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Activation Paradigms

• activation of activities - tasks
– when are events recognized?
– who initiated activities?
– when are decisions taken?

• event triggered – ET
– event initiates activities in system immediately

• time triggered – TT
– activities initiated at predefined points in time
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predictable

deterministic

TT

• offline scheduling
• scheduling table
• slots – time triggered activitation of dispatcher
• runtime dispatcher executes decision in table

☺ deterministic – known beforehand which activity running when
☺ complex demands, distributed, end-to-end, jitter, …
☺ low runtime overhead - table
L inflexible – can only handle what is completely known before

Properties – Time Triggered
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Properties – Event Triggered

• online scheduling, priority driven
• event activates scheduler which takes decision
• rules + test

– earliest deadline first (dynamic priority)
– fixed priority

☺ flexible – not completely known activities can be added easily
☺ widely used
L only simple constraints
L high runtime overhead for semaphores, blocking, ...
L limited predictability – keeps deadlines, but cannot determine 

when exactly

flexible

ET
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Effects on Design

• activation paradigm is central design decision
• “either – or” decision

– advantages of one method at expense of those of other
– demands outside paradigm need to be “squeezed in” 

• system wide implications
– same properties for all activities
– mostly highest level

monolithic approaches - “power plant” approaches
• single system for single application
• single paradigm for single class of demands
• high effort and cost
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Novel Applications

mix of activities and demands
• core system with high demands

– strict timing behavior
– safety critical, fault tolerant
– proven and tested for worst case

• hard real-time applications
– temporal correctness, etc.

• flexible real-time applications
– not completely known
– some deadlines can be missed

• non real-time activities
– must not disturb real-time activities
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TT ET

predictable
high cost

deterministic

flexible
low price

not deterministic behavior of critical activities

coresystem

hard real-time appl.

flexible RT appl.

non RT appl.

high cost even for non critical applications

coresystem

hard real-time appl.

flexible RT appl.

non RT appl.

high cost even for non critical activities
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Offline Schedules – a Closer Look

• general, complex (temporal) constraints
• offline scheduler

– resolves demands
– constructs single solution meeting all demands
– table for least common multiple of periods

• no flexibility



© Gerhard Fohler, 2003

NW

C
N1

A
N0

dl(PG)

B

D

est dl

est dl

• analysis of offline schedule and demands
• limit task executions - target windows

– demands fulfilled, if tasks execute within target windows
– starttime, deadline pairs

• ready for dynamic, event triggered scheduling

target window

target window
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target  windows of tasks
flexibility analysis

original timing concstraints

flexibility - complexity

scheduling table
offline scheduler

0 - 0

ok - ok

complexity reduction

original - NP
offline, TT

offline tasks noch nicht geschützt!

• intervals, spare capacity
– amount and location of free resources in Systen
– simple protection mechanmism for offline tasks at runtime
– simple guarantee test for aperiodic tasks
– 4 integers per task

EDF tasks

standard EDF scheduling

ints., spare cap.

protected offline tasks

online, ETonline, ET
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Predictable Flexibility

target windows control flexibility of task execution
• target window = original task execution

no flexibility, original schedule
• target window after flexibility analysis

flexibility of execution while meeting demands
• reduced target windows 

reduced flexibility, e.g., for jitter control
• modifying target windows selects flexibility of tasks individually
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Fixed Priority Scheduling

• so far time triggered to event triggered,earliest deadline first
(EDF) – dynamic priorities

• how about fixed priority scheduling (FPS)?
• simple, but limited constraints
• transformation method:

– takes offline schedule
– determines task attributes, such that when execute with FPS 

at runtime: offline schedule reenacted
– target windows, set of priority inequalities,  integer linear 

programming
• now transformations between offline, EDF, and FPS
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target  windows of tasks
flexibility analysis

original temporal constraints

scheduling table
offline scheduler

offline, TT

offline tasks noch nicht geschützt!
online, ETonline, ET

EDF tasks

EDF scheduling

FPS tasks

FPS scheduling offline scheduling
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• core system
offline scheduling

• hard real-time applications
offline scheduling or online scheduling

• flexible real-time applications
combined offline/online approach

• non real-time activities
together with combined offline/online

• flexibility individually configured

• guaranteed tasks protected
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predictable

deterministic

TT

flexibel

ET

flexible

ET

core system

hard real-time appl.

flexible RT appl.

non RT appl.
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Applications

• two example applications for predictable flexibility
– real-time control systems
– home entertainment networks – video streaming
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Real-time Control Systems

• mix of task demands
• sampling – actuating tasks: very strict constraints
• deviations results in jitter, error

– sampling jitter
– sampling-actuation (delay) jitter

• other tasks flexible
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• error from control point of view, bad system response, instability

predictable flexibility:
restrict (=zero) flexibility for sampling actuating tasks
(predict exact times, even non periodic for compensation)
other tasks flexible
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Home Entertainment Networks

• current, analog
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stream
eg IP

digital 
in home
entertainment
network
wired - wireless



© Gerhard Fohler, 2003

Characteristics

mix of streams and demands
• high quality video for consumer terminals, eg, TV sets,movies

– strict real-time behavior
• frame rate
• continuity

• mobile devices, eg, for news, sports
– less strict demands, but good adaptive quality

• IP
– internet, www
– ok performance, not interfere with “quality streams”

• variations in MPEG stream demands and network availability
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• real-time methods to determine resource demands of groups of 
pictures

• offline “skeleton” of reserved resources for minimum quality of 
service of guaranteed streams

• online handling of additional frames
– acceptance tests to 

• select “best” group of frames
• guaranteed to be decoded – no loss due to partial frames

• various streams for various devices, networks, quality
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stream
eg IP

digital 
in home
entertainment
network
wired - wireless

• Mitsubishi Research Labs
• real-time communication middleware – IP
• NT - CE

MidART
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stream
eg IP

• EU – IST Project
• Philips coordinator
• IP, bluetooth,firewire, etc

FABRIC
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Summary

• predictable flexibility
configure amount of flexibility for each task individually

• system with mix of activities and demands
select appropriate methods and costs

• combine event triggered and time triggered activation schemes
• transform between offline, EDF, FPS scheduling schemes

less scheduling centric design
• applied to applications with mixed demands

– control
– in home entertainment networks
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THE END
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Offline schedules

• general timing constraints
• offline scheduler

– resolves constraints
– constructs one solution which meets all constraints

• fixed (blind) runtime execution
• no flexibility

• how can we 
– increase flexibility
– add dynamic tasks
– integrate with online scheduling methods
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Slot Shifting…

Offline

• timing constraints P
• offline schedule P
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• we have 
– offline constructed schedule

• we want 
– include dynamic tasks
– schedule them online

• what can we do?
– include in offline schedule (e.g., pseudo periodic) 

⇒ inefficient
– fit into empty slots ⇒ no guarantees
– we can do better!
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“Background Service”

0 4 8 12 16 20 24 28

CPU

NW

A

aper
c=1

fixed pre runtime schedule:
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Basic Idea

0 4 8 12 16 20 24 28

CPU

NW

A

aper
c=1

shift A’s slots
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Shifting pre-runtime tasks

• pre runtime schedule assigns fixed times for execution
– although different times possible
– overconstrains schedule

• we have to select one out of several possible times 
• …for the sake of algorithm only

• we know, that we can shift A 
– execute the aperiodic task at once
– feasibility of tasks not violated
– how much and where can we shift?
– what are boundaries?
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Shifting tasks

0 4 8 12 16 20 24 28

CPU

NW

A

msg receipt msg sending

A A AAA
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Limitations on Shifting
we can shift tasks
limitations
• receipt of message
• sending of message
• earliest start time of precedence graph, end-to-end constraints, 

task chain
• deadline of -”-

calculate start time, deadline pairs for tasks
• expresses flexibility of task
• reduces overconstraining
• fit in aperiodic task by shifting as long as these constraints met
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These tasks are assigned fixed starttimes or deadlines.
(Subgraphs of precedence graphs allocated to nodes combined.)

⇒ independent tasks with starttimes, deadlines on single nodes

simple EDF runtime scheduling
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Slot Shifting …

Offline
• timing constraints
• offline schedule
• earliest start times, deadlines P
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How much shifting?

• know what is 
– earliest time to start task
– latest time to finish

• aperiodic arrives: how far can we shift static task?
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• latest start time
start no later or violate deadline

• have to ensure when executing aperiodics
how?

• more complex dispatching
still next task, but check for constraints

• more memory - 3 integers per task

0 4 8 12 16 20 24 28

CPU

earliest start time, est deadline, dl

A

latest start time, lst
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Slot Shifting

Offline
• timing constraints
• offline schedule
• earliest start times, deadlines

• latest start times P
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Insert how much? Where? 

so far soft aperiodics
can we give guarantees for firm aperiodics?
• worst case execution time
• deadline
• before start, want to guarantee that we can complete them

how can we decide?
• need idle resources for aperiodics
• before deadline of aperiodic
• which resources can we use?
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0 4 8 12 16 20 24 28

dlA

A
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aper. c=2 c=10

ok P
not ok
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Spare Capacities

• spare capacities, sc = length of execution interval 
- execution times

• available for aperiodic tasks
• know amount and location from schedule!

dlA

A

estA

0 4 8 12 16 20 24 28

unused resources, spare capacities
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sc=5-3=2

sc=8-3=5

est

sc=6-0=6
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Slot Shifting

Offline
• timing constraints
• offline schedule
• earliest start times, deadlines
• latest start times
• spare capacities Pnot yet…
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Intervals

sort deadlines ⇒ disjoint invervals:
• end: deadline of task(s)
• tasks with that deadline
• spare capacity, sc

the amount of idle resources in that interval
• start: max of est of task(s) and end previous interval

• empty intervals: 
– end(Ii-1)<start(Ii)
– wcet = 0
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A
N0

B

est(AB) dl(AB)

block (AB)

est(X) dl(X)

block (X)

I(AB)

sc(I(AB))=5-3=2
I(X)

sc(I(X))=3-3=0

∑
∈

−=
IT

TwcetIIsc )(||)( ..almost the truth…
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• intervals ≠execution intervals!
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A
N0

B

est(AB) dl(AB)

block (AB)

est(X) dl(X)

block (X)

I(AB)

sc(I(AB))=5-3=2
I(X)

sc(I(X))=3-4=-1

sc(I(AB))=5-3 -1=1

“borrowing”
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)0),(min()(||)( 1+

∈
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borrowing mechanism:

• if tasks in subsequent interval need more resources than 
available in it:
execute in other interval, use resources from there “borrow”

• run-time mechanisms resolve negative spare capacity

• only for calculation and flexibility

• start of interval can be ≠ earliest start time

• earliest start time checked separately
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Slot Shifting

Offline
• timing constraints
• offline schedule
• earliest start times, deadlines
• latest start times
• intervals P
• spare capacities P
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Online Mechanisms- Scheduling

online scheduler invoked at each node after each slot

• check for new aperiodic tasks
• guarantee algorithm
• take scheduling decision
• update spare capacities
• execute scheduling decision

earliest deadline first
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• after each slot, scheduling decision taken locally at each node
– no ready task:

CPU idle
– sc(Ic) > 0, ∃ soft aperiodic task A:

execute  A
– sc(Ic) = 0:

an offline or guaranteed task has to be executed or 
deadlines are missed
takes care that no latest start time is missed!
no other mechanism needed, eg, watchdog, etc
implicit invocation, no extra memory needed

– sc(Ic) > 0, ¬∃ soft aperiodic task:
offline or guaranteed task executed
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Acceptance of aperiodics

• aperiodics (without deadline):
sc > 0: one slot can be given to it

• firm aperiodics (wcet and deadline):
want them executed either completely or not at all

⇒ guarantee algorithm

O(N)
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• aperiodic task A (r,wcet, dl)
• three parts of spare capacities available

0 4 8 12 16 20 24 28

I0 I1 I2 I3

r dl

– sc(Ic): remaining sc in current interval

– sc(Ii): sc(Ii)>0, c < i ≤ l, end(Il) ≤ dl(A), end(Ii+1) > dl(A),
sc in all full intervals between r and dl

– min(sc(Il+1), dl(A) - dl(I)), minimum spare capacities of 
last interval or up to the deadline of aperiodic in last interval
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Guarantee

• if sum of total sc between dl and r are larger or equal wcet, 
guarantee

• need to ensure guarantees resources are not used otherwise
• after guarantee:

– update interval l
– update interval l-1
– …
– update interval c
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Spare capacities at runtime

• aperiodic execution
– decrease spare capacity of current interval

A Bblock (AB) block (X)

I(AB), sc(I(AB))=2 I(X), sc(I(X))=0

N0

at t: sc(I(AB))=2-1=1 I(X), sc(I(X))=0

t
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• no execution
– decrease spare capacity of current interval

A Bblock (AB) block (X)

I(AB), sc(I(AB))=2 I(X), sc(I(X))=0

N0

at t: sc(I(AB))=2-1=1 I(X), sc(I(X))=0

t

X
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• execution of offline task T
– T∈current interval Ic

spare capacity stays the same

A Bblock (AB) block (X)

I(AB), sc(I(AB))=2 I(X), sc(I(X))=0

N0

at t: sc(I(AB))=2 I(X), sc(I(X))=0

t
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• execution of offline task T
– T∈future interval If

• spare capacity Ic decreased
• spare capacity If increased

A Bblock (AB) ock (X)

I(AB), sc(I(AB))=2 I(X), sc(I(X))=0

N0

at t: sc(I(AB))=2-1=1 I(X), sc(I(X))=0+1=1

t

bl
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• update capacity of If
– if ≥ 0 …done
– if < 0 … need to update previous interval If-1

• sc(If-1)
– if ≥ 0 …done
– if < 0 … need to update previous interval If-2

• ….
• until sc ≥ 0 or Ic
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Shifting Messages

• communication medium resource like CPU from scheduling 
perspective

• shift messages as well
• restriction to sending messages earlier

– no receiver synchronization necessary
– may increase spare capacities at receiver
– when message received - spare capacities updated
– else same
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Analysis

• MARS
• 4 CPUs
• TDMA network
• ~1600 task sets generated and pre runtime scheduled
• randomly generated aperiodic tasks
• each point in plots 700-1000 task sets
• 0.95 confidence intervals < 5%
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global shifting
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• Periods
• Deadlines
• Start times

Test

Test

SchOnline

SchOffline

• Deadlines
• Guarantee

Aperiodic

• No dl

Firm Soft

Sporadic

Minimum 
separation 
between 
instances

Periodic with constraints

• End-to-end dl
• Inst. separation
• Distribution
• Jitter etc.

Simple Complex

x

x

x

x

x

x x

x

x

“Slot shifting nouveau”

• further acceptance test
• integration with TBS
• ….
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Slot Shifting - Summary

• handle online tasks while maintaining feasibility of offline 
scheduled tasks

• offline reduction of complexity
• simple runtime handling
• “interface” for integration of offline and online scheduling

• offline scheduled system for critical activities
• restrict amount of shifting
• flexibility for rest

predictable flexibility
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Articles

• Gerhard Fohler
Joint Scheduling of Distributed Complex Periodic and Hard 
Aperiodic Tasks in Statically Scheduled Systems
Proc. of the 16th IEEE Real-Time Systems Symposium, Pisa, 
Italy, December 1995.

• Damir Isovic, Gerhard Fohler
Efficient Scheduling of Sporadic, Aperiodic, and Periodic Tasks 
with Complex Constraints
Proc. of the 21st IEEE Real-Time Systems Symposium, 
Orlando, Florida, USA , November 2000
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Mode Changes

• systems undergo a number of mutually exclusive mode during 
operation
e.g., air craft ground, take off, flight, landing
– different system activities
– different attributes of activities

altitude not critical on ground
– system configuration

• difficult to handle in single schedule
• provide separate modes plus transitions
• context of offline scheduling
• important in aeronautics
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What is different in modes?

• selection of control loops
• Timing requirements
• attributes of activities (“critical”, “hard”,…)
• system configuration
• reliability

how to deal with pre runtime scheduling?
put all activities of all modes into a single schedule
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What is affected by this approach?

• solutions:
High overhard of incorporating all resource needs, even 
mutually exclusive ones.

• design and understandability
– violates modularization and separation of concerns
– large number of design items
– difficult to recognize coherent activities

• testing
input space larger than really required

better approach
separate modes as well as mode changes
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Requirements

• deterministic temporal behavior
• specification

– timing constratints
– also for mode changes, transitions
– adhere to design principles of single modes

– not new methods
– consistent design approach

• retain continuous system operation during mode changes!
– tasks executing in old, new mode, and transitions not 

impaired by mode change
– e.g., don’t shutdown enginees during transition in midair
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Design/Specification Issues

Mode:
• single operational phase, performed by a single static schedule 

(-ing table)
• specified as precedence graphs (transactions, execution chains)
• one mode:

– set of precedence graphs - all activities in one mode
• two modes:

– set of precedence graphs for each mode separately
– allow tasks in both modes, label
– second dimension: modes
two dimensional precedence constraints
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Transition Precedence Graph

transition:
tasks of 
• old mode
• new mode
• plus (optional) additional ones 

– complete old activities
– prepare for new mode
– intermediate actions

• viewed as mode itself, but not executed continuously
• same design method as for single mode
• ongoing activities part of transition schedule 
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Runtime handling

• mode change requested
– switch to transition mode, schedule when feasible
– execute transition mode until all activities in it completed
– switch to new mode when feasible

• switching directly into mode schedule may cause problems, e.g., 
inconsistencies, aborted tasks, etc.

• agreement on which mode should be changed two if more than 
one request - offline resolution
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Design Issues

Semantic constraints
what do we need to be able to express?

• immediate change, aborting current activities
empty transition graph

• completing all current activities before changing
transition graph identical to graph of old mode

• completing some of the current activities
transition graph comprised of part of activities of old mode and
new mode

• additional activities
old, new mode activities, plus new ones
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Mode change conditions
e.g., t>50
– consistency check
– conflict resolution
– who initiates mode change request
– design via automaton
– global consistent view
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switch ok
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TA TC TH TB TI TD

TA TC TE TG

M0

MF

MT TA TC TE TG

TG

switch not ok…TE would not be executed

TA TC TH TB TI TD
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Mode Change Schedule Construction

Construct a schedule such, that
• timing constraints of individual modes met
• timing constraints for transitions met
• deterministic behavior
• flexible and fast reaction times

single mode scheduling NP hard..how about that?
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Trick: 
switch through requirement

enforce consistency by scheduling tasks at same times in all 
modes

then, when a task is executing which is also in another, can 
propably switch immediately (still need to check consistency 
precedence etc.)

how?
• apply (single-mode) selection strategy to all modes 

simultaneously

• predictable
• can specify and guarantee transition deadlines
• simple runtime handling
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Runtime handling - II

How can I feasible switch schedules?
• check all requirements before switch - intractable
• resolve all that during schedule construction
• efficient representation in runtime dispatching
• black out slots

– flag at each slot in destination mode
– when set, switch not feasible

– wait till next slot without blackout

– else switch right away
• very memory and time efficient!!!
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TA TC TH TB TI TD

TA TC TE TG

TGTF

M0

MF

MT
“switch through”

blackout slot
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mode change methods for offline schedules presented
• constructs schedules for modes and transitions
• “switches” between scheduling tables in specified, feasible way
• given time, schedule, and mode change request

⇒ known sequence of activities to execute transition
• slot level determinism
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Real-time scheduling - making the right 
decisions to  guarantee time

physical properties of environment

model - design

timing constraints

run-time dispatching

in field use

functional

temporal

system construction

analysis, testing
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Who is doing the scheduling? And when?

Run-time dispatcher controls which activities are performed at 
which time. It controls access to the CPU by tasks. 

Part of real-time kernel.

• Keeps track of the system state, e.g., time, resource accesses, 
book keeping information, e.g., priorities, deadlines.

• Tasks execute until completion or may be interrupted:
non-preemptive or preemptive.

Non-preemptive dispatching is in general simpler:

– only one task (and stack etc.) active at a time.

– resource access - contention resolved
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• Run-time dispatching is performed according to a set of rules. 

• Off-line analysis and testing has to ensure that the provided 
rules for the run-time dispatcher are correct:

– when the dispatcher takes scheduling decisions according to 
the given rules, all timing constraints are kept.

– off-line guarantees
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How long?

• standard OS schedulers work on strategies without guarantees
– handle “task transition graph” waiting - ready - executing…
– select one out of the ready tasks to execute
– perhaps prevent deadlocks etc.
– go on until shutdown or system lock/crash, e.g., windows

• off-line guarantees: before, for entire mission lifetime
– minutes
– hours, days, more
– need to guarantee every one of them
– combinatorial explosion
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shorten analyzed lifetime 
• analyze only single, selected part of lifetime

– worst case proofs
– need to ensure assume worst case is worst case

• restrict complete freedom of task parameters 
• periods

• analyze repeating patterns during lifetime
– typically periods
– if harmonic, enough to analyze for duration of longest period
– if not, least common multiple LCM of all involved periods
– can be large
– execute repeatedly
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• System designer selects scheduling strategy and algorithm
Constructs a set of rules for the run-time dispatcher from 
specification and timing constraints. These rules range from 
complete schedules to priority strategies, etc.

• During analysis/testing, the designer determines, whether the 
rules provided will guarantee the temporal behavior, if applied 
by the run-time dispatcher.
If no rules can be found or testing gives a negative result, a 
redesign has to be done.

• Depending on whether these rules determine most scheduling 
decision before run-time or or leave part of the decisions to the 
run-time system, the scheduling is called offline (pre run-time, 
static) or online (run-time, dynamic).

Guarantees
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Pre run-time vs. run-time scheduling

Pre run-time scheduling constructs complete schedules that are 
feasible before the system is used in-field. 
This is a proof-by-construction of feasibility.
Run-time dispatching only executes the decision, does not take 
any by itself.

☺ Very simple for run-time system, e.g., list or table lookup.
L Inflexible, can only handle fully specified events and tasks, 

requires complete knowledge.
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Run-time scheduling constructs a set of rules for run-time 
dispatching and a proof (schedulability test) of feasibility when 
the rules are kept, before the system is used.
Run-time dispatching can take decisions on its own, as long as 
rules are kept.

☺ Flexible, can handle only partially known events and tasks.

L High cost at run-time (book keeping, calculations)
Difficult to predict exact behavior at run-time.
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Run-time scheduling can provide more flexibility, but 
no magic: 
What is not exactly known before run-time cannot be 
guaranteed then, independent of the used scheduling strategy.
Only events for which a task has been specified, i.e., code is 
available, can be handled.

work

pre run-time scheduling

run-time scheduling pre run-time run-time

pre run-time run-time
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• Run-time data structures and handling can be engineering 
problem, e.g., priority inheritance - paper by Victor Yodaiken

• Micro kernel with system threads, e.g., message handling tricky 
with run-time scheduling

Recently, algorithms have been presented to integrate pre run-time 
and run-time scheduling – slot shifting.
Benefits from pre run-time, but more flexibility.
→ lecture “integrated offline – online”
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How to schedule within LCM?

• Cyclic scheduling
– tasks in period classes
– schedule tasks within classes
– group task class schedules
– …until all tasks scheduled

• easy to handle, historically popular 

very different from offline scheduling!
less powerful, more restrictive, etc
often mixed up
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• off-line scheduling
static, pre run-time
– construct schedule of length LCM
– apply smart method
– fulfill all constraints 
– not limited to “period concatenation”
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Off-line Schedule Construction

• time triggered
• totally pre-planned
• global time base
• cars, airplanes
• periodic “world”
• some say all “real tasks of real applications” are periodic
• true for some applications
• generally not!
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Making a periodic world

• “naturally periodic”, e.g., control, sampling
• aperiodic tasks, i.e., without any restriction on arrival

no way
• sporadics

transform into pseudo periodic tasks
assumptions about events
– maximum rate of change, minimum inter arrival interval, mint
– maximum delay of reaction, react
– computation time, comp

• determine period and deadline
• have to ensure that

1. reaction is not late
2. no event missed
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• worst case:

event happens right after task start - misses data just by ε

react

event

ε

comp

event gets reacted by task only at next instance invocation

event reaction completed
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• deadline
dl=comp+s, s≥ 0

• next instance completes no later than react after event
– event starts at   t + ε
– reaction finishes at   t + p + dl
– t + p + dl - t - ε ≤ react
p + dl ≤ react + ε or p + comp + s ≤ react + ε

react

event

ε

comp

event reaction completed

period pt dl

s
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• maximum value for p - not react too late
p < react + ε - dl or p < react + ε - comp - s

• maximum value for p - not miss event
p < mint

react

event

ε

comp

event reaction completed

period pt dl
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• assume dl=comp; s=0

react

event

ε

comp

event reaction completed

period pt dl



 +

<
mint

 comp-react ε
p
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• Utilization:

• assume dl=comp+s; s>0

• U0 <Us !

ε+−
==

compreact
comp

p
compU0

ε+−−
==

scompreact
comp

p
compU s
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• period and deadline dependent on each other
• tradeoff

– large period:
• low utilization demand
• tight deadline - schedulability problems

– small period:
• relaxed deadline
• high utilization demand

• change for individual instances
e.g., collision, relax deadline

• flexible timing constraints new project
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• if events are rare, but urgent when they occur transformation 
inefficient, high utilization demands
e.g.,
mint=1000*comp; react=2*comp:
p < react + ε - comp  = comp + ε

• monopolization of CPU

• actual need to handle event without pseudo periodic transformation

1≈
+

=
εcomp

comp
U

001.0
*1000

==
comp

comp
U
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Why use it?

• number of - particular - critical application have periodic nature
• predictable behavior - know exactly what is going on
• testing, certification much easier
• simple fault-tolerance, replica determinism
• receiver based error detection
• non temporal constraints, e.g., cost
• explicit flow control, synchronization
• “proof by construction”
• very simple dispatching
• micro kernel synchronization of system threads
• high resource utilization
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Off-line Scheduling Methods

What do we want to achieve?
• we want to find solutions

– NP hard in more than trivial cases
→ can take very long time

• have to optimize search to find solutions fast
but
• once we find solution, we are done
• likely that first try will not work, maybe solution does not exist
• what if we don’t find one/does not exist?
• total time spent in schedule design:

time of not (finding * #failures) + (1*time of finding)
→ not finding at least as important as finding
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we need
• algorithm for

– fast detection of no solution/not finding
– fast finding of feasible solution

• strategy to
– select tradeoffs
– choose time spent
– allow for detection of why no solution found  (difficult)
– good redesign for next schedule attempt

• designer support

most current algorithms concentrate on finding solution only
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Directions

How to construct a schedule?
• simple solution: use online scheduling, e.g., EDF

– still better than online - can backtrack or redesign
– better utilization because resource conflicts are known, don’t 

need to assume worst case
– testing
– etc.

• search
– popular
– easy to change constraints
– easy algorithm
– problems with feedback problem - source in search tree
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• genetic algorithms
e.g., simulated annealing
– simple 
– does not get stuck easily with hard sub problems
– can handle large task sets
– difficulties with complex constraints
– good for allocation of tasks to nodes in distributed system

• “by hand”
– sometimes really fully by hand
– with support

• resolve difficult parts by hands
• extend existing schedules
• place some tasks by hand
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• safety critical automotive application
– specification of tasks (in place A)
– scheduling (in place B)
– transfer of schedule to chips by engineer (in place C)

• “don’t like these tasks here, they should be separated”
• engineering practice
• cannot be scheduled, because cannot be expressed

→ intelligent scheduling editor
– display schedule
– allow engineer to modify

• provide info about constraints
• allow rescheduling of selected tasks

– current project - SALSART toolsuit
• distributed cooperative schedule design
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• incremental scheduling
– want to modify existing schedule

• upgrades
• new versions
• etc.

– existing schedule trusted, tested, certified - spent high effort
– rescheduling - completely new schedule
– efforts again
– better to keep existing schedule as much as possible
– select “unmovable tasks”
– interactive graphical tool with scheduling support
– research - tool to be implemented
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• networked based
– distributed system
– nodes under control of different suppliers
– not knowledge about internals of other nodes
– neutral designer 

• schedules communication
• distribution bandwidth
• specifies timing constraints (“windows”) to nodes

– distributed tool - web based (possible SALSART application)
• also non-cooperative scheduling

– auctioning of time
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Off-line Scheduling and the Real World

• Many algorithms assume tasks, messages, slots, constant 
operating system overhead

• real-world demands
– interrupts
– threads, chains
– micro kernel OS

• system threads
• task ensembles for tasks, e.g., message transmission
• depending on scheduling and allocation
• dynamic creation of threads

• do not fit into off-line schedule in straightforward way
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Threads

• threads are shorter than granularity of slots
• better utilization of slots
• scheduling/dispatching happens not only at slot boundaries

• scheduler needs to construct chains as well
• offline scheduler does “micro scheduling”, e.g., thread 

cumulating within slot
• backtracking, heuristic etc only at slot boundaries
• not optimal, but tractable

slots
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Interrupts

• interrupts have to be considered
• cannot 

– ignore them - too much time demand
– handle them as tasks/threads -

too high overhead, too long response times
– have to account for in analysis during schedule construction
– minimum inter arrival time - maximum overhead

• naïve approach
– assume each task can be hit by a worst case arrival of 

interrupts
– ala exact analysis
– very high overhead
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• if task is shorter than minimum inter arrival time
interrupt overhead is considered too often for two consecutive 
tasks

interrupt

overhead

assumed worst case arrival pattern

interrupt

overhead

actual worst case arrival pattern
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• sophisticated analysis algorithms
taking into account successors, precedence relations, etc.

• used for analysis only and consideration during schedule 
construction

• online scheduled without further provisions
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Off-line Scheduling - Search

precedence graph structure well suited for 
(heuristic) search through search tree
• nodes represent (partial) schedule
• edges represent scheduling decisions
• heuristic function used to guide search through search tree
search strategies examples for distributed systems
• A*, IDA*: Fohler 1989, 1991
• branch-and-bound: Ramamritham 1991
• “meta”, two stage branch-and-bound for pipelining

Fohler, Ramamritham 1997
• resulting schedule is a set of schedules for each node in the 

distributed system
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Example Taskmodel for Pre Run-time 
Scheduling

• Precedence graphs
• period, starttime, deadline for entire precedence graph

(end-to-end)
• release time and deadline for selected tasks
• Precedence constraints with communication (synchronized data 

flow) or without (synchronization only)
• preemptive tasks
• simple tasks (black boxes): read input - compute - write output
• communication time over bus bounded
• slots dispatcher runs with granularity, creating slots
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• precedence graphs have different periods:
– different number of instances in schedule
– schedule length: least common multiple, lcm, of all periods
– each precedence graph with period Pi has 

lcm / Pi instances in schedule
– construct graph with correct number of instances

comprehensive graph
(only for deadlines < periods)

• generate search tree
• traverse it for solution
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Search tree

A

B

C

D

D'

D

D'

C

C

D'

D

D'

B

C

B

D'

C

C

D'
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• each path in the search from the root represents a (partial) schedule

e.g., the second one to the left: ABCDD

e.g., the rightmost: ADBCD

• branching factor: number of edges from node

determines size of search tree

• non preemption factor: minimum size of “chunk of execution time” 

determines size of search tree
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Off-line Scheduling Strategies

• how to minimize the overall time to find schedule
• search parameters

– determine size of expanded search tree
• small tree: 

– easy solution can be found fast; but lower chances
– no solution found is detected fast

• larger search tree:
– more time spent to find solution
– long time spent to detect no solution

– can be set by designer
• allows to start with small tree (easy solution fast) and increase 

as desired and tolerated
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Analysis (simplified answers)
success ratio: how many solutions found in number of searches
• start depth does not influence success ratio
• larger branching factor (BF) increases success ratio

flattens out fast
• cost for finding solution

– with minimum start depth higher
– with larger branching factor higher

• cost for no solution 
– with minimum start depth higher
– increase with BF, higher at lows of non preemption

Conclusions
• start with high start depth
• search with small BF first, don’t increase too much
• use high non preemption factor, lower not too much
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A*, IDA* Search

• developed by Korf 1984, derivative of A*, Nilson 1982
• heuristic search strategy
• uses heuristic function to guide search

ITERATION()
{
while(DEEPEN(rootnode)not done)

{
threshold=threshold +min_exceed;
min_exceed = infinity;
}

}
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DEEPEN(node)
{apply(node); // apply sched decision, update data
if(feasible(node) == true)

{ if(solution_found(node)) done;

successors= create all successors of node;
// collect tasks, message ready, create sched decisions
calculate f(n) for all nodes in successors;
best_nodes = sort all nodes in succ. by f(n)

for(i=0;i<BRANCHINGFACTOR; i++)
{if((f(best_nodes[i] < threshold)

DEEPEN(best_nodes[i];
else if(f(best_nodes[i] - threshold < min_exceed)

min_exceed = f(best_nodes[i] - threshold;
}

} // if feasible
}
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• task data accessed very often
• elaborate data structures

– on purpose redundancy
– areas instead of pointers

• IDA* linear with search depth in memory need
– search tree represented in area
– size known at program start
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Heuristic Function

• Search tree can be very large
a complete search will take too long

• select “promising” paths in the search tree, e.g., by use of a 
heuristic function

• some heuristic search strategies, e.g., A*, explicitly handle 
heuristic functions and provide guarantees for finding solutions
based on their quality

• ad hoc heuristic functions, e.g., next deadline first, can be used 
as well, but don’t provide guarantees for solutions

• f(n) = g(n) + h(n)
– g(n) real cost so far
– h(n) estimated cost for rest
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• example heuristic function TUR - time until response
– sum of execution ties of remaining tasks

• distributed precedence graph - tricky problem

– sum of remaining communication times
estimation

– idle times
0

• tradeoff
– very ellaborate heuristic function finds solution fast
– but is expensive to calculate - invoked often

e.g., feasible schedule is good heuristic!
• problems if solution does not exist - expands large parts of 

search tree
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Questions
• If EDF is more efficient than RM, why 

commercial RT systems are still based on RM?

• Why is RM preferred to EDF?

• What are the limitations of EDF that prevent its
use?

After 30 years of work on scheduling, 
there are still a lot of misconceptions

9

Typical misconceptions

• RM is easier to implement and analyze;

• RM introduces less runtime overhead;

• RM is more predictable during overloads;

• RM causes less jitter.

They tend to favor RM more than EDF:
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Objectives of this work
1. Address the misconceptions

2. Compare the algs w.r.t. different metrics
⇒ Implementation complexity

⇒ Runtime overhead

⇒ Schedulability analysis

⇒ Robustness during overloads

⇒ Jitter

⇒ Aperiodic task handling

11

Implementation complexity
We have to distinguish two cases:

1. Implementation on top of a fixed 
priority kernel

2. Implementation from scratch

kernel

scheduler

scheduler
fixed priority 
scheduler

kernel
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On top of a FP-kernel
RM  is straightforward to implement
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On top of a FP-kernel
EDF requires dynamic priorities
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On top of a FP-kernel
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EDF sometimes remapping is required:

remapping
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As a basic kernel mechanism
Both RM and EDF require the same complexity 
for queue management:

periodic / aperiodic
criticality
WCET

Minimum Inter. Time
Relative Deadline
Absolute Deadline 
Utilization Factor

Task Control Block Under EDF
the absolute deadline 
must be updated at 
each job release:

di = ri + Ti

(negligible overhead)
···
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Existing EDF kernels

• SPRING (Stankovic-Ramamritham 87)

• YARTOS (Jeffay 92)

• HARTIK (Buttazzo-Lamastra-Lipari 93)

• SHARK (Gai-Buttazzo 99)

• MARTE-OS (Gonzalez 01)

• ERIKA (Gai 01)

• MCU-OS (Carlini-Buttazzo 01)
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Runtime overhead
Two different types of overhead are considered:

1. Overhead for job release

⇒ EDF has more than RM, because the absolute 
deadline must be updated at each job activation

2. Overhead for context switch

⇒ RM has more than EDF because of the higher 
number of preemptions

18

Preemptions
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Preemptions
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Example with RM
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Example with RM
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Example with RM
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Example with EDF
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Example with EDF
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Example with EDF
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Example with EDF
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Example with EDF
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as computation times increase
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Schedulability Analysis
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EDF
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Response Time Analysis

Processor Demand Analysis
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RM: harmonic periods

Harmonic task sets are schedulable by RM
if and only if U ≤ 1.

A set of tasks is harmonic if every pair of 
periods are in harmonic relation.

A common misconception
The RM schedulability bound is 1 if every 
period is multiple of the shortest period.
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Non harmonic periods
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Harmonic task set
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Robustness under overloads
Two situations are considered:

1. Permanent overload

⇒ This occurs when U > 1

2. Transient overload

⇒ This occurs when some job executes 
more than expected
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RM under permanent overload
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EDF under permanent overload

8 16 72

τ1

τ2

τ3

0 24 32 40 48 56 64 80

40 8020 60

0

0

12 24 36 48 60 72 84

• All tasks execute at a slower rate
• No task is blocked

25.1
20
5

12
6

8
4

=++=U

36

EDF is predictable in overloads
Theorem (Cervin ‘03)

If U > 1, EDF executes tasks with an
average period T’i = Ti U.
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Big misconceptions

RM is predictable during overloads because 
the tasks that miss their deadlines are low 

priority tasks.

We now show that this is not true

EDF is not predictable during overloads 
because we don’t know which tasks are 

going to miss their deadlines.
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RM during transient overruns
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RM during transient overruns
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Who is missing its deadline is not the lowest priority task
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Jitter

RM reduces jitter during task execution 
more than EDF

Another misconception

The maximum time variation in the occurrence of a 
particular event in two consecutive jobs of a task.

Jitter for an event

41

Types of Jitter
Start Time Jitter

1,,max +−= kikiki ssSTJ

τi
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Types of Jitter
Response Time Jitter

1,,max +−= kikiki RRRTJ

τi
fi,1 fi,2 fi,3 fi,4

|8 –8| = 0 |8 –11| = 3 |11 –4| = 8

RTJi = 8



15

43

Effects of Jitter

We compare the performance of 
RM and EDF in terms of RTJ

• In some control application, jitter is tolerated by the 
inertial nature of the system

• In some other applications, jitter can cause 
instability or jerky behavior

44

Jitter under RM

0

6 1812 24

8 18

0

0

τ1

τ2

τ3

(2/6)

(3/8)

(2/12)
12 24

RTJ1 = 0

RTJ2 = 2

RTJ3 = 8

τ3 experiences a very high jitter

45

Jitter under EDF

0

6 1812 24

8 18

0

0

τ1

τ2

τ3

(2/6)

(3/8)

(2/12)
12 24

RTJ1 = 1

RTJ2 = 2

RTJ3 = 3

For a little increase of RTJ1,
RTJ3 is decreased a lot
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Aperiodic task handling
Most RT applications require the execution of 
periodic (time driven) and aperiodic (event driven) 
activities.

Aperiodic
tasks

HARD

SOFT

They must be guaranteed 
assuming a worst-case 
arrival (sporadic model)

The objective is to 
minimize their average 
response time

47

Important results (1)

Under fixed priority scheduling it is not
possible to minimize the response time of 
every aperiodic job.

Theorem 1 (Tia-Liu-Shankar ’96)

Under fixed priority scheduling no on-line 
algorithm can minimize the average response
time aperiodic requests.

Theorem 2 (Tia-Liu-Shankar ’96)

48

Important results (2)

Under dynamic priority scheduling there are 
optimal algorithms that minimize the response
time of aperiodic jobs.

Improved Total Bandwidth Server  (ITB)
(Buttazzo-Sensini ‘97)

It minimizes response times by scheduling each
aperiodic job with the minimum deadline that 
preserves the periodic guarantee.
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Aperiodic responsiveness

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

1

2

3

4

5

6

7

8

Relative Aperiodic Load: ρa/(1-Up)

Avg. Response Time

Sleak Stealer

ITB

Up = 0.85

9

10

Other
dynamic
servers

50

Conclusions (1)
1. RM and EDF have same implem. complexity

A small additional overhead is needed in EDF to 
update the absolute deadline at each job release

2. Runtime overhead is smaller in EDF
Due to the smaller number of context switches

3. EDF achieves full processor utilization, 
whereas RM only guarantees 69%

0 69% 100%
?

EDF
RM

51

Conclusions (2)
4. EDF is simpler to analyze if Di = Ti

This is important for reducing admission control 
overhead in small embedded systems

5. EDF is more flexible in overload conditions
EDF automatically expand periods, whereas RM 
causes a complete block of low priority tasks

6. EDF is fair in reducing jitter, whereas RM only 
reduces the jitter of the highest priority tasks

7. EDF is more efficient than RM for handling 
aperiodic tasks
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Conclusions (3)
The only real advantage of RM is that it can be 
easily implemented on top of fixed priority 
kernels.

Challenge

Develop EDF kernels to exploit all the 
advantages of dynamic scheduling without
paying additional overhead.
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Overload management

2

Outline
• Definitions: load, overload, overrun
• Overload handling methods:

⇒ Admission control
⇒ Resource Reservation
⇒ Imprecise Computation
⇒ Job Skipping
⇒ Elastic Scheduling

3

Load definitions

Cλ=ρ

• For non real-time systems:

λ =  average arrival rate

C =  average execution time

ρ =  load

t
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Load definitions

∑
=

==ρ
n

i i

i

T
CU

1

• For hard real-time periodic tasks:

τ1

τ2

4

0

8

126

C1 = 1

C2 = 2

12
7

3
1

4
1

=+=U

5

Load definitions
• For real-time aperiodic tasks:

The load also depends on the deadline

ρ = 1

ρ = 1/2

ρ = 1/4

6

Computing the load
In general, the load in an interval is computed 
using the processor demand in that interval:

t1 t2

12

,

12

21 21),(
tt

C

tt
ttg tdtr

i
ii

−
=

−
=

∑
≤≥

ρ
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Istantaneous load ρ(t)

td

tc

td
dtgt

k

ddtr
i

k
k

k

k

kii

−
=

−
=ρ

∑
≤≤ ,

)(

max),(max)(

Maximum processor demand from the current
time and the deadlines of all active tasks.

t d3d2d1 d4

8

Example
ρ1(4)  =  2/4  =  0.5

ρ2(4)  =  5/6  =  0.83

ρ3(4)  =  7/9  =  0.78

ρ(4)  =  0.83
0 2 4 6 8 10 12 14

τ1

τ2

τ3

1
ρ(t)

0 2 4 6 8 10 12 14

0.5

9

Transient overload:   ρavg < 1,  ρmax > 1

⇒ Arrival of aperiodic activities
⇒ Exceptions raised by the kernel
⇒ Malfunctioning of input devices
⇒ Task with variable execution
⇒ Sporadic overruns

Transient vs. permanent 
overload conditions

Possible causes
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Types of overruns
• A task is said to be in overrun if the time demanded 

for execution exceeds the expected value according 
to which the task has been guaranteed.

• There are two types of overrun:

Execution overrun

Activation overrun

A job executes more 
than expected

A job arrives before 
the time it is expected

11

Permanent overload:  ρavg > 1

⇒ Activation of a new periodic task
⇒ Increase in the task frequencies
⇒ Increase in the task quality (execution times)
⇒ Changes in the environment
⇒ Bad system design

Transient vs. permanent 
overload conditions

Possible causes

12

Examples of load

1

0.75

0.5

0.25

0

1

0.75

0.5

0.25

0
time time

System designed under
worst-case assumptios

load load

System designed under
average-case assumptios
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Pessimistic assumptions lead to
• high predictability
• low efficiency

Average-case design leads to
• high efficiency 
• low predictability

Predictability vs. efficiency

high cost
only justified for
critical systems

necessary to handle 
and tolerate overloads

14

Overload management

• Value-based scheduling
− tasks are assigned values and executed accordingly

• Resource Reservation
− Resources are reserved to tasks and cannot be used

• Admission control
− least importance tasks are rejected
− important tasks receive full service

• Performance degradation
− all tasks are executed
− but with reduced requirements

Overload can be handled using different approaches:

15

Value-based scheduling
• If ρ > 1, no all tasks can finish within their 

deadline.

• To avoid domino effects, the load is reduced 
by rejecting the least important tasks.

• To do that, the system must be able to handle 
tasks with both timing constraints and 
importance values.
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Deadline  and  Value

• Under RM and EDF, the value of a task is 
implicitly encoded in its period or deadline.

• However, in a chemical plant controller, a 
task reading the steam temperature every 10 
seconds is more important than a task which 
updates the clock icon every second.

17

How to assign values
A task τi can be assigned a value vi according 
to different criteria. Those most common are:

vi = Vi arbitrary constant

vi = Ci computation time

vi = Vi/Ci value density

18

Value as a function of time
In a real-time system, the value of a task 
depends on its completion time and criticality:

vi (fi)

fi

non real-time

vi (fi)

fi

soft

vi (fi)

fi

firm

di

diri

ri ri

vi (fi)

fi

hard

diri −∞
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Performance evaluation
• The performance of a scheduling algorithm

A on a task set T can be evalutated through 
its Cumulative Value:

)()(
1
∑
=

=Γ
n

i
iiA fvT

• Note that: ∑
=

=Γ<Γ
n

i
iA V

1
max )()( TT

20

Optimality under overloads

)(max)(* TT AA
Γ=Γ

The performance of an algorithm can be 
evalutated with respect to Γ*.

In overload conditions, there are no 
optimal on-line algorithms able to 
guarantee a cumulative value equal to Γ*.

21

Proof   (assume: Vi = Ci)

To maximize ΓA we should know the future.

0 2 6 84 10 12 14 16

10

6

6

τ1

τ2

τ3

ΓA = 10

If at time t = 0 r3 is not know, we cannot select the 
task that maximizes the cumulative value.
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0 2 6 84 10 12 14 16

10

6

6

τ1

τ2

τ3

ΓA = 12

0 2 6 84 10 12 14 16

10

6

6

τ1

τ2

τ3

ΓA = 16

23

Competitive Factor
• Let Γ* the maximum cumulative value achievable 

by an optimal clairvoyant algorithm.

• An algorithm A has a competitive factor ϕA, if it is 
guaranteed that, for any task set, it achieves:

ΓA ≥ ϕA Γ*

• Hence, ϕA ∈ [0,1] and can be computed as:

)(
)(min * T

T
T Γ

Γ
= A

Aϕ

24

Competitive factor of EDF

τ1

τ2

V1 = K

V2 = εK

In such a situation,   ΓEDF = V2 and   Γ* = V1,

hence  ΓEDF / Γ* = V2 / V1 → 0  for V2 >> V1

• It is easy to show that ϕEDF = 0:
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A theoretical upper bound

[Baruah et al., 91]

If ρ > 2 and task value is proportional to 
computation time, then no on-line algorithm
can have a competitive factor greater than 0.25.

That is:   25.0max ≤AA
ϕ

26

In general, the upper bound of the 
competitive factor is a function of the load
and varies as follows:

0 1 2 ρ

0.25

0.5

0.75

1

ϕon

27

Best-effort  scheduling

CPUREADY queuetasks

• Tasks are always accepted in the system.

• Performance is controlled through a 
suitable (value-based) priority assignment.

• Problem: domino effect.
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Admission control

CPUtask READY queuetest

rejected N

Y

• Every task is subject to an acceptance test which 
keeps the load ≤ 1.

• It prevents domino effects, but does not take 
values into account.

• Low efficiency due to the worst-case guarantee
(tasks may be unnecessarily rejected).

29

Robust scheduling

• Task scheduling and task rejection are controlled by 
two separate policies.

• Tasks are scheduled by deadline, rejected by value.

• In case of early completions, rejected tasks can be 
recovered by a reclaiming mechanism.

CPU
task

READY queue
rejection
policy

reject queue

planning

scheduling
policy

recovery
policy

30

Robust EDF
• Scheduling Policy ⇒ EDF

• Rejection policy
when an overload is detected, reject the least 
value task which can bring the load below 1.

• Recovery policy
− keep rejected tasks by decreasing values;
− when there is enough spare time, re-accept the 

highest value task which is still feasible.
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Example: task rejection

0 2 4 6 8 10 12 14

τ1

τ2

τ5

τ3

τ4

16 18

Vi

7

10

5

2

3

at time t = 4    ⇒ τ3 rejected

20

32

Example: task rejection

0 2 4 6 8 10 12 14

τ1

τ2

τ5

τ3

τ4

16 18

Vi

7
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5
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3

at time t = 4    ⇒ τ3 rejected

20

33

Example:  task recovery

0 2 4 6 8 10 12 14

τ1

τ2

τ5

τ3

τ4

16 18

at time t = 8    ⇒ τ3 can be recovered

20

−1

−2

Vi

7

10

5

2

3
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Resource Reservation
Handling sporadic overruns

35

Problems with overruns
• Without a budget management, there is no 

protection against execution overruns.

• If a job executes more than expected, hard 
tasks could miss their deadlines.

τ1

Us = 1/4
1

4 8

0 4 8 1262 10

C1 = 1

overrun

deadline miss

36

Solution:  Temporal Isolation
• The execution of a task should not affect the 

guarantee performed on the other tasks.

• Each task τi receives a fraction Ui of the 
processor (its bandwidth) and behaves as it 
were executing alone on a slower processor of 
speed Ui.

bandwidth reservation

bandwidth enforcement
Temporal isolation
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Bandwidth reservation
• Ideally, each task should be assigned a given 

bandwidth and never demand more.

10 %

45 %
25 %

20 %

τ1

τ2τ3

τ4

• However, tasks are subject to overruns or the 
reserved bandwidth can be insufficient for the task.

38

Bandwidth enforcement
• It is a mechanism needed for degrading the QoS 

when a task demands more than the reserved 
bandwidth.

• If a task executes more than expected, its priority 
should be decreased (i.e., its deadline postponed).

• When a task experiences an overrun, only that task 
is delayed, so that the guarantee performed on the 
other tasks is preserved.

39

Implementation

CPU

server
Ready queue

EDF

τ1

τ2

τ3

Us1

Us2

Us3

Us1 +  Us2 +  Us3 ≤ 1

server

server
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Constant  Bandwidth  Server  
(CBS)

• It assigns deadlines to tasks as the TBS, but 
keeps track of job executions through a budget 
mechanism.

• When the budget is exhausted it is 
immediately replenished, but the deadline is 
postponed to keep the demand constant.

41

CBS  parameters
Given by the user

• Maximum budget: Qs

• Server period: Ts

Us = Qs / Ts (server bandwidth)

Maintained by the server
• Current budget: cs (initialized to 0)
• Server deadline: ds (initialized to 0)

42

Basic CBS rules
• Arrival of job Jk ⇒ assign ds

if (rk + cs /Us ≤ ds)  then recycle ds

else ds =  rk + Ts

cs =  Qs

ds =  ds + Ts

cs =  Qs

• Budget exhausted ⇒ postpone ds
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Deadline assignment

0 5 12

0 5 12

3 2

6
3

1

cs

Qs = 6
Ts = 12

44

0

0

5

3
cs

Qs = 3
Ts = 6

Budget exhausted

63

3

12

1

12

45

EDF + CBS  schedule

CBS: Qs = 2, Ts = 6

τ1

τ2

ape

6

0

12 18 24

9 2718

0

8 2714

d0
3

d1

r1

3

r2

d2
1

d3 d4

0 2 4 6 8 10

cs

12 14 16 18 20 22 24 26

r3 2418
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CBS properties
• Bandwidth Isolation

If a task τi is served by a CBS with bandwidth 
Us then, in any interval ∆t, τi will never demand
more than Us∆t.

• Hard schedulability
A hard task τi (Ci, Ti) is schedulable by a CBS 
with Qs = Ci and Ts = Ti, iff τi is schedulable by
EDF. 

47

Remarks on the CBS

• It can be used as a safe server for handling 
aperiodic tasks under EDF.

• It can be used as a bandwidth reservation 
mechanism to achieve task isolation.

• It allows to guarantee a minimum 
performance to SOFT tasks, based on the 
assigned bandwidth. 

Handling permanent 
overload
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Performance Degradation
The load can be decreased not only by 
rejecting tasks, but also by reducing their
performance requirements.

This can be done by:

• reducing precision of results

• skipping some jobs;

• relaxing timing constraints.

50

Reducing precision
In many applications, computation can be 
performed at different level of precision: the 
higher the precision, the longer the 
computation. Examples are:

• binary search algorithms

• image processing and computer graphics

• neural learning

51

Imprecise computation
In this model, each task τi (Ci, Di, wi) is 
divided in two portions:

• a mandatory part: τm
i (Mi, Di)

• an optional part: τo
i (Oi, Di)

Mi Oi

wi is an importance weight
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Imprecise computation
In this model, a schedule is said to be:
• feasible, if all mandatory parts complete in Di

• precise, if also the optional parts are completed.

Mi Oi

σi

error: εi =  Oi − σi average error: ∑
=

ε=ε
n

i
iia w

1

GOAL: minimize the average error

53

Job skipping
Periodic load can also be reduced by skipping
some jobs, once in a while.
Many systems tolerate skips, if they do not 
occur too often:

• multimedia systems (video reproduction)

• inertial systems (robots)

• monitoring systems (sporadic data loss)

54

Example

117.1
6
4

2
1

>=+=pU

The system is overloaded, but tasks can be 
schedulable if τ1 skips one instance every 3:

τ1
skip skip skip

τ2
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FIRM task model
• Every job can either be executed within its 

deadline, or completely rejected (skipped).

• A percentage of task instances must be 
guaranteed off line to finish in time.

• Each task τi is described by (Ci, Ti, Di, Si):
Si is the minimum number of jobs that must be 
executed between two consecutive skips.

56

• Every instance can be  red or  blue:
– red instances must finish within their deadline
– blue instances can be aborted

• If a blue instance is aborted, the next Si−1 
instances must be red.

• If a blue instance is completed within its 
deadline, the next instance is still blue.

• The first Si−1 instances of every task must 
be red.

57

Example

τi

Ci = 1    Ti = 2    Di = 2    Si = 3

skip skip skip skip

τi
skip skip skip
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Equivalent utilizazion factor

L

Lg
U

n

i
i

Lp

∑
=

≥
= 1

0

*
),0(

max

i
iii

i C
ST
L

T
LLg 








−=),0(

59

Schedulability Analysis

Theorem: A set of firm periodic tasks is 
schedulable if

1* ≤pU

A sufficient condition

60

A necessary condition

Theorem: A set of firm periodic tasks is 
not schedulable if

1)1(
1

>
−∑

=

n

i ii

ii

ST
SC

NOTE: the sum represents the utilization of 
the computation that must take place.
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Bandwidth saving
• In general, skipping jobs of periodic tasks 

causes a bandwidth saving:

• Such a bandwidth can be used for
– improving aperiodic responsiveness (by 

increasing their reserved bandwidth);

– accepting a larger number of periodic tasks.

*
pp UUU −=∆

62

In this case:  Up
* = 1

In fact,  for  L = Ti we have   gi (0,L) = Ci = Ti

Not always skips save bandwidth:

Hence: 1),0(
==

i

ii

T
T

L
Lg

0

Ci = Ti

Ti

τi
skip skip

63

0

C1 = T1

T1

τ1

In this case we still have:  Up
* = 1

In fact:    g(0, T1) = T1 e    g(0, T2) = T2

However, notice that:

Hence: 1),0(),0(

2

2

1

1 ==
T

Tg
T

Tg

0

C2 = T1

T2

τ2
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Relaxing timing constraints

• The idea is to reduce the load by increasing 
deadlines and/or periods.

• Each task must specify a range of values in 
which its period must be included.

• Periods are increased during overloads, and 
reduced when the overload is over.

65

Example

96.0
70
15

40
10

20
10

=++=pU

task      Ci Ti0    Tmin   Tmax

τ1

τ2

τ3

10
10
15

20
40
70

20
40
35

25
50
80

66

Load adaptation

13.1
30
5

70
15

40
10

20
10

=+++=pU

99.0
30
5

80
15

50
10

23
10

=+++=pU

If τ4 arrives with: C4 = 5, T4 = 30 the system is not 
schedulable any more:

However, there exists a feasible schedule within the 
specified ranges:



23

67

Elastic task model

• Tasks’ utilizations are treated as elastic 
springs and can be changed by period 
variations.

• The resistance of a task to a period variation 
is controlled by an elastic coefficient Ei:

⇒ the greater Ei the greater the elasticity

68

Elastic task model
• A periodic task τi is characterized by:

(Ci, Ti0, Ti-min, Ti-max, Ei)

• The actual period Ti ∈ [Ti-min, Ti-max]

Ei

ri Ti0 t
τi

Ti-maxTi-min

69

Special cases

• A task with Tmin = Tmax, is equivalent to a 
hard task.

• A task with Ei = 0 can intentionally change 
its period but does not allows the system to
do that.
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Compression algorithm

τ1 τ2 τ3 τ4

1 Up

1 Up

τ1 τ2 τ3 τ4

During overloads, utilizations must be 
compressed to bring the load below one.

71

The linear spring analogy

x

x1o x2o x3o

L00

x

x1 x2 x3

F

0 Ld

F  =  k1(x1o - x1)

F  =  k2(x2o - x2)

F  =  k3(x3o - x3)

x1 + x2 + x3 =  Ld

x1o + x2o + x3o =  L0

72

Solution without constraints

)()()111( 321321
321

xxxxxx
kkk

F ooo ++−++=++

Summing the equations, we have:

)( 0 dLL −=

That is:

321

0

111
)(

kkk

LLF d

++

−
=
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Substituting F in the equations, we have:

That is: 321

0
111 111

)()(

kkk

LLxxkF d
o

++

−
=−=

321

1
011 111

1
)(

kkk

kLLxx do

++
−−=

Solution without constraints

74

∑ =

=
n

i
ik

K

1

// 1
1

i
dioi k

KLLxx //
0 )( −−=

And defining:   Ei = 1/ki

∑
=

=
n

i
is EE

1s

i
dioi E

ELLxx )( 0 −−=

Solution without constraints

75

Period computation

s

i
dioi E

EUUUU )( 0 −−=

i

i
i U

CT =And then:
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Solution with constraints

xL00

x

F

0 Ld

x

F

0 Ld

Iterative solution:

77

Other use of elastic tasks

• Increase frequencies to fully utilize the 
processor.

• Quickly find new period configurations 
during negotiation.

• On line period variations in control 
applications.

78

Examples: altimeter reading
• The smaller the altitude, the higher the 

acquisition rate:

High rate

Low rate
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Obstacle avoidance
• The closer the obstacle, the higher the 

acquisition rate:

us

us

Low rate

High rate

80

Visual tracking
• The smaller the searching window, the 

higher the acquisition rate:

?

searching window

81

Visual tracking
• The smaller the searching window, the 

higher the acquisition rate:

searching window

?
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Engine control
• Some tasks need to be activated at specific 

angles of the motor axis:
⇒ the higher the speed, the higher the rate.

• Guaranteeing all the tasks at the maximum 
rate is not efficient or may not be possible.

• Other tasks may need to be downgraded 
when the engine is running at high speeds.
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Course Outline
• Some terminology

• Basic results on dynamic scheduling

• Aperiodic task handling

• Dynamic scheduling under resources constraints

• Overload and QoS management techniques

• Comparison with fixed priority scheduling

3

Terminology
Task

is a piece of code that can be executed 
many times with different input data:

task τi

Each instance of a task (τi) 
is called a job (τi,k)
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Job parameters

job τi,k

computation time
Ci,k

release time ri,k

start time si,k

finishing time fi,k

deadline di,k

job τi,k is the kth instance of task τi

5

Job parameters

ri,k release time (arrival time ai )
si,k start time
Ci,k worst-case execution time (wcet)
di,k absolute deadline
Di,k relative deadline
fi,k finishing time

ri,k si,k fi,k di,k
t

τi,k
Ci,k

Di,k

6

Other parameters

ri,k si,k fi,k di,k
t

τi,k
ci,k(t)

Residual wcet: ci,k(t) ci,k(ri,k) = Ci,k

Slack (or laxity): di,k − t − ci,k(t)

Lateness: Li,k = fi,k − di,k

Tardiness: max(0, −Li,k)

t

slack
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Task model

A task τi is an infinite sequence of jobs τi,k

ri,2 ri,k t

τi

ri,1

τi,1 τi,2 τi,k

…

8

Activation modes

• Time driven: periodic tasks
the task is automatically activated by the kernel 
at regular intervals.

• Event driven: aperiodic tasks
the task is activated upon the arrival of an event 
or through an explicit call of the activation 
primitive.

9

Periodic  task  model
ri1 =  Φi

ri,k+1 =  ri,k + Ti

ri,k ri,k+1 t

Ti

Ci

ri,1 = Φi

τi (Ci , Ti , Di )

ri,k =  Φi + (k−1) Ti

di,k =  ri,k + Di

often
Φi  = 0 
Di = Ti

(task phase)
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Aperiodic task model
• Aperiodic: ri,k+1 > ri,k

• Sporadic: ri,k+1 ≥ ri,k + Ti

ri,k ri,k+1
t

τi
Ci

ri,1

Ti =  Minimum Interarrival Time

11

Algorithm taxonomy

• Preemptive  vs.  Non Preemptive

• Static  vs.  dynamic

• On line  vs.  Off line

• Optimal vs. Heuristic

12

Static vs. Dynamic
Static

scheduling decisions are taken based on 
fixed parameters, statically assigned to 
tasks before activation.

Dynamic
scheduling decisions are taken based on 
parameters that can change with time.



5

13

Off line  vs.  On line
Off line

all scheduling decisions are taken before
task activation: the schedule is stored in a 
table (table-driven scheduling).

On line
scheduling decisions are taken at run time 
on the set of active tasks.

14

Optimal vs. Heuristic
Optimal

They generate a schedule that minimizes a 
cost function, defined based on an optimality 
criterion.

Heuristic
They generate a schedule according to a 
heuristic function that tries to satisfy an 
optimality criterion, but there is no guarantee 
of success.

15

Optimality criteria
• Feasibility: Find a feasible schedule if there 

exists one.

• Minimize the number of deadline miss

• Assign a value to each task, then minimize
the system loss value
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Example of heuristic algorithm
Spring kernel [Stankovic & Ramamritham 87]

The algorithm performs a tree search, where:
• The root node is an empty schedule
• Intermediate nodes are partial schedules
• Leaves are complete schedules

F F FN N N N N

F = feasible
N = unfeasible

17

Example of heuristic algorithm
Spring kernel [Stankovic & Ramamritham 87]

1. The schedule for a set of N tasks is constructed in N steps

2. The search is driven by a heuristic function H

3. At each step the algorithm selects the task that minimizes the 
heuristic function

min H

min H

min H

min H

Backtracking
is possible

18

Example of heuristic algorithm
Spring kernel [Stankovic & Ramamritham 87]

Example of heuristic functions:
H = ri ⇒ FCFS
H = Ci ⇒ SJF
H = Di ⇒ DM
H = di ⇒ EDF

Composit heuristic functions:

H  =  w1 ri + w2 Di
H  =  w1 Ci + w2 di
H  =  w1 Vi + w2 di
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Example of heuristic algorithm
Spring kernel [Stankovic & Ramamritham 87]

Possibility to handle precedence costraints:

Heuristic functions:

H  =  Ei ( w1 ri + w2 Di )
H  =  Ei ( w1 Ci + w2 di )

Eligibility

Ei = ∞
τi

Ei = 1
τi

20

Example of heuristic algorithm
Spring kernel [Stankovic & Ramamritham 87]

Complexity:

min H

min H

min H

min H

Exhaustive search: O(N!)
Heuristic search: O(N2)
Heuristic w. k btracks: O(kN2)

21

Examples of optimal algorithms
Rate Monotonic

• It is a static scheduling algorithm
• It can be preemptive or non preemptive
• It can be executed on line or off line
• It is optimal for feasibility among static algorithms

EDF
• It is a dynamic scheduling algorithm
• It can be preemptive or non preemptive
• It can be executed on line or off line
• It is optimal for feasibility and minimizes Lmax

i
i T

p 1
∝ fixed

priority

dynamic
priorityi

i d
p 1

∝
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EDF Optimality
EDF is optimal for feasibility among all 
algorithms:

If there exists a feasible schedule for Γ, then
EDF will generate a feasible schedule.

If Γ is not schedulable by EDF, then it cannot 
be scheduled by any algorithm.

23

EDF Optimality [Dertouzos ‘74]

Transforming σ in σ’

σ’(t) = σ(tE)

σ’(tE) = σ(t) fk’  =  fE ≤ dE ≤ dk

Feasibility is preserved

σ
τk

τEfeasible

tEt fE dE dk

24

EDF schedulability
• In 1973, Liu and Layland proved that for a 

set of n periodic tasks:

1lub =EDFU

• This means that a task set Γ is schedulable 
by EDF if and only if

Up ≤ 1



9

25

Proving sufficiency

τ1

τi

...

τn

deadline miss

t1 t2

By contradiction, assume U ≤ 1, and let t2 be the time at which a 
deadline miss occurs.

Let [t1, t2] be the longest interval of continuous utilization such 
that only instances with deadline ≤ t2 are executed:

26

Proving sufficiency
The total computation time demanded in this interval is:

∑
=

−
≤

n

i
i

i
p C

T
ttttC

1

12
21 ),( UttC

T
ttn

i
i

i

)( 12
1

12 −=
−

≤ ∑
=

τ1

τi

...

τn

deadline miss

t1 t2

deadline miss  ⇒ (t2 – t1) < Cp(t1, t2) ≤ (t2 – t1)U   contradiction

27

An alternate proof

Up ≤ 1 Γ schedulable

• We find any algorithm for which the above 
condition holds;

• Then, for the EDF optimality, we can say 
that the above condition also holds for EDF.
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Proving  sufficiency

δi =  Ui ∆

Consider the algorithm which schedules in 
every interval of length ∆ a fraction of task: 

∆ ∆ ∆

δ1 δ2 δ3 δ1 δ2 δ3 δ1 δ2 δ3

t

29

Proving  sufficiency
With this algorithm, a task executes in each 
period for:

iiii
i

i
i CUTUTT

==∆
∆

=δ
∆

Feasibility is ensured if ∆≤δ∑
=

n

i
i

1
that is if

∆≤∆∑
=

n

i
iU

1
Up ≤ 1

∆

δi

t∆

δi

∆ ∆

δi δi

Ti

30

Extension to tasks with D < T

ri,k di,k

Ci

t
τi

Di

Ti

ri,k+1

• Deadline Monotonic: pi ∝ 1/Di (static)

• Earliest Deadline First: pi ∝ 1/di (dynamic)

Scheduling algorithms
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Dynamic Priority

Schedule based on absolute deadlines
EDF

Processor Demand Criterion [Baruah ‘90]

Schedulability Analysis

In any interval, the computation demanded by the 
task set must be no greater than the available time.

32

Processor Demand

t1 t2

∑
≤

≥

=
2

1

),( 21

td

tr
i

i

i

Cttg

The demand in [t1, t2] is the computation time of those 
jobs started at or after t1 with deadline less than or 
equal to t2:

33

Processor Demand

0 L

∑
=

+−
=

n

i
i

i

ii C
T

TDLLg
1

),0(

Processor Demand in [0, L]
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Processor Demand Test

LLgL ≤>∀ ),0(,0

How can we bound the number of intervals
in which the test has to be performed?

Question

35

Example

0

2

4

6

8

g(0, L)

L

τ2

τ1

0 2 6 124 8 10 14 16

L

36

Bounding complexity

• Since g(0,L) is a step function, we can 
check feasibility only at deadline points.

• If tasks are synchronous and Up < 1, we can 
check feasiblity up to the hyperperiod H:

H  =  lcm(T1, … , Tn)



13

37

Bounding complexity

• Moreover we note that: g(0, L)  ≤ G(0, L)

∑
=








 −+
=

n

i
i

i

ii C
T

DTLLG
1

),0(

i

i
n

i
ii

n

i i

i

T
CDT

T
CL ∑∑

==

−+=
11

)(

∑
=

−+=
n

i
iii UDTLU

1
)(

38

Limiting L

g(0, L)

L

G(0, L)
∑

=

−+=
n

i
iii UDTLULG

1
)(),0( L

L*

for L > L*

g(0,L) ≤ G(0,L) < L

U

UDT
L

n

i
iii

−

−
=

∑
=

1

)(
1*

39

Processor Demand Test

LLgDL ≤∈∀ ),0(,

D =  {dk | dk ≤ min (H, L* )}

H  =  lcm(T1, … , Tn)

U

UDT
L

n

i
iii

−

−
=

∑
=

1

)(
1*

1<U
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Handling shared 
resources

Problems caused by
mutual exclusion

41

A high priority task is blocked by a lower-
priority task a for an unbounded interval of 
time.

A task with short deadline is blocked by a 
task with longer deadline a for an unbounded 
interval of time.

Priority Inversion

Deadline Inversion

42

Conflict on a critical section

τ3

B

τ2

τ1

Solution
Introduce a concurrency control protocol for 
accessing critical sections.
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Fixed Priority Protocols

• Non Preemptive Protocol (NPP)

• Highest Locker Priority (HLP)

• Priority Inheritance Protocol (PIP)

• Priority Ceiling Protocol (PCP)

• Immediate Priority Ceiling (IPC)

44

Dynamic Priority Protocols

• Dynamic Priority Inheritance (DIP)

• Dynamic Priority Ceiling (DPC)

• Stack Resource Policy (SRP)

45

Stack Resource Policy [Backer 90]

• It works both with fixed and dynamic 
priority

• It limits blocking to 1 critical section
• It prevents deadlock
• It supports multi-unit resources
• It allows stack sharing
• It is easy to implement
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Stack Resource Policy [Backer 90]

• For each resource Rk:
⇒ Maximum units:  Nk

⇒ Available units:  nk

Nk

nk

Rk

• For each task τi the system keeps:

⇒ its resource requirements:

⇒ a priority pi:

⇒ a static preemption level:

ii Tp 1∝ ii dp 1∝

ii D1∝π

RM EDF

µi(Rk)

47

Resource ceiling

System ceiling { })(max kkks nC=Π

Stack Resource Policy [Backer 90]

)(:max)( kjkjjkk RnnC µπ <=

SRP Rule

A job cannot preempt until
pi is the highest and πi > Πs

48

Example

τ3

τ2

τ1

Πs

t0
1
2
3

πi

3

2

1
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SRP: Notes
• Blocking always occurs at preemption 

time

• A task never blocks on a wait primitive 
(semaphore queuee are not needed)

• Semaphores are still needed to update 
the system ceiling

• Early blocking allows stack sharing

50

SRP: Stack sharing

τ1

τ2

Classical blocking stack

t1 t2

stack

t1

τ1

τ2

Early blocking

t2

51

SRP: Stack sharing
• If tasks can be grouped in M subsets with the 

same preemption level, then tasks within a 
group cannot preempt each other.

• Then the stack size is the sum of the stack 
memory needed by M tasks.

• If we have 100 tasks with 10 preemption levels, 
and each task requires 10 Kb of stack, then

Stack size =
1 Mb

100 Kb

without SRP

under SRP  (90% less)
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Guarantee with resource 
constraints

• Select a scheduling algorithm (e.g., EDF) 
and a resource access protocol (e.g., SRP).

• Compute the maximum blocking times
(Bi) for each task.

• Perform the guarantee test including the 
blocking terms.

53

Guarantee with RM
preemption
by HP tasks

τi

blocking by
LP tasks

( )121
1

1
−≤

+
+∀ ∑

−

=

/i

i

ii
i

k k

k i
T

BC
T
Ci

54

1
1

1
≤

+
+∀ ∑

−

= i

ii
i

k k

k

T
BC

T
Ci

EDF Guarantee   (Di = Ti)
preemption
by HP tasks

τi

blocking by
LP tasks
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EDF Guarantee: PD test   (Di ≤ Ti )

τ1

τi

...

τk

τn

56

EDF Guarantee: PD test   (Di ≤ Ti )

∑
=

+−
+=

i

k
k

k

kk
ii C

T
TDLBLg

1
),0(

),max(: *
ini LDLDLi ≤≤∀∀

LLgi ≤),0(

U

UDTB
L

n

i
iiii

i −

−+
=

∑
=

1

)(
1*

1<U AND

Handing Hybrid Task Sets

Periodic tasks
+

Aperiodic tasks
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Handling Criticality
• Aperiodic tasks with HARD deadlines must 

be guaranteed under worst-case conditions.

• Off-line guarantee is only possible if we can 
bound interarrival times (sporadic tasks).

• Hence sporadic tasks can be guaranteed as 
periodic tasks with Ci = WCETi and Ti = MITi

WCET = Worst-Case Execution Time
MIT = Minimum Interarrival Time

59

SOFT  aperiodic tasks

• Aperiodic tasks with SOFT deadlines 
should be executed as soon as possible, 
but without jeopardizing HARD tasks.

• We may be interested in

→ minimizing the average response time

→ performing an on-line guarantee

60

Periodic Scheduling
(EDF)

τ1

τ2

ape
3

4

0

8

126

0 4 8 1262 10

C1 = 1

C2 = 3
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Immediate service

τ1

τ2

ape
3

4

0

8

126

0 4 8 1262 10

C1 = 1

C2 = 3

deadline miss

Response Time = 3

62

Background service

τ1

τ2

ape
3

4

0

8

126

0 4 8 1262 10

C1 = 1

C2 = 3

Response Time = 10

63

Aperiodic Servers
• A server is a kernel activity aimed at 

controlling the execution of aperiodic tasks.
• Normally, a server is a periodic task having 

two parameters:
Cs capacity (or budget)
Ts server period 

To preserve periodic tasks, no more than Cs
units must be executed every period Ts
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Aperiodic service queue

Service queue
Server

READY queue

periodic/sporadic
HARD tasks

aperiodic
SOFT tasks

CPU

• The server is scheduled as any periodic task.
• Priority ties are broken in favor of the server.
• Aperiodic tasks can be selected using an arbitrary 

queueing discipline.

65

Fixed-priority Servers

• Polling Server

• Deferrable Server

• Sporadic Server

• Slack Stealer

66

Dynamic-priority Servers

• Dynamic Polling Server

• Dynamic Sporadic Server

• Total Bandwidth Server

• Tunable Bandwidth Server

• Constant Bandwidth Server
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Selecting the most suitable 
service mechanism

It depends on the price (overhead) we 
want to pay to reduce task response times

performance

overhead

optimal server

TBS
SS

DS

PS

BS

Tunable Bandwidth Server

68

Total Bandwidth Server  (TBS)

• It is a dynamic priority server, used along 
with EDF.

• Each aperiodic request is assigned a deadline
so that the server demand does not exceed a 
given bandwidth Us .

• Aperiodic jobs are inserted in the ready queue
and scheduled together with the HARD tasks.

69

The  TBS  mechanism

READY queue

periodic/sporadic
tasks

aperiodic
tasks

CPU

Deadline
assignment

Up +  Us ≤ 1

• Deadlines ties are broken in favor of the server.
• Periodic tasks are guaranteed  if and only if
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Deadline assignment rule
• Deadline has to be assigned not to jeopardize 

periodic tasks.

• A safe relative deadline is equal to the minimum 
period that can be assigned to a new periodic task 
with utilization Us:

Us =  Ck / Tk Tk = dk − rk = Ck / Us

• Hence, the absolute deadline can be set as:

dk = rk +  Ck / Us

71

Deadline assignment rule

dk =  max (rk , dk-1)  +  Ck / Us

• To keep track of the bandwidth assigned to 
previous jobs, dk must be computed as:

C1 C2

d1 d2r2r1

C1/Us C2/Us

72

EDF + TBS  schedule

Us =  1 − Up =  1/4

τ1

τ2

ape
2

4

0

8

126

0 4 8 1262 10

C1 = 1

C2 = 3

1

d1 d2r1 r2

d1 =  r1 + C1 / Us =  1 + 2·4  =  9

d2 =  max(r2 , d1) + C2 / Us =  9 + 1·4  =  13
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Improving TBS
• What’s the minimum deadline that can be

assigned to an aperiodic job?

τ1

τ2

ape
2

4

0

8

126

0 4 8 1262 10

C1 = 1

C2 = 3

d1r1

74

Improving TBS
• If we freeze the schedule and advance d1 to 7, no 

task misses its deadline, but the schedule is not EDF:

τ1

τ2

ape
2

4

0

8

126

0 4 8 1262 10

C1 = 1

C2 = 3

d1r1

Feasible schedule ≠ EDF

75

Improving TBS
• However, since EDF is optimal, the schedule 

produced by EDF is also feasible:

τ1

τ2

ape
2

4

0

8

126

0 4 8 1262 10

C1 = 1

C2 = 3

d1r1
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Improving TBS
• We can now apply the same argument, and 

advance the deadline to t = 6:

τ1

τ2

ape
2

4

0

8

126

0 4 8 1262 10

C1 = 1

C2 = 3

d1r1

77

Improving TBS
• We can now apply the same argument, and 

advance the deadline to t = 6:

τ1

τ2

ape
2

4

0

8

126

0 4 8 1262 10

C1 = 1

C2 = 3

d1r1

78

Improving TBS
• Clearly, advancing the deadline now does not 

produce any enhancement in the response time:

τ1

τ2

ape
2

4

0

8

126

0 4 8 1262 10

C1 = 1

C2 = 3

d1r1
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Computing the deadline
• In general, the new deadline has to be set to

the finishing time of the current job:

ape

),max( 0
1

0
−= kkk drd

)(1 s
kk

s
k

s
k dffd ==+

dk
sfk

s

80

Computing the deadline
• Computing the actual finishing time is

difficult, so we can compute an upper bound:

ape

),( s
kkpk

s
k frICf +=

dk
sfk

s

s
k

s
kkpk

s
k fdrICf ≥+= ),(~

Ip

Ck

81

Periodic Interference

),(),(),( s
kf

s
ka

s
kp dtIdtIdtI +=

Us =  1 − Up =  1/6

Up =  1/2 + 1/3  =  5/6 Ck =  2
dk =  3 + 2/ Us =  15

τ1

τ2

ape
2

4

0

8

6

dk

12 16 20

12 18

0

3
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Computing interference

∑=
active

i
s
ka

i

tcdtI
τ

)(),(

∑
=

−
=

n

i
i

i

i
s
ks

kf C
T

tnextddtI
1

)(),(

nexti(t) = next release time 
of task τi after t

dk

τ1

τ2

ape
2

4

0

8

6

12 16 20

12 18

0

3

83

The Optimal Server

),(~ s
kkpk

s
k drICf +=

ape

dk
sfk

s
Ip

Ck

),max( 0
1

0
−= kkk drd

s
k

s
k fd ~1 =+

s
k

s
k dd =+1

s = 0

s = s+1 EXIT

compute the initial
deadline with TBS

advance deadline

84

Two interesting results
• If   (                 )   then s

k
s

k ff =
~s

k
s
k dd =+1

• If   (                 )   then s
k

s
k ff =

~s
k

s
k dd =+1

It means that the estimate is exact

min

It means that the algorithm minimizes 
the aperiodic response time
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Complexity

),(~ s
kkpk

s
k drICf +=

),max( 0
1

0
−= kkk drd

s
k

s
k fd ~1 =+

s
k

s
k dd =+1

s = 0

s = s+1 EXIT

O(1)

O(n)

O(Nn)

n tasks
N steps

pseudo-
polynomial

86

Tunable Bandwidth Server TB(K)

),(~ s
kkpk

s
k drICf +=

),max( 0
1

0
−= kkk drd

s
k

s
k fd ~1 =+

s
k

s
k dd =+1

s = 0

s = s+1 EXIT

O(1)

O(n)

(                  ) OR (n = K)

O(Kn)
polynomial

K =  max number of steps

TB(∞) = TB*TB(0) = TBS

87

Tuning performance vs. 
overhead

performance

overhead

optimal server

TBS

K = 0

TB*K = ∞
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Aperiodic responsiveness

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

1

2

3

4

5

6

7

8

Relative Aperiodic Load: ρa/(1-Up)

Avg. Response Time
TB(0)

Up = 0.85

9

10

TB(1)

TB(3)

TB(5)
TB*
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