

T
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Open System Architecture
(UIUC EPIQ)

59
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(C. W. Mercer, of gl 18984}

000

m...x.«..m i ", |_| ,_| |_|

Threads
running
without
reserve

PR 2

60
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(Deng, el al RTSJ 19898 and Kuo, ef g/ ICDCS 2000}

di

Job Job -
scheduler scheduler

Reserve scheduler

ESSES 2003

61

= Each reserve (p, e) of bandwidth e/p is
defined by its

* Period p: latency guarantee

» Budget e: processor time per period p
» Type: hard, soft, or firm

» Replenishment: periodic or sporadic

* Policy for job scheduling

= Alternatives to scheduling

 Fixed priority vs rate-latency reserve
scheduling

» Kernel versus middleware level

ESSES 2003

¥ )

e

62




Period,

Budget,
LocationConstraint,
Options

)

Options:
» Standard OS or fixed-priority scheduler,
« Synchronized with internal or external clock,
» Hard, firm or soft reservation, and
» Periodic or sporadic replenishment.

63
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® Basic:
» PutThreadinReserve(Thread, Reserve)
+ RemoveThreadFromReserve(Thread)
» GiveBackBudget( )

= Enhancements:

» ChangeReserve(NewPeriod, NewBudget)
AlignPhases(Reserves| ], Phases[ ], Num)
TradeBudget(Reserve1, Reserve2, Delta)
PutProcessinReserve(Process, Reserve)
* RemoveProcessFromReserve(Process)

&

64
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serves

= Farliest-deadline-first approach (Deng, et al.)

* Pros: uniform treatment of periodic and
sporadic reserves, simple acceptance test,
easy to enhance (budget preservation)

» Con: higher complexity of EDF queuing

= Fixed-priority approach (Kuo, et al.)

* Pro: uniform reserve and thread queuing

* Con: high complexity in maintaining sporadic
reserves

instability due to overruns never arises
65
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A simpler version of EDF-sporadic

Reserve gah@@gg%ﬁg server algorithm (Chazalie & Baker)

Clock interrupts

Do periodic bookkeeping chores if any
If current thread runs in a reserve,

- Decrement reserve budget

- If budget is exhausted, remove the reserve from reserve queue
Replenish each reserve due for replenishment and insert it in EDF order in
reserve queue according to its new deadiine
«  Swap reserve and thread if head of the reserve queue changed

®  Search replacement thread among

If the newly ready thread runs in . hreads lthe sare iene
a reserve update reserve budget - threads in some ready reserve
and queue accordingly - threads without reserve, efc.

= Reclaim budget and set replenishment

time as needed
66
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Reserve and Thread Scheduling

@1

(5,15) | B

Threads
without
reserves n
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Behavior of Reserves

Sporadic .

(50, 20) Edlle ready
Periodic

(20, 10)

(30, 15)
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Aﬁ%ﬁﬁ Alternatives in Scheduling
f‘*“"*{? ) es

0 3 0 5330 4

= Algorithms that distribute background time
naturally amongst exhausted reserves, e.g.

» Total bandwidth server algorithm by Spuri
and Buttazzo

* Weighted fair queuing by Demers, et al.

-- Can lead to starvation of reserves and
threads

= \Weight-round-robin algorithm — requires a
round-robin queue per processor and has

poorer control over distribution of time

69
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Example: Use reserve to ensure timely execution
and consistent prioritization

Buffer 1 Buffer 2 Buffer 2 Buffer n

< :

Consumer




#inchxde <windows.h>

#include “reserve.h”

#define NUMBER_SAMPLE_TYPES 8
#define DURATION 120000 # ~ 2 by duration

DWORD g_SampleType[NUMBER_SAMPLE_TYPES] = {Violin, Piano, Cell, ...... %
HANDLE g_NotificationEvent;
DWORD g_Run = DURATION;

void ProduceSample (IWW/(RD SampleType);
wiid ProcessSamples();

DWORD WINAPI ProducerProcedure (LPVOID SampleType)

{
while (g_Run 1= 0) {

£ st for notification o run.

WiaitForSingleObject (g_NoticationEvent, INFINITY);
ProduceSample (*pSampleType);
}

i he ng endied exl
reduen O;
71

it main (it arge, char *argv] ])

{
DWORD Index;
HANDLE Producer][NUMBER_SAMPLE_TYPES];
HANDLE Reserve;

DWORD_PTR Affinity = 0; i Ay processor
DWORD Period = 100000; 40 milliseconds
DWORD Budget = 10000; 1 milliseconds

U Creae 2 menualresel event, a reserve and oroducer threads, Put all
i threads in the reserve. Al producer Yweads have normal pronty,

g_ NotificationEvent = CreateEvent (NULL, TRUE, FALSE, NULL);
Reserve = CreateReserve (&Period,

&Budget,

&Affinity,

PERIODIC | FIXED_PRIORITY);

for (Index = 0; Index < NUMBER_SAMPLE_TYPES; Index +=1) {

Producer[Index] = CreateThread (NULL, 0, ProducerProcedure,
&g_SampleType[lndex], 0, NULL);
PutThreadintoReserve (Producer[index], Reserve);

} 72




# Process samples generated by producers: Blart by pulting the current (consumer)
i thread i the reserve and lowering s poionly so i runs after all producer threads,

PutThreadIntoReserve (GetCurrentThread(), Reserve);
SetThreadPriority (GetCurrentThread(), THREAD_PRIORITY_BELOW_NORMAL);
wiile (g_Run 1= 0) {

7 Wit untll the nesd period 1o begin e run,

GiveBackBudget();

7 Wake un ol producer Breads, In arbilrary order, o produce samples,

PulseEvent (g_NotificationEvent);

4 Al producer thireads have compieied ther samples and slerled o wall

ProcessSamples();
) g_Run=g_Run-1;

i The rn ended. Wake up gl producer threads 50 they will exil
PulseEvent (g_NotificationEvent);

A A sroducer threads have sxlied. Move oul of reserve and dlose handle,

RemoveThreadFromReserve (GetCurrentThread());
CloseHandle (Reserve);

73

Example: Adaptive Scheduling

Globals
Events: ScheduleReady, StartMonitor

NoMitestones, Currentiilestone Create a sporadic reserve on CpuHog's processor;
CpubogThread, RunFlag Put self in reserve;

CpuHogThreadProcedure { .. } f{ﬁ;g"é&iﬂﬁ; F;e;zdg ﬁi"gg; ¢

SchedulerThreadProcedure( ... )

Initialize whatever;

Wiait for SchedulerReady event; Wait for StartMonitor event;
While (RunFlag = FALSE) { U Bpmeras s revierinies
Wait for work queue; Expected = 1;
Gt o o e o 55 do{
CurrentMilestone = 0, GiveBackBudget(); / Wail u
Restore self priority to nonmal level; Current = CurrentMilestone;
Set StartMonitor event: if (Expected > Current) {
do{ ' Boast priority of CpuHogThread;
compute part of the work; Undate Experted:

atomically increment CurrentMlilestone,;
} while (CumrentMilestone < MoMilestones);
Finish the work;

1 while (Current = Noblilestones);

Wait for StartMonitor svent;
close event handles and do other cleanup;

Set StarthMonitor event; return:

returm; 3

Lise reserve 1o ensure moniior
ESSES 2003 thread runs on time

74




Example: Use reserve to constrain CPU time
consumption of long-running threads

Requests -

QoS Manager

Workers

Responses

ESSES 2003

QoSManager( )

Create Reserve R (300, 30);
For each worker thread WT {
- Get total thread time T;

- if (T > 10000) {
Put WT in reserve R;

75

= | oss in determinism — Highest priority thread
may not run as soon as it becomes ready

= New concern for priority inversion.

O = e o d ) O e
f’,’
o & o
-
o o+
P?

ESSES 2003
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= Parameters of a disk bandwidth reserve:

* Period p: minimum interval between
requests = guaranteed latency

* Number of blocks n: maximum number
of blocks accessed per period

— Guaranteed bandwidth=n/p

77

= Basic strategy: seek to serve the waiting
request with the earliest deadline

= Enhancements: serve requests on the way
based on whether

« there is slack (EDF-slack stealing), or
« current time is within a window (EDF-window)

Pro: Highest schedulable utilization

Cons: Poor throughput, starvation, efc.

78
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o
» Weighted-round-robin algorithm:
* Time is divided into rounds of length < R slots

= Total slots per round allocated to all jobs is £ R
= Fach job is executed for at most its allocated no. of
slots each round
» When used for scheduling periodic tasks:
* R = the supported minimum period of all tasks
« |f admitted, a task (p, e) is allocated [e/ (p/ R)]
slots per round, rounded up to an integer no.
» WRR disk scheduling:
= A slot = transfer time of a minimum data block
» Available slots per round = (R — round trip scan time)

Pros: simple, compatible to c-scan

Con lower schedulable utilization 79
ESSES 2003

Good algorithms and protocols exist.
Realization takes integration technology

80

ESSES 2003




Cc

Communication
SBIVEr
cs

Wait For Budget

Get Budget

Windows RM see EDF Passive
Scheduler Scheduler Scheduler Server
bud T Suspend
deadli:te Queus
End-to-and
bandwidth
Rate-Latency Scheduler guarantee
81
ESSES 2003
ﬂ ﬂ Queues for Message
l:‘ iE‘ from applications
Message Message | . o o Message
scheduler scheduler scheduler
Host
Network scheduler
MNetwork
82
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Incomplete list of Means for Providing
Rate-Latency Guarantee over Networks

» Results in communication and network literatures
= [ atency-rate server algorithms (Stiliadis and Varma):
* Variances of weighted fair queuing
* Weighted round-robin and hierarchical WRR
» Service-curve server algorithms, and many more
= Real-time protocols: Real-time TCP, RSVP, etc. for
rate (but not latency) guarantee
» Results from real-time systems community
= Medium-access methods: timed token access
protocol, real-time CSMA-CD, rate-latency guarantee
over CAN and Myrinet, etc.
= Real-time packet scheduling, etc.

83
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=  Missing science and technology

 Profiling (calibration) methods and tools
» Design-for-testability of dynamic systems
» Test architecture and generation

* End-to-end QoS management

84
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Date: Three Kingdoms  Place: Central China
Battle: Southern alliances against northern kingdom

Everything is ready, except south-easterly wind

85

Closed Open

. . Other
My Other My hljlb{siwmesd L
(known) Jobs v jobs nee Jobs
Jobs Jobs

Some Runtime and Middleware

Linux, Windows
or some other 08

Known Operating
System & Runtime

Known Hardware

Configuration Variable Hardware

Configuration

Question: What resources (e.g., memory & CPU

cycles) my real-time application needs?
86
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= Existing compile-time analysis techniques
for bounding processor-specific WCET
(Kim, et al., Healy & Whalley, etc.)
* Theories and methods for bounding the
effects of
* Hyper-threading
* Bus contention, etc.
(What are the worst-case interfering load?)
= [ oad and run time methods and tools for

determining the actual worst-case code
path of a job

87
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ion Scenario
(Throw-in-the-kitchen-sink approach)

= Question: Is there sufficient CPU time for the application
(e.g., upper bound, variation, latency, quality)?

= Possible information:
* lts longest code paths determined at compile time
* CPU time demands of required libraries & services
» Meta data on alternative versions and QoS tradeoffs
« Platform configuration (e.g., hyper-threading on/off)
« Calibration scripts for exercising time-critical paths

= Calibration strategy:
* When: install time, invocation time, idle time, etc.
* Duration: length and intrusiveness vs accuracy

Alternative: Al — lsaming, what else?

, v
We do not have the science yet! %@%
ESSES 2003




» Dynamic and adaptive systems:
stability conditions, effect of poor observability,
possible critical races, predictability, etc.
- How can you test the system?
» Statistical guarantees: sufficiently accurate
estimates of relevant distributions
- How do you validate your assumptions?

» End-to-end QoS management: composition of
heterogeneous QoS criteria & tradeoff policies

89
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=% Top 10 Attributes for Real-Time
Scheduling and Resource Management

{

0 O O Os LN S

&

Is provably correct and performs as specified

Can be stress-, functional- and APl-tested fully

Can tolerate inaccuracy in state information

Is robust: degrades predictably amongst failures
Works well even without a helpful real-time kernel
Has a conservation law all applications can live with
Leads to no forward/backward compatibility problems
Is scalable and costs nearly nothing when not used

If not lock-free, never needs more than 2-3 locks

10. Is simple enough even | can explain it with 1 slide

90
ESSES 2003




= Books and conference proceedings

» Proceedings of Euromicros, IEEE RTSS, and RTAS

* A Practitioner's Handbook for RMA, by M. H. Klein, ef al

* Real-Time Systems, by J. W. 8. Liu, Prentice Hall

» Hard Real-Time Computing Systems, by G. C. Buttazzo

» Real-Time Concepls for Embedded Systems, by Q. Li & C. Yao

* Deadline Scheduling for Real-Time Systems, by J. Stankovic

» [nside Windows 2000, by D. A. Sclomon and M. Russinovich

» Understanding the Linux Kernel, by D. P. Bovet and M. Cesati
= Miscellaneous articles

+ “An open environment for real-time applications,” by Z. Deng,
et al. Real-Time Systems Journal, May 1899

¢ “An open real-time environment for parallel and distributed
systems,” by T. W. Kuo, ef al. Proceedings of ICDCS, 2000

ESSES 2003
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Outline

¢ When is a Computer System “Real-Time”
¢ Classification of Real-Time Systems

¢ Temporal Requirements

¢ What is a “System Architecture?

¢ Technology Trends
¢ Architecture Based Design
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When is a Computer System ‘Real-Time’?

A real-time computer system is a computer system in which
the correctness of the system behavior depends not only on
the logical results of the computations, but also on the
physical time, when these results are produced.

The point in time when a result has to be produced is called a
deadline.

Deadlines are dictated by the environment of the real-time
computer system.

Today’s real-time computer systems are distributed and
require a temporal coordination of the actions of the nodes.

© H. Kopetz 18/09/2003 Introduction

Some Definitions

If the result has utility even after the deadline, we call the
deadline soft. Systems with soft deadlines are not the focus
of these lectures.

If the result has no utility after the deadline has passed, the
deadline is called firm.

If a catastrophe could result if a strict deadline is missed, the
deadline is called hard.

A real-time computer system that has to meet at least one hard
deadline is called a hard real-time system.

Hard- and soft real-time system design are fundamentally
different.

© H. Kopetz 18/09/2003 Introduction




Classification of RT Systems

On the basis of the external requirements
¢ Hard Real-Time versus Soft Real Time
¢ Fail-Safe versus Fail-operational
On the basis of the implementation
¢ Guaranteed Timeliness versus Best Effort
¢ Resource Adequacy-- yes or no?
¢ Event Triggered versus Time Triggered

© H. Kopetz 18/09/2003 Introduction

Hard Real Time versus Soft Real Time

Characteristic Hard Real Time Soft Real Time
Response time hard soft

Pacing environment computer
Peak-Load Perform. predictable degraded

Error Detection system user

Safety critical non-critical
Redundancy active standby

Time Granularity millisecond second

Data Files small/medium large

Data Integrity short term long term

© H. Kopetz 18/09/2003 Introduction




Fail-Safe versus Fail-Operational

A system is fail-safe if there is a safe state in the environment
that can be reached in case of a system failure, e.g., ABS, train
signaling system.

In a fail-safe application the computer has to have a high error
detection coverage.

Fail safeness is a characteristic of the application, not the
computer system.

A system is fail operational, if no safe state can be reached in
case of a system failure,e.g., a flight control system aboard an
airplane.

In fail-operational applications the computer system has to
provide a minimum level of service, even after the occurrence
of a fault.

© H. Kopetz 18/09/2003 Introduction

Guaranteed Timeliness versus Best Effort

A system implementation provides guaranteed timeliness if,
within the specified load- and fault-hypothesis, the temporal
correctness can be substantiated by analytical arguments.

A system implementation is best effort, if such an analytical
argument for the temporal correctness cannot be made.

The temporal verification of best effort systems relies on
probabilistic arguments, even within the specified load- and
fault hypothesis.

Hard real-time systems should be based on guaranteed
timeliness.

© H. Kopetz 18/09/2003 Introduction




Resource Adequacy

If a system has to provide guaranteed timeliness, there must
be sufficient computational resources to handle the specified
peak load and fault scenario.

In the past, there have been many applications where resource
adequacy has been considered foo expensive. The decreasing
cost of hardware makes the implementation of resource
adequate designs economically viable. In hard real-time
applications, there is no alternative to resource adequate
designs.

© H. Kopetz 18/09/2003 Introduction

Predictability in Rare Event Situations

A rare event is an important event that occurs very
infrequently during the lifetime of a system, e.g., the rupture
of a pipe in a nuclear reactor.

A rare event can give rise to many correlated service requests
(e.g., an alarm shower).

In a number of applications, the utility of a system depends on
the predictable performance in rare event scenarios, e.g. flight
control system

In most cases, workload testing will not cover the rare event
scenario.

© H. Kopetz 18/09/2003 Introduction




State versus Event H

Point of
41_Observation
| _—~Events \:

A state is a condition that persists for an interval
of real time, i.e., along a section of the timeline

Real T{me

An event is an occurrence at an instant.

State information informs about the attributes of states at the
point of observation (itself an event).

Event information informs about the difference in the
attributes of the states immediately before and after the
occurrence of the event and an estimation of the point in
time of event occurrence

Only the consequences of an event can be observed.

© H. Kopetz 18/09/2003 Introduction

12

Time Triggered (TT) vs. Event Triggered (ET)

A Real-Time system is Time Triggered (TT) if the control
signals, such as

¢ sending and receiving of messages
¢ recognition of an external state change

are derived solely from the progression of a (global) notion of
time.

A Real-Time system is Event Triggered (ET) if the control
signals are derived solely from the occurrence of events, e.g.,

¢ termination of a task
¢ reception of a message
¢ an external interrupt

© H. Kopetz 18/09/2003 Introduction




Temporal Requirements N

Temporal accuracy of real-time data: the data elements that
are displayed to the operator must be temporally accurate.

Maximum response time: The maximum real-time interval
between a stimulus and the response must be known and
bounded.

Predictability: The temporal behavior must be predictable,
even in a rare event scenario.

© H. Kopetz 18/09/2003 Introduction

14

Validity of Real-Time Information

How long is the observation:

“The traffic light is green”

temporally accurate ?

Te ral parameters are associated with real-time data.

© H. Kopetz 18/09/2003 Introduction
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RT Entities, RT Images and RT Objects

Operator

B RT Entity

Distributed Computer Control Object

A

apyyrRA O
T —o.
L C c

A

D@ 5
L RT Image @ RT Object

A: Measured Value of Flow
C: Intended Valve Position

Introduction

B: Setpoint for Flow
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Real-Time Transaction
Man Machine
2| Interface (MMI)
/
Comm. Model MMI
Real-Time I
Bus | | >
Control Control Control Sensor || RT Transaction
I between Sensor
and Actuator
\ 4
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Jitter at the Application Level

. Jitter:
Observation of the Variability of the Delay
Controlled Object —

o

Delay 1 Output Real-Time

© H. Kopetz 18/09/2003 Introduction
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The Effect of Jitter: Measurement Error

Value V

Additional |

Measurement < ]
Error AV
caused by the
Jitter Ad

»

N Real-Time

Jitter Ad

Jitter in Control Loops causes a degradation of control quality.
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Protocol Execution Time in ET Systems

The execution time of an event-triggered protocol between
two tasks depends on:

¢ the scheduling decisions by the operating system of the
sender

¢ the buffer management of the sender
¢ the data link protocol

¢ the media access strategy

¢ the buffer management at the receiver
¢ the scheduling strategy at the receiver.

We call the maximum protocol execution time d,,, and the
minimum protocol execution time d_ .

© H. Kopetz 18/09/2003 Introduction
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ET Systems: Jitter at Critical Instant

A critical instant is a point in time, when all hosts in the ECUs try to
send a message simultaneously. There is no phase control possible in
ET system.

The message at the lowest priority level must wait until all higher
priority messages have been sent (assume that all message have the
same length).

Protocol execution time at critical instant (n ECUs):
d,,=nd,
Protocol execution time if the channel is free:
dmin= d,

trans

rans

Jitter of the lowest priority message:
Jitter = (n-1) d,

rans

The jitter depends on the number of ECUs in the system.

© H. Kopetz 18/09/2003 Introduction
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The Effect of Jitter: Orphans

Request Response Transaction between a Client and a Server:

Client -Timeout less than 2d,,,,

Client
-~ Orphan

Time

Server

How large is d,,,, ?
It is not contained in the interface specification, available at the sub-supplier.

© H. Kopetz 18/09/2003 Introduction

ege ° ° 22
Probability of “Long” Jitter in ET Systems
Probability Densit
y Y Application specific
critical jitter value
System operates System Failure
correctly
d,in dmaxl Length of Jitter

Most of the time, the system will operate correctly.
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Logical versus Temporal Control

The control scheme determines at what point in time the
execution of a selected action will start. In RT systems it is
necessary to distinguish between:

¢ Logical Control is concerned with the control flow within
a task to realize the specified data transformation

¢ Temporal Control is concerned with the point in time
when a task is to be started or when it has to be preempted
by a more urgent task. Temporal control is closely related
to scheduling

© H. Kopetz 18/09/2003 Introduction
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Rolling Mill Example

An alarm monitoring component should raise an alarm
WHEN p, <p, THEN raise alarm;

At a first glance, this specification of an alarm condition looks
reasonable. A further analysis leads to the following open
questions:

¢ What is the maximum, and p, ?

¢ At what points in time must the alarm condition be
evaluated?

© H. Kopetz 18/09/2003 Introduction
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Real-Time Transaction

Real-Time
Bus

© H. Kopetz 18/09/2003

Comm.

Model

25
MMI

Man Machine
2 | Interface (MMI)
|

| | >

Control

Control

Control Sensor || RT Transaction

and Actuator

between Sensor

Introduction

What is a Technical System Architecture?

26

A technical system architecture is a framework for the

construction of a system that constrains an implementation in

such a way that the ensuing system is understandable,
maintainable, extensible, and can be built cost-effectively.

© H. Kopetz 18/09/2003
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Technical System Architecture (II)

¢ Architectural style: An architecture must provide rules and
guidelines for the partitioning of a system into subsystems and for
the design of the interactions among the subsystems.

¢ Composability: An architecture must provide a framework for the
systematic construction of a system out of subsystems (components).

¢ Property Match: Components must comply with the architectural
style to avoid a property mismatch at the component interfaces.

¢ Elegance: An architecture must constrain an implementation in
such a way that the ensuing system is understandable, maintainable,
extensible, and can be built cost-effectively--in other words, it is
elegant.

Architecture Design is Interface Design

© H. Kopetz 18/09/2003 Introduction
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Waist-line Architecture (e.g., TTA)

Higher-level services: Application Software )
ET Transport | using basic and New high-level
FTU Layer higher level services to ease
Diagnosis services application development
Gateway
« =

Basic Services:
“TT Transport | Formally analyzed and

+Clock Sync validated basic services
*Membership

«Fault Isolation] are available and stable

Implementation
of basic services is
hidden from the application

Extend the range of
Implementation choices
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Size versus Mental Effort to Understand »

Mental Effort (Complexity)

If the mental effort
required to understand a
particular system
function grows with the
system size, there is an
inherent limitation to the
size of the systems we
can build.

Human Mental

Size

© H. Kopetz 18/09/2003 Introduction

Complexity and Size *

¢ Large systems can only be built if the effort required to
understand the system operation, i.e, the complexity of the
system, remains under control as the system grows.

¢ The effort to understand any particular system function
should remain constant, and should be independent of the
system size.

¢ A large system contains many more different functions
than a small system.

¢ The effort needed to understand all functions of a large
system grows with the system size.

The design effort must be guided by technical system
architecture.
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Software Size and Failures .

Project Outcome Project size in k lines source
(percent) <10 | <100|<100Q >5000
Cancelled 3 7 13 24
Late by >12 months 1 10 12 18
Late by > 6 months 9 24 35 37

Approximately on time| 72 53 37 20
Earlier than expected 15 6 3 1

Avg. Schedule(months

Planned Schedule 6 12 18 24
Actual Schedule 6 16 24 36
Difference 0 4 6 12
Source: Patterns of large software Systems, Computer, March 1995, p. 86
© H. Kopetz 18/09/2003 Introduction
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Grand Challenge

The grand challenge in the design of large distributed real-time
systems is the management of the ever-growing complexity

¢ Partition the system into nearly autonomous subsystems that can
be understood, developed and tested independently

¢ Separate the interactions among the subsystems (system level)
from the processing functions within the subsystems (subsystem
level).

What is needed is a distributed architecture for embedded real-
time systems that supports a two level design methodology

¢ system level design and the
¢ subsystem level design

© H. Kopetz 18/09/2003 Introduction




The Interoperability Problem—A Scenario *

¢ A system integrator--e.g., an automotive company--specifies
an Drive-by-Wire architecture and generates an interface
specification for the subsystem (node) suppliers.

¢ The different nodes are developed by different sub-suppliers
with respect to this interface specification.

¢ The acceptance tests of the nodes, as performed versus the
interface specification, are o.k..

¢ The automotive company integrates the nodes into the system
context and observes sporadic failures.

What is the cause of these failures and who is responsible for
correcting these failures?

© H. Kopetz 18/09/2003 Introduction

System Integration *

Given a set of subsystems that are integrated to form a system.

A subsystem is a self-contained system, including hardware,
software, and its own autonomous control, that provides a
specified service to its environment.

At the system level, we distinguish between two types of
services:

¢ Prior Services: The sum of the services that are provided
by the isolated subsystems prior to the integration.

¢ Emerging Services: New services that come into
existence by the integration

© H. Kopetz 18/09/2003 Introduction
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Principles of Composability

The principles of composability are:

¢ Independent development of components--relates to the
architecture support for a two-level design process:
e architecture design with precise interface specification
e component design, w.r.t these interface specification
¢ Stability of prior services--relates the components that are used
in different system contexts (Solution of the reuse problem).

¢ Constructive integration of components--component
integration should be linear and not circular--relates to the
communication system.

Furthermore, if fault-tolerance is to be implemented by component
replication, the component must be replica deterministic.

© H. Kopetz 18/09/2003 Introduction
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Composability: The Role of the Network

"The network is the only mechanism suitable to enforce and manage
real-time operation of distributed systems" (Caro 1998) .

Subsystem A Subsystem B Subsystem C

Z—I@s one link these subsystems such that the

properties that have been established at the subsystem level
will hold at the system level?

Subsystem D Subsystem E Subsystem F
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Example of a Distributed System

37

Communication I/0 Body Electronics
Network  \| / Network
Interface (CNI) Driver Assistant] Gateway
within a node \|Interface System Body
e ) T
CcC cC CC Communication
) I I I System
CC CC CC CC
Brake Engine Steering Suspen-
Manager Control Manager sion
1IN/ /| /|
1/0 1/0 1/0 1/0
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CC: Communication Controller
Introduction
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Real-Time Transaction
EI, 11, 11, 11, 11 El,
A
@ Com. @ Com. Actuator
Real
v Tlme

Stimulus from Environment
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What Is Required?

An architecture based approach to real-time system design that
supports:

¢ Composability--to build systems constructively out of
prevalidated components.

¢ Two-level design methodology--to be able to separate
architecture design from component design.

¢ Generic fault-tolerance--to implement fault-tolerance without
any change in the application software.

¢ Flexible configuration--fo support the reuse of existing
components

¢ Volume market real-time applications--efficient use of
hardware is a real concern.

© H. Kopetz 18/09/2003 Introduction

Architecture Design is Interface Design “

A good interface within a distributed real-time system

¢ is precisely specified in the value domain and in the
temporal domain,

¢ provides the relevant abstractions of the interfacing
subsystems and hides the irrelevant details,

¢ leads to minimal coupling between the interfacing
subsystems,

¢ limits error propagation across the interface,
¢ Conforms to the established architectural style
and thus introduces structure into a system.
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What is a “Component”? !

In our context, a component is complete computer system that
is time aware. It consists of

¢ The hardware
¢ The system and application software
¢ The internal state

The component interacts with its environment by the
exchange of messages via interfaces.

What is a software component?

© H. Kopetz 18/09/2003 Introduction

Closed Component vs. Open Component “

¢ Closed Component: Contains no local interface to the
real world, but can contain local interfaces to other closed
components.
Semi-closed if it is time-aware.

¢ Open Component: Contains an interface to the real
world.
Semi-open if no control signals are accepted from the real-
world (e.g., a sampling system).

The real world has an unbounded number of properties.
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Interfaces of a Node--Messages ®

Diagnostic and Management Interface
(Boundary Scan in Hardware Design)

— Linkin
Local «— < g
= Application Interface (LIF)
Interfaces :— Cofbw .
— O wals Relevant for Composability

Configuration Planning Interface
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What is an Interface? .

Interface: A common boundary between two or more interacting
systems.

Linking Interface (LIF): An interface between two or more existing
systems that is introduced in order to realize a system-of-system
(SOS) with new emergent services.

Property Mismatch: A disagreement among interfacing ports in one or
more of their properties.

Boundary Line (BL): An interface between at least two ports with
matching properties.

Interface System (IS): A new system with at least two ports that is
introduced between ports of the interfacing legacy systems in order to
resolve property mismatches among the legacy systems, to coordinate
multicast communication, and/or to introduce emerging services.
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Some Further Definitions h

System: An autonomous entity that is capable to interact with its
environment and is aware of the progression of time.

Port: A point of interaction between a system and its environment.
Every port can be characterized by a set of properties

Output action: The production by a system at an output port of a
single value change at an instant or of a temporally controlled
sequence of value changes during an interval.

Message: An aggregate that comprises the entire information content

of an output action, i.e., the control information and the data
structure.

Behavior: The sequence of output actions of a system across some or
all of its ports.

Service: The intended behavior of a system.
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FElementary vs. Composite Interface *

Consider a unidirectional data flow between two subsystems
(e.g., data flow from sensor node to processing node).

We distinguish between:

Control Example:
Elementary T state message
nacr .
Interface: Sende Receiver in a DPRAM

Composite

g&ﬂg&agm@» | ﬁlﬁll | Receivi Queue Of
Tuee | Task
Interface: = = event messages

A composite Interface introduces a control dependency between the
Sender and Receiver and thus compromises their independence.
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FElementary vs. Composite Interface

Consider a unidirectional data flow between two subsystems
(e.g., data flow from sensor node to processing node).

We distinguish between:

Elementary Scnder
Interface:

Composite

Interface:

Control

EFEEFEET YY)

=

Example:
state message

A composite Interface introduces a control dependency between the
Sender and Receiver and thus compromises their independence.
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ET in Multicast Communication

Information Push

© H. Kopetz 18/09/2003

CNI .| Receiving
Queue E Task

Information Push

CNI

Receiving
LQJ'I'LLueue [y Teck

Information Push

CNI -4 Receiving
Queue E Task

Information Push
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ET in Multicast Communication

-4 Receiving
Queue E Task

Information Push

Information Push

(j:lN:Il]:l 3| Receiving
Queue E Task

Information Push
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ET in Multicast Communication

C Receiving
LQJ'I'LLueue [y Teck

Information Push

CNI

-4 Receiving
Queue E Task

Information Push
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Technology Trend to Distributed Systems

¢ System on a Chip (SOC) is the components: A complete
computer system, including, CPU, Memory, I/O, Communication
Controller, Operating Systems, and Application Software can be
implemented on a single silicon die: e.g., Motorola “Golden
Oak”

¢ Smart Sensors: Sensing Element, signal processing, calibration,
diagnosis, communication control on a single die.

¢ On-Chip Oscillators for low-cost nodes: cheap, but imprecise

¢ COTS: Commercial off the shelf components comprising
hardware and software

¢ Integrated Fault Tolerance: to mask faults, e.g. SEU (single
event upsets)

© H. Kopetz 18/09/2003 Introduction
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Future Failure Modes of SOC

¢ The expected further shrinkage of the feature size will cause
new failure modes! such as, for example:

¢ Transient multi-bit failures caused by a single fault event

e Intermittent failures of the interconnect that can affect
different functions on the die simultaneously

¢ It is expected that in the future the rate for permanent failures
will remain unchanged, but that the rate for transient and
intermittent failures will increase.

¢ The assumption that a fail-silent node that hosts two
independent FCUs can be implemented on a single die is not
sustainable in future high-dependability applications.
I'Source: C. Constantinescu, Impact of Deep Submicron Technology on

Dependability of VLSI circuits, Proceedings of the IEEE DSN 2002,
Washington D.C., p. 205-209
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The Issue: Intermittent Failures of Chips

Failure Rate

Fits Permanent
Start of intermittent Fajlure
100000 —— failures due to physical
10 000~ defects In the TTA we can
1000~ monitor every single
SOC to detect a
100 degradation before
10— a permanent failure
occurs.
Real Time
© H. Kopetz 18/09/2003 Introduction
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Systems on Chip:

Current Semiconductor Technology makes it possible to design a
selfcontained 32 bit computer system, including 1 Mbyte of
memory, Network Access and I/O on a single die, e.g.,

the Motorola Golden Oak Chip.

Development cost of an SOC: > 10 Mio US $

Production cost: < 10 US $

Number of devices sold 0.1 1 10
(in millions)

Development overhead 1000% | 100% | 10%
(per device)
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Introduction




. oge 55
Economics of Silicon

Silicon real-estate requirements (today, i.e. in the year 2000):
ARMcore 32 bit CPU: 1 mm?

Infineon 256 Mbit DRAM: < 100 mm2: [J
320 kbyte of DRAM: 1 mm?

¢ Marginal Production Costs of 1 mm? of silicon is in the order
of 10 US cent (Cost at silicon foundry TSMC)

¢ Cost of packaging, testing, pins, power-supply significant and
often dominant.

¢ Marginal production costs of 100 mm? silicon chip order of 10
US §.

One men minute of work buys how many megabytes of RAM?

© H. Kopetz 18/09/2003 Introduction
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Silicon Die Costs

Cost Central
System

According to Hennesy and
Patterson (p.60), the

Cost = f (Die-aread)
On the other hand, a
distributed system requires
more packaging and an

additional die area for the
communication controller.

Distributed
System

Size
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Cost of Distribution

The cost of distribution decreases with increasing VLSI integration.
Let us assume, the onchip implementation of a complex communication
controller consumes the equivalent of 100 000 transistors:

556;: Rest Rest
96% 99 %
Controller [
400 000 2500 000 10 000 000

Total Numbers of Transistors on a Single Die
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Multilevel Architecture
High Level Cluster ~ Lower Level Cluster with limited
N » functionality, implemented on diverse
Real-Time < | | T hardware and diverse software.
Buses < >
T T T
T | |
| ‘ Field Bus )>
I | | | I I | | | I
Sensors and (% $$ CIJJ> J)(g (% &(l) (|)J> J)(g J>$ (%
Actuators Controlled Object
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Summary: A Good Distributed Architecture ®

¢ provides a framework and guidelines for the composition of a system
out of nearly autonomous components (subsystems) without the
occurrence of property mismatches.

¢ defines an architectural style.

¢ specifies the type of interactions among the components across well-
defined and small interfaces. It thus builds structure by weak inter-
component coupling and strong intra-component coupling.

¢ provides interfaces that are flexible enough to support the intended
functions, but rigid enough to act as error containment boundaries.

¢ is based on already familiar orthogonal concepts that are used
recursively.

¢ is scalable without limits.
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Benefits of a Distributed Architecture 0

¢ Encapsulated software/hardware solutions with fully
specified interfaces in the value domain and the temporal
domain can be used in differing contexts.

¢ Minimal glue code, since property mismatches are avoided
by adherence to the established architectural style.

¢ Fault containment and fault tolerance can become part of
the architecture (outside the application).

¢ Composability reduces design efforts, validation efforts
and time-to-market.

¢ Platform electronics becomes possible.
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Time and Order
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Outline

¢ Time and Clocks

¢ Time Measurement

¢ Dense Time versus Sparse Time
¢ Internal Clock Synchronization
¢ External Clock Syncrhonization
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Instants are Temporally Ordered

The continuum of real time can be modeled by a directed timeline
consisting of an infinite set {T} of instants with the following
properties:

(1) {T} is an ordered set, i.e., if p and q are any two instants,
then either (1) p is simultaneous withq  or (2) p precedes q
or (3) qprecedesp and these relations are mutually exclusive.
We call the order of instants on the timeline the temporal order.

(ii) {T} is a dense set. This means that, if p#£r, there is at least
one q between p and .

The order of instants on the timeline is called the temporal order.
I I I )

| | | Real Time
p q r
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Durations and Events

A section of the time line is called a duration.
An event is a happening at an instant of time.

An event does not have a duration. If two events occur at an identical
instant, then the two events are said to occur simultaneously. Instants
are totally ordered; however, events are only partially ordered, since
simultaneous events are not in the order relation. Events can be totally
ordered if another criterion is introduced to order events that occur
simultaneously, e.g., in a distributed computer system the node numbers
where the events occurred can be used to order events that occur
simultaneously at different nodes.
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Causal Order

Reichenbach [Rei57,p.145] defined causality by a mark method without
reference to time: "If event el is a cause of event €2, then a small variation
(a mark) in el is associated with small variation in e2, whereas small
variations in e2 are not necessarily associated with small variations in el."

Example: Suppose there are two events el and e2:
el Somebody enters a room.

e2 The telephone starts to ring.

Consider the following two cases

) e2 occurs after el

(i1)) el occurs after e2

© H. Kopetz 18/09/2003 Global Time

Alarm Analysis

A primary alarm event leads to a shower of secondary alarm events
(alarm shower).

If the (partial) temporal order between alarm events has been
established, it is possible to exclude an alarm event that definitely
occurred later than other alarm events from being the primary event.
A precise global time-base helps to determine the event set that is in
this definitely-occurred-later relation.

Delivery order of messages in computer networks:

Temporal?
Causal?
Consistent?
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Clocks and Timestamps

A clock is a device that contains a counter and increments this counter
periodically according to some law of physics (microticks).

Let us assume there exists an external observer with an atomic clock
that has a granularity that is much smaller than the duration of any
intervals of interest. We call such a clock a reference clock z --
Precision, e.g., one femto second (10"3sec)!

The granularity of a clock c is the number of microticks of the
reference clock between any two consecutive microticks of c.

Given a clock and an event, a timestamp of the event is the state of
clock immediately after the event occurrence, denoted by
clock (event).

We assume that relativistic effects can be neglected.

© H. Kopetz 18/09/2003 Global Time
Clock Drift
Clock Drift:
ok z(microtick !,)) — z(microtick )
drift ; = = e
Drift Rate:
v | z(microtick!,)) — z(microtick[)
pPi = s -1

Perfect clock has drift rate of 0
Real clocks have drift rates from 102 to 10

n* nominal number of ticks of the reference clock within a granule of

clock k.
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Failure Modes of a Clock

)

Time of the Perfect Clock
Reference . .
E D )
Clock (tatorror) A good clock with a
bounded driftrate p stays
in the shaded area
Error in Counter
(state error)
>
Time of the Local Clock
© H. Kopetz 18/09/2003 Global Time
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Precision

Offset between two clocks j.k at tick i:
ofj{s‘et,.jk = | z(microtick!) —Z(microtick,.k) |

Given an ensemble of clocks {1, 2, ..., n}, the maximum offset
between any two clocks of the ensemble is called the precision of the

ensemble at microtick i:
IF = Max {offsef}

VI, k<n
The process of mutual resynchronization of an ensemble of clocks in

order to maintain a bounded precision is called internal
synchronization.
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Accuracy

The offset of clock k with respect to the reference clock z at tick i is
called the Accuracy. The maximum offset over all ticks i that are of
interest is called the accuracy of clock k. The accuracy denotes the
maximum offset of a given clock from the external time reference during
the time interval of interest.

This process of resynchronization of a clock with the reference clock is
called external synchronization.

If all clocks of an ensemble are externally synchronized with an accuracy
A, then the ensemble is also internally synchronized with a precision of at
most 2A. The opposite is not true.
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Time Standards "

International Atomic Time (TAI): TAI is a physical time standard that
defines the second as the duration of 9 192 631 770 periods of the
radiation of a specified transition of the cesium atom 133. TAlisa
chronoscopic timescale, i.e., a timescale without any discontinuities. It
defines the epoch, the origin of time measurement, as January 1, 1958 at
00:00:00 hours, and continuously increases the counter as time
progresses.

Universal Time Coordinated (UTC): UTC is an astronomical time
standard that is the basis for the time on the "wall clock". In 1972 it was
internationally agreed that the duration of the second should conform to
the TAI standard, but that the number of seconds in an hour will have to
be occasionally modified by inserting a leap second into UTC to maintain
synchrony between the wall-clock time and the astronomical phenomena,
like day and night.
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A Problem with the Leap Second

Software Engineering Notes of March 1996 (p.16) reports on a problem
that occurred when a leap second was added at midnight on New Year's
Eve 1995. The leap second was added, but the date inadvertently
advanced to Jan. 2. The synchronization of AP radio broadcast network
depends on the official time signal, and this glitch affected their operation
for several hours until the problem was corrected.

Making corrections at midnight is obviously risky:

(1) The day increments to January 1, 1996, 00:00:00.

(2) You reset the clock to 23:59:59, back one second.

(3) The clock continues running.

(4) The day changes again, and it's suddenly, January 2, 1996, 00:00:00.
No wonder they had problems.

© H. Kopetz 18/09/2003 Global Time
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Global Time

If there is a single reference clock available, all time measurements can
be performed by this single clock that acts as a common “global” time.

In a distributed system clocks in order to generate a common notion of
time, a “global time” in the distributed system.

However, such a global time is an abstract notion that can only be
approximated by the clocks in the nodes.

It is possible to select a subset of the microticks of each local clock k
for the generation of the local implementation of a global notion of
time. We call such a selected local microtick a macrotick (or a tick) of
the global time.
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If no global time-base is available, then °

¢ there are n independent local time references and the timestamps
can only be related if they originate from the same clock.

¢ Interval measurements between events observed at different nodes
are limited by the end-to-end delay jitter.

¢ the delay jitter of (ET) communication system determines the jitter
in the control loops--this may be unacceptable for many real-time
control applications.

¢ State estimation is very difficult, since the precise point in time of
measurement of a process variable is not known.

© H. Kopetz 18/09/2003 Global Time

Requirements of a Global Time Base N

¢ Chronoscopic behavior, i.e. no discontinuities, even at the points of
resynchronization

¢ Known precision
¢ High dependability
¢ Metric of the physical second

© H. Kopetz 18/09/2003 Global Time




o, 17
Reasonableness Condition

The global time t is called reasonable, if all local implementations of the
global time satisfy the following reasonableness condition for the global
granularity g of a macrotick:

g>1I
This reasonableness condition ensures that the synchronization error is
bounded to less than one macrogranule, i.e., the duration between two

macroticks.
© H. Kopetz 18/09/2003 Global Time
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One Tick Difference: What Does it Mean?

Because of the accumulation of the synchronization error and the
digitalization error, it is not possible to reconstruct the temporal order of
two events from the knowledge that the global timestamps differ by one.
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Interval Measurement

It follows: (dobs_ 2g) < dtrue < (dobs + 2g)

© H. Kopetz 18/09/2003 Global Time

/A Precedence 2

Given a set of events {E} and two durations = and A where t<<A,
such that for any two elements ¢; and ¢; of this set the following
condition holds:

[z(e) — z(e)) | < 71 v [| 2(e) - 2(e)) | > A]
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Fundamental Limits to Time Measurement .

Given a distributed system with a reasonable global timebase with
granularity g. Then the following fundamental limits to time
measurement must be observed:

¢ If a single event is observed by two nodes, there is always the
possibility that the timestamps will differ by one tick

¢ Let us assume that d_;; is the observed duration of an interval. Then
the true duration d, is

( dobs - 2g) < dtrue <( dobs + 2g)
¢ The temporal order of events can only be recovered, if the observed

time difference d , > 2g

¢ The temporal order of events can always be recovered, if the event
set is 0/3g precedent.

© H. Kopetz 18/09/2003 Global Time
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Dense Time

A timebase is dense if events can occur at any point of the timeline.

Consequences of these fundamental limits of time measurement in
distributed systems:

¢ If a single event occurring on a dense timebase is observed by two
nodes of the distributed system (e.g., to achieve redundancy in the
observations), then an explicit agreement protocol is needed to
establish a consistent view of the temporal point of event
occurrence.

¢ Iftwo events occur on a dense timebase, then it is impossible to
always recover the temporal order of the events if they occur within
an interval of 3g.
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Inconsistent Order on Dense Time Base

Event el is observed by node j at time 2 and by node m at time 1, while
e2 is only observed by node k that reports its observation "e2 occurred
at 3" to node j and node m. Node j calculates a timestamp difference
of one and concludes that the events occurred at about the same time
and cannot be ordered. Node m calculates a timestamp difference of 2
and concludes that el has definitely occurred before e2.

. 24

Sparse Time Base
If the occurrence of events is restricted to some active intervals with
duration 7 with an interval of silence of duration A between any two
active intervals, then we call the timebase n/A-sparse, or sparse for
short.
0 1 2 3 4 5 6 7 8 9
O N R R R TR AT RN AR

500 300 9oy

T A T A T

Eventsg are only allowed to occur at subintervals of the timeline
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Space/Time Lattice =

t o= { e {

node i e 0O O 0O O @ O O O O @ O O O©
node J ® O O O O @€ O O O O e O O O
node k ® O O O O @€ O O O O ¢ O O O
node 1 ® O O O O @ O 0O O O e O O o
—
o Tick with output allowed Time
o Tick with output not allowed
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Time and State

In abstract system theory (Mesarovic, p.45), the notion of state is
introduced in order to separate the past from the future:

“The state enables the determination of a future output solely on the
basis of the future input and the state the system is in. In other word,
the state enables a “decoupling” of the past from the present and
future. The state embodies all past history of a system. Knowing the
state “supplants” knowledge of the past. Apparently, for this role to be

meaningful, the notion of past and future must be relevant for the
system considered.”

A precise concept of time is a prerequisite for a
precise concept of state.
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The Synchronization Condition 7

o +T'<II

'y

Local Convergence
Clock function @

Precision II

N\

rift offset  ['= 2R, p
(clocks free running)

All good clocks will operate

within the shaded area
int 1 -—
Time of Reference Clock
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Malicious (Byzantine) Clocks
11:00 13:00
o
good good

-
CtoA: 9:00 /:

two faced malicious

toB 15:00

Total Number N of clocks must be N > (3k +1), where k is the
number of malicious (Byzantine) faults.
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Central Master Algorithm

A unique node, the central master, periodically sends its time counter in
synchronization messages to all other nodes, the slave nodes. As soon
as a slave receives a new time value from the master, the slave records
the state of its local time counter as the time of message arrival. The
difference between the master's time contained in the synchronization
message and the recorded slave's time of message arrival, corrected by
the latency of the message transport, is a measure of deviation of the
two clocks. The slave then corrects its clock by this deviation to bring it
into agreement with the master's clock.

Precision of central Master Algorithm:

I1 c+T

central —
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Delay Jitter

The difference d,, - d,,;, is called the delay jitter «.

In standard OSI Protocols
(with time redundant trans-
missions) the typical
protocol execution time
distribution is as depicted:

min delay jitter e
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Distributed Clock Synchronization

Typically, distributed fault-tolerant clock resynchronization proceeds
in three distinct phases.

¢ Every node acquires knowledge about the state of the global time
counters in all other nodes by message exchanges among the nodes.

¢ Every node analyzes the collected information to detect errors and
executes the convergence function to calculate a correction value for
the node's local global time counter.

¢ The local time counter of the node is adjusted by the calculated
correction value.

The algorithms differ in the way in which they collect the time values
from the other nodes, in the type of convergence function used, and in
the way in which the correction value is applied to the time counter.
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How well can we synchronize clocks?
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Convergence Function

Examples:
¢ Average Algorithm
¢ Fault-Tolerant Average (FTA)
¢ Fault-Tolerant Midpoint
¢ Interactive Consistency Algorithms
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Fault-Tolerant Algorithm

Every node measures the time differences between its own clock and all
other clocks and rejects the k extreme differences, where k is the
number of Byzantine faults that are to be tolerated.

If k=1, then

¥ O O \ 4

' Precision Window I Time difference

G accepted time value ‘ rejected time values

© H. Kopetz 18/09/2003 Global Time




35

Fault Tolerant Average Algorithm

The worst scenario happens, if the Byzantine clock sets its (faulty)
time values at different nodes at a different corner of the
Precision window:

[Q ‘Q i | @ 0’ G g View of node j
[’ & ‘@ k | @,0 O @ View of node k
| |
|

P

Precision window II | Time difference

G good time value
j Average value calculated by node j

‘ malicously faulty time value k Average value calculated by node k
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Precision of the FTA

Convergence Function

D(N.k,e) = kIT/ (N-2k) + &

Precision

H(N,k,e,1) = (¢ +1)

N-2k
= D)u(N,k
= (e DV

where u (V,k) is called the Byzantine error factor ~ and is tabulated
in the following table:

Number of nodes in the ensemble

Faults 4 5 6 7 10 15 20 30

1 2 1.5 1.33 1.25 1.14 1.08 1.06 1.03
2 3 1.5 1.22 1.14 1.08
3 4 1.5 1.27 1.22
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Interactive Consistency Algorithms 7

To overcome the problem of the Byzantine error factor, every node
sends its view of the ensemble to all other nodes in order that every
node has the global view of the situation, i.e., it can find out which node
has been cheating.

Every node takes this consistent global view, i.e., the matrix of time
vectors, as the basis of the correction factor calculation.

Pro:  p(N,k)=1
Con: Extra round of communication
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Limit to Internal Clock Synchronization *

Lundelius and Lynch have shown that in a system with N clocks and a
delay jitter € it is impossible to synchronize clocks better

Ay =€ (1-1/N)

The proof assumes that all clocks have perfect oscillators.
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Critical Parameters

What are the critical parameters that determine the quality of the global
time base?

¢ Drift offset I' =2*R,,.*p
¢ Delay jitter € = d_,, -d
¢ The occurrence of Byzantine

The delay jitter is smallest, if the clock synchronization is performed
very close to the physical level--by the hardware.

Compared to the delay jitter, the algorithmic effects are small.
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Reading the State of the Remote Clocks
synchronization message assembled and approximate range of jitter
interpreted
at the application software level 500usec to 5 msec
in the kernel of the operating system 10psec to 100sec

in the hardware of the communication controller 1 psec to 1{isec, or even better

Probabilistic Clock Synchronization:

Measure the time of a request/respond transaction that contains
the time value of the partner clock and correct the clock value by
half of the transaction duration.

© H. Kopetz 18/09/2003 Global Time




Delay Jitter € of the Signal Edge

N
N\

s

€

The reading error € is a fraction (less than one third) of a bitcell
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Rate Correction

Precision:

2k _ (e D)

N-—
II(N,k,e,I")=(e+T =
(Nk.e.D)= (e + D)=

Drift offset I'=2*Rg, *p

We can select a Master-Rate Clock and synchronize the rates
of all other clocks to the Master-Rate Clock:

* Distributed Fault-Tolerant Algorithm for clock state synchronization

 Central Multimaster Algorithm for clock rate synchronization
* Error detection w.r.t. rate interval and speed of change of rate
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External Clock Synchronization ®

External Clock synchronization is only possible, if the system has
access to an external time reference.

In the future, GPS will be an important time source that gives
synchronization accuracy in the submicrosecond interval.

External and internal clock synchronization are complementary:

¢ Fault tolerant internal synchronization provides high availability and
good short term stability.

¢ External clock synchronization provides long-term stability, but the
availability may be lower.
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External Clock Synchronization (2)
,¢f > Flow of qmemal
. synchronization
Time server

Gateway
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Time Formats

Network Time Protocol:

Full seconds UTC, 4 bytes I Binary fraction of second, 4 bytes

Range up to year 2036, i.e. 136 years wrap around cycle

© H. Kopetz 18/09/2003
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Uniform Time Format--OMG Standard i

Time horizon Time granularity

Elapsed seconds since January 6, 1980 at de.términed by
00:00(GPS base). precision of GPS

RN LT T T T T T
/

\ /

240 seconds 1 sec 224 sec

external time format (8 bytes)

Start of epoch: January 6, 1980 at 0:00:00 UTC
Granularity about 60 nanosecond
Horizon 34841 years
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Internal Time Format--limited Horizon and Precision

Example of an Internal format (2 byte)

Horizon

256 seconds

Granularity

4 milliseconds

L L]
\

240 seconds

/

1 sec

INNNRENNNNEEND
/

224 sec

Horizon

External time format (8 bytes)

© H. Kopetz 18/09/2003
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Time-Triggered Architecture
Overview

H. Kopetz
TU Vienna
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The Time-Triggered Architecture

Take Time from the Problem Domain

And move it into the Solution Domain

© H. Kopetz 9/18/2003

Page 1




What is an Architecture?

An Architecture establishes a blueprint and a framework for the design of
a class of computing systems that share a common set of characteristics:

¢ Provides generic mechanisms to the application: e.g, clock
synchronization, membership, diagnostics, fault masking

¢ Avoids property mismatches: All interfaces adhere to the same
architectural style: no glue code needed. Example: frame formats, byte
ordering, protocol structure

¢ Supports composability: The precise specification of stable
interfaces in the domains of time and value makes it possible that
subsystems can be developed and tested independently and integrated
with manageable effort.

¢ Supports reuse of subsystems based on interface specifications.
Architecture Design is Interface Design.

© H. Kopetz 9/18/2003

Time Triggered (TT) vs. Event Triggered (ET)

A Real-Time system is Event Triggered (ET) if the control signals are
derived from the occurrence of events, e.g.,

¢ termination of a task
¢ reception of a message
¢ an external interrupt

A Real-Time system is Time Triggered (TT) if the control signals, such
as

¢ sending and receiving of messages
¢ recognition of an external state change
are derived from the progression of a (global) time.

In the TTA, all nodes must have access to a fault-tolerant
global time base of known precision.

© H. Kopetz 9/18/2003




Goals of the TTA

¢ To provide a computing infrastructure for safety-critical
distributed real-time applications in different application domains.

¢ Meet the 10 failures/hour challenge.
¢ Driven by concerns for safety, fault-isolation and certification.

¢ Provide generic COTS (commercial of the shelf) hardware and
system components for the implementation of safety-critical
applications at reasonable costs by taking advantage of mass-
produced highly integrated SOCs (System-on-a-chip).

¢ Critical algorithms (e.g., clock synchronization, membership)
should be validated by all all available means (formal, fault-
injection) and should be solidified in silicon.

© H. Kopetz 9/18/2003

Time-Triggered Architecture Priorities--in Order

¢ Safety without compromises
¢ No single point of failure
e Formal analysis of critical functions
¢ Composability:
e Fully specified operational interfaces in the temporal domain
and value domain
¢ Building systems out of prevalidated components--Component
reuse with established certification argument.
o Two-level design methodology
¢ Flexibility
e Flexible reuse of existing components and support for the
integration of legacy system

© H. Kopetz 9/18/2003




Short History of the TTA

1979: The first work on the TTA started at the TU Berlin.
1983: First prototype version of TTA completed with PDP 11s
1987: First clock-synchronization chip available

1989: Second protoype implemention that was subject to
extensive fault injection experiments

1993: First publication of TTP/C protocol at FTCS 23

1997: In Cooperation with Daimler-Chrysler the first Brake-by-
Wire car was implemented using TTP

1998: The first TTP/C controller chip is produced in the TTA
project

1998: TTTech, the spinoff company of TU Vienna, was founded

In total more than 50 Mio $ have been spent on the
development of the TT-Technology.

© H. Kopetz 9/18/2003

Example of a TTA Cluster

Gateway| Host Computer
Body

TDMA control

of interconnection
network which may-
consists of replicated
busses or replicated
stars

Steering
Manager

/|
1/0

CC: Communication Controller CNI: Communication Network Interface
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Use of A Priori Knowledge in the TTA

The a priori knowledge about the behavior is used to improve
the Error Detection: It is known a priori when a node has to
send a message (Life sign for membership).

¢ Message Identification: The point in time of message
transmission identifies a message (Reduction of message
size)

¢ Flow control: It is known a priori how many messages will
arrive in a peak-load scenario (Resource planning).

For event-triggered asynchronous architectures, there exists
an impossibility result: ‘It is impossible to distinguish a slow
node from a failed node!’ This makes the solution to the
membership problem and the diagnosis problem difficult.

© H. Kopetz 9/18/2003

10

The TTA is Waist-line Architecture

Higher-level services: Application Software

ET Transport | using basic and New high-level
FTU Layer | higher level services to ease
Diagnosis services application development

Gateway
<=

Basic Services:
“TT Transport | Formally analyzed and

+Clock Sync validated basic services
*Membership

«Fault Isolation] are available and stable

Implementation
of basic services is
hidden from the application

Extend the range of
Implementation choices
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Basic Services versus High-Level Services

The TTA distinguishes between four basis services and an open
ended set of high-level services. The basic services are:

(1) Time Triggered Transport of Messages
(2) Fault-Tolerant clock synchronization
(3) Membership service

(4) Fault-Isolation Services

The high level services depend on the basic services, while the
basic services do not depend on the high-level services!

© H. Kopetz 9/18/2003

Basic Service 1: TT Transport--Temporal Firewall B

Al CONI

Sender s Memory —————— | Memony = Receiver
Information Push Time-Triggered Information Pull
Ideal for Sender Communication System Ideal for Receiver

—— Informaﬁon ﬂow .................. > COHtrOl ﬂOW

Temporal Firewall eliminates control error propagation by design
and minimizes coupling between components.
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Basic Service 2: Fault-Tolerant Sparse Time Base
If the occurrence of events is restricted to some active
intervals with duration 7 with an interval of silence of
duration A between any two active intervals, then we call the
timebase m/A-sparse, or sparse for short.
0 1 2 3 4 5 6 7 8 9
O N R R R TR AT RN AR
000 000 9oy
T A T A T
Eventsg are only allowed to occur at subintervals of the timeline
© H. Kopetz 9/18/2003
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Consistent Notion of State in the TTA

A system-wide consistent notion of a discrete time is a prerequisite for
a consistent notion of state, since the notion of state is introduced in
order to separate the past from the future:

“The state enables the determination of a future output solely on the
basis of the future input and the state the system is in. In other word,
the state enables a “decoupling” of the past from the present and
future. The state embodies all past history of a system. Knowing the
state “supplants” knowledge of the past. Apparently, for this role to be

meaningful, the notion of past and future must be relevant for the
Sys tem considered.” (Taken from Mesarovic, Abstract System Theory, p.45)

Fault-masking by voting (TMR) requires a consistent notion of
state in distributed Fault Containment Regions (FCRs).

© H. Kopetz 9/18/2003




Model of a Component—Messages

15
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Message Classification

16

Attribute Explanation Antonym

valid A message is valid if its checksum and contents are | invalid
in agreement.

checked A message is checked at source (or, in short, | not checked
checked) if it passes the output assertion.

permitted A message is permitted with respect to a receiver if it | not permitted
passes the input assertion of that receiver.

timely A message is timely if it is in agreement with the | untimely
temporal specification

value-correct | A message is value-correct if it is in agreement with | not value-
the value specification correct

correct A message is correct if it is both timely and value- | incorrect
correct.

insidious A message is insidious if it is permitted but incorrect | not insidious

© H. Kopetz 9/18/2003




Basic Service 3: Diagnosis by Membership Y

The membership service checks continuously, which node is
alive and which node has failed. It monitors the correctness
of the distributed computing base.

¢ The periodic message of each node is interpreted as a life
sign of the sender.

¢ In order to distinguish between a sender fault and a
receiver fault, the view of a third node is considered to be
the judge (single fault assumption)

¢ Delay of the membership service <2 TDMA rounds.

© H. Kopetz 9/18/2003

Basic Service 4: Fault Isolation 18

In the Time-Triggered Architecture FCRs communicate by the
exchange of messages:

¢ Error Detection in the Time Domain is in the
responsibility of the architecture. It is performed by
independent replicated guardians which are part of the
architecture.

¢ Error Detection in the Value Domain is in the
responsibility of the fault-tolerance layer or of the
application, supported by post condition checks at the
guardians.

¢ TTP/C contains also a clique avoidance service, based on
the membership service.

© H. Kopetz 9/18/2003
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HL Service: ET Transport

Layered: ET service is implemented on top of a TT protocol
Single time triggered access media access protocol.

Maintains [ HHL LT

Temporal ! , .
Composability ! Time

The CAN Protocol and the TCP/IP Protocol have been implemented
on top of basic TTP/C in order to be able to use legacy software.

© H. Kopetz 9/18/2003
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HL Service: Fault-Tolerant Unit (FTU) Layer

¢ In the TT-OS a fault-tolerant
unit (FTU) layer is provided
that hides the fault-tolerance
mechanism (e.g., voting in
TMR systems) from the
application.

¢ The Communication Network
Interface (CNI) - of a fault-
tolerant configuration can be
configured to be identical for
fault-tolerant and non fault
tolerant applications. Precise synchronization of state
absolute necessity:
sparse time base, fault isolation

© H. Kopetz 9/18/2003




HL Service: Diagnosis

In a safety-critical system every anomaly in the architecture--
even if it masked by fault-tolerance mechanisms--must be
recorded.

The diagnostic service, which is being implemented as part of
the central guardian, continuously monitors

¢ The proper operation (sending of messages) of every node
¢ The drift rate of all essential clocks

¢ Semantic checks on the data (post conditions of messages)
if provided.

The diagnostic service is intended to support condition-based
maintenance.

© H. Kopetz 9/18/2003

21

HL Service: CORBA Integration

Time-Triggered

Architecture
Corba Facilities:
I Time
TTA CNI Internationalization
Object A Domain Specific, e.g, Object B
L ORB at A ] Banking IR aE

Health Care

biect Reaues broketr (Ul b --UilO)F communicatio
//é Corba Services:

) Naming

Transaction

Security

Persistent State

Event Notification, and more
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Additional High Level Services

¢ Monitoring Service: To observe the contents of
messages that are exchanged within a cluster

¢ Gateway Service: Support of the construction of
multi-cluster Systems

¢ LUSTRE integration

© H. Kopetz 9/18/2003
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TTP/C System Bus - Principle of Operation

¢ TTP generates a fault-tolerant global time-base.

¢ Media access is controlled by TDMA, based on this time. ET
messages are piggy-packed on the basic TT messages.

¢ Information identified by the common knowledge of the
send/receive times.

¢ Two independent intelligent star couplers provide fault
isolation in the temporal domain.

¢ Membership service to detect crash/omission (CO) failures.
Also used to detect violations of the fault hypothesis.

© H. Kopetz 9/18/2003
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Four Channel System in TTP/C

Alternative I: Two Independent Clusters with two channels each

© H. Kopetz 9/18/2003
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The Swiss-Cheese Model of Reason

Subsystem
Failure

Catastrophic

Multiple System Event
Layers of
Defenses Independence of Layers of

Error Detection are important
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Fault Containment Region (FCR)

A fault-containment region (FCR) is a set of subsystems that
shares one or more common resources that can be affected by a
single fault and is assumed to fail independently from other FCRs.

¢ Tolerance w.r.t. spatial proximity faults requires spatial
separation of FCRs: distributed architectures required.

¢ The fault hypothesis must specify the failure modes of the FCRs
and their associated frequencies.

¢ Beware of shared resources that compromise the independence
assumption: common hardware, power supply, oscillator,
earthing, single timing source.

© H. Kopetz 9/18/2003
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Fault Isolation
N |
Driver Assistant] Gateway
Interface System Body
T T T
cC CcC CcC

v

S

cC cC CcC
Brake Steering Suspen-
Manager Manager sion
RN /| /|
/0 I/0 /0 /0

CC: Communication Controller
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Independence of FCRs

There are two basic mechanisms that compromise the
independence of FCRs

¢ Missing fault isolation
¢ Error propagation

The independence of failures of different FCRs is the most critical
issue in the design of an ultra-dependable system:

¢ Is it justified to assume that a single silicon die contains two
independent FCRs?--%{

¢ Can we assume that the failure modes of a single silicon die are well-
behaved (e.g., fail-silent) to the required level of probability?-- NO

¢ How can we make sure that FCR failures are not correlated, even at a
very low level of correlation (e.g., 1 in 1000)?

© H. Kopetz 9/18/2003
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Error Containment Region (ECR)

In a distributed computer system the consequences of a fault, the
ensuing error, can propagate outside the originating FCR (Fault
Containment Region) by an erroneous message of the faulty node to
the environment.

¢ A propagated error invalidates the independence assumption.
¢ The error detector must be in a different FCR than the faulty unit.

¢ Distinguish between architecture-based and application-based error
detection

¢ Distinguish between error detection in the time-domain and error
detection in the value domain.

gion requires at least two
an

Since an Error Containmen
independent FCRs, a single die cannot fo
Error Containment Region.
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Replicated Guardians in the TTA

Error Containment Region (ECR) comprises G}laljdlan
two Fault Containment Regions (FCR) e.hn:lmates
timing-error
- propagation
Sender

Guardians
monitor
each other
continuously

© H. Kopetz 9/18/2003
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Replicated Guardians in the TTA

The guardian cannot modify the contents of a
message, since it is signature protected

© H. Kopetz 9/18/2003




Semantic Analysis for Value Error Detection s

The guardian can check the post condition of a message

>
Aotive Reshaps Unlt

N 0101
Switch >

Decode Encode

‘ Semantic Analysis o

receivers
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Four Channel System in TTP/C--Independence

Alternative II: Four Independent Clusters with one channel each

O O O O O O

Node O Guardian O TTP/C Controller

Each physical guardian muliplexes its services to the six nodes.
If a controller starts babbling, neither the node, nore the channel is lost.

Four independent subsystems with 10 FCRs (6 nodes, 4 guardians) and 24 ECRs.
Each subsystem with independent timing and diverse transmission schedule
and possibly diverse bit rates and diverse controllers.
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Fault Injection into the TTA

Millions of fault injection experiments have been carried out
in the PDCS, TTA and FIT project over a period of more than

ten years:
¢ Software based (TU Vienna, Austia)
¢ Alpha Particle (Chalmers University, Sweden)
¢ VLSI-model based (Univ. of Valencia, Spain, Carinthia Tech, Austria)
¢ Pin Level (LAAS, Toulouse,France, Univ. of Valencia, Spain)

Main Results:

¢ Guardians are needed to avoid error propagation in the
temporal domain

¢ Guardians must be fully independent: star coupler
Results are documented in the open literature

© H. Kopetz 9/18/2003
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Formal Analysis of the TTA

In cooperation of the TU Vienna with the University of ULM
(Prof. Henke) and SRI (John Rushby) with support from
NASA, many of the core algorithms of the TTA are formally
analyzed:

¢ Clock Synchronization

¢ Membership Service

¢ Central Guardian Algorithms

¢ Start-up Algorithms under fault conditions
The results are published in the open literature.

© H. Kopetz 9/18/2003
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Fault Scenario 1: Permanent Node Failures

Assumption: Failure Rate: <100 Fit (> 10 000 000
hours (1000 years)

Source: Field data from automotive ECUs, Bosch, well
established data

Relation fail-silent/non fail-silent in temporal domain:
Without guardian: ~ 1: 50
With local guardian: ~ 1: 500

With central bus guardian less than 1: 10000 (none observed)

Source: Fault Injection Experiments in PDCS and FIT
project

© H. Kopetz 9/18/2003
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Fault Scenario 2: Transient Node Failures

Very difficult to get good data!

Assumption: Failure Rate: <1 000000 Fit (> 1000 hours)

Source: Papers on neutron induced faults, Xilinx

Relation fail-silent/non fail-silent in temporal domain:
Without guardian: ~ 1:50
With local guardian: ~ 1:500

With central bus guardian less than 1: 10000 (none observed)
Source: Fault Injection Experiments in PDCS and FIT project

© H. Kopetz 9/18/2003
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Fault Scenario 3: Massive Transient Disturbances

A massive transient disturbance (e.g., caused by EMI) makes
it impossible for nodes to communicate for a short interval.

The nodes themselves remain intact.
Detection of massive disturbance: by monitoring membership

Handling of massive disturbance: In the worst case, restart of
the whole cluster.

Restart time < 10 TDMA rounds (e.g., 10 msec if TDMA
round takes 1 msec)

Strongly dependent on system environment!

© H. Kopetz 9/18/2003
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Validation of Star Coupler

TTP/C-C1-based hardware prototype with XILINX 600k
FPGA (tested by IST project FIT):

Heavy Ion Experiments (at Chalmers):

Bus topology: 37036 faults--78 fail silence violations (0.21 %)
Star topology: 26600 faults-- 0 fail silence violation

Software Implemented Fault Injection (Vienna):

Bus topology: 562122 faults--14 fail silence violations (0.02 %)

Star topology: 541744 faults-- 0 fail silence violation
To be published at DSN, San Francisco, June 2003

Formal Verification using Model Checking (SAL, UPPAAL2k) and Theorem
Proofing (PVS) is ongoing in the NEXT TTA Project.

© H. Kopetz 9/18/2003
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Size versus Mental Effort to Understand 4

Mental Effort (Complexity)

If the mental effort
required to understand a
particular system
function grows with the
system size, there is an
inherent limitation to the
size of the systems we
can build.

Human Mental

Size
© H. Kopetz 9/18/2003
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Interfaces of a Component
Diagnostic and Management Interface
(Boundary Scan in Hardware Design)
= Linking
Local «— s g
Interfaces < Ag (1: Esfizn Interface (LIF)
= Relevant for Composability

Configuration Planning Interface

Assume that the size of a box is a measure of how long
it takes tounderstand the interface
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Interfaces of a TTA Component (ii)

Realtime Service (RS) Interface--the linking interface LIF:
¢ In control applications periodic
¢ Contains RT observations
¢ Time sensitive

Diagnostic and Maintenance (DM) Interface:
¢ Sporadic access
¢ Requires knowledge about internals of a node
¢ Not time sensitive

Configuration Planning (CP) Interface:
¢ Sporadic access
¢ Used to install a node into a new configuration
¢ Not time sensitive

Local Interface(s):
¢ To other nodes or the environment
¢ Not visible to the user of the component

© H. Kopetz 9/18/2003
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Temporal Firewalls and Composability

A composable architecture must support the

(1) Independent development of components--relates to the
architecture

(2) Stability of prior services--relates to the components

(3) Performuability of the Communication Svstem--relates to the
communication system.

(4) Replica determinism--to support transparent implementation of

fault tolerance.

(5) Diagnostics--It mus be possible to identify the sending FCU

(Fault Containment Unit) of every message.

The temporal firewall construct supports these five principles

of composability.

© H. Kopetz 9/18/2003
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Linking Interface (LIF) Specification

Operational Specification--Precise in the TTA:

¢ Operational Input Interface Specification
¢ Syntactic Specification
e Temporal Specification
e Input Assertion

¢ Operational Output Interface Specification
¢ Syntactic Specification
e Temporal Specification
¢ Output Assertion

¢ Interface State
Meta-level Specification:

¢ Meaning of the data elements: Means-and-ends interface
model

© H. Kopetz 9/18/2003
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Complexity Reduction by Partitioning

Complexity Reduction:
(LIF Service Interface Complexity)/(Component Complexity)

A good decomposition will lead to a significant complexity
reduction for the understanding of the emerging functions at
the system level.

The easier it is, to understand
a LIF interface, the better
the decomposition from

the point of view of
complexity management.
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Localized Views of Global System

Blue Cluster | |Green Cluster| [Yellow Cluster

Divide and Conquer
© H. Kopetz 9/18/2003

48

Localized Views of Global System

Green Cluster

Divide and Conquer
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Stable Interface of an Autonomous Subsystem

Use will change

Implementation
will change

© H. Kopetz 9/18/2003
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Two-level Design Methodology

A two level design methodology is supported by the TTA:

System Level specifies the interactions among components by
designing the Temporal Firewalls:

¢ Data items that are exchanged among the subsystems
¢ Instants when the TT communication system accesses the data
¢ Abstract model of the meaning of the data.

Component Level is concerned with the detailed Software Design:

¢ The host computer provides the intended function, taking the
available temporal firewall specifications as constraints.

¢ Validation of a component with respect to the temporal firewalls
can be performed in isolation.

© H. Kopetz 9/18/2003
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Top-Down Design Process in the TTA

Level 1:

Decompose the design problem into clusters and components
Allocate functions to components

Investigate the data flow among the components

Specify the temporal firewalls in value and time

Estimate the failure rates and specify the fault-hypothesis
Specify the NGU Strategy

Level 2:

Implement the components, taking the temporal firewall
specifications as constraints.

© H. Kopetz 9/18/2003

Bottom-up Design--Reuse of Components »

The bottom up design takes advantage of the existing COTS
components and their temporal firewall specification:

¢ The input firewall parameters determine what a user is
expected to supply

¢ The output firewall parameters determine what a user can
rely upon

The architecture design must proceed taking these component
characteristics as constraints.
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Legacy Systems

In many application legacy systems have to be integrated in a
new design:

¢ Identify the “Linking Interface” of the legacy system.

¢ Provide a gateway component that hides the idiosyncracies
of the legacy system and provides a standard interface
(wrapper technology) to the new architecture.

¢ Provide back-pressure flow control in the gateway
component.

© H. Kopetz 9/18/2003

A Smart Transducer Cluster >

One active master

Up to 250 slaves

Communication organized in rounds
TDMA bus allocation

TTPIA

TTRIA TTPIA TTPIA Mastor
Slave Slave Slave
TTP/A Bus
TIPIA TTRIA
Slave Slave
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TTP/A Sensor Bus

¢ Low Cost Time-Triggered Sensor Bus to provide a uniform
interface to the different types of smart transducers

¢ Has been standardized by the OMG in January 2003

¢ Optimized for § bit microcontrollers: requires in its minimum
version less than 4 kbyte of ROM and 64 bytes of RAM

¢ Central to TTP/A is the concept of an interface file system (IFS)

Application —
ElSensor o—| Specific Read Read
ement Sensor Write Write
Functions ——»
© H. Kopetz 9/18/2003
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The Three Interfaces of an ST

Real-Time (RS) Service Interface-TT:
¢ Contains RT observations
¢ Time sensitive
¢ In control applications periodic

Diagnostic and Management (DM) Interface-ET
¢ Sporadic Access
¢ Requires knowledge about internal s of a node
¢ Not time sensitive

Configuration Planning (CP) Interface-ET:
¢ Used to install a COTS node into a new configuration
¢ Not time sensitive

The Protocol supports each one of these interfaces.
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The Three Interfaces

/ CP Interface for configuration

\————>

Local
Processes
of STD

RS LIF for
«<— Real-time data

DM Interface
\ For diagnosis and
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Interface File System (IFS)

¢ Provides the structured name space for the RT images and
other node-relevant data (e.g., documentation).

¢ Consists of a set of index-sequential files with constant
record length.

¢ Records are protected.

¢ The following file operation are supported
eread record
ewrite record
e execute record

¢ The configuration information of a round is stored in the
file system as a distributed file of a cluster.

© H. Kopetz 9/18/2003
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Naming

Every record of the IFS can be
uniquely identified by the
concatenation of |

Cluster Name, | CORBAlGa‘eW"‘Y |
Logical Name i SR A GRS T

i | Active | i1 | Active | ii | Active |
File Name, and i | Master ii Master ii Master E
Record Name g i §
Up to 250 Clusters
Up to 250 Nodes i Cluster A ii Cluster B E E Cluster C i
Upto 64 Filess O TaamsducerNode
Up to 256 Records

© H. Kopetz 9/18/2003

File Operations ”

The standard supports three operations on an IFS File:
¢ Read a Record
¢ Write a Record

¢ Execute a Record, taking the record contents as a
parameter for the execution

The File Operation is encoded in the remaining two bits of the
node internal record name.
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Meta Information o

Every smart transducer node contains a class identifier that
points to the meta-information and a unique identifier that
identifies every sensor in the universe uniquely.

The OMG manages the identifier names.

The Meta Information about the meaning of the data stored in
the IFS is not in the sensor, but on the WEB.

At the moment, research is ongoing to formalize parts the
meta-information by using XML.

© H. Kopetz 9/18/2003
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File Access

Two methods to access a file:

¢ Time-Triggered:
e Used for RS Interface
¢ Periodic execution of a preconfigured round.
e Round descriptor list RODL can be stored in an
assigned IFS file

¢ Event-Triggered:
e Used for CP and DM Interface
eRead, write or execute any record within a master slave
round:
e the master (client) must form the full address of the
slave record
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Principle of Operation ®

¢ Endpoint of the communication is a record in an Interface File
System (IFS) located in the transducer node.

¢ Communication is organized into Rounds

¢ A round is started by the active master that has knowledge
of the global time

o The first frame of a round is a fireworks frame, followed
by data frames. The structure of a round is described in the
round-descriptor list (RODL).

eevery round is independent of every other round

¢ The arrival of the fireworks frame is the global
synchronization event starting a new epoch.

© H. Kopetz 9/18/2003
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Round Types

Multipartner Round (TT):
RODL name Data Data Data Data

used for periodic the time-triggered RS Service, reading and Time
writing data of the IFS records containing RT images.

Master-Slave Round (ET):

Record Address | | Record Data

used for the event-triggered DM and CP service that read and Time
write records of the IFS containing calibration, diagnostic and

configuration data..

© H. Kopetz 9/18/2003




Future Plans 6

¢ Extend the TTA to higher bandwidths: an exploratory
research project to implement the TTA on Gigabit Ethernet has
been completed.

¢ Provide more high-level services as the need arises.

¢ Investigate the issues related to the implementation of large
multicluster systems (e.g., multi-clusterclock synchronization)

¢ Investigate the rigorous specification of interface models in
order to support model-based design.

¢ Explore issues related to the modular certification of TTA
systems.

© H. Kopetz 9/18/2003
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The TTA is Waist-line Architecture

Higher-level services: Application Software

ET Transport | using basic and New high-level
FTU Layer | higher level services to ease
Diagnosis services application development

Gateway
<=

Basic Services:
“TT Transport |  Formally analyzed and

+Clock Sync validated basic services
*Membership

«Fault Isolation]  are available and stable.

Implementation If transport is replaced by
of basic services is Ethernet-what are the issues?

hidden from the application
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TT Gigabit Ethernet Prototype Results

¢ TT Ethernet can be implemented without any changes to
the Ethernet protocol standard.

¢ Current switches have a high jitter and thus give a low
precision.

¢ New switch, with predictable jitter and integrated guardian
functions must be designed.

¢ TTA algorithms (clock synchronization, membership, fault
isolation) can be transferred to TT new Ethernet switch
without any change.

¢ Since all basic research issues are resolved, TT Ethernet
implementation is an engineering task.

© H. Kopetz 9/18/2003

o 68
Conclusion

The design of an architecture for safety-critical applications
requires
¢ A clear set of priorities, where safety is at the top of the
list
¢ A precise fault-hypothesis, such that the appropriate fault-
tolerance mechanisms can be designed.

¢ A quest for guaranteeing independence of FCRs and the
elimination of all potential paths of error propagation.

¢ Multiple defenses and assurances at all levels of the
architecture.
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Some Design Challenges

¢ The 10 Challenge

¢ The Process of Abstracting
¢ Physical Hardware Faults
¢ Design Faults

¢ Human Failures

© H. Kopetz 9/18/2003

The 10~ Challenge

¢ The system as a whole must be more reliable than any one of its
components: e.g., System Dependability 1 FIT--Component
dependability 1000 FIT (1 FIT: 1 failure in 10° hours)

¢ Architecture must support fault-tolerance to mask component
failures

¢ System as a whole is not testable to the required level of
dependability.

¢ The safety argument is based on a combination of experimental
evidence about the expected failure modes and failures rates of
fault-containment regions (FCR) and a formal dependability
model that depicts the system structure from the point of view of
dependability.
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The Process of Abstracting

¢ The behavior of a safety-critical computer system must be
explainable by a hierarchically structured set of behavioral
models, each one of them of a cognitive complexity that
can be handled by the human mind.

¢ Establish a clear relationship between the behavioral
model and the dependability model at such a high level of
abstraction that the analysis of the dependability model
becomes tractable.

¢ From the dependability point of view, the future unit of
hardware failure is considered to be a complete chip.

© H. Kopetz 9/18/2003

Physical Hardware Faults of SoCs:

Assumed Hardware Failure Rates (Orders of Magnitude):

Type of Failure Failure Rate in Fit Source

Transient Node 1 000 000 Fit Neutron

Failures (fail silent) (MTTF = 1000 hours) bombardment
Aerospace

Transient Node 10 000 Fit Fault Injection

Failure (non-fail (MTTF= 100 000) Experiments

silent)

Permanent Hardware | 100 Fit Automotive Field

Failures (MTTF= 10 000 000) Data

Tendency: Increase of Transient Failures
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Design Faults

No silver bullet has been found yet--and this is no silver bullet
either: Interface Centric Design (ICD)!

¢ Partition the system along well-specified linking interfaces
(LIF) into nearly independent components.

¢ Provide a hierarchically structured set of ways-and-means
models of the LIFs, each one of a cognitive complexity
that is commensurate with the human cognitive
capabilities.

¢ Design and validate the components in isolation w.r.t. the
LIF specification und make sure that the composition is
free of side effects (composability of the architecture).

© H. Kopetz 9/18/2003

The Twelve Design Principles

Regard the Safety Case as a Design Driver

Start with a Precise Specification of the Design Hypotheses
Ensure Fault-Containment and Error Containment
Establish a Consistent Notion of Time and State

Partition the System along well-specified LIFs

Make Certain that Components Fail Independently
Follow the Self-Confidence Principle

Hide the Fault-Tolerance Mechanisms

. Design for Diagnosis

10 Create an Intuitive and Forgiving Man-Machine Interface
11. Record Every Single Anomaly

12. Provide a Never Give-Up Strategy

PRANNR WD
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Regard the Safety Case as a Design Driver

¢ A safety case is a set of documented arguments in order to
convince experts in the field (e.g., a certification authority) that
the provided system as a whole is safe to deploy in a given
environment.

¢ The safety case, which considers the system as whole,
determines the criticality of the computer system and analyses the
impact of the computer-system failure modes on the safety of the
application.

¢ The distributed computer system should be structured such that
the required experimental evidence can be collected with
reasonable effort and that the dependability models that are
needed to arrive at the system-level safety are tractable.

¢ The safety case should be regarded as a design driver since it
establishes the critical failure modes of the computer system.

© H. Kopetz 9/18/2003

10
Start with a Precise Specification of the Design Hypotheses

The design hypotheses is a statement about the assumptions that are
made in the design of the system. Of particular importance for safety
critical real-time systems is the fault-hypotheses: a statement about the
number and types of faults that the system is expected to tolerate:

¢ Determine the Fault-Containment Regions (FCR): 4 fault-
containment region (FCR) is the set of subsystems that share one or
more common resources and that can be affected by a single fault.

¢ Specification of the Failure Modes of the FCRs and their
Probabilities

¢ Be aware of Scenarios that are not covered by the Fault-Hypothesis

© H. Kopetz 9/18/2003




Fault Containment

¢ The immediate consequences of a fault must be
isolated to within a well-defined region, the fault
containment region.

¢ Fault-Containment Regions must fail
independently.

¢ Consider spatial proximity.
¢ Design Faults?

© H. Kopetz 9/18/2003
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Ensure Error Containment

In a distributed computer system the consequences of a fault, the
ensuing error, can propagate outside the originating FCR either by an
erroneous message or by an erroneous output action of the faulty node
to the environment that is under the node’s control.

¢ A propagated error invalidates the independence assumption.
¢ The error detector must be in different FCR than the faulty unit.

¢ Distinguish between architecture-based and application-based error
detection

¢ Distinguish between error detection in the time-domain and error
detection in the value domain.

© H. Kopetz 9/18/2003
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Establish a Consistent Notion of Time and State °

A system-wide consistent notion of a discrete time is a prerequisite for
a consistent notion of state, since the notion of state is introduced in
order to separate the past from the future:

“The state enables the determination of a future output solely on the
basis of the future input and the state the system is in. In other word,
the state enables a “decoupling” of the past from the present and
future. The state embodies all past history of a system. Knowing the
state “supplants” knowledge of the past. Apparently, for this role to be

meaningful, the notion of past and future must be relevant for the
Sys tem considered.” (Taken from Mesarovic, Abstract System Theory, p.45)

Fault-masking by voting requires a consistent notion of state in
distributed Fault Containment Regions (FCRs).

© H. Kopetz 9/18/2003

State (ii) 1

¢ Provide a mechanism to heal corrupted state

¢ State can be corrupted by the progression of time or the
loss of a state update or a bitflip in the state (SER)

¢ How to heal corrupted interface state?

¢ permanent soft error can be caused by

© H. Kopetz 9/18/2003




Partition the System along well-specified LIFs

“Divide and Conquer” is a well-proven method to master
complexity.

A linking interface (LIF) is an interface of a component that is

used in order to integrate the component into a system-of-
components.

¢ We have identified only two different types LIFs:
e time sensitive LIFs and
e not time sensitive LIFs

¢ Within an architecture, all LIFs of a given type should have
the same generic structure

¢ Avoid concurrency at the LIF level

© H. Kopetz 9/18/2003
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The LIF Specification hides the Implementation

Component

Operating System
Middleware

Linking
Interface
Specification

(In Messages,

Out Messages,
Temporal, <
Meaning--
Interface

Model)

Scheduling

Memory Management

Ete.
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Composability in Distributed Systems

Communication Interface
System

Interface

. i S . .
Specification pecification

Delay,
A Dependability B

© H. Kopetz 9/18/2003

18

A Component may support many LIFs

/ Service X

Component
implementation

must support the
specifications of
all LIFs

Service Y

\ Service Z
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Make Certain that Components Fail Independently Y

Any dependence of FCR failures must be reflected in the
dependability model--a challenging task!

Independence is a system property. Independence of FCRs can
be compromised by

¢ Shared physical resources (hardware, power supply, time-
base, etc.)

¢ External faults (EMI, heat, shock, spatial proximity)
¢ Design
¢ Flow of erroneous messages

© H. Kopetz 9/18/2003
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Follow the Self-Confidence Principle

The self-confidence principles states that an FCR should
consider itself correct, unless two or more independent FCRs
classify it as incorrect.

If the self-confidence principle is observed then

¢ acorrect FCR will always make the correct decision
under the assumption of a single faulty FCR

¢ Only a faulty FCR will make false decisions.

© H. Kopetz 9/18/2003




Hide the Fault-Tolerance Mechanisms 2

¢ The complexity of the FT algorithms can increase the
probability of design faults and beat its purpose.

¢ Fault tolerance mechanisms (such as voting, recovery) are
generic mechanisms that should be separated from the
application in order not to increase the complexity of the
application.

¢ Any fault-tolerant system requires a capability to detect
faults that are masked by the fault-tolerance mechanisms--
this is a generic diagnostic requirement that should be part
of the architecture.

© H. Kopetz 9/18/2003
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Design for Diagnosis

The architecture and the application of a safety-critical system
must support the identification of a field-replaceable unit that
violates the specification:

¢ Diagnosis must be possible on the basis of the LIF
specification and the information that is accessible at the
LIF

¢ Transient errors pose the biggest problems--Condition
based maintenance

¢ Determinism of the Architecture helps!
¢ Avoid Diagnostic Deficiencies
¢ Scrubbing--Ensure that the FT mechanisms work

© H. Kopetz 9/18/2003
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Flexibility vs. Diagnostics in CAN

I/0 Body Electronics
AN / Network

Communication Driver Assistant Gateway
Network Interface System Body
Interface (CNI) cC cC cC
within a node | 1 |
< 1 .
| ,’ | |
CC CC CC CC
L & L
Brake Engine Steering Suspen-
Manager Control Manager sion
1IN/ /| /]
1/0 1/0 /0 I/0

CC: Communication Controller
© H. Kopetz 9/18/2003
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Diagnostic Deficiency in CAN
/0

Even an expert |

cannot decide \l / ‘

who sent the Driver Assistant Gateway
Interface System Body

erroneous message — — o

= d---

v

Ky

CC
T
Steering
Manager
Erroneous / |
CAN message /0
with wrong cC: C .. C 1
identifier : ommunication Controller
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Create an Intuitive and Forgiving Man-Machine Interface

¢ The system designer must assume that human errors will
occur and must provide mechanisms that mitigate the
consequences of human errors.

¢ Three levels of human errors
e Mistakes (misconception at the cognitive level)
e Lapses (wrong rule from memory)
o Slips (error in the execution of a rule)

© H. Kopetz 9/18/2003
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Record Every Single Anomaly

¢ Every single anomaly that is observed during the operation
of a safety critical computer system must be investigated
until an explanation can be given.

¢ This requires a well-structured design that is analyzable at
all levels.

¢ Since in a fault-tolerant system many anomalies are
masked by the fault-tolerance mechanisms, the observation
mechanisms must access the non-fault-tolerant layer.

© H. Kopetz 9/18/2003




Out-of-Norm Behavior o

¢ In reality, there is often a gray area between correct and
incorrect.

¢ Information about out-of-norm behavior can be very
valuable in the diagnostic process

Example: borderline between transient and intermittent
failures of a chip

¢ Application specific assertion for the detection of out-of-
norm behavior

© H. Kopetz 9/18/2003
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Provide a Never Give-Up Strategy

¢ There will be situations when the fault-hypothesis is
violated and the fault tolerant system will fail.

¢ Chances are good that the faults are transient and a restart
of the whole system will succeed.

¢ Provide algorithms that detect the violation of the fault
hypothesis and that initiate the restart.

¢ Ensure that the environment is safe (e.g., freezing of
actuators) while the system restart is in progress.

¢ Provide an upper bound on the restart duration.
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Conclusion

Every one of these twelve design
principles can be the topic of a
separate talk!

Thank you
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e Papers
— “Stochastic Analysis of Periodic Real-Time Systems,”
Real-Time Systems Symposium 2002.
— “An Exact Stochastic Analysis of Priority-Driven
Periodic Real-Time Systems and lts Approximations,”
submitted to a journal.
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Introduction
Related work

Our stochastic analysis
— Backlog and interference analysis
— Steady-state backlog analysis

Complexity analysis
Experimental results
Conclusion
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e The conventional deterministic schedulability
analysis causes an underutilization of the system.

e A stochastic approach to the schedulability
analysis can improve the system utilization.

e By the stochastic analysis, each task is
guaranteed to meet its deadline with the
computed probability = probabilistic guarantee

e The need for probabilistic guarantees covers both
soft real-time and hard real-time systems

European Summer School on 4 Seoul National University
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e Approach 1: “Analyze the system as it is.”
— Gardner & Liu’s Stochastic Time Demand Analysis
— Lehoczky’s Real-Time Queueing Theory

e Approach 2: “Invent a system easy to analyze.”
— Abeni & Buttazzo’s Reservation-based Systems

— Atlas & Bestavros’ Statistical Rate Monotonic
Scheduling

European Summer School on 5 Seoul National University
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e Gardner & Liu’s Stochastic Time Demand
Analysis
— a stochastic extension of the Time Demand Analysis

— tries to compute an upper bound of the deadline miss
probability for each task, based on the concept of
critical instants.

— provides no proof for the safeness for systems with
Umax > 1

European Summer School on 6 Seoul National University
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¢ Lehoczky’s Real-Time Queueing Theory

— an extension of the conventional Queueing Theory to
real-time systems

— an approximated analysis for systems under heavy-
traffic conditions (U z1)
— assumes that all tasks follow
= a single interarrival time distribution and
= a single service time distribution.
— extends to Real-Time Queueing Networks.

European Summer School on 7 Seoul National University
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¢ Abeni & Buttazzo’s Reservation-based Systems

— For each task, one dedicated virtual processor is
provided (period based reservation).

— A job in a task overrunning the allocated budget is
allowed to steal that of the next job in the same task.

— A stochastic analysis is performed for each task
assuming the isclated environment.

= Markov process modeling

European Summer School on 8 Seoul National University
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e Atlas & Bestavros’ Statistical Rate Monotonic
Scheduling

— For each task, one dedicated virtual processor is

provided (super-period based reservation).
= super-period: a multiple of the period of the task,
equal to the period of the next task

— A job in a task can consume the allocated budget as
much as it wants.

— If the budget is not enough, newly arriving jobs are
rejected. (= firm real-time)

— A stochastic analysis is performed for each task to

calculate the rejection probability, which is regarded as
the deadline miss probability.

European Summer School on 9 Seoul National University
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¢ Our stochastic analysis
— follows “Approach 1: Analyze the system as it is”.
— introduces no pessimistic and restrictive assumpltions.

= tasks with arbitrary execution time distributions
(thus, arbitrary utilization factors) and arbitrary
relative deadlines.

= general priority-driven scheduling algorithms
—includes both fixed-priority and dynamic-priority
algorithms (RM, DM, EDF, ...)
------- accurately models all possible interactions between
tasks (thus giving the exact deadline miss probability
for each task).

European Summer School on 10 Seoul National University
Embedded Systems 2003




e Task model
— independent periodic tasks 7, (i=1, 2, ..., n)
— fixed period T, phase ¢, relative deadline D
— execution time C: discrete random variable
= probability mass function (PMF)

Je,(e)=P(C,=0)

13

14 14
l l l 111
’ p C’

o1 o2 3 4 5 7 i

e Scheduling model

— priority-driven preemptive scheduling (RM, DM,
EDF, ..)

e

=2
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S ()= PR =7)

70 75 8 83 90

e The response time distribution can be used
— to compute the deadiine miss probability P(R; > D))
— to compute other QoS-related parameters

European Summer School on 12 Seoul National University
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Compute t

for e

e We want the response time distribution observed
when the system is in steady state.

e A response time profile obtained for the task in a
real system will converge towards the stationary
distribution.

European Summer School on 13 Seoul National University
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Compute

erperiod k

e The response time distribution of task z; can be
obtained by averaging those of all jobs J;;
belonging to the task.

European Summer School on 14 Seoul National University
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J; : the j-th job in a hyperperiod

J{¥) - the j-th job in hyperperiod k

;- the release time of job J;

p; : the priority value of job J;

— A lower priority value means a higher priority.

European Summer School on

15 Seoul National University
Embedded Systems 2003

e Response time of job J;

execution time of Jj

Rj=ij(/1j)+Cj+[pj

backlog left by interference caused by
earlier released job later released jobs

prbacklog: consisting of
Jobs with priority values < p

printerference: consisting of
Jjobs with priority values < p,

European Summer School on
Embedded Systems 2003
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15t step: backlog analysis

2nd step: interference analysis

European Summer School on 17 Seoul National University
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e Algorithm

— input

= a sequence of earlier released jobs with priority
values < p; = {J;, Js, ..., J}

= the p-backlog distribution observed at 4,

— output
» the p-backlog distribution observed at 4,

— procedure

» iteratively compute the p-backlog distribution
observed at 4, from that observed at 4, , (k=2,3,...,))

European Summer School on 18 Seoul National University
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e Naive approach

— apply the backlog analysis algorithm for an infinite
sequence of jobs required for each job J..

— input
* an infinite sequence of jobs with priority values < p;.

e 1 1 2 2 2 o w
LW ASINY SO TN A 1Y S SRRV AS TV A PN S S e

all jobs with p < pf all jobs with p < pf= all jobs with p < p{®
in hyperperiod 1 in hyperperiod in hyperperiod «
» null backlog at the beginning of hyperperiod 1
— output
= the p-backlog distributions observed at 1", 1@, ...,
()
j
European Summer School on 21 Seoul National University
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e Problem of the naive approach
— We have to consider an infinite job sequence for each
job J,in hyperperiod <.
— The computational complexity is too high.

e Solution

— We show that computing all the stationary backlog
distributions (SBDs) of jobs in hyperperiod « reduces
to computing the SBD of a single job, which satisfies a
certain condition. ( = backlog dependency tree)

— We also show that the SBD of the single job can be
analytically computed. ( = Markov process modeling)

European Summer School on 2 Seoul National University
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e Algorithm

— input
* the p-backlog distribution observed at /4,
= the execution time distribution of job J;
= a sequence of later released jobs with priority

values < p; = {Jj+1, Jj+2, Jj,,k, v }

— output
» the response time distribution of job J;

— procedure
= jteratively reflect the interference effect of each job

Jix into the response time distribution of J; being

computed (k=1, 2, ...)

European Summer School on 23 Seoul National University
Embedded Systems 2003

European Summer School on 24 Seoul National University
Embedded Systems 2003




g 5 0 e
k2 : %
% : l + Fresponse e without wderfereos
¥4 1 4 1 & ¥ ® % i
5 3 o8 e
i i e &
i , @ 5 & & £ F E3 # i
é A
% : £
B oW
a2 & & & & E % £ 19
$oeponss time with interforsnce
European Summer School on 25 Seoul National University

Embedded Systems 2003

¢ What if the set of interfering jobs is infinite?

— If we are only interested in the deadline miss
probability (DMP) of the job J, the set of jobs we
should consider is limited to those released between [,
A+D]).

DMP, = P(R, > D,)=1-P(R, <D,)

— If a high priority job J;,, is found such that the response
fime of Jj cannot reach the release time of g;m the
interference analysis algorithm can be terminated.

European Summer School on 26 Seoul National University
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o Motivation

— We do not want to perform the steady-state backlog
analysis for each job in hyperperiod .

— We observe that there exists a dependency between
the p-backlog distributions of jobs.

o Advantage

— We can greatly simplify the steady-state backlog
analysis
= by reducing the problem of computing all the SBDs
of jobs in hyperperiod « to computing the SBD of
one single job.

European Summer School on 27 Seoul National University
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¢ Procedure for finding the dependencies

— We classify all jobs in a hyperperiod into ground jobs
and non-ground jobs.

» ground job: p-backlog = system backlog
—Ajob J;is a ground one if p; > p, for all previously
released jobs J,.
* non-ground job: p-backlog = system backlog

— We find a backlog dependency between ground jobs
and non-ground jobs in terms of base jobs.

* base job: defined for each job J; as a preceding
ground job J; with p; < p;

European Summer School on 28 Seoul National University
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e Task set

Ji

| 1%

| v |

NG

G

Ji

m

European Summer School on
Embedded Systems 2003

29

Seoul National University

e Backlog dependency tree

{Ji}

W, (%)

s

W, (A)

W, ()

sz (12)

{Js}

W

W, (Zs)

20 Y3, Js

W, (o)
s}
2!
W, )}
s}

{JYe: J7, Jsf

W (Ae) W, (%)
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o Derived job sequences assuming W, (4,)
- Ji:{}
—Jp:{Ji}
—J3:{J;}
—Jy {3}
—Js {1 }U{ s J5, Us }
—Jg {1 }U{Jy 3 J, }U{ U5}
—J7 {1 }U{Jy 5 Jy FU{ U5}
—Jg 1 {J1}U{Js I3 Jy } U{ s J7 }
—Jo 1 {1} U{J; I3 J, }U{ s} U{ g, J7, Jg }
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¢ Existence of ground jobs
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e Task set

Sl Ll T s ] %] | %]

I % |

? G ? G ? G ?
NG | | [ ] [ U] [ os] [ ] [ ] [ %] [ ]
G Jy L ««««««««««««« ww>| Js memm «««««««««« S A
European Summer School on 33 Seoul National University

Embedded Systems 2003

e Backlog dependency lists
— Priority level 2

7 7 7

7 7 : : : 7 7
Wy, ()| Wy, ()| (W, )| [V, ()| (W, (o) (W, (A8) | [PV, (o)

W, (%) W, (%)
{J, Js» Js}
— Priority level 1
W, () pW, () pIW, (A) W, (A) W, (A)p W, (A) PV, (L)

(23 B (V) S 77 S ) S O R €
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¢ Existence of ground jobs

e Non-existence of base jobs

Lemma 2
exist the

European Summer School on 35 Seoul National University
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e For EDF, it is possible to build a complete
backlog dependency tree.
— If the SBD of the root node is given, all the other SBDs
can be computed.
e For RM and DM, for each priority level, a
separate backlog dependency list should be built.

— If the SBD of the head node is given, all the other
SBDs of ground jobs in the same level can be
computed.

European Summer School on 36 Seoul National University
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o Motivation

— We want to know whether the stationary system
backlog distribution (SSBD) can be analytically
computed.

— We observe that the backlog process { B,, B, ... }is a
Markov process.

= B, : the system backlog at the beginning of
hyperperiod k (i.e., for the root or the head node)

¢ Advantage

— We can obtain the exact solution for the SSBD, thus
the exact response time distributions for all tasks.

European Summer School on 37 Seoul National University
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e \We derive a set of equilibrium equations.
b, =P-b, |, (k>x)

g cofumn veclor representing
the system backlog distribution
at hyperperiod k P( Bk_1 =y > Bk =x) foranyx, y

[P(B, =0),P(B, =1),P(B, =2)...]"

Markoy matrix

— BTW, the number of the derived linear equations is
infinite, since the amount of the system backlog can
infinitely increase as k — .

European Summer School on 39 Seoul National University
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¢ We solve the infinite set of linear equations by
deriving a finite set of equations, which is
equivalent to the infinite set.
— The Markov matrix has a regular structure.
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¢ The closed form solution is given as follows:

_ _ T
n=b_ = [72'0,72'1,72'2,...,7Z'mr »”m,+1>”m,+2r--]

the solution oblained by an infinfte series generated
sofving the derived finite set of from the solufion
fnsar sgustions
{using the factthat 7, > 0 85 X /
o3} /

_ x—m,—1 x-m, -1 x—m, -1
. =ah +a,4 "‘"“"am,/?«m,

— a;: a linear combination of {7,,7;,7;,....7,, }

— /;: an eigenvalue obtained by diagonalizing a matrix
derived from the regularity of the Markov matrix
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¢ The derived matrix A from the regularity of the
Markov matrix P
Qx+1=A°Qx mer+1

T
Qx = [ﬂ.x—d’ﬂ-x—d+19""7[x—l’ﬂ-x’ﬂ-x+19""7[x—d+m,—l] (d = mr —l")

( ¢ 1 g a 1 ¢ 4 o \\
o o o o o o o
o o o 3 g o o o
A= ¢ 0 4 a t 0 9 o
o o o o o 1 4 [
G o o 0 0 o @
4 o o 0 o o o i
\w&x(m}fﬁy{a} bl = W0} e ~BAASIYBAG) 1Bl BA0) Rl - B0) o b a};&,(c})
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¢ \We have to truncate the SSBD (which is infinitely
long) in order to use it in a diaital computer.

|

the infinitely long SSBD preserved part dropped part

— However, the use of the truncated SSBD is safe.

= it always gives an upper bound on the deadline
miss probability for each task.
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e Markov matrix truncation method

' ' '
n=P-n n'=P'n
s
/ " 1 ' 1 17
/S n'=z,, 7,7, s T, ]
P'
foswn  ows osum . - w | o \
s . T
| 003125 013128 00425 000625 003 0005
| - oo olmm 010625 000625 003
P= - _  0pmIZ5 0125 02425 02675 019635 008625
- - = 00Ms DAB1S 02495 026Th 010695
i o o o @s@&% @z‘%&?ﬁﬁﬁ fﬁz%ﬁ& g@%%&

- - - — G L Boe
ux 0 - px = .
\ e . Gontn

i
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e |terative method

— We can compute the system backlog distributions { B;,
B,, ..., By, ...} in turn, until B, converges.

= that is, until || B, — B, || falls below a threshold «.

— We can guess how close the computed solution is fo
the exact one, unlike the truncation method.

— The convergence rate depends on the average system
utilization.

* If U is close to 1, the method is not applicable.
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e [Jmax < 1
-B,=B,=..=B,=..=0
— The SSBD is equal to a null backlog distribution.
= null backlog distribution: P(B = 0) = 1
— Itis possible to apply even a deterministic analysis.
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e Backlog and interference analysis: O(n3m?)
— n: the number of jobs in a hyperperiod
— m: the maximum length of execution time distributions

o Steady-state backlog analysis
— Exact method: O(n3m3)
— Markov matrix truncation method: O(pn2m?2) + O(p3)
= p: the truncation point of the Markov matrix
— lterative method: O(Pn2m?)
= [: the number of iterated hyperperiods
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e Comparison with Gardner’s STDA

e Comparison between the solution methods
— analysis accuracy & analysis time
— The effect of the system utilization is investigated.

e Analyzer implementation
— Intel linear algebra package (Math Kernel Library 5.2)
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execution fmes wiitizations
task set T; .C); 5?511 f“} (:'irnnx Uﬂﬁn U ey
nll2oi20] 4 161 10 -
Alnjllooiso; 12 |16 22 58§ 824 127
|| 90|90 | 16 | 23| 36 Pt
n |l 20 2 6 1 L e )
B [mJeoje| 12 |17 ] 22 | 58 | 87| 127 only U is varied
|| 909 16 | 26 36 P
nflwin 4 7 10 ””“‘Ez s’”’”“z
C o |[e0]60 | 12 [17] 22 & 58 f 920p 127,
w909 16 |3 36 L :
B ERERE 7 11 : 3
€1 [ |60 [ 60| 10 | 17| 24 | 46 || 92 j 138] Umax gnd Umin are
|| 90| 90| 13 | 26 39 J ! varied
njl2oi220F 2 7 12 : i
€2l || 60} 60 3 171 26 34 E 92 15()2
ol 90 %0 19 |26 42 e I
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e deadline miss | wskst |——— : —
s simulation ETDA | exact [ e [ iterative
probablllty 7} 0000 & 0000 | 0000 0000
A | o || 0000 £ 0000 | 0000 0000
7 | 0940 £ 0025 [ 30310 0840 | 0940 | 0940
o | O000 & 0000 | 0000 0000
B | % || 0000 0000 | 0000 0000
w [l 2173 £ 0033 £ 69134 2070 | 2170 | 21070
% | 0000 & 0000 | 0000 000
C | || 0000 0000 | 0000 o
N E R SR E eSS
T K00 £ 0000 000 AR
CL | g | 000D & 0000 | 0000 o
Tl A332 £ 0065 [ 92097 4334 | 4334 | 43m
o | 0000 & 0000 | D000 1000
L e 53 02 4 000 B85 Ricied A0z A2
T || 4850 = 0081 [ 033070 N.A. | 4860 | 4860
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e deadline miss ik EDF

o simulation exact | tnc | Heramive
probablllty o 0001 = o000 | ooot | ooot | oo
A | 0000 4 0000 | 0000 | 0000 | 0000
T D A DN Rt 000 Rt
o | D03 0e02 | o013 | o0l | 001
B | g 000054 0002 | 0005 | 0005 | 0005
% | .GODD £ .0001 | 0000 | 0000 | 0000
o § 0223 & 0013 | 0224 | 0224 | 1224
C e |} 0I5 0014 | 0169 | Dlew | 0169
T DO & OOEE | 0081 | 0081 D081
T | 0626 = .0U3E | 0630 | 0627 | L0627
ClU| oz | 0604 £ 0038 | D610 | 0607 | 0607
T JAG1 & D032 | 0966 | (463 D63

Ty 248 = 058 250 250
(o238 I L2093 £ L0064 | NAL | 1206 296
T JE36 £ G063 138 LE138
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e accuracy level § = || SSBD ¢t — SSBD ppox Il

SEBD computation time {seconds)
task exant truge jrerative

e T 07 [ 821070 52107 | 52103 | 62100 ] 62107

A 3 00 00 00 00 00 00

’ p=2 | p=15 | p=25 | i=2 1=2 1=3

B B 00 0 01 o0 0 01

p=8 p=23 =37 f=2 #=3 F=t

e 15 01 03 o7 00 01 )

o p=20 | p=63 | op=96 | t=d | f=12 1 1=30

1 31 02 10 25 01 05 21

' ’ peSd | pel1S | opel73 | £5T ] 300 1e33

& NA o7 A1 82 ) 23 88

’ T =R | p=181 | p=272 | 4=10 | =30 § £=S2
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e |t is possible to analyze the exact response time
distributions for periodic tasks.
— Backlog dependency = covers both fixed-priority and
dynamic-priority scheduling algorithms
— Markov process modeling = enables the steady-state
analysis
e The assumed task model should be extended to
include arbitrary tasks
— tasks with arbitrary interrelease times
e An approximated analysis should be developed
to reduce the complexity.

European Summer School on 53 Seoul National University
Embedded Systems 2003




Sponsored by:




	
	1f-el-are.pdf.rdo
	

	liu2.pdf.rdo
	
	
	
	
	
	
	
	
	
	
	
	

	liu3.pdf.rdo
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	2f-el-are.pdf.rdo
	

	Kopetz1.pdf.rdo
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	kopetz2.pdf.rdo
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	kopetz3.pdf.rdo
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	kopetz4.pdf.rdo
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	3f-el-are.pdf.rdo
	

	kim.pdf.rdo
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Baksida.pdf.rdo
	


