ESSES 2003

European Summer School on
Embedded Systems

Lecture Notes
Part XX

Real-Time Systems:
Real-Time Scheduling

European Summer School on

Enbedded Systems

Jul 14 - Oct 10 2003
Vaster8s Sweden

Editors: Ylva Boivie, Hans Hansson, Jane Kim, Sang Lyul Min

Visteras, Oct 6-8, 2003

M ISSN 1404-3041
ISRN MDH-MRTC-113/2003-1-SE

MALARDALEN REAL-TIME
RESEARCH CENTRE www.mrtc.mdh.se

Predictably Flexible Real-Time
Systems —

from power plants to home entertainment
applications

Gerhard Fohler 2003
Malardalen University, Sweden
gerhard.fohler@mdh.se

Roadmap

event triggered vs. time triggered
Implications of activation paradigms

novel application requirements

predictable flexibility
- combined approach

applications

Roadmap

event triggered vs. time triggered
Implications of activation paradigms

novel application requirements

predictable flexibility
- combined approach

applications

Activation Paradigms

e activation of activities - tasks
— when are events recognized?
— who Initiated activities?
— when are decisions taken?

e eventtriggered — ET
— event initiates activities in system immediately

e timetriggered —TT
— activities initiated at predefined points in time

© Gerhard Fohler, 2003

Properties — Time Triggered

offline scheduling

of dispatcher
lon in table

h activity running when
nd, jitter, ...

pletely known before

Properties — Event Triggered

» online scheduling, priority driven
e event activates scheduler which take
* rules + test
— earliest deadline first (dynamy
— fixed priority

© flexible — not completely kno

© widely used

® only simple constraints

® high runtime overhead for se

® limited predictability — keeps d
when exactly

© Gerhard Fohler, 2003

Effects on Design

» activation paradigm is central design decision
« “either — or” decision
— advantages of one method at expense of those of other
— demands outside paradigm need to be “squeezed in”
o system wide implications
— same properties for all activities
— mostly highest level

monolithic approaches - “power plant” approaches
» single system for single application

 single paradigm for single class of demands
 high effort and cost

© Gerhard Fohler, 2003

Roadmap

event triggered vs. time triggered
Implications of activation paradigms

novel application requirements

predictable flexibility
- combined approach

applications

Novel Applications

mix of activities and demands
e core system with high demands
— strict timing behavior
— safety critical, fault tolerant
— proven and tested for worst case
* hard real-time applications
— temporal correctness, etc.
» flexible real-time applications
— not completely known
— some deadlines can be missed
* non real-time activities
— must not disturb real-time activities

© Gerhard Fohler, 2003

hidtiglpsbetendnrfapnamitchlcatyppésations

not deterministic behavior of critical activities

© Gerhard Fohler, 2003

Offline Schedules — a Closer Look

e general, complex (temporal) constraints

 offline scheduler
— resolves demands
— constructs single solution meeting all demands
— table for least common multiple of periods

* no flexibility

© Gerhard Fohler, 2003

« analysis of offline schedule and demands

« limit task executions - target windows
— demands fulfilled, if tasks execute within target windows
— starttime, deadline pairs

« ready for dynamic, event triggered scheduling

di(PG)

est di

«— target window >

A B

NO

NW

“ target window >
est J dl

C D

N1

© Gerhard Fohler, 2003

flexibility - complexity

original - NP

ction

© Gerhard Fohler, 2003

Roadmap

event triggered vs. time triggered
Implications of activation paradigms

novel application requirements

predictable flexibility
- combined approach

applications

Predictable Flexibility

target windows control flexibility of task execution

» target window = original task execution
no flexibility, original schedule

« target window after flexibility analysis
flexibility of execution while meeting demands

* reduced target windows
reduced flexibility, e.g., for jitter control

* modifying target windows selects flexibility of tasks individually

© Gerhard Fohler, 2003

Fixed Priority Scheduling

so far time triggered to event triggered,earliest deadline first
(EDF) — dynamic priorities
how about fixed priority scheduling (FPS)?
simple, but limited constraints
transformation method:
— takes offline schedule

— determines task attributes, such that when execute with FPS
at runtime: offline schedule reenacted

— target windows, set of priority inequalities, integer linear
programming
now transformations between offline, EDF, and FPS

© Gerhard Fohler, 2003

© Gerhard Fohler, 2003

core system
offline scheduling

hard real-time applications
offline scheduling or online scheduling

flexible real-time applications
combined offline/online approach

non real-time activities
together with combined offline/online

flexibility individually configured

guaranteed tasks protected

© Gerhard Fohler, 2003

non RT appl.

deterministic

TT

© Gerhard Fohler, 2003

Roadmap

event triggered vs. time triggered
Implications of activation paradigms

novel application requirements

predictable flexibility
- combined approach

applications

Applications

e two example applications for predictable flexibility
— real-time control systems
— home entertainment networks — video streaming

© Gerhard Fohler, 2003

Real-time Control Systems

 mix of task demands
e sampling — actuating tasks: very strict constraints

e deviations results in jitter, error

_______ T =4 b5 e
=2 =32 = -
T T2 T3 44
Tasks
Task; |

0 2 4 8] 8 10 12 14 16 15 20
— sampling jitter

— sampling-actuation (delay) jitter
» other tasks flexible

© Gerhard Fohler, 2003

predictable flexibility:
restrict (=zero) flexibility for sampling actuating tasks

(predict exact times, even non periodic for compensation)
other tasks flexible

0.05

— Inverted pendulum response
sampling jitter and sampling-actuation delays | |

0.06F EDF - Compensation

004+

002+

Angle
=

002 -

-0.04 1

-0.06

-0.03

a 0.4 1 1.5 2 2.4 3
Time (s)

© Gerhard Fohler, 2003

Home Entertainment Networks

e current, analog

© Gerhard Fohler, 2003

digital — | IR
" in home T
entertainment— 4.
network '
wired - wireless

4..... o

Taa,

© Gerhard Fohler, 2003

Characteristics

mix of streams and demands
* high quality video for consumer terminals, eg, TV sets,movies
— strict real-time behavior
« frame rate
 continuity
* mobile devices, eg, for news, sports
— less strict demands, but good adaptive quality
e |IP
— internet, www
— ok performance, not interfere with “quality streams”
« variations in MPEG stream demands and network availability

© Gerhard Fohler, 2003

real-time methods to determine resource demands of groups of
pictures

offline “skeleton” of reserved resources for minimum quality of
service of guaranteed streams

online handling of additional frames

— acceptance tests to
» select “best” group of frames
» guaranteed to be decoded — no loss due to partial frames

various streams for various devices, networks, quality

© Gerhard Fohler, 2003

 digital

4..... L]

© Gerhard Fohler, 2003

© Gerhard Fohler, 2003

Summary

predictable flexibility
configure amount of flexibility for each task individually

system with mix of activities and demands
select appropriate methods and costs

combine event triggered and time triggered activation schemes

transform between offline, EDF, FPS scheduling schemes
less scheduling centric design

applied to applications with mixed demands

— control
— In home entertainment networks

© Gerhard Fohler, 2003

THE END

rrrrrrrrrrrrrrrrrrr

Pre Run-time Scheduling — Flexibility
Integration Offline - Online

Real-Time Systems - ESSES
Gerhard Fohler
Malardalen University, Sweden
gerhard.fohler@mdh.se

© Gerhard Fohler 2003

Offline schedules

general timing constraints
offline scheduler
— resolves constraints
— constructs one solution which meets all constraints
fixed (blind) runtime execution
no flexibility

how can we

— increase flexibility

— add dynamic tasks

— Integrate with online scheduling methods

© Gerhard Fohler 2003

B

NW

N1 -D

© Gerhard Fohler 2003

Slot Shifting...

Offline

« timing constraints v’
» offline schedule v

© Gerhard Fohler 2003

e Wwe have
— offline constructed schedule

* we want
— include dynamic tasks
— schedule them online

 what can we do?
— Include in offline schedule (e.g., pseudo periodic)
b inefficient
— fit into empty slots P no guarantees

— we can do better!

© Gerhard Fohler 2003

“Background Service”

fixed pre runtime schedule:

NW |
'PA |
CPU
-
aper
P L] bttt
0 4 8 12 16 20 24 28

© Gerhard Fohler 2003 6

Basic Idea

shift A’s slots

NW |
Ly A
CPU
czlh
aper
P T et
0 4 8 12 16 20 24 28

© Gerhard Fohler 2003 7

Shifting pre-runtime tasks

pre runtime schedule assigns fixed times for execution
— although different times possible

— overconstrains schedule
* we have to select one out of several possible times
 ...for the sake of algorithm only

we know, that we can shift A
— execute the aperiodic task at once
— feasibility of tasks not violated
— how much and where can we shift?
— what are boundaries?

© Gerhard Fohler 2003

Shifting tasks

NW |
P AI
CPU
msg receipt msg sending
e rrrrr ettt et
0 4 8 12 16 20 24 28

© Gerhard Fohler 2003 9

Limitations on Shifting

we can shift tasks
limitations

* receipt of message
» sending of message

» cearliest start time of precedence graph, end-to-end constraints,
task chain

 deadline of -"-

calculate start time, deadline pairs for tasks

« expresses flexibility of task

e reduces overconstraining

« fit in aperiodic task by shifting as long as these constraints met

© Gerhard Fohler 2003

10

NO: :
B

di(PG)

oo "

est

block (AB)

dl

NO

NW

N1

[

est

block (CD)

dl

© Gerhard Fohler 2003

These tasks are assigned fixed starttimes or deadlines.
(Subgraphs of precedence graphs allocated to nodes combined.)

b independent tasks with starttimes, deadlines on single nodes

simple EDF runtime scheduling

© Gerhard Fohler 2003

12

Slot Shifting ...

Offline

timing constraints

offline schedule
earliest start times, deadlines v

© Gerhard Fohler 2003

13

How much shifting?

know what is
— earliest time to start task
— latest time to finish
aperiodic arrives: how far can we shift static task?

© Gerhard Fohler 2003

14

latest start time, Ist

CPU

earliest start time, est deadline, dI

0 4 8 12 16 20

e |atest start time
start no later or violate deadline

* have to ensure when executing aperiodics
how?

 more complex dispatching
still next task, but check for constraints

* more memory - 3 integers per task

© Gerhard Fohler 2003

15

Slot Shifting

Offline

timing constraints
offline schedule
earliest start times, deadlines

latest start times v

© Gerhard Fohler 2003

16

Insert how much? Where?

so far soft aperiodics

can we give guarantees for firm aperiodics?

e WoOrst case execution time

o deadline

* Dbefore start, want to guarantee that we can complete them

how can we decide?

* need idle resources for aperiodics
» Dbefore deadline of aperiodic

e which resources can we use?

© Gerhard Fohler 2003

17

est, dl,

A B
esty dlg
c=2 c=10
| el
4 8 12 16 20 24 28

© Gerhard Fohler 2003 18

Spare Capacities

est, dl,

unused resources, spare capacities]

e spare capacities, sc = length of execution interval
- execution times

« available for aperiodic tasks
« know amount and location from schedule!

© Gerhard Fohler 2003 19

[5025-3:2

est dl sc=6-0=6
block (AB) |
NO /
NW L
est est dl
block (CD

N1 (CD) N |

I I T k L

[sc=8-3=5
© Gerhard Fohler 2003 20

Slot Shifting

Offline

e timing constraints

offline schedule

earliest start times, deadlines
latest start times

¢ —SpareTapacites Jotyet...

© Gerhard Fohler 2003

Intervals

sort deadlines b disjoint invervals:
e end: deadline of task(s)
e tasks with that deadline

e spare capacity, sc
the amount of idle resources in that interval

« start: max of est of task(s) and end previous interval
e empty intervals:

— end(l._,)<start(l,)
— wecet =0

© Gerhard Fohler 2003

NO

est(X) di(X)
est(AB) dI(AB)
block (AB) block (X)
| ey log

SC(l pg))=5-3=2

SC(lx))=3-3=0

T |

so(1) 31 |- a weelT)

..almost the truth...

© Gerhard Fohler 2003

23

e Intervals 1 execution intervals!

© Gerhard Fohler 2003

24

NO

est(AB)

est(X) di(X)

di(AB)

block (AB)

block (X)

| (AB)

| (X)

TSmO sc(1y)=3-4=-1

SC(l ap))=9-3

-1=1

X“borrowing”

© Gerhard Fohler 2003

25

sc(1i) =| 1i |- § weet(T) +min(sc(li +1),0)

TI I,

borrowing mechanism:

« if tasks in subsequent interval need more resources than

available in it;
execute in other interval, use resources from there “borrow

* run-time mechanisms resolve negative spare capacity
» only for calculation and flexibility
« start of interval can be 1 earliest start time

» earliest start time checked separately

© Gerhard Fohler 2003

26

Slot Shifting

Offline

timing constraints
offline schedule

earliest start times, deadlines

latest start times
intervals v

spare capacities v’

© Gerhard Fohler 2003

27

Online Mechanisms- Scheduling

online scheduler invoked at each node after each slot

» check for new aperiodic tasks
e guarantee algorithm

« take scheduling decision

e update spare capacities

e execute scheduling decision

earliest deadline first

© Gerhard Fohler 2003

28

» after each slot, scheduling decision taken locally at each node

no ready task:
CPU idle

sc(l.) > 0, $ soft aperiodic task A:

execute A

sc(l,) =0:

an offline or guaranteed task has to be executed or
deadlines are missed

takes care that no latest start time is missed!

no other mechanism needed, eqg, watchdog, etc
iImplicit invocation, no extra memory needed

sc(l.) > 0, @%$ soft aperiodic task:
offline or guaranteed task executed

© Gerhard Fohler 2003 29

Acceptance of aperiodics

e aperiodics (without deadline):
sc > 0: one slot can be given to it

» firm aperiodics (wcet and deadline):
want them executed either completely or not at all

P guarantee algorithm

O(N)

© Gerhard Fohler 2003

30

» aperiodic task A (r,wcet, dl)
» three parts of spare capacities available

r di

| NN
16 20 24 28

lo 4 l, |3

— sc(l,): remaining sc in current interval

— sc(l): sc(1.)>0, c<i £ |, end(l) £ di(A), end(l,,,) > dI(A),
sc in all full intervals between r and dl

— § min(sc(l,,), dI(A) - di(l)), minimum spare capacities of
ast interval or up to the deadline of aperiodic in last interval

© Gerhard Fohler 2003 31

Guarantee

If sum of total sc between dl and r are larger or equal wcet,
guarantee

need to ensure guarantees resources are not used otherwise

after guarantee:
— update interval |
— update interval I-1

— update interval c

© Gerhard Fohler 2003

32

Spare capacities at runtime

e aperiodic execution

— decrease spare capacity of current interval
t

NO
block (AB) block (X)

| ag), SC(l (ag))=2 | x), 5C€(I()=0

at t: sc(l pg))=2-1=1 |5, SC(I(%))=0

© Gerhard Fohler 2003

33

e N0 execution

— decrease spare capacity of current interval
t

NO
block (AB) block (X)

I(AB), sc(I(AB)):Z I(X), sc(l (X)):O

at t: sc(l pg))=2-1=1 |5, SC(I(%))=0

© Gerhard Fohler 2003

 execution of offline task T

— TI current interval I
spare capacity stays the same

t
NO
block (AB) block (X)
I(AB)’ sc(I(AB)):Z I(X)’ sc(l(x)):o

at t: sc(l zg))=2 | s, SC(I(%))=0

© Gerhard Fohler 2003

 execution of offline task T

— TI future interval I,
 spare capacity |, decreased
 spare capacity I increased

t

D

NO ‘
block (AB) | bl ock (X)
<Q

I(AB)’ sc(I(AB)):Z I(X)’ sc(l(x)):o

at t: sc(I(AB)):Z-lzl) sc(l (X)):o+1:1

© Gerhard Fohler 2003

update capacity of I,

— if 3 0 ...done

— 1f <0 ... need to update previous interval I, ;
sc(ly.q)

— if 3 0 ...done

— 1If <0 ... need to update previous interval I,

until sc 2 O or I,

© Gerhard Fohler 2003

37

Shifting Messages

communication medium resource like CPU from scheduling
perspective

shift messages as well
restriction to sending messages earlier
— Nno receiver synchronization necessary
— may increase spare capacities at receiver
— when message received - spare capacities updated
— else same

© Gerhard Fohler 2003 38

Analysis

MARS

4 CPUs

TDMA network

~1600 task sets generated and pre runtime scheduled
randomly generated aperiodic tasks

each point in plots 700-1000 task sets

0.95 confidence intervals < 5%

© Gerhard Fohler 2003

39

guarantee ratio

0.0

0.2

local shifting

0.4 0.6 0.8

combined load

1.0

—e— dI=2*wcet
—m__dl=wcet

© Gerhard Fohler 2003

40

guarantee ratio

0.0

0.2

global shifting

0.4 0.6 0.8

combined load

1.0

—e— dI=2*wcet
—m__dl=wcet

© Gerhard Fohler 2003

41

“Slot shifting nouveau”

iQch] i i Aperiodic
o further gccepfafte yé&gonstraints [Sporadic p
e integration watinpleBS Complex Firm Soft
° e Periods « End-to-enddl | Minimum | + Deadlines | ¢ Nodl
« Deadlines |* Inst separatiory Separation| « Guarantee
S : « Distribution between
b tart times . Jitter etc instances
Offline Sch
X X
Test
X
Online Sch
X X X X X
Test
X

© Gerhard Fohler 2003 42

Slot Shifting - Summary

« handle online tasks while maintaining feasibility of offline
scheduled tasks

« offline reduction of complexity
e simple runtime handling
* ‘“interface” for integration of offline and online scheduling

« offline scheduled system for critical activities
e restrict amount of shifting

» flexibility for rest

predictable flexibility

© Gerhard Fohler 2003 43

Articles

Gerhard Fohler
Joint Scheduling of Distributed Complex Periodic and Hard
Aperiodic Tasks in Statically Scheduled Systems

Proc. of the 16" IEEE Real-Time Systems Symposium, Pisa,
Italy, December 1995.

Damir Isovic, Gerhard Fohler

Efficient Scheduling of Sporadic, Aperiodic, and Periodic Tasks
with Complex Constraints

Proc. of the 21st IEEE Real-Time Systems Symposium,
Orlando, Florida, USA , November 2000

© Gerhard Fohler 2003 44

Pre Run-time Scheduling - Mode
Changes

Real-Time Systems - ESSES
Gerhard Fohler 2003
Malardalen University, Sweden
gerhard.fohler@mdh.se

© Gerhard Fohler 2003

Mode Changes

systems undergo a number of mutually exclusive mode during
operation
e.g., air craft ground, take off, flight, landing

— different system activities

— different attributes of activities
altitude not critical on ground

— system configuration
difficult to handle in single schedule
provide separate modes plus transitions
context of offline scheduling
Important in aeronautics

© Gerhard Fohler 2003

What is different in modes?

» selection of control loops

* Timing requirements

e attributes of activities (“critical”, “hard”,...)
» system configuration

o reliability

how to deal with pre runtime scheduling?
put all activities of all modes into a single schedule

© Gerhard Fohler 2003

What Is affected by this approach?

e solutions:
High overhard of incorporating all resource needs, even
mutually exclusive ones.

» design and understandability
— violates modularization and separation of concerns
— large number of design items
— difficult to recognize coherent activities

e testing
input space larger than really required

better approach
separate modes as well as mode changes

© Gerhard Fohler 2003

Requirements

e deterministic temporal behavior
» specification
— timing constratints
— also for mode changes, transitions

— adhere to design principles of single modes
— not new methods
— consistent design approach

e retain continuous system operation during mode changes!

— tasks executing in old, new mode, and transitions not
Impaired by mode change

— e.g., don’t shutdown enginees during transition in midair

© Gerhard Fohler 2003

Design/Specification Issues

Mode:

single operational phase, performed by a single static schedule
(-ing table)
specified as precedence graphs (transactions, execution chains)
one mode:

— set of precedence graphs - all activities in one mode
two modes:

— set of precedence graphs for each mode separately

— allow tasks in both modes, label

— second dimension: modes

two dimensional precedence constraints

© Gerhard Fohler 2003 6

MO

MF

© Gerhard Fohler 2003

@

Transition Precedence Graph

transition:
tasks of

old mode
new mode
plus (optional) additional ones
— complete old activities
— prepare for new mode
— intermediate actions
viewed as mode itself, but not executed continuously
same design method as for single mode
ongoing activities part of transition schedule

© Gerhard Fohler 2003

© Gerhard Fohler 2003

@

Runtime handling

mode change requested

— switch to transition mode, schedule when feasible

— execute transition mode until all activities in it completed
— switch to new mode when feasible

switching directly into mode schedule may cause problems, e.qg.,
iInconsistencies, aborted tasks, etc.

agreement on which mode should be changed two if more than
one request - offline resolution

© Gerhard Fohler 2003 10

Design Issues

Semantic constraints
what do we need to be able to express?

* immediate change, aborting current activities
empty transition graph

« completing all current activities before changing
transition graph identical to graph of old mode

« completing some of the current activities
transition graph comprised of part of activities of old mode and
new mode

« additional activities
old, new mode activities, plus new ones

© Gerhard Fohler 2003

11

Mode change conditions
e.g., t>50

consistency check

conflict resolution

who initiates mode change request
design via automaton

global consistent view

© Gerhard Fohler 2003

12

MF

MT

MO

TG

TC

TE

T A’\\Eswitch ok

© Gerhard Fohler 2003

mode change request

13

MF

MT

MO

TA

TC

TE

TG

TG

TA

TC

TE

TG

@witch not ok...TE would not be executed |

TA

TC

TH

B

Tl

1D

TA

TC

TH

B

Tl

D

© Gerhard Fohler 2003

14

Mode Change Schedule Construction

Construct a schedule such, that

» timing constraints of individual modes met
» timing constraints for transitions met

e deterministic behavior

« flexible and fast reaction times

single mode scheduling NP hard..how about that?

© Gerhard Fohler 2003

15

Trick:
switch through requirement

enforce consistency by scheduling tasks at same times in all
modes

then, when a task is executing which is also in another, can
propably switch immediately (still need to check consistency
precedence etc.)

how?

* apply (single-mode) selection strategy to all modes
simultaneously

e predictable
e can specify and guarantee transition deadlines
» simple runtime handling

© Gerhard Fohler 2003 16

MF

MT

MO

TF

TG

TA

TC

TE

TG

‘ “switch through”

TA

TC

TH

B

Tl

1D

© Gerhard Fohler 2003

17

Runtime handling - I

How can | feasible switch schedules?

check all requirements before switch - intractable
resolve all that during schedule construction
efficient representation in runtime dispatching
black out slots

— flag at each slot in destination mode

— when set, switch not feasible
— wait till next slot without blackout

— else switch right away
very memory and time efficient!!!

© Gerhard Fohler 2003

18

we [T

MT

MO

TG

TA

TC

TE‘TG

& plackout slot

‘ “switch through”

TA

TC

TH

B

Tl

D

© Gerhard Fohler 2003

19

mode change methods for offline schedules presented

constructs schedules for modes and transitions
“switches” between scheduling tables in specified, feasible way

given time, schedule, and mode change request
b known sequence of activities to execute transition

slot level determinism

© Gerhard Fohler 2003

20

Off-line Scheduling
- Methods and Assumptions

Real-Time Systems - ESSES
Gerhard Fohler 2003

Malardalen University, Sweden
gerhard.fohler@mdh.se

© Gerhard Fohler 2003

Real-time scheduling - making the right
decisions to guarantee time

physical properties of environment

J

model - design

U

timing constraints

U

system construction

functional

/\

s, testin
ﬂ temporal

run-time dispatching

in field use

© Gerhard Fohler 2003

Who is doing the scheduling? And when?

Run-time dispatcher controls which activities are performed at
which time. It controls access to the CPU by tasks.

Part of real-time kernel.

» Keeps track of the system state, e.g., time, resource accesses,
book keeping information, e.qg., priorities, deadlines.

« Tasks execute until completion or may be interrupted:
non-preemptive or preemptive.

Non-preemptive dispatching is in general simpler:
— only one task (and stack etc.) active at a time.
— resource access - contention resolved

© Gerhard Fohler 2003

* Run-time dispatching is performed according to a set of rules.

« Off-line analysis and testing has to ensure that the provided
rules for the run-time dispatcher are correct:

— when the dispatcher takes scheduling decisions according to
the given rules, all timing constraints are kept.

— off-line guarantees

© Gerhard Fohler 2003 4

How long?

standard OS schedulers work on strategies without guarantees
— handle “task transition graph” waiting - ready - executing...
— select one out of the ready tasks to execute
— perhaps prevent deadlocks etc.
— go on until shutdown or system lock/crash, e.g., windows
off-line guarantees: before, for entire mission lifetime
— minutes
— hours, days, more
— need to guarantee every one of them
— combinatorial explosion

© Gerhard Fohler 2003

shorten analyzed lifetime
e analyze only single, selected part of lifetime
— worst case proofs
— need to ensure assume worst case is worst case
 restrict complete freedom of task parameters
e periods
e analyze repeating patterns during lifetime
— typically periods
— If harmonic, enough to analyze for duration of longest period
— if not, least common multiple LCM of all involved periods
— can be large

— execute repeatedly

© Gerhard Fohler 2003

Guarantees

System designer selects scheduling strategy and algorithm
Constructs a set of rules for the run-time dispatcher from
specification and timing constraints. These rules range from
complete schedules to priority strategies, etc.

During analysis/testing, the designer determines, whether the
rules provided will guarantee the temporal behavior, if applied
by the run-time dispatcher.

If no rules can be found or testing gives a negative result, a
redesign has to be done.

Depending on whether these rules determine most scheduling
decision before run-time or or leave part of the decisions to the
run-time system, the scheduling is called offline (pre run-time,

static) or online (run-time, dynamic).

© Gerhard Fohler 2003

Pre run-time vs. run-time scheduling

Pre run-time scheduling constructs complete schedules that are
feasible before the system is used in-field.
This is a proof-by-construction of feasibility.
Run-time dispatching only executes the decision, does not take
any by itself.

© Very simple for run-time system, e.g., list or table lookup.

® Inflexible, can only handle fully specified events and tasks,
requires complete knowledge.

© Gerhard Fohler 2003

Run-time scheduling constructs a set of rules for run-time

dispatching and a proof (schedulability test) of feasibility when
the rules are kept, before the system is used.

Run-time dispatching can take decisions on its own, as long as
rules are kept.

© Flexible, can handle only partially known events and tasks.

@® High cost at run-time (book keeping, calculations)
Difficult to predict exact behavior at run-time.

© Gerhard Fohler 2003

Run-time scheduling can provide more flexibility, but

Nno magic:

What is not exactly known before run-time cannot be
guaranteed then, independent of the used scheduling strategy.
Only events for which a task has been specified, i.e., code is

available, can be handled.

pre run-time scheduling pre run-time

run-time

run-time scheduling pre run-time

run-time

© Gerhard Fohler 2003

work

10

* Run-time data structures and handling can be engineering
problem, e.g., priority inheritance - paper by Victor Yodaiken

* Micro kernel with system threads, e.g., message handling tricky
with run-time scheduling

Recently, algorithms have been presented to integrate pre run-time

and run-time scheduling — slot shifting.
Benefits from pre run-time, but more flexibility.
® lecture “integrated offline — online”

© Gerhard Fohler 2003 11

How to schedule within LCM?

e Cyclic scheduling
— tasks in period classes
— schedule tasks within classes
— group task class schedules
— ...until all tasks scheduled

e easy to handle, historically popular
very different from offline scheduling!

less powerful, more restrictive, etc
often mixed up

© Gerhard Fohler 2003

12

off-line scheduling
static, pre run-time

— construct schedule of length LCM

— apply smart method

— fulfill all constraints

— not limited to “period concatenation”

© Gerhard Fohler 2003

13

Off-line Schedule Construction

time triggered

totally pre-planned

global time base

cars, airplanes

periodic “world”

some say all “real tasks of real applications” are periodic
true for some applications

generally not!

© Gerhard Fohler 2003

14

Making a periodic world

“naturally periodic”, e.g., control, sampling

aperiodic tasks, I.e., without any restriction on arrival
no way

sporadics
transform into pseudo periodic tasks
assumptions about events

— maximum rate of change, minimum inter arrival interval, mint
— maximum delay of reaction, react

— computation time, comp
determine period and deadline
have to ensure that

1. reaction is not late

2. no event missed

© Gerhard Fohler 2003 15

event event reaction completed

‘ react

—compf—

worst case:
event happens right after task start - misses data just by €
event gets reacted by task only at next instance invocation

© Gerhard Fohler 2003

16

event event reaction completed
‘ react

—compr—
period

(2]

e deadline
dl=comp+s, s 0
* nextinstance completes no later than react after event
— eventstartsat t+e
— reaction finishes at t+ p +dl
— t+p+dl-t-efreact
p+d £react+e or p+comp+s £react+e

© Gerhard Fohler 2003

17

event event reaction completed
‘ react

—comp—

period

(2]

maximum value for p - not react too late
p<react+e-dl or p<react+e-comp-s

maximum value for p - not miss event
P < mint

© Gerhard Fohler 2003

18

event event reaction completed
‘ react

—comp—

(2]

period

e assume dl=comp; s=0

1react-comp+e
P<i
I

© Gerhard Fohler 2003

19

e Utilization:
_comp _ comp
P react- comp+e

UO
e assume dl=comp+s; s>0

_comp _ comp

U

S

P react- comp- s+e
. U,<U,!

© Gerhard Fohler 2003

20

* period and deadline dependent on each other
o tradeoff
— large period:
 low utilization demand
* tight deadline - schedulability problems

— small period:
 relaxed deadline
 high utilization demand

e change for individual instances
e.g., collision, relax deadline

 flexible timing constraints new project

© Gerhard Fohler 2003

21

o if events are rare, but urgent when they occur transformation
inefficient, high utilization demands

e.g.,
mint=1000*comp; react=2*comp:
p <react+e-comp =comp+e

comp
comp+e

U= »1

* monopolization of CPU

e actual need to handle event without pseudo periodic transformation

_ comp
1000* comp

=0.001

© Gerhard Fohler 2003 22

Why use It?

number of - particular - critical application have periodic nature
predictable behavior - know exactly what is going on
testing, certification much easier

simple fault-tolerance, replica determinism

receiver based error detection

non temporal constraints, e.g., cost

explicit flow control, synchronization

“proof by construction”

very simple dispatching

micro kernel synchronization of system threads

high resource utilization

© Gerhard Fohler 2003

23

Off-line Scheduling Methods

What do we want to achieve?
e we want to find solutions

— NP hard in more than trivial cases
® can take very long time

* have to optimize search to find solutions fast

but

« once we find solution, we are done

« likely that first try will not work, maybe solution does not exist
 what if we don'’t find one/does not exist?

» total time spent in schedule design:
time of not (finding * #failures) + (1*time of finding)
® not finding at least as important as finding

© Gerhard Fohler 2003 24

we need
» algorithm for
— fast detection of no solution/not finding
— fast finding of feasible solution
« strategy to
— select tradeoffs
— choose time spent
— allow for detection of why no solution found (difficult)
— good redesign for next schedule attempt
» designer support

most current algorithms concentrate on finding solution only

© Gerhard Fohler 2003

25

Directions

How to construct a schedule?
« simple solution: use online scheduling, e.g., EDF
— still better than online - can backtrack or redesign

— better utilization because resource conflicts are known, don'’t
need to assume worst case

— testing
— etc.
e search
— popular
— easy to change constraints
— easy algorithm
— problems with feedback problem - source in search tree

© Gerhard Fohler 2003 26

genetic algorithms
e.g., Simulated annealing

simple

does not get stuck easily with hard sub problems

can handle large task sets

difficulties with complex constraints

good for allocation of tasks to nodes in distributed system

“by hand”

sometimes really fully by hand

— with support

» resolve difficult parts by hands
» extend existing schedules
» place some tasks by hand

© Gerhard Fohler 2003

27

« safety critical automotive application
— specification of tasks (in place A)
— scheduling (in place B)
— transfer of schedule to chips by engineer (in place C)
« “don’t like these tasks here, they should be separated”
* engineering practice
» cannot be scheduled, because cannot be expressed
® intelligent scheduling editor
— display schedule
— allow engineer to modify
» provide info about constraints
» allow rescheduling of selected tasks
— current project - SALSART toolsuit
« distributed cooperative schedule design

© Gerhard Fohler 2003

28

Incremental scheduling

want to modify existing schedule
e upgrades
* new versions
* etc.

existing schedule trusted, tested, certified - spent high effort
rescheduling - completely new schedule

efforts again

better to keep existing schedule as much as possible

select “unmovable tasks”

Interactive graphical tool with scheduling support

research - tool to be implemented

© Gerhard Fohler 2003

29

networked based

— distributed system

— nodes under control of different suppliers

— not knowledge about internals of other nodes

— neutral designer
» schedules communication
o distribution bandwidth
» specifies timing constraints (“windows”) to nodes

— distributed tool - web based (possible SALSART application)
also non-cooperative scheduling
— auctioning of time

© Gerhard Fohler 2003 30

Off-line Scheduling and the Real World

Many algorithms assume tasks, messages, slots, constant
operating system overhead

real-world demands
— Interrupts
— threads, chains

— micro kernel OS
o system threads
« task ensembles for tasks, e.g., message transmission
» depending on scheduling and allocation
» dynamic creation of threads

do not fit into off-line schedule in straightforward way

© Gerhard Fohler 2003

31

Threads

» threads are shorter than granularity of slots
» Dbetter utilization of slots
» scheduling/dispatching happens not only at slot boundaries

slots j

 scheduler needs to construct chains as well

« offline scheduler does “micro scheduling”, e.g., thread
cumulating within slot

» Dbacktracking, heuristic etc only at slot boundaries
« not optimal, but tractable

© Gerhard Fohler 2003 32

Interrupts

e interrupts have to be considered
e cannot
— Ignore them - too much time demand

— handle them as tasks/threads -
too high overhead, too long response times

— have to account for in analysis during schedule construction
— minimum inter arrival time - maximum overhead
e nailve approach

— assume each task can be hit by a worst case arrival of
Interrupts

— ala exact analysis
— very high overhead

© Gerhard Fohler 2003 33

o if task is shorter than minimum inter arrival time
interrupt overhead is considered too often for two consecutive
tasks
assumed worst case arrival pattern

interrupt
overhead
actual worst case arrival pattern
interrupt
overhead

Uil

© Gerhard Fohler 2003

34

sophisticated analysis algorithms
taking into account successors, precedence relations, etc.

used for analysis only and consideration during schedule
construction

online scheduled without further provisions

© Gerhard Fohler 2003

35

Off-line Scheduling - Search

precedence graph structure well suited for

(heuristic) search through search tree

* nodes represent (partial) schedule

» edges represent scheduling decisions

* heuristic function used to guide search through search tree
search strategies examples for distributed systems

o A* IDA*: Fohler 1989, 1991

 Dbranch-and-bound: Ramamritham 1991

* “meta”, two stage branch-and-bound for pipelining
Fohler, Ramamritham 1997

» resulting schedule is a set of schedules for each node in the
distributed system

© Gerhard Fohler 2003 36

Example Taskmodel for Pre Run-time
Scheduling

Precedence graphs

period, starttime, deadline for entire precedence graph
(end-to-end)

release time and deadline for selected tasks

Precedence constraints with communication (synchronized data
flow) or without (synchronization only)

preemptive tasks

simple tasks (black boxes): read input - compute - write output
communication time over bus bounded

slots dispatcher runs with granularity, creating slots

© Gerhard Fohler 2003 37

precedence graphs have different periods:
— different number of instances in schedule
— schedule length: least common multiple, lcm, of all periods

— each precedence graph with period P, has
lcm / P, instances in schedule

— construct graph with correct number of instances
comprehensive graph
(only for deadlines < periods)

generate search tree
traverse it for solution

© Gerhard Fohler 2003

38

Search tree

© Gerhard Fohler 2003

39

each path in the search from the root represents a (partial) schedule
e.g., the second one to the left: ABCDD
e.g., the rightmost: ADBCD

branching factor: number of edges from node
determines size of search tree

non preemption factor: minimum size of “chunk of execution time”
determines size of search tree

© Gerhard Fohler 2003

40

Off-line Scheduling Strategies

how to minimize the overall time to find schedule
search parameters

— determine size of expanded search tree
o small tree:
— easy solution can be found fast; but lower chances
— no solution found is detected fast
 larger search tree:
— more time spent to find solution
— long time spent to detect no solution

— can be set by designer

allows to start with small tree (easy solution fast) and increase
as desired and tolerated

© Gerhard Fohler 2003

41

Analysis (simplified answers)
success ratio: how many solutions found in number of searches
« start depth does not influence success ratio

« larger branching factor (BF) increases success ratio
flattens out fast

» cost for finding solution
— with minimum start depth higher
— with larger branching factor higher
e cost for no solution
— with minimum start depth higher
— Increase with BF, higher at lows of non preemption
Conclusions
« start with high start depth
e search with small BF first, don’t increase too much
« use high non preemption factor, lower not too much

© Gerhard Fohler 2003

42

© Gerhard Fohler 2003

43

A* IDA* Search

o developed by Korf 1984, derivative of A*, Nilson 1982
* heuristic search strategy
e uses heuristic function to guide search

| TERATI ON()

{
whi | e(DEEPEN(r oot node) not done)

{

t hreshol d=t hreshol d +m n_exceed,
m n_exceed = infinity;

}

© Gerhard Fohler 2003

44

DEEPEN(node)
{appl y(node); // apply sched deci sion, update data
| f (feasi bl e(node) == true)

{ if(solution_found(node)) done;

successors= create all successors of node;

/'l collect tasks, nessage ready, create sched deci sions
calculate f(n) for all nodes in successors;

best nodes = sort all nodes in succ. by f(n)

for(i=0;1 <BRANCH NGFACTOR; i ++)
{if((f(best_nodes[i] < threshol d)
DEEPEN(best nodes[i];
else if(f(best nodes[i] - threshold < m n_exceed)
m n_exceed = f(best _nodes[i] - threshold;

}
} [/ if feasible

© Gerhard Fohler 2003 45

task data accessed very often
elaborate data structures
— on purpose redundancy
— areas instead of pointers
IDA* linear with search depth in memory need
— search tree represented in area
— Size known at program start

© Gerhard Fohler 2003

46

Heuristic Function

Search tree can be very large
a complete search will take too long

select “promising” paths in the search tree, e.g., by use of a
heuristic function

some heuristic search strategies, e.g., A*, explicitly handle
heuristic functions and provide guarantees for finding solutions
based on their quality

ad hoc heuristic functions, e.g., next deadline first, can be used
as well, but don’t provide guarantees for solutions

f(n) = g(n) + h(n)
— g(n) real cost so far
— h(n) estimated cost for rest

© Gerhard Fohler 2003 47

example heuristic function TUR - time until response

— sum of execution ties of remaining tasks
 distributed precedence graph - tricky problem

— sum of remaining communication times
estimation

— Idle times
0

tradeoff
— very ellaborate heuristic function finds solution fast

— but is expensive to calculate - invoked often
e.g., feasible schedule is good heuristic!

problems if solution does not exist - expands large parts of
search tree

© Gerhard Fohler 2003

48

RM vs. EDF

Giorgio Buttazzo

Department of Computer Science
University of Pavia

E-mail: buttazzo@unipv.it

Basic results

Independent tasks
Aesumetions
i i N

A set of n periodic tasks can be feasibly scheduled

n

underRM if Z% < n2"-1)

i=1 i

=

under EDF if and only if

L &)
IN

Schedulability bound
[rm | JeoF

Schedulability region
U, The U-space

IA
e

n(zl/n _1)

IN

Schedulability region
U, The U-space

IN
3
—~
2
N
|
—
~

Schedulability region

U, The U-space
1 N
Ci Tl
Tl 3|6
0.83
|49
12 Up:%+g:0.94
EDF
RM
U2

49 083 1

Schedule

EDF 0 3 6 9 12 15 18
Tz|m|M—ﬁﬁJ—ﬁﬁ
0 3 6 9 12 15 18
RM 0 3 6 9 12 15 18
Tzlwm” !|
0 3 6

i T
9§ 12 15 18

deadline miss 7

Questions
o If EDF is more efficient than RM, why
commercial RT systems are still based on RM?
e Why is RM preferred to EDF?

e What are the limitations of EDF that prevent its
use?

After 30 years of work on scheduling,
there are still a lot of misconceptions

Typical misconceptions

They tend to favor RM more than EDF:

o RM is easier to implement and analyze;
¢ RM introduces less runtime overhead;
o RM is more predictable during overloads;

o RM causes less jitter.

Objectives of this work

1. Address the misconceptions
2. Compare the algs w.r.t. different metrics

= Implementation complexity
Runtime overhead

Schedulability analysis

=
=
= Robustness during overloads
= Jitter

=

Aperiodic task handling

Implementation complexity

We have to distinguish two cases:

1. Implementation on top of a fixed
priority kernel E——

fixed priority
scheduler

kernel

2. Implementation from scratch

scheduler

kernel

On top of a FP-kernel
RM is straightforward to implement
b b b b
tm e |
P2 P>
T I___l_h___L

|P3 |p3

T3 ||

fixed priority
1 Ps P2 Py task priorities

pl oCc — T T T T T T T o
T | Ly L, Lg¢ Ly L, L; priorities levels

i

12

On top of a FP-kernel

1
EDF requires dynamic priorities | p, o ;1—
P, P’ :
T h 1 [
1%
T I__—\ h [
™ |
T3 | .
Pi P2 P1 1Ps
1% by P; | Py
P3 % P2 1P
13
On top of a FP-kernel
EDF sometimes remapping is required:
P1 pPs P2 Dy task priorities
P I e e e I
pi Lg L, Ly Ly L, L; priorities levels
ﬁﬁ ==) remapping
P2 P P2 Py task priorities
by —_—
p3 Ly L, Ly Ly L, L, priorites levels

As a basic kernel mechanism

Both RM and EDF require the same complexity
for queue management:

Task Control Block

Under EDF
periodic / aperiodic the absolute deadline
criticality must be updated at
WCET each job release:

Minimum Inter. Time ————————
Relative Deadline e di =r+ Ti
Absolute Deadline —_—
Utilization Factor (negligible overhead)

Existing EDF kernels

o SPRING (Stankovic-Ramamritham 87)
e YARTOS (Jeffay 92)

e HARTIK (Buttazzo-Lamastra-Lipari 93)
e SHARK (Gai-Buttazzo 99)

o MARTE-OS (Gonzalez 01)

e ERIKA (Gai 01)

o MCU-OS (Carlini-Buttazzo 01)

Runtime overhead
Two different types of overhead are considered:

1. Overhead for job release

— EDF has more than RM, because the absolute
deadline must be updated at each job activation

2. Overhead for context switch

= RM has more than EDF because of the higher
number of preemptions

Preemptions

U= %+i = 097

Preemptions

. T € [10, 100]
Avg. no. of preemptions g
(1000 sims of 1000 units) p=09
80
70
— ——_ RM
60
/
50
40
“ T~__EDF
20
10
N
0
4 6 8 10 12 14 16 18 20
Number of tasks 19
Preemptions
T € [10, 100
Avg. no. of preemptions [_]
(1000 sims of 1000 units) N=10
80
70
. RM
50
EDF
10
/
30
//
L
10
0
0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
Load 20

Example with RM

6 1$2 18
1%
10 20
T m |
3 ————
0 2 4 6 8 10 12 14 16 18 20

Under RM, preemptions increase
as computation times increase

Example with RM

am m m m

6 1$2 18
1%
10 20
T m
3 I R B R
0 2 4 6 8 10 12 14 16 18 20

Under RM, preemptions increase
as computation times increase

22

Example with RM

O S P

1$2 18
T
|$(J 20
T m
3 —.
0 2 4 6 8 10 12 14 16 18 20

Under RM, preemptions increase
as computation times increase

23

Example with EDF

6 1$2 18
1%
10 20
T m
3 ————
0 2 4 6 8 10 12 14 16 18 20

Under EDF, preemptions may decrease
as computation times increase

24

Example with EDF

am m m m

6 1$2 18
1%
10 20
T m
3 I R B R
0 2 4 6 8 10 12 14 16 18 20

Under EDF, preemptions may decrease
as computation times increase

25

Example with EDF

12 18
L—! I ?
T e e
‘ 10 20
RE m e | “““
0 2 4 6 8 10 12 14 16 18 20

Under EDF, preemptions may decrease
as computation times increase

26

Example with EDF

6 12 18
rszT|m “““
‘ 10 20
13‘—##!—“”" “““
o 2 4 6 8 10 12 14 16 18 2

Under EDF, preemptions may decrease
as computation times increase

27

Example with EDF

Under EDF, preemptions may decrease
as computation times increase

Schedulability Analysis

D, =T, D,<T,

Suff.: polynomial O(n) pseudo-polynomial
Response Time Analysis
LL: 22U, < n(2Vn-1)

Vi R, <D,
RM HB: TI(Uq+1) <2 e g
TR
Exact pseudo-polynomial | R, = C,‘*'z Zie,
RTA = | Ay
inf. pseudo-polynomial
EDF polynomial: O(n) Processor Demand Analysis

2U <1 vL>0, g(0,L)< L
29

RM: harmonic periods

Harmonic task sets are schedulable by RM

if and only if U <1.

A set of tasks is harmonic if every pair of
periods are in harmonic relation.

A common misconception

The RM schedulability bound is 1 if every
period is multiple of the shortest period.

Non harmonic periods

4
TzLﬂ |! |! !

B I e |!

0 2 4 6 8 10 12 14 16 18 20 22 24
2 2 2

= S+s+ =

4 8 12

= 0917

‘ Any increase in the C;’s makes the system unschedulable

Harmonic task set

Robustness under overloads

Two situations are considered:
1. Permanent overload

= This occurs when U > 1

2. Transient overload

= This occurs when some job executes
more than expected

RM under permanent overload

U= ﬂ+£+i =125
8 12 20

o |

0 8 16 24 32 40 48 56 64 72 80
o ol m i m o,

0 12 24 36 48 60 72 84
ul I |l I L

0 20 40 60 80

¢ High priority tasks execute at the proper rate
e Low priority tasks are completely blocked

EDF under permanent overload

4 6 5
= —+—+— =125
8 12 20
o mlml e | | lm|
0 8 16 24 32 40 48 56 64 72 80
o Ll o e e | o om
0 12 24 36 48 60 72 84
ol ml m . m |
0 20 40 60 80

o All tasks execute at a slower rate
e No task is blocked

EDF is predictable in overloads

Theorem (Cervin ‘03)

If U > 1, EDF executes tasks with an
average period T',= T, U.

.

T, T,
T | “““““ |
8 10 f‘ T 8 | 10
TZI ““““““ | — T, | 12] 15
1215 N
T3| ““““““““““““ | T, | 20| 25

Big misconceptions

priority tasks.

1]

We now show that this is not true

37

RM during transient overruns

Upg=0817 €y =2, C, =4

avg

T, (2/5) h h h h h h
0 5 10 15 20 25 30
©eo)| - e m em

13(1/20)IHHH!HHHHH‘IHHHHH
0

20

T4(1/30) m

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

RM during transient overruns

Upg=0817 €y =2, C, =4

avg

vl e e e e |

0 5 10 15 20 25 30

T,(3/9) - * — h m h
‘”*\deadline 8 7

0
13(1/20)| miss gy m
0

20

14(1/30)\\\\\\\\\\\\\\\\\\\\\\\\!\““

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

‘ Who is missing its deadline is not the lowest priority task ‘

Jitter

Jitter for an event

The maximum time variation in the occurrence of a
particular event in two consecutive jobs of a task.

Another misconception

RM reduces jitter during task execution
more than EDF

40

Types of Jitter

Start Time Jitter

STJ, = m]?X‘Si,k =Sk

Si1 Si2 Si3 Sia
NN
14-21=2 2-5|=3 |5-0|=5

ST 5
41

Types of Jitter

Response Time Jitter

RTJ, = mEX‘Ri,k_Ri,kJrl
i1 fi, fis fis
g
8B-8/=0 8—11]=3 [11-4|=8

RTJ,=8
42

Effects of Jitter

e In some control application, jitter is tolerated by the
inertial nature of the system

e In some other applications, jitter can cause
instability or jerky behavior

We compare the performance of
RM and EDF in terms of RTJ

43

Jitter under RM

11(2/6)0h‘”6h‘”uh”‘mh””

2

168 | o h h m RTJ,=2

0 8 18

T5(2/12) m A = RTJ, =8

0 12 24

RTJ, =0

T4 experiences a very high jitter

44

Jitter under EDF

veom | o e | o | Rme

18 24

0 6 12
Tz@“‘)LmHl‘mwlmml RTJ, =2
0 8

‘53(2/12)I‘HH-H‘IH-HHHI RTJ;=3
0

12 24

For a little increase of RTJ,,
RTJ; is decreased a lot

45

Aperiodic task handling

Most RT applications require the execution of
periodic (time driven) and aperiodic (event driven)
activities.

They must be guaranteed

HARD < assuming a worst-case
arrival (sporadic model)

Woarodic”

task
asis \ SOFT {The objective is to

minimize their average
response time

46

Important results (1)

Theorem 1 (Tia-Liu-Shankar '96)

Under fixed priority scheduling it is not
possible to minimize the response time of
every aperiodic job.

Theorem 2 (Tia-Liu-Shankar '96)

Under fixed priority scheduling no on-line
algorithm can minimize the average response
time aperiodic requests.

Important results (2)

Under dynamic priority scheduling there are
optimal algorithms that minimize the response
time of aperiodic jobs.

Improved Total Bandwidth Server (ITB)
(Buttazzo-Sensini ‘97)

It minimizes response times by scheduling each
aperiodic job with the minimum deadline that
preserves the periodic guarantee.

48

Aperiodic responsiveness

Avg. Response Time
10
9
8
7 Other
. Sleak Stealer dynamic
5 servers
4
3
2 —
. Y —— | ___— ITB
0
0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9
Relative Aperiodic Load: p,/(1-Uy) 4

Conclusions (1)

RM and EDF have same implem. complexity

A small additional overhead is needed in EDF to
update the absolute deadline at each job release

Runtime overhead is smaller in EDF
Due to the smaller number of context switches

EDF achieves full processor utilization,
whereas RM only guarantees 69%

eor I
RW
0

69% 100% 0

Conclusions (2)

EDF is simpler to analyze if D; = T;

This is important for reducing admission control
overhead in small embedded systems

EDF is more flexible in overload conditions

EDF automatically expand periods, whereas RM
causes a complete block of low priority tasks

EDF is fair in reducing jitter, whereas RM only
reduces the jitter of the highest priority tasks

EDF is more efficient than RM for handling
aperiodic tasks

Conclusions (3)

The only real advantage of RM is that it can be
easily implemented on top of fixed priority
kernels.

Challenge

Develop EDF kernels to exploit all the
advantages of dynamic scheduling without
paying additional overhead.

Overload management

Outline

¢ Definitions: load, overload, overrun
e Overload handling methods:

= Admission control

= Resource Reservation

= Imprecise Computation

= Job Skipping

= Elastic Scheduling

Load definitions

e For non real-time systems:

b bbb bbb b bRE

t

p=AC

p = load
A = average arrival rate

C = average execution time

Load definitions

e For hard real-time periodic tasks:
n C
PeU=2g
C =1

=]

0 6 12

Load definitions

e For real-time aperiodic tasks:

The load also depends on the deadline

Computing the load

In general, the load in an interval is computed
using the processor demand in that interval:

S W R =S

t 7}

- g(t,t,) s

L=t L=t

Istantaneous load p(t)

Maximum processor demand from the current
time and the deadlines of all active tasks.

S TH R S

=

p(t) = max

k

g(t.d,)
d

k

r<t, d;<dy

>

d

Example

T hl

T2 Tf —l

T
0 2 4 6 8

S

py(4) = 2/4 = 05

py(4) = 5/6 = 0.83

py(4) = 7/9 = 0.78

Transient vs. permanent
overload conditions

Transient overload: p,, <1, p,,, >1

Possible causes

= Arrival of aperiodic activities

= Exceptions raised by the kernel

= Malfunctioning of input devices

— Task with variable execution

= Sporadic overruns

Types of overruns

o A task is said to be in overrun if the time demanded
for execution exceeds the expected value according
to which the task has been guaranteed.

e There are two types of overrun:

Execution overrun t
A job executes more

than expected

Activation overrun ; t A
A job arrives before

the time it is expected 10

Transient vs. permanent
overload conditions

Permanent overload: p,,, > 1

Possible causes

= Activation of a new periodic task

= Increase in the task frequencies

= Increase in the task quality (execution times)
= Changes in the environment

= Bad system design

Examples of load

System designed under System designed under
worst-case assumptios average-case assumptios

load load
1

0.75 0.75

0.5 0.5

0.25 0.25

time time

Predictability vs. efficiency

Pessimistic assumptions lead to
e high predictability

o low efficiency === | high cost

only justified for
critical systems

Average-case design leads to

e high efficiency

o low predictability ===) | necessary to handle

and tolerate overloads

13

Overload management

Overload can be handled using different approaches:

e Value-based scheduling
— tasks are assigned values and executed accordingly

e Resource Reservation
— Resources are reserved to tasks and cannot be used

e Admission control
— least importance tasks are rejected
— important tasks receive full service

e Performance degradation
— all tasks are executed
— but with reduced requirements

Value-based scheduling

o If p> 1, no all tasks can finish within their
deadline.

e To avoid domino effects, the load is reduced
by rejecting the least important tasks.

e To do that, the system must be able to handle
tasks with both timing constraints and
importance values.

Deadline and Value

e Under RM and EDF, the value of a task is
implicitly encoded in its period or deadline.

e However, in a chemical plant controller, a
task reading the steam temperature every 10
seconds is more important than a task which
updates the clock icon every second.

How to assign values

A task T, can be assigned a value v, according
to different criteria. Those most common are:

arbitrary constant

v;=V,;
v;=C; computation time
v,=V,

/C; | value density

Value as a function of time

In a real-time system, the value of a task
depends on its completion time and criticality:

v; () v; (f)
non real-time soft
T i T d; fl
v; () v; (f)
firm hard
}1 d; fl T d, —» f‘

Performance evaluation

e The performance of a scheduling algorithm

A on a task set T can be evalutated through
its Cumulative Value:

LM =3 %)

e Note that: I(T) < LM=>Y
=

Optimality under overloads

r'(T) = mijA(T)

The performance of an algorithm can be
evalutated with respect to ™.

In overload conditions, there are no
optimal on-line algorithms able to
guarantee a cumulative value equal to I'".

Proof (assume: V;=C)

‘ To maximize I'y we should know the future.

If at time t = 0 r is not know, we cannot select the
task that maximizes the cumulative value.

1, !M r,-12

. 36

Tzr l
G L —

22

Competitive Factor

Let I'" the maximum cumulative value achievable
by an optimal clairvoyant algorithm.

An algorithm A has a competitive factor @,, if it is
guaranteed that, for any task set, it achieves:

Iy > o 0"
Hence, ¢, € [0,1] and can be computed as:

e G
2T

23

Competitive factor of EDF

e It is easy to show that @y = 0:

T
1, ‘h l V, =K

In such a situation, T'ypr=V, and "=V,

hence Tppe /T"=V,/V, —> 0 for V,>>V,

24

A theoretical upper bound

[Baruah et al., 91]

If p > 2 and task value is proportional to
computation time, then no on-line algorithm
can have a competitive factor greater than 0.25.

Thatis: ~ Maxg, < 0.25

In general, the wupper bound of the
competitive factor is a function of the load
and varies as follows:

A @y

0.75 +

05 7

0.25

Best-effort scheduling

tasks READY queue @

e Tasks are always accepted in the system.

e Performance is controlled through a
suitable (value-based) priority assignment.

e Problem: domino effect.

Admission control

Y
task @ READY queue @

rejected N

e Every task is subject to an acceptance test which
keeps the load < 1.

e [t prevents domino effects, but does not take
values into account.

e Low efficiency due to the worst-case guarantee

(tasks may be unnecessarily rejected).
28

Robust scheduling

scheduling
policy

task

planning

e Task scheduling and task rejection are controlled by
two separate policies.

READY queue

recovery

0 rejection
policy

policy

e Tasks are scheduled by deadline, rejected by value.

e In case of early completions, rejected tasks can be

recovered by a reclaiming mechanism.
29

Robust EDF
e Scheduling Policy = EDF

¢ Rejection policy
when an overload is detected, reject the least
value task which can bring the load below 1.
e Recovery policy
— keep rejected tasks by decreasing values;

— when there is enough spare time, re-accept the
highest value task which is still feasible.

Example: task rejection

Vi
A~
wn w
st b == S
rulm = S
s 4o —
0 2 4 6 8 10 12 14 16 18 20
attimet=4 = 15 rejected
Example: task rejection
Vi
T — T
ORI = N = S
s o SE—
rulm =S S
s 4o —
0 2 4 6 8 10 12 14 16 18 20
attimet=4 = 15 rejected
Example: task recovery
Vi
R =
0n b w4
s fmm v
rulm =S S
3% T H

T
o 2 4 6 8 10 12 14 16 18 20

attimet=8 = 15 can be recovered

Resource Reservation

Handling sporadic overruns

Problems with overruns

e Without a budget management, there is no
protection against execution overruns.

e If a job executes more than expected, hard
tasks could miss their deadlines.

c,=1 /\/ deadline miss

Solution: Temporal Isolation

e The execution of a task should not affect the
guarantee performed on the other tasks.

e Each task 7 receives a fraction U; of the
processor (its bandwidth) and behaves as it
were executing alone on a slower processor of
speed Us.

bandwidth reservation
Temporal isolation ==

bandwidth enforcement

36

Bandwidth reservation

e Ideally, each task should be assigned a given
bandwidth and never demand more.

10 %

20 %

25%
45 %

e However, tasks are subject to overruns or the

reserved bandwidth can be insufficient for the task.
37

Bandwidth enforcement

e It is a mechanism needed for degrading the QoS
when a task demands more than the reserved
bandwidth.

e If a task executes more than expected, its priority
should be decreased (i.e., its deadline postponed).

e When a task experiences an overrun, only that task
is delayed, so that the guarantee performed on the
other tasks is preserved.

Implementation

Us
ORCT
Ready queue
UsZ

[e
EDF

| Us + Up + Ug < 1]

Constant Bandwidth Server
(CBS)

e [t assigns deadlines to tasks as the TBS, but
keeps track of job executions through a budget
mechanism.

e When the budget is exhausted it is
immediately replenished, but the deadline is
postponed to keep the demand constant.

40

CBS parameters

Given by the user
e Maximum budget: Qs
e Server period: Ts

Us; =Qs/Ts (server bandwidth)

Maintained by the server
e Current budget: ¢ (initialized to 0)
e Server deadline: ds (initialized to 0)

41

Basic CBS rules

e Arrival of jobJ, = assign d
if (r,+c,/U; < d,) then recycle d
else d, = 1, + T,
¢ = Q
e Budget exhausted = postpone d,
dS = dS+TS
CS = QS

42

Deadline assignment

L_Zh l
0 5 12
Cs
6
Qs=6 3
T,=12 1
0 5 12

Budget exhausted
iﬁ/\ }
0 3 6 12
Cs
Q=3 ° .
Ts=6
0 3 12

EDF + CBS schedule

0 6 12 18 24
T
| | m | em |
0 9 27
dD d1 Ldz dz d4
' v Y Vo '
et h = |
—_ —. =
T 8 n 14 18 I 24 27
CS
o 2 4 6 8 10 12 14 16 18 20 22 24 2

45

CBS properties

e Bandwidth Isolation

If a task 7; is served by a CBS with bandwidth
Us then, in any interval At, t; will never demand
more than U At.

e Hard schedulability

A hard task t; (C;, Tj) is schedulable by a CBS
with Qs = C; and T, = Tj, iff 7; is schedulable by
EDF.

46

Remarks on the CBS

o [t can be used as a safe server for handling
aperiodic tasks under EDF.

e [t can be used as a bandwidth reservation
mechanism to achieve task isolation.

e [t allows to guarantee a minimum
performance to SOFT tasks, based on the
assigned bandwidth.

47

Handling permanent
overload

Performance Degradation

The load can be decreased not only by
rejecting tasks, but also by reducing their
performance requirements.

This can be done by:
e reducing precision of results
e skipping some jobs;

e relaxing timing constraints.

49

Reducing precision

In many applications, computation can be
performed at different level of precision: the
higher the precision, the longer the
computation. Examples are:

e binary search algorithms
e image processing and computer graphics

e neural learning

Imprecise computation

In this model, each task t; (C, D, w)) is
divided in two portions:

e a mandatory part: ™ (M,, D)

e an optional part: 7% (0;, D))

T M, 0, l

w; is an importance weight

Imprecise computation

In this model, a schedule is said to be:

o feasible, if all mandatory parts complete in D,

e precise, if also the optional parts are completed.

n
error: g = O;—c; averageerror: €, =2wisi

i=1
| i | i |
I | |

O
1

GOAL: minimize the average error

Job skipping
Periodic load can also be reduced by skipping
some jobs, once in a while.

Many systems tolerate skips, if they do not
occur too often:

e multimedia systems (video reproduction)
e inertial systems (robots)

e monitoring systems (sporadic data loss)

Example

The system is overloaded, but tasks can be
schedulable if t, skips one instance every 3:

U=l+i:1.17>1
2 6

P

o e e e
o | o —

FIRM task model

e Every job can either be executed within its
deadline, or completely rejected (skipped).

e A percentage of task instances must be
guaranteed off line to finish in time.

e Each task 7; is described by (C;, Ti, Dj, Si):

S;is the minimum number of jobs that must be
executed between two consecutive skips.

e Every instance can be red or blue:
— red instances must finish within their deadline
— blue instances can be aborted

e If a blue instance is aborted, the next Si—1
instances must be red.

e If a blue instance is completed within its
deadline, the next instance is still blue.

e The first Si—1 instances of every task must
be red.

Example

Ci=1 Ti=2 Dij=2 §;=3

m e

T

skip skip skip
Ti

Equivalent utilizazion factor

{i&@m}

=
I

4

*
EF — max
2 L>0

Schedulability Analysis

A sufficient condition

Theorem: A set of firm periodic tasks is
schedulable if

A necessary condition

Theorem: A set of firm periodic tasks is
not schedulable if

i=1 T; Si

NOTE: the sum represents the utilization of
the computation that must take place.

60

Bandwidth saving

e In general, skipping jobs of periodic tasks
causes a bandwidth saving:

AU=U,- U,

e Such a bandwidth can be used for

— improving aperiodic responsiveness (by
increasing their reserved bandwidth);

— accepting a larger number of periodic tasks.
61

Not always skips save bandwidth:

C=T,
T skip skip
1

0 T

In this case: Up* =1

In fact, for L=T; wehave g;(0,L)=C,=T,;

=1

Hence: M =
L

NS

62

However, notice that:

C, =T,
T

G,

Tl
L)
0 T,

In this case we still have: Up* =1

Infact: g(0,T)=T, e g0, T)=T,

20.7) _ gOT) _

Hence:
T,
63

1

Relaxing timing constraints

e The idea is to reduce the load by increasing

deadlines and/or periods.

e Each task must specify a range of values in
which its period must be included.

e Periods are increased during overloads, and

reduced when the overload is over.

64

Example
task G Tio | Tmin | Tmax
T 10| 20| 20| 25
T2 || 10| 40| 40| 50
w3 || 15| 70| 35| 80
B + B + 1—5 = 0.96

» 7 20 40 70

65

Load adaptation

If 14 arrives with: C4 =5, T4 = 30 the system is not

schedulable any more:

10 10 15 5
—+—+

»7 20740 70 30

= 1.13

However, there exists a feasible schedule within the

specified ranges:

10 10 15 5
= —t—t—
d 23 50 80 30

= 0.99

66

Elastic task model

e Tasks’ utilizations are treated as elastic
springs and can be changed by period
variations.

e The resistance of a task to a period variation
is controlled by an elastic coefficient E;:

= the greater E; the greater the elasticity

67

Elastic task model

e A periodic task T; is characterized by:
(Ci, Tio, Ti-min, Timax, Ei)

e The actual period T; € [Timin, Ti-max]

Tj Timin Tio Ti-max t

68

Special cases

e Atask with T.. =T

hard task.

is equivalent to a

min max>

e A task with E; = 0 can intentionally change
its period but does not allows the system to
do that.

69

Compression algorithm

During overloads, utilizations must be
compressed to bring the load below one.

T
1 T Uy
T1 -13‘1:4‘«‘
1 T U

70

The linear spring analogy

0 L, X

Xy X X3
PAAAMPAAAPANNN] o= F
0 Ly X

= kj(x},- %)) _

_ Xptxtx3 = Ly

= ky(Xy0 - X))

+x, + =
= ky(Xs, - X3) Xjo Xy T X3 = Ly

71

Solution without constraints

Summing the equations, we have:

1 1 1
F(—+—+—) =(x, +x,, +x3,) = (x, +x, + x3)

ko k, k
= (Lo - Ld)
That is: (Lo _ Ld)
1 1 1

—_— 4+ —
kl kZ k3

F:

72

Solution without constraints

Substituting F in the equations, we have:

L,—L
F=k(x,-x)= %
&k K
That is: T s

Solution without constraints

K 1
% = xl.o—(Lo—Ld)k—// K, =

: n 1
: Z[:l ;1

And defining: E;= 1/k;

E n

i

x = x,—(Ly—L,)

E

s

74

Period computation

E
L= U, -, _Ud)E_l

i
s

C.
And then: I, = —
U

i

75

Solution with constraints

Iterative solution:

0 L, «x
PAWWWAWAAAPMAN] <

6 td X
PPN <= F

0 L, X

76

Other use of elastic tasks

e Increase frequencies to fully utilize the
processor.

e Quickly find new period configurations
during negotiation.

e On line period variations in control
applications.

77

Examples: altimeter reading
e The smaller the altitude, the higher the
acquisition rate:
D
1 %
B

=
P

e

Low rate

High rate

78

Obstacle avoidance

e The closer the obstacle, the higher the
acquisition rate:

i Low rate

)

i High rate

79

Visual tracking

o The smaller the searching window, the
higher the acquisition rate:

=l L
? Y
searching window
Visual tracking
o The smaller the searching window, the
higher the acquisition rate:
=l L
- L}

{? =

searching window

Engine control

e Some tasks need to be activated at specific
angles of the motor axis:
= the higher the speed, the higher the rate.

e Guaranteeing all the tasks at the maximum
rate is not efficient or may not be possible.

e Other tasks may need to be downgraded
when the engine is running at high speeds.

82

Dynamic
Task Scheduling

Giorgio Buttazzo

Department of Computer Science
University of Pavia

E-mail: buttazzo@unipv.it

Course Outline

Some terminology
e Basic results on dynamic scheduling
e Aperiodic task handling

e Dynamic scheduling under resources constraints

Overload and QoS management techniques

e Comparison with fixed priority scheduling

Terminology
Task

is a piece of code that can be executed
many times with different input data:

task T;

Each instance of a task (t;)
is called a job (1;;)

Job parameters

job 7;, is the k™ instance of task

job

release time r;,, —»

start time s;;,, —*

computation time

Ci,k
finishing time f;; ——»
deadline d;, —

Job parameters

| Dik |

\ gl

— Gy ——

Tik

Tix Sik fi,k di,k t

r; release time (arrival time a;)

S start time

C; Wworst-case execution time (wcet)
d;) absolute deadline

D, relative deadline

f; finishing time

Other parameters

T (O slack
Ti,k [] \ ¢
i Sik t fix diy

Residual weet: ¢, (t) ¢, (r;,) = C;;,
Slack (or laxity): d;; —t—c;,(t)
Lateness: Lip=fi—dix

Tardiness: max(0, -L;,)

Task model

A task t; is an infinite sequence of jobs T l

Ti1 Ti2 Tik
T T- { Tu P T m Y
1 ri2 Tik t

Activation modes

* Time driven: periodic tasks

the task is automatically activated by the kernel
at regular intervals.

* Event driven: aperiodic tasks
the task is activated upon the arrival of an event
or through an explicit call of the activation
primitive.

Periodic task model

i = & (task phase)
ik = Tt T

T (Ci, Ti, Di) T,
Ci
i = ®; Iik Tik+1 t
rix = d; + (k—l) Ti q;)ﬂfr(l)
dix = rix +Dj Dli: T

Aperiodic task model
e Aperiodic: rix > ik

e Sporadic: Tigrr 2 g+ T

“tm et o

Ii 1 Tik+1

T; = Minimum Interarrival Time

Algorithm taxonomy

e Preemptive vs. Non Preemptive
e Static vs. dynamic
e On line vs. Off line

e Optimal vs. Heuristic

Static vs. Dynamic

Static

scheduling decisions are taken based on
fixed parameters, statically assigned to
tasks before activation.

Dynamic
scheduling decisions are taken based on
parameters that can change with time.

Off line vs. On line

Off line

all scheduling decisions are taken before
task activation: the schedule is stored in a
table (table-driven scheduling).

On line

scheduling decisions are taken at run time
on the set of active tasks.

Optimal vs. Heuristic

Optimal
They generate a schedule that minimizes a
cost function, defined based on an optimality
criterion.

Heuristic
They generate a schedule according to a
heuristic function that tries to satisfy an
optimality criterion, but there is no guarantee
of success.

Optimality criteria

o Feasibility: Find a feasible schedule if there
exists one.

e Minimize the number of deadline miss

e Assign a value to each task, then minimize
the system loss value

Example of heuristic algorithm
Spring kernel [Stankovic & Ramamritham 87]
The algorithm performs a tree search, where:

e The root node is an empty schedule
o Intermediate nodes are partial schedules
e [eaves are complete schedules

F = feasible
N = unfeasible

Example of heuristic algorithm
Spring kernel [Stankovic & Ramamritham 87]

1. The schedule for a set of N tasks is constructed in N steps
2. The search is driven by a heuristic function H

3. At each step the algorithm selects the task that minimizes the

heuristic function Backtracking
[is possible }

Example of heuristic algorithm
Spring kernel [Stankovic & Ramamritham 87]

Example of heuristic functions:
H=r, = FCFS
H=C; => SJF
H=D, = DM
H=d, = EDF

Composit heuristic functions:

H = w;r;+w,D;
H = w,C +w,d;
H = w, V,+w,d,

Example of heuristic algorithm
Spring kernel [Stankovic & Ramamritham 87]

Possibility to handle precedence costraints:
Eligibility .\g/o .\Ag
Ti T
E, = E;=1
Heuristic functions:

H = E (w5, +w,D;)
H = E(w,; G+ w,d)

Example of heuristic algorithm
Spring kernel [Stankovic & Ramamritham 87]

Exhaustive search: O(N))
Complexity: < Heuristic search: O(N?)
Heuristic w. k btracks: O(kN?)

Examples of optimal algorithms

. 1| fixed
Rate Monotonic) | P, < T, | priority

o It is a static scheduling algorithm

e It can be preemptive or non preemptive
e [t can be executed on line or off line
e [t is optimal for feasibility among static algorithms

1 | dynamic
d, | priority

i

EDF m—) | p; *

e It is a dynamic scheduling algorithm

e It can be preemptive or non preemptive
e It can be executed on line or off line
o It is optimal for feasibility and minimizes L,

EDF Optimality

EDF is optimal for feasibility among all
algorithms:

If there exists a feasible schedule for I', then
EDF will generate a feasible schedule.

|

If T is not schedulable by EDF, then it cannot
be scheduled by any algorithm.

EDF Optimality [Dertouzos ‘74]

feasible & ? /\- # ¢
1 [
© T 'S ¢
k I I I H I I I I I
t 4 fp o dg d

Transforming o in ¢’

{ o'(t) = olte)
o'(te)

Feasibility is preserved

e = L

o(t)

EDF schedulability

e In 1973, Liu and Layland proved that for a
set of n periodic tasks:

T
Ulub =1

e This means that a task set I" is schedulable
by EDF if and only if

U, <1

Proving sufficiency

By contradiction, assume U < 1, and let t, be the time at which a
deadline miss occurs.

Let [t;, t,] be the longest interval of continuous utilization such
that only instances with deadline < t, are executed:

T h h | . |

: | | | [
deadline miss

i 74|_-_L,

Th h -l.

& 5}

Proving sufficiency

The total computation time demanded in this interval is:

C,(4,1) <

L4
ol T

¢ <Y ’ZT;“ C = (t,-1)U

i=1 i

i

deadline miss = (1, —1;,) <C,(1;, 1) < (¢, —1,)U contradiction

T, * =l

6 5}

26

An alternate proof

U <1 =) T schedulable

e We find any algorithm for which the above
condition holds;

e Then, for the EDF optimality, we can say
that the above condition also holds for EDF.

Proving sufficiency

Consider the algorithm which schedules in
every interval of length A a fraction of task:

5, = U,A

8, 8,

9 3 3 6, &
P\ \P\ \P_V—\‘ .
A A A

Proving sufficiency

With this algorithm, a task executes in each

iod for: : -
period for 56[:EU,.AzT,-U,- =C,
A A

& 5, 8, 3, |
— - .. t

i

Feasibility is ensured if 8, < A thatisiif

i=1

DUA< A wmp U <1

i=1 2

Extension to tasks with D <T
| Ti |
—Di

G
T S
Tik dix ik

t

Scheduling algorithms
e Deadline Monotonic: p; oc 1/D; (static)
e Earliest Deadline First: p;oc 1/d; (dynamic)

30

Dynamic Priority
EDF

Schedule based on absolute deadlines

Schedulability Analysis

Processor Demand Criterion [Baruah ‘90]

In any interval, the computation demanded by the

task set must be no greater than the available time.

31

Processor Demand

t) t

The demand in [t,, t,] is the computation time of those
jobs started at or after t; with deadline less than or
equal to ty:

d<t,

g(t,t,) = ZCi

2t

Processor Demand

o b 1 o b

0 L

Processor Demand in [0, L]

C

1

g(0,L) =3

i=1

z LL—DﬁTiJ

i

Processor Demand Test

VL>0, g(0,L)< L

Question

How can we bound the number of intervals
in which the test has to be performed?

Example

O T T N T S .
O | | b || e |

0 2 4 6 8 0 12 14 16
g(0, L) L
8
6
4
2
0 —f L

Bounding complexity

e Since g(0,L) is a step function, we can
check feasibility only at deadline points.

o If tasks are synchronous and U, < 1, we can
check feasiblity up to the hyperperiod H:

H = lem(T,, ..., T),)

Bounding complexity

e Moreover we note that: g(0,L) < G(0, L)

GO0,L) =Y (“T%—D,j c
i=1 i

i

WA YUY
i=1 T i=1

i

L)

LU+ Y. (T -D)U,

i=1

Limiting L

G(0,L) = LU + Z”:(T,. -D)U,

i=1

G(0, L)
2 (L,-D)U,
Lo = 20, L)
1-U

forL>L"
2(0,L) <G(O,L) < L
> [

38

Processor Demand Test

U< 1
VLeD, g(0,L)< L

D = {d,|d, < min (H, L")}
H=Ilem(T, ..., T,)

>(-D)U,
i=1
1-U

*

L =

Handling shared
resources

Problems caused by
mutual exclusion

Priority Inversion

A high priority task is blocked by a lower-
priority task a for an unbounded interval of
time.

Deadline Inversion

A task with short deadline is blocked by a
task with longer deadline a for an unbounded
interval of time.

Conflict on a critical section

B

T i i -
T2 _ l
T3 L | m l

Solution

Introduce a concurrency control protocol for

accessing critical sections. »

Fixed Priority Protocols

¢ Non Preemptive Protocol (NPP)
o Highest Locker Priority (HLP)

¢ Priority Inheritance Protocol (PIP)
e Priority Ceiling Protocol (PCP)

¢ Immediate Priority Ceiling (IPC)

43

Dynamic Priority Protocols

e Dynamic Priority Inheritance (DIP)
e Dynamic Priority Ceiling (DPC)
o Stack Resource Policy (SRP)

44

Stack Resource Policy [Backer 90]

o |t works both with fixed and dynamic
priority

o |t limits blocking to 1 critical section
e |t prevents deadlock

e |t supports multi-unit resources

e |t allows stack sharing

e |tis easy to implement

45

Stack Resource Policy [Backer 90]

e For each resource R;: Ny
—
= Maximum units: N R, I:\:-
= Available units: n, ﬁ/—n
k

¢ For each task 1; the system keeps:

= its resource requirements: H(Ry)

= a priority p;: RM‘P,- o« l/T,-‘ EDF‘P, o 1/“’“

= a static preemption level:
46

Stack Resource Policy [Backer 90]

Resource ceiling

C.(n) = max{;rj in, <,uj.(Rk)}

s

System ceiling |II = mliix{Ck(nk)}

SRP Rule

A job cannot preempt until
p; is the highest and =; > I

47

Example

48

SRP: Notes

e Blocking always occurs at preemption
time

e A task never blocks on a wait primitive
(semaphore queuee are not needed)

e Semaphores are still needed to update
the system ceiling

e Early blocking allows stack sharing

49

SRP: Stack sharing

Classical blocking stack

T HW’\

)

Early blocking stack

SRP: Stack sharing

o If tasks can be grouped in M subsets with the
same preemption level, then tasks within a
group cannot preempt each other.

e Then the stack size is the sum of the stack
memory needed by M tasks.

o |f we have 100 tasks with 10 preemption levels,
and each task requires 10 Kb of stack, then
1 Mb without SRP

Stack size =
100 Kb under SRP (90% less)

51

Guarantee with resource
constraints

e Select a scheduling algorithm (e.g., EDF)
and a resource access protocol (e.g., SRP).

e Compute the maximum blocking times
(B,) for each task.

e Perform the guarantee test including the
blocking terms.

Guarantee with RM

preemption
I by HP tasks
Ti .
blocking by
LP tasks

vi 3%, GFB o puy)
T,

EDF Guarantee (D,=T,)

preemption
I by HP tasks
Ti [
blocking by
LP tasks

EDF Guarantee: PD test (D,

T1| |]||] L] |

<T)

Tk

TiL#|—
T

n

EDF Guarantee: PD test (D, <T,)

= /L D <IL<max(D,L)
U<1 ap g(0L) ¢

2(0,L) =B+ LL_%JFTICJ C,
k=1 k

B+3(L-D)U,

L* — i=1
' 1-U

Handing Hybrid Task Sets

Periodic tasks
+

Aperiodic tasks

Handling Criticality
o Aperiodic tasks with HARD deadlines must

be guaranteed under worst-case conditions.

e Off-line guarantee is only possible if we can
bound interarrival times (sporadic tasks).

e Hence sporadic tasks can be guaranteed as
periodic tasks with C;= WCET; and T, = MIT;

WCET Worst-Case Execution Time
MIT = Minimum Interarrival Time

SOFT aperiodic tasks

e Aperiodic tasks with SOFT deadlines
should be executed as soon as possible,
but without jeopardizing HARD tasks.

o We may be interested in

— minimizing the average response time

— performing an on-line guarantee

Periodic Scheduling

(EDF)
e e
C,=3
L)
ape() ‘TB 6 12

60

Immediate service

o N

8
c,=3

L)
6
3 \'\ deadline miss
ape h
T

0
T
0 2 4 6 10 12

‘ Response Time =3 ‘

61

Background service

C,=3
T
0 3 6 12
we ! - —
0 2 4 6 8 10 12

‘ Response Time = 10 ‘

62

Aperiodic Servers

e A server is a kernel activity aimed at
controlling the execution of aperiodic tasks.

e Normally, a server is a periodic task having
two parameters:
{ C, capacity (or budget)

s
T, server period

To preserve periodic tasks, no more than C;
units must be executed every period T,

o,

Aperiodic service queue

aperiodic
SOFT tasks —~ | | | | [Server

Service queue

periodic/sporadic

HARD tasks — > .. . @

READY queue

e The server is scheduled as any periodic task.
e Priority ties are broken in favor of the server.
e Aperiodic tasks can be selected using an arbitrary

queueing discipline. “

Fixed-priority Servers

e Polling Server
e Deferrable Server
e Sporadic Server

e Slack Stealer

65

Dynamic-priority Servers

e Dynamic Polling Server

e Dynamic Sporadic Server
e Total Bandwidth Server

e Tunable Bandwidth Server

e Constant Bandwidth Server

66

Selecting the most suitable
service mechanism

performance optimal server
TBS Tunable Bandwidth Server
mSS

m DS
mPS

mBS

overhead

It depends on the price (overhead) we
want to pay to reduce task response times

67

Total Bandwidth Server (TBS)

e [t is a dynamic priority server, used along
with EDF.

e Each aperiodic request is assigned a deadline
so that the server demand does not exceed a
given bandwidth U .

e Aperiodic jobs are inserted in the ready queue
and scheduled together with the HARD tasks.

68

The TBS mechanism

aperiodic Deadline
tasks assignment

periodic/sporadic

tasks — ™ . .. @

READY queue

e Deadlines ties are broken in favor of the server.

e Periodic tasks are guaranteed if and only if

69

Deadline assignment rule

e Deadline has to be assigned not to jeopardize
periodic tasks.

e A safe relative deadline is equal to the minimum
period that can be assigned to a new periodic task
with utilization Ug

U, =C/T, = T,=d -r=C/U

e Hence, the absolute deadline can be set as:

de= 1, + C/AUN

70

Deadline assignment rule

C,/U, C,/U,

R B |

Bl 53 d dy

e To keep track of the bandwidth assigned to
previous jobs, d, must be computed as:

d, = max (1, d) + G/ U

71

EDF + TBS schedule

C =1

i

0 5 1 6 12
ape T T — i] i
0 I 2 I 4 6 8 d] 10 12 d2

U, = 1-U, = 14
d =1,+C/U, = 1+2:4=09
d, = max(r,,d)+C,/U;, =9+1-4 =13

72

Improving TBS

e What’s the minimum deadline that can be
assigned to an aperiodic job?

C =1

1
Tlh”h“l‘-l‘
c,=3 4 8
TszLmM
0 5 6 12
ape T ’—‘
0r12 4 6 8d110 12

73

Improving TBS

o If we freeze the schedule and advance d, to 7, no
task misses its deadline, but the schedule is not EDF:

c =1
Tlh”hwl‘nl‘
c,-3 4 8
TszLmb
0 5 6 T 12
ape T
L \
0r12 4 6 8d110 12

Feasible schedule # EDF
74

Improving TBS

e However, since EDF is optimal, the schedule
produced by EDF is also feasible:

C =1

1
pm | pm | em |
c,=3 4 8
T2\—“—ﬁl—m—ﬁ‘ﬁ
02 6 12
apeT !—\i

75

Improving TBS

e We can now apply the same argument, and
advance the deadline to t = 6:

c =1
Tlhwl‘-l‘-l‘
c,=3 4 8
TszLmM
0 Tz 12
ape\ T T T T ' T T T T
0 I 2 4 6 8 dl 10 12

76

Improving TBS
e We can now apply the same argument, and
advance the deadline to t = 6:

C =1

em | pm | pm |

77

Improving TBS

e Clearly, advancing the deadline now does not
produce any enhancement in the response time:

C =1

1

em | pm | pm |
c,-3 4 8

O e — |

78

Computing the deadline

e In general, the new deadline has to be set to
the finishing time of the current job:

d} =max(r,,d;)
;=1 = f.d})

a

w_] =

K&

79

Computing the deadline

e Computing the actual finishing time is
difficult, so we can compute an upper bound:

Jo =Co+ 1, 1)

fi =C+1,(n.d) 2 f;

a

w | =

— s s
i dy

80

Periodic Interference

Up=12+13 =56 [C =2
Us=1-U, = 1/6 d =3+2/U, = 15

1,(t,d}) =1,@d)+1,(t,d))

81

Computing interference

0 4 1 16 20
T2 Lﬁ “““““ IR I —

0 5 6 12 18
ape T

3 di
s — .
1, (t, dk)= z c’) next(t) = next release time
7; active of task T after t

- 5 | dy —next,(t
L6d) =Y LkT()J C
i=1 i

i

82

The Optimal Server

d,t’ =max(r,,d}) compute the initial
Ge=(= deadline with TBS
I
> [=C +1 (r.,d}
fk_ﬂ gy (i d,) advance deadline
dy” = fi
ape T ’—J
- "s T
1p fk dk 83

Two interesting results
oIf (d'=d;) then f=1;

It means that the estimate is exact

o If (d}:ﬂ :d;) then 7}(5 :fksmin

It means that the algorithm minimizes
the aperiodic response time

84

Complexity

d} =max(r,,d})) | O(1)

s=10
I n tasks
= N steps
[\ =C,+1,(r,d})| OM)
d;“ — 7;: O(Nn)
pseudo-

polynomial

85

Tunable Bandwidth Server TB(K)

K = max number of steps

l
d{ =max(r,,d;) | O(l)
s=0
I
> 7o=C, +1 (r,,d})| Om
Ll O(Kn)
dk = fk polynomial
I
Wd;“ =d})orR (n =K)>> EXIT
TB(0) = TBS TB() = TB* 5

Tuning performance vs.

overhead
performance
K= TB*
optimal server
K=0
TBS
overhead

87

Aperiodic responsiveness

Avg. Response Time Up =0.85
1 TB(0)
9
8
TB(1)
7
6
TB(3)
5
4 TB(5)
3 TB*
2 —
e e
0
0.1 02 03 04 05 0.6 0.7 038 09

Relative Aperiodic Load: p,/(1-Up) 88

Seongsoo Hong
Real-Time Operating Systems Lab.

Seoul National University, Korea
http://redwood.snu.ac.kr

* Introduce preemption threshold scheduling (PTS)
«+ Briefly discuss the benefits PTS offers

<+ Explain how to assign priorities and preemption
thresholds to tasks

“* Pre-runtime scheduling
» Cyclic executive scheduling
* Pre-runtime scheduling

<+ Priority Scheduling
= Static priority scheduling
» Based on single fixed priority per task
* Mostly preemptive scheduling
= Dynamic priority scheduling
» Based on dynamically changing priority

&
%
e

» Dual priority preemptive scheduling
* Preemption threshold is just the run-time priority of a task

< PTS model

» Extension of fixed priority scheduling

» Each task has
» Aregular priority
» The priority at which the task is queued and released.
* A preemption threshold
* Once a task gets the CPU, its priority is set to this value.

priority
preemption

task threshold

(Priority-Ordered) Ready queue

? 2
5 3 -~

eduling are two special cases of preemption
threshold scheduling.

Preemption threshold
scheduling

Non-preemptive
scheduling

~_ | Fully preemptive
scheduling

the highest
system priority

its priority

If each task’s
preemption threshold =

.

(1) Increase of schedulability

= Superior to both preemptive scheduling and non-preemptive
scheduling

(2) Reduced run-time (context switch) overhead
* Due to elimination of unnecessary preemption

(3) Reduction of the number of tasks

» A non-preemptive group (will be covered in Lecture 2)

» Consists of tasks in which every pair is mutually non-
preemptive

non-preemptive
group ~——.

<+ Algorithm 1:
= Assign preemption thresholds alone
* |nput:

* An unschedulable task set where tasks have pre-assigned
priorities.

» Purpose:

+ To make all tasks schedulable by assigning preemption
thresholds.

<+ Algorithm 2:
= Assign priorities alone
* |nput:
» A task set where tasks have no assigned priorities or PTs.

» Purpose:

» To assign priorities to tasks under preemptive scheduling
hoping that the task set will be schedulable by assigning PTs
later

<+ Algorithm 3:
» Assign both priorities and PTs together
* |nput:
» A task set where tasks have no assigned priorities and PTs.
» Purpose:

* To make all tasks schedulable by assigning both PTs and
priorities.

= Algorithm 2 (Assign Priorities) + Algorithm 1 (Assign PTs)

10

<+ Algorithm 4
» Assign maximum PTs
* |nput:
» A task set where tasks have assigned priorities and PTs.
» Purpose:

» To reduce the number of context switches by assigning
maximum PTs.

< A set of N tasks

» T={17, 7y..., Ty}

<+ Timing attributes of

= Execution time: C;

= Period: T,

* Deadline: D,

<+ Scheduling attributes of z;

* Priority: 7, € [1, ..., N]

* Preemption threshold: y; € [z, ..., N]

<+ WCRT: Worst-Case Response Time

» The calculation algorithm for this will be covered in lecture 3.

D, <T,
* No busy period analysis for simplicity (no loss of generality)

<+ Optimal algorithm
<+ Assumes that task priorities are already known

<+ Algorithmic steps
» Start from the lowest priority task
» [nitially, all tasks have preemption thresholds the same as
their priorities
» Calculate worst-case response time of task /.
= While it is not schedulable, increase its PT value.

%,
EC
N

Start from the lowest prionty task

(1) for(i:==1ton)~ ¢ initially, all tasks have their PTs that

() y, = m,; I, B ootttk
3) R, = WCRT(z;, v,); // Calculate worst-case response time of
4 ‘while (R, > D,) do // while not schedulable

®)) v, ++ ; //increase threshold

(6) if vy, > n then return FAIL; // system not schedulable.
@ . R=WCRT(z,);

®) N ASSIGN @aCh task the lowest preemption

(9) end | threshold that will make the task schedulable.

(10) return SUCCESS

15

<+ Extension of Audsley’s algorithm
<+ Audsley’s algorithm
= An optimal priority ordering algorithm
» Basic idea

* A lower priority task’s schedulability depends on higher priority
task set only (not their priority ordering)

» Two parts
» Sorted: lower n priority tasks
* Unsorted: the remaining higher priority tasks
= Algorithmic steps: O(N?)
+ Initially, all tasks are unsorted
» Schedulability tests for tasks in the unsorted part
+ If okay, lowest priority assigned and it becomes sorted
* If not okay, keep unsorted and test another one

16

<+ Adopt Audsley’s algorithm

unsorted sorted

higher
[| priority

' lower
priority

<+ A heuristic and greedy approach that extends
Audsleys’s algorithm

= Exploits a simple heuristic value h to select the next task for
priority assignment

» For each candidate priority,

* (1) Compute h; for each task z, in the unsorted list and
* (2) Move a task with the highest h to sorted list.

unsorted sorted

Calculate h . Atask with
for eachtask the highesth

<+ Heuristic value h;, for each task

= After schedulability test of task
+ If okay, h; = the maximum blocking that a task can tolerate

» Task 7z, may not be schedulable after PT assignment since
a lower priority may cause blocking.
 If not, h; = D, — R; (always a minus value)
* ltis still possible for task z, to be schedulable since it can
be given a higher PT.

* In case there are no tasks for the first category, we want to
choose the task that needs the smallest reduction in
interference from higher priority tasks.

2
b B
e

(1) UnSorted: =T, Sorted: = {};
(2) forpri:=1toNdo e 1@ MAXimum blocking that a
3) foreach 7, € UnSorted do - faskcan tolerate
4 T, =pri; // tentative a@:@’ig;é%?%zgf
(5 R, = WCRT(z); / compute ;ﬂg,g’??«f:«zczigg time
(©6) if R,=>D,thenh, := DR, elseh, : = GetBlockingLimit(7);
(7) 70, .= N //reset, to allow computing heuristic value for other tasks
(8) end
// Select the task with the largest heuristic value next
9 7, := MaxHeuristicVal(UnSorted);
(10) 70, = pri; Sorted := Sorted+{ 7, }; UnSorted := UnSorted — 1,
(11) end

“» Two-step algorithm
1. Assign priorities [algorithm 2]
2. And then assign preemption thresholds [algorithm 1]

< Non-optimal algorithm

21

<+ Considers one task at a time,
= Starts from the highest priority task

» Tries to assign it the largest PT value that will still keep the
system schedulable.

* Check the WCRT of the affected task to ensure that the system
stays schedulable.

<+ Only need to go through the list of tasks once.

» By going from highest priority task to lowest priority task

* Ensures that any change in the PT assignment in later (lower
priority) tasks cannot increase the assignment of a former
(higher priority) task.

22

%,
EC
N

| Start from the highest priority task

/ Assumes that task priovities ay? fixed, and
// a set of feasible preemptiop thresholds are assigned.
(1) for(i:=ndowntol

2 while (schedulable == TRUE) && (y;,<n)
3) v, ¥=1; 7/ try a larger value
@) Let 7; be the task such that 7z, =7,

/W Calculate the worst-case response time of task j

/ and compare it with deadline

®)] R,:= WCRT(1));

(6) if (R, 2 D;) then schedulable := FALSE ; y; -= 1; endif
@) end

® schedulable ;= TRUE

9) end

23

“» Preemption threshold scheduling
» Eliminates unnecessary preemption as much as possible

<+ Benefits of preemption threshold scheduling

» |ncrease schedulability over both preemptive and non-
preemptive scheduling

» Reduce run-time (context switch) overhead
» Reduce the number of tasks

+ Priority and preemption threshold assignment
algorithms
= Assign either priorities or preemption thresholds
= Assign both priorities and preemption thresholds
= Assign maximum preemption thresholds

24

Seongsoo Hong
Real-Time Operating Systems Lab.

Seoul National University, Korea
http://redwood.snu.ac.kr

<+ Overview and classify SW design methodologies
« Introduce scalability problem
** Introduce scalable real-time system design with PTS

<+ Have evolved since 1960's.

«» Various strategies are classified into two types:
» (1) Task-based
= (2) Object-oriented

«» Task-based

» Put an emphasis on deriving tasks from the structured
analysis of given requirement specifications.

» (ex) DARTS (Design Approach for Real-Time Systems),
HRT-HOOD (Hard Real-time Hierarchical Object Oriented
Design)

Tﬁ;i' Resume
u Process \——————
Generate .
Robot . Axis
Panel Command /—————— ~\c ogxn;sén d Axis Output
Output Stop Block
Axis

» Object-oriented

* View a real-time system as a collection of concurrent and
active objects communicating with each other via messages.

» Focus on capturing the high-level abstract features of a
system

» (ex) ROOM (Real-Time Object-Oriented Modeling), ROPES
(Rapid Object-Oriented Process for Embedded Systems),
OCTOPUS

Sensor

ControlPanel RobotController Actuator

AxisMotor

\&

o

» Task-based SW design methodologies

» Work well only when the following conditions are met.
1. A system is decomposed into a small number of tasks.
2. Each task is of a relatively coarse granularity.

» Are largely focused on task cohesion criteria.

* Object-oriented SW design methodologies

» Usually incur a large number of tasks when the
implementation is automatically generated from design.

» Many commercial object-oriented CASE tools map each
object to a separate task.

<+ Large number of tasks causes a scalability problem.

» Run-time context switching overhead
(performance degradation)

= Large memory requirements
(task stacks)

<+ Concurrent real-time system design always

encounters the scalability problem.

Initialize

y
4\ Wait for Event /

y

Process Event

Terminate

| Events are
| retrieved from a
| priority queue.

By calling an
| appropriate function

Iterative Server Concurrent Server

No concurrency Full concurrency

Fully non-preemptive request service Fully preemptive request service

ololo ololo

Strong points: Strong points:
» Small overhead » Good response times
* No scalability problem for higher priority tasks

non-preemplive
group

<* A non-preemptive group
» Consists of tasks that are mutually non-preemptive.

<+ Notations
= Atask: 7,
= Priority of task z;: 7,
* Preemption threshold of task z;: y,

“+ Two tasks 7 and z; are mutually non-preemptive
= If 7, cannot preempt z and z; cannot preempt 7,
" If ;,<y,and 7z, <y,

11

E -
) .

» A task set where all tasks have assigned priorities and
preemption thresholds.

«* Purpose:

» Generate minimum number of non-preemptive groups
<+ Assumption:

* Foreachtask z, > 7.

12

<+ An example

task
Input task set -
e priority .
g PT Sorted task list
..... N ~ 5 v
Sort the tasks in /g | remove the .5
increasing order of first task
their PTs

Group 1

908

— |4 5 » 5 > >
removetasks [\ 4 / 5 remove the 5 remove tasks remove the
whose priorities -—— first task whose priorities ~ first task representatives
are not larger are not larger
than 3 than 4

7
e
//y//

(1) mngroups =0 ;

// Sort the tasks by vy, in increasing order
(2) L := SortTasksbyPreemptionThreshold(TaskSet) ;
(3) while (L '=NULL) do
/1 Find the task with the smallest value of vy,

4) 1, := Head(L); G[ngroups] = {t,}; L =L —1,;

) foreach 7, € L do

(6) if (m,<v,)

@) then G[ngroups] = Gngroups] + {v;}; L= L —1;;
(8) endif

) end

(10) ngroups := ngroups + 1;

(11)end

*+ |s this algorithm optimal? Yes.

* No other partitioning of non-preemptive groups can be done
with a smaller number of groups.

* Proof sketch

» Consider any two groups formed by the algorithm and their two
representatives 7, and z.

» Since a representative is compared with all remaining tasks in
the sorted list, it must be the case 7, and z; are not mutually
non-preemptive.

» Therefore, they must be in separate non-preemptive groups.

» Since it is true for each pair of representative group members, it
is not possible to have a solution with fewer groups.

« Utilization: 87.89%

; v 1« Breakdown utilization:
3 500 412 I8 > - preemptive: 97.6 %
4 2000 8.25 4 21 - with threshold: 99.2 %
5 625 2.06 16 9

6 1870 2.06 5 21

7 1000 2.06 19 59

8 10000 99.32

9 2000 45.82

10 2000 425.82 21 tasks

1 10000 58.52

12 1000 83.02 > 3tasks
13 100 24.62

14 1000 63.7

15 500 5.32

16 2000 32.02

17 1000 22.52

18 2000 32.02

19 1870 51.5

20 625 49.8

21 36000 9.42

[Tas /%//;//’///j// d | WCET // ThreshCiId | Utilization: 85.01%

1 * Breakdown utilization:

2 25 5 17 17 - preemptive: 94.4 %

3 40 1 15 17 - o
4 50 3 13 17 - non-preemptive: 93.8 %
5 50 5 14 17 - with threshold: 94.4 %
6 59 8 12 17

7 80 9 10 17

8 80 2 11 17 17 tasks

9 100 5 8 17 - 1 task

10 200 3 3 17

1 200 1 4 17

12 200 1 5 17

13 200 3 6 17

14 200 1 7 17

15 200 3 8 17

16 1000 1 1 17

17 1000 1 2 17

17

.

“* Members in each non-preemptive group are mapped
to a single thread.

<+ The priority of a thread is set to
(1) If the thread is not executing any tasks,
* The maximum priority of the arrived member tasks
(2) Otherwise: if the thread is executing a member task,
* PT of the executing task

18

task
e priority
PT

arrive start complete arrive complete\ §Thread priority

arrive start complete

T3 ¢_m
arrive st‘.art complete
[z i

arrive start

<+ SW design methodologies are largely classified into
two types:

» (1) Task-based
* Focused on task structuring.

» (2) Object-oriented based
* Focused on high level system structuring.
<+ Concurrent real-time system design always
encounters the scalability problem.

<» PTS is good for scalable real-time system design.

» Partitioning tasks into non-preemptive group can significantly
reduce the number of tasks.

20

Seongsoo Hong
Real-Time Operating Systems Lab.

Seoul National University, Korea
http://redwood.snu.ac.kr

\&

o

“* Runtime for scheduling preemptive fixed priority
periodic tasks

<+ Worst-case response time (WCRT) analysis with
Gantt chart
» An Example Task Set
* Non-Preemptive Scheduling
» Fully Preemptive Scheduling
* Preemption Threshold Scheduling

<+ WCRT analysis algorithms

e

Dispatcher

Tp Cy=20, Ty= 100
7,: C; =30, T, = 150

Run Queue

Delay Queue

Time— 15
‘ 100 Handler

<+ An Example Task Set

<» Non-Preemptive Scheduling

<+ Fully Preemptive Scheduling

» Preemption Threshold Scheduling

<+ Atask set that is

» Not schedulable both with non-preemptive scheduling and

preemptive scheduling

= But schedulable with preemption threshold scheduling

7 3 C,=20 T, =170 D, =50
z, 2 C,=20 T,=80 D,=80
7, 1 C,=35 T, =200 D, =100

* Larger value denotes higher priority.

wwwwwww

W Deadine miss

(C,=20, T/=70, D,=50) T g
Priority = 3 ‘ I

(C,=20, T,=80, D,=80) 7,
Priority = 2

o)
=

(C5=35, =200, D&=100) 7; | 75

Priority = 1

|1,

~——

0 0 20 30 40 50 60 70

R Y i ——

||
I I
80 90 100110120

T —» time

(C;=20, T,=70, D,=50) T,

Priority = 3

(C,=20, T,=80, D,=80) 7,
Priority = 2

(C5=35, T/200, Ds~100) 7,
Priority = 1

»
|

120

time

(C;=20, T,=70, D;=50) 73
Priority = 3
Preemption Threshold = 3
(C,=20, T,=80, D,=80) 7,
Priority = 2
Preemption Threshold = 3
(C5=35, T5/200, Ds~100) T,
Priority = 1
Preemption Threshold = 2

S e

~ +—-

o +—-
S

“* Notations

<+ WCRT Analysis of Fully Preemptive Scheduling

<» WCRT Analysis of Non-Preemptive Scheduling

<> WCRT Analysis of Preemption Threshold Scheduling

<+ A set of N tasks
v T={17, 7p..., Ty}
<+ Timing attributes of z,
= Execution time: C,
= Period: 7,
» Deadline: D,
» Scheduling attributes of z,
= Priority: 7, € [1, ..., N]
* Preemption threshold: y; € [z, ..., N]

& Assumption
= D,<T,
* No busy period analysis for simplicity (no loss of generality)

R™=C+) R 1c

l J
Vj,ﬂ'j>7l', Tj

Interference time from

higher priority tasks

11

éﬁf@@?ﬁfﬁg z’im@/ B = max C.
. 1 Vj,ﬁj <, J

Start time Sl,”+1 =B + Z 1+ ?l .C. " This equation also applies to

J - preemptive scheduling.

. >

Finish time| F; =8, +C, | To include task arrivals up to S,

Once a task gets CPU, it is not preempled.

< Start time S; and finish time F, of 7. should be considered separately.
= Why?: Interfering tasks changes once z;gets CPU.

B, = max C,

Yy 2>

S =B + Z 1+

V7>
i S,
E‘n+ =5,+C + Z e °Cj
W;/}W). >y j TJ
R =F, " Interference time o Interference time
- before starting after starting

.

<+ Schedulability analysis of PTS
» Blocking due to PTS occurs only before a task starts its
execution.
» Blocking due to PTS occurs only once by one task.
» Blocking duration of task A due to PTS is the maximum of
the worst-case execution times of such tasks
» whose priorities are lower than the priority of task A and

» whose preemption thresholds are higher than the priority of
task A.

» Start time and finish time should be considered separately.

» Since the interfering task set is changed before and after a task
starts its execution.

Seongsoo Hong
Real-Time Operating Systems Lab.

Seoul National University, Korea
http://redwood.snu.ac.kr

<+ Task model

** Priority inversion problem

<+ Preventing the priority inversion problem

“» Preventing deadlock and bounding blocking delay

<+ Minimizing context switches and improving blocking
delay bound

<+ Performance evaluation

@
L
//////

T A task

T, The period of task 7,

The worst-case execution time of task 7,

The fixed-priority of task 7

7 The preemption threshold of task 7,

« We denote a higher priority with a larger value.
» Assumption

— for each task z, 5 > .

D; The effective priority of task z;

“+ Effective Priority

» The task priority used by the kernel scheduler for selecting a
task to be dispatched.

priority
preemption

task threshold CPU

Priority-Ordered Ready queue

1 2 2
5 3 -

- —» effective priority

M, A mutex (binary semaphore)

“* No voluntary blocking

» Tasks do not suspend themselves, say for I/O operations.
«» Properly nested critical sections

" (ex)

7;={.. PM), ..., P (\%&’JV(%)’ e VM), p@%i;%ﬁ%iii?ﬁ

7.={., P(M), ..., P(M), ..., V(M), ..., V(M,), ™% %mggggfé%;fgm

(attempt to lock A1)
preempt 7 blocked by z; uncontrolled
g ' priority inversion
T | Y :

preempt z;

lock M,

v

(attempt to lock A1})

n<TSY,

preempt 7, | 2OKSABY 7% uncontronied
T Y Y 1 priority inversion
! bossannasnns
E preempt 7;
7 !
J
i Y
1
1
P3

v

~N—— - -

s S A,
EN

1 t2 t3

(a) Case 1.

5%

///%

preempt z;

(attempt to lock M)
blocked by 7, Y

' uncontrofied
| Y ! pricyity inversion
Lusus 2

lock M, :

preempt 7;

v

*» Basic priority inheritance protocol (BPI) under PTS
= Basic idea: let the blocking task inherit the effective priority of the

blocked task.

= Solves priority inversion problem through push-through blocking

Ty

Y < 7y < < A<y,

preempt 7;

(attempt to lock A1})
blocked by 7;

f

arri PTS blocking

push-through
blocking

unlock M,

<+ P1. Inheriting effective priorities.

* When task 7, blocks task 7, p, is set as p,,.
» Effective priority inheritance is transitive.
- Iftask 7; blocks 7;,and 7, blocks 7., p, is set as p,, via p,,.
<+ P2. Updating effective priorities.
= When task 7, exits from a critical section, it updates p, as
follows.

+ If the critical section is the outermost one, p, is updated as ;.

* Otherwise, p, is updated as max(p, p, p)) such that z;, 7,,
7, are the tasks blocked through mutexes that are still locked by
task 7; after 7; exits from the critical section.

“* Four Types of blocking
= Direct blocking
* Ensures the consistency of shared data.
= Push-through blocking
* Prevents indefinite blocking due to priority inversion

= Transitive blocking

* When task 7, is blocked by task 7;, and task z;,in turn is
blocked by another task 7.

= PTS blocking

* When task 7 is blocked by 7. where 7z < zbut y, > 7.

10

«— direct blocking
<=3 transitive blocking

(attempt to lock A1)
blocked by 7;, lock MM,
Y

: lock unlock |
(attempt to lock A1)) M, i i unlock
blocked by 7, M,

11

“+ Long blocking delay due to
called chained blocking)

» Occurs when a task is repeatedly blocked by more than one
task.

= A transitive blocking always incurs a blocking chain.

* Not a form of blocking, but refers to a situation where a task
is blocked more than once.

ins (also

locks

» Occurs when multiple tasks try to access nested mutexes in
a circular manner.

12

(attempt to lock M)

«s direct blocking (attempt to lock M,) blocked by 7, lock M, unlock M,

blocked by 7, lock
Y

Ty |

preempt 7, a blocking chain
1

. ‘ unlock A,
1 1

preempt 7; lock M,

a blocking chain

:
%
:
1
:
:
i
1
1
:
:
:
:
:
:

e il ittt sttt s Ratataks btttk

|
Ig

~N————— e e e, — -

W
OTF_
~.

(attempt to lock M)

preempt z; lock M, blocked by 7;
Y
TH
lock M, i : (attempt to lock M)
i ! . blocked by 7,
7 i
i ! : - : :* ******* » deadiock!
AN N S N N A
4 4) I3 1 I

“+ Priority ceiling protocol (PCP)
» Extension of BPI

= Additional condition for allowing a task to start a new critical
section: only if all mutexes that the task, as well as all higher
priority tasks, may use are not locked.

» (ex) Deadlock prevention in PCP

try to lock A,
preempt 7, (brl)écked by Ti) lock M, complete
¥ ¥ Y ¥
TH [[
lock M, Ioik M, inECK ! unlock 1, complete
2 ' ¥

15

<+ Ceiling of a mutex

» The priority of the highest priority task that may use the
mutex

<+ Additional locking condition

» A task rcan start a new critical section only if z’s priority is

higher than all ceilings of all the mutexes locked by tasks
other than z.

16

<+ Ceiling of a mutex

» The priority of the highes? priority task that may use the
mutex

<+ Additional-iocking condition

= A task rcan start a new critical section only if z’sipriority 's
higher than all ceilings-of-aii the mutexes locked by tasks
other-than z.

*» Which of priority and preemption threshold should be
used under PTS?
- Both can be used!
PC-PCP (PCP with priority ceilings) and
PTC-PCP (PCP with preemption threshold ceilings)

17

= PCP solves problems (deadlock and blocking chains) of BPI
through ceiling blocking

unlock
try to lock M. lock M, M
preempt 7, (b%cked by Ti) lock M, * ! ¢I complete
/ Y ceiling blocking Y
Ty
lock M, unlock | unloc:k i complete
M, | '

(53 E

18

< PTC-PCP leads unn

| The preemption thresholds of 7;, and 7, are equal.

{attempt to lock A4}

lock M; unlock M, . blocked by 7,
arrive complete arrive l complete
P % | : b |
' ' : : i | unnscessary blocking
' ' ! ! complete v H ! . \ !
1
lock M,,} ' i unlock M, lock MME i unlock M, 1 ' complete
1 1 1 - H
; i i i y 7 i ‘ i I
1 ! 1
Lo I R Y R R A
H]] i ! ! 1] ! ! ' H i i ! '
1 1 1 1 ! ! 1 1 ! ! ! ! 1 !
| | | | | |) Ly | ! | | | | ! Ly
| l I | 1 | J > | | | | | | J >
%y 5) I 4 s I Z % 4 Iy Lo ks ls &
(1) PC-PCP (2) PTC-PCP

<+ Unnecessary blocking in PTC-PCP

= Does not contribute to the prevention of deadlock and blocking
chains

*» The policy of maximum preemption threshold assignment

= Commonly used in PTS
* To reduce as many context switches as possible.
- Causes the unnecessary blocking of PTC-PCP to be very frequent.

- PC-PCP is better than PTC-PCP as PCP under PTS.

~» Immediate inheritance protocol (lIP)

» Shifting ahead the time point of applying the additional
condition in PCP

* PCP: the point of starting a new critical section >
IIP: the point of starting its execution

» (Ex) Preventing deadlock in IIP

arrive:

blrzked by 7, start lock M, logk b, ‘T ulock omplete

. :lg ﬁfﬁgii i}?@gxé{iﬁg; II %////////% i)
. ock a1, unlock ! : i i1 complete

. : unlock ,E :: .i EI : |
A

«+ Celling of a mutex:
» The highest priority of the tasks that may use the mutex
“» Immediate ceiling inheritance
= The effective priority of task ris set to the highest ceiling of
the mutexes that rlocks currently.

** Which of priority and preemption threshold should be
used under PTS?

- Both can be used:
PC-IIP and PTC-IIP

= PC-IIP always performs better than PTC-IIP.

* For any task 7;, the set of mutexes that induce ceiling blocking in
PC-IIP is a subset of that in PTC-IIP.

| The preemption thresholds of 7,, and z, are equal.

. lock M; unlock M, arrive lock M, unlock M’complete
arrive complete blocked by 1
\i T. * l 4
1 : I
: : : : e ry blocki !
| | : i complete 7, E éﬁﬁﬁ}@&@gﬁﬁfy el isgg :
1 1 ! I 1 1 !
lock MME E E u?lock My, lock M, unlck M, i E i compJIete
\ \ 1 1 \ : ‘ 1 1 ! y
I 1 T, - 1 1
, i : CCEEE :
: | i i ; : i i i i | | : : ! :
H 1 1 1 ! ! 1 1 | | 1 1 ! ! H 1
A R R N N R I I T S R B
|' I 1 T 1 I ! > | 1 | 1 1 T T —
ty 4 1 I 4 £s Is Z iz 4 L 1 4 I ls 4

(1) PC-IIP

« PC-IIP leads to fewer context switches than PC-PCP in the worst case.

(attempt to lock M) arrive lock M unlock M

blocked by 7, complete blocked by r; complete

Y)

arrive

m"l

o ----

unlock M complete lock A ‘unlock M

|]
|
|

complete

o
o
o}
<

[

~—
-

[

v

R e

>

S U

F e
“

(%Y
~N————— — —
~N———————

~——————
X

1
1
i
|
1
t

2

~N———————

~N— -
~

~
>

1
|
i
|
!
t

~Ne—t———— -

Nt —————
EN

N ———————
EN

w

PR

(1) PC-PCP (2) PC-lIP

Sl B

“» PC-IIP improves blocking delay bound over PC-PCP.

= PC-PCP: 7 is blocked by both 7,,and z;.
* PC-IIP: 7 is blocked by only one of 7;,and z;.

{attempt to lock M)

e blocked by 7 arrive
arrive Y lock M, unlock M; blocked by 1,

lock 2, unlock A,

blocked by r, Y
i 1 'I mt i arrive
arive | cémpliate E ! aa@ci%a by i»f,_ : E E
Y H y o E i 7, . v E E
lock M, E E E iunlockMI. i lock M, E i hT;Ck i
L
b, 4, b, ty 1, i Loob Lo it :
(1) PC-PCP (2) PC-IIP

“+ In PC-PCP, a task can be blocked twice.

= Once before it starts its execution
= Once after it starts its execution when it tries to lock a mutex

< In PC-IIP, a task can be blocked only once.

= Once before it starts its execution

*» The worst-case duration of blocking in PC-PCP is longer than that of

PC-IIP.
= |n PC-PCP: PTS blocking duration + Ceiling blocking duration
= |n PC-IIP: Max (PTS blocking duration, Ceiling blocking duration)

< For a task that does not access any shared resource,

= PC-IIP may cause unnecessary blocking.

<+ Experimental setup

«» Performance metrics

<+ Performance results

<> Comparison between PC-PCP and PTC-PCP
“» Comparison between PC-IIP and PTC-IIP

“» Comparison between PC-PCP and PC-IIP

<+ Example task set: Hiker's Buddy application

» Generated a large number of mutex assignments while varying the
number of mutexes up to four.

= For each mutex assignment, assigned maximum possible preemption
thresholds

> Release time variance: 10, run length = 10,000,000

T?; k |(3160r:)sc; \(/:IOCL:ES-I)- D(i%ﬂlsr;e Prio. Thres. Mutexes
1 15000 450 15000 1 1 M, M,
2 2000 135 2000 2 7 M,
3 5000 270 5000 3 3 M,
4 3000 270 1500 4 5 M,
5 10000 225 2000 5 7 M,
6 10000 450 1000 6 6 M,
7 4000 315 700 7 7 M,

“» Maximum blocking times

<» Maximum response times

<* Number of context switches

<» The blocking time of the lowest priority task (task 1) is omitted

since it is always zero.

450

EPC-PCP
400 | BPTC-PCP
O PC-IP

PTC-IIP
350

300

250

200

150 L L
task2 task3 task4 taskb task6 task7

o ~
o o x
Ogq g 3
TS y
O = O o
Ao T
[Q _Plu
%]
S o
o
2 o
S —_—
] T
O
a
<
X
]
g S
5
©
< o
(2]
o]
8
o
S o
g o
S a
-
. 588 8 38§88
[~ O~ NN K
m - - - - ™- *™- - ™
O o o o o o o o o o
S © © © o o o o o o
» - O K O ® - o K O
N N - -

<+ The maximum blocking times of high priority tasks (tasks 4, 5, 6,

and 7) in PC-PCP are shorter than those in PTC-PCP.
= Fortasks 2 and 3, PTC-PCP leads shorter blocking time
* The preemption threshold of task 2 is usually assigned the highest
system priority.
* When task 2 is blocked in PC-PCP, task 3 also can be blocked due to
push-through blocking.

= The response times of all tasks in PC-PCP are not longer than

those in PTC-PCP.

= For lower priority tasks, interference times are the dominant term
composing response times.

<> The number of context switches in PC-PCP is smaller than that
in PTC-PCP.

<+ The maximum blocking times of all tasks in PC-IIP

are not longer than those in PTC-IIP.

“» The maximum response times of all tasks in PC-IIP

are also not longer than those in PTC-IIP.

“» The number of context switches in PTC-IIP is smaller

than that in PC-IIP.

» Any task that is holding a lock on a mutex is less likely to be
preempted in PTC-IIP than PC-IIP since the ceiling value of
each mutex in PTC-IIP is always higher than that of PC-IIP.

“» The number of context switches in PC-IIP is in fact
significantly smaller than that in PC-PCP.

<+ The blocking times of all tasks in PC-IIP are also not
longer than those in PC-PCP.

<+ The response times of higher priority tasks (tasks 5, 6,
and 7) in PC-IIP are shorter than those in PC-IIP.

» The response times of other lower priority tasks in PC-IIP
are the same as or slightly longer than those in PC-PCP.

<+ BPlunder PTS
= Effective priority inheritance

= Prevents effective priority inversion problem through push-through
blocking

<+ PCP under PTS

= Extension of BPI with additional condition for mutex locking

= Prevents deadlock and blocking chains through ceiling blocking
<+ |IP under PTS

= Simplification of PCP with immediate ceiling inheritance

= Minimizes context switches and improves blocking delay bound.

<+ Adoption of priority ceilings rather than the adoption of
preemption threshold ceilings is better.

e

Seongsoo Hong

Real-Time Operating Systems Lab.

Seoul National University, Korea
http://redwood.snu.ac.kr

> UML-RT and its CASE tool
<+ OO0 design and RT system: the problems

<+ Schedulability-aware scenario-based multithreading
of UML-RT models

“+ A case study: soccer robot system

<+ Real-time object-oriented modeling
<+ Capsule: object associated with ports

P
5

“+ Ports: abstracted communication pattern (protocol)
= Models communication path instead of communication flow

Structural modeling

Behavioral modeling |

capsuleA capsuleA
capsuleC

] Capsule B Port

() State —» Transition

C

< CASE tool based on UML-RT

= Visual modeling of event-driven
real-time system

= Automatic generation of code

Tx’ %&A

s
,,,,,,, o
AE BRI

= Vijsual execution of model

/

"
G
e d memtennaing, j - &bg
s, .
=
o han | bl RS : b
% 1 ¢
; z /
% /
z /
»

Gatlpsrs tanlnte Mydobints
Surranilparation
BaguestOparstionDats = BeguestDparationDats
e
SHeguerrDparationDara Paltaeld Myldokinfs Paliatid.
PaguesthoerationDara okl Mviobinty 1o

HeguestDparavionDate Fletde | Operatlsndnde Flebis

wredopinfo CurrenrBrstion Mypdobinto MasuSrarion

W Svaubing CurrgrrSeation = CABRE" THEN
HuopmatDpurationliate Machineld (aSRE

HaruestOpurs tonDats
B bl LatwatProsl

£Hoy.
SENE M todob
SHANAL BaguasOparation JOR
BATA FeguestOperationans
PRIDRITY Garwral
ERDISENL).
Bhydobinty Statw Podslbledtate Oparatiog
W sty sebinty GurrentSation s TABRET THEM

Generate code .
//////

UNIX or Windows NT Platform

RTS: Run-Time System (Library)

RoseRT Toolset
/ Compile.
/ deign)
Executable Executable
Model Model
Emulation RTS Target RTS
icroRTS on UNI (MicroRTS on Arx)

Target
Real-Time Platform

<+ The problem of scalability

» Automated implementation from the OO RT design usually

incurs a large number of tasks.

- The benefits of PTS help increasing scalability.

<+ The problem of task identification

» Inherent discrepancies between objects and tasks
» |tis hard to derive tasks while maximizing real-time

schedulability.

- We need a schedulability-aware mapping method.

Design model Implementation

4 7= i \ 4 tasks (threads) \

mapping

- Single threaded mapping
- Multithreading through
dynamic configuration

- Modification of design model
- Tedious schedulability test

uling tailrel!

<+ Capsule-based multithreading

» Map all messages associated with an object to a single
thread.

* Programmers need to assign priorities both to each
message and each thread.

< Direct multithreading specification in application
models

* Programmers should modify both structural design and
behavioral design models to support multithreading.

+ May degrade the performance of real-time systems by extending
blocking time unnecessarily.

“» Blocking due to inter-thread message passing

— Can be bounded as once for each task if IIP (Immediate Priority
Inheritance Protocol) is adopted.

+» Blocking due to run-to-completion semantics

— Can be neither eliminated nor bounded as oncéil 7

» Application design models are blurred to support
multithreading.

» Designs and implementations are not separated.
= |t is difficult to recognize implementation models.

» The process of multithreading specification is tedious and
error-prone.

< It is hard to specify deadline and priority.

» Deadline and priority should be specified in units of end-to-
end computations.

= The UML-RT meta-model does not contain end-to-end
computations as a modeling entity.

of OO design models

1. A multithreaded implementation method that can minimize
unnecessary blocking

[Schedulability-aware scenario-based multithreading

Scenario-based multithreading

2. A model transformation method

Multithread modeling through intermediate models

3. Automated generation of schedulability-guaranteed
implementations

Automated assignment of priority and preemption threshold

The Approach

UML-RT Model Implementation

Grouping of mutually
non-concurrent scenarios

Schedulability-
guaranteed

Grouping of mutually
non-preemptive logical

<+ Map all events in a scenario to a single thread
<+ Scenario: a sequence of actions triggered by an external event

<+ Threading model functions orthogonal to the UML-RT model.
“» Threads are permitted to traverse multiple capsules.

<» The thread priorities are dynamically managed based on
executing scenarios.

mai n__ ...
threadl1 -~ -- 5
thread2

13

<+ Motivations
» |t is natural to map a unit of independent execution flow to a
single thread.

» Timing constraints should be specified to end-to-end
computations.

» Benefits
» Blocking due to inter-thread message passing can be
eliminated.
» Blocking due to run-to-completion semantics can be also
bounded as once.
» With intermediate models, programmers can explicitly
specify characteristics of tasks or threads.

14

“* Run-to-completion semantics
» Each object with FSM has a global state.

= State transitions within the same FSM should not be
interleaved, but must be synchronized with one another.

o1

n For example, while A1 is executing,
A2 . any actions within the same object
from AO to A4 cannot execute.

15

> In scenario-based multithreading, multiple threads may try to
make state transitions of one capsule.

<+ Per-capsule mutex guarding each state transition is required.
= Class for Capsule and main loop was modified.

(o,
~ | L ﬁ
Thread B

Shared objects
Thread A among threads

< PC-IIP (Immediate inheritance protocol with priority ceilings)
was adopted.

16

Scenario
Metamodel

Logical Thread
Metamodel

Physical Thread
Metamodel

: Capaule Role
1 BlarmController
12 LED

3 EeyPad

4 AlarmHardvare
5 BlarnHardvare
6 InputGenerator

Update WCET |

portTining
ortTining
EurtTiminq
portHikeyPress
portHMotion
portTining

Generate Scenarin Model

tineout
tineout
timeout

key
notionDetected
tineout

WCET:
131574
185377940
36830976
61985920
18830976
38061952

Period:
9000000
1500000000
200000000
£10000000
150000000
320000000

Deadline
ap0opon
1500000000
300000000
400000000
Sooonono
140000000

<+ AND-OR action tree

» An auxiliary scenario model that shows execution path

A A

AND-Action OR-Action
Node Node

? b

Simple-Action LEAF-Action
Node Node

A A

~ . 4 B AND-Bridge OR-Bridge
02:A3 O1:A2 02:A4 02:A3 O1:A3 Node Node

O1:A1

Generate Logical |
Thread Model

Update Thresholds

> Non-concurrent scenarios:
= Scenarios that cannot run concurrently.
= (Ex) In a cruise control, “start a cruise mode” and “start a manual mode”

= Model transformer in default assumes that scenarios that start from the same
capsule are not concurrent

%
oy
4

,/%

2.

Two sub-steps

For each logical thread, assigns a feasible priority
and a preemption threshold.
» Preemption threshold
* A run time priority of a task
» Schedulability analysis algorithm with logical threads

For each logical thread, assigns possible maximum
preemption threshold
» To reduce the number of context switches

3

G raup_i-:‘b;

Generate Physical
Thread Model

erofGronps=3

Menbers
3

5
1

////
o
g

4,
o
bt

Mutually non-preemptive relationship
= Tasks cannot preempt one another
Benefits from grouping
= To reduce the number of threads significantly

= Thus, reduce the run-time context switching overhead and the
static memory resource demands

<+ Soccer robot system

“» Single-thread mapping

<> Capsule-based thread mapping
<+ Mapping using the approach

*+ A robot soccer

= A game in that two teams of autonomous robots compete with each
other to get goals

<+ System structure

Communication

]

{t

RobotControl

PathTracker Location

L

o

“ It is impossible to make the robot run:
» Due to Run-to-completion semantics.

» The Motor capsule cannot control the motors until other
capsules complete the job.

“+ Solution
» Re-design the model till it works again and again.
» Break lengthy actions into small fragments.

25

L

e

Example mapping:

[Capsule || Theead | Priority | Feriod
Communication || theem 5 ms
Vision (179 A ma
Location thyis 40 ms
Modor 13 B oms
PathTracker (1 5 ms
RobolControl (17 100 ma

S d sl] by ey

Response time analysis of RobotControl capsule’s transaction
initiated by t imeout message:

. sRobot +Vizion wRobot Path
RR{’(‘M - {C"Shoot:locatian + (“iimeout + o + C t]"m‘.h)

Hobot Robot Location Robot Fath
+ (CS»‘moi:iimeout +C + c +C + Caat?ath}

Shaot:location Be

‘Shoot:Readyeniry ‘roguestLocation ‘Bhost:lscation

] Bt | (et 4 OB s + O
=201.8 > Deadline (100)
Problems
= Should do thread mapping and priority assignment manually.

* No automatic scheduling test support

26

«» Resultant thread set and their attributes

[Physical Thread || Logical Thread | Priority | Threshold |

Phy T LMMM "; é

RobotControl - 5
Pha Leommunication 1 3
Phg Ly ision 2 2

» Feasible thread assignment using only three threads
» Fully automatic thread and priority assignment

.

“» OO0 design for RT system has the problems of (1)

scalability and (2) task identification
» PTS help increasing scalability.

» The proposed schedulability-aware scenario-based
multithreading method automates task identification.

<+ Scenario-based multithreading

» Performs better than traditional capsule-based
multithreading.

» Combined with model transformation and PTS, makes it
easy to generate schedulability-guarantee executable.

» Run-to-completion semantics was maintained through the
adoption of IIP with priority ceilings under PTS.

e

Sponsored by:

CSS

T BT DR TR

	
	01-pts-intro.pdf.rdo
	
	
	
	
	
	
	
	
	
	
	
	

	02-pts-app.pdf.rdo
	
	
	
	
	
	
	
	
	
	

	03-pts-schedanalysis.pdf.rdo
	
	
	
	
	
	
	

	04-pts-rtsynch.pdf.rdo
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	05-pts-oodesign.pdf.rdo
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Baksida.pdf.rdo
	

