

1

TRUST BUT ISOLATE, CHECK AND MONITORTRUST BUT ISOLATE, CHECK AND MONITOR

EUROPEAN SUMMER SUMMER SCHOOL ON EUROPEAN SUMMER SUMMER SCHOOL ON
EMBEDDED SYSTEMS (ESSES 2003)EMBEDDED SYSTEMS (ESSES 2003)

October 2, 2003October 2, 2003

VasterasVasteras, Sweden, Sweden

Aloysius K. MokAloysius K. Mok

The University of Texas at AustinThe University of Texas at Austin

Today’s ScheduleToday’s Schedule

•• 09:15 09:15 –– 10:1510:15 When Can We TrustWhen Can We Trust

•• 10:15 10:15 –– 10:3010:30 BreakBreak

•• 10:30 10:30 –– 11:4511:45 Temporal IsolationTemporal Isolation

•• 11:45 11:45 –– 13:1513:15 LunchLunch

•• 13:15 13:15 –– 14:3014:30 Verification and CheckingVerification and Checking

•• 14:30 14:30 –– 14:4514:45 BreakBreak

•• 14:45 14:45 –– 16:0016:00 RealReal--Time Event MonitoringTime Event Monitoring

•• 16:00 16:00 –– 16:3016:30 DiscussionDiscussion

2

TRUST BUT ISOLATE, CHECK AND MONITORTRUST BUT ISOLATE, CHECK AND MONITOR

ABSTRACTABSTRACT
Formal methods are powerful techniques for guaranteeing thaFormal methods are powerful techniques for guaranteeing that a realt a real--time time
system meets its design requirements. However, because of economsystem meets its design requirements. However, because of economic ic
considerations, engineers must live with at least some software considerations, engineers must live with at least some software and and
hardware components that have not been formally verified. Most lhardware components that have not been formally verified. Most legacy egacy
software and hardware components may not even have formal software and hardware components may not even have formal
specification in the first place. This is the state of affairs aspecification in the first place. This is the state of affairs and probably will nd probably will
remain so for the foreseeable future. How should a realremain so for the foreseeable future. How should a real--time system time system
designer cope with this situation? There are of course well knowdesigner cope with this situation? There are of course well known n
engineering principles such as providing isolation to limit the engineering principles such as providing isolation to limit the interaction interaction
of components to narrowly defined interfaces, monitoring system of components to narrowly defined interfaces, monitoring system
behavior for abnormality and pinpointing violations to offendingbehavior for abnormality and pinpointing violations to offending
components in real time. In this lecture, we shall look at some components in real time. In this lecture, we shall look at some of these of these
commonsense engineering principles and the technical issues in tcommonsense engineering principles and the technical issues in their heir
application to ascertain temporal properties of embedded systemsapplication to ascertain temporal properties of embedded systems..

TRUSTTRUST BUT ISOLATE, CHECK AND MONITORBUT ISOLATE, CHECK AND MONITOR

•• What can we trust? What must we trust?What can we trust? What must we trust?

•• Every module has assumptions. Do these assumptions Every module has assumptions. Do these assumptions
hold?hold? Real-time

software
component I

Real-time
software

component II

MiddleWare
I

Real-time
scheduler I

MiddleWare
II

Real-time
scheduler II

Physical
Resource
Platform

3

Tracking RealTracking Real--Time Systems RequirementsTime Systems Requirements

•• Legacy software might have been patched too many Legacy software might have been patched too many
times. How well does the history of patches track times. How well does the history of patches track
original design requirements and assumptions?original design requirements and assumptions?

•• A robust design might withstand reasonably large A robust design might withstand reasonably large
modifications; fragile designs might not. Before we can modifications; fragile designs might not. Before we can
trust, we need to know how to evaluate the robustness trust, we need to know how to evaluate the robustness
of a design.of a design.

•• Interactions between components can be subtle, Interactions between components can be subtle,
especially timing interference. Let us look at the especially timing interference. Let us look at the
robustness issue to gain an appreciation of how much robustness issue to gain an appreciation of how much
we can trust.we can trust.

Want || Y’ – X’ || ~ || Y – X ||

Figure 1. Tracking Relation

4

TRACKING RELATION SHOUD HAVE NICE TRACKING RELATION SHOUD HAVE NICE
PROPERTIESPROPERTIES

•• LocalityLocality
Local changes in requirements induces local Local changes in requirements induces local
changes in designchanges in design

•• ScalabilityScalability
Small changes in requirements induces small Small changes in requirements induces small
changes in designchanges in design

•• RobustnessRobustness
Let us formalize the notion of “robustness” w.r.t Let us formalize the notion of “robustness” w.r.t
realreal--time performancetime performance

WHAT IS ROBUSTNESS?WHAT IS ROBUSTNESS?

•• Reduction in system load meansReduction in system load means
Decrease execution time of some taskDecrease execution time of some task
Decrease execution frequency of some taskDecrease execution frequency of some task
Use a faster processorUse a faster processor
……

•• Reduction in system load should preserve Reduction in system load should preserve
schedulabilityschedulability

•• Robustness depends on the scheduling policy Robustness depends on the scheduling policy
and type of timing constraintsand type of timing constraints

5

PREEMPTIVE VS. NONPREEMPTIVE VS. NON--PREEMPTIVE PREEMPTIVE
SCHEDULING POLICIES (1)SCHEDULING POLICIES (1)

•• We know a whole lot about preemptive policiesWe know a whole lot about preemptive policies
EarliestEarliest--deadlinedeadline
Fixed priorityFixed priority

•• We know relatively little about the performance We know relatively little about the performance
of nonof non--preemptive policiespreemptive policies
NPNP--completenesscompleteness

•• Why bother with nonWhy bother with non--preemptive policies?preemptive policies?

PREEMPTIVE VS. NONPREEMPTIVE VS. NON--PREEMPTIVE PREEMPTIVE
SCHEDULING POLICIES (2)SCHEDULING POLICIES (2)

•• Processors are much faster, i.e., job are shorterProcessors are much faster, i.e., job are shorter

•• Processors are more pipelined, i.e., context Processors are more pipelined, i.e., context
switch overheads are relatively highswitch overheads are relatively high

•• Communication networks bandwidth will be Communication networks bandwidth will be
much higher, i.e., buffering and processing in much higher, i.e., buffering and processing in
batchesbatches

•• Open systems environment, nonOpen systems environment, non--interference interference
among partitionsamong partitions

6

PREEMPTIVE SCHEDULING POLICIES PREEMPTIVE SCHEDULING POLICIES
AND LIU&LAYLAND TASK MODELAND LIU&LAYLAND TASK MODEL

•• Liu & Liu & LaylandLayland task systems:task systems:
TTii = (= (CCii , P, Pi i))

•• EarliestEarliest--deadlinedeadline--first policyfirst policy
∑∑11≤≤jj≤≤NN CCii / P/ Pi i ≤≤ 1.01.0

•• Fixed priority policyFixed priority policy
∃ t ∈ (0, PPi i] , ∑∑11≤≤jj≤≤NN CCi i . . t t //PPi i ≤≤ tt

ROBUSTNESS OF PREEMPTIVE POLICIES ROBUSTNESS OF PREEMPTIVE POLICIES
(1)(1)

•• EarliestEarliest--deadlinedeadline--first policyfirst policy
∑∑11≤≤jj≤≤NN CCii / P/ Pi i ≤≤ 1.01.0

•• Decrease some Decrease some CCkk by by δδ
∑∑11≤≤jj≤≤NN CCii / P/ Pi i -- δδ// PPkk ≤≤ 1.01.0

•• Increase some Increase some PPkk by by δδ
∑∑11≤≤jj≤≤NN CCii / P/ Pi i -- ((CCk k // PPkk-- CCk k / / ((PPkk ++ δδ)))) ≤≤ 1.01.0

•• Reduce all task execution times by same Reduce all task execution times by same
proportion proportion αα
∑∑11≤≤ii≤≤NN (1(1-- αα))CCi i / P/ Pi i ≤≤ 1.01.0

7

ROBUSTNESS OF PREEMPTIVE POLICIES ROBUSTNESS OF PREEMPTIVE POLICIES
(2)(2)

•• Fixed Priority policyFixed Priority policy

∃ t ∈ (0, PPi i] , ∑∑11≤≤jj≤≤NN CCii . . t/t/PPii≤≤ 1.01.0

•• Decrease some Decrease some CCkk by by δδ
∃ t ∈ (0, PPi i] , ∑∑11≤≤jj≤≤NN CCii . . t/t/PPii -- δδ . . t/t/PPkk ≤≤ tt

•• Increase some Increase some PPkk by by δδ
∃ t ∈ (0, PPi i] , ∑∑11≤≤jj≤≤NN CCii . . t/t/PPii -- ((CCkk. . t/t/PPkk -- CCk k . . t/(t/(PPkk++ δδ))))≤≤ tt

•• Reduce all task execution times by same Reduce all task execution times by same
proportion proportion αα
∃ t ∈ (0, PPi i] , ∑∑11≤≤jj≤≤NN αα..CCii . . t/t/PPii≤≤ tt
αα < 1.0< 1.0

NONNON--PREEMPTIVE POLICIES ARE NOT PREEMPTIVE POLICIES ARE NOT
ROBUSTROBUST

•• Both earliestBoth earliest--deadlinedeadline--first and fixed priority first and fixed priority
policies are NOT robustpolicies are NOT robust

•• Anomaly occurs when:Anomaly occurs when:
Decrease some Decrease some CCkk by by δδ
Increase some Increase some PPkk by by δδ
Reduce all task execution times by same proportion Reduce all task execution times by same proportion αα

•• In general, anomaly occurs for any eager In general, anomaly occurs for any eager
scheduler (which does not idle CPU when there scheduler (which does not idle CPU when there
is a ready task)is a ready task)

8

ANOMALY (1)ANOMALY (1)

REDUCING C2 FROM 2 TO 1 CAUSES DEADLINE MISS

ANOMALY (2)ANOMALY (2)

REDUCING Pa FROM 4 TO 5 CAUSES DEADLINE MISS

9

ANOMALY (3)ANOMALY (3)

FASTER CPU CAUSES T1 TO MISS DEADLINE ALL
EXECUTION TIMES DECREASED BY 10%

HOW BAD IS THE ROBUSTNESS HOW BAD IS THE ROBUSTNESS
PROBLEM (1)PROBLEM (1)

•• Conjecture:Conjecture:

Anomaly occurs because processor utilization is too Anomaly occurs because processor utilization is too
highhigh

•• Maybe we can determine a utilization bound Maybe we can determine a utilization bound αα
so that anomalies cannot occur when load is so that anomalies cannot occur when load is
lower than lower than αα
NOT SO!NOT SO!

10

Reducing All Execution Time by Same Factor Causes T1 to Miss Deadline

U = C/P + 2(2P-2C)/kP = C/P + 4(1-C/P)/k

U → 0 as P, k → ∞

HOW BAD IS THE ROBUSTNESS HOW BAD IS THE ROBUSTNESS
PROBLEM (2)PROBLEM (2)

•• Conjecture:Conjecture:

Anomaly occurs because jobs come in too many sizesAnomaly occurs because jobs come in too many sizes

•• Maybe if we restrict job sizes to a selected set, Maybe if we restrict job sizes to a selected set,
we can avoid anomalieswe can avoid anomalies
NOT IF THERE IS MORE THAN ONE SIZENOT IF THERE IS MORE THAN ONE SIZE

11

Reducing All Execution Time by Same Factor Causes T1 to Miss Deadline

THERE ARE ONLY TWO JOB SIZES IN THIS EXAMPLE

P AND 2P-2C

HOW BAD IS THE ROBUSTNESS HOW BAD IS THE ROBUSTNESS
PROBLEM (3)PROBLEM (3)

•• Conjecture:Conjecture:

In the worst case, a task may miss only a small fraction In the worst case, a task may miss only a small fraction
of its deadlines because of the anomaly.of its deadlines because of the anomaly.
A TASK MAY MISS A TASK MAY MISS ½½ OF ITS DEADLINES!OF ITS DEADLINES!

12

T1 MAY MISS ½ OF ITS DEADLINES

13

KERNELIZED MONITORKERNELIZED MONITOR

•• CPU allocation is in time CPU allocation is in time quantums quantums (size a system (size a system
parameter). When a process is granted CPU time, it is parameter). When a process is granted CPU time, it is
allowed to occupy the CPU for a time quantum, say q allowed to occupy the CPU for a time quantum, say q
time units. If the process releases the CPU early, time units. If the process releases the CPU early,
another ready process will be immediately selected for another ready process will be immediately selected for
execution, I.e., no forced idle time.execution, I.e., no forced idle time.

•• The The kernelized kernelized monitor is robust for Liu and monitor is robust for Liu and Layland Layland
tasks under the condition: the task set is schedulable tasks under the condition: the task set is schedulable
even if the execution time of each task increases by q even if the execution time of each task increases by q
time unitstime units

KERNELIZED MONITOR IS NOT KERNELIZED MONITOR IS NOT
UNCONDITIONALLY ROBUSTUNCONDITIONALLY ROBUST

SECOND JOB OF T1 FINISHES EARLY BY ε CAUSING
KERNELIZED MONITOR TO FAIL

14

Engineering solutionsEngineering solutions

•• Rule of thumb:Rule of thumb:

Keep nonKeep non--preemptive tasks small compared with their preemptive tasks small compared with their
periodsperiods

May test for robustness by computing utilization with May test for robustness by computing utilization with
the period of each nonthe period of each non--preemptive task decreased by preemptive task decreased by
q time unitsq time units

•• Use inserted idle time; there are two ways:Use inserted idle time; there are two ways:
1.1. Idle jobs that finish before nominal execution time.Idle jobs that finish before nominal execution time.
2.2. Do not start a job in “forbidden regions” Do not start a job in “forbidden regions”

Use Use parameteric parameteric schedulingscheduling

TRUSTTRUST BUT ISOLATE, CHECK AND MONITORBUT ISOLATE, CHECK AND MONITOR

15

TRUST BUT TRUST BUT ISOLATEISOLATE, CHECK AND MONITOR, CHECK AND MONITOR

RealReal--time Virtual Resource: a Timely time Virtual Resource: a Timely
Abstraction for Embedded SystemsAbstraction for Embedded Systems

A. Mok & X. A. Mok & X. FengFeng

SynopsisSynopsis

•• IntroductionIntroduction

•• Real Time Virtual ResourceReal Time Virtual Resource

•• Task Level Scheduling IssuesTask Level Scheduling Issues

•• Resource Level Scheduling IssuesResource Level Scheduling Issues

•• Related WorkRelated Work

•• ConclusionConclusion

16

IntroductionIntroduction

Security
Timeliness
Fault Tolerance

Applications
Navigation
Communication
Damage control
…

IntroductionIntroduction

COTS platform

Application 1 Application 2 Application n…

Temporal Partitioning

Open System Architecture

17

IntroductionIntroduction

Ideally, we want
• Temporal firewall between application task

groups: no detectable timing interference
• No change to application level (task group)

scheduler
• No global schedulability analysis
• No interaction between application level

scheduler and resource level scheduler needed
after admitting application

• Full utilization of resource

IntroductionIntroduction

Resource Level
Scheduler

Per Application
(Task Group)

Scheduler

φ

fraction α,
Infinite time

slicing

Ideal Real-Time Resource Sharing

18

IntroductionIntroduction

Infinite time slicing is impracticalInfinite time slicing is impractical

Issues with practical time partitioning Issues with practical time partitioning
schemes:schemes:
•• How often must we switch partitions?How often must we switch partitions?

•• What information needs to be exchanged What information needs to be exchanged
between schedulers on different levels?between schedulers on different levels?

•• When should information exchange occur?When should information exchange occur?

•• How is admission/How is admission/schedulabilityschedulability analysis analysis
handled?handled?

IntroductionIntroduction

Resource Level
Scheduler

Per Task Group
Scheduler

request times,
deadlines fraction α

Liu & Layland Task Groups

19

Real Time Virtual ResourceReal Time Virtual Resource

ObservationObservation

From the application programmer’s point of view, From the application programmer’s point of view,
time partitioning a CPU is as if program executes on time partitioning a CPU is as if program executes on
a slower CPU that runs at a varying speed. a slower CPU that runs at a varying speed.

QuestionQuestion

What is a good way to bound the speed variation?What is a good way to bound the speed variation?

0 1 2 3 4 5 6 7 8

Partition Partition ΠΠ = {(1, 4, 5, 7) 8}*= {(1, 4, 5, 7) 8}*

Real Time Virtual ResourceReal Time Virtual Resource

Delay Bound (also called jitter bound)Delay Bound (also called jitter bound)
Maximum delay ∆∆ that a partition must wait to get its
share αα of the resource for any time interval starting at
any point in time

0 t0 t1 t1+ ∆∆

(t1-t0) αα

Eg., for a partition with delay bound = 0.1 second,
10% of a CPU that executes 108 instructions per
second will provide 107 instructions in any 1.1 second

20

Real Time Virtual ResourceReal Time Virtual Resource

A A Bounded Delay Resource Partition Bounded Delay Resource Partition ΠΠ is a is a tupletuple
((αα, , ∆∆) where) where

αα,, Availability factor of Availability factor of ΠΠ (fraction of resource(fraction of resource

requested) requested)

∆, Delay bound of Π (in real time)
Temporal Regularity of Π (in integral units)

Intuitively, ∆ depends on how uniformly distributed
the time slots of the partition are.

Real Time Virtual ResourceReal Time Virtual Resource

Physical Resource(s)

RTVR 1 ((αα11,,∆∆11)) RTVR 2 ((αα22,,∆∆22))

Task Group1 Task Group2 Task Group n

Task 1 Task 2 Task n ….

….

RTVR n (ααnn,,∆∆nn))

21

Real Time Virtual ResourceReal Time Virtual Resource

Definition: Definition: Supply FunctionSupply Function S(t) of a partition is the total S(t) of a partition is the total
amount of time that is available to this partition from amount of time that is available to this partition from
time 0 to time t.time 0 to time t.

Real Time Virtual ResourceReal Time Virtual Resource

Definition: Definition: Normalized ExecutionNormalized Execution of a partition of a partition ΠΠ is an is an
allocation of resource at a uniform, uninterrupted rate allocation of resource at a uniform, uninterrupted rate
equal to the availability factor of the partition.equal to the availability factor of the partition.

22

Real Time Virtual ResourceReal Time Virtual Resource

How to measure (non)uniformity of supply, How to measure (non)uniformity of supply,
i.e., the difference between normalized supply i.e., the difference between normalized supply
function and the partition’s supply function?function and the partition’s supply function?

TimeTimearbitrary time arbitrary time
intervalsintervals

Temporal Temporal
RegularityRegularity

SupplySupplyarbitrary time arbitrary time
intervalsintervalsSupply RegularitySupply Regularity

Supply Supply An arbitrary time An arbitrary time
pointpointInstant RegularityInstant Regularity

On what axisOn what axisMeasurement Measurement
objectsobjectsMeasurement Measurement

Real Time Virtual ResourceReal Time Virtual Resource

Definition: Definition:

The The Instant RegularityInstant Regularity I(t) at time t on partition I(t) at time t on partition
ΠΠ is given by S(t) is given by S(t) --t t αα((ΠΠ))..

23

Real Time Virtual ResourceReal Time Virtual Resource

Definition: Definition:

Let a, b, k be nonLet a, b, k be non--negative integers, the negative integers, the Supply Supply
RegularityRegularity RRSS((ΠΠ) of Partition) of Partition ΠΠ is equal to the is equal to the
minimum value of k such that minimum value of k such that ∀∀a, a, ∀∀b. a<b, 0 b. a<b, 0 ≤≤ k, k,

|I(b)|I(b)--I(a)|<kI(a)|<k

Real Time Virtual ResourceReal Time Virtual Resource

Definition: Definition:

Let a, b, e, k be nonLet a, b, e, k be non--negative integers, the negative integers, the
Temporal RegularityTemporal Regularity RRTT((ΠΠ) of Partition) of Partition ΠΠ is equal to is equal to
the minimum value of k such that the minimum value of k such that

∀∀a, a, ∀∀b. a<b, b. a<b, ∃∃ee∈∈[0,k][0,k], |I(b, |I(b--e)e)--I(a)|<1I(a)|<1

24

Real Time Virtual ResourceReal Time Virtual Resource

Definition:Definition:

A A Regular PartitionRegular Partition is a partition with temporal is a partition with temporal
regularity of 0.regularity of 0.

Real Time Virtual ResourceReal Time Virtual Resource

Temporal regularity and supply regularity are relatedTemporal regularity and supply regularity are related

Temporal Temporal SupplySupply

kk 1+k(P/N)1+k(P/N)

(k(k--1)P/N1)P/N kk

WhereWhere

P = length of periodP = length of period

N = number of unit slots assigned to the partitionN = number of unit slots assigned to the partition

25

Task Level SchedulingTask Level Scheduling

Regular partitions are transparent Regular partitions are transparent

to task schedulingto task scheduling

Rate MonotonicRate Monotonic: :

U(G) U(G) ≤≤ m(2m(21/m1/m--1) 1) αα((ΠΠ))

Earliest Deadline FirstEarliest Deadline First::
U(G) U(G) ≤≤ αα((ΠΠ))

Task Level SchedulingTask Level Scheduling

Definition: Definition: Virtual Time SchedulingVirtual Time Scheduling

Scheduling according to Scheduling according to Virtual TimeVirtual Time. .

26

Task Level SchedulingTask Level Scheduling

Irregular partitions are almost but not quite Irregular partitions are almost but not quite
transparent to task schedulingtransparent to task scheduling

Rate Monotonic:Rate Monotonic:

∑∑((CCii/(p/(pii--k))k)) ≤≤ m(2m(21/m1/m--1) 1) αα((ΠΠ))

Earliest Deadline First (Earliest Deadline First (ShigeroShigero, Takashi & Kei):, Takashi & Kei):

∑∑((CCii/(p/(pii--k))k)) ≤≤ αα((ΠΠ))

Resource Level SchedulingResource Level Scheduling

Physical Resource(s)

Virtual Resource (VR)1 VR 2

Task Group1 Task Group2 Task Group n

Task 1 Task 2 Task n ….

….

….

VR n

Structure Overview:

27

Resource Level SchedulingResource Level Scheduling

Compositionality Theorem:Compositionality Theorem:

When two partitions When two partitions ΠΠ11 and and ΠΠ22 from the same from the same
resource are combined together they form a new resource are combined together they form a new
partition partition ΠΠ33 with supply regularity equal to the sum of with supply regularity equal to the sum of
supply regularities of supply regularities of ΠΠ11 and and ΠΠ22..

SS33(t)=S(t)=S11(t)+S(t)+S22(t)(t)

RRSS((ΠΠ33)=)= RRSS((ΠΠ11)+)+ RRSS((ΠΠ22))

Resource Level SchedulingResource Level Scheduling

Static Scheduling Scheme:Static Scheduling Scheme:

Regular partitions with rates = powers of some Regular partitions with rates = powers of some
number are realizable if the sum of rates number are realizable if the sum of rates ≤≤ 1.0.1.0.

Example:Example:

For the case where the time unit bounds the precision For the case where the time unit bounds the precision
of time interval measurement, a regular partition with of time interval measurement, a regular partition with
rate=rate=αα receives at least receives at least αα.L.L and at most αα.L.L time
units in any interval of length L. The time line below he time line below
shows regular partitions with rates of (1/2, shows regular partitions with rates of (1/2, 1/41/4, , 1/81/8).).

0 1 2 3 4 5 6 7 8

28

Resource Level SchedulingResource Level Scheduling

To compute a partition with supply regularity= 2 and To compute a partition with supply regularity= 2 and
rate = rate = αα, , simply look for two regular partitions such simply look for two regular partitions such
that sum of rates =that sum of rates = α α

Example:Example:

Partition Partition ΠΠ with rate of 0.36 and supply regularity with rate of 0.36 and supply regularity
of 2:of 2:

ΠΠ: 1/4 < 0.36 <1/2 => 0.36: 1/4 < 0.36 <1/2 => 0.36--1/4=0.111/4=0.11

1/16< 0.11 <1/8 => ¼ + 1/81/16< 0.11 <1/8 => ¼ + 1/8

Two regular partitions with rates of ¼ and 1/8Two regular partitions with rates of ¼ and 1/8

Resource Level SchedulingResource Level Scheduling

Theorem:Theorem:

Given a set {Given a set {ααii, 1 , 1 ≤≤ i i ≤≤ n } of availability factors of n } of availability factors of
n kn k--supplysupply--irregular partitions, they are schedulable if irregular partitions, they are schedulable if
∑α∑αii ≤≤ 11--1/(21/(2kk).).

29

Resource Level SchedulingResource Level Scheduling

Physical Resource(s)

VR1 VR 2 …. VR n

Hierarchical Virtual Resource

VR1_1 VR1_2 VR1_3 VR2_1 VR2_2

….

TGn_1

Resource Level SchedulingResource Level Scheduling

Theorem:Theorem:

A partition group A partition group { { ΠΠII ((ααii, , ∆∆II), 1), 1 ≤≤ i i ≤≤ n } isn } is

schedulable on a partition schedulable on a partition ΠΠ ((αα, , ∆∆) if) if ∑α∑αii ≤≤ αα andand

∆∆I I >> ∆∆ for all i, 1 for all i, 1 ≤≤ i i ≤≤ n.n.

30

Decoupling Resource Sharing in Decoupling Resource Sharing in
Timeliness VerificationTimeliness Verification

How do we verify timing properties of programs How do we verify timing properties of programs
running on a Real Time Virtual Resource with delay running on a Real Time Virtual Resource with delay
bound = bound = ∆∆??

•• Add Add ∆∆ to minimum allowable separation (delay) and to minimum allowable separation (delay) and
subtract subtract ∆∆ from maximum allowable separation from maximum allowable separation
(deadline) between event pairs of interest. Caveat: be (deadline) between event pairs of interest. Caveat: be
careful about computationcareful about computation’’s dependence on real time s dependence on real time
to make progressto make progress

•• Think of it as verifying timing properties in systems Think of it as verifying timing properties in systems
where there is a jitter as big as where there is a jitter as big as ∆∆ in the spacing in the spacing
between any two eventsbetween any two events

Related Works

•• Open SystemsOpen Systems

Deng & LiuDeng & Liu

BaruahBaruah, , ButtazzoButtazzo, , Gorinsky Gorinsky & & LipariLipari

KuoKuo, Lin & Wang, Lin & Wang

……

•• Proportionate Share, Resource KernelProportionate Share, Resource Kernel

RajkumarRajkumar

……

31

Conclusion

•• Rate variation bounded by temporal regularity and Rate variation bounded by temporal regularity and
supply regularitysupply regularity

•• Clean separation between application level and Clean separation between application level and
resource level scheduling, facilitating timeliness resource level scheduling, facilitating timeliness
verificationverification

•• RealReal--time virtual resource is an abstraction of a time virtual resource is an abstraction of a
resource with variable rate of service provisionresource with variable rate of service provision

•• Utilization bounds of RM and EDF for regular partitions Utilization bounds of RM and EDF for regular partitions
remain the same as for dedicated resources. remain the same as for dedicated resources.

•• Resource level scheduling can be efficiently performed Resource level scheduling can be efficiently performed
by hierarchical decomposition and horizontal by hierarchical decomposition and horizontal
composition. But need Middleware availabilitycomposition. But need Middleware availability..

TRUST BUT ISOLATE, TRUST BUT ISOLATE, CHECKCHECK AND MONITORAND MONITOR

TINMAN: A Resource Bound Security TINMAN: A Resource Bound Security
Checking System for Mobile CodeChecking System for Mobile Code

A. Mok & W. YuA. Mok & W. Yu

32

OutlineOutline

•• Introduction Introduction -- Resource Bound SecurityResource Bound Security

•• TINMAN Architecture TINMAN Architecture

•• Resource Usage Bound PredictionResource Usage Bound Prediction

•• Usage Certificate Generation and VerificationUsage Certificate Generation and Verification

•• OnOn--line Validationline Validation

•• ConclusionConclusion

Introduction Introduction -- Resource Bound SecurityResource Bound Security

Dirty trick #1: I’ll forward packets
correctly but delay packet processing
randomly, so that the communication
protocol will time-out at times and
cause packet retransmission.

33

Introduction Introduction -- Resource Bound SecurityResource Bound Security

Dirty trick #2: I’ll forward
packets correctly but burn up
CPU cycles a little bit faster
at a time, so that it will be too
late when they find out about
the power drain.

Introduction Introduction -- Resource Bound SecurityResource Bound Security

•• Resource abuse by external codeResource abuse by external code
malicious code intended for malicious code intended for DoSDoS attackattack
buggy code (e.g., infinite loops)buggy code (e.g., infinite loops)
normal code exceeding its resource limitnormal code exceeding its resource limit

•• Defense techniquesDefense techniques
Resource controlResource control
–– Language Level Language Level (limit access, reduce expressiveness)(limit access, reduce expressiveness)
–– Operating System Level Operating System Level (access control, runtime checking)(access control, runtime checking)

SelfSelf--certified code (PCC, TAL etc.)certified code (PCC, TAL etc.)

34

Introduction Introduction -- Resource Bound SecurityResource Bound Security

No One Defense Is Perfect For All SettingsNo One Defense Is Perfect For All Settings

•• OffOff--line verificationline verification
Can’t be done all the timeCan’t be done all the time
–– UndecidabilityUndecidability
–– Depends on runDepends on run--time information, e.g., routing table sizetime information, e.g., routing table size

Expensive computationally for large programs Expensive computationally for large programs

•• OnOn--line monitoring (usage bounds by fiat)line monitoring (usage bounds by fiat)
Need to know what proper bounds to setNeed to know what proper bounds to set
–– Too loose Too loose ⇒⇒ invites DOS attackinvites DOS attack
–– Too tight Too tight ⇒⇒ invites false alarmsinvites false alarms

Expensive at line speedExpensive at line speed

Introduction Introduction -- Resource Bound SecurityResource Bound Security

Our approach is a mixed strategyOur approach is a mixed strategy

Resource usage prediction Resource usage prediction ⇐ ⇐ source code analysissource code analysis
+ +

Code certification Code certification ⇐⇐ theorem provingtheorem proving
+ +

Runtime monitoring Runtime monitoring ⇐⇐ event detectionevent detection

Check the verifiable & Monitor the unverifiableCheck the verifiable & Monitor the unverifiable
 ⇒ ⇒ 100% coverage100% coverage

35

Off-line Checker
Resource Prediction + Certificate Generation

On-line Checker
Validation + Event Generation

TINMAN ArchitectureTINMAN Architecture

TINMAN ArchitectureTINMAN Architecture

How TINMAN Works:How TINMAN Works:
1.1. Predict resource usage behaviorPredict resource usage behavior
2.2. Generate usage certificateGenerate usage certificate

1.1. Formalize usage behavior in a proof systemFormalize usage behavior in a proof system
2.2. Mechanize proof systemMechanize proof system

3.3. Validate bounds onValidate bounds on--lineline
1.1. Authenticate usage certificateAuthenticate usage certificate
2.2. Generate eventGenerate event--monitoring codemonitoring code

•• Leverage on existing tools as much as possibleLeverage on existing tools as much as possible
•• Currently TINMAN is LinuxCurrently TINMAN is Linux--basedbased

36

Resource Usage Bound Prediction

•• Source Code Analysis (Broadway C compiler)Source Code Analysis (Broadway C compiler)
Programming Constructs (Programming Constructs (loops, branches … loops, branches …))
Library functions (Library functions (resource usage policyresource usage policy))

•• Resource Usage Behavior PredictionResource Usage Behavior Prediction
UserUser--provided informationprovided information
Parameterized resource usage boundParameterized resource usage bound

•• Execution Time Evaluation Execution Time Evaluation
Timing schema approach [Park91]Timing schema approach [Park91]

•• LiveLive--memory Demand Analysismemory Demand Analysis
Explicit memory allocation and path analysisExplicit memory allocation and path analysis

Result is a resource skeleton Result is a resource skeleton -- an abstraction of an abstraction of
resource usage behaviorresource usage behavior

Resource Usage Bound Prediction

B1: B1: int dptint dpt, i,, i,
sender = 126; group = 1;sender = 126; group = 1;

U2: init_U2: init_nodelistnodelist(LISTLENGTH);(LISTLENGTH);
B3: B3: dptdpt = = getrecordgetrecord((

group, sender);group, sender);
m = &n;m = &n;
mm-->time = n.time >time = n.time -- 10;10;

C4: if(mC4: if(m-->nodes!=NULL){>nodes!=NULL){
L5: for(i=0; i<mL5: for(i=0; i<m-->length; i++)>length; i++)
B6: B6: routefornoderoutefornode(&n,(&n,

mm-->nodes[i]);>nodes[i]);
}else{}else{

B7: B7: delivertoappdelivertoapp(&n,(&n,dptdpt);});}
}}

B1: {..}B1: {..}
/*@B1: T[T[Entry]+4] /*@B1: T[T[Entry]+4]

M[M[Entry]]*/M[M[Entry]]*/
U2: {..}U2: {..}
/*@U2: T[T[C10]] /*@U2: T[T[C10]]

M[M[C10]]*/M[M[C10]]*/
....

C4: {..}C4: {..}
/*@C4: TMAX[T[L5],T[B7]]/*@C4: TMAX[T[L5],T[B7]]

MMAX[M[L5],M[B7]]*/MMAX[M[L5],M[B7]]*/

Source C Code Annotated Code

37

/*@U2 Entry: T[B1] M[B1] /*@U2 Entry: T[B1] M[B1]
B9: {.. }B9: {.. }
/*@B9:/*@B9:
T[T[Entry]+16+T[T[Entry]+16+TgenerateRandomTgenerateRandom]]
M[M[Entry]+M[M[Entry]+MgenerateRandomMgenerateRandom]*/]*/
C10: {..C10: {..
/*@L12lb=10*//*@L12lb=10*/
L12:{..}L12:{..}
/*@L12: T[T[B11]+L12lb*12+3]]/*@L12: T[T[B11]+L12lb*12+3]]

M[M[B11]]*/M[M[B11]]*/
....
}}
/*@C10: T[MAX[T[L12],T[B14]]]/*@C10: T[MAX[T[L12],T[B14]]]

M[MAX[M[L12],M[B14]]]*/M[MAX[M[L12],M[B14]]]*/

void init_void init_nodelistnodelist((int int length)length)
{.. {..
B9: i = 0;B9: i = 0;

n.time = 100;n.time = 100;
n.address = 100;n.address = 100;
n.length = length;n.length = length;
rid=rid=generateRandomgenerateRandom(100);(100);

C10: if(rid>50){ C10: if(rid>50){
B11: n.nodes=(W_N*)B11: n.nodes=(W_N*)mallocmalloc((

sizeofsizeof(W_N)*length);(W_N)*length);
L12: for(i=0; i<length; i++);L12: for(i=0; i<length; i++);
B13: n.nodes[i] = i;B13: n.nodes[i] = i;

}else}else
B14: n.nodes = 0;B14: n.nodes = 0;
}}

Resource Usage Bound Prediction

Annotated CodeSource C Code

Usage Certificate Generation

Resource Specification: Extended Resource Specification: Extended HoareHoare LogicLogic

Examples of proof obligations:Examples of proof obligations:
•• Basic block task B9Basic block task B9

PRE9PRE9: {now = t0 + 4 : {now = t0 + 4 ∧∧ memmem = m0 = m0 ∧∧ terminate}terminate}
{B9} {B9}

POS9POS9: {now <= t0 + 20 + : {now <= t0 + 20 + TTgenerateRandomgenerateRandom ∧∧ memmem <= m0 +<= m0 +
MMgenerateRandomgenerateRandom ∧∧ terminate}terminate}

•• Loop task L12Loop task L12
PRE12PRE12: {now <= t0 + 22 + : {now <= t0 + 22 + TTgenerateRandom generateRandom + + TmallocTmalloc ∧∧

L12lb = 10 L12lb = 10 ∧∧ memmem <= <= MMgenerateRandom generateRandom + 40+ 40 ∧∧ terminate}terminate}
{L5} {L5}

POS12POS12: {now <= t0+ 22 + : {now <= t0+ 22 + TTgenerateRandomgenerateRandom + + Tmalloc Tmalloc ++
L12lb*L12lb*1212+3 +3 ∧∧ memmem <= <= MMgenerateRandomgenerateRandom + 40+ 40 ∧∧ terminate}terminate}

38

Usage Certificate Generation

•• Axiom 1Axiom 1 Basic Block TasksBasic Block Tasks
∀∀ ttbb: Time:: Time:
{P[(now + {P[(now + tbtb))/now, /now, memmem//memmem]] ∧∧ terminate} terminate} BB (BB (tbtb)) {P}{P}

•• Axiom 2Axiom 2: Service Call Task: Service Call Task
∀∀tsts: Time, : Time, ∀∀msms: Memory:: Memory:
{P[(now+{P[(now+tsts))/now, (/now, (memmem++msms)/)/memmem]] ∧∧ terminate} terminate} SRVC (SRVC (tsts, ms), ms) {P}{P}

•• Axiom 3Axiom 3: Condition Expression: Condition Expression
∀∀tbtb: Time, : Time, ∀∀mbmb: Memory:: Memory:
{P[(now+{P[(now+tbtb)/now, ()/now, (memmem++mbmb)/)/memmem]] ∧∧Terminate}Terminate}CONDCOND ((tbtb, , mbmb)) {P}{P}

Proof SystemProof System

Usage Certificate Generation

•• Proof Rule 1Proof Rule 1: Sequential Tasks: Sequential Tasks
{P} {P} T1T1 {R}, {R} {R}, {R} T2 T2 {Q}{Q}
{P} {P} T1; T2T1; T2 {R}{R}

•• Proof Rule 2Proof Rule 2: Choice Task: Choice Task
∀∀tbtb: Time, : Time, ∀∀mbmb: Memory:: Memory:
{P {P ∧∧b}b}COND(COND(tbtb, , mbmb);); T1 T1 {Q}, {P {Q}, {P ∧¬∧¬b}b}COND(COND(tbtb, , mbmb);); T2 T2 {Q}{Q}
{P} {P} ifif b b thenthen T1 T1 elseelse T2T2 {Q}{Q}

•• Proof Rule 3Proof Rule 3: Loop Task: Loop Task
∀∀tbtb: Time, : Time, ∀∀mbmb: Memory:: Memory:
{P{P→→Inv}, {Inv Inv}, {Inv ∧∧ bb∧∧terminate} terminate} COND(COND(tbtb,,mbmb);T);T {inv},{inv},
{Inv{Inv∧¬∧¬bb∧∧terminate} terminate} COND(COND(tbtb,,mbmb);); {R},{R},
{R{R∨∨{Inv {Inv ∧∧ ¬¬terminate}} terminate}} →→ QQ
{P} {P} whilewhile b b dodo TT {Q}{Q}

39

Usage Certificate Generation

• Translate Resource Specification into PVS Logic

• Automate proof generation using PVS strategies
Simple task, Sequential tasks , Choice task, Loop task

• Generate Certificate Skeleton

Usage Certificate Generation

Translate Resource Specification into PVS Logics
P9 : [StateP9 : [State-->>boolbool] =] =

((LAMBDA s : state) : now(s) = t0 + 4((LAMBDA s : state) : now(s) = t0 + 4
ANDAND memmem(s) = m0 AND terminate(s))(s) = m0 AND terminate(s))

B9: program =B9: program = seqseq (bb(16), (bb(16), srvcsrvc((TgenerateRandomTgenerateRandom,,
MgenerateRandomMgenerateRandom))))

(Note: Program is a predicate type relating two states)(Note: Program is a predicate type relating two states)

Q9 : [StateQ9 : [State-->>boolbool] = (LAMBDA s :] = (LAMBDA s :
now(s) = t0 +now(s) = t0 + TgenerateRandomTgenerateRandom + 20 AND+ 20 AND
memmem(s) = m0 +(s) = m0 + MgenerateRandomMgenerateRandom ANDAND
terminate(s))terminate(s))

CORB9 : LEMMA B9 => spec (P9, Q9)CORB9 : LEMMA B9 => spec (P9, Q9)

40

Usage Certificate Generation

Automate proof generation using PVS strategiesAutomate proof generation using PVS strategies

Example: Simple task strategyExample: Simple task strategy
((defstep simpletaskdefstep simpletask (task p, q)(task p, q)
(auto(auto--rewrite task p q)rewrite task p q)
(auto(auto--rewrite "NOT" "AND" "OR" "IMPLIES" "Valid")rewrite "NOT" "AND" "OR" "IMPLIES" "Valid")
(auto(auto--rewrite “bb" “rewrite “bb" “srvcsrvc" "" "seqseq““

""ifthenelseifthenelse" "" "ifthenifthen" "spec")" "spec")
(expand "=>") ((expand "=>") (skosimpskosimp) (assert)) (assert)
(repeat (try ((repeat (try (skosimpskosimp*) (assert) (skip)))))*) (assert) (skip)))))

Usage Certificate Generation

•• PVS Proof for CORB9:PVS Proof for CORB9:
(|CORB9| "" (EXPAND "B9") (("" (EXPAND "P9") (|CORB9| "" (EXPAND "B9") (("" (EXPAND "P9")
(("" (EXPAND "Q9") (("" (EXPAND "(("" (EXPAND "Q9") (("" (EXPAND "seqseq") (("" (EXPAND "spec")") (("" (EXPAND "spec")
(("" (EXPAND "bb") (("" (EXPAND "(("" (EXPAND "bb") (("" (EXPAND "srvcsrvc") (("" (EXPAND "=>")") (("" (EXPAND "=>")
(("" (ASSERT) (("" (SKOSIMP*) (("" (ASSERT) (("" (ASSERT) (("" (SKOSIMP*) (("" (ASSERT)
(("" (SKOSIMP*) (("" (ASSERT) (("" (SKOSIMP*) (("" (SKOSIMP*) (("" (ASSERT) (("" (SKOSIMP*)
(("" (ASSERT) NIL) ..NIL))(("" (ASSERT) NIL) ..NIL))

•• Corresponding Certificate Skeleton:Corresponding Certificate Skeleton:

CORB9: S1 B9 P9 Q9CORB9: S1 B9 P9 Q9

(Note: To prove CORB9, apply strategy S1 to B9 P9 Q9)(Note: To prove CORB9, apply strategy S1 to B9 P9 Q9)

41

OnOn--line Validationline Validation

Mobile Code with Resource Skeleton
and Usage Certificate Skeleton

Resource Bound Calculation

Resource Skeleton Validation

Certificate Restoration

Certificate Verification

Run-time Events Insertion

Resource
Security
Policy

Exception
Handling

instantiation

invalid?

violation?

violation?

Lessons Learned from ExperimentsLessons Learned from Experiments

•• Ongoing experimentation with open source Ongoing experimentation with open source
NETNET--SNMP toolkitSNMP toolkit

•• Code size augmentation (+18%Code size augmentation (+18%--20%)20%)

•• Automatic certificate generation (seconds)Automatic certificate generation (seconds)

•• OnOn--line certificate validation (seconds)line certificate validation (seconds)

•• RunRun--time monitoring overhead (milliseconds)time monitoring overhead (milliseconds)

Reported in Reported in “Enforcing Resource Bound Safety for Mobile SNMP “Enforcing Resource Bound Safety for Mobile SNMP
Agents” , Proceedings of ACSAC, Las Vegas, December 2002Agents” , Proceedings of ACSAC, Las Vegas, December 2002

42

A Target ApplicationA Target Application

Defense against DDOS by “Pushback”Defense against DDOS by “Pushback”

•• Upon attack, target launches probes to instruct Upon attack, target launches probes to instruct
neighboring routers to recognize attack packetsneighboring routers to recognize attack packets

•• Routers trace attack packets to immediate Routers trace attack packets to immediate predecessor
routers from which the attack packets arrive and then routers from which the attack packets arrive and then
launch probes to instruct those predecessors to launch probes to instruct those predecessors to
recognize attack packets, and the process repeats …recognize attack packets, and the process repeats …

•• Routers at the edge of the network shut off attack Routers at the edge of the network shut off attack
traffic at the sourcestraffic at the sources

CaveatCaveat

Attacker may attack the routers themselves. We need Attacker may attack the routers themselves. We need
to ascertain to ascertain Resource Bound Security Resource Bound Security on routers.on routers.

A Target ApplicationA Target Application

DDOS Attack and Resource Bound SecurityDDOS Attack and Resource Bound Security

Target
T Router

Router

Router

Router

Router

Router

Attacker

Attacker

43

ConclusionConclusion

•• TINMAN framework provides full coverage for TINMAN framework provides full coverage for
resource bound safetyresource bound safety

Source Code Analysis + Formal method + Runtime Monitoring Source Code Analysis + Formal method + Runtime Monitoring

•• Static validation reduces runStatic validation reduces run--time checking time checking
overhead. Runtime monitoring checks resource overhead. Runtime monitoring checks resource
assertions that cannot be verified staticallyassertions that cannot be verified statically

•• Code providers are not to be trusted at all; Code providers are not to be trusted at all;
TINMAN aims to enable code recipient to TINMAN aims to enable code recipient to
achieve resource bound safety relatively achieve resource bound safety relatively
efficientlyefficiently

TRUST BUT ISOLATE, CHECK AND TRUST BUT ISOLATE, CHECK AND MONITORMONITOR

EventEvent--Based RealBased Real--Time MonitoringTime Monitoring

A. Mok, G. Liu & C.G. LeeA. Mok, G. Liu & C.G. Lee

44

OutlineOutline

•• IntroductionIntroduction

•• Event Model & FunctionsEvent Model & Functions

•• Simple Constraint & Timing ConstraintSimple Constraint & Timing Constraint

•• Implicit ConstraintImplicit Constraint

•• Compilation & Monitoring ApproachCompilation & Monitoring Approach

•• Timing Constraint on Time IntervalsTiming Constraint on Time Intervals

•• Timing Constraint with Confidence ThresholdTiming Constraint with Confidence Threshold

•• SummarySummary

IntroductionIntroduction

•• Many applications of timing constraintsMany applications of timing constraints
Timing constraints exist in many realTiming constraints exist in many real--life applications, e.g., airlife applications, e.g., air--
traffic control, medicaltraffic control, medical--life support, network management, stock life support, network management, stock
market watch, etc.market watch, etc.

•• Need for monitoring timing constraintsNeed for monitoring timing constraints
Despite realDespite real--time scheduling effort, timing constraint violation time scheduling effort, timing constraint violation
may still occur due to system failures, design errors as well asmay still occur due to system failures, design errors as well as
implementation errorsimplementation errors

•• Need for detecting violations as early as possibleNeed for detecting violations as early as possible
Catching timing constraint violation as early as possible is Catching timing constraint violation as early as possible is
important in many realimportant in many real--time systemstime systems

45

Event ModelEvent Model

•• EventEvent
Represents state change of interestRepresents state change of interest

Examples : Examples :
•• StartTransationStartTransation : Transaction started: Transaction started
•• RecvMsgFromNodeARecvMsgFromNodeA : Received a message from Node A: Received a message from Node A

May have multiple occurrences : May have multiple occurrences :
((ee,,ii) :) : iithth instance of event instance of event ee
Examples :Examples :

•• ((StartTransationStartTransation, 1), 1)
•• ((RecvMsgFromNodeARecvMsgFromNodeA, 2i+1), 2i+1)

RTL (Real Time Logic)RTL (Real Time Logic)

•• RTL is a subset of RTL is a subset of Presburger Presburger Arithmetic plus Arithmetic plus
an an uninterpreteduninterpreted functionfunction

•• Syntax:Syntax:
@(e,i) = time of occurrence of @(e,i) = time of occurrence of iithth instance of event einstance of event e
Time has domain the set of nonTime has domain the set of non--negative integersnegative integers
ExampleExample

Let Let ↑↑TALK denote the event: TALK denote the event: MokMok’’s s talk startstalk starts
Let Let ↓↓TALK denote the event:TALK denote the event: MokMok’’ss talk finishestalk finishes
Then @(Then @(↑↑TALK ,1) TALK ,1) ≥≥ October 2, 2003, October 2, 2003,

@(@(↓↓TALK ,1) TALK ,1) ≤≤ July 13, 3000,July 13, 3000,

46

RTL (Real Time Logic)RTL (Real Time Logic)

•• Semantics:Semantics:
A computation is a sequence of sets of event names A computation is a sequence of sets of event names
(instances) indexed by their common time of (instances) indexed by their common time of
occurrenceoccurrence
A computation satisfies a timing property P is the A computation satisfies a timing property P is the
time values of the event occurrences in the time values of the event occurrences in the
computation satisfy P.computation satisfy P.
 Occurrence index
Event

1 2 3 4 5 6 …

↑TALK

↓TALK

Event FunctionsEvent Functions

@(@(ee,,i i) : occurrence time of the) : occurrence time of the i i thth instance of event instance of event ee
#(#(ee,,t t) : index of the most recent instance of event) : index of the most recent instance of event ee at time at time tt

@@rr((ee,,tt,,i i) = @() = @(ee,#(,#(ee, , tt) +) + i i))
–– the next the next i i thth instance of instance of ee at at tt when when i i > 0> 0
–– the the i i thth recent instance of recent instance of ee at at tt when when ii ≤≤ 00

≤
<

=
otherwisetietsi

etif
te

),@(..)max(
)1,@(0

),(#

47

Event Function ExamplesEvent Function Examples

@(UP,2) = 30@(UP,2) = 30

@@rr(UP, @(DN,1), 1) (UP, @(DN,1), 1)
= @(UP, #(UP, @(DN,1)) +1)= @(UP, #(UP, @(DN,1)) +1)
= @(UP, #(UP, 20) +1)= @(UP, #(UP, 20) +1)
= @(UP, 1+1) = 30= @(UP, 1+1) = 30

(UP,1) (UP,2) (UP,3) (UP,4)(DN,1)

Time
10 20 30 40 50

Simple ConstraintSimple Constraint

Form: Form: TT11 + + DD ≥≥ TT22
TT11, , TT22 : @ function, relative @ function, or 0: @ function, relative @ function, or 0
DD : an integer constant: an integer constant
one variable may appear in @ functionsone variable may appear in @ functions’’ occurrence occurrence
parametersparameters

ExamplesExamples
Deadline constraint:Deadline constraint: @@(e(e11,,i)i) ++ 1010 ≥≥ @@(e(e22,,i+2)i+2)
Delay constraint:Delay constraint: @@(e(e22,,i)i) -- 1010 ≥≥ @@(e(e33,,2i)2i)

48

Timing ConstraintTiming Constraint

•• Formulas of simple constraints in disjunctive normal Formulas of simple constraints in disjunctive normal
formsforms

•• Only one variable is allowed in one formulaOnly one variable is allowed in one formula

•• Example:Example:
@(@(StartTStartT,i) + 100 ,i) + 100 ≥≥ @@rr((CommitTCommitT,@(,@(StartTStartT,i),0) ,i),0)
∨∨ @(@(StartTStartT,i) + 100 ,i) + 100 ≥≥ @@rr((AbortTAbortT,@(,@(StartTStartT,i), 0),i), 0)

Constraint GraphConstraint Graph

@(e@(e11,i) + 5 ,i) + 5 ≥≥ @(e@(e22,2i) ,2i) ∧∧ 10 10 ≥≥ @(e@(e11,i),i)

∧∧ @(e@(e22,2i) ,2i) –– 10 10 ≥≥ @@rr(e(e33, @(e, @(e22,2i), 1),2i), 1)

0 @(e1,i) @(e2,2i)

@(e3,(@e2,2i),1)

10 5

-10

49

Detecting Violations withoutDetecting Violations without
Implicit ConstraintsImplicit Constraints

@(a,i)
100

-95

@(a,i) + 100 ≥ @(b,i) (1)
@(b,i) – 95 ≥ @(c,i) (2)

0

a

10

c

50

b

0

a

10

c

100

VIOLATION

VIOLATION

@(b,i)

@(c,i)

Detecting Violations withDetecting Violations with
Implicit ConstraintsImplicit Constraints

(3) is violated (3) is violated (1) or (2) will be violated eventually(1) or (2) will be violated eventually

@(a,i) + 5 ≥ @(c,i) (3)
5

0

a

5

VIOLATION

@(a,i) + 100 ≥ @(b,i) (1)
@(b,i) – 95 ≥ @(c,i) (2)

@(a,i)
100

-95

@(b,i)

@(c,i)

50

Separating Compilation & MonitoringSeparating Compilation & Monitoring

•• Compilation : O(Compilation : O(nn33))
Calculate all pairs shortest pathCalculate all pairs shortest path
Detect negative cyclesDetect negative cycles
Eliminate unnecessary Eliminate unnecessary pathspaths

•• RunRun--time Monitoring : O(time Monitoring : O(nn))
Initiate the compiled constraint graphInitiate the compiled constraint graph
Update pathsUpdate paths
Check related constraintsCheck related constraints

Removing Unnecessary ConstraintsRemoving Unnecessary Constraints

@(e1,i)

@(e2,i) @(e4,i)

@(e3,i)
@r(e5,(@e4,i),1)

10 5

-4

3
4

@(e1,i)

@(e2,i) @(e4,i)

@(e3,i)
@r(e5,(@e4,i),1)

1 5

-4

3
4

4

-1

9
Rule 0Rule 3

Rule 2

Rule 1,3

51

Removing Unnecessary ConstraintsRemoving Unnecessary Constraints

•• Rule 0Rule 0 : Longer paths are unnecessary: Longer paths are unnecessary

•• Path Path is unnecessary is unnecessary iffiff
Rule Rule 11 :: uu or or vv correspond to relative @ function or correspond to relative @ function or
Rule Rule 2 2 :: l l ≤≤ 0 or0 or

Rule Rule 3 3 :: mm ≥≥ 00

wvu ml →→

Extension: Timing Constraints Extension: Timing Constraints
on Time Intervalson Time Intervals

•• Interval TimestampInterval Timestamp
[[min_timemin_time, , max_timemax_time]]
Actual occurrence can be anywhere between Actual occurrence can be anywhere between min_timemin_time and and
max_timemax_time

•• ππ :: maximum length of the timestampmaximum length of the timestamp

•• Simple Timing Constraint : Simple Timing Constraint : II11 + + DD ≥≥ II22 U U
II1 1 ,I,I2 2 :: interval timestampinterval timestamp
D D :: delaydelay (D (D ≥≥ 0) or deadline (D < 0)0) or deadline (D < 0)
U U :: certainlycertainly or or possiblypossibly

52

Constraints on Time IntervalsConstraints on Time Intervals

I1 I2

certain deadline

I1 I2

possible deadline

I1I2

possible delay

I1

certain delay

possiblyIdI 21 ≥+

certainlyIdI 21 ≥− possiblyIdI 21 ≥−

certainlyIdI 21 ≥+

0, ≥dcasesallIn

d d

dd

I2

Deriving Implicit ConstraintsDeriving Implicit Constraints

d
1

I1 I2

d2

I3

possible certain

d
1
+d

2

I1 I3

PC

I1 + d1 ≥ I2 possibly (1)
I2 + d2 ≥ I3 certainly (2)

max(I1) + d1 ≥ min(I2) (1’)
min(I2) + d2 ≥ max(I3) (2’)
max(I1) + d1 + d2 ≥ max(I3) (1’)+(2’)

53

Deriving Implicit ConstraintsDeriving Implicit Constraints

I1 + d1 ≥ I2 possibly (1)
I2 + d2 ≥ I3 possibly (2)

max(I1) + d1 ≥ min(I2) (1’)
max(I2) + d2 ≥ min(I3) (2’)
max(I1) + d1 + d2 + π ≥ min(I3) (1’)+(2’)

d
1

I1 I2

d
2

I3

possible

d
1
+ d

2
+ π

I1 I3

PPpossible

ExampleExample

(A) Original
Constraint Graph

E1,i

40P -50P

70P

100C
E2,i

E4,i E3,i

E5,i

30C

(C) Compiled
Constraint Graph

E1,i

20PP -50PP

30CC

-20CP

70PC
E2,i

E4,i E3,i

E5,i

40PP

70PP

E1,i

40PP
20PP

50CP

100CC

-50PP

30CC

-20CP

70PP

130PP

70PC

(B) All-Pairs Shortest
Path

E2,i

E4,i E3,i

E5,i

(π =20)

54

Extension: Timing Constraints with Extension: Timing Constraints with
Confidence ThresholdsConfidence Thresholds

•• Simple Timing Constraint: Simple Timing Constraint: II11 + + dd ≥≥ II22 with with PP
II1 1 ,I,I2 2 :: interval timestampinterval timestamp
D D :: delaydelay ((D D ≥≥ 0)0) or deadlineor deadline ((D<D<0)0)
P P :: confidence thresholdconfidence threshold
Timing Violation :Timing Violation :

happens when the specified confidence threshold (happens when the specified confidence threshold (P)P) of the timing of the timing
constraint cannot be maintainedconstraint cannot be maintained

•• ExampleExample
@(e@(e11,i) + 100,i) + 100 ≥≥ @(e@(e22,i),i) with 50%with 50%

Satisfaction Probability CalculationSatisfaction Probability Calculation

d

I1

min2

I2
x x+dmin1 max1

d

I1 I2
x x+d

(A) Deadline (B) Delay

max2 min2min1 max1 max2

I2

∫ −+=
)max(

)min(22
21

1

1

))(),0),min(((
)()(

1 I

I
dxIlenIdxMAXMIN

IlenIlen

∫ −−=
)max(

)min(22
21

1

1

))(),0,)(max((
)()(

1 I

I
dxIlendxIMAXMIN

IlenIlen

Satisfaction Probability of a deadline

Satisfaction Probability of a delay

55

Monitoring Timing Constraint with Monitoring Timing Constraint with
Confidence ThresholdConfidence Threshold

Timing Constraint :@(eTiming Constraint :@(e11,i) + d ,i) + d ≥≥ @(e@(e22,i) with P,i) with P

d+L d+π d+π+Ld0
0%

50%

100%
βγmax1

ββmax

αβmax

max(@(e2,i)) offset from min(@(e1,i))

L = len(@(e1,i))=max1-min1

π
π

L
d

2
)maxmax(2

21 +−+
=

π
π

2
2max2minmax2 211 +−++

=
d

πL
d

2
)minmax(1

2
12 +−

−=

achievable maximum satisfaction probability

ConclusionConclusion

•• Event Based MonitoringEvent Based Monitoring

•• Timing ConstraintTiming Constraint

•• Implicit ConstraintImplicit Constraint

•• Pruning Unnecessary ConstraintsPruning Unnecessary Constraints

•• ExtensionsExtensions
Timing Constraints on Time IntervalsTiming Constraints on Time Intervals
Timing Constraints with Confidence ThresholdsTiming Constraints with Confidence Thresholds

56

DiscussionDiscussion

	
	L1.pdf.rdo
	

	s1.pdf.rdo
	
	
	
	
	

	s2.pdf.rdo
	
	
	
	
	
	

	s3.pdf.rdo
	
	
	
	
	
	
	
	
	

	s4.pdf.rdo
	
	
	
	
	
	
	
	
	
	
	
	

	s5.pdf.rdo
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	L2.pdf.rdo
	

	lecture1.pdf.rdo
	
	
	
	
	
	
	
	
	

	lecture2.pdf.rdo
	
	
	
	
	
	
	
	
	
	

	lecture3.pdf.rdo
	
	
	
	

	lecture4.pdf.rdo
	
	
	
	
	

	lecture5.pdf.rdo
	
	

	lecture6-7.pdf.rdo
	
	
	
	
	
	
	
	
	
	
	
	
	

	lecture8.pdf.rdo
	
	
	
	
	
	
	
	
	
	

	L3.pdf.rdo
	

	esses-lec-v04.pdf.rdo
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Baksida.pdf(1).rdo
	

