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Abstract
Driving a vehicle in a dynamic traffic environment requires continuous adaptation of a complex 
manifold of physiological and cognitive activities. Impaired driving due to, for example, sleepiness, 
inattention, cognitive load or stress, affects one’s ability to adapt, predict and react to upcoming traffic 
events. In fact, human error has been found to be a contributing factor in more than 90% of traffic crashes. 
Unfortunately, there is no robust, objective ground truth for determining a driver’s state, and researchers 
often revert to using subjective self-rating scales when assessing level of sleepiness, cognitive load or 
stress. Thus, the development of better tools to understand, measure and monitor human behaviour 
across diverse scenarios and states is crucial. The main objective of this thesis is to develop objective 
measures of sleepiness, cognitive load and stress, which can later be used as research tools, either 
to benchmark unobtrusive sensor solutions or when investigating the influence of other factors on 
sleepiness, cognitive load, and stress.

This thesis employs multivariate data analysis using machine learning to detect and classify different 
driver states based on physiological data. The reason for using rather intrusive sensor data, 
such as electroencephalography (EEG), electrooculography (EOG), electrocardiography (ECG), skin 
conductance, finger temperature, and respiration is that these methods can be used to analyse how 
the brain and body respond to internal and external changes, including those that do not generate 
overt behaviour. Moreover, the use of physiological data is expected to grow in importance when 
investigating human behaviour in partially automated vehicles, where active driving is replaced by 
passive supervision.

Physiological data, especially the EEG is sensitive to motion artifacts and noise, and when recorded in 
naturalistic environments such as driving, artifacts are unavoidable. An automatic EEG artifact handling 
method ARTE (Automated aRTifacts handling in EEG) was therefore developed. When used as a pre-
processing step in the classification of driver sleepiness, ARTE increased classification performance 
by 5%. ARTE is data-driven and does not rely on additional reference signals or manually defined 
thresholds, making it well suited for use in dynamic settings where unforeseen and rare artifacts are 
commonly encountered. In addition, several machine-learning algorithms have been developed for 
sleepiness, cognitive load, and stress classification. Regarding sleepiness classification, the best achieved 
accuracy was achieved using a Support Vector Machine (SVM) classifier. For multiclass, the obtained 
accuracy was 79% and for binary class it was 93%. A subject-dependent classification exhibited a 
10% improvement in performance compared to the subject-independent classification, suggesting that 
much can be gained by using personalized classifiers. Moreover, by embedding contextual information, 
classification performance improves by approximately 5%. In regard to cognitive load classification, a 
72% accuracy rate was achieved using a random forest classifier. Combining features from several data 
sources may improve performance, and indeed, we observed classification performance improvement 
by 10%-20% compared to using features from a single data source. To classify drivers’ stress, using the 
Case-based reasoning (CBR) and data fusion approach, the system achieved an 83.33% classification 
accuracy rate.

This thesis work encourages the use of multivariate data for detecting and classifying driver states, 
including sleepiness, cognitive load, and stress. A univariate data source often presents challenges, 
since features from a single source or one just aspect of the feature are not entirely reliable; Therefore, 
multivariate information requires accurate driver state detection. Often, driver states are a subjective 
experience, in which other contextual data plays a vital role. Thus, the implication of incorporating 
contextual information in the classification scheme is presented in this thesis work. Although there are 
several commonalities, physiological signals are modulated differently in different driver states; Hence, 
multivariate data could help detect multiple driver states simultaneously – for example, cognitive load 
detection when a person is under the influence of different levels of stress.
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“If you torture the data long enough, Nature will confess” 

 
Ronal Coase 
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Abstract 

Driving a vehicle in a dynamic traffic environment requires continuous adap-
tation of a complex manifold of physiological and cognitive activities. Im-
paired driving due to, for example, sleepiness, inattention, cognitive load or 
stress, affects one’s ability to adapt, predict and react to upcoming traffic 
events. In fact, human error has been found to be a contributing factor in more 
than 90% of traffic crashes. Unfortunately, there is no robust, objective ground 
truth for determining a driver’s state, and researchers often revert to using 
subjective self-rating scales when assessing level of sleepiness, cognitive load 
or stress. Thus, the development of better tools to understand, measure and 
monitor human behaviour across diverse scenarios and states is crucial. The 
main objective of this thesis is to develop objective measures of sleepiness, 
cognitive load and stress, which can later be used as research tools, either to 
benchmark unobtrusive sensor solutions or when investigating the influence 
of other factors on sleepiness, cognitive load, and stress. 

This thesis employs multivariate data analysis using machine learning to 
detect and classify different driver states based on physiological data. The rea-
son for using rather intrusive sensor data, such as electroencephalography 
(EEG), electrooculography (EOG), electrocardiography (ECG), skin conduct-
ance, finger temperature, and respiration is that these methods can be used to 
analyse how the brain and body respond to internal and external changes, in-
cluding those that do not generate overt behaviour. Moreover, the use of phys-
iological data is expected to grow in importance when investigating human 
behaviour in partially automated vehicles, where active driving is replaced by 
passive supervision. 

Physiological data, especially the EEG is sensitive to motion artifacts and 
noise, and when recorded in naturalistic environments such as driving, arti-
facts are unavoidable. An automatic EEG artifact handling method ARTE 
(Automated aRTifacts handling in EEG) was therefore developed. When used 
as a pre-processing step in the classification of driver sleepiness, ARTE in-
creased classification performance by 5%. ARTE is data-driven and does not 
rely on additional reference signals or manually defined thresholds, making it 
well suited for use in dynamic settings where unforeseen and rare artifacts are 
commonly encountered. In addition, several machine-learning algorithms 
have been developed for sleepiness, cognitive load, and stress classification. 
Regarding sleepiness classification, the best achieved accuracy was achieved 



 vi 

using a Support Vector Machine (SVM) classifier. For multiclass, the obtained 
accuracy was 79% and for binary class it was 93%. A subject-dependent clas-
sification exhibited a 10% improvement in performance compared to the sub-
ject-independent classification, suggesting that much can be gained by using 
personalized classifiers. Moreover, by embedding contextual information, 
classification performance improves by approximately 5%. In regard to cog-
nitive load classification, a 72% accuracy rate was achieved using a random 
forest classifier. Combining features from several data sources may improve 
performance, and indeed, we observed classification performance improve-
ment by 10%-20% compared to using features from a single data source. To 
classify drivers’ stress, using the Case-based reasoning (CBR) and data fusion 
approach, the system achieved an 83.33% classification accuracy rate. 

This thesis work encourages the use of multivariate data for detecting and 
classifying driver states, including sleepiness, cognitive load, and stress. A 
univariate data source often presents challenges, since features from a single 
source or one just aspect of the feature are not entirely reliable; Therefore, 
multivariate information requires accurate driver state detection. Often, driver 
states are a subjective experience, in which other contextual data plays a vital 
role. Thus, the implication of incorporating contextual information in the clas-
sification scheme is presented in this thesis work. Although there are several 
commonalities, physiological signals are modulated differently in different 
driver states; Hence, multivariate data could help detect multiple driver states 
simultaneously – for example, cognitive load detection when a person is under 
the influence of different levels of stress. 
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Sammanfattning 

Att framföra ett fordon i en dynamisk trafikmiljö kräver kontinuerlig anpass-
ning av en komplex mångfald av fysiologiska och kognitiva aktiviteter. För-
sämrad körförmåga (till exempel på grund av sömnighet, ouppmärksamhet, 
kognitiv belastning eller stress) påverkar förmågan att kunna anpassa sig till, 
förutse och reagera på det som händer i trafikmiljön. I själva verket ligger 
mänskliga misstag bakom mer än 90% av trafikolyckorna. Tyvärr finns det 
ingen objektiv tillförlitlig metod för att mäta förartillstånd, och inom forsk-
ningen använder man därför ofta subjektiva skattningsskalor för att estimera 
nivån av sömnighet, kognitiv belastning och stress. Att utveckla bättre verktyg 
för att mäta och förstå förarbeteende i olika scenarion och tillstånd är därför 
av yttersta vikt. Det huvudsakliga målet med den här avhandlingen är därför 
att utveckla objektiva mått för sömnighet, kognitiv belastning och stress. 
Dessa kan sedan användas som forskningsverktyg, antingen för att utvärdera 
mindre invasiva sensorlösningar eller för att undersöka inflytandet av andra 
faktorer på sömnighet, kognitiv belastning och stress.  

I den här avhandlingen används på flervariabel dataanalys och maskinin-
lärning för att detektera och klassificera olika förartillstånd baserat på fysio-
logiska data. Anledningen till att använda elektroder vid insamlandet av dessa 
fysiologiska data (elektroencefalografi (EEG), elektrookulografi (EOG), 
elektrokardiografi (EKG), hudens ledningsförmåga, fingertemperatur och 
andning) är att dessa signaler speglar hur hjärnan och kroppen svarar på in-
terna och externa förändringar.  

Fysiologiska data är känsliga för rörelseartefakter och mätbrus, och data 
insamlade under realistiska förhållanden (som bilkörning) kommer oundvik-
ligen att innehålla många artefakter. En automatisk metod kallad ARTE 
(Automatisk aRTefakthantering av EEG) har därför utvecklats för att minska 
inverkan av artefakter i EEG data. När ARTE används för att förbehandla 
EEG data innan den används för att klassificera förarsömnighet så förbättras 
klassificeringsprestanda med 5%. ARTE är en datadriven metod som inte är 
beroende av ytterligare referenssignaler eller manuellt injusterade tröskelvär-
den. Det gör ARTE väl lämpad för användning under dynamiska förhållanden 
där oväntade och ovanliga artefakter är vanliga.  

I avhandlingen presenteras flera maskininlärningsalgoritmer för klassifice-
ring av sömnighet, kognitiv belastning och stress. För klassificering av söm-
nighet uppnåddes en noggrannhet på 79% för ”multiclass” och 93% för binär 
klassificering vid användning av en stödvektormaskin (SVM). 
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Individanpassad klassificering förbättrade resultatet med 10%. Det tyder på 
att mycket kan vinnas genom att individanpassa algoritmerna. Dessutom för-
bättrades resultaten med ytterligare cirka 5% genom att lägga till information 
om omgivningen.  

Vid klassificeringen av kognitiv belastning uppnåddes en noggrannhet på 
72% med en så kallad ”random forest”-klassificerare. Genom att använda in-
formation från flera olika datakällor förbättrades resultaten med 10–20%jäm-
fört med att bara använda enskilda datakällor. För klassificering av stress, med 
hjälp av en ansats med fallbaserat resonerande (CBR) och datafusion så upp-
nådde systemet en noggrannhet på 83,33%. 

Arbetet som är gjort i den här avhandlingen rekommenderar att flervariabla 
data ska användas för detektering och klassificering av förartillstånd, speciellt 
om flera olika tillstånd ska klassificeras samtidigt. Ofta är förartillstånd sub-
jektiva upplevelser där mycket annan kontextuell data kan spela en avgörande 
roll. Det är därför viktigt att klassificeraren får tillgång till den typen av in-
formation.  
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Chapter 1  

Introduction 
 
This chapter presents an introduction, motivation, and outline of the thesis 
work. Research questions and research contributions are also presented 
here. 

 
Driving a vehicle involves a complex manifold of activities, and maintaining 
adequate driving performance requires utilization of both physiological and 
cognitive resources (Jacobé de Naurois, et al., 2017). It has been reported that 
more than 90% of traffic crashes (S. Singh, 2015) are caused by drivers. 
Crashes result not only from human error but also from the consequence of 
surrounding factors (Baker & Fricke, 1986; Shinar & Compton, 2004; 
Tunbridge, et al., 2000). Human errors can be further divided into recognition 
errors, decision errors, performance errors, and non-performance errors. 
Recognition error (i.e., inattention, internal and external distraction, cognitive 
load, etc.) has been found to be the most frequent (41%). Decision error in-
cludes driving too fast or making false assumptions concerning others’ actions 
(33%). Performance error (11%) includes overcompensation and poor direc-
tional control, and non-performance error (7%) includes health-related issues 
such as asthma attacks, drops in blood sugar due to diabetes, heart attacks, and 
falling asleep while driving. Falling asleep or sleepiness ranks highest in the 
non-performance error category (S. Singh, 2015). This thesis focuses on driver 
states involving two critical aspects: sleepiness, which causes non-perfor-
mance errors, and cognitive load and stress, which cause recognition errors. 

Often, in vehicle crashes due human errors that implicate the state of a 
driver; there is a need to learn the origin of the different driver states, the fac-
tors that affect these states, and the countereffects of these states. Over the 
years, physiological signals acquired by sensors have become increasingly re-
liable and useful objective measures for identifying driver states. Signal pat-
terns (i.e., changes in physiological signals corresponding to different im-
paired states) have been widely studied (T. Åkerstedt, et al., 1991; Balandong, 
et al., 2018; Benedetto, et al., 2011; Karel A. Brookhuis, et al., 2009; 
Hagemann, 2008; Kalauzi, et al., 2012; May & Baldwin, 2009; Moses, et al., 
2007; Schleicher, et al., 2008; Vicente, et al., 2016; Yanchao, et al., 2011). 
These studies convey both a desire to find the confounding factors associated 
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with crashes and the domain knowledge that represents the relationships be-
tween the different driver states and changes in various physiological signals. 
One problem is that approaches which consider data from a single source or 
consider only one aspect of features are not entirely reliable; therefore, many 
of these studies have suggested combining multiple sources of information 
such as driver context, situation, goals, and preferences with physiological 
signals. Another problem in driver-state research is that no solid objective 
ground truth exists. Instead, subjective ratings are used to determine driver 
state (e.g., sleepiness level, cognitive load or stress level). Machine learning 
(ML) is useful for finding the necessary input variables or features to deter-
mine the relationship between objective measures and subjective ratings. 
Moreover, models that use machine learning algorithms describe persistent 
relationships between objective measures and subjective ratings and can im-
prove over time as new data are captured and made available to the algorithms. 
Thus, machine learning algorithms can integrate new objective measures, 
make frequent comparisons against their predictions, and then make the nec-
essary adjustments to provide more accurate results. 

The focus of this thesis is on multivariate data analysis using machine 
learning to detect and classify drivers’ levels of sleepiness, cognitive load, and 
stress. This thesis includes several physiological signals, namely, electroen-
cephalography (EEG), electrooculography (EOG), electrocardiography 
(ECG), galvanic skin response (GSR), finger temperature, and respiration. 
Although the substantial work in this thesis is based on physiological signals, 
driving behavioural data obtained from the vehicle and contextual information 
obtained from the driving scenarios are also incorporated. 

1.1 Aim and Objective 
The objective of this thesis is to use machine learning to identify important 
measures from multivariate data sources and sensors that can detect and clas-
sify driver states (i.e., sleepiness, cognitive load, and stress). However, the 
classification and detection approach proposed in this thesis is not intended to 
be used in commercial vehicles because using multivariate intrusive sensors 
is cumbersome. Instead, the outcome of this thesis should be considered a re-
search tool for investigating different driver states. This research tool will be 
of great value in the following scenarios: 

• Investigating factors that affect driver states, such as light conditions, 
driving environment, emotions, etc. 

• Comparing non-obtrusive or non-contact-based driver-state detection 
systems, for example, computer vision-based driver monitoring 
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• Evaluating different countermeasures for sleepiness, fatigue, cogni-
tive load, and stress, such as rumble strips, rest breaks, caffeine and 
napping. 

The challenges of applying machine learning algorithms in this setting are 
as follows: 

• Dealing with noise and artifacts in the collected data. Among the 
physiological signals, the EEG is most prone to artifacts. The signal-
to-noise ratio deteriorates, and the number of motion artifact in-
creases when EEGs are acquired in naturalistic environments com-
pared to laboratory settings (Minguillon, et al., 2017). Large ocular 
and movement artifacts also exist, as well as a variety of electromag-
netic disturbances. Therefore, robust methods for handling artifacts 
is crucial in non-stationary environments such as driving. 

• Features extracted from physiological signals are a direct and objec-
tive measure of functional state. Often, data from a single source do 
not efficiently reflect driver state. In contrast, data from multiple 
sources can improve the classification performance. The problems of 
multivariate data include duplicated information or irrelevant infor-
mation in the feature space. One challenge is that the relationships 
between driver state and the various data sources are not well defined, 
and these features often overlap between driver states. Therefore, fea-
ture engineering, which consists of feature extraction, feature selec-
tion, and dimensionality reduction, must be investigated for each 
driver state to make accurate classifications. Furthermore, data fusion 
can be beneficial to achieve more reliable and feature-rich judge-
ment. 

• Overfitting and class noise (which occur because training data are 
labelled using subjective self-ratings) is a problem. Hence, this work 
investigates both suitable classification schemes and a variety of ma-
chine learning algorithms. One possible approach is to use multi-
modal data and create several models with different algorithms to 
perform classification. Baltrušaitis, et al. (2018) proposed a multi-
modal machine learning framework to address the following five 
challenges: 

o Representation: Performing the data processing necessary to 
represent and summarize heterogeneous data to achieve mul-
tiple complementary modalities. 

o Translation: Understand the relationship among the multi-
modal data. 
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o Alignment: Identify the relations between the driving condi-
tions and the driver state. 

o Fusion: Apply data-level and feature-level fusion between 
two or more modalities to detect driver state. 

o Co-learning: Explore the advantages and limitations of each 
modality and use that knowledge to improve the perfor-
mances of models trained on a different modality. 

1.2 Problem Formulation 
Based on the problem domain and the objective described above, the main 
research question in this thesis is as follows: 
 
Can machine learning be used to identify the important objective measures 
from multivariate data sources and sensors to detect and classify driver sleep-
iness, cognitive load, and stress? 
 
More specifically, the following sub-research questions (RQ) will be ad-
dressed in the thesis: 
 
RQ 1: Is it possible to reduce the impact of artifacts and noise in EEG signals 

recorded in non-stationary environments such as while driving? 

RQ 2: Can multivariate multimodal data be used to classify driver sleepiness, 
cognitive load, and stress? 

RQ 2.1: Which key features/attributes are most useful for classification 
of driver sleepiness, cognitive load, and stress? 

RQ 2.2: Which multimodal machine learning approach is most suitable 
for classification of driver sleepiness, cognitive load, and 
stress? 

1.3 Research Contribution 
The main contributions of this thesis are listed below.  

Figure 1.1 depicts the associations between research questions, contributions 
and included papers. Summaries of each paper are presented in Chapter 5. 

RC 1: A survey was conducted (from 2007–2014) on the sources of EEG ar-
tifacts and approaches for handling EEG artifacts with and without ma-
chine learning [PAPER I]. 

RC 2: An automated EEG artifact handling method for data acquired in a 
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dynamic and moving environment was developed and its application 
in driver monitoring [PAPER II] was demonstrated. One novelty of 
the algorithm is having tailored features for identifying various arti-
facts in the EEG signals. 

RC 3: Classification schemes using machine-learning algorithms based on 
multivariate physiological signals were developed that could detect 
sleepiness, cognitive load, and stress. The work includes feature engi-
neering, data fusion, and feature construction and a validation of the 
classification approach [PAPER III—PAPER V]. 

RC3.1: An extensive evaluation was performed to compare the effec-
tiveness of the ML algorithms k-nearest neighbours (KNN), 
support vector machine (SVM), random forest (RF), and case-
based reasoning (CBR), for both multiclass and binary driver 
sleepiness classification. Investigate the importance of contex-
tual information as features and subject dependency for clas-
sifying driver sleepiness [PAPER III]. 

RC3.2: Cognitive load event detection using EEG signals. The study 
investigated different combinations of scenarios and feature 
sets using CBR to classify cognitive load events and ordinary 
driving events from the feature set [PAPER IV]. 

RC3.3: This study used a multi-modal approach that considered both 
multivariate physiological signals and driving behavioural 
data to detect cognitive load. Additionally, it includes driving 
scenarios as a feature in Chapter 4. 

RC 3.4: Multi-sensor data fusion masks errors and omissions in indi-
vidual sensors data streams and provides better and more ac-
curate estimation of measured variables. Data fusion is per-
formed using multivariate multi-scale entropy analysis 
(MMSE) to extract features for case formulation [PAPER V]. 
Later, cases are classified using CBR. 
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Figure 1.1: Association between research questions and contributions. 

1.4 Outline of the Thesis 
This thesis work is divided in two parts. The first part presents the thesis and 
the second part contains the included papers. The organization of the first part 
is as follows: 
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Chapter 1: Introduction chapter provides an introduction of the thesis includ-
ing motivation, research questions, and research contributions of the research 
work. 
 
Chapter 2: Background of the problem domain, and related works on the re-
search topic and problem domain. 
 
Chapter 3: Information about the dataset, the approach, and a summary of dif-
ferent methods that have been investigated in this thesis work. 
 
Chapter 4: Experimental works and data analysis that have been carried out in 
this research is presented in this chapter. The results are also included in this 
chapter. 
 
Chapter 5: Summary of the included papers along with the contributions from 
the author of this thesis. 
 
Chapter 6: Discussion, conclusions, and the future work. 
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Chapter 2  

Background and Related Work 
 
This chapter presents background and related work, which lays the foun-
dation of the research work. 

 
Psychophysiology addresses physiological changes that occur due to psycho-
logical processes and investigates how these changes can be measured 
(Cacioppo, et al., 2007). This chapter defines three psychophysiological 
states, sleepiness, cognitive load, and stress, and describes how these states 
can be assessed using psychophysiological measures in a driving setting. 

2.1 Sleepiness 
The behavioural definition of sleep is a “reversible behavioural state of per-
ceptual disengagement from and unresponsiveness to the environment (Mary 
A Carskadon & Rechtschaffen, 2000) ”. Sleep is regulated by three different 
rhythms: homeostatic, circadian, and ultradian (Lee-Chiong, 2008). Wakeful-
ness is defined as the opposite of sleep, i.e., as the state in which a person is 
aware of the surrounding environment and responds to that environment via 
sensory inputs. The daily life cycle can be divided into three states: wakeful-
ness, non-rapid eye movement (NREM) sleep and rapid eye movement (REM) 
sleep (Aldrich, 1999; Lee-Chiong, 2008). NREM sleep is divided into three to 
four stages that begin at the transition from wakefulness to sleep and transition 
gradually into deeper sleep throughout the night (Mary A Carskadon & 
Rechtschaffen, 2000). In the context of driver sleepiness, the interesting states 
are wakefulness and stage 1 NREM sleep, i.e., the transition from wakefulness 
to sleep. 

Sleepiness can be defined as a state of impaired awareness associated with 
the physiological drive to fall asleep. Sleepiness is characterized by slower 
reaction times, reduced vigilance, and deteriorated information processing  
(Slater, 2008).    

Driver sleepiness is a major concern for traffic safety (Horne & Reyner, 
1999; Philip, et al., 2005). The National Highway Traffic Safety Administra-
tion (NHTSA) reports that 2.6% of the crash fatalities in the USA in 2014 
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were due to drowsy driving and that 846 people died in those crashes (Lyles, 
2015). The International Transport Forum at the OECD estimates that 20–30% 
of fatalities are attributable to driver sleepiness and fatigue (ITF, 2017). In a 
survey of nineteen European countries, Gonçalves, et al. (2015) found that the 
average probability of falling asleep while driving over the 2 years preceding 
the study was 17%, and among those who fall asleep, the probability of ending 
up in a crash was 7%. 

2.1.1 Measuring Driver Sleepiness 
In a clinical setting, the multiple sleep latency test (MSLT) (Mary A. 
Carskadon, 1986) and the maintenance of wakefulness test (MWT) (Mitler, et 
al., 1982) are the two methods used for measuring sleepiness. MSLT measures 
the length of time an individual needs to fall asleep, whereas MWT measures 
how long an individual can manage to stay awake. Both methods are used to 
diagnose sleep disorders and require the subject to be stationary. These meth-
ods are not applicable to continuous sleepiness measurements; thus, they are 
not suitable in a driving context. Therefore, sleepiness measurements of active 
individuals in lifelike settings typically use subjective measures of sleepiness 
based on questionnaires and self-ratings. Based on the time at which sleepi-
ness is measured, two categories of rating scales exist. The first category eval-
uates sleepiness at a specific moment in time or short-term changes in sleepi-
ness. The Stanford Sleepiness Scale (SSS) (Hoddes, et al., 1973) and the Ka-
rolinska Sleepiness Scale (KSS) (Torbjörn Åkerstedt, et al., 2014) fall into this 
category. The second type of rating scale measures overall sleepiness for an 
entire day. The Epworth Sleepiness Scale (ESS) (Johns, 1991) and the Sleep 
Wake Activity Inventory (SWAI) (Rosenthal, et al., 1993) are included in this 
second category. In this thesis, subjective sleepiness is measured using the 
KSS because it is suitable for evaluating changes that correspond to environ-
mental factors and circadian rhythm, and it provides a “real-time” measure of 
sleepiness. KSS has previously been validated in several studies for assessing 
driver sleepiness (Kaida, et al., 2006; Putilov & Donskaya, 2013). 

Physiological measures of sleepiness are usually based on EEGs because 
this approach is reliable for assessing sleep stages and wakefulness 
(Abeyratne, et al., 2009; Akin, et al., 2008; Borghini, et al., 2014; Kar, et al., 
2010). The frequency power of the EEG signal is typically interpreted as fol-
lows: increases in theta (θ) power (4–7 Hz) (Aeschbach, et al., 1997; Christian 
Cajochen, et al., 1995) and alpha (α) power (8–12 Hz) indicate sleepiness, 
whereas signal content in the beta (β) range (12-30 Hz) is a sign of alertness 
(Craig, et al., 2012). In a driving context, increased alpha-band power has been 
found to be associated with sleepiness (Kecklund & Åkerstedt, 1993; Simon, 
et al., 2011). Table 2.1, adapted from Craig et al. (2012), lists the studies that 
have investigated frequency power changes in EEG signals corresponding to 
sleepiness. Here, NS = Not significant, NR = Not reported, and the arrow 
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symbols (↑ and ↓) respectively indicate increased or decreased frequency 
power with sleep deprivation. 

Table 2.1: Sleepiness studies investigated the changes of frequency power of EEG. 

Study Delta Theta Alpha Beta 
Kong, et al. (2017) ↑ ↑ NS NR 
Morales, et al. (2017) U-shaped  NS NS ↑ 
Huang, et al. (2015) ↑ ↑ ↓ ↓ 
Howard, et al. (2014) NR ↑ ↑ NR 
Craig, et al. (2012) NS ↑ ↑ ↑ 
Simon, et al. (2011) NS NS ↑ NS 
Gast, et al. (2011) ↑ ↑ ↑ ↑ 
Pal, et al. (2008) NR ↑ ↑ NR 
Papadelis, et al. (2006) ↓ ↑ ↑ NS 
Trejo, et al. (2005) NR ↑ ↑ NR 
Eoh, et al. (2005) NR NS ↑ ↓ 
Campagne, et al. (2004) NR ↑ ↑ NR 
Strijkstra, et al. (2003) NR ↑ ↓ NR 
Caldwell, et al. (2002) ↑ ↑ ↓ NS 
Lal and Craig (2002) ↑ ↑ ↑ ↑ 
Macchi, et al. (2002) NR ↑ ↑ NR 
Schier (2000) NR  ↑ NR 
Tanaka, et al. (1997) ↑ ↑ ↑ ↑ 
Dumont, et al. (1997) NR ↑ ↑ NR 
C. Cajochen, et al. (1996) NR ↑ ↑ NR 
Christian Cajochen, et al. (1995) NR ↑ ↑ NR 
Kecklund and Åkerstedt (1993) NR ↑ ↑ NR 
T. Åkerstedt, et al. (1991) NS NS ↑ NR 
Torsvall and Akerstedt (1987) ↑ ↑ ↑ NR 

Increased blink durations (Torbjörn Åkerstedt, et al., 2005; Häkkänen, et 
al., 1999; Schleicher, et al., 2008) and slow eye movements (Kurt, et al., 2009) 
measured via EOG are indicators of sleepiness (Häkkänen, et al., 1999). The 
PERCLOS measures the percentage of a time interval where the drivers’ eyes 
are at least 80% closed. During sleepiness, an increment of PERCLOS was 
observed in the vigilance and simulated driving task (PeopIe, et al., 1998; 
Wierwille & Ellsworth, 1994). However, compared to EEG and blink dura-
tion, PERCLOS was found to be less effective at discriminating drowsiness-
related errors under the demands of constant attention, as a sleep-deprived 
driver can fall asleep even when their eyes remain open (Sommer & Golz, 
2010; Wilkinson, et al., 2013). Additionally, heart rate variability (HRV) can 
provide information related to sleepiness (Vicente, et al., 2016). 

2.2 Cognitive Load 
Driving is a proactive task that requires anticipation and adaptation concern-
ing road users’ behaviours, and their actions are revolving all the time. This 
whole process of driving can be seen as a nearly automated, partially self-
paced and satisficing task (Kircher & Ahlstrom, 2016). To some extent, 
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drivers have the possibility to distribute the load of the driving task by decid-
ing when and where they do what. This holds true not only for driving-related 
tasks but also for secondary tasks such as talking on a mobile phone or con-
versing with a passenger while driving. Most of the time this works well, but 
sometimes it does not (Caird, et al., 2008; Johan Engström, et al., 2005; 
Horrey & Lesch, 2009; Lee & Boyle, 2015; May & Baldwin, 2009). In this 
thesis, cognitive load is considered as the amount of cognitive resources (i.e., 
mechanisms necessary for cognitive control) used at a certain time (J 
Engström, et al., 2013), and the effect of cognitive load on traffic safety is 
considered utilizing the attention selection model (ASM) (J Engström, et al., 
2013). In ASM, attention selection is acknowledged as a form of adaptive be-
haviour rather than a consequence of limited capacity. According to the ASM 
model, the cognitive load does not affect automatic performance but impairs 
subtasks that rely on cognitive control. 

In this thesis, the so-called n-back task was used as a cognitively loading 
secondary task. The n-back task is a continuous performance task commonly 
used as an assessment of working memory load (Jaeggi, et al., 2010; Kane, et 
al., 2007). The n-back task can vary on task difficulty or complexity, such as 
very mild task demand, moderate task demand (1-back), and a high level of 
task demand (2-back) (Mehler, et al., 2011).  

2.2.1 Measuring Driver Cognitive Load 
As cognitive load increases, changes in alpha and theta powers in EEG have 
been observed in various studies (Borghini, et al., 2014; Gevins & Smith, 
2003; Hagemann, 2008). However, depending on the study design and the 
type of cognitive load under scrutiny, the results are often ambiguous 
(Borghini, et al., 2014; Hagemann, 2008). EEG classifications for activities 
with different mental workloads were performed in (Gupta, et al., 2009; 
Ziheng, et al., 2011). Table 2.2, adapted from Borghini, et al. (2014), lists 
studies that investigated variations of EEG signal frequencies corresponding 
to cognitive loading. Here, NS = Not significant, NR = Not reported, and the 
arrow symbols (↑ and ↓) respectively indicate increased or decreased fre-
quency power with higher cognitive loading tasks. 

The average person spontaneously blinks their eyes at a rate of 15–20 times 
per minute (Nakano, et al., 2013). Eye blink frequency increases as cognitive 
load increases (Borghini, et al., 2014; Recarte, et al., 2008; Wascher, et al., 
2015); however, a decrease in blink duration was observed by (Benedetto, et 
al., 2011). 
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Table 2.2: Variation in EEG frequency bands during cognitive loading task. 

Study Delta Theta Alpha Beta 
Karamacoska, et al. (2018) ↑ ↑ ↑ NR 
Gaoua, et al. (2018) NR ↑ NS NR 
Dan and Reiner (2017) NR ↑ ↑ NR 
N. Kumar and Kumar (2016) NR NR ↑ ↑ 
Berka, et al. (2007) NR ↑ ↑ NR 
Fairclough and Venables (2006) NR ↑ ↓ NS 
Sauseng, et al. (2006) NR ↑ ↓ NR 
Postma, et al. (2005) NR ↑ NS NR 
Dussault, et al. (2005) NR ↑ NR ↓ 
Fairclough, et al. (2005) NR ↑ ↓ ↑ 
Smith, et al. (2001) NR ↑ ↓ NR 
Slobounov, et al. (2000) NR ↑ ↓ NR 
Gevins, et al. (1998) NR ↑ ↓ NR 
Yamada (1998) NS ↑ NS NS 
Klimesch, et al. (1997) NR ↑ NS NR 
Okogbaa, et al. (1994) NR NR ↑ NR 
de Waard and Brookhuis (1991) NR ↑ ↑ NR 

Heart rate (HR) and heart rate variability (HRV), i.e., measure of the vari-
ations in time between each heartbeat, are two measures that can vary with 
increasing cognitive load. HRV measures beat-to-beat (R–R interval) varia-
tions in terms of consecutive heartbeats articulated in normal sinus rhythm 
from electrocardiogram (ECG) recordings (Föhr, et al., 2015; Reisman, 1997). 
An increased HR with respect to increasing cognitive load has been reported 
in several studies; in contrast, time domain measures of HRV such as mean 
RR, SDNN, RMSDD, pNN50 and HF power band (0.15 - 0.50 Hz) of HRV 
in the frequency domain decrease (K. A. Brookhuis & de Waard, 2010; Cinaz, 
et al., 2013; Mehler, et al., 2011). An increase in LF power (0·04–0·15 Hz) 
and the LF/FH ratio of HRV has been associated with higher mental work-
loads (Cinaz, et al., 2013; Muthukrishnan, et al., 2017; Togo & Takahashi, 
2009). 

In several studies, drivers’ behavioural data in relation to vehicular signals 
such as speed, lateral position, steering wheel angle, etc. have been used to 
detect and classify drivers’ cognitive loads (Chakraborty & Nakano, 2016; 
Kountouriotis, et al., 2016). For example, driving performance relies on an 
appropriate speed (Lewis-Evans, et al., 2011). Reducing speed as a compen-
satory action due to increased cognitive load is more often used as an indica-
tion of behaviour adaption than is a change in driving performance (Johan 
Engström, 2011; Östlund, et al., 2004). Östlund, et al. (2004) presented some 
other parameters, such as lateral position and steering wheel reversal rate, that 
reflect the driver’s cognitive load. Wilschut (2009) uses steering wheel angle 
and lane positioning to measure driving performance. 
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2.3 Stress 
According to Lazarus (1966), stress occurs “when an individual perceives that 
the demands of an external situation are beyond his or her perceived ability to 
cope with them.” McEwen (2007) described stress as a ‘word’ that represents 
emotionally and physiologically challenging experiences. An individual’s re-
action to stress depends on how that individual has learned to deal with the 
situation, and the recovery processes negotiated depend on the stressors, e.g., 
“severe”, “prolonged”, or “unaccustomed” (Koolhaas, et al., 2011). 

Driving itself can stress drivers based on the driving scenario, for example, 
reduced gaps between following vehicles, being cut off, or having to brake 
hard. Another factor is driver workload-related stress, which can impact driv-
ers’ reaction times, efficiency, decision-making capabilities, situational 
awareness and safety (Healey & Picard, 2005; Smart, et al., 2005). Moreover, 
productivity and energy efficiency have been linked to heavy vehicle opera-
tors such as truck drivers and construction equipment operators (Bostrom, 
2005; Filla, et al., 2013).  

2.3.1 Measuring Driver’s Stress 
Reisman (1997) discussed methods for measuring physiological stress using 
HRV, blood volume pulse, and finger temperature. HRV and respiration pat-
terns have become the main parameters used to measure stress. Inhalations, 
exhalations, and breathing patterns can be acquired through respiration moni-
toring. HRV reflects both the parasympathetic and sympathetic activities of 
the autonomous nervous system (ANS) (Butler, et al., 1994; Föhr, et al., 2015; 
Kemper, et al., 2007; M. Kumar, et al., 2007; Rajendra Acharya, et al., 2006; 
Taelman, et al., 2009; Vuksanović & Gal, 2007). During stress, sympathetic 
activity dominates the ANS, while during recovery, parasympathetic activity 
dominates the ANS. The parasympathetic response can be indicated by the LF 
of HRV, while the HF of HRV is related to both parasympathetic and sympa-
thetic activity (Reisman, 1997). Moreover, heart rate increases with increasing 
stress, and time and frequency domain variability measures of HRV are ex-
pected to show a decrease in HRV under higher stressors (Föhr, et al., 2015; 
Nassef, et al., 2010; Taelman, et al., 2009). 

Skin temperature is a physiological parameter that has been used as an in-
dicator of brain activity and of state of mind or psychological state. Skin tem-
perature depends on three types of factors: a) environment conditions, b) in-
dividual variability, and c) cognitive or psychological state. When the first two 
conditions are controlled, skin temperature can still vary by 1∘	6 to 2∘	6 due 
to psychological state. Finger temperature (FT) variation reflects the sympa-
thetic and parasympathetic activity in the ANS. In response to stress, the sym-
pathetic nervous system (SNS) activates, which reduces peripheral circula-
tion; consequently, FT decreases. The opposite situation occurs during relax-
ation: the parasympathetic nervous system (PNS) activates, increasing 
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circulation. Psychophysiological dysfunctions or stress-related dysfunctions 
can be diagnosed by monitoring the rise and fall of FT (Caramaschi, et al., 
1996). 

Saidatul, et al. (2011) presented the anatomy of stress, the correlation be-
tween stress and EEG signals, and EEG signal processing techniques, includ-
ing feature extraction and classification. Mean averaged log alpha power 
showed a decreasing pattern from a relaxed to a high stress condition. the 
frontal channels, mainly F3, Fz, and F4, concentrate on these parameters 
(Merino, et al., 2015; Sulaiman, et al., 2011; Tyson, 1987). On contrary to 
Saidatul, et al. (2011), high EEG θ and α activities have been reported to cor-
relate with stress in these studies. Table 2.3 lists some studies related to driver 
stress detection, including the type of environment used and the measures in-
vestigated. 

Table 2.3: Drivers’ stress detection studies with study environment and types of meas-
ure. Here ↑ = increased, ↓= decreased, empty field = time and/or frequency domain measures.   

Study Real/  
Simulator Measures Response Remarks 

El Haouij, et al. 
(2018) 

Real road HR, EMG, skin 
conductance 

 Stress Classification 

Merino, et al. (2015) Lab EEG  8 ↑, 9 ↑  
Ha, et al. (2015) Lab EEG and HRV  Stress Classification 
Bin, et al. (2015) Lab EEG  8 ↑, 9 ↑, : ↑  
Saidatul A., et al. 
(2015) 

Lab HR and EEG  HR↑ and  8 ↓  

Munla, et al. (2015) Real road HRV  Stress Classification 
Shamsul, et al. (2014) Simulator EEG  8 ↑, 9 ↑, : ↓  
Manjusha and 
Shermila (2014) 

Real road ECG and EEG  Stress Classification 

Calibo, et al. (2013) Lab EEG  Stress Classification 
S. Begum, et al. 
(2012) 

Real road HRV  Stress Classification 

Sulaiman, et al. 
(2011) 

Lab EEG  N/A 

Saidatul, et al. (2011) N/A EEG Nonlinear 
measures 

Stress Classification 

Kar, et al. (2010) Real road EEG  8
↑, ((8 + :)/=)
↑ 

 

Haak, et al. (2008) Game  
simulator 

EEG and EOG  Eye blink ↑  

2.4 EEG Artifacts 
An EEG is the electric potential recorded from the surface of the scalp and 
measured by the current flows that occur when the dendrites of the many 
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pyramidal neurons in the cerebral cortex are synaptically excited. EEG signals 
are recorded from the scalp via electrodes and characterized by amplitude and 
frequency. The previous section illustrated that EEG is one of the measures of 
sleepiness, cognitive load and stress. However, the problem with EEG moni-
toring during driving is addressing artifacts and noise interference in the EEG 
signal. An EEG is non-stationary, nonlinear and noisy, and it is easily contam-
inated by signals other than brain activity. These contaminations are often re-
ferred to as artifacts, which can cause significant measurement miscalcula-
tions that reduce the clinical usefulness of EEG signals. EEG artifacts are gen-
erated from body or muscle movements, eye blinks, eye movements, etc., and 
can be classified as a) muscle artifacts, b) ocular artifacts, and c) cardiac arti-
facts. Both muscle and ocular artifacts overlap with neural brain activity rec-
orded using sensors; thus, they increase the difficulty of correctly interpreting 
the EEG signals. These artifacts are considered to be independent of brain 
activity whether collected from normal or pathologic subjects (Romo-
Vazquez, et al., 2007). 

A literature survey on the characteristics of raw EEG signals, the sources 
of EEG artifacts, and the approaches for identifying and removing EEG arti-
facts up to 2014 is presented in PAPER I. The methods described in PAPER 
I primarily investigate EEG recordings collected through controlled experi-
ments in laboratory settings. Additionally, in many studies, machine learning 
was used to classify EEG signals rather than to handle artifacts. Many of these 
studies were conducted in the past three years. Therefore, this section presents 
a summary of the studies conducted between 2016 and 2018. Comprehensive 
reviews on EEG artifact handling were presented in  (Md Kafiul Islam, et al., 
2016; Jose Antonio & Begoña, 2015; M. M. N. Mannan, et al., 2018; 
Minguillon, et al., 2017) and included not only the methods but also the au-
thors’ recommendations and guidelines for EEG artifact handling. One rec-
ommendation is that the method should be chosen based on the application, 
resources and computational complexity. For example, empirical mode de-
composition (EMD) is computationally expensive and might not be suitable 
for an real-time online application. The second-order blind identification 
(SOBI) method is the safest approach for identifying artifacts when no prior 
knowledge of the type of contamination in the recorded EEG signals is avail-
able. Last but not least, because this is an active research area, a hybrid that 
includes multiple processing stages is recommended because no single exist-
ing method is complete or universal; the best-performing method depends on 
the EEG signals, artifact types, and signal-to-noise ratio. 

Table 2.4 summarises the methods for handling EEG artifacts based on fac-
tors such as artifact type, online or real-time, automated, reference signal re-
quired, multi-channel or single channel EEG, and application type. 

 
 



 19 

Table 2.4: List of articles in the year between 2018 on EEG artifacts handling. Here, 
Y = Yes or supported, N=No or not supported, N/A= information not available. 

Study Types 
of  
artifacts 

Methods Online/ 
real-
time 

Auto-
mated 

Ref. 
signal 

Multi/ 
single 
chan-
nel 

Application 

Sai, et al. 
(2018) 

Ocular 
Muscle 

Wavelet 
ICA 
SVM 

N Y N Multi BCI 

B. Yang, et al. 
(2018) 

Ocular ICA 
Deep 
Learning 

Y Y N Single BCI 

Sreeja, et al. 
(2018) 

Ocular k-SVD 
MCA1 

N Y N Multi 
Single 

BCI 

X. Chen, et al. 
(2018) 

Muscle CCA2 
EMD 

N N/A N Multi 
Single 

General e.g. 
ictal EEG 

Jafarifarmand 
and 
Badamchizadeh 
(2018) 

Cardiac ICA 
Adaptive 
noise can-
cellation 

Y Y N Multi 
 

General 

Song and 
Sepulveda 
(2018) 

Muscle ICA 
CCA 
PCA3 
Class de-
pendent 
EMG  

N N/A Y Multi BCI 

Chavez, et al. 
(2018) 

Ocular 
Muscle 

Wavelet  N Y Surro-
gate 
data 

Multi General 

Xun Chen, et 
al. (2017) 

Ocular 
Muscle 

BSS 
IVA4 
JADE5 
SOBI 
CCA 

N N/A N Multi General e.g. 
ictal EEG 
signal anal-
ysis 

Gerla, et al. 
(2017) 

Ocular IIR filter6 
PCA 
Threshold-
ing 

N Y Y Multi Mainte-
nance of 
Wakeful-
ness Test 
(MWT) 

Anastasiadou, 
et al. (2017) 

Muscle CCA 
Wavelets 
Random 
forests  

N Y N Multi Epilepsy 

X. Li, et al. 
(2017) 

Ocular Oscillatory 
correlation 

N N/A N Single BCI 

                                                
1 Morphological component analysis 
2 Canonical correlation analysis 
3 Principal component analysis 
4 Independent vector analysis 
5 Joint Approximate Diagonalization of Eigenmatrices 
6 Infinite impulse response filter 
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Peak de-
tection 

X. Chen, et al. 
(2017) 

Muscle BSS 
IVA 

N N N Multi General e.g. 
ictal EEG 

Goh, et al. 
(2017) 

Muscle ICA 
Variance 
estimation 
Pearson 
correlation 

N Y Y Multi BCI 

Nedelcu, et al. 
(2017) 

Ocular 
Muscle 

SVM 
Decision 
tree 
KNN 

N N/A Label 
in-
stances  

Multi N/A 

Thanh, et al. 
(2017) 

Ocular 
 

SOBI 
Threshold 

N Y N Multi Epilepsy 

M. K. Islam, et 
al. (2016) 

Ocular 
Muscle 

Wavelet N N/A Y Single Epilepsy 

X. Chen, et al. 
(2016) 

Muscle CCA 
EMD 

N N/A N Single Epilepsy 

Dora and 
Biswal (2016) 

Cardiac Wavelet 
Linear re-
gression 

N N Y Multi Sleep study 

2.5 Machine Learning Approach 
Arthur Lee Samuel, who was an American pioneer in computer gaming and 
artificial intelligence, coined the term “machine learning” in his 1959 paper 
(Samuel, 1959). He defined machine learning as the process of programming 
a digital computer that could behave similarly to the way that human beings 
or animals learn while doing some task. Although his experiments involved 
teaching a machine to play the game of checkers, subsequent machine learning 
research has focused on finding relationships in data and analysing the pro-
cesses for extracting such relations. Machine learning provides automated data 
analysis and automates analytical model building by detecting patterns in the 
data. Machine learning methods can also predict the patterns of future data 
and aid in decision making under uncertainty (Robert, 2014). Machine learn-
ing is useful where no analytical solution exists, but data are available in that 
problem domain that can be used to build an empirical solution. 

This thesis focuses on the supervised classification problem of machine 
learning, and this section briefly presents the general learning framework of 
machine learning. Supervised classification problems involve an input space 
(i.e., the instances of &) and an output space (e.g., the labelling of Υ). An un-
known target function >: & → Υ defines the functional relationship between 
the input space and output space. As mentioned above, a dataset A exists con-
taining input-output pairs (&B, ΥB), …… , (&C, ΥC) drawn as an independent and 
identical distribution (i.i.d) from an unknown underlying distribution D(&, Υ). 
The goal is to find a function E: & → Υ that can approximate the solution of > 
with minimum errors. The function E: & → Υ is called a classifier. 
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Machine learning methods that have been used for detecting driver state 
include the support vector machines (L.-l. Chen, et al., 2017; Chui, et al., 
2015; Shuyan Hu & Zheng, 2009; Liang, et al., 2007; Liao, et al., 2016; 
Munla, et al., 2015; Soman, et al., 2014; Yeo, et al., 2009; Yoshizawa, et al., 
2016), linear discriminant analysis (Vicente, et al., 2016), artificial neural net-
work (Dwivedi, et al., 2014; Garcés Correa, et al., 2013; Ma, et al., 2015; 
Manawadu, et al., 2018; Solovey, et al., 2014), logistic regression (Babaeian, 
et al., 2016), and k-mean clustering (Gurudath & Riley, 2014), fuzzy c-means 
clustering (Ming & Zhelong, 2009), random forest (El Haouij, et al., 2018; 
Yoshida, et al., 2014), and case-based reasoning (Shahina Begum, et al., 2006; 
S. Begum, et al., 2012; Shahina Begum, Barua, Filla, et al., 2014). 

Generalizing a driver-state detection model is a major challenge because of 
inter- and intra-individual variability (Jacobé de Naurois, et al., 2017; X. 
Wang & Xu, 2016), meaning that the acquired physiological signals vary both 
between individuals and (over time) within individuals, leading to drowsiness, 
cognitive load or stress profiles that evolve even for individual drivers (Jacobé 
de Naurois, et al., 2017). The difficulties of classifying driver sleepiness at 
very high accuracy was addressed in (Balandong, et al., 2018; Fu, et al., 2016; 
Jacobé de Naurois, et al., 2017; X. Wang & Xu, 2016). According to Yoshida, 
et al. (2014) time series values and their tendency and stability are important 
features for classifying cognitive load. The authors considered vehicular data 
and eye tracking data to classify cognitive load using an RF classifier. Under 
different settings, the classifier achieved an average accuracy of 78% in clas-
sifying cognitive load levels. The performance of cognitive load classification 
became poor when there were uncertainties—such as participants failing to 
perform some task or, in a real-time system, where improvements could 
choose, for example, a suitable window size, which influences the delay that 
occurs between the onset of a cognitive load task and when changes are de-
tected in the driver’s performance due to higher cognitive load (Liang, et al., 
2007; Solovey, et al., 2014). In many sleepiness studies, cognitive load and 
stress suggested using multimodal data when using machine learning models 
to classify these driver states (Jacobé de Naurois, et al., 2017; Kartsch, et al., 
2017; Solovey, et al., 2014).  
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Chapter 3  

Materials and Methods  
 
This chapter describes the datasets, research process, approaches, and 
methods those have been used in this thesis study. 

 
Different datasets were acquired to address the three different problem do-
mains addressed in this paper, i.e., sleepiness, cognitive load, and stress. 
Sleepiness and cognitive load data were acquired from the Vehicle Driver 
Monitoring (VDM) project (Nilsson, et al., 2017). The regional ethics com-
mittee at Linköping University, Sweden (Dnr 2014/309-31), approved the 
study. The stress study was conducted under the research project “IMod-In-
telligent Concentration Monitoring and Warning System for Professional 
Drivers,” using the data described in PAPER V. The mapping between the 
datasets and the methods used for each of the problem domains are presented 
in Table 3.1. 

3.1 Dataset for Sleepiness Classification 
The dataset contains recordings from 30 male participants, aged between 18–
25 (23.6 ± 1.7 years), acquired while driving in a high-fidelity moving-base 
car-driving simulator (VTI driving simulator III7) at the Swedish National 
Road and Transport Research Institute (VTI), see Figure 3.1. The sleepiness 
study consists of driving in three simulated scenarios: (1) a rural road with a 
speed limit of 80 km/h in daylight, (2) the same rural road in darkness and (3) 
a suburban road in daylight. Furthermore, the data, which collected from the 
participants during six sessions, are a combination of alert and sleep-deprived 
conditions, where in 3 of the 6 sessions the drivers were sleepy, and in the 
other sessions, they were alert. The order of the three scenarios was random-
ized between participants, but held constant within participants to facilitate 
studies on intra-individual differences. The duration of each scenario was 30 
minutes at a speed limit of 80 km/h. In total, the dataset holds recordings from 
540 driving session (30 drivers × 6 occasions × 3 scenarios). 
 

                                                
7 https://www.vti.se/en/research-areas/vtis-driving-simulators/ 
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Table 3.1: Mapping among the datasets, studies and the methods. Here #N= number 
of participants. 
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The physiological signals were acquired using a multi-channel amplifier 
with active electrodes (g.HIamp, g.tec Medical Engineering GmbH, Austria). 
The EEG signals were recorded using 30 channels based on the 10–20 system. 
ECG (lead II), EMG (trapezius and masseter muscles) and EOG (horizontal 
with electrodes at the outer canthi and vertical with electrodes above/below 
the left eye) were also recorded. In the study, sleepiness was measured using 
the KSS rating scale, where the participants rated their sleepiness every fifth 
minute throughout the drives. More details of this study can be found in PA-
PER III and in (Ahlstrom, et al., 2017; Anund, et al., 2017).  

Figure 3.1: VTI simulator III and EEG electrodes setup on a participant. 

3.2 Dataset for Cognitive Load Classification 
The study that collected the cognitive load dataset consisted of two test series 
that contained recordings from 66 participants (33 in test series 1 and 33 in 
test series 2). All the participants were male with no known diseases or medi-
cations, aged between 35–50 (42.47±4.39 years), and had held a valid driver's 
license for more than ten years. This study was also conducted in the VTI 
driving simulator III. The driving environment in the simulator consisted of 
three recurring scenarios in which the simulated road was a rural road with 
one lane in each direction, some curves and slopes, and a speed limit of 80 
km/h. The three scenarios were (1) four-way crossing with an oncoming bus 
and a car approaching the crossing from the right (CR), (2) a hidden exit on 
the right side of the road with a warning sign (HE), and (3) a strong side wind 
in open terrain (SW). Thus, these scenarios implied threats in off-path loca-
tions without requiring the drivers to change their responses. As a within-
measure study, each scenario was repeated four times during approximately 
40 minutes of driving session where participants were involved either in a 
cognitive load task, i.e., a 1-back or 2-back task, or were driving to pass a 
scenario (baseline or No Task). In the first test series, participants performed 
the normal driving and 1-back task while driving, but in the second test series, 
the participants performed all three task conditions in the hidden exit and four-
way crossing scenarios and only the No Task and 2-back tasks were performed 
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under the side wind in the open field scenario. The same sensor setup and 
recording equipment used in the sleepiness study (Section 3.1) was used to 
record the physiological signals, i.e., EEG, EOG, ECG, respiration rate, and 
skin conductance. Simultaneously, driving behaviour signals, such as speed, 
lateral position, steering wheel angle, and so on were recorded in the simulator 
control computer. 

3.3 Dataset for Stress Classification 
This dataset contains physiological measurements of wheel loader operators 
collected during a) Psychophysiological Stress Profile (PSP) tests and b) op-
erating a wheel loader. Airpass and C2 devices were used to collect the data 
along with the cStress device from PBM Stressmedicine Systems8, Sweden. 
The recorded physiological measurements include inter-beat interval (IBI), 
heart rate, respiration rate, finger temperature, and skin conductance. The data 
were collected from 18 male participants; for each participant, the session took 
approximately 2.5 h. During each session, data collection began with the PSP, 
whose duration was approximately 15 min. Afterwards, participants operated 
the wheel loader. Each participant received ten minutes of self-training called 
“adapt” to familiarize themselves with the machine setup (but did not perform 
any bucket filling task) followed by 5 minutes of live test driving termed 
“sharp” (bucket filling considering preconditions).  

Table 3.2: Physiological stress profile adopted from Shahina Begum, et al. (2006). 

Step Parameter Observation 
Time 

Description 

1 Baseline 3 min Read silent of a neutral text 
2 Deep Breathing 2 min Deep breathing under guidance, approximately 6 

bpm 
3 Verbal Stress 2+2 min Two periods of thinking about a stressful situa-

tion, feedback and guidance in-between 
4 Relax 2 min Relaxing with closed eyes, normal breathing 
5 Math Stress 2 min Perform mathematical calculation  
6 Relax 2 min Relaxing with closed eyes, normal breathing 

Table 3.2 shows the six PSP steps that record 15 minutes of data. An expert 
annotated the PSP data as stressed or healthy. These annotations were later 
used as the class level ground truth during stress classification. Furthermore, 
to derive a workload index from the physiological data, each operator per-
formed the wheel loading operating for different machine setups. The details 
of the data collection can be found in (Filla, et al., 2013). 

                                                
8 http://stressmedicin.se/neuro-psykofysilogiska-matsystem/cstress-matsystem/cstress-classic/ 
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3.4 Research Process and Methodology 
The data analysis in this study adopted both quantitative and inductive ma-
chine learning research methods. However, the initial hypotheses were de-
rived based on the literature review and the results of prior studies, which ex-
erted much influence on the deductive research methods. The study is divided 
into four phases; each phase consists of the sub-tasks shown in Figure 3.2, and 
the output of each phase acts as the input to the next stage. The functionality 
of each phase is described below. 

3.4.1 Phase 1: Problem Formulation 
This phase consists of activities such as problem formulation to define each 
of the phenomena in the context of driving, the hypotheses behind physiolog-
ical and other measures, and literature review to understand and outline the 
state-of-the-art. The research questions (RQs) (presented in Chapter 1, Sec-
tion 1.2) are the outcome of this phase. The knowledge obtained during this 
phase is input to the next phase. For example, which data to investigate, what 
features to extract from the data, and so on. 

3.4.2 Phase 2: Data Processing, Feature Extraction and Selection 
In this phase the data processing was conducted on the dataset. Subsequently, 
the feature vectors for the classification task were constructed based on se-
lected features. The outcome of data analytics depends on the quality of the 
input data (e.g., incorrect values, missing data, noisy signal); thus, several 
steps are involved in the data processing prior to feature vector construction, 
e.g., data cleaning and noise handling, data normalization, feature extraction 
and feature selection, and creating datasets for training and testing. One of the 
major works in this phase was handling artifacts in the EEG signals [PAPER 
II]. The development and evaluation of the EEG artifact-handling method 
were conducted using the EEG sleepiness dataset, which was heavily contam-
inated by eye movements and muscle noise. Hence, an algorithm called ARTE 
(Automated aRTifact handling in EEG) was developed that combined signal 
decomposition methods (i.e., wavelet transform and independent component 
analysis (ICA)). A tailored feature set (see PAPER II) was extracted from the 
decomposed signals to identify artifactual components using hierarchical clus-
tering and Chauvenet’s criterion. The cleaning process for the identified arti-
factual components consisted of two steps: wavelet despiking and wavelet de-
noising. These are essential tasks when applying machine learning to classify 
the reference classes using the provided dataset. 
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Figure 3.2: Research process for supervised machine learning setup followed in the 
thesis study, adapted from (Kotsiantis, 2007), modified with phases to fit the research 
process. 

The feature extraction process was motivated by the studies presented in 
Chapter 2. Various features from the datasets were extracted in both the time 
and frequency domains for each classification task. The details of these fea-
tures can be found in PAPER III, PAPER IV, and PAPER V attached in Part 
II and in Chapter 4. In the time domain, statistical measures (i.e., mean, stand-
ard deviation, kurtosis, peak amplitude, number of peaks, slopes between 
peaks and valleys, and nonlinear measures (Schumacher, 2004) such as sam-
ple entropy (SampEn) (Richman & Moorman, 2000) were estimated as 
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features. For a time-series of length - = {HB, HI, …… , HJ}, SampEn is the 
negative of the logarithmic values such that two similar sequences of L and 
L+ 1 consecutive data points will match along both L and L+ 1 data 
points, as defined in Equation (3.1): 

MNLOPQ(L, R, -) =	− log
WXYB(R)

WX(R)
 (3.1) 

where WXYB(R) = the number of probable pairs having where 
Z[HXYB($), HXYB(\)] < R of length L + 1, and WX(R) = the number of prob-
able pairs where Z[HX($), HX(\)] < R of length L. Here, Z is the distance 
between two points HX($) and HX(\), ($ ≠ \), and R represents the tolerable 
standard deviation of the time series. In this work, the embedding dimension 
was L = 2 and the threshold was R = 0.2 ∗ bcZ(H). 

Again, different frequency spectra of the physiological signals were con-
sidered as features. A Fast Fourier transform (FFT) was used to calculate the 
power spectrum density (PSD). One problem when using FFT is spectral leak-
age. Hence, to reduce the spectral leakage, data segmentation and a window 
function (a Hann window in the HRV analysis and a Blackman window in the 
EEG analysis) were applied to the data, and segments were allowed to overlap. 
The PSD was estimated using Welch's periodogram (Welch, 1967) using 
Equation (3.2): 
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where ! = (!u,…… ,!spB) is the discrete window function, H(X) is the 
Lth data segment, i is the number of segments and m = B

xy
∑ !o

Is
otu  is the 

window energy. 
Multivariate Multiscale Entropy Analysis (MMSE) (Ahmed & Mandic, 

2011) was the algorithm used for the data fusion of five sensor signal meas-
urements to quantify the complexity of the sensor signals in PAPER V and in 
(Shahina Begum, Barua, & Ahmed, 2014). The MMSE supports entropy esti-
mation of multivariate/channel data, whereas traditional entropy algorithms 
quantify the regularity of a time series on a single channel. Two main steps 
are used to calculate the multivariate multiscale entropy (MMSE) analysis: 

a) Define the temporal scales by averaging the O-channel time series us-
ing the coarse graining method. The coarse-grained process can be 
obtained by Equation (3.3):  

{ho
| =

1
}

j Hh,q	!ℎeRe	1 ≤ \ ≤
-
}

o|

qt(opB)|YB

 (3.3)	
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where - is the number of data points in every channel, �Hh,qÄqtB
J
Å =

1,2…… , O, is a p-varieties time series, } is the scale factor, Å =
1,…… , O is the channel index and {ho|  is the coarse-grained data. An 
example of the process is shown in Figure 3.3 for scale factor 2 and 
scale factor 3. 
 

 
Figure 3.3: Illustration of coarse-grained process in MMSE for scale factor 2 and scale 
factor 3. 

b) Evaluate the multivariate sample entropy (MSampEn) for each 
coarse-grained multivariate data. The MMSE analysis returns a linear 
vector based on the scale factor. To calculate MSampEn for each O-
variate time series, a composite delay vector was constructed using 
Equation (3.4): 

	
(3.4) 

where	i = ÇLB,LI,LÉ,…… ,LÑÖ ∈ áÑ 	is	the	embedding	vector,	
à = ÇàB, àI, …… , àÑÖ	is	the	time	lag	vector,	and	the		composite	de-
lay	vector	is	HX($) ∈ áX ,	where	L = ∑ Lh

Ñ
htB .	

 
Estimation of MSampEn is presented in Equation (3.5). 

iMNLOPQ(i, à, R, -) = − ln ä
ãXYB(R)

ãX(R)
å (3.5) 

where i is the embedding vector, à is the time lag vector, r is the threshold 
and - is the multivariate time series. ãX and ãXYB are the occurrence fre-
quency for lengths L and L+ 1, respectively. The MMSE analysis returns a 
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linear vector based on the scale factor. The scale factor is highly dependent on 
the length of data. A detailed description of the MMSE algorithm is available 
in (Ahmed & Mandic, 2011; Ahmed & Mandic, 2012). 

For the vehicular data, the standard deviation was estimated as features 
from the lateral position, lateral speed, steering wheel angle, yaw, yaw rate, 
and lateral position (David Sandberg, et al., 2011). In addition, the steering 
wheel reversal rate [x], the number of zero crossings and steering wheel en-
tropy (Boer & Rakauskas, 2005; Nakayama, et al., 1999) were obtained as 
features. Lanex (fraction of lane exit) values were extracted from lane depar-
ture signal, which indicates a driver’s tendency to exit the driving lane. Lanex 
was defined as the fraction of a given time interval spent outside the driving 
lane (David Sandberg, et al., 2011). 

One important contribution of this thesis is that it considers contextual fea-
tures extracted from the study scenarios. In the sleepiness classification, 
sleep/wake predictor (Torbjörn Åkerstedt, et al., 2008), driving conditions 
(see Section 3.1) such as day or night driving (driving in daylight or darkness) 
were considered as features in PAPER III. Driving scenarios (see Section 3.2) 
such as hidden exits, car crossings, and side wind were categorical features in 
the cognitive load classification (Chapter 4). 

Feature selection is a process of avoiding high-dimensional feature vectors 
and removing irrelevant and redundant or noisy features. Good feature selec-
tion can improve the overall classification accuracy and decrease the compu-
tational cost of a classifier. Redundant features may be individually relevant, 
but the removal of an irrelevant feature does not affect the overall learning 
performance. There are generally two ways of performing feature selection: 
a) ranking features based on some criteria and selecting the top n-ranked fea-
tures and b) combining features into smaller subsets and evaluating their per-
formance. This study assessed the feature selection algorithms in the former 
category (filter methods) were the BSS/WSS ratio (ranking by the ratio of 
within class to between-class features) (Dudoit, et al., 2002), minimum redun-
dancy maximum relevance (mRMR) (Hanchuan, et al., 2005), Relief (Kira & 
Rendell, 1992), neighbourhood component analysis (NCA) (Goldberger, et 
al., 2004). The methods in the latter category (wrapper and embedded meth-
ods) included sequential forward floating selection (SFFS) (Pudil, et al., 
1994), best incremental ranked subset (BIRS) (Ruiz, et al., 2006), LASSO 
(least absolute shrinkage and selection operator) (Tibshirani, 1996). 

Using the BSS/WSS features with higher discriminating power can help 
make a determination between classes. The algorithm is also computationally 
fast compared to other algorithms. Relief is computationally fast because it 
avoids heuristic searches and was inspired by instance-based learning. Relief 
is sensitive to feature interactions because the ranking score for each feature 
depends on the degree of closeness between two neighbouring features within 
a given class (Kira & Rendell, 1992). Intra-feature relationships can be iden-
tified using SFFS and BIRS. SFFS is a successor of the sequential forward 
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selection (SFS) method that avoids the "nesting effect”, and is computation-
ally more efficient than other branch-and-bound methods (Pudil, et al., 1994). 
Using mRMR, the selected features are maximally relevant but constrained to 
also be minimally redundant (Ding & Peng, 2003). Minimum redundancy is 
achieved by minimizing the mutual information between features, and maxi-
mum relevance is achieved by maximizing the mutual information between 
the features and the target class. The NCA algorithm is a non-parametric 
method that does not make any assumption on the data distribution and can be 
scaled up for multiclass classification purposes. NCA maximizes the expected 
leave-one-out classification accuracy using a regularization term (W. Yang, et 
al., 2012). LASSO not only reduces the number of features by shrinking and 
removing coefficients but also minimizes the prediction error. Shrinking and 
removing coefficients reduces the variance but does not increase the bias; thus, 
it provides good prediction accuracy and reduces overfitting. Furthermore, the 
interpretability of the model increases because the irrelevant features not as-
sociated with the target variable are eliminated.  

Figure 3.4: Feature selection process using wrapper methods. 

Figure 3.4 illustrates the feature selection process when using wrapper 
methods (BIRS, SFFS), and Figure 3.5 illustrates the feature selection process 
when using filter methods (BSS/WSS, mRMR, Relief, NCA). LASSO is con-
sidered an embedded feature selection method; it selects the subset of features 
that result in the highest learning model accuracy during the learning process. 
In the wrapper approach, the feature subset selection algorithm searches for 
the best subset of features using an induction algorithm that is part of the eval-
uation function. An SVM was used as the learning (or induction) algorithm in 
the wrapper approach. The process starts by selecting the highest-ranking fea-
ture, and the SVM was trained and the performance evaluated through cross-
validation. The next highest-ranking feature was then added to the selected 
subset, the classifier was again trained, and the performance was evaluated. 
The new feature was retained in the selected subset only when it improved the 
classification accuracy; when the performance decreased or remained the 
same as that of the previous subset, the feature was discarded. This process 
was repeated until all the features had been tested, after which the final se-
lected subset and its performance were presented (PAPER III and Chapter 
4). 

For the filter algorithms, Q was initially set to the total number of features, 
resulting in all features being used when training the classifier and evaluated 
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with the validation dataset. The f value was then reduced by applying a thresh-
old to the rank’s coefficient values, and the training continued step-by-step 
until f = 1, i.e., single feature left. Afterwards, the evaluation results were 
sorted and compared to select the optimal feature subset (PAPER III).  

Figure 3.5: Feature selection process using filter methods. 

3.4.3 Phase 3: Classifiers and Evaluation of Individual Classifier 
In this phase, different machine learning algorithms were used to build a clas-
sification model. The performance of each trained classifier was evaluated for 
classification accuracy, sensitivity, specificity, confusion matrices, and re-
ceiver operating characteristic (ROC) curves. Both k-fold cross-validation and 
leave-one-out validation approaches were used to validate the models. A test 
dataset was reserved at the beginning of the training process to avoid data 
leakage; all the processes of feature selection, model training and model eval-
uation were performed on the training dataset using k-fold cross-validation. 
The goal of the final evaluation was to see how well each model could gener-
alize (i.e., based on model predictions when using the test dataset). 

This section introduces the classifier used in this thesis. 
k-Nearest Neighbours (k-NN): In machine learning, k-NN, which is a flex-

ible and memory-based algorithm, is arguably the simplest and most widely 
used classifier. k-NN does not require creating a model to be fit to the data; it 
uses the observations in the training set to find the most similar properties in 
the test dataset (Larose, 2005). Also, k-NN is an universally consistent classi-
fier  (Von Luxburg & Schölkopf, 2011). It uses the Euclidean distance to find 
the Å closest neighbours in the dataset for every instance in that dataset. Be-
cause k-NN is based on a distance function, it is straightforward to explain the 
nearest-neighbour model when predicting a new case. However, it may be diffi-
cult to explain what inherent knowledge the model has learned. 
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Support Vector Machine (SVM): The SVM is a supervised machine learn-
ing method first developed by Vapnik (1992) and is now commonly used in 
pattern recognition: it can be used for both classification and regression pur-
poses (Basheer & Hajmeer, 2000; Jain, et al., 2000). An SVM finds the hy-
perplane that not only minimizes the empirical classification error but also 
maximizes the geometric margin of the classification (Vapnik, 1992). SVM 
maps the original data points in the input space to a high dimensional feature 
space, making the classification problem simpler. Hence, SVM is suitable for 
classification problems with redundant datasets (Guyon, et al., 2002). Con-
sider an n-class classification problem with a training data set {&q, Υq}qtBC , 
where χé ∈ ℝê is the input vector, and Υé is the corresponding class label. The 
SVM maps the d-dimensional input vector space to a dí-dimensional feature 
space and learns the separating hyperplane 〈!, &〉 + " = 0, " ∈ ℝ that max-
imizes the margin distance I

‖ñ‖ó
ó, where ! is a weight vector, and " is the bias. 

The SVM classifier obtains a new label Υò for the test vector by evaluating 
Equation (3.6): 

Υò =j!q. ô(&, &q) + "

J

qtB

 
 

(3.6) 

where - is the number of support vectors, !q are the weights, b is the bias 
that is maximized during training and ô is the kernel function.  

Figure 3.6: An example of SVM separation of 2-dimensional binary class problem. 
The solid line represents the optimal hyperplane, dotted line denotes maximal margin; 
circles and diamonds on the margin are the support vectors (Hearst, et al., 1998). Here, 
! is the weight vector and " is the threshold such that Υq(〈!, &q〉 + ") >
0	($ = 1, …… , -). 
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In this study, the Radial Basis Function (RBF) kernel was used for classi-
fication. The RBF can be denoted as ô(&, Υ) = eHO ö−

‖õpú‖ó

Iùó
û, where ü is 

the variance of the Gaussian. An SVM with RBF is a weighted linear combi-
nation of the kernel function computed between the data points and each of 
the support vectors. Figure 3.6 depicts an example of binary classification with 
linear separability. 

Random Forest (RF): RF is a popular ensemble algorithm in machine 
learning that consists of a series of randomizing decision trees (Breiman, 
2001). Each decision tree in the random forest is trained using bootstrap data 
samples, where bootstrapping is the process of creating samples with replace-
ment. During the bootstrapping process, not all data are selected for training; 
the selected data are referred to as out-of-bag data, and these out-of-bag data 
are used to find the generalization error or the out-of-bag error. A generic ar-
chitecture for a random forest classifier is shown in Figure 3.7.  

Figure 3.7: Generic structure of random forest classification. 

During the tree-generation process, for the k-th tree, a random vector †h	is 
generated, which is drawn from the same data distribution but independent of 
previous random vectors †B, …… , †hpB. For the given training dataset, the tree 
grows using the random vectors †h and creates a predictor ℎ(&, Χh, †h), where 
& is the input data, Χh  is the bootstrap sample, and †h consists of a number of 
independent random variables L between 1 and ô. Different generalizations 
can be achieved by varying the number of variables; it is recommended to start 
the search from L = ⌊logI ô + 1⌋ or L = √ô (Breiman, 1996, 2001). After 
generating a large number of trees, the output is the majority vote of all these 
decision trees. The important aspects of a random forest are that as the forest 
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grows by adding more trees, it will converge to a limiting value that reduces 
the risk of overfitting and does not assume feature independence. RF is imple-
mented using bagging, which is the process of bootstrapping the data plus us-
ing aggregation to make a decision. 

Case-based reasoning (CBR): CBR is a family of artificial intelligence (AI) 
approaches that build on experience to solve current problems. According to 
Mitchell (1997), CBR is an instance-based method and is a lazy learning 
method, i.e., it does not attempt to reason until it must. Kolodner (1992) de-
scribed CBR as a reasoner that solves a new problem by remembering and 
using historical situations similar to the current situation. The term ‘case’ rep-
resents an experience achieved from a previously solved problem. The term 
‘based’ means that in CBR, cases are the source of reasoning. Finally, the term 
‘reasoning’ means the approach of problem-solving, i.e., the CBR intends to 
solve a problem by inferences made from previously solved cases (Michael & 
Rosina, 2013). Aamodt and Plaza (1994) described the CBR cycle, which con-
tains four steps: Retrieve, Reuse, Revise and Retain, as shown in Figure 3.8.  

Figure 3.8: CBR cycle adapted from Aamodt and Plaza (1994). 

In this study, only the first step (i.e., Retrieval) is used. The task is to search 
the case library for cases that resemble the new problem description. The near-
est neighbour (k-NN) algorithm is one of the most common and used similar-
ity measures (Michael & Rosina, 2013; Watson, 1998) in CBR case retrieval 
and is calculated by Equation (3.7): 
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M$L$fNR$c{(•, M) =j!q

C

qtB

∗ >(•q, Mq) (3.7) 

where • is the target case, M	is the source case, Q is the number of features 
in each case, $ is the index of individual features, > is a similarity function, 
and ! is the weighting parameter of the $-th feature. 

Hierarchical clustering: Clustering is an unsupervised method that groups 
a set of data objects into clusters such that the data within a cluster have high 
similarity and are less dissimilar to the data in other clusters. Clustering is 
used in PAPER II to group the artifactual and non-artifactual components 
extracted from EEG signals. According to Jain, et al. (1999), clustering organ-
izes a collection of patterns or feature vectors into clusters based on similarity 
measures applied to unlabelled data. Similarities are quantified based on the 
distance measures of the features or attribute values that describe the objects 
(Han, 2005). Hierarchical clustering is one of the clustering algorithms that 
group data objects into a hierarchy or “tree” of clusters, also known as a den-
drogram. Based on the hierarchical decomposition approach, hierarchical 
clustering can be classified as either agglomerative (bottom-up) or divisive 
(top-down). In the agglomerative approach, each object starts by forming a 
separate group; then, the groups or objects that are close to one another are 
iteratively merged. This process continues until all the groups have been 
merged into one, or until a termination condition becomes true. In the divisive 
approach, the clustering process starts by considering all the objects as being 
in the same cluster. During a successive iteration process, clusters are subdi-
vided into smaller clusters until each object is in a single cluster or a termina-
tion condition applies (Han, 2005). Moreover, hierarchical-clustering algo-
rithms can be distance-based or density- and continuity-based.  

Figure 3.9: (a) Points falling in three clusters, (b) The dendrogram representation 
(Jain, et al., 1999). 
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Figure 3.9 depicts an example of clustering and a dendrogram representa-
tion of the clusters. The tree is not a single set of clusters but rather a multilevel 
hierarchy, where clusters at one level are joined to clusters at the next level 
(G. Chen, et al., 2002). Hierarchical clustering can be variations of single link, 
complete link, and minimum variance algorithms. Among these three variants, 
the single link and complete link methods are the most popular. In the single 
link algorithms, patterns are drawn from two clusters, and the minimum of the 
distances between all pairs is the distance between two clusters. In contrast, in 
the complete link, the maximum of all pairwise distances is the distance be-
tween two clusters. The complete link algorithm produces more compact clus-
ters than does the single link algorithm. Moreover, in many practical applica-
tions, a complete link algorithm produces more useful hierarchies than does a 
single link algorithm (Han, 2005). In PAPER II, the furthest distance algo-
rithm (i.e., a complete link measured using the Euclidean distance function) is 
applied. An inconsistency coefficient threshold of 1.1 was used to group the 
data into an unknown number of clusters. 

3.4.4 Phase 4: Comparison Performances of the Classifiers 
The results obtained in the previous phase were used to compare the perfor-
mances among the tested classifiers. In addition, comparisons of the classifi-
cation performances considering the data sources were conducted. These in-
clude features from both individual data and multiple data sources, features 
from individual signals, and features based on data fusion, both with and with-
out contextual features, and the performances with different feature subsets. 
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Chapter 4  

Experiments and Results 
 
This chapter describes the data analysis and results obtained following the 
methodology presented in the Chapter 3 to the datasets. 

 
The experimental work and the achieved results from EEG artifact handling, 
driver sleepiness classification, cognitive load classification and stress classi-
fication are presented in this chapter. Results from additional experiments that 
were not included in PAPER I-V are also included in this chapter. 

4.1 EEG Artifact Handling 
The Automated aRTifact handling in EEG (ARTE) algorithm is a data-driven 
approach that does not rely on additional reference signals or manually de-
fined thresholds. ARTE combines several techniques to identify and reduce 
EEG artifacts, including the wavelet transform, independent component anal-
ysis (ICA), and hierarchical clustering. The quality of the cleaned EEG signals 
was assessed both quantitatively and subjectively by an expert [PAPER II]. 
The performance of ARTE was also compared to that of a state-of-the-art 
method called FORCe. The so-called signal quality index (SQI) (Daly, et al., 
2012), the relative error (RE) (Malik M. Naeem Mannan, et al., 2016), the 
normalized root mean square error (NRMSE), and the mean absolute error 
(MAE) (Betta, et al., 2013) were used in the quantitative evaluation. Three 
separate analyses of variance (ANOVAs) were used to compare ARTE and 
FORCe. For the expert’s evaluation, 210 samples of 60-second segments (70 
segments of raw EEG, 70 segments cleaned using ARTE, and 70 segments 
cleaned with FORCe) were chosen for manual evaluation. The expert scored 
five different parameters for each segment based on visual observation; see 
Table 4.1. Differences between expert ratings for the raw data and the two 
algorithms were tested using five separate Kruskal-Wallis tests. 

The score of the 1st parameter represents the number of channels affected 
by artifacts; for the 2nd parameter and 4th parameter, a score of 0 indicates that 
there are no or minor signs of artifacts in the EEG, whereas a score of 10 
indicates heavy contamination of artifacts within the channel(s). The scores of 
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the 3rd parameter and the 5th parameter were defined as 0 = no effect, 1 = par-
tially affected or 2 = entire segment is affected by artifacts. 

Table 4.1: Parameter and score defined by the expert to evaluate the performance of 
ARTE. 

No Parameter Score 
1 Number of channels affected by artifacts 0-30 
2 How large the artifacts were in the most affected channel 0-10 
3 To which extent the worst channel was affected by artifacts 0-2 
4 Severity of the artifacts across all channels 0-10 
5 To which extent all channels in the segment were affected by artifacts 0-2 
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Figure 4.1: Example showing a 10-second segment from the first 15 raw EEG data 
channels (black) along with the cleaned EEG data after applying ARTE (green).  
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Figure 4.1 and Figure 4.2 show examples of EEG artifact handling by 
ARTE when applied to 10 seconds of typical EEG data recorded while driv-
ing. As show, frontal EEG channels were affected by ocular artifacts, and 
some muscle artifacts or noise occurred in the parietal and central EEG chan-
nels. Both types of artifacts were removed or reduced after applying ARTE. 

Figure 4.2: The remaining 15 channels from Figure 4.1. 

The 30 EEG channels were grouped into four regions (frontal, temporal, 
central, and rear regions) before calculating SQI, RE, NRMSE, and MAE. 
Significant differences in mean SQI were found for the factor Algorithm 
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(¶(I,ßBÉÉ) = 1766.79, O < 0.001). The main difference was found between 
raw and cleaned EEG, but it was also found that the FORCe algorithm pro-
vided lower SQI values than those provided by ARTE. Similar results were 
obtained for the standard deviation of SQI values (¶(I,ßBÉÉ) = 1871.37, O <
0.001). No significant differences were found between ARTE and FORCe in 
terms of NRMSE (¶(B,B≠uÉI) = 0.19, O = 0.66) and MAE (¶(B,B≠uÉI) =
1.78, O = 0.18). A significant difference was found for the confounding fac-
tor Region (NRMSE:	¶(É,B≠uÉI)t63.81, O < 0.001 and 
MAE:¶(É,B≠uÉI)t38.39, O < 0.001) and Frequency band 
(NRMSE:	¶(É,B≠uÉI)t285.4, O < 0.001 and MAE:	¶(É,B≠uÉI)t861.24, O <
0.001). Statistical analyses of the subjective expert ratings showed a signifi-
cant difference for the factor Algorithm (¶(I,Iuß) = 18.36, O < 0.001) for the 
1st parameter; however, there was no difference between ARTE and FORCe, 
only between raw and cleaned EEG data. Similar results were found for the 
2nd parameter (&I(2, Q = 70) = 79.01, O < 0.001) and for the 4th parameter 
(&I(2, Q = 70) = 48.97, O < 0.001). Furthermore, the expert evaluation 
showed that 83% of the raw EEG data were fully affected by artifacts, com-
pared to 37% after applying FORCe and 30% after applying ARTE. The cor-
responding percentages for fully affected segments on all channels were 2%, 
63% and 69% for raw, FORCe and ARTE, respectively. 
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Figure 4.3: Achieved accuracy, sensitivity, and specificity of sleepiness binary classifi-
cation using SVM.  
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The importance of artifact handling in driver monitoring applications was 
demonstrated by adding artifact handling as a pre-processing step in driver 
sleepiness classification [PAPER II]. The sleepiness level was defined as 
alert or sleepy based on subjective self-ratings (alert: KSS≤5, sleepy: KSS≥8). 
The binary classification was carried out using an SVM with a Gaussian ker-
nel, where the parameters C and gamma were set within the range [0.001, 10]. 
The dataset was randomly divided into a training dataset containing 70% of 
the data and a test dataset with the remaining 30% of the data. Three separate 
SVM classifiers were generated, one for the raw EEG, one after applying 
ARTE and one after applying FORCe. Figure 4.3 shows the sleepiness classi-
fication results in terms of accuracy, sensitivity, and specificity on the test 
dataset. Compared to sleepiness classification using raw EEG, classification 
performance improved by 5% after applying ARTE and by 2% after applying 
FORCe. 

In summary, the quantitative measures showed that ARTE is comparable 
to FORCe. The expert evaluation showed that ARTE performed better than 
FORCe in terms of overall artifact handling but that FORCe could remove 
artifacts better from some of the individual channels. Most importantly, ARTE 
resulted in a 5% improvement in classification performance in an actual driver 
monitoring application. This result can be compared to a 2% improvement for 
FORCe. It is also worth mentioning that ARTE does not remove any inde-
pendent components and instead performs artifact handling by wavelet de-
noising and despiking. 

4.2 Sleepiness Classification 
The objective of sleepiness classification was to exploit physiological (EEG 
and EOG) as well as contextual data (extracted from scenario design), and 
KSS was the target value in a supervised machine learning configuration [PA-
PER III]. The time resolution of one KSS rating was once every fifth minute, 
but for feature extraction, each five-minute segment was split into five one-
minute segments. This strategy provided not only a larger dataset but also re-
duced the effects of corrective driving manoeuvres and sensitivity to small 
variations since actions taken by a driver last a few seconds (D. Sandberg, et 
al., 2011). 

Table 4.2: List of features extracted from the data. 

Signal Extracted Features 

EEG Frequency bands: δ(<4 Hz), θ(4-7 Hz), α(8-12 Hz), β(12-30 Hz), γ (31-50 
Hz), and the ratio (9 + 8)/:, 8/:, (9 + 8)/(8 + :), and 9/: 

EOG Blink durations and PERCLOS 
Contextual Sleep/wake predictor (SWP), road condition in the scenario i.e., rural/urban 

road, and light condition in the scenario i.e., daylight/darkness 
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Features extracted from the EEG, EOG, contextual data are listed in Table 
4.2. Details of the feature extraction process can be found in PAPER III. In 
total, features were obtained from 9310 one-minute segments out of 312 
drives, and the feature vector consisted of 275 features: 270 features from 30 
channels EEG, 2 features from EOG and 3 contextual features. The overall 
classification task was divided into two phases: first feature selection and then 
classifier design. The dataset split into training and test datasets, with 70% of 
the observations in the training set and the remaining 30% of the observations 
in the test dataset. 

Three sleepiness levels were defined based on the KSS: alert (KSS 1 – 5), 
somewhat sleepy (6 ≤ KSS ≤ 7) and sleepy (KSS ≥ 8). The motivation for 
creating sleepiness levels is based on the fact that KSS ratings 8 and 9 are 
associated with severe signs of physiological sleepiness and increase the fre-
quency of lane-departure incidents (Reyner & Horne, 1998). Classifiers were 
designed in four ways: 

• Multiclass classification — considering all three groups  
• Binary class with alert and sleepy groups — excluding data of some-

what sleepy group  
• Binary class with SVM prediction-based — redistribution of observa-

tions from the somewhat sleepy group into the alert and sleepy groups, 
and 

• Binary class with fuzzy centroid-based —redistribution of the obser-
vations from the somewhat sleepy group into the alert and sleepy 
groups.  

The creation of binary classifications was motivated by the fact that it might 
be challenging to self-rate this “in-between” state (D. Sandberg, et al., 2011). 
Four classifiers, namely, KNN, SVM, CBR and random forest (RF), were sep-
arately trained using the training dataset. In addition, the first binary class, i.e., 
excluding data for the somewhat sleepy group because of the crisp division 
between the alert and sleepy groups, allowed for better discrimination. How-
ever, in reality, all data need to be considered; therefore, two semi-supervised 
approaches were considered to redistribute the data of the somewhat sleepy 
group into the alert and sleepy groups. 

4.2.1 Feature Selection 
A large number of features were obtained from the EEG signals, many of 
which were recorded from neighbouring electrodes. Hence, we expected that 
these features might overlap and contain irrelevant or duplicate features. Re-
ducing the size of the feature vector could improve the performance of the 
classifier and could be beneficial for understanding the data and gaining 
knowledge about the data generation, i.e., sleepiness. Seven feature selection 
algorithms (BSS/WSS, SFFS, mRMR, BIRS, Relief, LASSO and NCA; see 
section 3.4.2) were applied using the training dataset to obtain a subset of 
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features that were later used in the classifier design phase. Furthermore, the 
training dataset was divided into two sets, with 80% for feature selection and 
20% of the training data as a validation set. 

SWP was the top-ranked feature among five of the seven feature selection 
algorithms, namely, BSS/WSS, SFFS, mRMR, Relief, and BIRS. NCA se-
lected SWP as the second-ranked feature. Light condition was ranked the 
highest by the NCA, but its rank was lower among the other algorithms. Light 
condition was ranked 43rd by BSS/WSS, 4th by SFFS and BIRS, and 28th by 
mRMR. Road condition was ranked much lower than the previous two con-
textual features; road condition was ranked 47th by BSS/WSS and 3rd by NCA, 
and the rest of the algorithms did not include road condition in the feature 
subset. The only exception was LASSO, which did not show sparsity for the 
contextual features (LASSO results for the three contextual features). Features 
selected by BSS/WSS as well as by mRMR and Relief essentially consisted 
of clusters or groups containing similar information. For example, both 
BSS/WSS and Relief included eye closure-related EOG features and 
(9 + 8)/(8 + :) from ten different frontal electrode sites, Fp1, Fp2, Fpz, F3, 
F4, F7, F8, FC1, FC6, and Fz. Similarly, mRMR included (9 + 8)/(8 + :) 
from four different frontal electrode sites, Fp1, Fp2, Fpz, and F3. SFFS also 
selected (9 + 8)/(8 + :) but only from one electrode site, i.e., F4 electrode 
(for details, see PAPER III). 

All of these algorithms were separately wrapped with an SVM to evaluate 
the optimal feature subset using different threshold values. For example, in  

Table 4.3, the optimal feature subset from BSS/WSS was obtained for the 
threshold value of 0.08. The results showed close similarity in classification 
accuracy, sensitivity, and specificity when using all 275 features (threshold 
value 0), when using 57 features (threshold value 0.08) and when using 180 
features (threshold value 0.02). However, decreased classification accuracy, 
sensitivity and specificity were observed when fewer than 57 features were 
selected by BSS/WSS [PAPER III].  

Table 4.3 shows the performance of binary classification (alert versus 
sleepy excluding the somewhat sleepy group) on the validation dataset for 
each of the algorithms with the number of features in each subset. In PAPER 
III, the performance of the BSS/WSS, SFFS, and mRMR algorithms was ex-
amined. Additional analyses of the feature selection performance of the Re-
lief, NCA, BIRS and LASSO algorithms were then performed to explore 
whether other filter, wrapper or embedded methods could identify better fea-
ture subsets that improved the classification performance. NCA showed better 
results than those of SFFS and mRMR; the number of features selected by 
NCA was much greater than that selected by SFFS and mRMR, and a similar 
subset of features matched those selected by BSS/WSS. Compared to the 
SFFS and mRMR methods, BIRS, Relief, and LASSO did not show any im-
provement with respect to the number of features, classification performance 
or similarity in the subset of selected features. 
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Table 4.3: Evaluation of the feature selection algorithms on selected subset of features. 

 BSS/WSS SFFS mRMR BIRS Relief LASSO NCA 
#features 57 10 30 16 46 86 60 
Sensitivity 0.96 0.92 0.86 0.75 0.80 0.69 0.94 
Specificity 0.92 0.91 0.85 0.89 0.90 0.87 0.87 
Accuracy 0.94 0.86 0.90 0.72 0.77 0.67 0.91 

One of the objectives of feature selection was to investigate the importance 
of contextual features in classifying sleepiness. Hence, comparisons were 
made between classifications with and without contextual features. In this ex-
periment, feature subsets were obtained from BSS/WSS with a threshold of 
0.02, which provided the best classification performance with the validation 
set [PAPER III], followed by multiclass and binary classification using SVM. 
The best classification performance is presented in Table 4.4; notably, perfor-
mance increased when contextual features were included, particularly the 
SWP feature. 

Table 4.4: Comparison of SVM evaluation of BSS/WSS feature selection. Results 
show best performance when contextual features were included and excluded. Here, 
In = including contextual features and Out = excluding contextual features; SEN = 
sensitivity, SPE = specificity and ACC = accuracy.  

Criteria Multiclass Binary  
classification 
excluding some-
what sleepy 

Binary  
classification  
SVM predic-
tion-based 

Binary  
classification  
Fuzzy centroid-
based 

In Out In Out In Out In Out 
SEN 0.80 0.76 0.95 0.94 0.93 0.88 0.94 0.92 
SPE 0.85 0.80 0.94 0.91 0.92 0.91 0.94 0.91 
ACC 0.92 0.87 0.95 0.93 0.93 0.85 0.95 0.92 

4.2.2 Classification Scheme and Evaluation of Classifiers  
Evaluation of each classifier for both multiclass and binary classification was 
performed using (a) 10-fold cross-validation and (b) leave-one-out (LOO) val-
idation with one participant left out (except the binary classification excluding 
data of somewhat sleepy group) and (c) leave-one-out (LOO) validation with 
one KSS left out. Ten-fold cross-validation was used when training the models 
on the training dataset containing a subset of features selected using the 
BSS/WSS method. 

Multiclass classification using 10-fold cross-validation on the training da-
taset showed 78% accuracy for KNN, 80% accuracy for SVM, 77% accuracy 
for RF, and 33% accuracy for CBR. Figure 4.4 shows the prediction perfor-
mance with respect to accuracy, sensitivity and specificity using the test da-
taset; in particular, a decrease in performance was observed using LOO 
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validation (one participant out). Detailed results described using a confusion 
matrix can be found in PAPER III.  

Figure 4.4: Performance of multiclass classification using KNN, SVM, CBR, and RF 
on test dataset, validated with both 10-fold cross-validation and LOO validation (leave 
one participant out). 

Binary classification excluding the somewhat sleepy group with 10-fold 
cross-validation on the training dataset obtained a classification accuracy of 
93% for KNN, 94% for SVM, 54% for CBR and 93% for RF. The prediction 
performance on the test dataset is shown in Figure 4.5. It should be noted that 
subject-dependent LOO (i.e., leave one KSS out) validation was performed in 
this classification. Subject-dependent and subject-independent LOO valida-
tion was performed for both redistribution (somewhat sleepy group) strategies, 
which is discussed in subsequent paragraphs. Figure 4.6 shows the corre-
sponding ROC curve of binary classification excluding the somewhat sleepy 
group on the test dataset. 

KNN SVM CBR RF KNN SVM CBR RF

78 78
89

79 79
89

35 34
67

77 77
89

50 50
75

52 52
76

52 52
76

55 54
77

0

10

20

30

40

50

60

70

80

90

100

Accuracy
Sensitivity
Specificity

LOO validation10-fold cross-validation



 48 

Figure 4.5: Performance of binary classification, excluding somewhat sleepy group 
using KNN, SVM, CBR, and RF on test dataset, validated with both 10-fold cross-
validation and LOO validation (leave one KSS out). 

Figure 4.6: ROC curves of KNN, SVM and CBR and RF classifiers on the test dataset, 
where the models were trained using 10-fold cross-validation and LOO (leave one 
KSS out).  
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Binary classification using the training dataset and SVM prediction-based 
redistribution of the somewhat sleepy group achieved classification accuracies 
of 10-fold cross-validation of 92% for KNN, 94% for SVM, 50% for CBR, 
and 91% for RF. Additionally, binary classification using the training dataset 
and fuzzy centroid-based redistribution of the somewhat sleepy group 
achieved classification accuracies of 10-fold cross-validation of 88% for 
KNN, 89% for SVM, 54% for CBR, and 88% for RF. The prediction perfor-
mances of the classifiers for both binary classifications are presented in Table 
4.5, and details can be found in PAPER III. Figure 4.7 shows the correspond-
ing ROC curve of both binary classifications on the test dataset. 

Table 4.5: Performance summary of the classifiers for binary classification, 10-fold 
cross-validation on the test dataset. 

Criteria 
SVM predicted redistribution of 
the “Somewhat Sleepy” Group 

 Fuzzy centroid redistribution of 
the “Somewhat Sleepy” Group 

KNN SVM CBR RF  KNN SVM CBR RF 
TP  1400 1389 823 1379  1549 1533 1281 1529 
FP 91 102 668 112  119 135 387 139 
FN 138 82 705 143  217 177 859 206 
TN 1164 1220 597 1159  908 948 266 919 
Sensitivity 0.91 0.94 0.54 0.91  0.88 0.90 0.60 0.87 
Specificity 0.93 0.92 0.47 0.91  0.88 0.88 0.41 0.88 
Accuracy 0.92 0.93 0.51 0.91  0.88 0.89 0.55 0.88 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
False positive rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Tr
ue

 p
os

iti
ve

 ra
te

KNN using SVM predicted redistribution, AUC 0.97
SVM using SVM predicted redistribution, AUC 0.98
CBR using SVM predicted redistribution, AUC 0.53
RF using SVM predicted redistribution, AUC 0.97
KNN using fuzzy centroid redistribution, AUC 0.95
SVM using fuzzy centroid redistribution, AUC 0.95
CBR using fuzzy centroid redistribution, AUC 0.55
RF using fuzzy centroid redistribution, AUC 0.94

Figure 4.7: ROC curves for KNN, SVM, CBR, and RF classifiers on the test dataset, 
where the models were trained using 10-fold cross-validation. 
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Similarly, prediction performance was measured by evaluating the classi-
fiers using LOO validation with one participant left out.  

Table 4.6 shows the prediction performance of the four classifiers after 
SVM prediction-based redistribution of the somewhat sleepy group and the 
prediction performance of the four classifiers after fuzzy centroid-based redis-
tribution of the somewhat sleepy group. Details can be found in PAPER III. 
Figure 4.8 shows the corresponding ROC curve of binary classification for 
SVM-based and fuzzy centroid-based redistribution of the somewhat sleepy 
group on the test dataset. 

Table 4.6: Performance summary of the classifiers for binary classification, LOO val-
idation (leave one participant out) on the test dataset. 

Criteria 
SVM predicted redistribution 
of “Somewhat Sleepy” Group 

 Fuzzy centroid redistribution of 
“Somewhat Sleepy” Group 

KNN SVM CBR RF  KNN SVM CBR RF 
TP  2163 1878 2076 2073  4020 3667 4373 3855 
FP 1337 1622 1424 1427  1420 1773 1067 1585 
FN 1524 1063 1021 1157  1585 1067 1198 1244 
TN 4286 4747 4789 4653  2285 2803 2672 2626 
Sensitivity 0.59 0.64 0.67 0.64  0.72 0.77 0.78 0.76 
Specificity 0.76 0.75 0.77 0.77  0.62 0.61 0.71 0.62 
Accuracy 0.69 0.71 0.74 0.72  0.74 0.69 0.76 0.70 
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Figure 4.8: ROC curves for KNN, SVM, CBR, and RF classifiers, where models were 
evaluated using leave-one-out validation with leave one participant out. 
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Finally, subject-dependent LOO evaluation with one KSS left out showed 
improved classification performance by including individuals’ observation in 
the training dataset. As shown in Table 4.7 (details in PAPER III), the clas-
sification accuracy increased by up to 10% in subject-dependent classification 
compared to subject-independent classification. 

Table 4.7: Performance summary of the classifiers for binary classification consider-
ing participant dependent observations, i.e., LOO with leave one KSS out. 

Criteria 
SVM predicted redistribution 
of “Somewhat Sleepy” Group 

 Fuzzy centroid redistribution of 
“Somewhat Sleepy” Group 

KNN SVM CBR RF  KNN SVM CBR RF 
Sensitivity 0.73 0.76 0.80 0.77  0.79 0.82 0.85 0.81 
Specificity 0.84 0.84 0.84 0.86  0.69 0.70 0.81 0.71 

Accuracy 0.80 0.81 0.82 0.83  0.75 0.77 0.83 0.77 

In summary, the feature selection process showed that it might be beneficial to 
consider certain overlapping features when addressing noisy and imbalance data as 
with BSS/WSS. Second, contextual features, particularly SWP, were found to be the 
most influential for improving classification performance. Adding contextual infor-
mation improved multiclass classification accuracy by 4% and by 5%, as indicated by 
the binary classification results. Third, the effect of individual differences was also 
investigated, showing a 10% increase in accuracy when data from the individual being 
evaluated were included in the training dataset. Fourth, SVM was the most stable 
among the four classifiers, demonstrating 79% accuracy for multiclass classification 
and 93% accuracy for binary classification. 

4.3 Cognitive Load Classification 
The objective of cognitive load classification was to distinguish driving events 
with cognitive loading tasks from normal driving events. Each scenario had a 
duration of 60 seconds, and the first 10 seconds of data were discarded because 
the driver state might not have been stable. Hence, 50 seconds of each scenario 
recording was used for feature extraction. Various features were obtained 
from the physiological signals and the vehicular data. Table 4.8 lists features 
extracted from the signals. For the interested reader, references to each of fea-
ture can be found in the chapter detailing the background and related work. In 
total, the feature matrix consisted of 721 observations, 306 from the baseline 
or no-task condition, 237 from the 1-back task, and 178 from the 2-back task. 

For the cognitive load classification, data from both test series were com-
bined, and the binary classification was defined based on whether drivers per-
formed a cognitive loading task such that the task was assigned to the task 
group or baseline group. However, in PAPER IV, data from the first test se-
ries were used, and later, cognitive load classification was extended using data 
from both test series. The baseline group consisted of driving alone or no task 
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events, and the task group contained data from both the 1-back and 2-back 
tasks. 

Table 4.8: List of features extracted from each of the signal. 

Signal Extracted Features 

EEG Frequency bands: δ(<4 Hz), θ(4-7 Hz), α(8-12 Hz), β(12-30 Hz), γ (31-50 
Hz), and the ratio (9 + 8)/:, 8/:, (9 + 8)/(8 + :), and 9/: 

EOG start position of blink, blink duration calculated from the start position of 
blink to the end value of blink, lid closure speed, PCV (peak closing velocity), 
delay of eye lid reopening, duration at 80%, PERCLOS, blink rate, blink 
count 

ECG Time: Mean heart rate (meanHR), standard deviation of heart rate (SDHR), 
standard deviations of normal to normal RR intervals (SDNN), Root mean 
square of successive differences between adjacent NN intervals (RMSSD), 
number of pairs of successive NN intervals which more than 50 ms (NN50), 
Percentage of NN50 (pNN50) 
Frequency: Low frequency power (LF) (0.04–0.15Hz), High frequency 
power (HF) (0.15–0.4Hz), total power, LF/HF ratio 
Non-linear: Alpha value of detrended fluctuation analysis (dfaAlpha), Sam-
ple entropy (SampEn), Approximate entropy (ApEn) and Permutation en-
tropy (PeEn) 

GSR Time: Number of peaks, the amplitude of the peaks (maxima - minima), du-
ration of the rise time of each peak, index of the detected peaks in the GSR 
signal, Mean value, Standard deviation, first quartile value, third quartile 
value, slope value between peak and valley.  
Frequency: Average power of the signal under 1Hz 

Respiration Time: Mean value, Standard deviation, kurtosis 
Frequency: power spectra power between the frequency ranges [0, 0.1], [0.1, 
0.2], [0.2, 0.3], [0.3, 0.4], [0.4, 0.7], and [0.7, 1] 

Vehicular 
data 

Standard deviation of lateral position, Mean squared error of lateral position 
Standard deviation of steering wheel angle, steering wheel entropy, steering 
wheel reversal rate, high frequency component (0.3 Hz), number of zero 
crossings. 
Lanex or fraction of lane exit from lane departure. 
Standard deviation of lateral speed, yaw and yaw rate. 

Similarly to the sleepiness classification, the dataset was split into training 
and test datasets, with 70% of the observations in the training set and the re-
maining 30% of the observations in the test dataset. Combining the two test 
series data and the baseline and task group resulted in an imbalanced dataset 
(the number of observations in the task group was greater than that in the base-
line group); therefore, balanced accuracy (BACC) was estimated to measure 
the classification performance in addition to the sensitivity, specificity, and 
accuracy. 
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4.3.1 Feature Selection 
EEG feature selection: The same EEG features described in the sleepiness 
classification were extracted for cognitive load classification from the EEG 
signals. The goal was to identify the intra-feature relationships and select the 
best feature subset. The SFFS algorithm was used in conjunction with SVM 
to obtain the best feature subset. Five-fold cross-validation was used to eval-
uate the SVM classification. The best classification accuracy obtained using 
SFFS was 66%, with 11 features consisting of 9/:, 8/:, (9 + 8)/:, 9, :, 
and 8 features from seven frontal channels, namely, FP1, FP2, F7, F4, FPz, 
FC2, and FC5. The accuracy, sensitivity, specificity, and classification score 
(scr) are shown in Figure 4.9. Scr measures the trade-off between sensitivity 

and specificity, defined as 2∞é±ö
≤.≥¥µ
ó

û.∞é±ö
≤.≥∂¥
ó

û (Mekyska, et al., 2015). 
 

Figure 4.9: EEG feature selection using SFFS on the training dataset, validated using 
5-fold cross-validation. 
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mean-decrease accuracy approach, the importance of each feature value is per-
muted, and the corresponding decrease in the accuracy of the model is meas-
ured. Unimportant features should not have a strong effect on the model accu-
racy, but important features should significantly decrease the model accuracy. 
The features selected from each signal are listed in Table 4.9. 

Table 4.9: List of selected features from each of the signal. 

Data #Features Features 

EEG 11 
FP1 –	:, FP2 – 9, (9 + 8)/(8 + :) 
FP2 – 9, (9 + 8)/(8 + :) 
FPz – :, 9/:, (9 + 8)/: 
F4 – 9 
F7 – 9 
FC2 –  9/:, 8/:  

EOG 5 
start position of blink, blink duration calculated from the start 
position of blink to the end value of blink, PERCLOS, blink 
rate, blink count 

ECG 9 
Time: SDHR, SDNN, NN50, pNN50 
Frequency: LF, HF, LF/HF ratio 
Non-linear: dfaAlpha, SampEn, 

GSR 4 
Time: The amplitude of the peaks, duration of the rise time of 
each peak, Mean value  
Frequency: Average power of the signal under 1Hz 

Respiration 7 
Time: Mean value, Standard deviation, kurtosis 
Frequency: power spectra power between the frequency 
ranges [0, 0.1], [0.2, 0.3], [0.4, 0.7], and [0.7, 1] 

Vehicular 
data 

6 
Standard deviation of lateral speed. 
Standard deviation of lateral speed yaw.  
Steering wheel entropy, high frequency component (0.3 Hz), 
and number of zero crossings. 
Lanex or fraction of lane exit from lane departure. 

Scenario 1 Categorial feature to represent HE, CR, and SW scenarios 

4.3.2 Classification Scheme and Evaluation of Classifiers 
This section addresses three types of cognitive load classification: 

(1) Classification based on different data sources, i.e., cerebral (EEG), 
non-cerebral physiological signals (ECG, GSR, and respiration) and 
vehicular data; 

(2) Classification based on the effects of scenarios on cognitive load clas-
sification; 

(3) Classification based on the combination of features from all signals. 
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In all four experiments, KNN, SVM, and RF classifiers were used and eval-
uated with 5-fold cross-validation to distinguish between the baseline and task 
groups. The motivation for these experiments was to investigate whether per-
formance improves with feature-level fusion relative to that of the grouped 
data sources, i.e., cerebral activity, non-cerebral physiological signal and ve-
hicular data. 

1) Classification based on data sources:  In this section addresses three 
cognitive load classifications:  
• Classification using features from EEG signals (i.e., cerebral sig-

nals).  
• Classification using features from ECG, GSR, and respiration sig-

nals (i.e., non-cerebral physiological signals). 
• Classification using features from vehicular data 

Cognitive load classification using EEG signals was carried out using the 
best subset of features obtained by applying the SFFS algorithm. The training 
dataset classification accuracy was 58% for KNN and SVM and 61% for RF. 
Using non-cerebral physiological signals, the classification accuracies for 
KNN, SVM, and RF were 69%, 71%, and 72%, respectively, on the training 
dataset with 5-fold cross-validation. Using the features from vehicular data, 
the classification accuracies were 58% for KNN and SVM and 56% for RF on 
the training dataset with 5-fold cross-validation. Table 4.10 presents the pre-
diction performance results of KNN, SVM and RF on the test dataset for cog-
nitive load classification using EEG features; features obtained from ECG, 
GSR, and respiration signals; and features obtained from vehicular data. 

Table 4.10: Classification summary of KNN, SVM, and RF classifiers on test dataset 
when using EEG feature.   

 EEG  ECG, GSR,  
respiration 

 Vehicular 

 KNN SVM RF  KNN SVM RF  KNN SVM RF 
Sensitivity 0.59 0.60 0.67  0.73 0.76 0.75  0.57 0.57 0.58 
Specificity 0.47 0.46 0.60  0.72 0.70 0.69  0.43 0.00 0.43 
Accuracy 0.57 0.56 0.65  0.73 0.73 0.73  0.55 0.57 0.53 
BACC 0.52 0.53 0.62  0.71 0.72 0.72  0.50 0.50 0.51 

2) Effects of scenarios on cognitive load classification: Two experiments 
were conducted to investigate the effect of scenarios on cognitive load classi-
fication. The first experiment used data from the first test series (only data 
from the first test series was available at that time) (see section 3.2), using 270 
features obtained from the 30 EEG channels [PAPER IV]. The dataset used 
in this experiment contained data from 33 participants, who performed the 1-
back task and only driving in the test scenario during data collection. The clas-
sification task was performed for each scenario and by considering data from 



 56 

Figure 4.10: Classification performance of scenario wise binary classification on the 
test dataset. 

a combination of scenarios. Each scenario consisted of 132 observations, and 
there were 264 observations in the hidden exit and cross scenarios combined; 
the dataset with all scenarios consisted of 396 observations. Table 4.11 sum-
marises the results for each evaluation. 

Table 4.11: CBR Classification summary for individual and mixed scenarios. 

Scenario Sensitivity Specificity Accuracy 
Crossing (CR) 0.74 0.70 0.72 
Hidden Exit (HE) 0.71 0.86 0.76 
Side Wind (SW) 0.70 0.75 0.72 
CR+HE 0.76 0.80 0.78 
CR+HE+SW 0.72 0.71 0.72 

Data from both test series were then used to inspect whether there was any 
effect of the scenarios on classification performance. Scenario-wise binary 
classification was carried out using the best selected subset of features pre-
sented in Table 4.9 (except the categorical features based on scenarios). Figure 
4.10 shows the performance of binary classification for each scenario on the 
test dataset. For the HE scenario, BAcc(s) were 73%, 65%, and 64% for KNN, 
SVM, and RF, respectively; in the CR scenario, BAcc(s) were 64% for KNN, 
68% for SVM, and 63% for RF; in the SW scenario, BAcc(s) were 72% for 
KNN, 64% for SVM, and 72% for RF. 
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3) Combination of all features: The results of the cognitive load classifica-
tion based on data sources showed similar performance when using features 
from EEG signals and features from vehicular data. Comparatively, cognitive 
load classification using features from non-cerebral signals showed better per-
formance. Additionally, variation in classification performance was observed 
in the scenario-wise classification. Hence, the additional categorical feature 
based on scenarios was included in the best subset of features, as presented in 
Table 4.9. 

Binary classifications were carried out using KNN, SVM, and RF with a 
combination of features. On the training dataset, classification accuracies of 
5-fold cross validation were 67% for KNN, 72% for SVM, and 75% for RF. 
The prediction performance of KNN, SVM, and RF on the test dataset is pre-
sented in Table 4.12. 

Table 4.12: Classification summary of KNN, SVM, RF on test dataset. 

Criteria  KNN SVM RF 
Task group (P)  126 126 126 
Baseline group (N)  89 89 89 
TP   116 104 107 
FP  10 22 19 
FN  47 43 36 
TN  42 46 53 
Sensitivity  0.71 0.71 0.75 
Specificity  0.81 0.68 0.74 
Accuracy  0.73 0.70 0.74 
BACC  0.70 0.67 0.72 

Finally, a multiclass classification was performed with KNN, SVM, and 
RF to investigate how each class contributed to the classification. On the train-
ing dataset using 5-fold cross-validation, the classification accuracies 
achieved were 53% for KNN, 59% for SVM and RF. Table 4.13 shows the 
detailed results pertaining to the prediction performance of KNN, SVM, and 
RF using the test dataset. 

Table 4.13: Classification summary of multiclass classification for the KNN, SVM, 
and RF on test dataset. Where classes are Baseline (BL)= no-task, 1-back and 2-back 
task. SEN = Sensitivity, SPE = Specificity, PRE = Precision, and ACC = Accuracy. 

Criteria KNN SVM RF 
BL 1-back 2-back BL 1-back 2-back BL 1-back 2-back 

TP 60 39 21 66 39 25 70 36 32 
FP 32 31 32 26 31 28 22 34 21 
FN 37 37 21 38 25 22 37 23 17 
TN 86 108 141 85 120 140 86 122 145 
SEN 0.62 0.51 0.50 0.63 0.61 0.53 0.65 0.61 0.65 
SPE 0.73 0.78 0.82 0.77 0.79 0.83 0.80 0.78 0.87 
PRE 0.65 0.56 0.40 0.72 0.56 0.47 0.76 0.51 0.60 
BACC 0.68 0.65 0.63 0.70 0.69 0.67 0.73 0.68 0.75 
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To summarise, cognitive load classification was carried out considering 
data sources, scenarios, and feature fusion or a combination of features from 
all data sources. Feature selection was performed to obtain the best subset of 
features from the EEG signals using the SFFS algorithm, and the best feature 
subset was then selected from the combination of all features. The SFFS could 
find the best subset of features; however, the classification accuracy was poor 
using only EEG features. Combining features from multivariate data showed 
a 10% improvement in classification performance compared to using features 
from EEG signals and a 20% improvement compared to using features vehic-
ular data. Cognitive load classification using non-cerebral data showed better 
performance than any other binary classification method. The multiclass clas-
sification results show that classifiers could better classify the no-task events 
than they could classify 1-back and 2-back task events. 

4.4 Stress Classification 
For the analysis, the dataset containing measurements of wheel loader opera-
tor was divided into two groups according to the experiment, i.e., (1) PSP da-
taset and (2) training (“adapt”) and testing (“sharp”). An expert, i.e., a clini-
cian, annotated the PSP data as either stressed or healthy; however, the expert 
did not classify the data obtained from the training and testing sessions. Hence, 
the data obtained from training and testing sessions were annotated as adapt 
and sharp according to the corresponding sessions. Case-based reasoning was 
used to classify the stressed and healthy classes and then the adapt and sharp 
classes. The classification task was performed using the features obtained by 
applying data fusion, i.e., the MMSE algorithm, and using features extracted 
from individual signals. To carry out the data analysis, the results from the 
MMSE analysis were investigated; the evaluation was then performed on the 
MMSE-CBR classification. Furthermore, decision-level fusion was per-
formed using the outcomes from MMSE-CBR classification and the outcomes 
from CBR classification on individual signals. Table 4.14 presents the list of 
features extracted from the signals. Majority voting and weighted average 
similarity approaches were considered for decision-level fusion. Finally, clas-
sification performance was evaluated using leave-one-out validation. 

Table 4.14: List of features extracted from each of the signal and data fusion. 

Data Extracted Features 

HRV Time: Mean heart rate, standard deviation of heart rate, standard deviations 
of normal to normal RR intervals (SDNN), Root mean square of successive 
differences between adjacent NN intervals (RMSSD), number of pairs of 
successive NN intervals which more than 50 ms (NN50), Percentage of 
NN50 (pNN50) 
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Frequency: Low frequency power (0.04–0.15Hz), High frequency power 
(0.15–0.4Hz), total power, LF/HF ratio 

Finger  
Tempera-
ture 

Time: start value, end value, maximum amplitude, minimum amplitude, 
slope value between peak and valley, the amplitude of the peaks (maxima - 
minima) 

Respiration 
Rate 

Time: Mean value, Standard deviation, kurtosis 
Frequency: power spectra power between the frequency ranges [0, 0.1], 
[0.1, 0.2], [0.2, 0.3], [0.3, 0.4], [0.4, 0.7], and [0.7, 1] 

Skin  
Conduct-
ance 

Time: Number of peaks, the amplitude of the peaks (maxima - minima), start 
value, end value, maximum amplitude, minimum amplitude, slope value be-
tween peak and valley  

Data Fusion   MMSE scale 1—10 considering HR, HRV, RR, FT, SC 

4.4.1 Evaluation Using the PSP Dataset 
In this experiment, the MMSE complexity was computed up to a scale factor 
10 [PAPER V]. The MMSE algorithm involves a multi-scale analysis of mul-
tivariate data, which returns a vector based on the scale factor. The scale factor 
depends on the number of data points and MMSE estimates consistent for a 
data length - ≥ 300 (Ahmed & Mandic, 2012). As mentioned in Chapter 4, 
the PSP dataset contained data from 18 participants, among which the expert 
indicated 7 as healthy and 11 as stressed. 

 

Figure 4.11: MMSE analysis results for the 18 cases, and it can be seen that MMSE 
varies a lot depending on individuals. 

According to Costa, et al. (2005), loss of complexity is noticeable in path-
ologic systems. The MMSE analyses of 18 individual cases were estimated, 
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and the average MMSE of the healthy cases and the average MMSE of the 
stressed cases were then analysed. The results revealed that the MMSE varied 
among the individuals; see Figure 4.11. The average of the stressed group in-
dicated lower complexity than the healthy group, as shown in Figure 4.12 (a). 

The MMSE-CBR explored classification performance in terms of accu-
racy, sensitivity, and specificity. Table 4.15 summarises the results. The clas-
sification accuracies were 83.33% for MMSE and individual signals, except 
for the features obtained from skin conductance. 

Table 4.15: Healthy and Stressed classification using CBR and data fusion features 
i.e., MMSE, and using CBR and individual signals. Here, HRV = Heart Rate Varia-
bility, FT = Finger Temperature, RR = Respiration Rate and SC = Skin Conductance.  

 MMSE HRV FT RR SC 
TP 11 11 10 9 11 
FP 3 3 2 1 4 
FN 0 0 1 2 0 
TN 4 4 5 6 3 
Sensitivity 1.0 1.0 0.91 0.82 1.0 
Specificity 0.57 0.57 0.71 0.86 0.43 
Accuracy 0.83 0.83 0.83 0.83 0.77 

Decision-level fusion based on majority voting achieved 77% accuracy, 
72% sensitivity, and 86% specificity. The weighted-average based decision 
fusion achieved 78% accuracy, 100% sensitivity 100%, and 43% specificity. 

 
(a) (b) 

Figure 4.12: Group wise average MMSE with standard error (a) Healthy and Stressed 
group, (b) Adapt and sharp group. Both figures show lower MMSE when task was 
more demanding. The error bar represents standard error. 

4.4.2 Evaluation Using Wheel Loader Manoeuvring Dataset  
This experiment was similar to that described previously, and the dataset con-
sisted of 18 adapt and 18 sharp cases. The MMSE analysis showed similar 
results, i.e., individual variations in the adapt and sharp conditions. The 
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average MMSE of the adapt condition was higher than that of the sharp con-
dition, as shown in Figure 4.12 (b). This discrepancy suggests that sharp or 
live test driving might be more demanding than adapt or self-training driving. 
CBR classification was performed to see how well the algorithm could clas-
sify the dataset as the recording, i.e., adapt and sharp using MMSE values and 
features extracted from individual signals. Table 4.16 shows that the best ac-
curacy obtained was 83% using the MMSE features rather than the individual 
signals. The decision fusion considering majority voting achieved a classifi-
cation accuracy of 72%, 67% sensitivity and 78% specificity. Finally, decision 
fusion with the weighted average method achieved 72% classification accu-
racy, 89% sensitivity, and 56% specificity. 

Table 4.16: Adapt and sharp classification using CBR and data fusion features i.e., 
MMSE, and using CBR and individual signals. Here, HRV = Heart Rate Variability, 
FT = Finger Temperature, RR = Respiration Rate and SC = Skin Conductance. 

 MMSE HRV FT RR SC 
TP 14 14 16 12 15 
FP 1 4 8 5 9 
FN 4 4 2 6 3 
TN 17 14 10 13 9 
Sensitivity 0.78 0.78 0.89 0.67 0.83 
Specificity 0.94 0.78 0.56 0.72 0.50 
Accuracy 0.83 0.78 0.72 0.69 0.67 

In summary, the classification performance of the proposed data fusion 
method, i.e., the MMSE-CBR approach [PAPER V], is as good as HRV and 
FT and better than other single source parameters. Single source measure-
ments require classification from each source, and the results can also vary 
between them. The proposed fusion-based approach can be an alternative in 
cases in which signals are derived from multiple sources and expert classifi-
cation is not available for each type of data source. Furthermore, the method 
described here may yield substantial benefits when applied for decision sup-
port in such a domain for monitoring operators and can provide a reasonable 
means for sensor signal fusion in other health care domains. 
 
 
 
 
 
 
 
 
 



 62 

 



 63 

Chapter 5  

Summary of the Included Papers 
 
This chapter presents a summary of the included papers, author’s contri-
butions and the significant findings are also presented here. 

 
This thesis is based on a collection of papers. Papers I and II address RQ1, 
and the remaining four papers address RQ2, including the sub-questions 
RQ2.1 and RQ2.2. Paper III presents the work on driver sleepiness classifi-
cation, Paper IV presents the work on driver cognitive load classification, and 
Paper V presents the contribution on driver stress classification. 

5.1 Paper I 
Title: A Review on Machine Learning Algorithms in Handling EEG Artifacts 

In the proceeding of the Swedish AI Society (SAIS) Workshop, Stockholm, 
Sweden 

Author(s): Shaibal Barua, Shahina Begum 
 

Author’s contribution: Shaibal Barua is the main author of the paper. He 
planned and conducted the literature review alone, and wrote the discussion 
and summary sections in collaboration with the co-author. 
 
Objective: The aim of this paper was to review the literature and summarize 
the state-of-the-art in EEG artifacts handling. 
 
Summary: This paper presents a review of machine learning algorithms ap-
plied to EEG artifact handling (i.e., artifact identification and removal). Brain 
wave signals obtained by electroencephalography (EEG) recording are an es-
sential aspect of medical, health and brain-computer interface (BCI) research. 
An EEG is considered nonstationary and non-linear and is usually contami-
nated by non-cerebral signals. In EEG signals, the unwanted non-cerebral sig-
nals are referred to as artifacts. Due to the nature of EEG signals, noise and 
artifacts can contaminate the recorded EEG signals, which can lead to severe 
misinterpretations during EEG signal analysis. In this review, only articles 
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reported between 2007 and 2014 were collected and analysed. The collected 
works were surveyed to identify the sources and types of artifacts, and to col-
lect both automated and traditional artifact identification and removal meth-
ods. This review also summarizes the machine learning algorithms and ap-
proaches used for EEG artifact handling. The survey found that a large number 
of automatic and semi-automatic methods are available for EEG artifact re-
moval, and it provides an analysis of these methods based on their perfor-
mances.  
 
Results: Independent component analysis (ICA) was found to be the most 
common method for EEG signal analysis and identifying EEG artifacts; how-
ever, ICA requires expert observation to identify artifacts in the EEG signal. 
Two approaches were identified for artifact identification using ICA: a) 
threshold based and b) machine learning based. The machine learning ap-
proach eases the artifact identification process, where ICA components were 
classified based on spectral and topographical characteristics. Several ma-
chine learning algorithms, such as support vector machines, artificial neural 
networks, fuzzy inference systems, clustering, k-nearest neighbours, genetic 
algorithms, etc. The survey suggested focusing on hybrid approaches, i.e., us-
ing several machine learning algorithms to identify different types of artifacts 
in the EEG signals. 

5.2 Paper II 
Title: Automated EEG Artifact Handling with Application in Driver Monitor-
ing 

IEEE Journal of Biomedical and Health Informatics, 22(5):1350–1361, doi: 
10.1109/JBHI.2017.2773999 

Author(s): Shaibal Barua, Mobyen Uddin Ahmed, Christer Ahlstrom, 
Shahina Begum, and Peter Funk 

Author’s contribution: Shaibal Barua is the primary author of the paper. 
Shaibal developed the proposed idea and method and was responsible for writ-
ing the manuscript except for the data collection section. Other co-authors 
contributed by discussing the idea, reviewing and making necessary changes 
to improve the paper.  
 
Objective: The aim of this paper was to develop an EEG artifact handling 
algorithm for cleaning the EEG signals recorded in an automotive setting. 
 
Summary: In this paper, an automated EEG artifact handling method, named 
ARTE (Automated aRTifacts handling in EEG), was proposed as a pre-pro-
cessing step in a driver monitoring application. Automated analyses of 
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electroencephalographic (EEG) signals acquired in naturalistic environments 
are becoming increasingly important in areas such as brain-computer inter-
faces and behaviour science. EEG signals acquired in driving were such an 
application, where ocular and muscle artifacts heavily contaminated the EEG 
database. The artifacts occurred as a natural consequence of performing sev-
eral driving activities such constantly monitoring the environment, which 
gives rise to eye movements and eye blinks. Muscle artifacts could result be-
cause of leaning against the head rest, looking over the shoulder, stretching, 
slumping, etc. The proposed ARTE comprised signal decomposition, artifact 
identification, and artifact handling. EEG signals were decomposed using 
Wavelet transform and Independent Component Analysis (ICA). In the arti-
fact identification phase, we used hierarchical clustering based on a large se-
lection of features, targeting both physiological and nonbiological artifacts. 
The artifact handling process consisted of two steps: wavelet despiking and 
wavelet denoising. To handle artifacts, ARTE was applied to driver sleepiness 
(see Section 3.1). The algorithm was evaluated both quantitatively (signal 
quality index, mean square error, relative error and mean absolute error) and 
quantitatively by a clinical neurophysiologist. ARTE's usefulness was demon-
strated as a pre-processing step in driver monitoring, exemplified by driver 
sleepiness classification. Furthermore, the paper presents a comparison be-
tween the performance of ARTE and a state-of-the-art algorithm called 
FORCe. 
 
Results: ARTE and FORCe were comparable regarding their quantitative and 
expert evaluations. The classification accuracy increased by 5% when using 
ARTE as a pre-processing step in driver sleepiness classification compared to 
using raw EEG recordings; however, the classification accuracy increased by 
2% when using FORCe in the pre-processing stage. The advantage of ARTE 
is that it does not rely on additional reference signals or manual thresholds. 
ARTE is an EEG-data-driven algorithm which makes it well suited for use in 
dynamic settings where unforeseen and rare artifacts are commonly encoun-
tered. 

5.3 Paper III 
Title: Automatic Driver Sleepiness Detection using EEG, EOG and Contex-
tual Information 

Expert Systems with Applications, 115 (January 2019):121–135, 
https://doi.org/10.1016/j.eswa.2018.07.054 

Author(s): Shaibal Barua, Mobyen Uddin Ahmed, Christer Ahlstrom, 
Shahina Begum 
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Author’s contribution: Shaibal Barua is the main author of the paper. Shai-
bal developed the proposed idea and method and was responsible for writing 
the manuscript except for the data collection section. Other co-authors con-
tributed by discussing the idea, reviewing and making necessary changes for 
the improvement of the paper. 
 
Objective: The aim of this paper was investigating if driver sleepiness classi-
fication performance improves when taking contextual information into ac-
count. 
 
Summary: Falling asleep behind the wheel is a common cause of car crashes 
that has become a major concern for traffic safety because driver sleepiness is 
a crucial contributing factor to vehicle crashes and traffic injuries. This paper 
proposed an automated driver sleepiness detection approach. The driver sleep-
iness dataset (see Section 3.1) used in this work contained data from 30 par-
ticipants who repeatedly drove in a high-fidelity driving simulator, both in 
alert and in sleep-deprived conditions. The subjective Karolinska sleepiness 
scale (KSS) was used as the target value. Two sources of data, i.e., physiolog-
ical signals consisting of electroencephalography (EEG) and electrooculog-
raphy (EOG), and contextual information, including the sleepiness predictor 
model (SWP) and driving environment condition (road and available light), 
were used as sleepiness indicators. The sleepiness levels were classified sep-
arately using four classifiers: a) k-nearest neighbour, b) support vector ma-
chine c) case-based reasoning and d) random forest, and the results were eval-
uated and compared. Feature selection, in which various features were ex-
tracted from the data mentioned above, was an essential part of this work. We 
examined the results of the BSS/WSS, SFFS, and mRMR feature selection 
algorithms. Three sleepiness levels, i.e., alert, somewhat sleepy and sleepy, 
were considered for multiclass classification, while binary classification was 
performed considering only alert or sleepy driver states. The evaluation crite-
ria used were 10-fold cross-validation and leave-one-out validation. 
 
Results: All three feature selection algorithms showed EEG features clustered 
around the adjacent or symmetric electrode sites. We found that restricting the 
feature set to a minimal number of EEG features can be error-prone. Among 
the classifiers, the SVM obtained the most consistent accuracy, sensitivity, 
and specificity scores. Two critical aspects were found to be of interest: (a) 
the effect of individual differences (i.e., the classification accuracy increased 
by up to 10% when data from the individual was included in the training da-
taset) and (b) embedding contextual information improved the classification 
accuracy by 4% in multiclass and 5% in binary classifications. 
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5.4 Paper IV 
Title: Classifying drivers’ cognitive load using EEG signals 

Studies in Health Technology and Informatics, 237(pHealth2017):99-106, 
DOI 10.3233/978-1-61499-761-0-99 

Author(s):  Shaibal Barua, Mobyen Uddin Ahmed, Shahina Begum 

Author’s contribution: Shaibal Barua is the main author of the paper. Shai-
bal developed the proposed idea and method and was responsible for writing 
the manuscript. Other co-authors contributed by discussing the idea, review-
ing and suggesting improvements to the paper. 
 
Objective: The aim of this paper was to classify drivers’ cognitive load con-
sidering in three different driving scenarios using EEG data.  
 
Summary: One debatable issue in traffic safety research is that cognitively 
loading by secondary tasks reduces primary task performance (i.e., driving). 
An EEG is one available way to measure cognitive load and EEG signal anal-
ysis can detect changes in instantaneous load and the effects of cognitively 
loading secondary tasks. The cognitive load dataset (see Section 3.2) used in 
this work was acquired to understand the effect of cognitive load on traffic 
safety and included data collected from 33 subjects in a high-fidelity moving-
base driving simulator. The study adopted a version of the n-back task as a 
cognitively loading secondary task; the drivers drove in three different simu-
lated driving scenarios, namely, hidden exit, crossing, and side wind. In this 
paper, CBR was used to classify a driver’s level of cognitive load using the 
acquired EEG signals. Both time and frequency domain features were ex-
tracted from the EEG signals. 
 
Results: The results showed that CBR-based classification achieved approxi-
mately 70% accuracy. The best classification accuracy was obtained for the 
hidden exit scenario, and the lowest accuracy was obtained for the side wind 
scenario. The assumption was that visual cues in the hidden exit and the car 
approaching in the crossing scenario might have more influence on the drivers 
than did the side wind scenario. The combination of time and frequency do-
main features reduced the overall accuracy. Combining time and frequency 
features constructed a high dimensional feature vector, which might lead to 
the ‘curse-of-dimensionality' trap because the dimensionality of the feature 
vector was much higher than the total observations. 
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5.5 Paper V 
Title: Classification of physiological signals for wheel loader operators using 
Multi-scale Entropy analysis and case-based reasoning 

Expert Systems with Applications, 41(2):295–305, ISSN 0957-4174 
 
Author(s): Shahina Begum, Shaibal Barua, Reno Filla, Mobyen Uddin Ah-
med 

Author’s contribution: Shaibal Barua was one of the co-authors of the paper. 
His contribution includes data processing, features extraction, performing the 
experiments and developing the prototypal system and its functionality. He 
also contributed writing in the chapters: Background, Method, Evaluation, Ex-
perimental results, and Discussions. 

Objective: The aim of this paper was classifying the stressed and healthy 
group of wheel loader operators using data level fusion. Also, to see if the data 
level fusion able to classify annotated data based on the study design. 
 
Summary: This paper presented a data level fusion for physiological signals 
using Multivariate Multiscale Entropy Analysis (MMSE). The MMSE algo-
rithm supports complexity analysis of multivariate biological recordings by 
aggregating several sensor measurements, i.e., the inter-beat interval (IBI) and 
heart rate (HR) from electrocardiograms (ECG), finger temperature (FT), skin 
conductance (SC) and respiration rate (RR). In the literature, a loss of com-
plexity is observed due to the degraded signal information across a broad class 
of diseases or pathological conditions. In other words, the complexity of 
healthy systems is greater than the complexity of pathologic systems. In this 
study, psycho-physiological measurements of wheel loader operators were 
collected in two phases: the psychophysiological stress profile (PSP) and the 
operating wheel loader operation, i.e., ‘adapt' (training) and ‘sharp' (real-life 
driving). The average MMSE of the non-stress condition was higher than the 
stress condition in the group level, while the MMSE of the adapt condition 
was higher than the sharp condition. However, there were large variations at 
the individual level. Therefore, CBR was amended such that CBR looks for 
similar problem descriptions in the case library built upon past cases and could 
classify the physiological signals for individuals. Hence, MMSE complexity 
values were used as features to create the case library for a CBR system. The 
CBR approach classified unseen cases by retrieving most similar cases from 
the case library. The proposed approach (i.e., MMSE-CBR) was evaluated us-
ing the stress data set (see Section 3.3) obtained from professional wheel 
loader operators. 
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Results: The results showed that for the PSP data the system could classify 
‘stressed’ and ‘healthy’ subjects 83.33% correctly compared to an expert’s 
classification. On the data for the wheel loader operators, the system achieved 
an accuracy of 83.30% when classifying two different conditions, ‘adapt’ 
(training) and ‘sharp’ (real-life driving). Hence, the proposed approach, 
MMSE-CBR, is suitable for use as a classification method and might be of 
interest for developing systems based on data-level fusion and for working 
with data collected from several sensor sources. 
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Chapter 6  

Discussion, Conclusions and Future work 
 
This chapter presents the main conclusions of the research work and sum-
marize some suggestions for the future work. 

 
The objective of this thesis was multivariate data analysis using machine 
learning to provide a research support tool for driver state monitoring. The 
answers to the established research questions are discussed below. 

6.1 Discussion on RQs 
RQ 1: Is it possible to reduce the impact of artifacts and noise in EEG sig-

nals recorded in non-stationary environments such as while driving?  

EEG recorded in a non-stationary environment such as a driving vehicle 
should be affected by un-controlled concomitant stimuli due to excessive mus-
cle movement and ocular activities. The use of traditional artifact removal ap-
proaches in this context is unreasonable, and new methods should be devel-
oped for such applications (Minguillon, et al., 2017). Traditional artifact han-
dling methods are often non-automated or semi-automated; in addition, the 
existing automated methods require reference signals or artifactual template 
data and manual settings of threshold values for the identification of different 
artifacts. Furthermore, many of the methods only remove specific artifacts, 
such as either ocular artifacts or muscle artifacts. Independent component 
analysis (ICA) is commonly used for multi-channel EEG recording; however, 
ICA requires manual inspection to identify artifacts, and the recommendation 
is to use a hybrid approach with one or more machine learning algorithms. 
The use of a clustering algorithm can be useful for the detection of unforeseen 
and rare artifacts. 

In PAPER II, ARTE (Automated aRTifacts handling in EEG) is proposed 
as a new algorithm for handling artifacts in EEG signals in a mobile environ-
ment. Quantitative evaluation using the measures (SQI, RE, NRMSE, and 
MAE) provided the time and frequency domain properties of the raw and clean 
EEG signals. One such property is the large amplitude in the raw EEG influ-
enced by eye blinking or distortion in the EEG due to muscle movement. The 
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SQI values observed in the raw EEG data were higher than those observed in 
the clean EEG data, which was also reported by (Daly, et al., 2012; Daly, et 
al., 2014). The measures RE, NRMSE and MAE also showed significant dif-
ferences between the raw and clean EEG data. However, some variations ob-
served between the FORCe and ARTE, and for the unforeseen artifacts, arose 
in the driving situation; thus, it is not easy to obtain an absolute measure of 
better signals. Some technical issues arise in handling artifacts, such as select-
ing the wavelet function for cleaning the artifactual components and running 
in real time, which are addressed in PAPER II. Because the selection of a 
wavelet function depends on the nature of the artifacts and the application do-
main of EEG signals (Al-Qazzaz, et al., 2015; Khatun, et al., 2016; Khatwani 
& Tiwari, 2014; Mamun, et al., 2013), several wavelets are investigated when 
designing ARTE, and the most suitable function appears to be Symlet 4. Sym-
let 4 is composed of symmetrical wavelets, and the shape of Symlet 4 mimics 
the spikes caused by ocular and cardiac artifacts. The average execution time 
of a 2-second segment is approximately 1.8 seconds with the initial 2-second 
delay caused by the window function in the pre-processing phase. The time 
resolution of driver sleepiness detection is typically 1 minute, which is suffi-
cient for the required time interval. Finally, the 5% improvement in classifi-
cation accuracy, sensitivity, and specificity after artifacts are addressed using 
ARTE compared to the sleepiness classification using the raw EEG signals 
confirms the concept that EEG artifact handling is required before EEG signal 
analysis, particularly for EEG recorded in a dynamic environment such as a 
driving vehicle. 

 
RQ 2: Can multivariate multimodal data be used to classify driver sleepi-

ness, cognitive load, and stress? 

To address this question, different approaches such as data-level fusion, 
feature-level fusion, decision-level fusion, incorporating contextual data into 
feature vectors, and classification comparison considering a single source and 
multi-source features have been investigated in this thesis. 

The importance of contextual information for sleepiness classification is pre-
sented in PAPER III, in which the classification accuracy improved by 4% 
in multiclass classification and by 5% in binary classification. The improve-
ment may appear small; however, the performance can be further improved 
with advanced sampling methods for imbalanced datasets. Moreover, real-
world driving is much more complex than simulated driving. Driving states 
are often subjective experiences, in which many other contextual data can play 
a vital role. The work described in this thesis indicates further investigation in 
this area, as suggested in (Fu, et al., 2016; McDonald, et al., 2018). For exam-
ple, in PAPER III, road conditions are used in sleepiness classification, and 
in Chapter 4 (Section 4.3), scenarios (which also represent road conditions) 
are considered contextual features. However, the problem with this approach 
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is that these features only represent a portion of the driving conditions, 
whereas probabilistic measures, as presented in (Fu, et al., 2016) are not gen-
eralised but subject- and environment-dependent; nevertheless, no significant 
improvement in ROC and AUC was found by McDonald, et al. (2018). The 
use of SWP as features may appear unreasonable. Modern vehicles are already 
equipped with a wireless network and can synchronise with smart devices. In 
the future, personalised information such as sleeping hours and waking time 
can be integrated with smart devices and synchronised with vehicles. Mårtens-
son, et al. (2018) showed that SWP estimation considering time awake and 
time of day could provide quite good results; the proposed model assumes that 
a person wakes at approximately 7 am. The limitation of SWP is that it func-
tions with group mean data, and for different sleep patterns (e.g., those of shift 
workers), model parameters must be modified (Torbjörn Åkerstedt & Folkard, 
1997). This shortcoming represents an open challenge for identifying appro-
priate contextual features from different road conditions, which also requires 
an extensive study design. 

Cognitive load classification [PAPER IV and in Chapter 4] distinguishes 
among different levels of cognitive-level tasks and does not imply how cog-
nitively loaded participants are during the n-back task. In terms of classifica-
tion, the problem lies in the class noise in the dataset. A 10% improvement in 
classification performance was observed by using a combination of all multi-
variate features compared to the performance observed using features from 
EEG signals. A 20% improvement in classification performance was observed 
by using a combination of all multivariate features compared to that observed 
using feature vehicular data. The implication of the current classification ap-
proach is that it is not individualised; that is, the response pattern is assumed 
to be the same for all drivers. The limitation of this approach can be overcome 
by incorporating subjective measures into the study design. The data-level fu-
sion in PAPER V demonstrated that the proposed approach could be benefi-
cial in cases in which expert annotation might be missing but some prior in-
formation about the system is provided. However, the MMSE-CBR approach 
can only be applied as a research tool or as an offline application because 
MMSE is computationally very intensive and signals with high sampling rates 
involve even higher computational complexity. The use of EEG is advanta-
geous for detecting sleepiness and cognitive load because the spectral patterns 
of the EEG signals concerning the change from wakefulness to sleep or from 
low to high cognitive load have been well established. However, EEG is vul-
nerable to artifacts, and pre-processing is required before use for classifica-
tion. Another issue is the feasibility of recording EEG in real-world driving 
situations with a clinical EEG setup. Work is progressing in the development 
of single-channel EEG and in-ear EEG sensors (Fiedler, et al., 2016; 
Hwang, et al., 2016), which will facilitate EEG-based driver monitoring ap-
plications. Steering wheel angle-based driver state detection algorithms have 
been reported in the literature. However, such algorithms require filtering raw 
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steering angle data to remove road curvature events and are sensitive to driv-
ing activities. In cognitive load classification, vehicular data are filtered using 
a median filter to remove spike noise, and the lack of information on road 
curvature or such events might lead to poor classification. 

 
RQ 2.1: Which key features/attributes are most useful for classification of 

driver sleepiness, cognitive load, and stress? 
Different feature selection methods are investigated in the work described 

in this thesis for identifying key features from multivariate data to classify 
driver sleepiness, cognitive load, and stress. The findings can be summarised 
as follows: 

• In sleepiness classification, the most important feature is the SWP fea-
ture, as discussed in the previous section. In addition to the SWP, the 
feature selection process in the sleepiness classification study re-
vealed a subset of features consisting of clusters or groups containing 
similar information. The most common features derived from EEG 
signals were (θ + α)/(α + β) obtained from the frontal electrodes, 
with α/β and β covering electrodes for all brain regions. SFFS and 
mRMR also selected θ and α from frontal and temporal electrodes. 
Alpha and beta waves showed significant changes in the drowsy 
driver state in (Balandong, et al., 2018; Eoh, et al., 2005). It is known 
that the frontal region is involved in motor function, attention and de-
cision making (Chuang, et al., 2015), which might have much influ-
ence in this work. Balandong, et al. (2018) reported that most EEG-
based sleepiness studies have used the occipital electrodes O1, O2, 
and Oz because the occipital region involves visual stimuli (Chuang, 
et al., 2015). However, to understand the influence of the electrodes 
on the features, a separate exploratory analysis is required. Blink du-
ration and light conditions were observed to be important in the 
BSS/WSS and mRMR algorithms for sleepiness classification. Only 
BSS/WSS selected road condition features, and the corresponding 
rank was the lowest among all the selected features. Because only 
road type, i.e., rural or urban road, was used as a binary feature, which 
was not sufficient to identify driver sleepiness. Road conditions in-
volving more tangible information, e.g., road curvature and number 
of lanes, might be more effective, as suggested by (Fu, et al., 2016).  
	

• EEG feature selection in cognitive load classification showed the best 
feature subset selected by the SFFS algorithm, containing θ/β, α/β, 
(θ + α)/β, θ, β, and α features from only the frontal electrode. Fea-
tures from the frontal region might suggest only motor function, and 
attention affected the cognitive loading activities. HRV, GSR and res-
piration features might be better indicators for cognitive load 
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classification, a finding also supported by other studies discussed in 
Chapter 2. It should be noted that subjective measures, for example, 
the NASA-TLX (Cici, et al., 2001) or the DALI (driving activity load 
index) (Pauzie, 2008), require understanding the importance of EEG 
features and vehicular features..	
 

• Data-level fusion (MMSE) was proposed for stress classification, and 
the classification performance was compared between stress classifi-
cation using MMSE features and that using the features of individual 
signals. The results showed that stress classification using features 
from an individual signal, especially HRV, FT, and respiration, 
yielded the same performance as that of MMSE feature-based classi-
fication. However, the MMSE feature-based adapt and sharp classifi-
cation achieved higher classification performance than did the indi-
vidual signal. The results demonstrated that the proposed approach 
could be beneficial in cases in which expert annotation (as observed 
for adapt and sharp classification) might be missing but some prior 
information about the system is provided. 

 
RQ 2.2: Which multimodal machine learning approach is most suitable for 

classification of driver sleepiness, cognitive load, and stress? 

This work exploits a multimodal machine learning approach for classifica-
tion of driver sleepiness, cognitive load, and stress. To address the represen-
tation, translation, alignment, fusion and co-learning challenges associated 
with multimodal machine learning approaches, signal processing, machine 
learning, and data fusion methods are incorporated. The major task was iden-
tifying which classification method(s) is most suitable for the multimodal data 
approach. Based on the results obtained from sleepiness classification and 
cognitive load classification, SVM and RF yielded the best results for the 
physiological features with feature-level fusion. CBR showed promising re-
sults in PAPER V for data-level fusion compared to decision-level fusion. The 
random forest method is suitable for both feature selection and classification. 
Although SVM is used in the wrapper method for feature selection, classifi-
cation can be performed using SVM with embedded feature selection, i.e., a 
single SVM model for both feature selection and classification (Zhang, et al., 
2015). 

6.2 Discussion on Research Related Issues 

6.2.1 Target Variable for Classification 
Subject- or self-reported measures are common in driver sleepiness research 
(Fu, et al., 2016; S. Hu, et al., 2013; Kong, et al., 2017; Mu, et al., 2017; D. 
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Sandberg, et al., 2011). As mentioned in Chapter 2, the motivation behind 
using KSS is that it can be easily applied, is unobtrusive and is not strongly 
affected by interindividual variations (Torbjörn Åkerstedt, et al., 2014; 
Torbjörn Åkerstedt, et al., 2013). Other ground truths of driver sleepiness 
found in driver sleepiness classification include expert ratings based on video 
recordings (Khushaba, et al., 2011; Gang Li & Chung, 2015; Wierwille & 
Ellsworth, 1994), expert ratings based on physiological signals (Picot, et al., 
2012), the supposed alertness level that follows from an experimental design 
with sleep-deprived participants (Jiřina, et al., 2010), the percentage of eye 
closure (G. Li, et al., 2015), and lane departure events. However, the problem 
with video-based expert ratings is that they are not reliable (Ahlstrom, et al., 
2015). Moreover, the experimental design approach does not guarantee that 
the driver is alert in the supposedly alert condition, and lane departure events 
are rare in themselves and only reflect the somewhat rare lapses in attention 
that follow from insufficient sleep (so-called wake state instability) (Doran, et 
al., 2001).  

In cognitive load theory, working memory is considered an executive func-
tion that holds information and mentally processes that information (Ilkowska 
& Engle, 2010). In the cognitive load classification, binary classification was 
performed based on the baseline (just driving) and n-back task (1-back and 2-
back). This approach could have affected the classification performance be-
cause the influence of a cognitive loading task (e.g., on working memory) 
might not be the same for everyone, especially for the 1-back task. 

from the PSP session, and the data recorded during the wheel loading op-
eration. The objective of using physiological measurements was to assess the 
operator workload, which could complement traditional subjective evalua-
tions (Filla, et al., 2013). Because an expert labelled the PSP data, the ap-
proach was sufficient to classify those data according to the expert’s labelling. 
However, the training (adapt) and testing (sharp) datasets were not annotated 
by the expert. Therefore, a working assumption was made based on the study 
procedure. During data collection, the self-training session was followed by 
test driving. In the self-training session, operators became familiar with the 
machine setup but did not perform any bucket-filling task, in which the test 
required the bucket to be completely while fulfilling certain preconditions. 
The assumption is that test driving with the bucket-filling task is more de-
manding for the wheel loader operator than the self-training session is, sup-
plementing the findings of Filla, et al. (2013).  

6.2.2 Features for Driver State Classification 
It is quite astonishing that similar measures or changes in patterns in physio-
logical signals have been reported for different driver states, as presented in 
Chapter 2. Frequency features, i.e., the theta and alpha power of the EEG sig-
nals, have been found to increase with sleepiness and stress, while the results 
are ambiguous for cognitive load. The LF power of HRV has been found to 
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decrease with sleepiness, to increase driver sleepiness (due to the fight to re-
main awake) and to increase with stress and cognitive load. The HF power of 
HRV has been found to increase with sleepiness, relaxation and low cognitive 
load, and heart rate increases with cognitive load and stress. Skin conductance 
has been observed to decrease in the sleepy condition but increase with stress, 
and finger temperature decreases with stress. Some similarities were also ob-
served in the EEG feature selection between sleepiness and cognitive load. 
The common features are (9 + 8)/(8 + :),	9/:, 8/:, 9, and 8, which are 
mainly obtained from the frontal and parietal regions. These commonalities 
beg the question of how the same features can represent information for sleep-
iness, cognitive load, and stress states at the same time. Both 8 and 9 increase 
as sleepiness increases, and 9 increases, but 8 most often decreases as cogni-
tive load increases, and 8 and 9 from frontal (F3, Fz, F4) EEG correlate with 
stress. It is possible to use EEG as an indicator for classifying sleepiness, cog-
nitive load, and stress within the same study; however, doing so may require 
the identification of appropriate EEG channels that best correlate with each 
driver state. HRV features can be an important indicator for classifying sleep-
iness and cognitive load because cognitive load modulates the sympathetic 
and parasympathetic nervous systems inversely to driver sleepiness (Tjolleng, 
et al., 2017). The time domain GSR, i.e., the peak amplitude, the duration of 
the rise time of each peak, and the mean GSR value found to be useful indica-
tors for cognitive load detection when a person is under the influence of dif-
ferent stress levels (Conway, et al., 2013). In addition, the states depend on 
the experimental design, driving environment, confounding factors, etc., and 
hence, multi-variate data and data fusion considering the driving context are 
needed to accurately assess the driver state. 

6.2.3 Choice of Classifiers 
One obvious issue with using machine learning is determine which algo-
rithm(s) to choose to solve a classification problem. To solve a classification 
problem, two distinct approaches, discriminative and generative, are available 
to train a machine learning model. Discriminative methods provide better pre-
dictive performance than that of generative methods. Generative methods are 
more useful for unlabelled data (M. Bishop & Lasserre, 2006). The work de-
scribed in this thesis used labelled datasets, which make it easier to choose 
discriminative algorithms over generative algorithms. Moreover, choosing a 
discriminative model allows us to solve the classification problem directly ra-
ther than by using an intermediate step, such as finding the joint probability 
O(&, Υ), where & represents the inputs and Υ is the label (Ng & Jordan, 2002). 
In the work described in this thesis, supervised machine learning algorithms, 
namely, KNN, SVM, random forest (RF), and case-based reasoning, were ap-
plied, and the results were compared. A comparison of the advantages and 
disadvantages of these methods can be found in (Choudhary & Gianey, 2017; 
Kotsiantis, 2007; A. Singh, et al., 2016). In terms of the statistical learning 
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framework, these algorithms represent a trade-off between flexibility and in-
terpretability. For example, KNN is a more straightforward and more inter-
pretable method than SVM and RF, and KNN assumes similar samples lie in 
close proximity. In contrast, SVM and RF can generate a complex and flexible 
model that better fits the training dataset with a lower probability of overfit-
ting. SVM with a non-linear kernel such as a radial basis function (RBF) can 
capture complex relationships between data points without having to perform 
any transformations. Furthermore, SVM provide a convex solution that guar-
antees a unique global minimum and can provide good generalisation. One of 
the reasons for using CBR is to compare the results among classifiers. Other 
reasons include those mentioned by Watson and Marir (1994): a) the approach 
does not require creating an explicit domain model; thus elicitation becomes 
a task of gathering case histories; b) implementation is reduced to identifying 
significant features; and c) a large volume of information is manageable using 
database techniques, and CBR systems can learn by acquiring new knowledge 
as cases. The random forest (RF) algorithm has shown good performance in 
driver state classification (Koma, et al., 2018; McDonald, et al., 2014; 
Torkkola, et al., 2004; D. Wang, et al., 2017; Xu & Fujimura, 2014; Yoshida, 
et al., 2014) and another reason for choosing the RF algorithm is to cover the 
ensemble approach of machine learning (Breiman, 2001). Moreover, the key 
features of the RF algorithm, such as the ability to handle large datasets, the 
ability to estimate the importance of the variables in classification, balancing 
the error for unbalanced datasets, and the ability to generate an unbiased esti-
mate of generalisation errors during forest building, make the RF algorithm a 
robust method for the tasks described in this thesis. 

6.3 Conclusions and Future Work 
The work described in this thesis encourages the use of multivariate data using 
machine learning for detecting and classifying drivers’ states, such as sleepi-
ness, cognitive load, or stress. To this end, it might be beneficial to consider 
data fusion or a hybrid feature engineering approach considering physiologi-
cal data, contextual information, and vehicular data; even image-based indi-
cators, radar sensor and geospatial data should be introduced. The approaches 
presented in this thesis could yield substantial benefits in developing a 
knowledge-based or decision support system and could provide a reasonable 
means for physiological sensor signal-based applications, such as those in 
other health care domains. 
 

The recommendations and suggestions for future work are based on the 
results, contributions and limitations of the work described in this thesis. 

• One of the limitations of this work is the use of data collected in a 
driving simulation. The advantage of data collection in driving 



 79 

simulators includes controllability and reproducibility, and it is possi-
ble to encounter dangerous driving conditions without the risk of 
physical injury. However, there are some disadvantages as well; for 
example, motion sickness may affect training effectiveness, it can be 
boring to drive in a simulator, and it can be more demanding to stay 
alert in a simulator. In addition, participants can be biased towards a 
false sense of safety because there is no real danger, and no real con-
sequence of action occurs in a driving simulator. Future work de-
mands the use of data collected in real-world driving situations and 
evaluation of the approaches proposed. 

• The contextual features obtained in this work are mainly derived from 
the study design and scenarios. In real-world driving situations, many 
factors can influence the driver’s state, such as shift work, which can 
affect sleepiness, and hazardous situations, which can affect cognitive 
load and stress. There is room for including contextual information 
that serves as personalised data, such as personality, sleep quality, 
physical condition, vehicle-related data such as noise, seating com-
fort, and temperature, as well as road-related data such as monoto-
nousness, density or traffic intensity, and number of lanes. A person-
alised driving profile can be developed with contextual information 
that can help monitor the driver’s state, improve driving performance, 
and create a recommender system for driving assistance. 

• The three driver states, i.e., sleepiness, cognitive load and stress, were 
investigated separately. It would be interesting to analyse the dataset 
that shows some overlap to, for example, determine how sleepiness is 
influenced by cognitive load or vice versa. Additionally, it is of inter-
est to investigate how machine learning can identify cases in which 
such overlap exists.  

• Investigate the correlation between EEG features and driving behav-
ioural data and use them as a reference measure. Thus, the complexity 
of measuring EEG in real driving can be omitted. 

• Vision-based driver assistance systems represent one of the most rap-
idly growing research areas in an application of machine learning. 
However, a vision-based system cannot represent the individual’s 
psychophysiological condition. A vision-based system alone may not 
be sufficient; a complementary reference system is required. One ob-
vious direction is to investigate how physiological signals can com-
plement the vision-based driver monitoring system. 

• One important factor that is not explicitly examined in this thesis was 
the imbalance dataset. Although not much difference observed in the 
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PAPER III between accuracy and balanced accuracy, yet in future 
work, improved strategy such as balance learning could be applied. 

• Deep learning (DL) has gained much popularity over the years; how-
ever, in this thesis work, this option was not explored because DL 
arguably requires a large amount of data, variations in the target vari-
ables, and interpretability of the deep networks. However, there is 
room for using DL for dynamically feature learning instead of feature 
engineering. 

• The objective of this thesis work was to provide analytics on multi-
variate data for driver state monitoring; this work did not touch on the 
issue of system development. Indeed, there is a need for a robust in-
vehicle system. Thanks to the proliferation of the Internet of Things 
(IoT), connected services will be available for vehicles, and both the 
vehicle and the driver will become sources of data. Hence, one sug-
gestion is to develop cloud-based distributed analytics that connect to 
the in-vehicle system. IoT and cloud-based systems can benefit the 
safety of vulnerable night drivers and long-distance truck drivers, en-
able the detection of nearby incidents, alert surrounding drivers based 
on traffic patterns, etc. 
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