

Predictably Flexible Real-Time
Systems –

from power plants to home entertainment
applications

Gerhard Fohler 2003
Mälardalen University, Sweden

gerhard.fohler@mdh.se

Roadmap

• event triggered vs. time triggered
implications of activation paradigms

• novel application requirements
• predictable flexibility

- combined approach
• applications

Roadmap

• event triggered vs. time triggered
implications of activation paradigms

• novel application requirements
• predictable flexibility

- combined approach
• applications

• event triggered vs. time triggered
implications of activation paradigms

© Gerhard Fohler, 2003

Activation Paradigms

• activation of activities - tasks
– when are events recognized?
– who initiated activities?
– when are decisions taken?

• event triggered – ET
– event initiates activities in system immediately

• time triggered – TT
– activities initiated at predefined points in time

© Gerhard Fohler, 2003

predictable

deterministic

TT

• offline scheduling
• scheduling table
• slots – time triggered activitation of dispatcher
• runtime dispatcher executes decision in table

☺ deterministic – known beforehand which activity running when
☺ complex demands, distributed, end-to-end, jitter, …
☺ low runtime overhead - table
L inflexible – can only handle what is completely known before

Properties – Time Triggered

© Gerhard Fohler, 2003

Properties – Event Triggered

• online scheduling, priority driven
• event activates scheduler which takes decision
• rules + test

– earliest deadline first (dynamic priority)
– fixed priority

☺ flexible – not completely known activities can be added easily
☺ widely used
L only simple constraints
L high runtime overhead for semaphores, blocking, ...
L limited predictability – keeps deadlines, but cannot determine

when exactly

flexible

ET

© Gerhard Fohler, 2003

Effects on Design

• activation paradigm is central design decision
• “either – or” decision

– advantages of one method at expense of those of other
– demands outside paradigm need to be “squeezed in”

• system wide implications
– same properties for all activities
– mostly highest level

monolithic approaches - “power plant” approaches
• single system for single application
• single paradigm for single class of demands
• high effort and cost

Roadmap

• event triggered vs. time triggered
implications of activation paradigms

• novel application requirements
• predictable flexibility

- combined approach
• applications

• novel application requirements

© Gerhard Fohler, 2003

Novel Applications

mix of activities and demands
• core system with high demands

– strict timing behavior
– safety critical, fault tolerant
– proven and tested for worst case

• hard real-time applications
– temporal correctness, etc.

• flexible real-time applications
– not completely known
– some deadlines can be missed

• non real-time activities
– must not disturb real-time activities

© Gerhard Fohler, 2003

TT ET

predictable
high cost

deterministic

flexible
low price

not deterministic behavior of critical activities

coresystem

hard real-time appl.

flexible RT appl.

non RT appl.

high cost even for non critical applications

coresystem

hard real-time appl.

flexible RT appl.

non RT appl.

high cost even for non critical activities

© Gerhard Fohler, 2003

Offline Schedules – a Closer Look

• general, complex (temporal) constraints
• offline scheduler

– resolves demands
– constructs single solution meeting all demands
– table for least common multiple of periods

• no flexibility

© Gerhard Fohler, 2003

NW

C
N1

A
N0

dl(PG)

B

D

est dl

est dl

• analysis of offline schedule and demands
• limit task executions - target windows

– demands fulfilled, if tasks execute within target windows
– starttime, deadline pairs

• ready for dynamic, event triggered scheduling

target window

target window

© Gerhard Fohler, 2003

target windows of tasks
flexibility analysis

original timing concstraints

flexibility - complexity

scheduling table
offline scheduler

0 - 0

ok - ok

complexity reduction

original - NP
offline, TT

offline tasks noch nicht geschützt!

• intervals, spare capacity
– amount and location of free resources in Systen
– simple protection mechanmism for offline tasks at runtime
– simple guarantee test for aperiodic tasks
– 4 integers per task

EDF tasks

standard EDF scheduling

ints., spare cap.

protected offline tasks

online, ETonline, ET

Roadmap

• event triggered vs. time triggered
implications of activation paradigms

• novel application requirements
• predictable flexibility

- combined approach
• applications

• predictable flexibility
- combined approach

© Gerhard Fohler, 2003

Predictable Flexibility

target windows control flexibility of task execution
• target window = original task execution

no flexibility, original schedule
• target window after flexibility analysis

flexibility of execution while meeting demands
• reduced target windows

reduced flexibility, e.g., for jitter control
• modifying target windows selects flexibility of tasks individually

© Gerhard Fohler, 2003

Fixed Priority Scheduling

• so far time triggered to event triggered,earliest deadline first
(EDF) – dynamic priorities

• how about fixed priority scheduling (FPS)?
• simple, but limited constraints
• transformation method:

– takes offline schedule
– determines task attributes, such that when execute with FPS

at runtime: offline schedule reenacted
– target windows, set of priority inequalities, integer linear

programming
• now transformations between offline, EDF, and FPS

© Gerhard Fohler, 2003

target windows of tasks
flexibility analysis

original temporal constraints

scheduling table
offline scheduler

offline, TT

offline tasks noch nicht geschützt!
online, ETonline, ET

EDF tasks

EDF scheduling

FPS tasks

FPS scheduling offline scheduling

© Gerhard Fohler, 2003

• core system
offline scheduling

• hard real-time applications
offline scheduling or online scheduling

• flexible real-time applications
combined offline/online approach

• non real-time activities
together with combined offline/online

• flexibility individually configured

• guaranteed tasks protected

© Gerhard Fohler, 2003

predictable

deterministic

TT

flexibel

ET

flexible

ET

core system

hard real-time appl.

flexible RT appl.

non RT appl.

Roadmap

• event triggered vs. time triggered
implications of activation paradigms

• novel application requirements
• predictable flexibility

- combined approach
• applications • applications

© Gerhard Fohler, 2003

Applications

• two example applications for predictable flexibility
– real-time control systems
– home entertainment networks – video streaming

© Gerhard Fohler, 2003

Real-time Control Systems

• mix of task demands
• sampling – actuating tasks: very strict constraints
• deviations results in jitter, error

– sampling jitter
– sampling-actuation (delay) jitter

• other tasks flexible

© Gerhard Fohler, 2003

• error from control point of view, bad system response, instability

predictable flexibility:
restrict (=zero) flexibility for sampling actuating tasks
(predict exact times, even non periodic for compensation)
other tasks flexible

© Gerhard Fohler, 2003

Home Entertainment Networks

• current, analog

© Gerhard Fohler, 2003

stream
eg IP

digital
in home
entertainment
network
wired - wireless

© Gerhard Fohler, 2003

Characteristics

mix of streams and demands
• high quality video for consumer terminals, eg, TV sets,movies

– strict real-time behavior
• frame rate
• continuity

• mobile devices, eg, for news, sports
– less strict demands, but good adaptive quality

• IP
– internet, www
– ok performance, not interfere with “quality streams”

• variations in MPEG stream demands and network availability

© Gerhard Fohler, 2003

• real-time methods to determine resource demands of groups of
pictures

• offline “skeleton” of reserved resources for minimum quality of
service of guaranteed streams

• online handling of additional frames
– acceptance tests to

• select “best” group of frames
• guaranteed to be decoded – no loss due to partial frames

• various streams for various devices, networks, quality

© Gerhard Fohler, 2003

stream
eg IP

digital
in home
entertainment
network
wired - wireless

• Mitsubishi Research Labs
• real-time communication middleware – IP
• NT - CE

MidART

© Gerhard Fohler, 2003

stream
eg IP

• EU – IST Project
• Philips coordinator
• IP, bluetooth,firewire, etc

FABRIC

© Gerhard Fohler, 2003

Summary

• predictable flexibility
configure amount of flexibility for each task individually

• system with mix of activities and demands
select appropriate methods and costs

• combine event triggered and time triggered activation schemes
• transform between offline, EDF, FPS scheduling schemes

less scheduling centric design
• applied to applications with mixed demands

– control
– in home entertainment networks

© Gerhard Fohler, 2003

THE END

© Gerhard Fohler 2003 1

Pre Run-time Scheduling – Flexibility
Integration Offline - Online

Real-Time Systems - ESSES
Gerhard Fohler

Mälardalen University, Sweden
gerhard.fohler@mdh.se

© Gerhard Fohler 2003 2

Offline schedules

• general timing constraints
• offline scheduler

– resolves constraints
– constructs one solution which meets all constraints

• fixed (blind) runtime execution
• no flexibility

• how can we
– increase flexibility
– add dynamic tasks
– integrate with online scheduling methods

© Gerhard Fohler 2003 3

N1

N0

NW

C
N1

A
N0

A B C D

C

dl(PG)

B

D

D

© Gerhard Fohler 2003 4

Slot Shifting…

Offline

• timing constraints P
• offline schedule P

© Gerhard Fohler 2003 5

• we have
– offline constructed schedule

• we want
– include dynamic tasks
– schedule them online

• what can we do?
– include in offline schedule (e.g., pseudo periodic)

⇒ inefficient
– fit into empty slots ⇒ no guarantees
– we can do better!

© Gerhard Fohler 2003 6

“Background Service”

0 4 8 12 16 20 24 28

CPU

NW

A

aper
c=1

fixed pre runtime schedule:

© Gerhard Fohler 2003 7

Basic Idea

0 4 8 12 16 20 24 28

CPU

NW

A

aper
c=1

shift A’s slots

© Gerhard Fohler 2003 8

Shifting pre-runtime tasks

• pre runtime schedule assigns fixed times for execution
– although different times possible
– overconstrains schedule

• we have to select one out of several possible times
• …for the sake of algorithm only

• we know, that we can shift A
– execute the aperiodic task at once
– feasibility of tasks not violated
– how much and where can we shift?
– what are boundaries?

© Gerhard Fohler 2003 9

Shifting tasks

0 4 8 12 16 20 24 28

CPU

NW

A

msg receipt msg sending

A A AAA

© Gerhard Fohler 2003 10

Limitations on Shifting
we can shift tasks
limitations
• receipt of message
• sending of message
• earliest start time of precedence graph, end-to-end constraints,

task chain
• deadline of -”-

calculate start time, deadline pairs for tasks
• expresses flexibility of task
• reduces overconstraining
• fit in aperiodic task by shifting as long as these constraints met

© Gerhard Fohler 2003 11

N1

N0

NW

C
N1

A
N0

A B C D

C

dl(PG)

B

D

D

est dl

est dl

block (AB)

block (CD)

© Gerhard Fohler 2003 12

These tasks are assigned fixed starttimes or deadlines.
(Subgraphs of precedence graphs allocated to nodes combined.)

⇒ independent tasks with starttimes, deadlines on single nodes

simple EDF runtime scheduling

© Gerhard Fohler 2003 13

Slot Shifting …

Offline
• timing constraints
• offline schedule
• earliest start times, deadlines P

© Gerhard Fohler 2003 14

How much shifting?

• know what is
– earliest time to start task
– latest time to finish

• aperiodic arrives: how far can we shift static task?

© Gerhard Fohler 2003 15

• latest start time
start no later or violate deadline

• have to ensure when executing aperiodics
how?

• more complex dispatching
still next task, but check for constraints

• more memory - 3 integers per task

0 4 8 12 16 20 24 28

CPU

earliest start time, est deadline, dl

A

latest start time, lst

© Gerhard Fohler 2003 16

Slot Shifting

Offline
• timing constraints
• offline schedule
• earliest start times, deadlines

• latest start times P

© Gerhard Fohler 2003 17

Insert how much? Where?

so far soft aperiodics
can we give guarantees for firm aperiodics?
• worst case execution time
• deadline
• before start, want to guarantee that we can complete them

how can we decide?
• need idle resources for aperiodics
• before deadline of aperiodic
• which resources can we use?

© Gerhard Fohler 2003 18

0 4 8 12 16 20 24 28

dlA

A

estA

dlB

B

estB

aper. c=2 c=10

ok P
not ok

© Gerhard Fohler 2003 19

Spare Capacities

• spare capacities, sc = length of execution interval
- execution times

• available for aperiodic tasks
• know amount and location from schedule!

dlA

A

estA

0 4 8 12 16 20 24 28

unused resources, spare capacities

© Gerhard Fohler 2003 20

NW

C
N1

A
N0

B

D

est dl

est dl

block (AB)

block (CD)

sc=5-3=2

sc=8-3=5

est

sc=6-0=6

© Gerhard Fohler 2003 21

Slot Shifting

Offline
• timing constraints
• offline schedule
• earliest start times, deadlines
• latest start times
• spare capacities Pnot yet…

© Gerhard Fohler 2003 22

Intervals

sort deadlines ⇒ disjoint invervals:
• end: deadline of task(s)
• tasks with that deadline
• spare capacity, sc

the amount of idle resources in that interval
• start: max of est of task(s) and end previous interval

• empty intervals:
– end(Ii-1)<start(Ii)
– wcet = 0

© Gerhard Fohler 2003 23

A
N0

B

est(AB) dl(AB)

block (AB)

est(X) dl(X)

block (X)

I(AB)

sc(I(AB))=5-3=2
I(X)

sc(I(X))=3-3=0

∑
∈

−=
IT

TwcetIIsc)(||)(..almost the truth…

© Gerhard Fohler 2003 24

• intervals ≠execution intervals!

© Gerhard Fohler 2003 25

A
N0

B

est(AB) dl(AB)

block (AB)

est(X) dl(X)

block (X)

I(AB)

sc(I(AB))=5-3=2
I(X)

sc(I(X))=3-4=-1

sc(I(AB))=5-3 -1=1

“borrowing”

© Gerhard Fohler 2003 26

)0),(min()(||)(1+

∈

+−= ∑ i

IT

ii IscTwcetIIsc
i

borrowing mechanism:

• if tasks in subsequent interval need more resources than
available in it:
execute in other interval, use resources from there “borrow”

• run-time mechanisms resolve negative spare capacity

• only for calculation and flexibility

• start of interval can be ≠ earliest start time

• earliest start time checked separately

© Gerhard Fohler 2003 27

Slot Shifting

Offline
• timing constraints
• offline schedule
• earliest start times, deadlines
• latest start times
• intervals P
• spare capacities P

© Gerhard Fohler 2003 28

Online Mechanisms- Scheduling

online scheduler invoked at each node after each slot

• check for new aperiodic tasks
• guarantee algorithm
• take scheduling decision
• update spare capacities
• execute scheduling decision

earliest deadline first

© Gerhard Fohler 2003 29

• after each slot, scheduling decision taken locally at each node
– no ready task:

CPU idle
– sc(Ic) > 0, ∃ soft aperiodic task A:

execute A
– sc(Ic) = 0:

an offline or guaranteed task has to be executed or
deadlines are missed
takes care that no latest start time is missed!
no other mechanism needed, eg, watchdog, etc
implicit invocation, no extra memory needed

– sc(Ic) > 0, ¬∃ soft aperiodic task:
offline or guaranteed task executed

© Gerhard Fohler 2003 30

Acceptance of aperiodics

• aperiodics (without deadline):
sc > 0: one slot can be given to it

• firm aperiodics (wcet and deadline):
want them executed either completely or not at all

⇒ guarantee algorithm

O(N)

© Gerhard Fohler 2003 31

• aperiodic task A (r,wcet, dl)
• three parts of spare capacities available

0 4 8 12 16 20 24 28

I0 I1 I2 I3

r dl

– sc(Ic): remaining sc in current interval

– sc(Ii): sc(Ii)>0, c < i ≤ l, end(Il) ≤ dl(A), end(Ii+1) > dl(A),
sc in all full intervals between r and dl

– min(sc(Il+1), dl(A) - dl(I)), minimum spare capacities of
last interval or up to the deadline of aperiodic in last interval

© Gerhard Fohler 2003 32

Guarantee

• if sum of total sc between dl and r are larger or equal wcet,
guarantee

• need to ensure guarantees resources are not used otherwise
• after guarantee:

– update interval l
– update interval l-1
– …
– update interval c

© Gerhard Fohler 2003 33

Spare capacities at runtime

• aperiodic execution
– decrease spare capacity of current interval

A Bblock (AB) block (X)

I(AB), sc(I(AB))=2 I(X), sc(I(X))=0

N0

at t: sc(I(AB))=2-1=1 I(X), sc(I(X))=0

t

© Gerhard Fohler 2003 34

• no execution
– decrease spare capacity of current interval

A Bblock (AB) block (X)

I(AB), sc(I(AB))=2 I(X), sc(I(X))=0

N0

at t: sc(I(AB))=2-1=1 I(X), sc(I(X))=0

t

X

© Gerhard Fohler 2003 35

• execution of offline task T
– T∈current interval Ic

spare capacity stays the same

A Bblock (AB) block (X)

I(AB), sc(I(AB))=2 I(X), sc(I(X))=0

N0

at t: sc(I(AB))=2 I(X), sc(I(X))=0

t

© Gerhard Fohler 2003 36

• execution of offline task T
– T∈future interval If

• spare capacity Ic decreased
• spare capacity If increased

A Bblock (AB) ock (X)

I(AB), sc(I(AB))=2 I(X), sc(I(X))=0

N0

at t: sc(I(AB))=2-1=1 I(X), sc(I(X))=0+1=1

t

bl

© Gerhard Fohler 2003 37

• update capacity of If
– if ≥ 0 …done
– if < 0 … need to update previous interval If-1

• sc(If-1)
– if ≥ 0 …done
– if < 0 … need to update previous interval If-2

• ….
• until sc ≥ 0 or Ic

© Gerhard Fohler 2003 38

Shifting Messages

• communication medium resource like CPU from scheduling
perspective

• shift messages as well
• restriction to sending messages earlier

– no receiver synchronization necessary
– may increase spare capacities at receiver
– when message received - spare capacities updated
– else same

© Gerhard Fohler 2003 39

Analysis

• MARS
• 4 CPUs
• TDMA network
• ~1600 task sets generated and pre runtime scheduled
• randomly generated aperiodic tasks
• each point in plots 700-1000 task sets
• 0.95 confidence intervals < 5%

© Gerhard Fohler 2003 40

local shifting

0

0.2

0.4

0.6

0.8

1

1.2

0.0 0.2 0.4 0.6 0.8 1.0

combined load

g
u

ar
an

te
e

ra
tio

dl=2*wcet

dl=wcet

© Gerhard Fohler 2003 41

global shifting

0

0.2

0.4

0.6

0.8

1

1.2

0.0 0.2 0.4 0.6 0.8 1.0

combined load

g
u

ar
an

te
e

ra
tio

dl=2*wcet

dl=wcet

© Gerhard Fohler 2003 42

• Periods
• Deadlines
• Start times

Test

Test

SchOnline

SchOffline

• Deadlines
• Guarantee

Aperiodic

• No dl

Firm Soft

Sporadic

Minimum
separation
between
instances

Periodic with constraints

• End-to-end dl
• Inst. separation
• Distribution
• Jitter etc.

Simple Complex

x

x

x

x

x

x x

x

x

“Slot shifting nouveau”

• further acceptance test
• integration with TBS
• ….

© Gerhard Fohler 2003 43

Slot Shifting - Summary

• handle online tasks while maintaining feasibility of offline
scheduled tasks

• offline reduction of complexity
• simple runtime handling
• “interface” for integration of offline and online scheduling

• offline scheduled system for critical activities
• restrict amount of shifting
• flexibility for rest

predictable flexibility

© Gerhard Fohler 2003 44

Articles

• Gerhard Fohler
Joint Scheduling of Distributed Complex Periodic and Hard
Aperiodic Tasks in Statically Scheduled Systems
Proc. of the 16th IEEE Real-Time Systems Symposium, Pisa,
Italy, December 1995.

• Damir Isovic, Gerhard Fohler
Efficient Scheduling of Sporadic, Aperiodic, and Periodic Tasks
with Complex Constraints
Proc. of the 21st IEEE Real-Time Systems Symposium,
Orlando, Florida, USA , November 2000

© Gerhard Fohler 2003 1

Pre Run-time Scheduling - Mode
Changes

Real-Time Systems - ESSES
Gerhard Fohler 2003

Mälardalen University, Sweden
gerhard.fohler@mdh.se

© Gerhard Fohler 2003 2

Mode Changes

• systems undergo a number of mutually exclusive mode during
operation
e.g., air craft ground, take off, flight, landing
– different system activities
– different attributes of activities

altitude not critical on ground
– system configuration

• difficult to handle in single schedule
• provide separate modes plus transitions
• context of offline scheduling
• important in aeronautics

© Gerhard Fohler 2003 3

What is different in modes?

• selection of control loops
• Timing requirements
• attributes of activities (“critical”, “hard”,…)
• system configuration
• reliability

how to deal with pre runtime scheduling?
put all activities of all modes into a single schedule

© Gerhard Fohler 2003 4

What is affected by this approach?

• solutions:
High overhard of incorporating all resource needs, even
mutually exclusive ones.

• design and understandability
– violates modularization and separation of concerns
– large number of design items
– difficult to recognize coherent activities

• testing
input space larger than really required

better approach
separate modes as well as mode changes

© Gerhard Fohler 2003 5

Requirements

• deterministic temporal behavior
• specification

– timing constratints
– also for mode changes, transitions
– adhere to design principles of single modes

– not new methods
– consistent design approach

• retain continuous system operation during mode changes!
– tasks executing in old, new mode, and transitions not

impaired by mode change
– e.g., don’t shutdown enginees during transition in midair

© Gerhard Fohler 2003 6

Design/Specification Issues

Mode:
• single operational phase, performed by a single static schedule

(-ing table)
• specified as precedence graphs (transactions, execution chains)
• one mode:

– set of precedence graphs - all activities in one mode
• two modes:

– set of precedence graphs for each mode separately
– allow tasks in both modes, label
– second dimension: modes
two dimensional precedence constraints

© Gerhard Fohler 2003 7

TA

TB TC

TD

TH

TI

M0

TA

TA

MF

© Gerhard Fohler 2003 8

Transition Precedence Graph

transition:
tasks of
• old mode
• new mode
• plus (optional) additional ones

– complete old activities
– prepare for new mode
– intermediate actions

• viewed as mode itself, but not executed continuously
• same design method as for single mode
• ongoing activities part of transition schedule

© Gerhard Fohler 2003 9

TA

TB TC

TD

TH

TI

M0

TF

TG

MF

MT

TE

© Gerhard Fohler 2003 10

Runtime handling

• mode change requested
– switch to transition mode, schedule when feasible
– execute transition mode until all activities in it completed
– switch to new mode when feasible

• switching directly into mode schedule may cause problems, e.g.,
inconsistencies, aborted tasks, etc.

• agreement on which mode should be changed two if more than
one request - offline resolution

© Gerhard Fohler 2003 11

Design Issues

Semantic constraints
what do we need to be able to express?

• immediate change, aborting current activities
empty transition graph

• completing all current activities before changing
transition graph identical to graph of old mode

• completing some of the current activities
transition graph comprised of part of activities of old mode and
new mode

• additional activities
old, new mode activities, plus new ones

© Gerhard Fohler 2003 12

Mode change conditions
e.g., t>50
– consistency check
– conflict resolution
– who initiates mode change request
– design via automaton
– global consistent view

© Gerhard Fohler 2003 13

TA

TC TE

TG

M0

MF

MT

mode change request
switch ok

© Gerhard Fohler 2003 14

TA TC TH TB TI TD

TA TC TE TG

M0

MF

MT TA TC TE TG

TG

switch not ok…TE would not be executed

TA TC TH TB TI TD

© Gerhard Fohler 2003 15

Mode Change Schedule Construction

Construct a schedule such, that
• timing constraints of individual modes met
• timing constraints for transitions met
• deterministic behavior
• flexible and fast reaction times

single mode scheduling NP hard..how about that?

© Gerhard Fohler 2003 16

Trick:
switch through requirement

enforce consistency by scheduling tasks at same times in all
modes

then, when a task is executing which is also in another, can
propably switch immediately (still need to check consistency
precedence etc.)

how?
• apply (single-mode) selection strategy to all modes

simultaneously

• predictable
• can specify and guarantee transition deadlines
• simple runtime handling

© Gerhard Fohler 2003 17

TA

TB TC

TD

TH

TI

M0TF

TG

MF

MT

TE

TA TC TH TB TI TD

TA TC TE TG

TGTF

M0

MF

MT
“switch through”

© Gerhard Fohler 2003 18

Runtime handling - II

How can I feasible switch schedules?
• check all requirements before switch - intractable
• resolve all that during schedule construction
• efficient representation in runtime dispatching
• black out slots

– flag at each slot in destination mode
– when set, switch not feasible

– wait till next slot without blackout

– else switch right away
• very memory and time efficient!!!

© Gerhard Fohler 2003 19

TA TC TH TB TI TD

TA TC TE TG

TGTF

M0

MF

MT
“switch through”

blackout slot

© Gerhard Fohler 2003 20

mode change methods for offline schedules presented
• constructs schedules for modes and transitions
• “switches” between scheduling tables in specified, feasible way
• given time, schedule, and mode change request

⇒ known sequence of activities to execute transition
• slot level determinism

© Gerhard Fohler 2003 1

Off-line Scheduling
- Methods and Assumptions

Real-Time Systems - ESSES
Gerhard Fohler 2003

University, Sweden
gerhard.fohler@mdh.se

Mälardalen

© Gerhard Fohler 2003 2

Real-time scheduling - making the right
decisions to guarantee time

physical properties of environment

model - design

timing constraints

run-time dispatching

in field use

functional

temporal

system construction

analysis, testing

© Gerhard Fohler 2003 3

Who is doing the scheduling? And when?

Run-time dispatcher controls which activities are performed at
which time. It controls access to the CPU by tasks.

Part of real-time kernel.

• Keeps track of the system state, e.g., time, resource accesses,
book keeping information, e.g., priorities, deadlines.

• Tasks execute until completion or may be interrupted:
non-preemptive or preemptive.

Non-preemptive dispatching is in general simpler:

– only one task (and stack etc.) active at a time.

– resource access - contention resolved

© Gerhard Fohler 2003 4

• Run-time dispatching is performed according to a set of rules.

• Off-line analysis and testing has to ensure that the provided
rules for the run-time dispatcher are correct:

– when the dispatcher takes scheduling decisions according to
the given rules, all timing constraints are kept.

– off-line guarantees

© Gerhard Fohler 2003 5

How long?

• standard OS schedulers work on strategies without guarantees
– handle “task transition graph” waiting - ready - executing…
– select one out of the ready tasks to execute
– perhaps prevent deadlocks etc.
– go on until shutdown or system lock/crash, e.g., windows

• off-line guarantees: before, for entire mission lifetime
– minutes
– hours, days, more
– need to guarantee every one of them
– combinatorial explosion

© Gerhard Fohler 2003 6

shorten analyzed lifetime
• analyze only single, selected part of lifetime

– worst case proofs
– need to ensure assume worst case is worst case

• restrict complete freedom of task parameters
• periods

• analyze repeating patterns during lifetime
– typically periods
– if harmonic, enough to analyze for duration of longest period
– if not, least common multiple LCM of all involved periods
– can be large
– execute repeatedly

© Gerhard Fohler 2003 7

• System designer selects scheduling strategy and algorithm
Constructs a set of rules for the run-time dispatcher from
specification and timing constraints. These rules range from
complete schedules to priority strategies, etc.

• During analysis/testing, the designer determines, whether the
rules provided will guarantee the temporal behavior, if applied
by the run-time dispatcher.
If no rules can be found or testing gives a negative result, a
redesign has to be done.

• Depending on whether these rules determine most scheduling
decision before run-time or or leave part of the decisions to the
run-time system, the scheduling is called offline (pre run-time,
static) or online (run-time, dynamic).

Guarantees

© Gerhard Fohler 2003 8

Pre run-time vs. run-time scheduling

Pre run-time scheduling constructs complete schedules that are
feasible before the system is used in-field.
This is a proof-by-construction of feasibility.
Run-time dispatching only executes the decision, does not take
any by itself.

☺ Very simple for run-time system, e.g., list or table lookup.
L Inflexible, can only handle fully specified events and tasks,

requires complete knowledge.

© Gerhard Fohler 2003 9

Run-time scheduling constructs a set of rules for run-time
dispatching and a proof (schedulability test) of feasibility when
the rules are kept, before the system is used.
Run-time dispatching can take decisions on its own, as long as
rules are kept.

☺ Flexible, can handle only partially known events and tasks.

L High cost at run-time (book keeping, calculations)
Difficult to predict exact behavior at run-time.

© Gerhard Fohler 2003 10

Run-time scheduling can provide more flexibility, but
no magic:
What is not exactly known before run-time cannot be
guaranteed then, independent of the used scheduling strategy.
Only events for which a task has been specified, i.e., code is
available, can be handled.

work

pre run-time scheduling

run-time scheduling pre run-time run-time

pre run-time run-time

© Gerhard Fohler 2003 11

• Run-time data structures and handling can be engineering
problem, e.g., priority inheritance - paper by Victor Yodaiken

• Micro kernel with system threads, e.g., message handling tricky
with run-time scheduling

Recently, algorithms have been presented to integrate pre run-time
and run-time scheduling – slot shifting.
Benefits from pre run-time, but more flexibility.
→ lecture “integrated offline – online”

© Gerhard Fohler 2003 12

How to schedule within LCM?

• Cyclic scheduling
– tasks in period classes
– schedule tasks within classes
– group task class schedules
– …until all tasks scheduled

• easy to handle, historically popular

very different from offline scheduling!
less powerful, more restrictive, etc
often mixed up

© Gerhard Fohler 2003 13

• off-line scheduling
static, pre run-time
– construct schedule of length LCM
– apply smart method
– fulfill all constraints
– not limited to “period concatenation”

© Gerhard Fohler 2003 14

Off-line Schedule Construction

• time triggered
• totally pre-planned
• global time base
• cars, airplanes
• periodic “world”
• some say all “real tasks of real applications” are periodic
• true for some applications
• generally not!

© Gerhard Fohler 2003 15

Making a periodic world

• “naturally periodic”, e.g., control, sampling
• aperiodic tasks, i.e., without any restriction on arrival

no way
• sporadics

transform into pseudo periodic tasks
assumptions about events
– maximum rate of change, minimum inter arrival interval, mint
– maximum delay of reaction, react
– computation time, comp

• determine period and deadline
• have to ensure that

1. reaction is not late
2. no event missed

© Gerhard Fohler 2003 16

• worst case:

event happens right after task start - misses data just by ε

react

event

ε

comp

event gets reacted by task only at next instance invocation

event reaction completed

© Gerhard Fohler 2003 17

• deadline
dl=comp+s, s≥ 0

• next instance completes no later than react after event
– event starts at t + ε
– reaction finishes at t + p + dl
– t + p + dl - t - ε ≤ react
p + dl ≤ react + ε or p + comp + s ≤ react + ε

react

event

ε

comp

event reaction completed

period pt dl

s

© Gerhard Fohler 2003 18

• maximum value for p - not react too late
p < react + ε - dl or p < react + ε - comp - s

• maximum value for p - not miss event
p < mint

react

event

ε

comp

event reaction completed

period pt dl

© Gerhard Fohler 2003 19

• assume dl=comp; s=0

react

event

ε

comp

event reaction completed

period pt dl



 +

<
mint

 comp-react ε
p

© Gerhard Fohler 2003 20

• Utilization:

• assume dl=comp+s; s>0

• U0 <Us !

ε+−
==

compreact
comp

p
compU0

ε+−−
==

scompreact
comp

p
compU s

© Gerhard Fohler 2003 21

• period and deadline dependent on each other
• tradeoff

– large period:
• low utilization demand
• tight deadline - schedulability problems

– small period:
• relaxed deadline
• high utilization demand

• change for individual instances
e.g., collision, relax deadline

• flexible timing constraints new project

© Gerhard Fohler 2003 22

• if events are rare, but urgent when they occur transformation
inefficient, high utilization demands
e.g.,
mint=1000*comp; react=2*comp:
p < react + ε - comp = comp + ε

• monopolization of CPU

• actual need to handle event without pseudo periodic transformation

1≈
+

=
εcomp

comp
U

001.0
*1000

==
comp

comp
U

© Gerhard Fohler 2003 23

Why use it?

• number of - particular - critical application have periodic nature
• predictable behavior - know exactly what is going on
• testing, certification much easier
• simple fault-tolerance, replica determinism
• receiver based error detection
• non temporal constraints, e.g., cost
• explicit flow control, synchronization
• “proof by construction”
• very simple dispatching
• micro kernel synchronization of system threads
• high resource utilization

© Gerhard Fohler 2003 24

Off-line Scheduling Methods

What do we want to achieve?
• we want to find solutions

– NP hard in more than trivial cases
→ can take very long time

• have to optimize search to find solutions fast
but
• once we find solution, we are done
• likely that first try will not work, maybe solution does not exist
• what if we don’t find one/does not exist?
• total time spent in schedule design:

time of not (finding * #failures) + (1*time of finding)
→ not finding at least as important as finding

© Gerhard Fohler 2003 25

we need
• algorithm for

– fast detection of no solution/not finding
– fast finding of feasible solution

• strategy to
– select tradeoffs
– choose time spent
– allow for detection of why no solution found (difficult)
– good redesign for next schedule attempt

• designer support

most current algorithms concentrate on finding solution only

© Gerhard Fohler 2003 26

Directions

How to construct a schedule?
• simple solution: use online scheduling, e.g., EDF

– still better than online - can backtrack or redesign
– better utilization because resource conflicts are known, don’t

need to assume worst case
– testing
– etc.

• search
– popular
– easy to change constraints
– easy algorithm
– problems with feedback problem - source in search tree

© Gerhard Fohler 2003 27

• genetic algorithms
e.g., simulated annealing
– simple
– does not get stuck easily with hard sub problems
– can handle large task sets
– difficulties with complex constraints
– good for allocation of tasks to nodes in distributed system

• “by hand”
– sometimes really fully by hand
– with support

• resolve difficult parts by hands
• extend existing schedules
• place some tasks by hand

© Gerhard Fohler 2003 28

• safety critical automotive application
– specification of tasks (in place A)
– scheduling (in place B)
– transfer of schedule to chips by engineer (in place C)

• “don’t like these tasks here, they should be separated”
• engineering practice
• cannot be scheduled, because cannot be expressed

→ intelligent scheduling editor
– display schedule
– allow engineer to modify

• provide info about constraints
• allow rescheduling of selected tasks

– current project - SALSART toolsuit
• distributed cooperative schedule design

© Gerhard Fohler 2003 29

• incremental scheduling
– want to modify existing schedule

• upgrades
• new versions
• etc.

– existing schedule trusted, tested, certified - spent high effort
– rescheduling - completely new schedule
– efforts again
– better to keep existing schedule as much as possible
– select “unmovable tasks”
– interactive graphical tool with scheduling support
– research - tool to be implemented

© Gerhard Fohler 2003 30

• networked based
– distributed system
– nodes under control of different suppliers
– not knowledge about internals of other nodes
– neutral designer

• schedules communication
• distribution bandwidth
• specifies timing constraints (“windows”) to nodes

– distributed tool - web based (possible SALSART application)
• also non-cooperative scheduling

– auctioning of time

© Gerhard Fohler 2003 31

Off-line Scheduling and the Real World

• Many algorithms assume tasks, messages, slots, constant
operating system overhead

• real-world demands
– interrupts
– threads, chains
– micro kernel OS

• system threads
• task ensembles for tasks, e.g., message transmission
• depending on scheduling and allocation
• dynamic creation of threads

• do not fit into off-line schedule in straightforward way

© Gerhard Fohler 2003 32

Threads

• threads are shorter than granularity of slots
• better utilization of slots
• scheduling/dispatching happens not only at slot boundaries

• scheduler needs to construct chains as well
• offline scheduler does “micro scheduling”, e.g., thread

cumulating within slot
• backtracking, heuristic etc only at slot boundaries
• not optimal, but tractable

slots

© Gerhard Fohler 2003 33

Interrupts

• interrupts have to be considered
• cannot

– ignore them - too much time demand
– handle them as tasks/threads -

too high overhead, too long response times
– have to account for in analysis during schedule construction
– minimum inter arrival time - maximum overhead

• naïve approach
– assume each task can be hit by a worst case arrival of

interrupts
– ala exact analysis
– very high overhead

© Gerhard Fohler 2003 34

• if task is shorter than minimum inter arrival time
interrupt overhead is considered too often for two consecutive
tasks

interrupt

overhead

assumed worst case arrival pattern

interrupt

overhead

actual worst case arrival pattern

© Gerhard Fohler 2003 35

• sophisticated analysis algorithms
taking into account successors, precedence relations, etc.

• used for analysis only and consideration during schedule
construction

• online scheduled without further provisions

© Gerhard Fohler 2003 36

Off-line Scheduling - Search

precedence graph structure well suited for
(heuristic) search through search tree
• nodes represent (partial) schedule
• edges represent scheduling decisions
• heuristic function used to guide search through search tree
search strategies examples for distributed systems
• A*, IDA*: Fohler 1989, 1991
• branch-and-bound: Ramamritham 1991
• “meta”, two stage branch-and-bound for pipelining

Fohler, Ramamritham 1997
• resulting schedule is a set of schedules for each node in the

distributed system

© Gerhard Fohler 2003 37

Example Taskmodel for Pre Run-time
Scheduling

• Precedence graphs
• period, starttime, deadline for entire precedence graph

(end-to-end)
• release time and deadline for selected tasks
• Precedence constraints with communication (synchronized data

flow) or without (synchronization only)
• preemptive tasks
• simple tasks (black boxes): read input - compute - write output
• communication time over bus bounded
• slots dispatcher runs with granularity, creating slots

© Gerhard Fohler 2003 38

• precedence graphs have different periods:
– different number of instances in schedule
– schedule length: least common multiple, lcm, of all periods
– each precedence graph with period Pi has

lcm / Pi instances in schedule
– construct graph with correct number of instances

comprehensive graph
(only for deadlines < periods)

• generate search tree
• traverse it for solution

© Gerhard Fohler 2003 39

Search tree

A

B

C

D

D'

D

D'

C

C

D'

D

D'

B

C

B

D'

C

C

D'

© Gerhard Fohler 2003 40

• each path in the search from the root represents a (partial) schedule

e.g., the second one to the left: ABCDD

e.g., the rightmost: ADBCD

• branching factor: number of edges from node

determines size of search tree

• non preemption factor: minimum size of “chunk of execution time”

determines size of search tree

© Gerhard Fohler 2003 41

Off-line Scheduling Strategies

• how to minimize the overall time to find schedule
• search parameters

– determine size of expanded search tree
• small tree:

– easy solution can be found fast; but lower chances
– no solution found is detected fast

• larger search tree:
– more time spent to find solution
– long time spent to detect no solution

– can be set by designer
• allows to start with small tree (easy solution fast) and increase

as desired and tolerated

© Gerhard Fohler 2003 42

Analysis (simplified answers)
success ratio: how many solutions found in number of searches
• start depth does not influence success ratio
• larger branching factor (BF) increases success ratio

flattens out fast
• cost for finding solution

– with minimum start depth higher
– with larger branching factor higher

• cost for no solution
– with minimum start depth higher
– increase with BF, higher at lows of non preemption

Conclusions
• start with high start depth
• search with small BF first, don’t increase too much
• use high non preemption factor, lower not too much

© Gerhard Fohler 2003 43

© Gerhard Fohler 2003 44

A*, IDA* Search

• developed by Korf 1984, derivative of A*, Nilson 1982
• heuristic search strategy
• uses heuristic function to guide search

ITERATION()
{
while(DEEPEN(rootnode)not done)

{
threshold=threshold +min_exceed;
min_exceed = infinity;
}

}

© Gerhard Fohler 2003 45

DEEPEN(node)
{apply(node); // apply sched decision, update data
if(feasible(node) == true)

{ if(solution_found(node)) done;

successors= create all successors of node;
// collect tasks, message ready, create sched decisions
calculate f(n) for all nodes in successors;
best_nodes = sort all nodes in succ. by f(n)

for(i=0;i<BRANCHINGFACTOR; i++)
{if((f(best_nodes[i] < threshold)

DEEPEN(best_nodes[i];
else if(f(best_nodes[i] - threshold < min_exceed)

min_exceed = f(best_nodes[i] - threshold;
}

} // if feasible
}

© Gerhard Fohler 2003 46

• task data accessed very often
• elaborate data structures

– on purpose redundancy
– areas instead of pointers

• IDA* linear with search depth in memory need
– search tree represented in area
– size known at program start

© Gerhard Fohler 2003 47

Heuristic Function

• Search tree can be very large
a complete search will take too long

• select “promising” paths in the search tree, e.g., by use of a
heuristic function

• some heuristic search strategies, e.g., A*, explicitly handle
heuristic functions and provide guarantees for finding solutions
based on their quality

• ad hoc heuristic functions, e.g., next deadline first, can be used
as well, but don’t provide guarantees for solutions

• f(n) = g(n) + h(n)
– g(n) real cost so far
– h(n) estimated cost for rest

© Gerhard Fohler 2003 48

• example heuristic function TUR - time until response
– sum of execution ties of remaining tasks

• distributed precedence graph - tricky problem

– sum of remaining communication times
estimation

– idle times
0

• tradeoff
– very ellaborate heuristic function finds solution fast
– but is expensive to calculate - invoked often

e.g., feasible schedule is good heuristic!
• problems if solution does not exist - expands large parts of

search tree

1

RM vs. EDF

Giorgio Buttazzo

Department of Computer Science
University of Pavia

E-mail: buttazzo@unipv.it

2

Basic results

()121

1
−≤∑

=

n
n

i i

i n
T
C

under RM

A set of n periodic tasks can be feasibly scheduled

if

if and only ifunder EDF 1
1

≤∑
=

n

i i

i

T
C

Assumptions:
Independent tasks

Di = TiΦi = 0

3

Schedulability bound

0
10
20
30
40
50
60
70
80
90

100

1 2 3 4 5 6 7 8 9 10

69%

n

CPU%
RM EDF

2

4

Schedulability region

1
U1

U2
10.83

0.83

)12(/1

1

−≤∑
=

n
n

i
i nU

1
1

≤∑
=

n

i
iU

The U-space

RM

EDF

5

Schedulability region

1
U1

U2
10.83

0.83

)12(/1

1

−≤∑
=

n
n

i
i nU

1
1

≤∑
=

n

i
iU

The U-space

2)1(
1

≤+∏
=

n

i
iU

RM

EDF

6

Schedulability region

1
U1

U2
10.83

0.83

The U-space

4/9

1/2

EDF

RM

τ1

τ2

Ci Ti

3

4

6

9

94.0
9
4

6
3

=+=pU

3

7

Schedule

0 9 18

6 120 183

3 6 12

9

15

15
τ1

τ2

EDF

RM

0 9 18

6 120 183

3 6 12

9

15

15

deadline miss

τ1

τ2

8

Questions
• If EDF is more efficient than RM, why

commercial RT systems are still based on RM?

• Why is RM preferred to EDF?

• What are the limitations of EDF that prevent its
use?

After 30 years of work on scheduling,
there are still a lot of misconceptions

9

Typical misconceptions

• RM is easier to implement and analyze;

• RM introduces less runtime overhead;

• RM is more predictable during overloads;

• RM causes less jitter.

They tend to favor RM more than EDF:

4

10

Objectives of this work
1. Address the misconceptions

2. Compare the algs w.r.t. different metrics
⇒ Implementation complexity

⇒ Runtime overhead

⇒ Schedulability analysis

⇒ Robustness during overloads

⇒ Jitter

⇒ Aperiodic task handling

11

Implementation complexity
We have to distinguish two cases:

1. Implementation on top of a fixed
priority kernel

2. Implementation from scratch

kernel

scheduler

scheduler
fixed priority
scheduler

kernel

12

On top of a FP-kernel
RM is straightforward to implement

τ1

τ2

τ3

p1

p2

p3

i
i T
p 1

∝
priorities levels

p3 p2 p1 task priorities

L6 L5 L4 L3L8 L7

p1 p1 p1

p2

p3

fixed priority

5

13

On top of a FP-kernel
EDF requires dynamic priorities

τ1

τ2

τ3

p1

p2

p3

p* i
i d
p 1

∝

p1
p2
p3

p2
p1
p3

p1
p3
p2

p3
p1
p2

14

On top of a FP-kernel

p1
p2
p3

p2
p1
p3

priorities levels

p3 p2 p1 task priorities

L6 L5 L4 L3L8 L7

priorities levels

p3 p2 p1 task priorities

L6 L5 L4 L3L8 L7

EDF sometimes remapping is required:

remapping

15

As a basic kernel mechanism
Both RM and EDF require the same complexity
for queue management:

periodic / aperiodic
criticality
WCET

Minimum Inter. Time
Relative Deadline
Absolute Deadline
Utilization Factor

Task Control Block Under EDF
the absolute deadline
must be updated at
each job release:

di = ri + Ti

(negligible overhead)
···

6

16

Existing EDF kernels

• SPRING (Stankovic-Ramamritham 87)

• YARTOS (Jeffay 92)

• HARTIK (Buttazzo-Lamastra-Lipari 93)

• SHARK (Gai-Buttazzo 99)

• MARTE-OS (Gonzalez 01)

• ERIKA (Gai 01)

• MCU-OS (Carlini-Buttazzo 01)

17

Runtime overhead
Two different types of overhead are considered:

1. Overhead for job release

⇒ EDF has more than RM, because the absolute
deadline must be updated at each job activation

2. Overhead for context switch

⇒ RM has more than EDF because of the higher
number of preemptions

18

Preemptions

τ1

τ2
0

100 205 15 25

217 14

30

28 35

35

RM

τ1

τ2
0

100 205 15 25

217 14

30

28 35

35

EDF
deadline miss

97.0
7
4

5
2

≅+=U

7

19

Preemptions

4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

Number of tasks

Avg. no. of preemptions
(1000 sims of 1000 units)

RM

EDF

ρ = 0.9
T ∈ [10, 100]

20

Preemptions

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
0

10

20

30

40

50

60

70

80

Load

Avg. no. of preemptions
(1000 sims of 1000 units)

RM

EDF

N = 10
T ∈ [10, 100]

21

Example with RM

0 2 4 6 8 10 12 14 16 18 20

10 20

6 12 18

τ1

τ2

τ3

Under RM, preemptions increase
as computation times increase

8

22

Example with RM

0 2 4 6 8 10 12 14 16 18 20

10 20

6 12 18

τ1

τ2

τ3

Under RM, preemptions increase
as computation times increase

23

Example with RM

0 2 4 6 8 10 12 14 16 18 20

10 20

6 12 18

τ1

τ2

τ3

Under RM, preemptions increase
as computation times increase

24

Example with EDF

0 2 4 6 8 10 12 14 16 18 20

10 20

6 12 18

τ1

τ2

τ3

Under EDF, preemptions may decrease
as computation times increase

9

25

Example with EDF

0 2 4 6 8 10 12 14 16 18 20

10 20

6 12 18

τ1

τ2

τ3

Under EDF, preemptions may decrease
as computation times increase

26

Example with EDF

0 2 4 6 8 10 12 14 16 18 20

10 20

6 12 18

τ1

τ2

τ3

Under EDF, preemptions may decrease
as computation times increase

27

Example with EDF

0 2 4 6 8 10 12 14 16 18 20

10 20

6 12 18

τ1

τ2

τ3

Under EDF, preemptions may decrease
as computation times increase

10

28

Example with EDF

0 2 4 6 8 10 12 14 16 18 20

10 20

6 12 18

τ1

τ2

τ3

Under EDF, preemptions may decrease
as computation times increase

29

Schedulability Analysis

RM

EDF

Di = Ti Di ≤ Ti

ΣUi ≤ 1

LL: ΣUi ≤ n(21/n –1)

HB: Π(Ui+1) ≤ 2

LLgL ≤>∀),0(,0

O(n)

∀i Ri ≤ Di

pseudo-polynomial

k
k

i
i

k
ii C

T
RCR ∑

−

=

+=
1

1

pseudo-polynomialpolynomial:

Suff.: polynomial O(n)

RTA
Exact pseudo-polynomial

Response Time Analysis

Processor Demand Analysis

30

RM: harmonic periods

Harmonic task sets are schedulable by RM
if and only if U ≤ 1.

A set of tasks is harmonic if every pair of
periods are in harmonic relation.

A common misconception
The RM schedulability bound is 1 if every
period is multiple of the shortest period.

11

31

Non harmonic periods

0 2 4 6 8 10 12 14 16 18 20

4 12

τ1

τ2

τ3

8 16 20 24

8 16 24

2422

917.0
12
2

8
2

4
2

≅++=U

Any increase in the Ci’s makes the system unschedulable

32

Harmonic task set

0 2 4 6 8 10 12 14 16 18 20

4 12

τ1

τ2

τ3

8 16 20 24

8 16 24

2422

1
16
4

8
2

4
2

=++=U

33

Robustness under overloads
Two situations are considered:

1. Permanent overload

⇒ This occurs when U > 1

2. Transient overload

⇒ This occurs when some job executes
more than expected

12

34

RM under permanent overload

8 16 72

τ1

τ2

τ3

0 24 32 40 48 56 64 80

40 8020 60

0

0

12 24 36 48 60 72 84

• High priority tasks execute at the proper rate
• Low priority tasks are completely blocked

25.1
20
5

12
6

8
4

=++=U

35

EDF under permanent overload

8 16 72

τ1

τ2

τ3

0 24 32 40 48 56 64 80

40 8020 60

0

0

12 24 36 48 60 72 84

• All tasks execute at a slower rate
• No task is blocked

25.1
20
5

12
6

8
4

=++=U

36

EDF is predictable in overloads
Theorem (Cervin ‘03)

If U > 1, EDF executes tasks with an
average period T’i = Ti U.

τ1

τ2

τ3

8 10

12 15

20 25

T’iTi

τ1

τ2

τ3

8

12

20

10

15

25

U = 1.25

13

37

Big misconceptions

RM is predictable during overloads because
the tasks that miss their deadlines are low

priority tasks.

We now show that this is not true

EDF is not predictable during overloads
because we don’t know which tasks are

going to miss their deadlines.

38

RM during transient overruns

0

2 4 6 8 10 12 14 16 18 20

5 1510 20 25

9 18

2422

300

0 27

20

300 26 28

τ1

τ2

τ3

τ4

(2/5)

(3/9)

(1/20)

(1/30)

Uavg = 0.817 C1avg = 2, C1max = 4

39

RM during transient overruns

0

2 4 6 8 10 12 14 16 18 20

5 1510 20 25

9 18

2422

300

0 27

20

300 26 28

deadline
miss

τ1

τ2

τ3

τ4

(2/5)

(3/9)

(1/20)

(1/30)

Uavg = 0.817 C1avg = 2, C1max = 4

Who is missing its deadline is not the lowest priority task

14

40

Jitter

RM reduces jitter during task execution
more than EDF

Another misconception

The maximum time variation in the occurrence of a
particular event in two consecutive jobs of a task.

Jitter for an event

41

Types of Jitter
Start Time Jitter

1,,max +−= kikiki ssSTJ

τi
si,1 si,2 si,3 si,4

|4 –2| = 2 |2 –5| = 3 |5 –0| = 5

STJi = 5

42

Types of Jitter
Response Time Jitter

1,,max +−= kikiki RRRTJ

τi
fi,1 fi,2 fi,3 fi,4

|8 –8| = 0 |8 –11| = 3 |11 –4| = 8

RTJi = 8

15

43

Effects of Jitter

We compare the performance of
RM and EDF in terms of RTJ

• In some control application, jitter is tolerated by the
inertial nature of the system

• In some other applications, jitter can cause
instability or jerky behavior

44

Jitter under RM

0

6 1812 24

8 18

0

0

τ1

τ2

τ3

(2/6)

(3/8)

(2/12)
12 24

RTJ1 = 0

RTJ2 = 2

RTJ3 = 8

τ3 experiences a very high jitter

45

Jitter under EDF

0

6 1812 24

8 18

0

0

τ1

τ2

τ3

(2/6)

(3/8)

(2/12)
12 24

RTJ1 = 1

RTJ2 = 2

RTJ3 = 3

For a little increase of RTJ1,
RTJ3 is decreased a lot

16

46

Aperiodic task handling
Most RT applications require the execution of
periodic (time driven) and aperiodic (event driven)
activities.

Aperiodic
tasks

HARD

SOFT

They must be guaranteed
assuming a worst-case
arrival (sporadic model)

The objective is to
minimize their average
response time

47

Important results (1)

Under fixed priority scheduling it is not
possible to minimize the response time of
every aperiodic job.

Theorem 1 (Tia-Liu-Shankar ’96)

Under fixed priority scheduling no on-line
algorithm can minimize the average response
time aperiodic requests.

Theorem 2 (Tia-Liu-Shankar ’96)

48

Important results (2)

Under dynamic priority scheduling there are
optimal algorithms that minimize the response
time of aperiodic jobs.

Improved Total Bandwidth Server (ITB)
(Buttazzo-Sensini ‘97)

It minimizes response times by scheduling each
aperiodic job with the minimum deadline that
preserves the periodic guarantee.

17

49

Aperiodic responsiveness

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

1

2

3

4

5

6

7

8

Relative Aperiodic Load: ρa/(1-Up)

Avg. Response Time

Sleak Stealer

ITB

Up = 0.85

9

10

Other
dynamic
servers

50

Conclusions (1)
1. RM and EDF have same implem. complexity

A small additional overhead is needed in EDF to
update the absolute deadline at each job release

2. Runtime overhead is smaller in EDF
Due to the smaller number of context switches

3. EDF achieves full processor utilization,
whereas RM only guarantees 69%

0 69% 100%
?

EDF
RM

51

Conclusions (2)
4. EDF is simpler to analyze if Di = Ti

This is important for reducing admission control
overhead in small embedded systems

5. EDF is more flexible in overload conditions
EDF automatically expand periods, whereas RM
causes a complete block of low priority tasks

6. EDF is fair in reducing jitter, whereas RM only
reduces the jitter of the highest priority tasks

7. EDF is more efficient than RM for handling
aperiodic tasks

18

52

Conclusions (3)
The only real advantage of RM is that it can be
easily implemented on top of fixed priority
kernels.

Challenge

Develop EDF kernels to exploit all the
advantages of dynamic scheduling without
paying additional overhead.

1

Overload management

2

Outline
• Definitions: load, overload, overrun
• Overload handling methods:

⇒ Admission control
⇒ Resource Reservation
⇒ Imprecise Computation
⇒ Job Skipping
⇒ Elastic Scheduling

3

Load definitions

Cλ=ρ

• For non real-time systems:

λ = average arrival rate

C = average execution time

ρ = load

t

2

4

Load definitions

∑
=

==ρ
n

i i

i

T
CU

1

• For hard real-time periodic tasks:

τ1

τ2

4

0

8

126

C1 = 1

C2 = 2

12
7

3
1

4
1

=+=U

5

Load definitions
• For real-time aperiodic tasks:

The load also depends on the deadline

ρ = 1

ρ = 1/2

ρ = 1/4

6

Computing the load
In general, the load in an interval is computed
using the processor demand in that interval:

t1 t2

12

,

12

21 21),(
tt

C

tt
ttg tdtr

i
ii

−
=

−
=

∑
≤≥

ρ

3

7

Istantaneous load ρ(t)

td

tc

td
dtgt

k

ddtr
i

k
k

k

k

kii

−
=

−
=ρ

∑
≤≤ ,

)(

max),(max)(

Maximum processor demand from the current
time and the deadlines of all active tasks.

t d3d2d1 d4

8

Example
ρ1(4) = 2/4 = 0.5

ρ2(4) = 5/6 = 0.83

ρ3(4) = 7/9 = 0.78

ρ(4) = 0.83
0 2 4 6 8 10 12 14

τ1

τ2

τ3

1
ρ(t)

0 2 4 6 8 10 12 14

0.5

9

Transient overload: ρavg < 1, ρmax > 1

⇒ Arrival of aperiodic activities
⇒ Exceptions raised by the kernel
⇒ Malfunctioning of input devices
⇒ Task with variable execution
⇒ Sporadic overruns

Transient vs. permanent
overload conditions

Possible causes

4

10

Types of overruns
• A task is said to be in overrun if the time demanded

for execution exceeds the expected value according
to which the task has been guaranteed.

• There are two types of overrun:

Execution overrun

Activation overrun

A job executes more
than expected

A job arrives before
the time it is expected

11

Permanent overload: ρavg > 1

⇒ Activation of a new periodic task
⇒ Increase in the task frequencies
⇒ Increase in the task quality (execution times)
⇒ Changes in the environment
⇒ Bad system design

Transient vs. permanent
overload conditions

Possible causes

12

Examples of load

1

0.75

0.5

0.25

0

1

0.75

0.5

0.25

0
time time

System designed under
worst-case assumptios

load load

System designed under
average-case assumptios

5

13

Pessimistic assumptions lead to
• high predictability
• low efficiency

Average-case design leads to
• high efficiency
• low predictability

Predictability vs. efficiency

high cost
only justified for
critical systems

necessary to handle
and tolerate overloads

14

Overload management

• Value-based scheduling
− tasks are assigned values and executed accordingly

• Resource Reservation
− Resources are reserved to tasks and cannot be used

• Admission control
− least importance tasks are rejected
− important tasks receive full service

• Performance degradation
− all tasks are executed
− but with reduced requirements

Overload can be handled using different approaches:

15

Value-based scheduling
• If ρ > 1, no all tasks can finish within their

deadline.

• To avoid domino effects, the load is reduced
by rejecting the least important tasks.

• To do that, the system must be able to handle
tasks with both timing constraints and
importance values.

6

16

Deadline and Value

• Under RM and EDF, the value of a task is
implicitly encoded in its period or deadline.

• However, in a chemical plant controller, a
task reading the steam temperature every 10
seconds is more important than a task which
updates the clock icon every second.

17

How to assign values
A task τi can be assigned a value vi according
to different criteria. Those most common are:

vi = Vi arbitrary constant

vi = Ci computation time

vi = Vi/Ci value density

18

Value as a function of time
In a real-time system, the value of a task
depends on its completion time and criticality:

vi (fi)

fi

non real-time

vi (fi)

fi

soft

vi (fi)

fi

firm

di

diri

ri ri

vi (fi)

fi

hard

diri −∞

7

19

Performance evaluation
• The performance of a scheduling algorithm

A on a task set T can be evalutated through
its Cumulative Value:

)()(
1
∑
=

=Γ
n

i
iiA fvT

• Note that: ∑
=

=Γ<Γ
n

i
iA V

1
max)()(TT

20

Optimality under overloads

)(max)(* TT AA
Γ=Γ

The performance of an algorithm can be
evalutated with respect to Γ*.

In overload conditions, there are no
optimal on-line algorithms able to
guarantee a cumulative value equal to Γ*.

21

Proof (assume: Vi = Ci)

To maximize ΓA we should know the future.

0 2 6 84 10 12 14 16

10

6

6

τ1

τ2

τ3

ΓA = 10

If at time t = 0 r3 is not know, we cannot select the
task that maximizes the cumulative value.

8

22

0 2 6 84 10 12 14 16

10

6

6

τ1

τ2

τ3

ΓA = 12

0 2 6 84 10 12 14 16

10

6

6

τ1

τ2

τ3

ΓA = 16

23

Competitive Factor
• Let Γ* the maximum cumulative value achievable

by an optimal clairvoyant algorithm.

• An algorithm A has a competitive factor ϕA, if it is
guaranteed that, for any task set, it achieves:

ΓA ≥ ϕA Γ*

• Hence, ϕA ∈ [0,1] and can be computed as:

)(
)(min * T

T
T Γ

Γ
= A

Aϕ

24

Competitive factor of EDF

τ1

τ2

V1 = K

V2 = εK

In such a situation, ΓEDF = V2 and Γ* = V1,

hence ΓEDF / Γ* = V2 / V1 → 0 for V2 >> V1

• It is easy to show that ϕEDF = 0:

9

25

A theoretical upper bound

[Baruah et al., 91]

If ρ > 2 and task value is proportional to
computation time, then no on-line algorithm
can have a competitive factor greater than 0.25.

That is: 25.0max ≤AA
ϕ

26

In general, the upper bound of the
competitive factor is a function of the load
and varies as follows:

0 1 2 ρ

0.25

0.5

0.75

1

ϕon

27

Best-effort scheduling

CPUREADY queuetasks

• Tasks are always accepted in the system.

• Performance is controlled through a
suitable (value-based) priority assignment.

• Problem: domino effect.

10

28

Admission control

CPUtask READY queuetest

rejected N

Y

• Every task is subject to an acceptance test which
keeps the load ≤ 1.

• It prevents domino effects, but does not take
values into account.

• Low efficiency due to the worst-case guarantee
(tasks may be unnecessarily rejected).

29

Robust scheduling

• Task scheduling and task rejection are controlled by
two separate policies.

• Tasks are scheduled by deadline, rejected by value.

• In case of early completions, rejected tasks can be
recovered by a reclaiming mechanism.

CPU
task

READY queue
rejection
policy

reject queue

planning

scheduling
policy

recovery
policy

30

Robust EDF
• Scheduling Policy ⇒ EDF

• Rejection policy
when an overload is detected, reject the least
value task which can bring the load below 1.

• Recovery policy
− keep rejected tasks by decreasing values;
− when there is enough spare time, re-accept the

highest value task which is still feasible.

11

31

Example: task rejection

0 2 4 6 8 10 12 14

τ1

τ2

τ5

τ3

τ4

16 18

Vi

7

10

5

2

3

at time t = 4 ⇒ τ3 rejected

20

32

Example: task rejection

0 2 4 6 8 10 12 14

τ1

τ2

τ5

τ3

τ4

16 18

Vi

7

10

5

2

3

at time t = 4 ⇒ τ3 rejected

20

33

Example: task recovery

0 2 4 6 8 10 12 14

τ1

τ2

τ5

τ3

τ4

16 18

at time t = 8 ⇒ τ3 can be recovered

20

−1

−2

Vi

7

10

5

2

3

12

Resource Reservation
Handling sporadic overruns

35

Problems with overruns
• Without a budget management, there is no

protection against execution overruns.

• If a job executes more than expected, hard
tasks could miss their deadlines.

τ1

Us = 1/4
1

4 8

0 4 8 1262 10

C1 = 1

overrun

deadline miss

36

Solution: Temporal Isolation
• The execution of a task should not affect the

guarantee performed on the other tasks.

• Each task τi receives a fraction Ui of the
processor (its bandwidth) and behaves as it
were executing alone on a slower processor of
speed Ui.

bandwidth reservation

bandwidth enforcement
Temporal isolation

13

37

Bandwidth reservation
• Ideally, each task should be assigned a given

bandwidth and never demand more.

10 %

45 %
25 %

20 %

τ1

τ2τ3

τ4

• However, tasks are subject to overruns or the
reserved bandwidth can be insufficient for the task.

38

Bandwidth enforcement
• It is a mechanism needed for degrading the QoS

when a task demands more than the reserved
bandwidth.

• If a task executes more than expected, its priority
should be decreased (i.e., its deadline postponed).

• When a task experiences an overrun, only that task
is delayed, so that the guarantee performed on the
other tasks is preserved.

39

Implementation

CPU

server
Ready queue

EDF

τ1

τ2

τ3

Us1

Us2

Us3

Us1 + Us2 + Us3 ≤ 1

server

server

14

40

Constant Bandwidth Server
(CBS)

• It assigns deadlines to tasks as the TBS, but
keeps track of job executions through a budget
mechanism.

• When the budget is exhausted it is
immediately replenished, but the deadline is
postponed to keep the demand constant.

41

CBS parameters
Given by the user

• Maximum budget: Qs

• Server period: Ts

Us = Qs / Ts (server bandwidth)

Maintained by the server
• Current budget: cs (initialized to 0)
• Server deadline: ds (initialized to 0)

42

Basic CBS rules
• Arrival of job Jk ⇒ assign ds

if (rk + cs /Us ≤ ds) then recycle ds

else ds = rk + Ts

cs = Qs

ds = ds + Ts

cs = Qs

• Budget exhausted ⇒ postpone ds

15

43

Deadline assignment

0 5 12

0 5 12

3 2

6
3

1

cs

Qs = 6
Ts = 12

44

0

0

5

3
cs

Qs = 3
Ts = 6

Budget exhausted

63

3

12

1

12

45

EDF + CBS schedule

CBS: Qs = 2, Ts = 6

τ1

τ2

ape

6

0

12 18 24

9 2718

0

8 2714

d0
3

d1

r1

3

r2

d2
1

d3 d4

0 2 4 6 8 10

cs

12 14 16 18 20 22 24 26

r3 2418

16

46

CBS properties
• Bandwidth Isolation

If a task τi is served by a CBS with bandwidth
Us then, in any interval ∆t, τi will never demand
more than Us∆t.

• Hard schedulability
A hard task τi (Ci, Ti) is schedulable by a CBS
with Qs = Ci and Ts = Ti, iff τi is schedulable by
EDF.

47

Remarks on the CBS

• It can be used as a safe server for handling
aperiodic tasks under EDF.

• It can be used as a bandwidth reservation
mechanism to achieve task isolation.

• It allows to guarantee a minimum
performance to SOFT tasks, based on the
assigned bandwidth.

Handling permanent
overload

17

49

Performance Degradation
The load can be decreased not only by
rejecting tasks, but also by reducing their
performance requirements.

This can be done by:

• reducing precision of results

• skipping some jobs;

• relaxing timing constraints.

50

Reducing precision
In many applications, computation can be
performed at different level of precision: the
higher the precision, the longer the
computation. Examples are:

• binary search algorithms

• image processing and computer graphics

• neural learning

51

Imprecise computation
In this model, each task τi (Ci, Di, wi) is
divided in two portions:

• a mandatory part: τm
i (Mi, Di)

• an optional part: τo
i (Oi, Di)

Mi Oi

wi is an importance weight

18

52

Imprecise computation
In this model, a schedule is said to be:
• feasible, if all mandatory parts complete in Di

• precise, if also the optional parts are completed.

Mi Oi

σi

error: εi = Oi − σi average error: ∑
=

ε=ε
n

i
iia w

1

GOAL: minimize the average error

53

Job skipping
Periodic load can also be reduced by skipping
some jobs, once in a while.
Many systems tolerate skips, if they do not
occur too often:

• multimedia systems (video reproduction)

• inertial systems (robots)

• monitoring systems (sporadic data loss)

54

Example

117.1
6
4

2
1

>=+=pU

The system is overloaded, but tasks can be
schedulable if τ1 skips one instance every 3:

τ1
skip skip skip

τ2

19

55

FIRM task model
• Every job can either be executed within its

deadline, or completely rejected (skipped).

• A percentage of task instances must be
guaranteed off line to finish in time.

• Each task τi is described by (Ci, Ti, Di, Si):
Si is the minimum number of jobs that must be
executed between two consecutive skips.

56

• Every instance can be red or blue:
– red instances must finish within their deadline
– blue instances can be aborted

• If a blue instance is aborted, the next Si−1
instances must be red.

• If a blue instance is completed within its
deadline, the next instance is still blue.

• The first Si−1 instances of every task must
be red.

57

Example

τi

Ci = 1 Ti = 2 Di = 2 Si = 3

skip skip skip skip

τi
skip skip skip

20

58

Equivalent utilizazion factor

L

Lg
U

n

i
i

Lp

∑
=

≥
= 1

0

*
),0(

max

i
iii

i C
ST
L

T
LLg 








−=),0(

59

Schedulability Analysis

Theorem: A set of firm periodic tasks is
schedulable if

1* ≤pU

A sufficient condition

60

A necessary condition

Theorem: A set of firm periodic tasks is
not schedulable if

1)1(
1

>
−∑

=

n

i ii

ii

ST
SC

NOTE: the sum represents the utilization of
the computation that must take place.

21

61

Bandwidth saving
• In general, skipping jobs of periodic tasks

causes a bandwidth saving:

• Such a bandwidth can be used for
– improving aperiodic responsiveness (by

increasing their reserved bandwidth);

– accepting a larger number of periodic tasks.

*
pp UUU −=∆

62

In this case: Up
* = 1

In fact, for L = Ti we have gi (0,L) = Ci = Ti

Not always skips save bandwidth:

Hence: 1),0(
==

i

ii

T
T

L
Lg

0

Ci = Ti

Ti

τi
skip skip

63

0

C1 = T1

T1

τ1

In this case we still have: Up
* = 1

In fact: g(0, T1) = T1 e g(0, T2) = T2

However, notice that:

Hence: 1),0(),0(

2

2

1

1 ==
T

Tg
T

Tg

0

C2 = T1

T2

τ2

22

64

Relaxing timing constraints

• The idea is to reduce the load by increasing
deadlines and/or periods.

• Each task must specify a range of values in
which its period must be included.

• Periods are increased during overloads, and
reduced when the overload is over.

65

Example

96.0
70
15

40
10

20
10

=++=pU

task Ci Ti0 Tmin Tmax

τ1

τ2

τ3

10
10
15

20
40
70

20
40
35

25
50
80

66

Load adaptation

13.1
30
5

70
15

40
10

20
10

=+++=pU

99.0
30
5

80
15

50
10

23
10

=+++=pU

If τ4 arrives with: C4 = 5, T4 = 30 the system is not
schedulable any more:

However, there exists a feasible schedule within the
specified ranges:

23

67

Elastic task model

• Tasks’ utilizations are treated as elastic
springs and can be changed by period
variations.

• The resistance of a task to a period variation
is controlled by an elastic coefficient Ei:

⇒ the greater Ei the greater the elasticity

68

Elastic task model
• A periodic task τi is characterized by:

(Ci, Ti0, Ti-min, Ti-max, Ei)

• The actual period Ti ∈ [Ti-min, Ti-max]

Ei

ri Ti0 t
τi

Ti-maxTi-min

69

Special cases

• A task with Tmin = Tmax, is equivalent to a
hard task.

• A task with Ei = 0 can intentionally change
its period but does not allows the system to
do that.

24

70

Compression algorithm

τ1 τ2 τ3 τ4

1 Up

1 Up

τ1 τ2 τ3 τ4

During overloads, utilizations must be
compressed to bring the load below one.

71

The linear spring analogy

x

x1o x2o x3o

L00

x

x1 x2 x3

F

0 Ld

F = k1(x1o - x1)

F = k2(x2o - x2)

F = k3(x3o - x3)

x1 + x2 + x3 = Ld

x1o + x2o + x3o = L0

72

Solution without constraints

)()()111(321321
321

xxxxxx
kkk

F ooo ++−++=++

Summing the equations, we have:

)(0 dLL −=

That is:

321

0

111
)(

kkk

LLF d

++

−
=

25

73

Substituting F in the equations, we have:

That is: 321

0
111 111

)()(

kkk

LLxxkF d
o

++

−
=−=

321

1
011 111

1
)(

kkk

kLLxx do

++
−−=

Solution without constraints

74

∑ =

=
n

i
ik

K

1

// 1
1

i
dioi k

KLLxx //
0)(−−=

And defining: Ei = 1/ki

∑
=

=
n

i
is EE

1s

i
dioi E

ELLxx)(0 −−=

Solution without constraints

75

Period computation

s

i
dioi E

EUUUU)(0 −−=

i

i
i U

CT =And then:

26

76

Solution with constraints

xL00

x

F

0 Ld

x

F

0 Ld

Iterative solution:

77

Other use of elastic tasks

• Increase frequencies to fully utilize the
processor.

• Quickly find new period configurations
during negotiation.

• On line period variations in control
applications.

78

Examples: altimeter reading
• The smaller the altitude, the higher the

acquisition rate:

High rate

Low rate

27

79

Obstacle avoidance
• The closer the obstacle, the higher the

acquisition rate:

us

us

Low rate

High rate

80

Visual tracking
• The smaller the searching window, the

higher the acquisition rate:

?

searching window

81

Visual tracking
• The smaller the searching window, the

higher the acquisition rate:

searching window

?

28

82

Engine control
• Some tasks need to be activated at specific

angles of the motor axis:
⇒ the higher the speed, the higher the rate.

• Guaranteeing all the tasks at the maximum
rate is not efficient or may not be possible.

• Other tasks may need to be downgraded
when the engine is running at high speeds.

1

Dynamic
Task Scheduling

Giorgio Buttazzo

Department of Computer Science
University of Pavia

E-mail: buttazzo@unipv.it

2

Course Outline
• Some terminology

• Basic results on dynamic scheduling

• Aperiodic task handling

• Dynamic scheduling under resources constraints

• Overload and QoS management techniques

• Comparison with fixed priority scheduling

3

Terminology
Task

is a piece of code that can be executed
many times with different input data:

task τi

Each instance of a task (τi)
is called a job (τi,k)

2

4

Job parameters

job τi,k

computation time
Ci,k

release time ri,k

start time si,k

finishing time fi,k

deadline di,k

job τi,k is the kth instance of task τi

5

Job parameters

ri,k release time (arrival time ai)
si,k start time
Ci,k worst-case execution time (wcet)
di,k absolute deadline
Di,k relative deadline
fi,k finishing time

ri,k si,k fi,k di,k
t

τi,k
Ci,k

Di,k

6

Other parameters

ri,k si,k fi,k di,k
t

τi,k
ci,k(t)

Residual wcet: ci,k(t) ci,k(ri,k) = Ci,k

Slack (or laxity): di,k − t − ci,k(t)

Lateness: Li,k = fi,k − di,k

Tardiness: max(0, −Li,k)

t

slack

3

7

Task model

A task τi is an infinite sequence of jobs τi,k

ri,2 ri,k t

τi

ri,1

τi,1 τi,2 τi,k

…

8

Activation modes

• Time driven: periodic tasks
the task is automatically activated by the kernel
at regular intervals.

• Event driven: aperiodic tasks
the task is activated upon the arrival of an event
or through an explicit call of the activation
primitive.

9

Periodic task model
ri1 = Φi

ri,k+1 = ri,k + Ti

ri,k ri,k+1 t

Ti

Ci

ri,1 = Φi

τi (Ci , Ti , Di)

ri,k = Φi + (k−1) Ti

di,k = ri,k + Di

often
Φi = 0
Di = Ti

(task phase)

4

10

Aperiodic task model
• Aperiodic: ri,k+1 > ri,k

• Sporadic: ri,k+1 ≥ ri,k + Ti

ri,k ri,k+1
t

τi
Ci

ri,1

Ti = Minimum Interarrival Time

11

Algorithm taxonomy

• Preemptive vs. Non Preemptive

• Static vs. dynamic

• On line vs. Off line

• Optimal vs. Heuristic

12

Static vs. Dynamic
Static

scheduling decisions are taken based on
fixed parameters, statically assigned to
tasks before activation.

Dynamic
scheduling decisions are taken based on
parameters that can change with time.

5

13

Off line vs. On line
Off line

all scheduling decisions are taken before
task activation: the schedule is stored in a
table (table-driven scheduling).

On line
scheduling decisions are taken at run time
on the set of active tasks.

14

Optimal vs. Heuristic
Optimal

They generate a schedule that minimizes a
cost function, defined based on an optimality
criterion.

Heuristic
They generate a schedule according to a
heuristic function that tries to satisfy an
optimality criterion, but there is no guarantee
of success.

15

Optimality criteria
• Feasibility: Find a feasible schedule if there

exists one.

• Minimize the number of deadline miss

• Assign a value to each task, then minimize
the system loss value

6

16

Example of heuristic algorithm
Spring kernel [Stankovic & Ramamritham 87]

The algorithm performs a tree search, where:
• The root node is an empty schedule
• Intermediate nodes are partial schedules
• Leaves are complete schedules

F F FN N N N N

F = feasible
N = unfeasible

17

Example of heuristic algorithm
Spring kernel [Stankovic & Ramamritham 87]

1. The schedule for a set of N tasks is constructed in N steps

2. The search is driven by a heuristic function H

3. At each step the algorithm selects the task that minimizes the
heuristic function

min H

min H

min H

min H

Backtracking
is possible

18

Example of heuristic algorithm
Spring kernel [Stankovic & Ramamritham 87]

Example of heuristic functions:
H = ri ⇒ FCFS
H = Ci ⇒ SJF
H = Di ⇒ DM
H = di ⇒ EDF

Composit heuristic functions:

H = w1 ri + w2 Di
H = w1 Ci + w2 di
H = w1 Vi + w2 di

7

19

Example of heuristic algorithm
Spring kernel [Stankovic & Ramamritham 87]

Possibility to handle precedence costraints:

Heuristic functions:

H = Ei (w1 ri + w2 Di)
H = Ei (w1 Ci + w2 di)

Eligibility

Ei = ∞
τi

Ei = 1
τi

20

Example of heuristic algorithm
Spring kernel [Stankovic & Ramamritham 87]

Complexity:

min H

min H

min H

min H

Exhaustive search: O(N!)
Heuristic search: O(N2)
Heuristic w. k btracks: O(kN2)

21

Examples of optimal algorithms
Rate Monotonic

• It is a static scheduling algorithm
• It can be preemptive or non preemptive
• It can be executed on line or off line
• It is optimal for feasibility among static algorithms

EDF
• It is a dynamic scheduling algorithm
• It can be preemptive or non preemptive
• It can be executed on line or off line
• It is optimal for feasibility and minimizes Lmax

i
i T

p 1
∝ fixed

priority

dynamic
priorityi

i d
p 1

∝

8

22

EDF Optimality
EDF is optimal for feasibility among all
algorithms:

If there exists a feasible schedule for Γ, then
EDF will generate a feasible schedule.

If Γ is not schedulable by EDF, then it cannot
be scheduled by any algorithm.

23

EDF Optimality [Dertouzos ‘74]

Transforming σ in σ’

σ’(t) = σ(tE)

σ’(tE) = σ(t) fk’ = fE ≤ dE ≤ dk

Feasibility is preserved

σ
τk

τEfeasible

tEt fE dE dk

24

EDF schedulability
• In 1973, Liu and Layland proved that for a

set of n periodic tasks:

1lub =EDFU

• This means that a task set Γ is schedulable
by EDF if and only if

Up ≤ 1

9

25

Proving sufficiency

τ1

τi

...

τn

deadline miss

t1 t2

By contradiction, assume U ≤ 1, and let t2 be the time at which a
deadline miss occurs.

Let [t1, t2] be the longest interval of continuous utilization such
that only instances with deadline ≤ t2 are executed:

26

Proving sufficiency
The total computation time demanded in this interval is:

∑
=

−
≤

n

i
i

i
p C

T
ttttC

1

12
21),(UttC

T
ttn

i
i

i

)(12
1

12 −=
−

≤ ∑
=

τ1

τi

...

τn

deadline miss

t1 t2

deadline miss ⇒ (t2 – t1) < Cp(t1, t2) ≤ (t2 – t1)U contradiction

27

An alternate proof

Up ≤ 1 Γ schedulable

• We find any algorithm for which the above
condition holds;

• Then, for the EDF optimality, we can say
that the above condition also holds for EDF.

10

28

Proving sufficiency

δi = Ui ∆

Consider the algorithm which schedules in
every interval of length ∆ a fraction of task:

∆ ∆ ∆

δ1 δ2 δ3 δ1 δ2 δ3 δ1 δ2 δ3

t

29

Proving sufficiency
With this algorithm, a task executes in each
period for:

iiii
i

i
i CUTUTT

==∆
∆

=δ
∆

Feasibility is ensured if ∆≤δ∑
=

n

i
i

1
that is if

∆≤∆∑
=

n

i
iU

1
Up ≤ 1

∆

δi

t∆

δi

∆ ∆

δi δi

Ti

30

Extension to tasks with D < T

ri,k di,k

Ci

t
τi

Di

Ti

ri,k+1

• Deadline Monotonic: pi ∝ 1/Di (static)

• Earliest Deadline First: pi ∝ 1/di (dynamic)

Scheduling algorithms

11

31

Dynamic Priority

Schedule based on absolute deadlines
EDF

Processor Demand Criterion [Baruah ‘90]

Schedulability Analysis

In any interval, the computation demanded by the
task set must be no greater than the available time.

32

Processor Demand

t1 t2

∑
≤

≥

=
2

1

),(21

td

tr
i

i

i

Cttg

The demand in [t1, t2] is the computation time of those
jobs started at or after t1 with deadline less than or
equal to t2:

33

Processor Demand

0 L

∑
=

+−
=

n

i
i

i

ii C
T

TDLLg
1

),0(

Processor Demand in [0, L]

12

34

Processor Demand Test

LLgL ≤>∀),0(,0

How can we bound the number of intervals
in which the test has to be performed?

Question

35

Example

0

2

4

6

8

g(0, L)

L

τ2

τ1

0 2 6 124 8 10 14 16

L

36

Bounding complexity

• Since g(0,L) is a step function, we can
check feasibility only at deadline points.

• If tasks are synchronous and Up < 1, we can
check feasiblity up to the hyperperiod H:

H = lcm(T1, … , Tn)

13

37

Bounding complexity

• Moreover we note that: g(0, L) ≤ G(0, L)

∑
=








 −+
=

n

i
i

i

ii C
T

DTLLG
1

),0(

i

i
n

i
ii

n

i i

i

T
CDT

T
CL ∑∑

==

−+=
11

)(

∑
=

−+=
n

i
iii UDTLU

1
)(

38

Limiting L

g(0, L)

L

G(0, L)
∑

=

−+=
n

i
iii UDTLULG

1
)(),0(L

L*

for L > L*

g(0,L) ≤ G(0,L) < L

U

UDT
L

n

i
iii

−

−
=

∑
=

1

)(
1*

39

Processor Demand Test

LLgDL ≤∈∀),0(,

D = {dk | dk ≤ min (H, L*)}

H = lcm(T1, … , Tn)

U

UDT
L

n

i
iii

−

−
=

∑
=

1

)(
1*

1<U

14

Handling shared
resources

Problems caused by
mutual exclusion

41

A high priority task is blocked by a lower-
priority task a for an unbounded interval of
time.

A task with short deadline is blocked by a
task with longer deadline a for an unbounded
interval of time.

Priority Inversion

Deadline Inversion

42

Conflict on a critical section

τ3

B

τ2

τ1

Solution
Introduce a concurrency control protocol for
accessing critical sections.

15

43

Fixed Priority Protocols

• Non Preemptive Protocol (NPP)

• Highest Locker Priority (HLP)

• Priority Inheritance Protocol (PIP)

• Priority Ceiling Protocol (PCP)

• Immediate Priority Ceiling (IPC)

44

Dynamic Priority Protocols

• Dynamic Priority Inheritance (DIP)

• Dynamic Priority Ceiling (DPC)

• Stack Resource Policy (SRP)

45

Stack Resource Policy [Backer 90]

• It works both with fixed and dynamic
priority

• It limits blocking to 1 critical section
• It prevents deadlock
• It supports multi-unit resources
• It allows stack sharing
• It is easy to implement

16

46

Stack Resource Policy [Backer 90]

• For each resource Rk:
⇒ Maximum units: Nk

⇒ Available units: nk

Nk

nk

Rk

• For each task τi the system keeps:

⇒ its resource requirements:

⇒ a priority pi:

⇒ a static preemption level:

ii Tp 1∝ ii dp 1∝

ii D1∝π

RM EDF

µi(Rk)

47

Resource ceiling

System ceiling { })(max kkks nC=Π

Stack Resource Policy [Backer 90]

)(:max)(kjkjjkk RnnC µπ <=

SRP Rule

A job cannot preempt until
pi is the highest and πi > Πs

48

Example

τ3

τ2

τ1

Πs

t0
1
2
3

πi

3

2

1

17

49

SRP: Notes
• Blocking always occurs at preemption

time

• A task never blocks on a wait primitive
(semaphore queuee are not needed)

• Semaphores are still needed to update
the system ceiling

• Early blocking allows stack sharing

50

SRP: Stack sharing

τ1

τ2

Classical blocking stack

t1 t2

stack

t1

τ1

τ2

Early blocking

t2

51

SRP: Stack sharing
• If tasks can be grouped in M subsets with the

same preemption level, then tasks within a
group cannot preempt each other.

• Then the stack size is the sum of the stack
memory needed by M tasks.

• If we have 100 tasks with 10 preemption levels,
and each task requires 10 Kb of stack, then

Stack size =
1 Mb

100 Kb

without SRP

under SRP (90% less)

18

52

Guarantee with resource
constraints

• Select a scheduling algorithm (e.g., EDF)
and a resource access protocol (e.g., SRP).

• Compute the maximum blocking times
(Bi) for each task.

• Perform the guarantee test including the
blocking terms.

53

Guarantee with RM
preemption
by HP tasks

τi

blocking by
LP tasks

()121
1

1
−≤

+
+∀ ∑

−

=

/i

i

ii
i

k k

k i
T

BC
T
Ci

54

1
1

1
≤

+
+∀ ∑

−

= i

ii
i

k k

k

T
BC

T
Ci

EDF Guarantee (Di = Ti)
preemption
by HP tasks

τi

blocking by
LP tasks

19

55

EDF Guarantee: PD test (Di ≤ Ti)

τ1

τi

...

τk

τn

56

EDF Guarantee: PD test (Di ≤ Ti)

∑
=

+−
+=

i

k
k

k

kk
ii C

T
TDLBLg

1
),0(

),max(: *
ini LDLDLi ≤≤∀∀

LLgi ≤),0(

U

UDTB
L

n

i
iiii

i −

−+
=

∑
=

1

)(
1*

1<U AND

Handing Hybrid Task Sets

Periodic tasks
+

Aperiodic tasks

20

58

Handling Criticality
• Aperiodic tasks with HARD deadlines must

be guaranteed under worst-case conditions.

• Off-line guarantee is only possible if we can
bound interarrival times (sporadic tasks).

• Hence sporadic tasks can be guaranteed as
periodic tasks with Ci = WCETi and Ti = MITi

WCET = Worst-Case Execution Time
MIT = Minimum Interarrival Time

59

SOFT aperiodic tasks

• Aperiodic tasks with SOFT deadlines
should be executed as soon as possible,
but without jeopardizing HARD tasks.

• We may be interested in

→ minimizing the average response time

→ performing an on-line guarantee

60

Periodic Scheduling
(EDF)

τ1

τ2

ape
3

4

0

8

126

0 4 8 1262 10

C1 = 1

C2 = 3

21

61

Immediate service

τ1

τ2

ape
3

4

0

8

126

0 4 8 1262 10

C1 = 1

C2 = 3

deadline miss

Response Time = 3

62

Background service

τ1

τ2

ape
3

4

0

8

126

0 4 8 1262 10

C1 = 1

C2 = 3

Response Time = 10

63

Aperiodic Servers
• A server is a kernel activity aimed at

controlling the execution of aperiodic tasks.
• Normally, a server is a periodic task having

two parameters:
Cs capacity (or budget)
Ts server period

To preserve periodic tasks, no more than Cs
units must be executed every period Ts

22

64

Aperiodic service queue

Service queue
Server

READY queue

periodic/sporadic
HARD tasks

aperiodic
SOFT tasks

CPU

• The server is scheduled as any periodic task.
• Priority ties are broken in favor of the server.
• Aperiodic tasks can be selected using an arbitrary

queueing discipline.

65

Fixed-priority Servers

• Polling Server

• Deferrable Server

• Sporadic Server

• Slack Stealer

66

Dynamic-priority Servers

• Dynamic Polling Server

• Dynamic Sporadic Server

• Total Bandwidth Server

• Tunable Bandwidth Server

• Constant Bandwidth Server

23

67

Selecting the most suitable
service mechanism

It depends on the price (overhead) we
want to pay to reduce task response times

performance

overhead

optimal server

TBS
SS

DS

PS

BS

Tunable Bandwidth Server

68

Total Bandwidth Server (TBS)

• It is a dynamic priority server, used along
with EDF.

• Each aperiodic request is assigned a deadline
so that the server demand does not exceed a
given bandwidth Us .

• Aperiodic jobs are inserted in the ready queue
and scheduled together with the HARD tasks.

69

The TBS mechanism

READY queue

periodic/sporadic
tasks

aperiodic
tasks

CPU

Deadline
assignment

Up + Us ≤ 1

• Deadlines ties are broken in favor of the server.
• Periodic tasks are guaranteed if and only if

24

70

Deadline assignment rule
• Deadline has to be assigned not to jeopardize

periodic tasks.

• A safe relative deadline is equal to the minimum
period that can be assigned to a new periodic task
with utilization Us:

Us = Ck / Tk Tk = dk − rk = Ck / Us

• Hence, the absolute deadline can be set as:

dk = rk + Ck / Us

71

Deadline assignment rule

dk = max (rk , dk-1) + Ck / Us

• To keep track of the bandwidth assigned to
previous jobs, dk must be computed as:

C1 C2

d1 d2r2r1

C1/Us C2/Us

72

EDF + TBS schedule

Us = 1 − Up = 1/4

τ1

τ2

ape
2

4

0

8

126

0 4 8 1262 10

C1 = 1

C2 = 3

1

d1 d2r1 r2

d1 = r1 + C1 / Us = 1 + 2·4 = 9

d2 = max(r2 , d1) + C2 / Us = 9 + 1·4 = 13

25

73

Improving TBS
• What’s the minimum deadline that can be

assigned to an aperiodic job?

τ1

τ2

ape
2

4

0

8

126

0 4 8 1262 10

C1 = 1

C2 = 3

d1r1

74

Improving TBS
• If we freeze the schedule and advance d1 to 7, no

task misses its deadline, but the schedule is not EDF:

τ1

τ2

ape
2

4

0

8

126

0 4 8 1262 10

C1 = 1

C2 = 3

d1r1

Feasible schedule ≠ EDF

75

Improving TBS
• However, since EDF is optimal, the schedule

produced by EDF is also feasible:

τ1

τ2

ape
2

4

0

8

126

0 4 8 1262 10

C1 = 1

C2 = 3

d1r1

26

76

Improving TBS
• We can now apply the same argument, and

advance the deadline to t = 6:

τ1

τ2

ape
2

4

0

8

126

0 4 8 1262 10

C1 = 1

C2 = 3

d1r1

77

Improving TBS
• We can now apply the same argument, and

advance the deadline to t = 6:

τ1

τ2

ape
2

4

0

8

126

0 4 8 1262 10

C1 = 1

C2 = 3

d1r1

78

Improving TBS
• Clearly, advancing the deadline now does not

produce any enhancement in the response time:

τ1

τ2

ape
2

4

0

8

126

0 4 8 1262 10

C1 = 1

C2 = 3

d1r1

27

79

Computing the deadline
• In general, the new deadline has to be set to

the finishing time of the current job:

ape

),max(0
1

0
−= kkk drd

)(1 s
kk

s
k

s
k dffd ==+

dk
sfk

s

80

Computing the deadline
• Computing the actual finishing time is

difficult, so we can compute an upper bound:

ape

),(s
kkpk

s
k frICf +=

dk
sfk

s

s
k

s
kkpk

s
k fdrICf ≥+=),(~

Ip

Ck

81

Periodic Interference

),(),(),(s
kf

s
ka

s
kp dtIdtIdtI +=

Us = 1 − Up = 1/6

Up = 1/2 + 1/3 = 5/6 Ck = 2
dk = 3 + 2/ Us = 15

τ1

τ2

ape
2

4

0

8

6

dk

12 16 20

12 18

0

3

28

82

Computing interference

∑=
active

i
s
ka

i

tcdtI
τ

)(),(

∑
=

−
=

n

i
i

i

i
s
ks

kf C
T

tnextddtI
1

)(),(

nexti(t) = next release time
of task τi after t

dk

τ1

τ2

ape
2

4

0

8

6

12 16 20

12 18

0

3

83

The Optimal Server

),(~ s
kkpk

s
k drICf +=

ape

dk
sfk

s
Ip

Ck

),max(0
1

0
−= kkk drd

s
k

s
k fd ~1 =+

s
k

s
k dd =+1

s = 0

s = s+1 EXIT

compute the initial
deadline with TBS

advance deadline

84

Two interesting results
• If () then s

k
s

k ff =
~s

k
s
k dd =+1

• If () then s
k

s
k ff =

~s
k

s
k dd =+1

It means that the estimate is exact

min

It means that the algorithm minimizes
the aperiodic response time

29

85

Complexity

),(~ s
kkpk

s
k drICf +=

),max(0
1

0
−= kkk drd

s
k

s
k fd ~1 =+

s
k

s
k dd =+1

s = 0

s = s+1 EXIT

O(1)

O(n)

O(Nn)

n tasks
N steps

pseudo-
polynomial

86

Tunable Bandwidth Server TB(K)

),(~ s
kkpk

s
k drICf +=

),max(0
1

0
−= kkk drd

s
k

s
k fd ~1 =+

s
k

s
k dd =+1

s = 0

s = s+1 EXIT

O(1)

O(n)

() OR (n = K)

O(Kn)
polynomial

K = max number of steps

TB(∞) = TB*TB(0) = TBS

87

Tuning performance vs.
overhead

performance

overhead

optimal server

TBS

K = 0

TB*K = ∞

30

88

Aperiodic responsiveness

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

1

2

3

4

5

6

7

8

Relative Aperiodic Load: ρa/(1-Up)

Avg. Response Time
TB(0)

Up = 0.85

9

10

TB(1)

TB(3)

TB(5)
TB*

	
	01-pts-intro.pdf.rdo
	
	
	
	
	
	
	
	
	
	
	
	

	02-pts-app.pdf.rdo
	
	
	
	
	
	
	
	
	
	

	03-pts-schedanalysis.pdf.rdo
	
	
	
	
	
	
	

	04-pts-rtsynch.pdf.rdo
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	05-pts-oodesign.pdf.rdo
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Baksida.pdf.rdo
	

