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Abstract—This paper addresses the problem of exchanging 

complex data between the constituent systems in a system-of-

systems. This is necessary to ensure that they have compatible 

understandings of the world surrounding them and entails a 

need for semantic interoperability between the constituents. 

Through a case study of a road construction system-of-systems, 

the world wide web technologies of linked data and ontologies 

are explored as a framework for data representation and 

exchange. This data includes several broad categories, such as 

assets, interfaces, organizations, capabilities, missions, and 

observations, as well as various properties of those. It is also 

discussed how the constituents can use this data for reasoning 

and decision making. The results have been validated through a 

simulation-based research prototype of the road construction 

case, from which experiences are reported. 
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I. INTRODUCTION 

During the operation of a system-of-systems (SoS), the 
participating constituent systems (CS) try to collaborate in 
order to provide some value which they cannot create 
individually. Such a collaboration requires a certain sharing of 
world views between the CS’s, i.e., the model that each CS has 
of the context it is operating in. This context includes the 
overall SoS, the other CS’s, itself, and their environment. 
external to all of them.  

Due to the operational and managerial independence of 
the CS’s [1], some participants will have exclusive access to 
information which would be useful to others. For instance, 
each CS will exclusively know its own internal state, and the 
data gathered through its different inputs. Therefore, the CS’s 
need to engage in a continuous exchange of data to let each of 
them construct and update a world view that covers what it 
needs to fulfil its role in the collaboration. Such an exchange 
requires interoperability on all levels of communication, and 
in particular, semantic interoperability is required to ensure 
that the different CS’s understand a shared piece of 
information in a similar way. 

The overall contribution of this paper is to investigate, 
through the application of a real-world SoS example, what is 
needed to achieve this alignment of world views across CS’s 
during their operation. In particular, it studies the use of linked 
data and ontologies to provide interchangeable information 
representations within an SoS. These are concepts made 
popular through the semantic web initiative [2], which extends 
the syntactic information on world wide web (WWW) pages 
with semantic information. This allows systems to reason 
about the contents, and link different information sources 
together. The technologies used for this are universal, and not 
limited to the context of the web, but can be used also for 
knowledge representations in other contexts. A hypothesis of 

this work is that semantic web technologies are a suitable basis 
for SoS semantic interoperability in general due to its 
decentralized approach and wide acceptance. 

A. Research Questions and Method 

The paper studies the following main research questions: 

1. What kind of information needs to be shared by CS’s 
during their operation within an SoS? 

2. Are linked data and ontologies effective 
representations of the required information? 

This research is constructive, in the sense that the ultimate 
objective is an artifact in the form of an information 
representation concept. Therefore, a research method based on 
Design Science is suitable [3]. In this method, the desired 
artifacts are developed and evaluated in an iterative process, 
where the evaluation is based on both interacting with the 
relevant environment and with the existing knowledge base. 
The interactions with the environment are particularly 
important and have been handled through an industrial case 
study of an SoS for road construction. In that study, 
preliminary results have been presented and discussed with 
domain specialists, and a prototype software implementation 
simulating the SoS has also been used to validate that the 
concepts could work in practice. In addition, existing research 
literature and standards have extensively been used to guide 
the work. 

B. Overview of Paper 

The remainder of the paper is structured as follows: In the 
next section, the semantic web concepts of linked data and 
ontologies are described. Then, in Section III, the road 
construction SoS case study is outlined, followed in Section 
IV by an investigation of the kind of information that needs to 
be represented and shared in the world models of CS’s in that 
SoS. Section V presents how the information is managed 
during operation and how it can be used for reasoning and 
decision making in the individual CS’s. In Section VI, the 
results are discussed, and Section VII introduces some related 
research. In the final section, the conclusions are summarized 
together with indications of future extensions of the research. 

II. LINKED DATA AND ONTOLOGIES  

As mentioned in the introduction, this work uses semantic 
web concepts as a foundation for SoS information 
representation. The main building pieces of this is a generic 
data representation called linked data; techniques for storing 
and retrieving data; a framework for building ontologies that 
contains general concepts for knowledge representation; and 
a number of more or less standard vocabularies. Each of these 
will be introduced in the following subsections. 
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A. Linked Data Representation 

The Resource Description Framework (RDF) is the 
WWW “framework for expressing information about 
resources, where a resource can be anything, including 
documents, people, physical objects, and abstract concepts” 
[4].  

Resources are represented by International Resource 
Identifiers (IRI), which are strings with a syntax very similar 
to the URL strings used for web addresses. The strength of this 
is that unique IRIs can be generated in a distributed way, by 
following a principle where the domain name of an IRI should 
be owned by the organization that creates the IRI. 

The information about the resources is expressed as very 
simple statements on the format subject – predicate – object 
triples, where the predicate is also called a property. The 
subject and predicate are always resources, and the object may 
be either a resource or literal data (e.g. strings, number). 

As a very simple example, assume that an organization 
needs to represent information about cars, and express that a 
particular car is red and is driven by a certain employee. The 
resources in question are the car and the driver, which we 
could assign the following IRIs: 

• Car: <http://example.com/car/123>. 

• Driver: <http://example.com/employee/456>. 

To enhance readability, it is possible to introduce 
abbreviations for common IRI prefixes. For example, we 
could use “ex” to be an abbreviation of 
<http://example.com/>, and the car in the example can then be 
referred to as ex:car/123. This abbreviation can be seen as 
introducing a namespace for resources. 

The following triples capture the required information: 

• ex:car/123 ex:has_color “red” (where the object is a 
literal). 

• ex:employee/456 ex:drives ex:car/123. 

The set of triples is all that is needed to represent the 
information. More formally, a knowledge base K is a set � ⊆
�� ∪ ��  × � × �� ∪ 
 ∪ ��, where R is the set of IRIs, L is 
the set of literals, and B is the set of anonymous resources (also 
known as blank nodes). The blank nodes are useful when we 
do not want to express the identify of a resource but are only 
interested in what combination of properties it has. Since the 
same resource may appear in several triples in K, this set can 
be seen as a graph where the edges are the triples and the nodes 
are the (implicit) set of all IRIs, literals, and blank nodes that 
appear in any triple. It is common to refer to a set of triples as 
an (RDF) graph. 

Note that since the representation is just a set of triples of 
resources with unique identifiers, basic set operations such as 
union can be applied, e.g. to merge two knowledge bases, 
which is quite convenient when communicating linked data 
between systems. 

B. Database Queries and Serialization 

To store larger amounts of RDF triples, databases are 
normally used, and these can be queried in different ways. The 
simplest way is pattern matching, by specifying a triple where 
one or several of the fields are replaced by a wildcard. The 
result is then the set of all triples that match this pattern. 

However, sometimes more advanced queries are needed that 
relate several resources to each other or put more complicated 
constraints on the relations. For this, the SPARQL query 
language has been developed [5].  

To exchange data between systems or store data in files, 
serialization formats are needed, and a number of textual 
notations for this exist, such as RDF/XML [6] or more human-
friendly notations such as Turtle [7] (which is also used in the 
examples in this paper).  

C. Generic Ontological Concepts 

The RDF linked data representation can be used to 
construct ontologies, i.e., definitions of concepts, categories, 
properties, and relations between the resources. In other 
words, it creates a terminology to be used, and this is needed 
to represent a common domain of knowledge. However, the 
definition of ontological concepts typically uses a small set of 
logical constructs, that have for this reason been standardized 
and are universally accepted. Those constructs come from 
logic, in particular description logic, and include: 

• Class and instances. A resource may refer to a class of 
objects, and it can be expressed that another resource 
is an instance of the class (or that the class is the type 
of the instance). 

• Property: A resource may be a property, indicating 
that it makes sense to use it as the predicate of a triple. 
For a property, it can be expressed that it has a certain 
range and domain, thereby restricting the subjects and 
objects to certain classes. 

• Subclasses and sub-properties. It can be expressed that 
one class is a subclass of another, implying that an 
instance of the first subclass is also an instance of the 
more general class. Likewise, a property may be a sub-
property of another property. 

These concepts are introduced in the RDF Schema 
(RDFS) specification [8], which uses the namespaces “rdf:” 
and “rdfs:”. With these concepts, we could in the car example 
above express that our car belongs to a class called Car, which 
is a subclass of vehicles, and that there is a property 
“has_color” whose domain is the class of cars: 

• ex:car/123 rdf:type ex:Car. 

• ex:Car rdf:type rdfs:Class. 

• ex:Vehicle rdf:type rdfs:Class. 

• ex:Car rdfs:subClassOf ex:Vehicle. 

• ex:has_color rdf:type rdf:Property. 

• ex:has_color rdfs:domain ex:Car. 

Thus, if one system transfers some data about a car to 
another system, which is not aware of what a car is but knows 
the more general concept of a vehicle, the other system may 
still make use of the information about the instance given the 
ontological facts above stating that a car is a vehicle. 

RDFS contains a small set of constructs which are very 
common. An elaborate extension is in the Web Ontology 
Language version 2 (OWL2, with the namespace “owl:”) [9] 
that allows the expression of much richer information about 
resources, classes, properties, etc. It is beyond the scope of this 
short overview to go into any details, but it should be 



mentioned that the OWL2 constructs have well-defined 
meanings in terms of logic and can thus be used to logically 
infer more information from what has been explicitly 
provided. 

It should be noted that all the meta-concepts introduced in 
RDFS and OWL2 are just ordinary resource IRIs and do not 
in any way change the linked data representation. They have 
a special place only in the sense that they define very common 
concepts that are universally agreed upon. Also, it should be 
noted that many RDFS concepts are similar to those used in 
UML class diagrams, and it is not uncommon to use UML to 
provide a visual overview of an ontology for human readers. 

D. Common Vocabularies 

Apart from the meta-concepts from RDFS and OWL2, 
certain other more concrete concepts tend to reoccur in many 
domains, and a number of recommended vocabularies have 
been developed. For example, the Dublin Core (DC) 
vocabulary contains concepts related to information resources 
[10] and the Friend of a Friend (FOAF) vocabulary defines 
terms related to people and their relations [11]. It is not 
mandatory to reuse such vocabularies, but it does make life 
simpler if at some point, data from one system is to be shared 
with another system, since it increases the chances that they 
use the same terminology for similar concepts. 

III. CASE STUDY: A ROAD CONSTRUCTION SOS 

To investigate the use of linked data and ontologies for 
SoS semantic interoperability, we have conducted an 
industrial case study where the concepts have been tried. The 
case comes from the construction domain, where a number of 
different machines and other assets form the CS’s that need to 
collaborate on a worksite to produce a road. The case has been 
described in more detail in a previous paper [12], and only a 
brief summary will be provided here to give the context. 

A. Purpose 

The construction sector is one of the largest industries in 
the world, with an annual turn-over of around 13% of the 
global GDP [13]. In this case study, we focus on road 
construction, which is a significant portion of this. However, 
whereas other industries such as manufacturing have seen 
improvements in the order of 3.6% per year over the last 20 
years, the improvement rate in construction is only about 1% 
per year [13].  

The production at a construction site involves a number of 
machines and other assets with complementary capabilities, 
that need to collaborate, and it thus constitutes an SoS. In our 
research, we make a hypothesis that the productivity gap is in 
part due to lack of communication and coordination between 
the parties involved. Today, this collaboration is handled 
informally by human communication, and we are 
investigating how machine-oriented communication and 
supporting tools can supplement the human communication, 
in order to improve coordination and identify wastes that 
should be eliminated. 

B. Architectural Concerns 

The construction SoS has several architectural concerns, 
including: 

• Multi-vendor. Machines from different vendors and of 
different types must be able to collaborate on the site. 

• Autonomous and manual. Current road construction 
equipment is mostly manually operated, but there is a 
strong trend to develop more automated solutions. The 
SoS architecture must handle a mix of both types. 

• Secure. Participating in an SoS requires a certain 
degree of openness, and it must be assured that 
confidential information of a certain participant does 
not become accessible to others. 

• Flexible. A difference between road construction and 
manufacturing is the continuous changes in the former. 
The process has much shorter periods of steady state, 
which makes process optimization more difficult. This 
increases the need for up-to-date information, support 
for re-planning and reconfiguration. The variability 
between different construction projects is substantial. 

• Robust. It cannot be assumed that communication is 
reliable all the time, since road construction must rely 
on wireless communication, and the coverage of 
cellular networks is often poor at construction sites. 

C. SoS Architecture 

Based on these concerns, a number of architectural 
principles have been identified, which are based on similar 
ideas as used in the Reference Architecture Model for Industry 
4.0 (RAMI4.0) [14]: 

• Asset administration shell (AAS). In order to provide a 
common interface to constituent systems, RAMI 4.0 
introduces the AAS concept, which can encapsulate an 
asset such as a physical machine and give it proper 
information interfaces. This allows for different assets 
to communicate in a standard way, and also provides 
mechanisms for self-description. 

• Hierarchy. Construction work is today organized in a 
hierarchy, where the working machines are at the 
bottom. The next layer is the work site (or a part within 
it). Above that is a project level, which can coordinate 
several sites (e.g. a road site, a quarry, and an asphalt 
plant). However, this structure is in fact usually a poly-
hierarchy, where certain parts can serve several parents 
simultaneously. The different parts in the hierarchy are 
usually ran by different organizations, resulting in an 
operational and managerial independence. In our 
proposed approach, elements on all levels are treated 
as assets, and given their own AAS to handle 
interactions.  

• Capabilities and submodels. The different assets are 
described in terms of their capabilities, i.e. what 
services they can provide. For each capability, there is 
a sub-model that implements the service, making the 
design of the constituent systems modular. Capabilities 
include the ability to use different communication 
techniques, but also different physical work that can be 
done depending on the machine type. 

• World models.  Each constituent system of the SoS will 
contain a substantial amount of information about 
other constituents, as well as data about the 
environment they operate in. We call this information 
set the asset’s world model, and at times it is essential 



to extract data from the world model and exchange it 
with other assets.  

• Publish-subscribe communication. Within each sub-
process in the hierarchy, there is usually a need for all 
involved parties to communicate with each other. We 
have solved this by using a publish-subscribe system 
that all the concerned AAS’s connect to. 

The key elements of the SoS architecture are illustrated in 
Fig. 1. 

D. Validation Prototype 

To test that the different architectural concepts work 
together and are effective, a research prototype has been built. 
It is implemented in the Python language and is distributed to 
allow different parts to be allocated to different computers. 
Communication is over HTTP and the publish-subscribe 
protocol AMQP [15], and these are implemented as 
submodels, as are the various capabilities of different 
machines. The world models are implemented using in-
memory triple stores from the Python library RDFLIB.  

The main conceptual difference compared to a real system 
is that the physical assets are simulated. This also includes the 
human operators of machines, which means that all simulated 
machines behave as if they were automated. 

IV. SOS ONTOLOGY CONTENT 

We will now introduce a set of ontological concepts that 
are useful when describing an SoS. The concepts are generic, 
and should be relevant to most SoS, but as they are derived 
from the case study in the previous section, we cannot say for 
sure if they are universal or not. The ontology is divided into 
a core part, which represents generic concepts that must be 
agreed upon by all CS’s in the SoS, and extensions, that allows 
a CS to specify more specific information that others may or 
may not use. 

A. Core Ontology 

The core ontology contains a small set of abstract 
concepts, represented as classes and properties. Most of these 
will in practice be used by subclassing them with more 
specific classes and properties. An overview of the concepts 
and their relations is given in the UML class diagram in Fig. 
2.  

1) Asset. In the terminology from Industry 4.0, an asset is 

any “object which has a value for the organization” [14]. A 

central concept of Industry 4.0 is that “assets can be 

combined in any way, and these assets are formally described 

in sufficient detail for use in the digital world”. In our context, 

we make a difference between active and passive assets. 

Active assets can perform work, and are exemplified with 

different kinds of machines, as well as an overall site such as 

a quarry or road works site. A common subclass of active 

asset is a mobile asset, representing e.g. a machine that can 

move around. The active assets are thus the potential CS’s of 

the SoS. Passive assets cannot perform work, and represent 

items that are worked upon by the active assets, but which 

still have a value that needs to be represented. In the case 

study, examples of passive assets are the piles of material in 

the quarry, or the ground itself being worked on at the road 

site. 

2) AAS. The asset administration shell provides an 

information interface to the asset, and can be seen as a virtual 

digital and active representation of an asset. The AAS is a 

standardized way of adapting an asset so that it can become a 

CS in the SoS (it represents the CS∆, in the terminology of 

[16]). Note that it is possible to have several AAS’s for the 

same asset, and it is thus important to view them as separate 

RDF resources in the world models. Also, an AAS may be 

composite, if it encapsulates a number of other AAS’s. A 

composite AAS thus represents an SoS level in the hierarchy. 

3) Organization. An organization represents a firm, or a 

part of the firm, and is useful to explain the managerial 

relations in the SoS. Examples of managerial relations are the 

manufacturers, owners, or operators of different assets. 

4) Capability. A capability represents a function which 

the AAS can provide. This may refer to an action capability 

which is made available to the SoS through the AAS, such as 

the capability to move, for a mobile asset. It may also refer to 

a communication capability, which describes the addresses 

and protocols to use to exchange information with an AAS. 

5) Observation. An observation represents a property 

value of an RDF resource that was observed or estimated at a 

certain time by a particular observer. It is thus a triple 

extended with the observer and the time, where a triple may 

be seen as a resource of type rdf:Statement. Observations can 

be used to collect data over time for later analysis, but can 

also have a value during operation. For instance, sometimes 

an observation is transferred between AAS’s in several steps, 

and then it can be important to know where the data originates 

to assess credibility. Also, it can be important to know how 

old the observation is, to assess uncertainty. 

6) Mission. A mission represents something that should 

be achieved. A mission may be an action or a workflow which 

contains other missions. Actions may not be broken down at 

this level of abstraction, and they correspond to capabilities 

of AAS’s. Missions may also have constraints.  
As an example, a mission may be that an asset should 

move (an action corresponding to a capability of a mobile 
asset) to a specific geographic region and then drop its load 
there (another action corresponding to a capability of a load 
carrier.) This should be completed no later than a certain time 
(a constraint.)  

 
 

Fig. 1. Overview of the road construction SoS architecture. 



We will not specify further how constraints are expressed 
but note that OWL2 contains concepts that can express e.g. 
bounds on numerical values, and since these are represented 
as triples, a constraint is a subclass of rdf:Statement. 

A mission has a tree structure where the leaves are the 
atomic actions and workflows are the composite nodes. 
However, the workflows will also need to contain other kinds 
of information, such as expressing conditions, sequences, and 
parallel execution. These can conceptually be seen as 
constraints. However, in practice a user-friendly notation is 
needed. We have experimented with various alternatives, 
including graphical languages such as the Business Process 
Model and Notation (BPMN) [17], but we leave the choice of 
notation open in the ontology. 

When a composite AAS, i.e. an SoS, is given a mission, 
whose actions correspond to its own capabilities, that mission 
usually needs to be decomposed, which means that the SoS 
capabilities are translated into CS capabilities. The composite 
AAS thus needs to derive a new workflow which orchestrates 
the execution of CS’s. The parts of this new workflow that are 
to be conducted by a particular CS is then sent to it as a new 
mission. 

B. World Models and Extensions 

The core ontology is used to structure the data in the world 
model of each AAS. This world model is thus a set of RDF 
triples, where the resources include those specified in the core 
ontology. 

A specific AAS, that encapsulates a concrete asset, may 
extend the core ontology with new concepts. As an example, 
the AAS of a working machine such as an excavator would 
introduce an ontology class of the physical excavator, which 
is a subclass of a mobile asset. Further, it would define 
different properties that are relevant, both dynamic such as the 
current load it is carrying, and static such as the maximum 
load it can lift. Also, it would describe itself, i.e., what 
capabilities it provides, etc. 

An important aspect of an AAS in Industry 4.0 is that it 
can provide a manifest, i.e., a description of itself. In our 
implementation, this description essentially corresponds to the 
extended ontology it uses, plus its current state. By requesting 

the manifest of an AAS, using one of its communication 
capabilities, a serialized set of RDF triples is transmitted, 
which can be added to the receiving AAS’s world model. In 
this way, a common language that can be used for their 
communication is created. 

V. LINKED DATA USAGE AND MANAGEMENT 

Having defined the common and extended ontology, these 
can be put into use to let a CS build its world model and 
exchange information about it. This section provides more 
details on how the constituent systems create and use the 
linked data, as well as some experiences on data management. 

A. Operational Usage of Linked Data in Constituents 

The AAS primarily has two tasks: to monitor and control 
the asset, and to communicate with other AAS’s. The 
monitoring part consists of gathering or estimating data over 
time, based on events or sampling. The data is stored in the 
world model as observations, according to the ontology. It is 
also published on the publish-subscribe bus of the composite 
AAS. It is up to each AAS to decide what information on this 
bus they want to subscribe to. When they choose to subscribe, 
they can also filter out what parts of the received RDF graph 
they want to include in their own world model.  

The control part is more intricate, since it involves 
decision making. For most assets in the case study, there is a 
human operator that makes the decision, and the AAS 
therefore needs to present data and analyses of data to a 
human.  

As an example, consider a quarry site, which has a 
composite AAS which contains the AAS’s of machines on the 
site. The site AAS receives a mission to produce a certain 
quantity of aggregate of a specific granularity. It will deal with 
this by using a defined workflow if one exists or letting a site 
operator design a new workflow if necessary. This workflow 
contains actions where capabilities of different machines are 
needed, and the site manager must then allocate missions to 
suitable machines. To do so, the world model must be 
consulted and queried for which machines can perform a 
certain capability.  

 
 

Fig. 2. UML class diagram illustrating the concepts in the core ontology. 
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An issue is how to create user interfaces in a composite 
AAS, where e.g. the site manager wants to inspect properties 
of the included AAS’s. However, those AAS’s may have 
extended the ontology with new specific classes and 
properties, and the user interface has to be built dynamically. 
This can be done by querying the manifests to find out what 
properties (i.e., resources of type rdf:Property) exist in this 
particular AAS and use that to display data in an 
understandable way. 

B. Process Improvement 

The previous subsection discussed how to use the linked 
data during operation, but an important usage is also related to 
process improvement. The motivation for the construction 
SoS is to improve productivity, and a common approach for 
dealing with such problems is the Lean methodology. The 
main steps are to create a process description; collect 
operational data; analyze it to identify possible wastes 
(activities that do not create value); and update the process to 
remove wastes. 

In our approach, there is a potential for automating a large 
part of this process, which is today usually done manually. 
This is achieved by collecting observations of asset and AAS 
states over time, such as where they are, what actions they are 
performing, and key operational properties such as the mode 
they are in. From this, waste patterns can be identified, such 
as excessive inventories; unnecessary machine movements; 
transportation; waiting; etc. These can be precisely attributed 
to workflow steps, since the current action is also observed, 
and to geographical locations. 

It is very important to automate this analysis process since 
construction processes tend to be stable only for a short period, 
and in many cases would change before a manual process had 
the time to complete. 

C. Data Management 

A first step in using RDF is to create suitable IRIs for the 
asset and AAS instances. For tangible assets like machines, 
the most natural is to let the original equipment manufacturer 
(OEM) mint a suitable IRI. One way of doing this is to 
combine the domain name of the OEM with the serial number 
of the machine.  

For more temporary passive assets, like a pile of rocks in 
a quarry, the site owner would need a process for finding 
suitable IRIs. For instance, they could combine their domain 
name with the position and creation time of the pile, to ensure 
uniqueness. For an AAS, a suitable IRI could be the IRI of the 
asset it refers to, appended with “/aas” or similar. For ontology 
extensions, such as defining new asset types or capabilities, 
the domain name of the organization that defines the extension 
is also suitable as a basis, appended with strings related to the 
name of the asset type or capability. In this way, the manifest 
of an AAS is easily generated. 

It is practical to divide the world model into several 
graphs, representing different types of information. This is 
because some subsets of information may have a limited 
validity, and it is then easy to delete the entire graph related to 
that information. Also, some subsets are interesting to share 
with others, which is easier if they are already in a separate 
graph. It is common for linked data stores to be able to handle 
a larger graph being divided into subsets, and to allow 
searching for data either in the entire graph or in one of the 

subsets. Examples of data we have put in subgraphs is the base 
ontology; the extended ontology; the manifest of the AAS; the 
most recent observations about the asset’s state; capabilities 
of the asset; state information about other assets; and tasks 
received from other AAS’s.  

VI. DISCUSSION 

The previous sections have presented concrete solutions 
that were derived as part of the implementation work for our 
research prototype. That work however also generated a 
number of questions, whose answers are not yet clear. In this 
section, we will discuss a few of those issues and provide 
some of our subjective experiences. 

A. Suitability of Linked Data for Different Information 

In general, we have found the RDF approach to linked data 
and ontologies easy to use and quite natural. However, there 
are some types of fine-grain data where it may not be the 
appropriate solution. This includes pixel-based images, for 
which semantic information about what they represent is not 
available. In the construction domain, geographical and 
geotechnical information is central, both for the surface 
(topology, routes, destinations) and underneath it (capturing 
the materials, such as rock, soil, etc.). As it seems, the industry 
has not yet agreed on an appropriate data storage format, but 
is mostly considering document-based storage, using e.g. the 
LandXML schema. Probably, hybrid solutions are needed 
where specific formats are annotated with semantic data. 

B. Level of Abstraction 

Many SoS are hierarchical in their nature, and it has 
proven to be challenging to find the right level of abstraction 
for each level. This has become obvious when it comes to 
mission and their decomposition into actions, which 
correspond to capabilities in the CS’s. If the SoS level 
provides very detailed tasks to the CS’s, it may be able to 
orchestrate their actions with a fine granularity and in that way 
optimize the overall SoS performance. However, by the first 
law of cybernetics [18], this requires access to a large amount 
of information about the CS’s, which may be impractical. The 
opposite is to give the CS’s much vaguer tasks, which allows 
them to optimize within those bounds, and make appropriate 
compromises vis-à-vis their own objectives. The risk is 
however that the emergent properties of their interactions are 
not as desired. 

It would be interesting to explore this topic further and 
extend the ontology to allow CS’s to express what their 
priorities are, that guide how they make decisions. Possibly, 
this could make it more transparent how a CS will deal with a 
more abstract task and make it possible to find an appropriate 
level of abstraction. 

C. Reasoning 

The foundation of notations such as OWL2 is decision 
logic, and this means that it is possible to reason logically 
about the content of a linked data set using tools such as [20]. 
In the prototype, we have used rudimentary ad hoc procedures 
for reasoning, to solve situations such as finding all property 
relations defined for a class, including those inherited from 
super-classes. This approach reduces the dependencies of the 
software to third-party modules, and can reduce the hardware 
resources needed, and it may suffice as long as only a subset 
of OWL2 is used. However, if certain extensions use more 



powerful expressions, there is a risk that relevant information 
is missed or misinterpreted. 

One should however be aware that even the powerful 
OWL reasoners are not complete, and do not have the 
capability to deal with complex spatial or temporal data, 
which is inherent in our application domain. 

D. Efficiency of Data Processing and Storage 

Representing data using RDF may seem costly in terms of 
memory and communication bandwidth, due to the very 
verbose IRIs. However, we have not found this to be a 
problem, since the triple stores compact the representation, 
and the number of triples that are repeatedly communicated 
tends to be limited. Larger amounts of data primarily occur 
when collecting observations over time but given the fact that 
commercial triple stores can deal with billions or even trillions 
of triples [19], even this should not be an issue. 

The architecture depicted in Fig. 1 can give the impression 
that the AAS and world model need to be implemented in the 
embedded systems of the assets, but this is not necessarily the 
case. A common solution is likely to be that the AAS is 
implemented in the cloud and has a private communication 
channel to the embedded system in the asset. This removes 
concerns about dealing with RDF in memory constraint 
systems. 

An open question is related to how data is to be 
communicated. The publish-subscribe model in the 
architecture makes handling of the communication 
straightforward, but it does not specify whether the AAS’s 
should repeatedly send updates of all parts of their asset state, 
or only send updates about things that change. Depending on 
the dynamics of the application, this could have large effects 
on bandwidth consumption, but more rare updates could 
imply that newly added AAS’s do not get access to the 
complete state until information changes. A suitable 
compromise is probably a combination of requests for 
complete information when needed and continuous updates of 
changes. 

When dealing with large data sets, such as maps or 
geotechnical information, it might be appropriate to only 
communicate those parts that are needed for a particular task. 
However, this raises questions how to extract that data from a 
larger database. 

VII. RELATED WORK 

The ideas of using ontologies in the context of SoS is not 
new, and the existing body of research can broadly be divided 
into general work on the need of SoS ontologies; specific 
suggestions on concrete ontologies for different SoS aspects; 
and implementation issues in an operational context. 

A. General Work on the Need of SoS Ontologies 

Several authors have looked at ontologies for SoS, with 
the purpose of clarifying terminology and concepts. Langford 
et al. [21] investigate the philosophical underpinnings of 
ontologies for systems and SoS. Based on a set of axioms from 
set theory, the ontology is divided into an objective and a 
subjective part, that are then used to form an integrative 
framework. It is also noted that the temporal domain is central 
and can be used to understand emergence.  

Abdalla et al. [22] present a systematic literature review of 
31 papers on knowledge representation in SoS. They observe 
that most papers describe ontologies for a particular domain, 
rather than for SoS in general. The motivations for knowledge 
representation are mainly to standardize terminology, to ease 
integration, engineering activities, as well as SoS 
management.  

Sarder et al. [23] discuss the processes of ontology 
development, and apply it to systems engineering, mainly with 
the motivation to clarify terminology. A similar need is also 
identified for SoS engineering, but without providing any 
concrete suggestions. 

B. Concrete Ontologies for SoS 

Baek et al. [24] present the M2SoS meta-model for SoS, 
which was elicited in the context of a mass causality incident 
response system. The core ontology in our paper includes a 
subset of the concepts in M2SoS, but our work differs in its 
focus on a representation suitable for machine processing. 

Bénaben et al. [25] also discuss interoperability between 
CS’s in a crisis management SoS. A meta-model is proposed, 
which is divided into a “treatment system”, corresponding to 
the crisis management SoS, i.e. the system-of-interest, and a 
“studied system”, which is the environment where the crisis 
occurs. When combining these two ontologies with a 
reasoning engine, appropriate responses can be deduced. 

Zhu et al. [26] propose an OWL2 based ontology for 
describing SoS missions and discusses principles for how the 
mission may be decomposed and allocated to CS’s. A mission 
model is analyzed to detect common mistakes prior to 
execution, and this is done by expressing the mistakes as 
SPARQL queries and submit them to an OWL reasoning 
engine. The approach is exemplified through an air defense 
application. The paper is more detailed in specifying missions 
than our ontology but is focused on the design of missions 
rather than SoS operations. 

Yahia et al. [27] discuss principles for how ontologies and 
description logic can be used to achieve interoperability in 
SoS. They introduce the need for an “upper ontology”, which 
is a role played by the core ontology in our approach. With 
this as a basis, two ontologies can be aligned through decision 
logic reasoning. The approach has been tested on two 
alternative ontologies from the manufacturing domain. 

C. Implementation Aspects of Operational SoS Ontologies 

Curry [28] proposes the use of linked data for dealing with 
SoS interoperability, using dataspace architecture that allow 
for more heterogeneous and distributed storage and querying. 
This is illustrated with an example from enterprise energy 
management. The approach is similar to ours, except that we 
are less focused on large scale data management.  

Operationalizing the mission part and combining that with 
an execution engine can be seen as a way to dynamically adapt 
autonomous CS’s, similarly to the approach in [29]. 

Durbha et al. [30] discuss interoperability in the Global 
Earth Observation System of Systems (GEOSS). It discusses 
possible conflicts between constituent system data, and how 
to modularize the potentially enormous ontology needed. 

Outside the SoS operational context, linked data is also the 
foundation for the Open Services for Lifecycle Collaboration 



(OSLC) standard for interoperability between systems 
engineering tools across organizations [31]. 

VIII. CONCLUSIONS AND FUTURE RESEARCH 

This paper has investigated, through a case study in road 
construction, the interoperability of CS’s in an SoS based on 
the use of linked data and ontologies.  

The first research question concerned what kinds of 
information that need to be shared. This was answered by 
developing a core ontology with concepts such as asset, AAS, 
organization, capability, mission, and observation.  

The second research question was related to the 
effectiveness of linked data and ontologies as a representation 
of the required information. A prototype implementation 
confirmed that this is a fruitful approach, but also provided 
many insights and experiences regarding how to use the 
techniques and identified areas where further development is 
needed. 

This research is ongoing and will continue in several 
directions. Related to the particular case study, we plan to 
investigate more advanced reasoning techniques and 
optimization. This includes synthesis of plans, uncertainty 
assessment including fidelity of data, and preferences. We 
also plan to extend the work to more domains, with a start in 
manufacturing and Internet of Things, and to a broader part of 
the SoS lifecycle. Ultimately, we believe that the solutions 
discussed in this paper may form the backbone of a DevOps 
approach for SoS with the world models acting as “digital 
twins” of the operational SoS. 

REFERENCES 

[1] M. W. Maier, “Architecting Principles for Systems-of-Systems,” 
INCOSE Int. Symp., pp. 565–573, Jul. 1996. 

[2]  T. Berners-Lee, J. Hendler, and O. Lassila, “The Semantic Web,” 
Scientific American, vol. 284. pp. 34–43, 2001. 

[3] A. R. Hevner, S. T. March, J. Park, and S. Ram, “Design science in 
information systems research,” MIS Q., vol. 28, no. 1, pp. 75–105, 
2004. 

[4] World Wide Web Consortium. “RDF 1.1 Primer,” 2014. URL: 
https://www.w3.org/TR/rdf11-primer/. 

[5] World Wide Web Consortium. “SPARQL 1.1 Overview,” 2014. URL: 
https://www.w3.org/TR/sparql11-overview/. 

[6] World Wide Web Consortium. “RDF 1.1 XML Syntax,” 2014. URL: 
https://www.w3.org/TR/rdf-syntax-grammar/. 

[7] World Wide Web Consortium. “RDF Turtle 1.1: Terse RDF Triple 
Language,” 2014. URL: https://www.w3.org/TR/turtle/. 

[8] World Wide Web Consortium. “RDF Schema 1.1,” 2014. URL: 
https://www.w3.org/TR/rdf-schema/. 

[9] World Wide Web Consortium. “OWL 2 Web Ontology Language 
Quick Reference Guide,” 2nd Edition, 2012. URL: 
https://www.w3.org/TR/owl-quick-reference/. 

[10] ISO. ”Information and documentation – The Dublin Core metadata 
element set,” Standard No. 15836-1:2017, 2017.  

[11] D. Brickley and L. Miller. “FOAF Vocabulary Specification 0.99,” 
2014. URL: http://xmlns.com/foaf/spec/. 

[12] J. Axelsson, J. Fröberg, and P. Eriksson, “Towards a System-of-
Systems for Improved Road Construction Efficiency Using Lean and 
Industry 4.0,” in 13th Annual Conference on System of Systems 

Engineering, 2018, pp. 576–582. 

[13] McKinsey & Co. “Reinventing Construction: A Route to Higher 
Productivity.” Feb. 2017. 

[14] DIN SPEC 91345. Reference Architecture Model Industrie 4.0 
(RAMI4.0). April, 2016. 

[15] ISO/IEC. Advanced Message Queueing Protocol (AMQP) v1.0 
specifcation. ISO/IEC standard 19464, 2014.  

[16] J. Axelsson and A. Kobetski, “Towards a risk analysis method for 
systems-of-systems based on systems thinking,” in IEEE International 
Systems Conference (SysCon), 2018. 

[17] OMG. Business Process Model and Notation (BPMN), version 2.0. 
2011. 

[18] W. R. Ashby, An Introduction to Cybernetics. London: Chapman & 
Hall Ltd., 1956. 

[19] Oracle. Oracle Spatial and Graph: Benchmarking a Trillion Edges RDF 
Graph. White paper, Nov. 2016. 

[20] E. Sirin, B. Parsia, B. C. Grau, A.  Kalyanpur, and Y. Katz, "Pellet: A 
practical owl-dl reasoner," Web Semantics: science, services and 
agents on the World Wide Web, Vol. 5, no. 2, 2007. 

[21] G. Langford and T. Langford, "The making of a system of systems: 
Ontology reveals the true nature of emergence," 2017 12th System of 
Systems Engineering Conference (SoSE), Waikoloa, HI, 2017. 

[22] G. Abdalla, C. D. N. Damasceno, M. Guessi, F. Oquendo and E. Y. 
Nakagawa, "A Systematic Literature Review on Knowledge 
Representation Approaches for Systems-of-Systems," 2015 IX 
Brazilian Symposium on Components, Architectures and Reuse 
Software, Belo Horizonte, 2015, pp. 70-79. 

[23] M. B. Sarder and S. Ferreira, "Developing Systems Engineering 
Ontologies," 2007 IEEE International Conference on System of 
Systems Engineering, San Antonio, TX, 2007, pp. 1-6. 

[24] Y. Baek, J. Song, Y. Shin, S. Park and D. Bae, "A Meta-Model for 
Representing System-of-Systems Ontologies," 2018 IEEE/ACM 6th 
International Workshop on Software Engineering for Systems-of-
Systems (SESoS), Gothenburg, Sweden, 2018, pp. 1-7. 

[25] F. Bénaben, C. Hanachi, M. Lauras, P. Couget, and V. Chapurlat. "A 
metamodel and its ontology to guide crisis characterization and its 
collaborative management." Proc. 5th International Conference on 
Information Systems for Crisis Response and Management, 
Washington, DC, USA, May, pp. 4-7. 2008. 

[26] W. Zhu, H. He and Z. Wang, "Ontology-Based Mission Modeling and 
Analysis for System of Systems," IEEE International Conference on 
Internet of Things, Exeter, 2017, pp. 538-544. 

[27] E. Yahia, J. Yang, A. Aubry, and H. Panetto, “On the Use of 
Description Logic for Semantic Interoperability of Enterprise 
Systems,” In: Meersman R., Herrero P., Dillon T. (eds) On the Move 
to Meaningful Internet Systems: OTM 2009 Workshops. Lecture Notes 
in Computer Science, vol 5872. Springer, Berlin, Heidelberg, 2009. 

[28] E. Curry, "System of systems information interoperability using a 
linked dataspace," 2012 7th International Conference on System of 
Systems Engineering (SoSE), Genova, 2012, pp. 101-106. 

[29] J. Axelsson and A. Kobetski, “On the conceptual design of a dynamic 
component model for reconfigurable AUTOSAR systems,” in 5th 
Workshop on Adaptive and Reconfigurable Embedded Systems, 2013. 

[30] S. S. Durbha, R. L. King and N. H. Younan, "An Information 
Semantics Approach for Knowledge Management and Interoperability 
for the Global Earth Observation System of Systems," in IEEE Systems 
Journal, vol. 2, no. 3, pp. 358-365, Sept. 2008. 

[31] M. Saadatmand and A. Bucaioni. "OSLC Tool Integration and Systems 
Engineering--The Relationship between the Two Worlds." 40th 
EUROMICRO Conference on Software Engineering and Advanced 
Applications (SEAA). IEEE, 2014. 


