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Controlling Computers 
Feedback control was embedded in the TCP protocol in the 70’s to 
solve the congestive failure problems that had brought down the 
network. 

Since then, we have not experienced system-wide congestive failures 
again even though the network has grown orders of magnitude. This 
is a testament of the effectiveness of feedback control in a highly 
dynamic, decentralized, and fast changing environment. 

However, except under heavy workload conditions that allow 
effective fluid approximations, the application of control theory to 
control the performance of computing systems has been slow. But the 
need of performance control becomes more pressing.
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Web Service 
Performance Control
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The Problem 
From a control theory perspective, a networked information 
server’s behavior is highly non-linear. The parameters of the 
stochastic process, e.g., request rates, can change abruptly 
without warning. They are:

Not deterministic processes perturbed by random events like 
LQG
Not just the long term equilibrium behavior control like MDP
Not just an isolated plant but networked servers 

Yet, we want to tightly control both the long term average and 
the transient behaviors of these random processes. 
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The Difficulties
Linearized controller provides only 
mediocre performance. A direct 
application of adaptive control or 
hybrid control does not provide much 
improvement

Workloads are as fickle as Web 
servers’ attention spans
Random fluctuations in key 
variables makes state estimation 
time consuming
Control action itself pushes the 
system away from the 
selected/updated model at 
runtime.

D

µ − λ

Dref
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Key Ideas
Model accuracy impacts control performance. And all the 
difficulties point to a single problem: the actual plant 
deviates from the plant model used by control.

Queueing model is a “natural” to model the non-linear 
behaviors of an information server over a wide range of 
parameter values

Why not using a queueing model’s solution as a feed 
forward control to “lock” the system into a desired 
equilibrium operating point, in spite of workload changes?
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“Marriage”  in Heaven
Consider the M/M/1 model where D = 1/(µ – λ). The feed forward 
control from queueing model,  µ(τ) = 1/D_ref + λ(τ), “locks” the 
system in an equilibrium state in the neighborhood of linearization.

This makes the life of a feedback control easier. In return, the
feedback controller suppresses approximation errors in the 
queueing model and the transients that cannot be reduced by 
queueing modeled based tuning.

To the best of our knowledge, this is the first framework that has 
successfully integrates two powerful theories.
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New Perspectives   

Small excitation for 
many epochs

Large excitation is good 
as long as it does not 
cause saturations

Modeling identification

All the fluctuations are 
part of data

High frequency jumps 
are usually noise

Observations

Slower than 
1/Large_Sample_Size

Faster than Nyquist 
rate 

Sampling rate for signal 
processing

Number of eventsUnits of timePeriods measured in

Control Web Servers
(Changing Probability)

Control Physical Plants
(Changing Eigenvalues)
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Controlling Probabilities
Suppose we want to correct a biased coin with prob(head)= 0.4. We begin by 
soldering a small weight to the side of head of the biased coin, and then do 
some experiments and adjust the weight…

How frequently should we adjust the weight? Obviously, we cannot succeed if 
we change the weight, just flip the coin once, and change the weight again

The problem here is that we are dealing with probability, and not with an 
instantly measurable quantity such as temperature or pressure. 

From a control perspective, the transfer function (relationship) between the 
change of weight and the change of probability of head manifests itself only 
when the sample variance becomes negligible.
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Small Excitation 
and Slow Sampling

The horizontal axis is the sample 
variance in log scale. 

Under a small excitation of ∆µ = 
±0.01, when the sample contains 
many epochs, the sample 
variance becomes very small and 
Matlab’s estimation using 
experimental data converges 
towards the theoretical value of 
–4. 

Under a large excitation, e.g., ∆µ
= ±0.1, the estimation would 
converge to a wrong value, 
because the asymmetry 
response of queueing system. Sample Variance and Model Accuracy
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Sliding Window Control Action 
Long observation window does not imply 
slow control action 

For example, a 1000 events window but 
change control output every 10 events

X-axis is step size (also shows avg
control effort ∆µ)
Y-axis is delay variance

Quick update step reduces variance & 
control efforts. 

Effect of Control Update Rates with a 
Suitably Long Observation Window
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Experimental Setup
Objective: Control absolute delay of premium clients on an Apache 
web server

Sensor: averages response time of all requests
Actuator: Number of processes (C. Lu, RTAS 2001)

Load generation: SURGE web benchmark

Platform: Linux-based PC cluster on Ethernet LAN 
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Experimental Results
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Asymmetric Control
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Control
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The effect of reducing resource is much more profound than 
adding resources, especially when workload is heavy.
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Asymmetric Control 

Asymmetric Control Symmetric Control

−∆µ        ∆µ

The effect of reducing resource is much more profound than 
adding resources, especially when workload is heavy.
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Summary 
Providing high quality performance control in a single server is an 
important first step.
Looking ahead, we will address issues:

Non-linear controllers
Adding queue size prediction, measurement and control
Performance control of server farms and network of servers 
Testing results in real system, e.g., servers at IBM Research

1. Sha, L., Li, X., Lu, Y., and; Abdelzaher, T. “Queueing model based network server 
performance control”, the proceedings of IEEE Real-Time Systems Symposium, 2002

2. Lu, Y., Abdelzaher, T., Lu, C., Sha, L., and Liu, Xu, “Feedback Control with Queueing-
Theoretic Prediction for Relative Delay Guarantees in Web Servers”, to appear in The 9th 
IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS 2003)

3. Liu, X., Sha, L., Diao, Y., Froehlich, S., Hellerstein, J., and Parekh, S., “Online Response 
Time Optimization of Apache Web Server"  proceedings of the 11th International 
Workshop on Quality of Service 
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RT embedded systems have a long life span. How to 
develop real time systems that can:

• be easily changed in the field, even on the fly?

• maintain stability and controllability in spite of 

• arbitrary errors in the new software?

• malicious attack by insiders disguised as 
upgrades?
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Job 1 is Robust Against Bugs

• We shall begin with an investigation on the principle of developing 
software systems that are robust against bugs. Leaving them 
alone, bugs may destroy:
• Correctness
• Performance
• Reliability
• Security
• …
• any software property that you care.

lrs@cs.uiuc.edu 4

The Software Reliability Conundrum 

• If history is any guide, formal methods can only handle software with 
moderate complexity in the foreseeable future.  

• How about using software tolerance based on diversity?

• But wait. What if the fault tolerance system is itself too complex to 
verify and have faults?  

• For example, the Six Western States Blackout incident in US was 
• triggered by the shorting of 1 power line at Oregon 
• spread by the flawed “self healing” architecture at the time
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Complexity, Diversity and Reliability 

• To build a robust software system that can tolerant arbitrary 
application software faults, we must understand the relations 
between software
• Complexity: the root cause of software faults
• Diversity: a necessary condition for software fault tolerance. 
• Reliability: a function of complexity and diversity

• We shall begin with postulates based self-evident facts

lrs@cs.uiuc.edu 6

Software Development Postulates

• We assert that the following postulates self-evident
• P1: Complexity Breeds Bugs: Everything else being equal, the 

more complex the software project is, the harder it is to make it 
reliable.

• P2: All Bugs are Not Equal: You fix a bunch of obvious bugs 
quickly, but finding and fixing the last few bugs is much harder.

• P3: All Budgets are Finite: There is only a finite amount of effort 
(budget) that we can spend on any project.

• How can we model “software complexity”?
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Logical Complexity

• Computational complexity => the number of steps in computation. 
• Logical complexity            => the number of steps in verification. 

• A program can have different logical and computational 
complexities.  
• Bubble-sort:  lower logical complexity but higher computational 

complexity. 
• Heap sort: the other way around. 

• Residue logical complexity. A program could have high logical 
complexity initially. However, if it has been verified and can be used 
as is, then the residue complexity is zero…

lrs@cs.uiuc.edu 8

The Implications of the 3 Postulates

• P1: Complexity Breeds Bugs: For a given mission duration t, 
the reliability of software decreases as complexity increases. 

• P2: All Bugs are Not Equal: for a given degree of complexity, 
the reliability function has a monotonically decreasing rate of 
improvement with respect to development effort. 

• P3: Budgets are finite: Diversity is not free. That is, if we go for 
n version diversity, we must divide the available effort n-ways.  

• One simple model that satisfies P1, P2 and P3

• Sum of efforts used in diversity = available effort
• Reliability function:  e ─ k (complexity / effort ) t
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Diversity, Complexity and Reliability

• .

3-version programming

1-version programming

A reliable core with 10x 
complexity reduction

Analysis shows that what really counts is not the degree of diversity. Rather it is 
the existence of  a simple and reliable core that can guarantee the stability of the 
system. This result is also robust against change of model assumptions.

--- Using Simplicity to Control Complexity,  IEEE Software 7/8,  2001,  L. Sha

lrs@cs.uiuc.edu 10

Putting the Principle to Work

• Complexity is
• The side effect of features and performance 
• The root cause of software faults

• It is kind of like money … a source of many evils but something we 
cannot live without.

• So let’s find a way to control complexity, instead of letting it control 
our systems.
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An Example

• Once upon a time, there was an exam on sorting programs. Grades 
are given as follows:
• A:  Correct and fast: n log (n) in worst case
• B:  Correct but slow
• F:   Incorrect

• Joe can verify his bubble sort, but has only 50% chance to write
Heap Sort correctly. 

• What is his optimal strategy?

lrs@cs.uiuc.edu 12

Requirement Decomposition

• Often, requirements can be decomposed into 
• Critical (correctness) requirements

• Sorting: output numbers in correct order;
• TSP: visit every city exactly once
• Control: stable and controllable

• Performance optimization
• Sorting: faster
• TSP: shorter path
• Control: less time/error/energy

• Joe can exploit software he cannot verify safely … 

Heap Sort Bubble Sort
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Stability Control

• Stability control is a mechanism that ensures that errors are bounded 
in a way that satisfies the preconditions for the recovery operations. 
Stability control must be simple or it will be self defeating.

• What if the untrusted sorting program alters an item in the input list?
1. Create a verified simple primitive called “permute”
2. Untrusted sorting software is not allowed to touch the input list 

except use the permute primitive. 
3. Enforce the restriction using an object with (only) method 

“permute”  

• Under stability control, the untrusted Heap-sort can only produce “out 
of order” application errors.

lrs@cs.uiuc.edu 14

Using Simplicity to Control Complexity

The high assurance control subsystem
• Application level: well-understood controllers to keep the control 

software simple.
• System software level: certified OS kernels
• Hardware level: well-established and fault tolerant hardware 
• System development: high assurance process, e.g. DO178B
• Requirement management: critical properties and essential services.

The high performance control subsystem
• Application level: advanced control technologies, 
• System software level: COTS OS and middleware 
• Hardware level: standard industrial hardware
• System development: standard industrial development processes.
• Requirement management: features, performance & rapid innovation
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Stability Control for Control Systems

• Having a reliable controller, we identify the 
recovery region within which the  controller 
can operate successfully. Recovery region 
is a subset of the states that are admissible 
with respect to operational constraints 

• The largest recovery region can be found 
using LMI. This approach is applicable to 
any linearizable systems. They cover most 
of the practical control systems.

operational constraints

Recovery
Region

Stability 
envelope

The system under new complex 
controller must stay within recovery 
region

m i n  l   
s u b j e c t  t o  
S a f e t y  s w i t c h i n g  r u l e :  

•

−

=
T

1

T

T

X A X
A  Q  +  Q  A  <  0

o g  d e t  Q
C X < 1

X Q X < 1
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Simplex Architecture for Control

Trusted simple and 
reliable controller

Online upgradeable 
complex  controller 

Data Flow Block Diagram

Plant

Stability
Monitoring

TX QX < 1

• Simplex architecture for control systems allows the online upgrade of control systems without 
shutting down the operation.  

• It also maintains control in spite of arbitrary application errors in the upgrade process. To try an 
interactive demonstration,  see www-drii.cs.uiuc.edu/download.
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Dynamic Component Replacement

Hardware

Operating System

Complex feature 
Rich components

eSimplex
middleware

Simple & reliable
component

Monitoring and switching logic

Application
layer

Runtime Component 
Replacement Middleware
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Interactive Demo on the Web

http://www-rtsl.cs.uiuc.edu/ click project, click  drii, click  telelab download

Win98/NT

* important
* important
* important
* important
* important
* important
* important
* important

Win98/NT

* important
* important
* important
* important
* important
* important
* important
* important

LynxOS

Simplex

annotated, pre-recorded
presentation (e.g. HTML) 
(in case of communication failures) 

A/V Streams

A/V Streams
Win98/NT

* important
* important
* important
* important
* important
* important
* important
* important

: Telelab Screen Shot
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Protect Against Attacks Disguised as Upgrades  

Code Safety Checks

Attack on
Exec env

appl. Logic
Bugs + attacks

Safety Controller  +   Stability Control

RT Resource Management

Resource Depletion attacks

Development 
Environment

Appl. Domain 
Technology

Middleware
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C Code Safety Checks

• Due to the large installed base of C,  we working with colleagues to define a 
subset of C, called Control_C,  that can be statically checked for safety and 
expressive enough for control and signal processing.

• +    { strong-typing }
• +    { Java-style pointers }
• +    { region-based heap with only 1 region }
• +    { “bounded” arrays }
• – { system calls except  memory allocation }
• – {embedded assembly }

Code Compiler Analysis GCC

Ensure Code Safety without Runtime Checks for Real Time Control Systems,  
Kowshik, Dhurjati, & Adve, CASE 2002
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RT embedded systems have a long life span. We are 
developing technologies that allows a RT system that

• can be easily changed in the field, even on the fly

• maintain stability and controllability in spite of 

• arbitrary errors in the new software

• malicious attack by insiders disguised as upgrades
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Outline
• Real time systems and you
• Fundamental concepts
• Independent  tasks
• Homework
• Task synchronization and aperiodics
• Summary
• Homework
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Prerequisite 
 The basic operating systems concepts including

• processes,  threads and execution priorities
• context switching
• mutual exclusions and locks
• interrupt handling

 Commonly used OS scheduling algorithms such as
• FIFO
• Round-robin
• Foreground/background

4

Real Time  Systems and You

 Embed real time systems enable us to: 

• manage the vast power generation and distribution 
networks.

• control industrial processes for chemicals, fuel,  
medicine, and manufactured products.

• control automobiles, ships, trains and airplanes.

• conduct video conferencing over the Internet and 
interactive electronic commerce.

• send vehicles high into space and deep into the sea to 
explore new frontiers and to seek new knowledge.
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Outline
• Real time systems and you
• Fundamental concepts
• Independent  tasks
• Homework
• Task synchronization and aperiodics
• Summary
• Homework
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What is Real Time Systems

 

The correctness of real time computing depends upon not 
only the correctness of results but also meeting timing 
constraints:

•deterministically: (hard real time)  

•statistically: (soft real time)
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Periodic Tasks

 A task τi is said to be periodic if its inter-arrival time 
(period), Ti,  is a constant. 

 Periodic tasks are common in real time systems because 
the sampling actions.

 (Can you give some examples?)
 The utilization of task τi,   is the ratio between its 
execution time Ci and its period Ti: Ui = Ci / Ti

 The default deadline of a task is the end of period.

...

8

Importance and  Priority

 Task τ1 : if it does not get done in time, the world will end.

 Task τ2: if it does not get done in time, you may miss a 
sweet dream.

 Quiz: presume  that the world is more important than 
your dream, should task τ1 has  a higher priority?
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Why Ever Faster Hardware is Not Enough

 If priorities are assigned according to importance, there 
is no lower bound of processor utilization, below which 
tasks deadlines can be guaranteed.  Why?

 C1/T1 + C2/T2 = U

 U → 0,   when C2 → 0  and T1 → ∞

 Task τ2 will miss its deadline, as long as  C1 > T2

important

less important...

τ1

τ2

10

 

Measure of Merits

Time-Sharing Real-Time 
Systems Systems

Capacity High throughput Schedulability
Responsiveness Fast average Ensured worst-

response case response

Overload Fairness Stability

• schedulability is utilization level at or below which 
tasks can meet their deadlines

• stability in overload means the system meets critical 
deadlines even if all deadlines cannot be met (critical 
tasks are assumed to be schedulable.)
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Dynamic vs “Static” Priorities
 An instance of a task is called a job.

 Dynamic priority scheduling adjust priorities in each task 
job by job.

 “Static” priority assigns a (base) priority to all the jobs in 
a task.

12

Deadline vs Rate Monotonic 
Scheduling

 An optimal dynamic scheduling algorithm is the earlier 
deadline first (EDF) algorithm. Jobs closer to deadlines 
will have high priority.

 An optimal “static” scheduling algorithm is the rate 
monotonic scheduling (RMS) algorithm. For a periodic 
task, the higher the rate (frequency),  the higher the 
priority.
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Which One Uses EDF (RMS)?
 

Timeline 1

Timeline 2

τ1

τ2

14

A Historical Note
 For a given set of independent periodic tasks[Liu73], 

• earliest deadline first (EDF) can ensure all tasks’ 
deadlines, if the processor utilization is not greater 1.0.

• rate monotonic algorithm can ensure all the tasks’ 
deadlines if processor utilization is not greater than 
0.69.

 Since the early 90’s, RMS was generalized into GRMS 
and caught on, but EDF is still used infrequently.
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An Open Problem
 Under EDF, if a processor has a transient overload, it is 
not clear which task can ensure its the deadline, since 
each job of a task can have a different priority.

 This problem is solvable. So far, no efficient algorithm  
has been found to make it worthwhile to implement for 
majority of the applications. On the other hand,

• RMS has  a simple solution to the stability problem. 
• The 0.69 worst case number is rarely seen in practice. 

When encountered, it can be engineered away.
• Processor cycles, which cannot be used by real time 

tasks under RMS, can be used by non-real time tasks 
with low background priority.

16

 

GRMS in The Real World 
“The navigation payload software for the next block of Global 
Positioning System upgrade recently completed testing. ...  
This design would have been difficult or impossible prior to 
the development of rate monotonic theory", Doyle, L., and 
Elzey, J., , Technical Report, ITT, Aerospace & Communication 
Division, 1993, p. 1. 

"A major  payoff...System designers can use this theory to 
predict whether task  deadlines will be met long before the 
costly implementation phase of a project begins.  It also eases 
the process of making modifications to application software." 
DoD 1991 Software Technology Strategy. pp. 8-15.
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Outline
Class 1:
• Real time systems and you
• Fundamental concepts
• An Introduction to the GRMS: independent  tasks
• Homework

Class 2:
• An introduction to the GRMS: task synchronization 

and aperiodics
• Summary
• Homework

18

 

A Sample Problem
Periodics Servers Aperiodics

τ1

τ2

τ3

20 msec

40 msec

100 msec

100 msec

150 msec

350 msec

20 msec

Data Server
2 msec

10 msec

Comm Server
10 msec

5 msec

Emergency
50 msec

Deadline 6 msec
after arrival

2 msec

Routine
40 msec

Desired response
20 msec average
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Schedulability: UB Test
 Utilization bound(UB) test: a set of n independent periodic tasks 
scheduled by the rate monotonic algorithm will always meet its 
deadlines, for all task phasing, if

 

 U(1) = 1.0 U(4) = 0.756 U(7) = 0.728
 U(2) = 0.828 U(5) = 0.743 U(8) = 0.724
 U(3) = 0.779 U(6) = 0.734 U(9) = 0.720

 For harmonic task sets, the utilization bound is U(n)=1.00 for all n. 
For large n, the bound converges to ln 2 ~ 0.69.

 Conventions, task 1 has shorter period than task 2 and so on.

--- + .... + --- < U (n) = n(2     - 1)C1              Cn       1/ n
T1              Tn

20

Sample Problem: Applying UB Test

 Total utilization is .200 + .267 + .286 = .753 < U(3) = .779

 The periodic tasks in the sample problem are chedulable
according to the UB test.

C T U
Task τ1: 20 100 0.200

Task τ2: 40 150 0.267

Task τ3: 100 350 0.286
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Toward a More Precise Test

 UB test has three possible outcomes:

• 0       < U  < U(n)   ==> Success
• U(n)  <  U  < 1.00   ==> Inconclusive
• 1.00 <   U   ==> Overload

 
 UB test is conservative.

22

Example: Applying Exact Test -1

 Taking the sample problem, we increase the compute 
time of τ1 from 20 to 40; is the task set still schedulable?

 Utilization of first two tasks: 0.667 < U(2) = 0.828 
• first two tasks are schedulable by UB test

 Utilization of all three tasks: 0.953 > U(3) = 0.779 
• UB test is inconclusive
• need to apply exact test
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The Exact Schedulability Test

If a task meets its first deadline when all higher priority 
tasks are started at the same time,  then all this task’s 
future deadlines will always be met[Liu73]. The exact test 
for a task checks if this task can meet its first deadline.

Timeline

τ1

τ2

24

Schedulability: Exact Test
 Intuition: let t = a0 be the instance at which  task τ i and all 
higher priority task execute once. 

 If there is no new arrival from higher priority tasks during 
a0, τ i actually completes its execution at t = a0 . If there is 
new arrivals, the compute a1 and check if there is new 
arrivals… 

 The arrivals are counted by the ceiling function.

a n+1 C i
a n

T j

C j
j 1=

i 1−

∑+ where a 0 C j
j 1=

i

∑==

Test terminates when an+1 > Ti  (not schedulable) 
or  when an+1 = an < Ti (schedulable).
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Example: Applying Exact Test -2

 Use exact test to determine if τ3 meets its first deadline: 

100 180

100
40( ) 180

150
40( )+ + 100 80 80+ + 260= = =

a 1 C 3
a 0

T j

C j
j 1=

2

∑+=

3
a

0
C
j

j 1=

∑ C
1

C
2

C
3

+ + 40 40 100+ + 180= = = =

26

Example: Applying the Exact Test -3

 Task τ3 is schedulable using exact test

a 3 300= T< 350=

a2 C3
a1

Tj

Cj
j 1=

2
∑+= 100 260

100
(40) 260

150
(40)+ += =  300 

a3 a2 300 Done!= =

a3 C3
a2

Tj

Cj
j 1=

2
∑+= 100 300

100
(40) 300

150
(40)+ += =  300 
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Timeline 

τ 2

τ 3

0 100 200 300

τ 1

τ 3completes its work at t = 300

28

Pre-period Deadline
 Note that task τ3 default deadline is at 350, but its worst 
case finishing time is 300. Thus, its deadline can be 
moved earlier by 50 unit before its end of period.

 
 Under GRMS, addressing pre-period deadline is simple, 
just  replace a task deadline from T to (T - D) in the exact 
schedulability analysis.

D
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Stability Under Transient Overload
Rate monotonic scheduling requires assigning task 
priorities according to periods (rates).  

Question: “How does one ensure the deadline of a 
critical task with a long period, resulting in a low 
priority.
Solution: Period Transformation.
For example, give the task  a T/2 period, which 
increases its priority for RMS, but suspend the task 
after C/2 worst case execution. 
After all, importance and rate monotone priority 
assignment can be made consistent.

(But don’t buy a knife and slice up the program... It 
can done invisibly to the program … Stay tuned.)

30

When Schedulability is low

4 4

6 6
100

0 14

Home work: task τ1 has execution time 4 and period 10, while task 
τ2 has execution 6 and period 14.  Deadline of task τ2 will be missed if 
we increase execution time of task τ2 from 6 to 8.

How can we ensure both tasks’ deadlines without reducing task 
execution time? (Hint: period transformation.) 

τ1

τ2
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Context Switching Overhead
 Period transformation is not a free lunch, it increases 
context switching overhead.

 Context switching cost comes in pairs, preemption and 
resuming.

 You need to add the context switching overhead cost, 2S, 
into the execution of each tasks for more precise 
schedulability analysis. 

 The context switching overhead of task τi is (2S / Ti). The 
total system context switching overhead is thus  the sum of  
tasks’ context overheads. 

 The impact of context switching time in an OS is inversely 
related to the periods of application tasks.

32

Homework
 1)  Write a simple program to compute schedulability 
(Hint: to save time,  you may want to use a spread sheet 
program). 

 2)  Change the numbers and tasks in the example and 
apply the formula.
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Outline
• Real time systems and you
• Fundamental concepts
• Independent  tasks
• Homework
• Task synchronization and aperiodics
• Summary
• Homework

34

  

A Sample Problem
Periodics Servers Aperiodics

τ1

τ2

τ3

20 msec

40 msec

100 msec

100 msec

150 msec

350 msec

20 msec

Data Server
2 msec

10 msec

Comm Server
10 msec

5 msec

Emergency
50 msec

Deadline 6 msec
after arrival

2 msec

Routine
40 msec

Desired response
20 msec average
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Priority Inversion
 Ideally, under  prioritized preemptive scheduling, higher 
priority tasks should immediately preempt lower priority 
tasks.

 When lower priority tasks causing higher priority tasks to 
wait due to the locking of  shared data, priority inversion 
is said to occur.

 It seems reasonable to expected the duration of priority 
inversion (also called blocking time), should be a 
function of the duration of the critical sections.

 Critical section: the duration of a task using shared 
resource.

36

Unbounded Priority Inversion 
τ1:{...P(S)...V(S)...}
τ3:{...P(S)...V(S)...}

τ1(h)

τ2(m)

τ3(l)

Legend
S Locked
Executing
Blocked

Legend
S Locked
Executing
Blocked

time

S Locked S Unlocked

B

B
S Locked S Unlocked

Attempt to Lock S
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Basic Priority Inheritance Protocol

 Let the lower priority task to use the priority of the 
blocked higher priority tasks. 

 In this way, the medium priority tasks can no longer 
preempted to low priority task that blocks the high 
priority tasks.

 Priority inheritance is transitive.

38

Basic Priority Inheritance Protocol

τ2:{...P(S)...V(S)...}
τ4:{...P(S)...V(S)...}

τ2

τ3

τ4(l)

Legend
S Locked
Executing
Blocked

Legend
S Locked
Executing
Blocked

time

S Locked S Unlocked

Ready

Ready

B

Attempts to lock S S Unlocked

τ1(h)

B

S Locked
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Legend
S1 Locked
S2 Locked
Executing
Blocked

Legend
S1 Locked
S2 Locked
Executing
Blocked

Chained Blocking  
τ1:{...P(S1)...P(S2)...V(S2)...V(S1)...}
τ2:{...P(S1)...V(S1)...}
τ3:{...P(S2)...V(S2)...}

τ2

τ3(l)

time

S2 Locked S2 Unlocked

B

Attempts to lock S1

S1 Unlocked

τ1(h) B

S1 Locked

Attempts to lock S2

B

S2 Locked S2 Unlocked
S1 Unlocked

S1 Locked

40

Legend
S1 Locked
S2 Locked
Executing
Blocked

Legend
S1 Locked
S2 Locked
Executing
Blocked

Deadlock Under  BIP 

τ1:{...P(S1)...P(S2)...V(S2)...V(S1)...}
τ2:{...P(S2)...P(S1)...V(S1)...V(S2)...}

τ1(h)

τ2(l)

time

S2 Locked

B

Attempts to lock S1

B

S1 Locked
Attempts to lock S2

B
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Property of Basic Priority Inheritance

 OS developers can support it without knowing 
application priorities.

 There will be no deadlock if there is no nested locks, or 
application level deadlock avoidance scheme such the 
ordering of resource is used.

 Chained priority is fact of life. But a task is blocked at 
most by n lower priority tasks sharing resources with it, 
when there is no deadlock.

 Priority inheritance protocol is supported by almost all of 
the real time OS and is part of POSIX real time extension.

42

Priority Ceiling Protocol
A priority ceiling is assigned to each semaphore, which is 
equal to the highest priority task that may use this 
semaphore.

A task can lock a semaphore if and only if its priority is 
higher than the priority ceilings of all locked 
semaphores.

If a task is blocked by lower priority tasks, the lower 
priority task inherits its priority.
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Legend
S1 Locked
S2 Locked
Executing
Blocked

Legend
S1 Locked
S2 Locked
Executing
Blocked

Blocked at Most Once (PCP)
τ1:{...P(S1)...P(S2)...V(S2)...V(S1)...}
τ2:{...P(S1)...V(S1)...}
τ3:{...P(S2)...V(S2)...}

τ2

τ3(l)

time

S2 Locked S2 Unlocked

B

Attempts to lock S1
S1 Unlocked

τ1(h)

B

Attempts to lock S1

S2 Locked S2 Unlocked
S1 Unlocked

S1 Locked

S1 Locked

B

44

Legend
S1 Locked
S2 Locked
Executing
Blocked

Legend
S1 Locked
S2 Locked
Executing
Blocked

Deadlock Avoidance: Using PCP 

τ1:{...P(S1)...P(S2)...V(S2)...V(S1)...}
τ2:{...P(S2)...P(S1)...V(S1)...V(S2)...}

τ1(h)

τ2(l)

time

Locks S2

B

Locks S1

Attempts to lock S1

B

Unlocks S1
Unlocks S2

Locks S1
Unlocks S1

Locks S2 Unlocks S2



23

Page 23

45

Schedulability Analysis
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Sample Problem: Using BIP
C T D B

τ1 20 100 30
τ2 40 150 20 10
τ3 100 350

W k B C
W k
T

Ci i i
i

jj

i

j( )
( )

+ = + +










=
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1
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Schedulability Model Using BIP
C
T

B
T

U1

1

1

1
1

20
100

30
100
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C
T
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B
T
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1

2 2

2

2

2
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100

40 20
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C
T

C
T

C
T

U1

1

2

2

3

3
3

20
100

40
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350
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Modeling Interrupts
 A hardware interrupt can have higher priority  than 
software. 

 When an interrupt service routine, R,  is used to capture 
data for longer period task, it will still preempt the 
execution of shorter period tasks.

 From the perspective of GRMS, the time spent in R is a 
form of priority inversion. Thus, we can add R into the 
blocking time from an analysis perspective. 

 Quiz: If R is long, what should we do in software?
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A Sample Problem
Periodics Servers Aperiodics

τ1

τ2

τ3

20 msec

40 msec

100 msec

100 msec

150 msec

350 msec

20 msec

Data Server
2 msec

10 msec

Comm Server
10 msec

5 msec

Emergency
50 msec 

Deadline 6 msec
after arrival

2 msec

Routine
40 msec

Desired response
20 msec average

50

Concepts and Definitions
Aperiodic task: runs at irregular intervals.

Aperiodic deadline:
 hard, minimum interarrival time
 soft, best average response
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Scheduling Aperiodic Tasks
Polling

0 100

99

... Average Response
Time = 50 units...

... ... Average Response
Time = 1 units

... ... Average Response
Time = 1 units

Interrupt Handler

Aperiodic Server

Legend
Periodic Task
Polling Task
Interrupt Handler
Aperiodic Server
Aperiodic Request

Legend
Periodic Task
Polling Task
Interrupt Handler
Aperiodic Server
Aperiodic Request

Ticket deposited at beginning 
of period.

52

Sporadic Server (SS)
Modeled as periodic tasks
 Fixed execution budget (C)
 Replenishment interval (T)

Priority is based on T, adjusted to meet requirements

Replenishment occurs one “period” after start of use.

100 200 300
Execution Budget

5

100 ms

5

100 ms (SS period)

55 55 55
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Sample Problems: Aperiodic
 Emergency Server (ES)

• Execution Budget, C = 5
• Replenish Interval, T= 50

 General Aperiodic Server (GS)  Design guideline: Give it 
as high a priority as possible and as much “tickets” as 
possible,  without causing periodic tasks missing 
deadlines:

• Execution Budget, C = 10
• Replenish Interval, T = 100

 Simulation and queuing theory using M/M1 
approximation indicates that the average response time 
is 2 msec (See Real Time Scheduling Theory and Ada).

54

Implementing Period Transformation

 Recall that period transformation is a useful techniques 
to ensure:
• stability under transient overload
• improve system schedulability

 But it is undesirable to slice up the program codes. 
(Thou shalt separate timing concerns with functional 
concerns.)

 For example, a task with period T and exception time C, 
can be transformed as a sporadic task with a budget C/2 
and periodic T/2. This is transparent to the applications.
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Homework
 Try to apply GRMS to your lab work, if  you are working a 
real time computing project.

56

Summary
 We have reviewed 

• the basic concepts of real time computing
• the basics of GRMS theory

- Independent tasks
- synchronization
- aperiodic tasks

 "Through the development of [Generalized] Rate Monotonic 
Scheduling, we now have a system that will allow [Space 
Station] Freedom's computers to budget their time, to choose 
between a variety of tasks, and decide not only which one to do 
first but how much time to spend in the process", 

 --- Aaron Cohen, former deputy administrator of NASA, 
"Charting The Future: Challenges and Promises Ahead of 
Space Exploration", October, 28, 1992,  p. 3.
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Additional Results
 In networks, distributed scheduling decision must be made 

with incomplete information and yet the distributed 
decisions are coherence - lossless communication of 
scheduling messages, distributed queue consistency, 
bounded priority inversion, and preemption control.

 From a software engineering perspective, software 
structures dealing with timing must be separated with 
construct dealing with functionality.

 To deal with re-engineering, real time scheduling 
abstraction layers (wrapper) are needed so that  old 
software packages and network hardware behavior as if 
they are designed to support GRMS.

58
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Elements of Research

Lui Sha
CS, UIUC

"It is difficult to say what is impossible, for the dream 
of yesterday is the hope of today and the reality of 
tomorrow."

Robert H. Goddard

Lui Sha, Feburary 2002 2

• To excel in research, we must  sharpen 
our skills in  
• positioning R&D strategically
• identifying and formulating high 

impact problems
• communicating ideas and results 

effectively  

The entrance to graduate school marks a critical 
phase of transition for most graduate students from 
absorbing knowledge to creating knowledge …
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Three Basic Elements 
of Successful R&D

• Positioning your research   

• Developing a R&D Roadmap   

• Getting your ideas across   

Lui Sha, Feburary 2002 4

Your 
Gifts

Your 
Interests

Societal 
Needs

Research 
focus

The path to success consists of three simple  elements.  
Find  what interests you that you can do well, and is 
needed by the people.                            --- Lui Sha
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Understand others is intelligence. 
Understand yourself is wisdom.                                

--- Lao Tze

What is easier for you, writing a complex software 
program or proving a difficult theorem?

What excites the community at large and what  
excites you?

Does it play into your strength?

Lui Sha, Feburary 2002 6

Elements of Successful R&D

• Positioning your research

• Developing a R&D road map

• Getting your ideas across
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Creating an Exciting Application Scenario

Exciting application scenarios will 
• motivate you, 
• expose the limitations of  existing solutions,
• help you to focus your efforts.

“as a mathematical discipline travels far from its empirical source, or 
still more, if it is a second and third generation only indirectly inspired 
by the ideas coming from ‘reality’, it is beset with very grave dangers. 

… that the stream, so far from its source, will separate into a multitude 
of insignificant branches, and that the discipline will become a
disorganized mass of details and complexities."

John Von Neumann, "The Mathematician" , 1957

Lui Sha, Feburary 2002 8

Most researches are constrained by models and generally accepted
assumptions of the real world. But our knowledge of the nature is never 
perfect, and the underlining technologies are rapidly changing…

• Velocity of light is constant.  … embrace it as a law of physics and 
we have the theory of relativity.

• Clients request and server computes …  Why not send some of the 
code to client instead? … and we have JAVA & mobile code.

• Is TCP appropriate for wireless communication? 
• Is fairness a good metric for real time computing? 
• Is load balance is always a good idea?

Great advancements in science and engineering often are 
the repudiation of generally accepted beliefs.

Anonymous      
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Pick the Right Problems to Work on

• What is the difference between a theorem and a homework problem 
to be proven by students? 
• Both were proven to be correct. 
• In fact, some homework problems are harder than some of the 

theorems. 

• If  we decide to spend time on a problem, shouldn’t we work on a
problem with greater potential impacts?

Lui Sha, Feburary 2002 10

Know what has been Done 
and Estimate the Impacts

• New directions
• challenging long-held beliefs and pioneering a new path

• Broad Applicability 
• for the further development of the theory
• for solving practical problems  

• Unification / Integration
• Proving a unifying structure or theory and give deeper 

understanding to seemingly  diversified approaches 

• Advancement along an established line of inquiries 
• You need to significantly improve performance, reliability, or 

scale
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A Recent Example of a R&D Roadmap  
by J. Hou, R. Zhang & others in the wireless group

Application 
Layer

Transport 
Layer

Network 
Layer

MAC
Layer

Physical 
Layer

Power
Adjustment

Channels Selection 
(frequency/code)

Directional 
Beam-Forming

GPS
Positioning & Synchronizing

RT Scheduling Contention 
Resolution

Topology
Control

Routing

QoS Mapping
(e.g. bounded delay)

Important R&D Opportunities

• Maximize information 
throughput instead of data 
throughput

•Integrated real time scheduling 
and topology control

•Service Differentiation

Error
Control

Getting timely information
and suppress redundant data

Admission
Control

Lui Sha, Feburary 2002 12

Learn what makes classics classic

• Learning what makes a classic papers classic
• The state of research prior to the classic paper
• The impacts made by the classic paper
• Compare the classic paper with good papers

• Examples
• On the Criteria To Be Used in Decomposing Systems into 

Modules.  David L. Parnas CACM, Vol. 15, No. 12, December 
1972.

• Public key cryptography, R. L. Rivest, A. Shamir and L. Adleman, 
CACM (21)120--126, 1979. …
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Elements of Successful R&D

• Positioning your research

• Developing a R&D roadmap

• Getting your ideas across

Lui Sha, Feburary 2002 14

Impart an Understanding

• Understanding is an act that builds a bridge between what your 
audience already know to what they need know.

• Focus on key ideas and key results, go from specific to general and 
from concrete to abstract.
• Most people learn inductively.
• Ask questions and involve them in the problem-solving process.
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Managing Human “cache memory”
• Human short term memory can only hold about 5 unfamiliar items

• Don’t load it up with unimportant details

• Suppose you need to present an OS overhead formula unfamiliar to your 
audience, (2S + …).    
• Don’t say we now add “two S” to ….  This forces others to remember 

what S means.  Poor use of human short term memory. 
• Say we add “round trip context switching time to …

• Think carefully about the new ideas you want your audience to absorb. 

• Keep them in the “cache” by periodic refreshing during your talk, until your 
audience “write the new ideas  through” into their long term memory. 

Techniques that  reduce “unfamiliarity” and help “write through”. 
• Read out the physical meaning of the terms .
• Use analogy familiar to your audience

Lui Sha, Feburary 2002 16

Getting Your Ideas Across: 
Sha’s I3 Model

An ideal presentation is one that is 

• informative, 

• interesting and 

• Insightful
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Being Informative

• Inform: give new knowledge...
• “New” is relatively to your audience. 

• what they already know?
• what they should know after your presentation?
• what are the steps in-between?

• For example:
• Managers:  the key ideas, expected impacts, and costs
• Experts: new challenges and new insights/results

Lui Sha, Feburary 2002 18

Being Interesting

• Interesting: unexpected, counter intuitive, difficult to believe
• Seemingly unimportant fact that actually holds the key
• Seemingly true but it is in fact false…
• A “difficult” problem is solved with ease and elegance.
• …
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Being Insightful

• Insight: impart a deeper understanding…
• Explain a seemingly complex and confusing problem in a way that 

is easy to understand.
• Unearth hidden/unstated assumptions... And quickly put an 

argument to rest.
• Show things in new angles, new lights and new forms and gain 

new understandings. 
• Demonstrate subtle but important connections/inter-dependencies 

between seemingly unrelated subjects.
• …

Lui Sha, Feburary 2002 20

• To excel in research, we must  sharpen 
our skills in  
• positioning R&D strategically
• identifying and formulating high 

impact problems
• communicating ideas and results 

effectively  

The entrance to graduate school marks a critical 
phase of transition for most graduate students from 
absorbing knowledge to creating knowledge …
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