
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Experiences of Using Linked Data and Ontologies
for Operational Data Sharing in Systems-of-Systems

Jakob Axelsson
Mälardalen University and Research Institutes of Sweden (RISE)

Västerås, Sweden
jakob.axelsson@mdh.se

Abstract—This paper addresses the problem of exchanging

complex data between the constituent systems in a system-of-

systems. This is necessary to ensure that they have compatible

understandings of the world surrounding them and entails a

need for semantic interoperability between the constituents.

Through a case study of a road construction system-of-systems,

the world wide web technologies of linked data and ontologies

are explored as a framework for data representation and

exchange. This data includes several broad categories, such as

assets, interfaces, organizations, capabilities, missions, and

observations, as well as various properties of those. It is also

discussed how the constituents can use this data for reasoning

and decision making. The results have been validated through a

simulation-based research prototype of the road construction

case, from which experiences are reported.

Keywords—system-of-systems, linked data, ontology, semantic

interoperability, road construction, Industry 4.0.

I. INTRODUCTION

During the operation of a system-of-systems (SoS), the
participating constituent systems (CS) try to collaborate in
order to provide some value which they cannot create
individually. Such a collaboration requires a certain sharing of
world views between the CS’s, i.e., the model that each CS has
of the context it is operating in. This context includes the
overall SoS, the other CS’s, itself, and their environment.
external to all of them.

Due to the operational and managerial independence of
the CS’s [1], some participants will have exclusive access to
information which would be useful to others. For instance,
each CS will exclusively know its own internal state, and the
data gathered through its different inputs. Therefore, the CS’s
need to engage in a continuous exchange of data to let each of
them construct and update a world view that covers what it
needs to fulfil its role in the collaboration. Such an exchange
requires interoperability on all levels of communication, and
in particular, semantic interoperability is required to ensure
that the different CS’s understand a shared piece of
information in a similar way.

The overall contribution of this paper is to investigate,
through the application of a real-world SoS example, what is
needed to achieve this alignment of world views across CS’s
during their operation. In particular, it studies the use of linked
data and ontologies to provide interchangeable information
representations within an SoS. These are concepts made
popular through the semantic web initiative [2], which extends
the syntactic information on world wide web (WWW) pages
with semantic information. This allows systems to reason
about the contents, and link different information sources
together. The technologies used for this are universal, and not
limited to the context of the web, but can be used also for
knowledge representations in other contexts. A hypothesis of

this work is that semantic web technologies are a suitable basis
for SoS semantic interoperability in general due to its
decentralized approach and wide acceptance.

A. Research Questions and Method

The paper studies the following main research questions:

1. What kind of information needs to be shared by CS’s
during their operation within an SoS?

2. Are linked data and ontologies effective
representations of the required information?

This research is constructive, in the sense that the ultimate
objective is an artifact in the form of an information
representation concept. Therefore, a research method based on
Design Science is suitable [3]. In this method, the desired
artifacts are developed and evaluated in an iterative process,
where the evaluation is based on both interacting with the
relevant environment and with the existing knowledge base.
The interactions with the environment are particularly
important and have been handled through an industrial case
study of an SoS for road construction. In that study,
preliminary results have been presented and discussed with
domain specialists, and a prototype software implementation
simulating the SoS has also been used to validate that the
concepts could work in practice. In addition, existing research
literature and standards have extensively been used to guide
the work.

B. Overview of Paper

The remainder of the paper is structured as follows: In the
next section, the semantic web concepts of linked data and
ontologies are described. Then, in Section III, the road
construction SoS case study is outlined, followed in Section
IV by an investigation of the kind of information that needs to
be represented and shared in the world models of CS’s in that
SoS. Section V presents how the information is managed
during operation and how it can be used for reasoning and
decision making in the individual CS’s. In Section VI, the
results are discussed, and Section VII introduces some related
research. In the final section, the conclusions are summarized
together with indications of future extensions of the research.

II. LINKED DATA AND ONTOLOGIES

As mentioned in the introduction, this work uses semantic
web concepts as a foundation for SoS information
representation. The main building pieces of this is a generic
data representation called linked data; techniques for storing
and retrieving data; a framework for building ontologies that
contains general concepts for knowledge representation; and
a number of more or less standard vocabularies. Each of these
will be introduced in the following subsections.

This research was funded by Vinnova, Formas and Sweden’s Energy
Agency, within their joint program InfraSweden2030, under grant no.
2018-00671, and by Vinnova under grant no. 2018-03244.

A. Linked Data Representation

The Resource Description Framework (RDF) is the
WWW “framework for expressing information about
resources, where a resource can be anything, including
documents, people, physical objects, and abstract concepts”
[4].

Resources are represented by International Resource
Identifiers (IRI), which are strings with a syntax very similar
to the URL strings used for web addresses. The strength of this
is that unique IRIs can be generated in a distributed way, by
following a principle where the domain name of an IRI should
be owned by the organization that creates the IRI.

The information about the resources is expressed as very
simple statements on the format subject – predicate – object
triples, where the predicate is also called a property. The
subject and predicate are always resources, and the object may
be either a resource or literal data (e.g. strings, number).

As a very simple example, assume that an organization
needs to represent information about cars, and express that a
particular car is red and is driven by a certain employee. The
resources in question are the car and the driver, which we
could assign the following IRIs:

• Car: <http://example.com/car/123>.

• Driver: <http://example.com/employee/456>.

To enhance readability, it is possible to introduce
abbreviations for common IRI prefixes. For example, we
could use “ex” to be an abbreviation of
<http://example.com/>, and the car in the example can then be
referred to as ex:car/123. This abbreviation can be seen as
introducing a namespace for resources.

The following triples capture the required information:

• ex:car/123 ex:has_color “red” (where the object is a
literal).

• ex:employee/456 ex:drives ex:car/123.

The set of triples is all that is needed to represent the
information. More formally, a knowledge base K is a set � ⊆
�� ∪ �� × � × �� ∪
 ∪ ��, where R is the set of IRIs, L is
the set of literals, and B is the set of anonymous resources (also
known as blank nodes). The blank nodes are useful when we
do not want to express the identify of a resource but are only
interested in what combination of properties it has. Since the
same resource may appear in several triples in K, this set can
be seen as a graph where the edges are the triples and the nodes
are the (implicit) set of all IRIs, literals, and blank nodes that
appear in any triple. It is common to refer to a set of triples as
an (RDF) graph.

Note that since the representation is just a set of triples of
resources with unique identifiers, basic set operations such as
union can be applied, e.g. to merge two knowledge bases,
which is quite convenient when communicating linked data
between systems.

B. Database Queries and Serialization

To store larger amounts of RDF triples, databases are
normally used, and these can be queried in different ways. The
simplest way is pattern matching, by specifying a triple where
one or several of the fields are replaced by a wildcard. The
result is then the set of all triples that match this pattern.

However, sometimes more advanced queries are needed that
relate several resources to each other or put more complicated
constraints on the relations. For this, the SPARQL query
language has been developed [5].

To exchange data between systems or store data in files,
serialization formats are needed, and a number of textual
notations for this exist, such as RDF/XML [6] or more human-
friendly notations such as Turtle [7] (which is also used in the
examples in this paper).

C. Generic Ontological Concepts

The RDF linked data representation can be used to
construct ontologies, i.e., definitions of concepts, categories,
properties, and relations between the resources. In other
words, it creates a terminology to be used, and this is needed
to represent a common domain of knowledge. However, the
definition of ontological concepts typically uses a small set of
logical constructs, that have for this reason been standardized
and are universally accepted. Those constructs come from
logic, in particular description logic, and include:

• Class and instances. A resource may refer to a class of
objects, and it can be expressed that another resource
is an instance of the class (or that the class is the type
of the instance).

• Property: A resource may be a property, indicating
that it makes sense to use it as the predicate of a triple.
For a property, it can be expressed that it has a certain
range and domain, thereby restricting the subjects and
objects to certain classes.

• Subclasses and sub-properties. It can be expressed that
one class is a subclass of another, implying that an
instance of the first subclass is also an instance of the
more general class. Likewise, a property may be a sub-
property of another property.

These concepts are introduced in the RDF Schema
(RDFS) specification [8], which uses the namespaces “rdf:”
and “rdfs:”. With these concepts, we could in the car example
above express that our car belongs to a class called Car, which
is a subclass of vehicles, and that there is a property
“has_color” whose domain is the class of cars:

• ex:car/123 rdf:type ex:Car.

• ex:Car rdf:type rdfs:Class.

• ex:Vehicle rdf:type rdfs:Class.

• ex:Car rdfs:subClassOf ex:Vehicle.

• ex:has_color rdf:type rdf:Property.

• ex:has_color rdfs:domain ex:Car.

Thus, if one system transfers some data about a car to
another system, which is not aware of what a car is but knows
the more general concept of a vehicle, the other system may
still make use of the information about the instance given the
ontological facts above stating that a car is a vehicle.

RDFS contains a small set of constructs which are very
common. An elaborate extension is in the Web Ontology
Language version 2 (OWL2, with the namespace “owl:”) [9]
that allows the expression of much richer information about
resources, classes, properties, etc. It is beyond the scope of this
short overview to go into any details, but it should be

mentioned that the OWL2 constructs have well-defined
meanings in terms of logic and can thus be used to logically
infer more information from what has been explicitly
provided.

It should be noted that all the meta-concepts introduced in
RDFS and OWL2 are just ordinary resource IRIs and do not
in any way change the linked data representation. They have
a special place only in the sense that they define very common
concepts that are universally agreed upon. Also, it should be
noted that many RDFS concepts are similar to those used in
UML class diagrams, and it is not uncommon to use UML to
provide a visual overview of an ontology for human readers.

D. Common Vocabularies

Apart from the meta-concepts from RDFS and OWL2,
certain other more concrete concepts tend to reoccur in many
domains, and a number of recommended vocabularies have
been developed. For example, the Dublin Core (DC)
vocabulary contains concepts related to information resources
[10] and the Friend of a Friend (FOAF) vocabulary defines
terms related to people and their relations [11]. It is not
mandatory to reuse such vocabularies, but it does make life
simpler if at some point, data from one system is to be shared
with another system, since it increases the chances that they
use the same terminology for similar concepts.

III. CASE STUDY: A ROAD CONSTRUCTION SOS

To investigate the use of linked data and ontologies for
SoS semantic interoperability, we have conducted an
industrial case study where the concepts have been tried. The
case comes from the construction domain, where a number of
different machines and other assets form the CS’s that need to
collaborate on a worksite to produce a road. The case has been
described in more detail in a previous paper [12], and only a
brief summary will be provided here to give the context.

A. Purpose

The construction sector is one of the largest industries in
the world, with an annual turn-over of around 13% of the
global GDP [13]. In this case study, we focus on road
construction, which is a significant portion of this. However,
whereas other industries such as manufacturing have seen
improvements in the order of 3.6% per year over the last 20
years, the improvement rate in construction is only about 1%
per year [13].

The production at a construction site involves a number of
machines and other assets with complementary capabilities,
that need to collaborate, and it thus constitutes an SoS. In our
research, we make a hypothesis that the productivity gap is in
part due to lack of communication and coordination between
the parties involved. Today, this collaboration is handled
informally by human communication, and we are
investigating how machine-oriented communication and
supporting tools can supplement the human communication,
in order to improve coordination and identify wastes that
should be eliminated.

B. Architectural Concerns

The construction SoS has several architectural concerns,
including:

• Multi-vendor. Machines from different vendors and of
different types must be able to collaborate on the site.

• Autonomous and manual. Current road construction
equipment is mostly manually operated, but there is a
strong trend to develop more automated solutions. The
SoS architecture must handle a mix of both types.

• Secure. Participating in an SoS requires a certain
degree of openness, and it must be assured that
confidential information of a certain participant does
not become accessible to others.

• Flexible. A difference between road construction and
manufacturing is the continuous changes in the former.
The process has much shorter periods of steady state,
which makes process optimization more difficult. This
increases the need for up-to-date information, support
for re-planning and reconfiguration. The variability
between different construction projects is substantial.

• Robust. It cannot be assumed that communication is
reliable all the time, since road construction must rely
on wireless communication, and the coverage of
cellular networks is often poor at construction sites.

C. SoS Architecture

Based on these concerns, a number of architectural
principles have been identified, which are based on similar
ideas as used in the Reference Architecture Model for Industry
4.0 (RAMI4.0) [14]:

• Asset administration shell (AAS). In order to provide a
common interface to constituent systems, RAMI 4.0
introduces the AAS concept, which can encapsulate an
asset such as a physical machine and give it proper
information interfaces. This allows for different assets
to communicate in a standard way, and also provides
mechanisms for self-description.

• Hierarchy. Construction work is today organized in a
hierarchy, where the working machines are at the
bottom. The next layer is the work site (or a part within
it). Above that is a project level, which can coordinate
several sites (e.g. a road site, a quarry, and an asphalt
plant). However, this structure is in fact usually a poly-
hierarchy, where certain parts can serve several parents
simultaneously. The different parts in the hierarchy are
usually ran by different organizations, resulting in an
operational and managerial independence. In our
proposed approach, elements on all levels are treated
as assets, and given their own AAS to handle
interactions.

• Capabilities and submodels. The different assets are
described in terms of their capabilities, i.e. what
services they can provide. For each capability, there is
a sub-model that implements the service, making the
design of the constituent systems modular. Capabilities
include the ability to use different communication
techniques, but also different physical work that can be
done depending on the machine type.

• World models. Each constituent system of the SoS will
contain a substantial amount of information about
other constituents, as well as data about the
environment they operate in. We call this information
set the asset’s world model, and at times it is essential

to extract data from the world model and exchange it
with other assets.

• Publish-subscribe communication. Within each sub-
process in the hierarchy, there is usually a need for all
involved parties to communicate with each other. We
have solved this by using a publish-subscribe system
that all the concerned AAS’s connect to.

The key elements of the SoS architecture are illustrated in
Fig. 1.

D. Validation Prototype

To test that the different architectural concepts work
together and are effective, a research prototype has been built.
It is implemented in the Python language and is distributed to
allow different parts to be allocated to different computers.
Communication is over HTTP and the publish-subscribe
protocol AMQP [15], and these are implemented as
submodels, as are the various capabilities of different
machines. The world models are implemented using in-
memory triple stores from the Python library RDFLIB.

The main conceptual difference compared to a real system
is that the physical assets are simulated. This also includes the
human operators of machines, which means that all simulated
machines behave as if they were automated.

IV. SOS ONTOLOGY CONTENT

We will now introduce a set of ontological concepts that
are useful when describing an SoS. The concepts are generic,
and should be relevant to most SoS, but as they are derived
from the case study in the previous section, we cannot say for
sure if they are universal or not. The ontology is divided into
a core part, which represents generic concepts that must be
agreed upon by all CS’s in the SoS, and extensions, that allows
a CS to specify more specific information that others may or
may not use.

A. Core Ontology

The core ontology contains a small set of abstract
concepts, represented as classes and properties. Most of these
will in practice be used by subclassing them with more
specific classes and properties. An overview of the concepts
and their relations is given in the UML class diagram in Fig.
2.

1) Asset. In the terminology from Industry 4.0, an asset is

any “object which has a value for the organization” [14]. A

central concept of Industry 4.0 is that “assets can be

combined in any way, and these assets are formally described

in sufficient detail for use in the digital world”. In our context,

we make a difference between active and passive assets.

Active assets can perform work, and are exemplified with

different kinds of machines, as well as an overall site such as

a quarry or road works site. A common subclass of active

asset is a mobile asset, representing e.g. a machine that can

move around. The active assets are thus the potential CS’s of

the SoS. Passive assets cannot perform work, and represent

items that are worked upon by the active assets, but which

still have a value that needs to be represented. In the case

study, examples of passive assets are the piles of material in

the quarry, or the ground itself being worked on at the road

site.

2) AAS. The asset administration shell provides an

information interface to the asset, and can be seen as a virtual

digital and active representation of an asset. The AAS is a

standardized way of adapting an asset so that it can become a

CS in the SoS (it represents the CS∆, in the terminology of

[16]). Note that it is possible to have several AAS’s for the

same asset, and it is thus important to view them as separate

RDF resources in the world models. Also, an AAS may be

composite, if it encapsulates a number of other AAS’s. A

composite AAS thus represents an SoS level in the hierarchy.

3) Organization. An organization represents a firm, or a

part of the firm, and is useful to explain the managerial

relations in the SoS. Examples of managerial relations are the

manufacturers, owners, or operators of different assets.

4) Capability. A capability represents a function which

the AAS can provide. This may refer to an action capability

which is made available to the SoS through the AAS, such as

the capability to move, for a mobile asset. It may also refer to

a communication capability, which describes the addresses

and protocols to use to exchange information with an AAS.

5) Observation. An observation represents a property

value of an RDF resource that was observed or estimated at a

certain time by a particular observer. It is thus a triple

extended with the observer and the time, where a triple may

be seen as a resource of type rdf:Statement. Observations can

be used to collect data over time for later analysis, but can

also have a value during operation. For instance, sometimes

an observation is transferred between AAS’s in several steps,

and then it can be important to know where the data originates

to assess credibility. Also, it can be important to know how

old the observation is, to assess uncertainty.

6) Mission. A mission represents something that should

be achieved. A mission may be an action or a workflow which

contains other missions. Actions may not be broken down at

this level of abstraction, and they correspond to capabilities

of AAS’s. Missions may also have constraints.
As an example, a mission may be that an asset should

move (an action corresponding to a capability of a mobile
asset) to a specific geographic region and then drop its load
there (another action corresponding to a capability of a load
carrier.) This should be completed no later than a certain time
(a constraint.)

Fig. 1. Overview of the road construction SoS architecture.

We will not specify further how constraints are expressed
but note that OWL2 contains concepts that can express e.g.
bounds on numerical values, and since these are represented
as triples, a constraint is a subclass of rdf:Statement.

A mission has a tree structure where the leaves are the
atomic actions and workflows are the composite nodes.
However, the workflows will also need to contain other kinds
of information, such as expressing conditions, sequences, and
parallel execution. These can conceptually be seen as
constraints. However, in practice a user-friendly notation is
needed. We have experimented with various alternatives,
including graphical languages such as the Business Process
Model and Notation (BPMN) [17], but we leave the choice of
notation open in the ontology.

When a composite AAS, i.e. an SoS, is given a mission,
whose actions correspond to its own capabilities, that mission
usually needs to be decomposed, which means that the SoS
capabilities are translated into CS capabilities. The composite
AAS thus needs to derive a new workflow which orchestrates
the execution of CS’s. The parts of this new workflow that are
to be conducted by a particular CS is then sent to it as a new
mission.

B. World Models and Extensions

The core ontology is used to structure the data in the world
model of each AAS. This world model is thus a set of RDF
triples, where the resources include those specified in the core
ontology.

A specific AAS, that encapsulates a concrete asset, may
extend the core ontology with new concepts. As an example,
the AAS of a working machine such as an excavator would
introduce an ontology class of the physical excavator, which
is a subclass of a mobile asset. Further, it would define
different properties that are relevant, both dynamic such as the
current load it is carrying, and static such as the maximum
load it can lift. Also, it would describe itself, i.e., what
capabilities it provides, etc.

An important aspect of an AAS in Industry 4.0 is that it
can provide a manifest, i.e., a description of itself. In our
implementation, this description essentially corresponds to the
extended ontology it uses, plus its current state. By requesting

the manifest of an AAS, using one of its communication
capabilities, a serialized set of RDF triples is transmitted,
which can be added to the receiving AAS’s world model. In
this way, a common language that can be used for their
communication is created.

V. LINKED DATA USAGE AND MANAGEMENT

Having defined the common and extended ontology, these
can be put into use to let a CS build its world model and
exchange information about it. This section provides more
details on how the constituent systems create and use the
linked data, as well as some experiences on data management.

A. Operational Usage of Linked Data in Constituents

The AAS primarily has two tasks: to monitor and control
the asset, and to communicate with other AAS’s. The
monitoring part consists of gathering or estimating data over
time, based on events or sampling. The data is stored in the
world model as observations, according to the ontology. It is
also published on the publish-subscribe bus of the composite
AAS. It is up to each AAS to decide what information on this
bus they want to subscribe to. When they choose to subscribe,
they can also filter out what parts of the received RDF graph
they want to include in their own world model.

The control part is more intricate, since it involves
decision making. For most assets in the case study, there is a
human operator that makes the decision, and the AAS
therefore needs to present data and analyses of data to a
human.

As an example, consider a quarry site, which has a
composite AAS which contains the AAS’s of machines on the
site. The site AAS receives a mission to produce a certain
quantity of aggregate of a specific granularity. It will deal with
this by using a defined workflow if one exists or letting a site
operator design a new workflow if necessary. This workflow
contains actions where capabilities of different machines are
needed, and the site manager must then allocate missions to
suitable machines. To do so, the world model must be
consulted and queried for which machines can perform a
certain capability.

Fig. 2. UML class diagram illustrating the concepts in the core ontology.

Organization

Asset

Passive

Asset

Active

Asset

Mobile

Asset

AAS

Composite

AAS

Element Observation rdf:Statement

Capability

Communication

Capability

Action

Capability

Action

Constraint

Workflow

Mission

xsd:dateTime

*

**

*

*

*
*

manages > < by observer

a
t tim

e
>

< provides interface

*

*

of actor data >

*

*

An issue is how to create user interfaces in a composite
AAS, where e.g. the site manager wants to inspect properties
of the included AAS’s. However, those AAS’s may have
extended the ontology with new specific classes and
properties, and the user interface has to be built dynamically.
This can be done by querying the manifests to find out what
properties (i.e., resources of type rdf:Property) exist in this
particular AAS and use that to display data in an
understandable way.

B. Process Improvement

The previous subsection discussed how to use the linked
data during operation, but an important usage is also related to
process improvement. The motivation for the construction
SoS is to improve productivity, and a common approach for
dealing with such problems is the Lean methodology. The
main steps are to create a process description; collect
operational data; analyze it to identify possible wastes
(activities that do not create value); and update the process to
remove wastes.

In our approach, there is a potential for automating a large
part of this process, which is today usually done manually.
This is achieved by collecting observations of asset and AAS
states over time, such as where they are, what actions they are
performing, and key operational properties such as the mode
they are in. From this, waste patterns can be identified, such
as excessive inventories; unnecessary machine movements;
transportation; waiting; etc. These can be precisely attributed
to workflow steps, since the current action is also observed,
and to geographical locations.

It is very important to automate this analysis process since
construction processes tend to be stable only for a short period,
and in many cases would change before a manual process had
the time to complete.

C. Data Management

A first step in using RDF is to create suitable IRIs for the
asset and AAS instances. For tangible assets like machines,
the most natural is to let the original equipment manufacturer
(OEM) mint a suitable IRI. One way of doing this is to
combine the domain name of the OEM with the serial number
of the machine.

For more temporary passive assets, like a pile of rocks in
a quarry, the site owner would need a process for finding
suitable IRIs. For instance, they could combine their domain
name with the position and creation time of the pile, to ensure
uniqueness. For an AAS, a suitable IRI could be the IRI of the
asset it refers to, appended with “/aas” or similar. For ontology
extensions, such as defining new asset types or capabilities,
the domain name of the organization that defines the extension
is also suitable as a basis, appended with strings related to the
name of the asset type or capability. In this way, the manifest
of an AAS is easily generated.

It is practical to divide the world model into several
graphs, representing different types of information. This is
because some subsets of information may have a limited
validity, and it is then easy to delete the entire graph related to
that information. Also, some subsets are interesting to share
with others, which is easier if they are already in a separate
graph. It is common for linked data stores to be able to handle
a larger graph being divided into subsets, and to allow
searching for data either in the entire graph or in one of the

subsets. Examples of data we have put in subgraphs is the base
ontology; the extended ontology; the manifest of the AAS; the
most recent observations about the asset’s state; capabilities
of the asset; state information about other assets; and tasks
received from other AAS’s.

VI. DISCUSSION

The previous sections have presented concrete solutions
that were derived as part of the implementation work for our
research prototype. That work however also generated a
number of questions, whose answers are not yet clear. In this
section, we will discuss a few of those issues and provide
some of our subjective experiences.

A. Suitability of Linked Data for Different Information

In general, we have found the RDF approach to linked data
and ontologies easy to use and quite natural. However, there
are some types of fine-grain data where it may not be the
appropriate solution. This includes pixel-based images, for
which semantic information about what they represent is not
available. In the construction domain, geographical and
geotechnical information is central, both for the surface
(topology, routes, destinations) and underneath it (capturing
the materials, such as rock, soil, etc.). As it seems, the industry
has not yet agreed on an appropriate data storage format, but
is mostly considering document-based storage, using e.g. the
LandXML schema. Probably, hybrid solutions are needed
where specific formats are annotated with semantic data.

B. Level of Abstraction

Many SoS are hierarchical in their nature, and it has
proven to be challenging to find the right level of abstraction
for each level. This has become obvious when it comes to
mission and their decomposition into actions, which
correspond to capabilities in the CS’s. If the SoS level
provides very detailed tasks to the CS’s, it may be able to
orchestrate their actions with a fine granularity and in that way
optimize the overall SoS performance. However, by the first
law of cybernetics [18], this requires access to a large amount
of information about the CS’s, which may be impractical. The
opposite is to give the CS’s much vaguer tasks, which allows
them to optimize within those bounds, and make appropriate
compromises vis-à-vis their own objectives. The risk is
however that the emergent properties of their interactions are
not as desired.

It would be interesting to explore this topic further and
extend the ontology to allow CS’s to express what their
priorities are, that guide how they make decisions. Possibly,
this could make it more transparent how a CS will deal with a
more abstract task and make it possible to find an appropriate
level of abstraction.

C. Reasoning

The foundation of notations such as OWL2 is decision
logic, and this means that it is possible to reason logically
about the content of a linked data set using tools such as [20].
In the prototype, we have used rudimentary ad hoc procedures
for reasoning, to solve situations such as finding all property
relations defined for a class, including those inherited from
super-classes. This approach reduces the dependencies of the
software to third-party modules, and can reduce the hardware
resources needed, and it may suffice as long as only a subset
of OWL2 is used. However, if certain extensions use more

powerful expressions, there is a risk that relevant information
is missed or misinterpreted.

One should however be aware that even the powerful
OWL reasoners are not complete, and do not have the
capability to deal with complex spatial or temporal data,
which is inherent in our application domain.

D. Efficiency of Data Processing and Storage

Representing data using RDF may seem costly in terms of
memory and communication bandwidth, due to the very
verbose IRIs. However, we have not found this to be a
problem, since the triple stores compact the representation,
and the number of triples that are repeatedly communicated
tends to be limited. Larger amounts of data primarily occur
when collecting observations over time but given the fact that
commercial triple stores can deal with billions or even trillions
of triples [19], even this should not be an issue.

The architecture depicted in Fig. 1 can give the impression
that the AAS and world model need to be implemented in the
embedded systems of the assets, but this is not necessarily the
case. A common solution is likely to be that the AAS is
implemented in the cloud and has a private communication
channel to the embedded system in the asset. This removes
concerns about dealing with RDF in memory constraint
systems.

An open question is related to how data is to be
communicated. The publish-subscribe model in the
architecture makes handling of the communication
straightforward, but it does not specify whether the AAS’s
should repeatedly send updates of all parts of their asset state,
or only send updates about things that change. Depending on
the dynamics of the application, this could have large effects
on bandwidth consumption, but more rare updates could
imply that newly added AAS’s do not get access to the
complete state until information changes. A suitable
compromise is probably a combination of requests for
complete information when needed and continuous updates of
changes.

When dealing with large data sets, such as maps or
geotechnical information, it might be appropriate to only
communicate those parts that are needed for a particular task.
However, this raises questions how to extract that data from a
larger database.

VII. RELATED WORK

The ideas of using ontologies in the context of SoS is not
new, and the existing body of research can broadly be divided
into general work on the need of SoS ontologies; specific
suggestions on concrete ontologies for different SoS aspects;
and implementation issues in an operational context.

A. General Work on the Need of SoS Ontologies

Several authors have looked at ontologies for SoS, with
the purpose of clarifying terminology and concepts. Langford
et al. [21] investigate the philosophical underpinnings of
ontologies for systems and SoS. Based on a set of axioms from
set theory, the ontology is divided into an objective and a
subjective part, that are then used to form an integrative
framework. It is also noted that the temporal domain is central
and can be used to understand emergence.

Abdalla et al. [22] present a systematic literature review of
31 papers on knowledge representation in SoS. They observe
that most papers describe ontologies for a particular domain,
rather than for SoS in general. The motivations for knowledge
representation are mainly to standardize terminology, to ease
integration, engineering activities, as well as SoS
management.

Sarder et al. [23] discuss the processes of ontology
development, and apply it to systems engineering, mainly with
the motivation to clarify terminology. A similar need is also
identified for SoS engineering, but without providing any
concrete suggestions.

B. Concrete Ontologies for SoS

Baek et al. [24] present the M2SoS meta-model for SoS,
which was elicited in the context of a mass causality incident
response system. The core ontology in our paper includes a
subset of the concepts in M2SoS, but our work differs in its
focus on a representation suitable for machine processing.

Bénaben et al. [25] also discuss interoperability between
CS’s in a crisis management SoS. A meta-model is proposed,
which is divided into a “treatment system”, corresponding to
the crisis management SoS, i.e. the system-of-interest, and a
“studied system”, which is the environment where the crisis
occurs. When combining these two ontologies with a
reasoning engine, appropriate responses can be deduced.

Zhu et al. [26] propose an OWL2 based ontology for
describing SoS missions and discusses principles for how the
mission may be decomposed and allocated to CS’s. A mission
model is analyzed to detect common mistakes prior to
execution, and this is done by expressing the mistakes as
SPARQL queries and submit them to an OWL reasoning
engine. The approach is exemplified through an air defense
application. The paper is more detailed in specifying missions
than our ontology but is focused on the design of missions
rather than SoS operations.

Yahia et al. [27] discuss principles for how ontologies and
description logic can be used to achieve interoperability in
SoS. They introduce the need for an “upper ontology”, which
is a role played by the core ontology in our approach. With
this as a basis, two ontologies can be aligned through decision
logic reasoning. The approach has been tested on two
alternative ontologies from the manufacturing domain.

C. Implementation Aspects of Operational SoS Ontologies

Curry [28] proposes the use of linked data for dealing with
SoS interoperability, using dataspace architecture that allow
for more heterogeneous and distributed storage and querying.
This is illustrated with an example from enterprise energy
management. The approach is similar to ours, except that we
are less focused on large scale data management.

Operationalizing the mission part and combining that with
an execution engine can be seen as a way to dynamically adapt
autonomous CS’s, similarly to the approach in [29].

Durbha et al. [30] discuss interoperability in the Global
Earth Observation System of Systems (GEOSS). It discusses
possible conflicts between constituent system data, and how
to modularize the potentially enormous ontology needed.

Outside the SoS operational context, linked data is also the
foundation for the Open Services for Lifecycle Collaboration

(OSLC) standard for interoperability between systems
engineering tools across organizations [31].

VIII. CONCLUSIONS AND FUTURE RESEARCH

This paper has investigated, through a case study in road
construction, the interoperability of CS’s in an SoS based on
the use of linked data and ontologies.

The first research question concerned what kinds of
information that need to be shared. This was answered by
developing a core ontology with concepts such as asset, AAS,
organization, capability, mission, and observation.

The second research question was related to the
effectiveness of linked data and ontologies as a representation
of the required information. A prototype implementation
confirmed that this is a fruitful approach, but also provided
many insights and experiences regarding how to use the
techniques and identified areas where further development is
needed.

This research is ongoing and will continue in several
directions. Related to the particular case study, we plan to
investigate more advanced reasoning techniques and
optimization. This includes synthesis of plans, uncertainty
assessment including fidelity of data, and preferences. We
also plan to extend the work to more domains, with a start in
manufacturing and Internet of Things, and to a broader part of
the SoS lifecycle. Ultimately, we believe that the solutions
discussed in this paper may form the backbone of a DevOps
approach for SoS with the world models acting as “digital
twins” of the operational SoS.

REFERENCES

[1] M. W. Maier, “Architecting Principles for Systems-of-Systems,”
INCOSE Int. Symp., pp. 565–573, Jul. 1996.

[2] T. Berners-Lee, J. Hendler, and O. Lassila, “The Semantic Web,”
Scientific American, vol. 284. pp. 34–43, 2001.

[3] A. R. Hevner, S. T. March, J. Park, and S. Ram, “Design science in
information systems research,” MIS Q., vol. 28, no. 1, pp. 75–105,
2004.

[4] World Wide Web Consortium. “RDF 1.1 Primer,” 2014. URL:
https://www.w3.org/TR/rdf11-primer/.

[5] World Wide Web Consortium. “SPARQL 1.1 Overview,” 2014. URL:
https://www.w3.org/TR/sparql11-overview/.

[6] World Wide Web Consortium. “RDF 1.1 XML Syntax,” 2014. URL:
https://www.w3.org/TR/rdf-syntax-grammar/.

[7] World Wide Web Consortium. “RDF Turtle 1.1: Terse RDF Triple
Language,” 2014. URL: https://www.w3.org/TR/turtle/.

[8] World Wide Web Consortium. “RDF Schema 1.1,” 2014. URL:
https://www.w3.org/TR/rdf-schema/.

[9] World Wide Web Consortium. “OWL 2 Web Ontology Language
Quick Reference Guide,” 2nd Edition, 2012. URL:
https://www.w3.org/TR/owl-quick-reference/.

[10] ISO. ”Information and documentation – The Dublin Core metadata
element set,” Standard No. 15836-1:2017, 2017.

[11] D. Brickley and L. Miller. “FOAF Vocabulary Specification 0.99,”
2014. URL: http://xmlns.com/foaf/spec/.

[12] J. Axelsson, J. Fröberg, and P. Eriksson, “Towards a System-of-
Systems for Improved Road Construction Efficiency Using Lean and
Industry 4.0,” in 13th Annual Conference on System of Systems

Engineering, 2018, pp. 576–582.

[13] McKinsey & Co. “Reinventing Construction: A Route to Higher
Productivity.” Feb. 2017.

[14] DIN SPEC 91345. Reference Architecture Model Industrie 4.0
(RAMI4.0). April, 2016.

[15] ISO/IEC. Advanced Message Queueing Protocol (AMQP) v1.0
specifcation. ISO/IEC standard 19464, 2014.

[16] J. Axelsson and A. Kobetski, “Towards a risk analysis method for
systems-of-systems based on systems thinking,” in IEEE International
Systems Conference (SysCon), 2018.

[17] OMG. Business Process Model and Notation (BPMN), version 2.0.
2011.

[18] W. R. Ashby, An Introduction to Cybernetics. London: Chapman &
Hall Ltd., 1956.

[19] Oracle. Oracle Spatial and Graph: Benchmarking a Trillion Edges RDF
Graph. White paper, Nov. 2016.

[20] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz, "Pellet: A
practical owl-dl reasoner," Web Semantics: science, services and
agents on the World Wide Web, Vol. 5, no. 2, 2007.

[21] G. Langford and T. Langford, "The making of a system of systems:
Ontology reveals the true nature of emergence," 2017 12th System of
Systems Engineering Conference (SoSE), Waikoloa, HI, 2017.

[22] G. Abdalla, C. D. N. Damasceno, M. Guessi, F. Oquendo and E. Y.
Nakagawa, "A Systematic Literature Review on Knowledge
Representation Approaches for Systems-of-Systems," 2015 IX
Brazilian Symposium on Components, Architectures and Reuse
Software, Belo Horizonte, 2015, pp. 70-79.

[23] M. B. Sarder and S. Ferreira, "Developing Systems Engineering
Ontologies," 2007 IEEE International Conference on System of
Systems Engineering, San Antonio, TX, 2007, pp. 1-6.

[24] Y. Baek, J. Song, Y. Shin, S. Park and D. Bae, "A Meta-Model for
Representing System-of-Systems Ontologies," 2018 IEEE/ACM 6th
International Workshop on Software Engineering for Systems-of-
Systems (SESoS), Gothenburg, Sweden, 2018, pp. 1-7.

[25] F. Bénaben, C. Hanachi, M. Lauras, P. Couget, and V. Chapurlat. "A
metamodel and its ontology to guide crisis characterization and its
collaborative management." Proc. 5th International Conference on
Information Systems for Crisis Response and Management,
Washington, DC, USA, May, pp. 4-7. 2008.

[26] W. Zhu, H. He and Z. Wang, "Ontology-Based Mission Modeling and
Analysis for System of Systems," IEEE International Conference on
Internet of Things, Exeter, 2017, pp. 538-544.

[27] E. Yahia, J. Yang, A. Aubry, and H. Panetto, “On the Use of
Description Logic for Semantic Interoperability of Enterprise
Systems,” In: Meersman R., Herrero P., Dillon T. (eds) On the Move
to Meaningful Internet Systems: OTM 2009 Workshops. Lecture Notes
in Computer Science, vol 5872. Springer, Berlin, Heidelberg, 2009.

[28] E. Curry, "System of systems information interoperability using a
linked dataspace," 2012 7th International Conference on System of
Systems Engineering (SoSE), Genova, 2012, pp. 101-106.

[29] J. Axelsson and A. Kobetski, “On the conceptual design of a dynamic
component model for reconfigurable AUTOSAR systems,” in 5th
Workshop on Adaptive and Reconfigurable Embedded Systems, 2013.

[30] S. S. Durbha, R. L. King and N. H. Younan, "An Information
Semantics Approach for Knowledge Management and Interoperability
for the Global Earth Observation System of Systems," in IEEE Systems
Journal, vol. 2, no. 3, pp. 358-365, Sept. 2008.

[31] M. Saadatmand and A. Bucaioni. "OSLC Tool Integration and Systems
Engineering--The Relationship between the Two Worlds." 40th
EUROMICRO Conference on Software Engineering and Advanced
Applications (SEAA). IEEE, 2014.

