

1

Page 1

1

Controlling the Performance
of

Networked Information Servers

Lui Sha
lrs@cs.uiuc.edu

Sept 2003

2

Controlling Computers
Feedback control was embedded in the TCP protocol in the 70’s to
solve the congestive failure problems that had brought down the
network.

Since then, we have not experienced system-wide congestive failures
again even though the network has grown orders of magnitude. This
is a testament of the effectiveness of feedback control in a highly
dynamic, decentralized, and fast changing environment.

However, except under heavy workload conditions that allow
effective fluid approximations, the application of control theory to
control the performance of computing systems has been slow. But the
need of performance control becomes more pressing.

2

Page 2

3

Web Service
Performance Control

Web Servers Application ServersEnd Users

KeepAlive
TImeout

Number of
Threads

MaxClients

DB
Connections

Fast response cache
MaxRequestsPerChild
ThreadsPerChild
Max simultan. requests
ListenBackLog

URL Cache
EJB threads

JVM heap size
Servlet reload int

Courtesy of Joe Hellerstein, IBM
Research

4

The Problem
From a control theory perspective, a networked information
server’s behavior is highly non-linear. The parameters of the
stochastic process, e.g., request rates, can change abruptly
without warning. They are:

Not deterministic processes perturbed by random events like
LQG
Not just the long term equilibrium behavior control like MDP
Not just an isolated plant but networked servers

Yet, we want to tightly control both the long term average and
the transient behaviors of these random processes.

3

Page 3

5

The Difficulties
Linearized controller provides only
mediocre performance. A direct
application of adaptive control or
hybrid control does not provide much
improvement

Workloads are as fickle as Web
servers’ attention spans
Random fluctuations in key
variables makes state estimation
time consuming
Control action itself pushes the
system away from the
selected/updated model at
runtime.

D

µ − λ

Dref

6

Key Ideas
Model accuracy impacts control performance. And all the
difficulties point to a single problem: the actual plant
deviates from the plant model used by control.

Queueing model is a “natural” to model the non-linear
behaviors of an information server over a wide range of
parameter values

Why not using a queueing model’s solution as a feed
forward control to “lock” the system into a desired
equilibrium operating point, in spite of workload changes?

4

Page 4

7

Delay Control

Controller

Queueing
Predictor

λAverage
request rate

Actuator Server

Delay Sensor

Adjusted
service rate

µ + ∆µDesired delay
µ

∆µ

Theoretical
service
rate

Control
adjustment

Actual
Delay

Measured delay

Resource
Allocationerror

8

“Marriage” in Heaven
Consider the M/M/1 model where D = 1/(µ – λ). The feed forward
control from queueing model, µ(τ) = 1/D_ref + λ(τ), “locks” the
system in an equilibrium state in the neighborhood of linearization.

This makes the life of a feedback control easier. In return, the
feedback controller suppresses approximation errors in the
queueing model and the transients that cannot be reduced by
queueing modeled based tuning.

To the best of our knowledge, this is the first framework that has
successfully integrates two powerful theories.

5

Page 5

9

New Perspectives

Small excitation for
many epochs

Large excitation is good
as long as it does not
cause saturations

Modeling identification

All the fluctuations are
part of data

High frequency jumps
are usually noise

Observations

Slower than
1/Large_Sample_Size

Faster than Nyquist
rate

Sampling rate for signal
processing

Number of eventsUnits of timePeriods measured in

Control Web Servers
(Changing Probability)

Control Physical Plants
(Changing Eigenvalues)

10

Controlling Probabilities
Suppose we want to correct a biased coin with prob(head)= 0.4. We begin by
soldering a small weight to the side of head of the biased coin, and then do
some experiments and adjust the weight…

How frequently should we adjust the weight? Obviously, we cannot succeed if
we change the weight, just flip the coin once, and change the weight again

The problem here is that we are dealing with probability, and not with an
instantly measurable quantity such as temperature or pressure.

From a control perspective, the transfer function (relationship) between the
change of weight and the change of probability of head manifests itself only
when the sample variance becomes negligible.

6

Page 6

11

Small Excitation
and Slow Sampling

The horizontal axis is the sample
variance in log scale.

Under a small excitation of ∆µ =
±0.01, when the sample contains
many epochs, the sample
variance becomes very small and
Matlab’s estimation using
experimental data converges
towards the theoretical value of
–4.

Under a large excitation, e.g., ∆µ
= ±0.1, the estimation would
converge to a wrong value,
because the asymmetry
response of queueing system. Sample Variance and Model Accuracy

12

Sliding Window Control Action
Long observation window does not imply
slow control action

For example, a 1000 events window but
change control output every 10 events

X-axis is step size (also shows avg
control effort ∆µ)
Y-axis is delay variance

Quick update step reduces variance &
control efforts.

Effect of Control Update Rates with a
Suitably Long Observation Window

7

Page 7

13

Experimental Setup
Objective: Control absolute delay of premium clients on an Apache
web server

Sensor: averages response time of all requests
Actuator: Number of processes (C. Lu, RTAS 2001)

Load generation: SURGE web benchmark

Platform: Linux-based PC cluster on Ethernet LAN

14

Experimental Results

-1
0
1
2
3
4
5
6
7
8
9

10

0 500 1000 1500 2000
time (sec)

co
nn

ec
tio

n
de

la
y

G/M/1

G/M/1 with PI
controller
reference

G/M/1 with P controller

G/M/1 model with PI controller produces much better results

8

Page 8

15

Asymmetric Control

Dref

Delay

Service Rateµ−∆µ ∆µ

∆d2

∆d1

0.23420.0821Variance

3.08502.9942Mean

3.03.0Ref Delay

Symmetric
Control

Asymmetric
Control

The effect of reducing resource is much more profound than
adding resources, especially when workload is heavy.

16

Asymmetric Control

Asymmetric Control Symmetric Control

−∆µ ∆µ

The effect of reducing resource is much more profound than
adding resources, especially when workload is heavy.

9

Page 9

17

Summary
Providing high quality performance control in a single server is an
important first step.
Looking ahead, we will address issues:

Non-linear controllers
Adding queue size prediction, measurement and control
Performance control of server farms and network of servers
Testing results in real system, e.g., servers at IBM Research

1. Sha, L., Li, X., Lu, Y., and; Abdelzaher, T. “Queueing model based network server
performance control”, the proceedings of IEEE Real-Time Systems Symposium, 2002

2. Lu, Y., Abdelzaher, T., Lu, C., Sha, L., and Liu, Xu, “Feedback Control with Queueing-
Theoretic Prediction for Relative Delay Guarantees in Web Servers”, to appear in The 9th
IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS 2003)

3. Liu, X., Sha, L., Diao, Y., Froehlich, S., Hellerstein, J., and Parekh, S., “Online Response
Time Optimization of Apache Web Server" proceedings of the 11th International
Workshop on Quality of Service

CS331

Fall 1997 1

lrs@cs.uiuc.edu 1

Updating
RT Embedded Software

in the Field
Lui Sha

lrs@cs.uiuc.edu
September, 2003

lrs@cs.uiuc.edu 2

RT embedded systems have a long life span. How to
develop real time systems that can:

• be easily changed in the field, even on the fly?

• maintain stability and controllability in spite of

• arbitrary errors in the new software?

• malicious attack by insiders disguised as
upgrades?

PID

PID

Manipulated
Varilables

Reactor

Dynamics

Performanc
Variables

Process State

in situ
sensors

Multivariable
Controller

Process State
Setpoints

&
Surface

Measurements

CS331

Fall 1997 2

lrs@cs.uiuc.edu 3

Job 1 is Robust Against Bugs

• We shall begin with an investigation on the principle of developing
software systems that are robust against bugs. Leaving them
alone, bugs may destroy:
• Correctness
• Performance
• Reliability
• Security
• …
• any software property that you care.

lrs@cs.uiuc.edu 4

The Software Reliability Conundrum

• If history is any guide, formal methods can only handle software with
moderate complexity in the foreseeable future.

• How about using software tolerance based on diversity?

• But wait. What if the fault tolerance system is itself too complex to
verify and have faults?

• For example, the Six Western States Blackout incident in US was
• triggered by the shorting of 1 power line at Oregon
• spread by the flawed “self healing” architecture at the time

CS331

Fall 1997 3

lrs@cs.uiuc.edu 5

Complexity, Diversity and Reliability

• To build a robust software system that can tolerant arbitrary
application software faults, we must understand the relations
between software
• Complexity: the root cause of software faults
• Diversity: a necessary condition for software fault tolerance.
• Reliability: a function of complexity and diversity

• We shall begin with postulates based self-evident facts

lrs@cs.uiuc.edu 6

Software Development Postulates

• We assert that the following postulates self-evident
• P1: Complexity Breeds Bugs: Everything else being equal, the

more complex the software project is, the harder it is to make it
reliable.

• P2: All Bugs are Not Equal: You fix a bunch of obvious bugs
quickly, but finding and fixing the last few bugs is much harder.

• P3: All Budgets are Finite: There is only a finite amount of effort
(budget) that we can spend on any project.

• How can we model “software complexity”?

CS331

Fall 1997 4

lrs@cs.uiuc.edu 7

Logical Complexity

• Computational complexity => the number of steps in computation.
• Logical complexity => the number of steps in verification.

• A program can have different logical and computational
complexities.
• Bubble-sort: lower logical complexity but higher computational

complexity.
• Heap sort: the other way around.

• Residue logical complexity. A program could have high logical
complexity initially. However, if it has been verified and can be used
as is, then the residue complexity is zero…

lrs@cs.uiuc.edu 8

The Implications of the 3 Postulates

• P1: Complexity Breeds Bugs: For a given mission duration t,
the reliability of software decreases as complexity increases.

• P2: All Bugs are Not Equal: for a given degree of complexity,
the reliability function has a monotonically decreasing rate of
improvement with respect to development effort.

• P3: Budgets are finite: Diversity is not free. That is, if we go for
n version diversity, we must divide the available effort n-ways.

• One simple model that satisfies P1, P2 and P3

• Sum of efforts used in diversity = available effort
• Reliability function: e ─ k (complexity / effort) t

CS331

Fall 1997 5

lrs@cs.uiuc.edu 9

Diversity, Complexity and Reliability

• .

3-version programming

1-version programming

A reliable core with 10x
complexity reduction

Analysis shows that what really counts is not the degree of diversity. Rather it is
the existence of a simple and reliable core that can guarantee the stability of the
system. This result is also robust against change of model assumptions.

--- Using Simplicity to Control Complexity, IEEE Software 7/8, 2001, L. Sha

lrs@cs.uiuc.edu 10

Putting the Principle to Work

• Complexity is
• The side effect of features and performance
• The root cause of software faults

• It is kind of like money … a source of many evils but something we
cannot live without.

• So let’s find a way to control complexity, instead of letting it control
our systems.

CS331

Fall 1997 6

lrs@cs.uiuc.edu 11

An Example

• Once upon a time, there was an exam on sorting programs. Grades
are given as follows:
• A: Correct and fast: n log (n) in worst case
• B: Correct but slow
• F: Incorrect

• Joe can verify his bubble sort, but has only 50% chance to write
Heap Sort correctly.

• What is his optimal strategy?

lrs@cs.uiuc.edu 12

Requirement Decomposition

• Often, requirements can be decomposed into
• Critical (correctness) requirements

• Sorting: output numbers in correct order;
• TSP: visit every city exactly once
• Control: stable and controllable

• Performance optimization
• Sorting: faster
• TSP: shorter path
• Control: less time/error/energy

• Joe can exploit software he cannot verify safely …

Heap Sort Bubble Sort

CS331

Fall 1997 7

lrs@cs.uiuc.edu 13

Stability Control

• Stability control is a mechanism that ensures that errors are bounded
in a way that satisfies the preconditions for the recovery operations.
Stability control must be simple or it will be self defeating.

• What if the untrusted sorting program alters an item in the input list?
1. Create a verified simple primitive called “permute”
2. Untrusted sorting software is not allowed to touch the input list

except use the permute primitive.
3. Enforce the restriction using an object with (only) method

“permute”

• Under stability control, the untrusted Heap-sort can only produce “out
of order” application errors.

lrs@cs.uiuc.edu 14

Using Simplicity to Control Complexity

The high assurance control subsystem
• Application level: well-understood controllers to keep the control

software simple.
• System software level: certified OS kernels
• Hardware level: well-established and fault tolerant hardware
• System development: high assurance process, e.g. DO178B
• Requirement management: critical properties and essential services.

The high performance control subsystem
• Application level: advanced control technologies,
• System software level: COTS OS and middleware
• Hardware level: standard industrial hardware
• System development: standard industrial development processes.
• Requirement management: features, performance & rapid innovation

CS331

Fall 1997 8

lrs@cs.uiuc.edu 15

Stability Control for Control Systems

• Having a reliable controller, we identify the
recovery region within which the controller
can operate successfully. Recovery region
is a subset of the states that are admissible
with respect to operational constraints

• The largest recovery region can be found
using LMI. This approach is applicable to
any linearizable systems. They cover most
of the practical control systems.

operational constraints

Recovery
Region

Stability
envelope

The system under new complex
controller must stay within recovery
region

m i n l
s u b j e c t t o
S a f e t y s w i t c h i n g r u l e :

•

−

=
T

1

T

T

X A X
A Q + Q A < 0

o g d e t Q
C X < 1

X Q X < 1

lrs@cs.uiuc.edu 16

Simplex Architecture for Control

Trusted simple and
reliable controller

Online upgradeable
complex controller

Data Flow Block Diagram

Plant

Stability
Monitoring

TX QX < 1

• Simplex architecture for control systems allows the online upgrade of control systems without
shutting down the operation.

• It also maintains control in spite of arbitrary application errors in the upgrade process. To try an
interactive demonstration, see www-drii.cs.uiuc.edu/download.

CS331

Fall 1997 9

lrs@cs.uiuc.edu 17

Dynamic Component Replacement

Hardware

Operating System

Complex feature
Rich components

eSimplex
middleware

Simple & reliable
component

Monitoring and switching logic

Application
layer

Runtime Component
Replacement Middleware

lrs@cs.uiuc.edu 18

Interactive Demo on the Web

http://www-rtsl.cs.uiuc.edu/ click project, click drii, click telelab download

Win98/NT

* important
* important
* important
* important
* important
* important
* important
* important

Win98/NT

* important
* important
* important
* important
* important
* important
* important
* important

LynxOS

Simplex

annotated, pre-recorded
presentation (e.g. HTML)
(in case of communication failures)

A/V Streams

A/V Streams
Win98/NT

* important
* important
* important
* important
* important
* important
* important
* important

: Telelab Screen Shot

CS331

Fall 1997 10

lrs@cs.uiuc.edu 19

Protect Against Attacks Disguised as Upgrades

Code Safety Checks

Attack on
Exec env

appl. Logic
Bugs + attacks

Safety Controller + Stability Control

RT Resource Management

Resource Depletion attacks

Development
Environment

Appl. Domain
Technology

Middleware

lrs@cs.uiuc.edu 20

C Code Safety Checks

• Due to the large installed base of C, we working with colleagues to define a
subset of C, called Control_C, that can be statically checked for safety and
expressive enough for control and signal processing.

• + { strong-typing }
• + { Java-style pointers }
• + { region-based heap with only 1 region }
• + { “bounded” arrays }
• – { system calls except memory allocation }
• – {embedded assembly }

Code Compiler Analysis GCC

Ensure Code Safety without Runtime Checks for Real Time Control Systems,
Kowshik, Dhurjati, & Adve, CASE 2002

CS331

Fall 1997 11

lrs@cs.uiuc.edu 21

RT embedded systems have a long life span. We are
developing technologies that allows a RT system that

• can be easily changed in the field, even on the fly

• maintain stability and controllability in spite of

• arbitrary errors in the new software

• malicious attack by insiders disguised as upgrades

PID

PID

Manipulated
Varilables

Reactor

Dynamics

Performanc
Variables

Process State

in situ
sensors

Multivariable
Controller

Process State
Setpoints

&
Surface

Measurements

1

Page 1

1

Generalized
Rate Monotonic Scheduling

Lui Sha
lrs@cs.uiuc.edu

2

Outline
• Real time systems and you
• Fundamental concepts
• Independent tasks
• Homework
• Task synchronization and aperiodics
• Summary
• Homework

2

Page 2

3

Prerequisite
 The basic operating systems concepts including

• processes, threads and execution priorities
• context switching
• mutual exclusions and locks
• interrupt handling

 Commonly used OS scheduling algorithms such as
• FIFO
• Round-robin
• Foreground/background

4

Real Time Systems and You

 Embed real time systems enable us to:

• manage the vast power generation and distribution
networks.

• control industrial processes for chemicals, fuel,
medicine, and manufactured products.

• control automobiles, ships, trains and airplanes.

• conduct video conferencing over the Internet and
interactive electronic commerce.

• send vehicles high into space and deep into the sea to
explore new frontiers and to seek new knowledge.

3

Page 3

5

Outline
• Real time systems and you
• Fundamental concepts
• Independent tasks
• Homework
• Task synchronization and aperiodics
• Summary
• Homework

6

What is Real Time Systems

The correctness of real time computing depends upon not
only the correctness of results but also meeting timing
constraints:

•deterministically: (hard real time)

•statistically: (soft real time)

4

Page 4

7

Periodic Tasks

 A task τi is said to be periodic if its inter-arrival time
(period), Ti, is a constant.

 Periodic tasks are common in real time systems because
the sampling actions.

 (Can you give some examples?)
 The utilization of task τi, is the ratio between its
execution time Ci and its period Ti: Ui = Ci / Ti

 The default deadline of a task is the end of period.

...

8

Importance and Priority

 Task τ1 : if it does not get done in time, the world will end.

 Task τ2: if it does not get done in time, you may miss a
sweet dream.

 Quiz: presume that the world is more important than
your dream, should task τ1 has a higher priority?

5

Page 5

9

Why Ever Faster Hardware is Not Enough

 If priorities are assigned according to importance, there
is no lower bound of processor utilization, below which
tasks deadlines can be guaranteed. Why?

 C1/T1 + C2/T2 = U

 U → 0, when C2 → 0 and T1 → ∞

 Task τ2 will miss its deadline, as long as C1 > T2

important

less important...

τ1

τ2

10

Measure of Merits

Time-Sharing Real-Time
Systems Systems

Capacity High throughput Schedulability
Responsiveness Fast average Ensured worst-

response case response

Overload Fairness Stability

• schedulability is utilization level at or below which
tasks can meet their deadlines

• stability in overload means the system meets critical
deadlines even if all deadlines cannot be met (critical
tasks are assumed to be schedulable.)

6

Page 6

11

Dynamic vs “Static” Priorities
 An instance of a task is called a job.

 Dynamic priority scheduling adjust priorities in each task
job by job.

 “Static” priority assigns a (base) priority to all the jobs in
a task.

12

Deadline vs Rate Monotonic
Scheduling

 An optimal dynamic scheduling algorithm is the earlier
deadline first (EDF) algorithm. Jobs closer to deadlines
will have high priority.

 An optimal “static” scheduling algorithm is the rate
monotonic scheduling (RMS) algorithm. For a periodic
task, the higher the rate (frequency), the higher the
priority.

7

Page 7

13

Which One Uses EDF (RMS)?

Timeline 1

Timeline 2

τ1

τ2

14

A Historical Note
 For a given set of independent periodic tasks[Liu73],

• earliest deadline first (EDF) can ensure all tasks’
deadlines, if the processor utilization is not greater 1.0.

• rate monotonic algorithm can ensure all the tasks’
deadlines if processor utilization is not greater than
0.69.

 Since the early 90’s, RMS was generalized into GRMS
and caught on, but EDF is still used infrequently.

8

Page 8

15

An Open Problem
 Under EDF, if a processor has a transient overload, it is
not clear which task can ensure its the deadline, since
each job of a task can have a different priority.

 This problem is solvable. So far, no efficient algorithm
has been found to make it worthwhile to implement for
majority of the applications. On the other hand,

• RMS has a simple solution to the stability problem.
• The 0.69 worst case number is rarely seen in practice.

When encountered, it can be engineered away.
• Processor cycles, which cannot be used by real time

tasks under RMS, can be used by non-real time tasks
with low background priority.

16

GRMS in The Real World
“The navigation payload software for the next block of Global
Positioning System upgrade recently completed testing. ...
This design would have been difficult or impossible prior to
the development of rate monotonic theory", Doyle, L., and
Elzey, J., , Technical Report, ITT, Aerospace & Communication
Division, 1993, p. 1.

"A major payoff...System designers can use this theory to
predict whether task deadlines will be met long before the
costly implementation phase of a project begins. It also eases
the process of making modifications to application software."
DoD 1991 Software Technology Strategy. pp. 8-15.

9

Page 9

17

Outline
Class 1:
• Real time systems and you
• Fundamental concepts
• An Introduction to the GRMS: independent tasks
• Homework

Class 2:
• An introduction to the GRMS: task synchronization

and aperiodics
• Summary
• Homework

18

A Sample Problem
Periodics Servers Aperiodics

τ1

τ2

τ3

20 msec

40 msec

100 msec

100 msec

150 msec

350 msec

20 msec

Data Server
2 msec

10 msec

Comm Server
10 msec

5 msec

Emergency
50 msec

Deadline 6 msec
after arrival

2 msec

Routine
40 msec

Desired response
20 msec average

10

Page 10

19

Schedulability: UB Test
 Utilization bound(UB) test: a set of n independent periodic tasks
scheduled by the rate monotonic algorithm will always meet its
deadlines, for all task phasing, if

 U(1) = 1.0 U(4) = 0.756 U(7) = 0.728
 U(2) = 0.828 U(5) = 0.743 U(8) = 0.724
 U(3) = 0.779 U(6) = 0.734 U(9) = 0.720

 For harmonic task sets, the utilization bound is U(n)=1.00 for all n.
For large n, the bound converges to ln 2 ~ 0.69.

 Conventions, task 1 has shorter period than task 2 and so on.

--- + + --- < U (n) = n(2 - 1)C1 Cn 1/ n
T1 Tn

20

Sample Problem: Applying UB Test

 Total utilization is .200 + .267 + .286 = .753 < U(3) = .779

 The periodic tasks in the sample problem are chedulable
according to the UB test.

C T U
Task τ1: 20 100 0.200

Task τ2: 40 150 0.267

Task τ3: 100 350 0.286

11

Page 11

21

Toward a More Precise Test

 UB test has three possible outcomes:

• 0 < U < U(n) ==> Success
• U(n) < U < 1.00 ==> Inconclusive
• 1.00 < U ==> Overload

 UB test is conservative.

22

Example: Applying Exact Test -1

 Taking the sample problem, we increase the compute
time of τ1 from 20 to 40; is the task set still schedulable?

 Utilization of first two tasks: 0.667 < U(2) = 0.828
• first two tasks are schedulable by UB test

 Utilization of all three tasks: 0.953 > U(3) = 0.779
• UB test is inconclusive
• need to apply exact test

12

Page 12

23

The Exact Schedulability Test

If a task meets its first deadline when all higher priority
tasks are started at the same time, then all this task’s
future deadlines will always be met[Liu73]. The exact test
for a task checks if this task can meet its first deadline.

Timeline

τ1

τ2

24

Schedulability: Exact Test
 Intuition: let t = a0 be the instance at which task τ i and all
higher priority task execute once.

 If there is no new arrival from higher priority tasks during
a0, τ i actually completes its execution at t = a0 . If there is
new arrivals, the compute a1 and check if there is new
arrivals…

 The arrivals are counted by the ceiling function.

a n+1 C i
a n

T j

C j
j 1=

i 1−

∑+ where a 0 C j
j 1=

i

∑==

Test terminates when an+1 > Ti (not schedulable)
or when an+1 = an < Ti (schedulable).

13

Page 13

25

Example: Applying Exact Test -2

 Use exact test to determine if τ3 meets its first deadline:

100 180

100
40() 180

150
40()+ + 100 80 80+ + 260= = =

a 1 C 3
a 0

T j

C j
j 1=

2

∑+=

3
a

0
C
j

j 1=

∑ C
1

C
2

C
3

+ + 40 40 100+ + 180= = = =

26

Example: Applying the Exact Test -3

 Task τ3 is schedulable using exact test

a 3 300= T< 350=

a2 C3
a1

Tj

Cj
j 1=

2
∑+= 100 260

100
(40) 260

150
(40)+ += = 300

a3 a2 300 Done!= =

a3 C3
a2

Tj

Cj
j 1=

2
∑+= 100 300

100
(40) 300

150
(40)+ += = 300

14

Page 14

27

Timeline

τ 2

τ 3

0 100 200 300

τ 1

τ 3completes its work at t = 300

28

Pre-period Deadline
 Note that task τ3 default deadline is at 350, but its worst
case finishing time is 300. Thus, its deadline can be
moved earlier by 50 unit before its end of period.

 Under GRMS, addressing pre-period deadline is simple,
just replace a task deadline from T to (T - D) in the exact
schedulability analysis.

D

15

Page 15

29

Stability Under Transient Overload
Rate monotonic scheduling requires assigning task
priorities according to periods (rates).

Question: “How does one ensure the deadline of a
critical task with a long period, resulting in a low
priority.
Solution: Period Transformation.
For example, give the task a T/2 period, which
increases its priority for RMS, but suspend the task
after C/2 worst case execution.
After all, importance and rate monotone priority
assignment can be made consistent.

(But don’t buy a knife and slice up the program... It
can done invisibly to the program … Stay tuned.)

30

When Schedulability is low

4 4

6 6
100

0 14

Home work: task τ1 has execution time 4 and period 10, while task
τ2 has execution 6 and period 14. Deadline of task τ2 will be missed if
we increase execution time of task τ2 from 6 to 8.

How can we ensure both tasks’ deadlines without reducing task
execution time? (Hint: period transformation.)

τ1

τ2

16

Page 16

31

Context Switching Overhead
 Period transformation is not a free lunch, it increases
context switching overhead.

 Context switching cost comes in pairs, preemption and
resuming.

 You need to add the context switching overhead cost, 2S,
into the execution of each tasks for more precise
schedulability analysis.

 The context switching overhead of task τi is (2S / Ti). The
total system context switching overhead is thus the sum of
tasks’ context overheads.

 The impact of context switching time in an OS is inversely
related to the periods of application tasks.

32

Homework
 1) Write a simple program to compute schedulability
(Hint: to save time, you may want to use a spread sheet
program).

 2) Change the numbers and tasks in the example and
apply the formula.

17

Page 17

33

Outline
• Real time systems and you
• Fundamental concepts
• Independent tasks
• Homework
• Task synchronization and aperiodics
• Summary
• Homework

34

A Sample Problem
Periodics Servers Aperiodics

τ1

τ2

τ3

20 msec

40 msec

100 msec

100 msec

150 msec

350 msec

20 msec

Data Server
2 msec

10 msec

Comm Server
10 msec

5 msec

Emergency
50 msec

Deadline 6 msec
after arrival

2 msec

Routine
40 msec

Desired response
20 msec average

18

Page 18

35

Priority Inversion
 Ideally, under prioritized preemptive scheduling, higher
priority tasks should immediately preempt lower priority
tasks.

 When lower priority tasks causing higher priority tasks to
wait due to the locking of shared data, priority inversion
is said to occur.

 It seems reasonable to expected the duration of priority
inversion (also called blocking time), should be a
function of the duration of the critical sections.

 Critical section: the duration of a task using shared
resource.

36

Unbounded Priority Inversion
τ1:{...P(S)...V(S)...}
τ3:{...P(S)...V(S)...}

τ1(h)

τ2(m)

τ3(l)

Legend
S Locked
Executing
Blocked

Legend
S Locked
Executing
Blocked

time

S Locked S Unlocked

B

B
S Locked S Unlocked

Attempt to Lock S

19

Page 19

37

Basic Priority Inheritance Protocol

 Let the lower priority task to use the priority of the
blocked higher priority tasks.

 In this way, the medium priority tasks can no longer
preempted to low priority task that blocks the high
priority tasks.

 Priority inheritance is transitive.

38

Basic Priority Inheritance Protocol

τ2:{...P(S)...V(S)...}
τ4:{...P(S)...V(S)...}

τ2

τ3

τ4(l)

Legend
S Locked
Executing
Blocked

Legend
S Locked
Executing
Blocked

time

S Locked S Unlocked

Ready

Ready

B

Attempts to lock S S Unlocked

τ1(h)

B

S Locked

20

Page 20

39

Legend
S1 Locked
S2 Locked
Executing
Blocked

Legend
S1 Locked
S2 Locked
Executing
Blocked

Chained Blocking
τ1:{...P(S1)...P(S2)...V(S2)...V(S1)...}
τ2:{...P(S1)...V(S1)...}
τ3:{...P(S2)...V(S2)...}

τ2

τ3(l)

time

S2 Locked S2 Unlocked

B

Attempts to lock S1

S1 Unlocked

τ1(h) B

S1 Locked

Attempts to lock S2

B

S2 Locked S2 Unlocked
S1 Unlocked

S1 Locked

40

Legend
S1 Locked
S2 Locked
Executing
Blocked

Legend
S1 Locked
S2 Locked
Executing
Blocked

Deadlock Under BIP

τ1:{...P(S1)...P(S2)...V(S2)...V(S1)...}
τ2:{...P(S2)...P(S1)...V(S1)...V(S2)...}

τ1(h)

τ2(l)

time

S2 Locked

B

Attempts to lock S1

B

S1 Locked
Attempts to lock S2

B

21

Page 21

41

Property of Basic Priority Inheritance

 OS developers can support it without knowing
application priorities.

 There will be no deadlock if there is no nested locks, or
application level deadlock avoidance scheme such the
ordering of resource is used.

 Chained priority is fact of life. But a task is blocked at
most by n lower priority tasks sharing resources with it,
when there is no deadlock.

 Priority inheritance protocol is supported by almost all of
the real time OS and is part of POSIX real time extension.

42

Priority Ceiling Protocol
A priority ceiling is assigned to each semaphore, which is
equal to the highest priority task that may use this
semaphore.

A task can lock a semaphore if and only if its priority is
higher than the priority ceilings of all locked
semaphores.

If a task is blocked by lower priority tasks, the lower
priority task inherits its priority.

22

Page 22

43

Legend
S1 Locked
S2 Locked
Executing
Blocked

Legend
S1 Locked
S2 Locked
Executing
Blocked

Blocked at Most Once (PCP)
τ1:{...P(S1)...P(S2)...V(S2)...V(S1)...}
τ2:{...P(S1)...V(S1)...}
τ3:{...P(S2)...V(S2)...}

τ2

τ3(l)

time

S2 Locked S2 Unlocked

B

Attempts to lock S1
S1 Unlocked

τ1(h)

B

Attempts to lock S1

S2 Locked S2 Unlocked
S1 Unlocked

S1 Locked

S1 Locked

B

44

Legend
S1 Locked
S2 Locked
Executing
Blocked

Legend
S1 Locked
S2 Locked
Executing
Blocked

Deadlock Avoidance: Using PCP

τ1:{...P(S1)...P(S2)...V(S2)...V(S1)...}
τ2:{...P(S2)...P(S1)...V(S1)...V(S2)...}

τ1(h)

τ2(l)

time

Locks S2

B

Locks S1

Attempts to lock S1

B

Unlocks S1
Unlocks S2

Locks S1
Unlocks S1

Locks S2 Unlocks S2

23

Page 23

45

Schedulability Analysis

∀ ≤ ≤ +
+

≤ −
=

−
+∑i i n B B ij

jj

i
i i n

i

ic c
T T

, ,
m ax (.. .)

()/1
1

1
1 1

2 1

A uni-processor equation using PCP
preemption execution blocking

∀ ≤ ≤ +
+ +

≤ −
=

−
+∑i i n B B ij

jj

i
i i n

i

ic c
T T

, ,
(. . .)

()/1
1

1
1 1

2 1

A uni-processor equation using BIP
preemption execution blocking

46

Sample Problem: Using BIP
C T D B

τ1 20 100 30
τ2 40 150 20 10
τ3 100 350

W k B C
W k
T

Ci i i
i

jj

i

j()
()

+ = + +

=

−

∑1
1

1

24

Page 24

47

Schedulability Model Using BIP
C
T

B
T

U1

1

1

1
1

20
100

30
100

050 10+ ≤ + = <() . .

C
T
C D
T

B
T
U1

1

2 2

2

2

2
2

20
100

40 20
150

10
150

0667 0828+
+

+ ≤ +
+

+ = <() . .

C
T

C
T

C
T

U1

1

2

2

3

3
3

20
100

40
150

100
350

0753 0779+ + ≤ + + = <() . .

48

Modeling Interrupts
 A hardware interrupt can have higher priority than
software.

 When an interrupt service routine, R, is used to capture
data for longer period task, it will still preempt the
execution of shorter period tasks.

 From the perspective of GRMS, the time spent in R is a
form of priority inversion. Thus, we can add R into the
blocking time from an analysis perspective.

 Quiz: If R is long, what should we do in software?

25

Page 25

49

A Sample Problem
Periodics Servers Aperiodics

τ1

τ2

τ3

20 msec

40 msec

100 msec

100 msec

150 msec

350 msec

20 msec

Data Server
2 msec

10 msec

Comm Server
10 msec

5 msec

Emergency
50 msec

Deadline 6 msec
after arrival

2 msec

Routine
40 msec

Desired response
20 msec average

50

Concepts and Definitions
Aperiodic task: runs at irregular intervals.

Aperiodic deadline:
 hard, minimum interarrival time
 soft, best average response

26

Page 26

51

Scheduling Aperiodic Tasks
Polling

0 100

99

... Average Response
Time = 50 units...

... ... Average Response
Time = 1 units

... ... Average Response
Time = 1 units

Interrupt Handler

Aperiodic Server

Legend
Periodic Task
Polling Task
Interrupt Handler
Aperiodic Server
Aperiodic Request

Legend
Periodic Task
Polling Task
Interrupt Handler
Aperiodic Server
Aperiodic Request

Ticket deposited at beginning
of period.

52

Sporadic Server (SS)
Modeled as periodic tasks
 Fixed execution budget (C)
 Replenishment interval (T)

Priority is based on T, adjusted to meet requirements

Replenishment occurs one “period” after start of use.

100 200 300
Execution Budget

5

100 ms

5

100 ms (SS period)

55 55 55

27

Page 27

53

Sample Problems: Aperiodic
 Emergency Server (ES)

• Execution Budget, C = 5
• Replenish Interval, T= 50

 General Aperiodic Server (GS) Design guideline: Give it
as high a priority as possible and as much “tickets” as
possible, without causing periodic tasks missing
deadlines:

• Execution Budget, C = 10
• Replenish Interval, T = 100

 Simulation and queuing theory using M/M1
approximation indicates that the average response time
is 2 msec (See Real Time Scheduling Theory and Ada).

54

Implementing Period Transformation

 Recall that period transformation is a useful techniques
to ensure:
• stability under transient overload
• improve system schedulability

 But it is undesirable to slice up the program codes.
(Thou shalt separate timing concerns with functional
concerns.)

 For example, a task with period T and exception time C,
can be transformed as a sporadic task with a budget C/2
and periodic T/2. This is transparent to the applications.

28

Page 28

55

Homework
 Try to apply GRMS to your lab work, if you are working a
real time computing project.

56

Summary
 We have reviewed

• the basic concepts of real time computing
• the basics of GRMS theory

- Independent tasks
- synchronization
- aperiodic tasks

 "Through the development of [Generalized] Rate Monotonic
Scheduling, we now have a system that will allow [Space
Station] Freedom's computers to budget their time, to choose
between a variety of tasks, and decide not only which one to do
first but how much time to spend in the process",

 --- Aaron Cohen, former deputy administrator of NASA,
"Charting The Future: Challenges and Promises Ahead of
Space Exploration", October, 28, 1992, p. 3.

29

Page 29

57

Additional Results
 In networks, distributed scheduling decision must be made

with incomplete information and yet the distributed
decisions are coherence - lossless communication of
scheduling messages, distributed queue consistency,
bounded priority inversion, and preemption control.

 From a software engineering perspective, software
structures dealing with timing must be separated with
construct dealing with functionality.

 To deal with re-engineering, real time scheduling
abstraction layers (wrapper) are needed so that old
software packages and network hardware behavior as if
they are designed to support GRMS.

58

References
 Liu, C. and Layland, J., “Scheduling Algorithms for
Multiprogramming in a Hard-Real-Time Environment,” Journal
of the ACM, Vol. 20, No.1, January 1973, pp.46-61. [Classic]

 Sha, L. and Goodenough, J., “Real-Time Scheduling Theory
and Ada,” Computer, Vol. 23, No.4, April 1990, pp. 53-62. [uni-
processors GRMS Tutorial]

 M. Klein et al., A Practitioner’s Handbook for Real-Time
Analysis: Guide to Rate-Monotonic Analysis for Real-Time
Systems, Kluwer Academic Publishers, Boston, July, 1993.

 Sha, L., Rajkumar, R., and Sathaye, S., “Generalized Rate
Monotonic Scheduling Theory: A Framework of Developing
Real-Time Systems”, Proceedings of The IEEE, January, 1994
[Distributed GRMS tutorial].

CS331

Fall 1997 1

Lui Sha, Feburary 2002 1

Elements of Research

Lui Sha
CS, UIUC

"It is difficult to say what is impossible, for the dream
of yesterday is the hope of today and the reality of
tomorrow."

Robert H. Goddard

Lui Sha, Feburary 2002 2

• To excel in research, we must sharpen
our skills in
• positioning R&D strategically
• identifying and formulating high

impact problems
• communicating ideas and results

effectively

The entrance to graduate school marks a critical
phase of transition for most graduate students from
absorbing knowledge to creating knowledge …

CS331

Fall 1997 2

Lui Sha, Feburary 2002 3

Three Basic Elements
of Successful R&D

• Positioning your research

• Developing a R&D Roadmap

• Getting your ideas across

Lui Sha, Feburary 2002 4

Your
Gifts

Your
Interests

Societal
Needs

Research
focus

The path to success consists of three simple elements.
Find what interests you that you can do well, and is
needed by the people. --- Lui Sha

CS331

Fall 1997 3

Lui Sha, Feburary 2002 5

Understand others is intelligence.
Understand yourself is wisdom.

--- Lao Tze

What is easier for you, writing a complex software
program or proving a difficult theorem?

What excites the community at large and what
excites you?

Does it play into your strength?

Lui Sha, Feburary 2002 6

Elements of Successful R&D

• Positioning your research

• Developing a R&D road map

• Getting your ideas across

CS331

Fall 1997 4

Lui Sha, Feburary 2002 7

Creating an Exciting Application Scenario

Exciting application scenarios will
• motivate you,
• expose the limitations of existing solutions,
• help you to focus your efforts.

“as a mathematical discipline travels far from its empirical source, or
still more, if it is a second and third generation only indirectly inspired
by the ideas coming from ‘reality’, it is beset with very grave dangers.

… that the stream, so far from its source, will separate into a multitude
of insignificant branches, and that the discipline will become a
disorganized mass of details and complexities."

John Von Neumann, "The Mathematician" , 1957

Lui Sha, Feburary 2002 8

Most researches are constrained by models and generally accepted
assumptions of the real world. But our knowledge of the nature is never
perfect, and the underlining technologies are rapidly changing…

• Velocity of light is constant. … embrace it as a law of physics and
we have the theory of relativity.

• Clients request and server computes … Why not send some of the
code to client instead? … and we have JAVA & mobile code.

• Is TCP appropriate for wireless communication?
• Is fairness a good metric for real time computing?
• Is load balance is always a good idea?

Great advancements in science and engineering often are
the repudiation of generally accepted beliefs.

Anonymous

CS331

Fall 1997 5

Lui Sha, Feburary 2002 9

Pick the Right Problems to Work on

• What is the difference between a theorem and a homework problem
to be proven by students?
• Both were proven to be correct.
• In fact, some homework problems are harder than some of the

theorems.

• If we decide to spend time on a problem, shouldn’t we work on a
problem with greater potential impacts?

Lui Sha, Feburary 2002 10

Know what has been Done
and Estimate the Impacts

• New directions
• challenging long-held beliefs and pioneering a new path

• Broad Applicability
• for the further development of the theory
• for solving practical problems

• Unification / Integration
• Proving a unifying structure or theory and give deeper

understanding to seemingly diversified approaches

• Advancement along an established line of inquiries
• You need to significantly improve performance, reliability, or

scale

CS331

Fall 1997 6

Lui Sha, Feburary 2002 11

A Recent Example of a R&D Roadmap
by J. Hou, R. Zhang & others in the wireless group

Application
Layer

Transport
Layer

Network
Layer

MAC
Layer

Physical
Layer

Power
Adjustment

Channels Selection
(frequency/code)

Directional
Beam-Forming

GPS
Positioning & Synchronizing

RT Scheduling Contention
Resolution

Topology
Control

Routing

QoS Mapping
(e.g. bounded delay)

Important R&D Opportunities

• Maximize information
throughput instead of data
throughput

•Integrated real time scheduling
and topology control

•Service Differentiation

Error
Control

Getting timely information
and suppress redundant data

Admission
Control

Lui Sha, Feburary 2002 12

Learn what makes classics classic

• Learning what makes a classic papers classic
• The state of research prior to the classic paper
• The impacts made by the classic paper
• Compare the classic paper with good papers

• Examples
• On the Criteria To Be Used in Decomposing Systems into

Modules. David L. Parnas CACM, Vol. 15, No. 12, December
1972.

• Public key cryptography, R. L. Rivest, A. Shamir and L. Adleman,
CACM (21)120--126, 1979. …

CS331

Fall 1997 7

Lui Sha, Feburary 2002 13

Elements of Successful R&D

• Positioning your research

• Developing a R&D roadmap

• Getting your ideas across

Lui Sha, Feburary 2002 14

Impart an Understanding

• Understanding is an act that builds a bridge between what your
audience already know to what they need know.

• Focus on key ideas and key results, go from specific to general and
from concrete to abstract.
• Most people learn inductively.
• Ask questions and involve them in the problem-solving process.

CS331

Fall 1997 8

Lui Sha, Feburary 2002 15

Managing Human “cache memory”
• Human short term memory can only hold about 5 unfamiliar items

• Don’t load it up with unimportant details

• Suppose you need to present an OS overhead formula unfamiliar to your
audience, (2S + …).
• Don’t say we now add “two S” to …. This forces others to remember

what S means. Poor use of human short term memory.
• Say we add “round trip context switching time to …

• Think carefully about the new ideas you want your audience to absorb.

• Keep them in the “cache” by periodic refreshing during your talk, until your
audience “write the new ideas through” into their long term memory.

Techniques that reduce “unfamiliarity” and help “write through”.
• Read out the physical meaning of the terms .
• Use analogy familiar to your audience

Lui Sha, Feburary 2002 16

Getting Your Ideas Across:
Sha’s I3 Model

An ideal presentation is one that is

• informative,

• interesting and

• Insightful

CS331

Fall 1997 9

Lui Sha, Feburary 2002 17

Being Informative

• Inform: give new knowledge...
• “New” is relatively to your audience.

• what they already know?
• what they should know after your presentation?
• what are the steps in-between?

• For example:
• Managers: the key ideas, expected impacts, and costs
• Experts: new challenges and new insights/results

Lui Sha, Feburary 2002 18

Being Interesting

• Interesting: unexpected, counter intuitive, difficult to believe
• Seemingly unimportant fact that actually holds the key
• Seemingly true but it is in fact false…
• A “difficult” problem is solved with ease and elegance.
• …

CS331

Fall 1997 10

Lui Sha, Feburary 2002 19

Being Insightful

• Insight: impart a deeper understanding…
• Explain a seemingly complex and confusing problem in a way that

is easy to understand.
• Unearth hidden/unstated assumptions... And quickly put an

argument to rest.
• Show things in new angles, new lights and new forms and gain

new understandings.
• Demonstrate subtle but important connections/inter-dependencies

between seemingly unrelated subjects.
• …

Lui Sha, Feburary 2002 20

• To excel in research, we must sharpen
our skills in
• positioning R&D strategically
• identifying and formulating high

impact problems
• communicating ideas and results

effectively

The entrance to graduate school marks a critical
phase of transition for most graduate students from
absorbing knowledge to creating knowledge …

	
	1f-el-are.pdf.rdo
	

	liu2.pdf.rdo
	
	
	
	
	
	
	
	
	
	
	
	

	liu3.pdf.rdo
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	2f-el-are.pdf.rdo
	

	Kopetz1.pdf.rdo
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	kopetz2.pdf.rdo
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	kopetz3.pdf.rdo
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	kopetz4.pdf.rdo
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	3f-el-are.pdf.rdo
	

	kim.pdf.rdo
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Baksida.pdf.rdo
	

