
JOURNAL OF EMBEDDED COMPUTING, FEBRUARY 2004 1

Aspects and Components in Real-Time System
Development:

Towards Reconfigurable and Reusable Software
Aleksandra Tešanović�, Dag Nyström†, Jörgen Hansson�, and Christer Norström†

�Linköping University, Department of Computer Science, Linköping, Sweden
†Mälardalen University, Department of Computer Engineering, Västerås, Sweden

Abstract— Increasing complexity of real-time systems, and
demands for enabling their configurability and reusability are
strong motivations for applying new software engineering prin-
ciples, such as aspect-oriented and component-based develop-
ment. In this paper we introduce a novel concept of aspectual
component-based real-time system development. The concept
is based on a design method that assumes decomposition of
real-time systems into components and aspects, and provides
a real-time component model that supports the notion of time
and temporal constraints, space and resource management con-
straints, and composability. Initial results show that the successful
application of the proposed concept has a positive impact on real-
time system development in enabling efficient configuration of
real-time systems, improved reusability and flexibility of real-
time software, and modularization of crosscutting concerns.
We provide arguments for this by presenting an application
of the proposed concept on the design and development of
a configurable embedded real-time database, called COMET.
Furthermore, using the COMET system as an example, we
introduce a novel way of handling concurrency in a real-time
database system, where concurrency is modeled as an aspect
crosscutting the system.

Index Terms— Embedded systems, real-time systems, software
components, aspects, database systems, temporal analysis.

I. I NTRODUCTION

REAL-TIME and embedded systems are being used
widely in modern society of today. However, successful

deployment of embedded and real-time systems depends on
low development costs, high degree of tailorability and quick-
ness to market [1]. Thus, the introduction of thecomponent-
basedsoftwaredevelopment (CBSD) [2] paradigm into real-
time and embedded systems development offers significant
benefits, namely:

• configuration of embedded and real-time software for
a specific application using components from the com-
ponent library, thus, reducing the system complexity as
components can be chosen to provide the functionality
needed by the system;

• rapid development and deployment of real-time software
as many software components, if properly designed and
verified, can be reused in different embedded and real-
time applications; and

• evolutionary design as components can be replaced or
added to the system, which is appropriate for complex

embedded real-time systems that require continuous hard-
ware and software upgrades.

However, there are aspects of real-time and embedded
systems that cannot be encapsulated in a component with
well-defined interfaces as they crosscut the structure of the
overall system, e.g., synchronization, memory optimization,
power consumption, and temporal attributes.Aspect-oriented
softwaredevelopment (AOSD) has emerged as a new principle
for software development that provides an efficient way of
modularizing crosscutting concerns in software systems [3]–
[5]. AOSD allows encapsulating crosscutting concerns of a
system in “modules”, called aspects.

Applying AOSD in real-time and embedded system devel-
opment would reduce the complexity of the system design
and development, and provide means for a structured and
efficient way of handling crosscutting concerns in a real-time
software system. Hence, the integration of the two disciplines,
CBSD and AOSD, into real-time systems development would
enable: (i) efficient system configuration using components
and aspects from the library based on the system require-
ments, (ii) easy tailoring of components and/or a system for
a specific application, i.e., reuse context, by changing the
behavior (code) of a component by applying aspects. This
results in enhanced flexibility of the real-time and embedded
software through the notion of system configurability and
component tailorability. However, due to specific demands of
real-time systems, applying AOSD and CBSD to real-time
system development is not straightforward. For example, we
need to provide methods for analyzing temporal behavior of
individual aspects and components as the development process
of real-time systems has to be based on a software technology
that supports predictability in the time domain. Furthermore, if
we want to use both AOSD and CBSD in real-time system de-
velopment, we need to provide methods for efficient temporal
analysis of different configurations of components and aspects.
Additionally, CBSD assumes a component to be a black box,
where internals of components are not visible, while AOSD
promotes white box components, i.e., the entire code of the
component is visible to a component user. This implies that we
need to provide support for aspect integration into component
code, while preserving information hiding of a component to
the largest degree possible. Hence, to be able to successfully

2 JOURNAL OF EMBEDDED COMPUTING, FEBRUARY 2004

apply software engineering techniques such as AOSD and
CBSD in real-time systems, the following questions need to
be answered.

• What is the appropriate design method that will allow
integration of the two software engineering techniques
into real-time systems?

• What component model and aspects are appropriate for
real-time and embedded environments?

• What component model can capture and adopt principles
of CBSD and AOSD in real-time and embedded environ-
ments?

In this paper we investigate and address these research ques-
tions by proposing a novel concept ofaspectual component-
basedreal-time systemdevelopment (ACCORD). The concept
is founded on a design method that decomposes real-time
systems into components and aspects, and provides areal-time
componentmodel (RTCOM) that supports the notion of time
and temporal constraints, space and resource management con-
straints, and composability. RTCOM is the component model
addressing real-time software reusability and composability by
combining aspects and components. It is our experience so
far that applying the proposed concept has a positive impact
on the real-time system development in enabling efficient
configuration of real-time systems, improved reusability and
flexibility of real-time software, and a structured way of
handling crosscutting concerns. We show that ACCORD can
be successfully applied in practice by describing the way we
have applied it in the design and development of acomponent-
basedembedded real-time database system (COMET). In the
COMET example we present a novel approach to modeling
and implementing real-time policies, e.g., concurrency control
and scheduling, as aspects that crosscut the structure of a real-
time system. Modularization of real-time policies into aspects
allows customization of real-time systems without changing
the code of the components.

The paper is organized as follows. In section II a back-
ground to component-based and aspects-oriented software
development is presented. In section III we present an outline
of ACCORD and its design method. We present RTCOM in
section IV. In section V we show an application of ACCORD
to the development of COMET. In the COMET example we
describe a new way of modeling real-time concurrency control
policy as an aspect in a real-time database system. Related
work is presented in section VI. The paper finishes (section
VII) with a summary containing the main conclusions and
directions for our future research.

II. BACKGROUND

In this section, background to component-based and aspects-
oriented software development is presented (sections II-A, and
II-B). Main differences between components in component-
based and aspect-oriented software development are then dis-
cussed in section II-C.

A. Component-Based Software Development

The need for transition from monolithic to open and flexible
systems has emerged due to shortcomings in traditional soft-
ware development, such as high development costs, inadequate

support for long-term maintenance and system evolution, and
often unsatisfactory quality of software [6]. CBSD is an
emerging development paradigm that enables this transition
by allowing systems to be assembled from a pre-defined
set of components explicitly developed for multiple usages.
Developing systems out of existing components offers many
advantages to developers and users, such as decreased devel-
opment costs, increased quality of software, shortened time-
to-market, and reduced maintenance costs [6]–[9].

Software components are the core of CBSD. However,
different definitions and interpretations of a component ex-
ist. In general, within software architecture, a component
is considered to be a unit of composition with explicitly
specified interfaces and quality attributes, e.g., performance,
real-time, and reliability [6]. In systems where COM [10] is
used as a component framework, a component is generally
assumed to be a self-contained binary package with precisely
defined standardized interfaces [11]. Similarly, in the CORBA
component framework [12], a component is assumed to be
a CORBA object with standardized interfaces. A component
can be also viewed as a software artifact that models and
implements a well-defined set of functions, and has well-
defined (but not standardized) component interfaces [13].

Hence, the universal definition of a component that would
be suitable for every component-based system does not cur-
rently exist. The definition of a component clearly depends on
the implementation, architectural assumptions, and the way
the component is to be reused in the system. However, all
component-based systems have a common fact:components
are for composition [2].

All types of components, independent of their definition,
communicate with its environment through well-defined in-
terfaces, e.g., in COM and CORBA interfaces are defined
in an interfacedefinition language (IDL), Microsoft IDL and
CORBA IDL. Furthermore, independently of application area,
a software component is normally considered to haveblack
box properties [9], [13]: each component sees only interfaces
of other components, thus, internal state and attributes of the
component are strongly encapsulated.

While frameworks and standards for components today
primarily focus on CORBA, COM, or JavaBeans, the increas-
ing need for component-based development has also been
identified in the area of real-time and embedded systems [1],
[14], [15].

B. Aspect-Oriented Software Development

AOSD has emerged as a new principle for software devel-
opment, and is based on the notion of separation of concerns
[3]. Typically, AOSD implementation of a software system has
the following constituents:

• components, written in a component language, e.g., C,
C++, and Java;

• aspects, written in a corresponding aspect language, e.g.,
AspectC [16], AspectC++ [17], and AspectJ [18] devel-
oped for Java;1 and

1These aspect languages share many similarities with AspectJ.

TEŠANOVIĆ et al.: ASPECTS AND COMPONENTS IN REAL-TIME SYSTEM DEVELOPMENT 3

• an aspect weaver, which is a special compiler that com-
bines components and aspects in a process called aspect
weaving.

Components used for system composition in AOSD are
white box components. A white box component is a piece
of code, e.g., program, function, and method, completely
accessible by the component user. White box components do
not enforce information hiding, and are fully open to changes
and modifications of their internal structure. In AOSD one
can modify the internal behavior of a component by weaving
different aspects into the code of the component.

Aspects are commonly considered to be a property of a
system that affect its performance or semantics, and that
crosscuts the functionality of the system [3]. Aspects of
software such as persistence and debugging can be described
separately and exchanged independently of each other without
disturbing the modular structure of the system [19].

In existing aspect languages, each aspect declaration con-
sists of advices and pointcuts. Apointcut in an aspect language
consists of one or more join points, and it is described
by a pointcut expression. Ajoin point refers to a point in
the component code where aspects should bewoven, e.g., a
method, a type (struct or union). Figure 1 shows the definition
of a named pointcutgetLockCall, which refers to all
calls to the function, i.e., join point,getLock() within the
program with which the aspect is to bewoven, and exposes a
single integer argument to that call.2

pointcut getLockCall(int lockId)=
 call(”void getLock(int)”)&&args(lockId);

Fig. 1. An example of the pointcut definition

advice getLockCall(lockId):
 void after (int lockId)
 {
 cout<<”Lock requested is”<<lockId<<endl;
 }

Fig. 2. An example of the advice definition

An advice is a declaration used to specify the code that
should run when the join points, specified by a pointcut
expression, are reached. Different kinds of advices can be
declared, such as: (i)before advice code is executed before
the join point, (ii) after advice code is executed immediately
after the join point, and (iii)around advice code is executed in
place of the join point. Figure 2 shows an example of an after
advice. With this advice each call togetLock() is followed
by the execution of the advice code, i.e., printing of the lock
id.

C. Components vs. Aspects

Next, we discuss the notion of a component in CBSD and
AOSD with a particular focus on abstraction metaphors: a

2The example presented is written in AspectC++.

white box and a black box component.
While CBSD uses black box as an abstraction metaphor

for the components, AOSD uses the white box component
metaphor to emphasize that all details of the component
implementation should be revealed. Both black box and white
box component abstractions have their advantages and dis-
advantages. For example, hiding all details of a component
implementation in a black box manner has the advantage that
a component user does not have to deal with the component
internals. In contrast, having all details revealed in a white box
manner allows a component user to freely optimize and tailor
the component for a particular software system.

The main motivation and the main benefits of CBSD overlap
and complement the ones of AOSD. Furthermore, making
aspects and aspect weaving usable in CBSD would allow
improved flexibility in tailoring of components and, thus,
enhanced reuse of components in different systems. To allow
aspects to invasively change the component code and still pre-
serve information hiding to the largest extent possible requires
changing a black box component. This, in turn, implies using
the gray box abstraction metaphor for the component. The
gray box component preserves some of the main features of a
black box component, such as well-defined interfaces as access
points to the component, and it also allows aspect weaving to
change the behavior and the internal state of the component.

III. ACCORD DESIGN METHOD

We have argued that the growing need for enabling de-
velopment of configurable real-time and embedded systems
that can be tailored for a specific application, and managing
the complexity of the requirements in the real-time system
design, calls for an introduction of new concepts and new
software engineering paradigms into real-time system devel-
opment. In this section we present ACCORD as a proposal
to address these new needs. Through the notion of aspects
and components, ACCORD enables efficient application of the
divide-and-conquer approach to complex system development.
To effectively apply ACCORD, we provide a design method
with the following constituents.

• A decomposition process with two sequential phases:
(i) decomposition of the real-time system into a set
of components, and (ii) decomposition of the real-time
system into a set of aspects.

• Components, as software artifacts that implement a num-
ber of well-defined functions, and where they have well-
defined interfaces.

• Aspects, as properties of a system affecting its perfor-
mance or semantics, and crosscutting the functionality of
the system [3].

• A real-time component model (RTCOM) that describes
a real-time component, which supports aspects but also
enforces information hiding. RTCOM is specifically de-
veloped to: (i) enable an efficient decomposition process,
(ii) support the notion of time and temporal constraints,
and (iii) enable efficient analysis of components and the
composed system.

The design of a real-time system using ACCORD method is
performed in two phases. In the first phase, a real-time system

4 JOURNAL OF EMBEDDED COMPUTING, FEBRUARY 2004

Aspects in Real-Time Systems

Run-Time Composition Application

Security

Real-Time PropertyCompatibility

VersioningTemporal
Constraints

Resource demand

Memory
Optimization

Real-Time Policies

Flexibility
Portability Synchronization

Fig. 3. Classification of aspects in real-time systems

is decomposed into a set of components. Decomposition is
guided by the need to have functionally exchangeable units
that are loosely coupled, but with strong cohesion. In the
second phase, a real-time system is decomposed into a set of
aspects. Aspects crosscut components and the overall system.
This phase typically deals with non-functional requirements3

and crosscutting concerns of a real-time system, e.g., resource
management and temporal attributes. After the design, com-
ponents and aspects are implemented based on RTCOM.

Analogous to the classical object-oriented design method
that initially identifies objects as building blocks of a sys-
tem, ACCORD initially identifies components and aspects
as building blocks of a real-time software system. Hence,
ACCORD can be viewed as an extension to the classical
object-oriented design method, which in turn implies that
ACCORD is founded on a well-established design method.

A. Aspects in Real-Time Systems

We classify aspects in a real-time system as follows (see
figure 3): (i) application aspects, (ii) run-time aspects, and
(iii) composition aspects.

Application aspects can change the internal behavior of
components as they crosscut the code of the components in the
system. The application in this context refers to the application
towards which a real-time and embedded system should be
configured, e.g., memory optimization aspect, synchronization
aspect, security aspect, real-time property aspect, and real-
time policy aspect. Since optimizing memory usage is one
of the key issues in embedded systems and it crosscuts the
structure of a real-time system, we view memory optimization
as an application aspect of the system. Security is another
application aspect that influences behavior and structure of
a system, e.g., the system must be able to distinguish users
with different security clearance. Synchronization, entangled
in the entire system, is encapsulated and represented by a
synchronization aspect. Memory optimization, synchroniza-
tion, and security are commonly mentioned aspects in AOSD
[3]. Additionally, real-time properties and policies are viewed
as application aspects as they influence the overall structural
behavior of the system. Depending on the requirements of
a system, real-time properties and policies could be further
refined, which we show in the example of the COMET system
(see section V-C). Application aspects enable tailoring of the
components for a specific application, as they change code of

3Non-functional requirements are sometimes referred to as extra-functional
requirements [20].

the components. We informally define application aspects as
programming (aspect) language-level constructs encapsulating
crosscutting concerns that invasively change the code of the
component.

Run-time aspects are critical as they refer to aspects of
the monolithic real-time system that need to be considered
when integrating the system into the run-time environment.
Run-time aspects give information needed by the run-time
system to ensure that integrating a real-time system would not
compromise timeliness, nor available memory consumption.
Therefore, each component should have declared resource
demands in its resource demand aspect, and should have
information of its temporal behavior contained in the temporal
constraints aspect, e.g., worst-case execution time (WCET).
The temporal aspect enables a component to be mapped to a
task (or a group of tasks) with specific temporal requirements.
Additionally, each component should contain information of
the platform with which it is compatible, e.g., real-time operat-
ing system supported, and other hardware related information.
This information is contained in the portability aspect. It
is imperative that the information contained in the run-time
aspect is provided to ensure predictability of the composed
system, ease the integration into a run-time environment,
and ensure portability to different hardware and/or software
platforms. We informally define run-time aspects as language-
independent design-level constructs encapsulating crosscutting
concerns that contain the information describing the compo-
nent behavior with respect to the target run-time environment.
This implies that the run-time aspects do not invasively change
the code of the component.

Composition aspects describe with which components a
component can be combined (compatibility aspect), the ver-
sion of the component (version aspect), and possibilities of
extending the component with additional aspects (flexibility
aspect). Composition aspects can be viewed as language-
independent design-level constructs encapsulating crosscutting
concerns that describe the component behavior with respect to
the composition needs of each component. This implies that
composition aspects do not invasively change the code of the
component.

Having separation of aspects in different categories eases
reasoning about different embedded and real-time related
requirements, as well as the composition of the system and
its integration into a run-time environment. For example, the
run-time system could define what (run-time) aspects the
real-time system should fulfill so that proper components
and application aspects could be chosen from the library
when composing a monolithic system. This approach offers a
significant flexibility as additional aspect types can be added
to components, and therefore, to the monolithic real-time
system, further improving the integration with the run-time
environment.

After aspects are identified, we recommend that a table is
made with all the components and all identified application
aspects, in which the crosscutting effects to different compo-
nents are recorded (an example of one such table is given
in section V-C). As we show in the next section, this step
is especially useful for the next phase of the design, where

TEŠANOVIĆ et al.: ASPECTS AND COMPONENTS IN REAL-TIME SYSTEM DEVELOPMENT 5

Portability

Resource demand

Temporal constr.
WCET-O1

WCET-O2

Memory - O1

OS type

Memory - O2

Hardware type

Run-time
part

Compositio
n

part

Aspect/

component

fu
nctio

nal

compatib
ilit

y

Temporal

compatib
ility

Platfo
rm

compatib
ility

Resource

compatib
iltiy

Functional
part

Operation(O1)

Operation(O2)

Mechanism()

(policy)

(mechanisms)

Fig. 4. A real-time component model (RTCOM)

each component is modeled and designed to take into account
identified application aspects.

IV. REAL-TIME COMPONENTMODEL (RTCOM)

In this section we present RTCOM, which can be viewed
as a component colored with aspects, both inside (application
aspects), and outside (run-time and composition aspects). RT-
COM is a language-independent component model, consisting
of the following parts (see figure 4): (i) the functional part, (ii)
the run-time system dependent part, and (iii) the composition
part.

RTCOM represents a coarse-granule component model as it
provides a broad infrastructure within its functional part. This
broad infrastructure enables tailoring of a component through
weaving of application aspects, thereby changing the func-
tionality and the behavior of the component to suit the needs
of a specific application. In contrast, traditional component
models are fine-grained and allow controlled configuration of
a component to adopt it for use in different system. Although
this type of fine-grained component is typically more optimal
for a particular functionality provided by the component in
terms of code size, it does not allow component tailoring,
but merely fine-tuning of a restricted set of parameters in
the component [20]. For each component implemented based
on RTCOM, the functional part of the component is first
implemented together with the application aspects, then the
run-time system dependent part and the run-time aspects are
implemented, followed by the composition part and rules for
composing different components and application aspects.

A. Notation

We use the following notation to provide a formalized
framework for RTCOM:

• C denotes a set of components of a real-time system
under development, i.e., the configuration, andc ∈ C
represents a component in the system;

• M denotes a set of mechanisms;
• O denotes a set of operations;

• A denotes a set of application aspects of a real-time
system under development; and

• I = If ∪Ic∪Ig is the set of component interfaces, where
– If is a set of functional interfaces of componentc,
– Ic is a set of compositional interfaces of component

c,
– Ig is a set of configuration interfaces of component

c.
Within RTCOM we define a component as follows.
Definition 1 (Component): A component c is a tuple

< M, O, I >, whereM is a set of mechanisms encapsulated
by componentc, O is a set of operations of componentc, and
I is a set of component interfaces.

The following sections provide the follow-up definitions
and extensive elaboration on each of the constituents of the
definition 1 using the notation introduced in this section.

B. Functional Part of RTCOM

To define the functional part of RTCOM, we first need
to define the notion of mechanisms and operations of a
component, as follows.

Definition 2 (Mechanisms): A set of mechanismsM of
componentc is a non-empty set of functions encapsulated by
componentc.

Definition 3 (Operations): A set of operationsO of com-
ponentc is a set of functions implemented inc where for
each operationo ∈ O there exists a non-empty subset of
mechanismsK ⊆ M , a subset of operationsL from other
components (C\{c}), and a mapping such thato = f(K, L).

The implication of definition 2 is the establishment of
mechanisms as fine-granule methods or functions of each
component. Definition 3 implies that each component pro-
vides a set of operations to other components and/or to the
system. Operations can be viewed as coarse-granule methods
or function calls as they are implemented using the underlying
component mechanisms. Additionally, each operation within
the component can call any number of operations provided
by other components in the system. An example of how
operations and mechanisms could be related in a component
is given in figure 5. For example, operationo1 ∈ O is imple-
mented using the subset of component mechanisms{m1, m3},
while operationo2 is implemented using the subset{m2} of
component mechanisms. Furthermore, each operation in the
component can use a mechanism in its implementation one or
several times, e.g.,o1 usesm1 once andm3 three times.

The relationship between the operations in a component and
within a system configuration should be precisely defined to
enable temporal analysis4 of real-time software composed of
RTCOM components. Given that RTCOM is primarily targeted
towards hard real-time systems, efficient WCET analysis is
an essential requirement. To provide means for satisfying this
requirement, we introduce the notion of non-recursively cyclic
set of operations as follows.

Definition 4 (Non-recursively cyclic set): Given the opera-
tion sequence< o1, . . . , on > let fi be the mapping that

4Temporal analysis refers both to static WCET analysis of the code and
dynamic schedulability analysis of the tasks.

6 JOURNAL OF EMBEDDED COMPUTING, FEBRUARY 2004

M

m1
mkm3m2

o1 ono3o2

O

uses 1x

3x2x

Fig. 5. Operations and mechanisms in a componentc

o1 o3o2
calls calls

calls

Fig. 6. An example of the recursively cyclic set of operations{o1, o2, o3}

defines the operationoi, i.e., oi = fi(Ki, Oi), where each
Oi is defined by

– Oi = {oi1, . . . , oim} for somem, and
– oik = fik(Kik, Oik), 1 ≤ k ≤ m.

Let Di = Oi1 ∪ . . . ∪ Oik be the operation domain of the
functions at leveli. The operation sequence< o1, . . . , on >
is non-recursively cyclic if and only if for allD i, Dj, i < j,
Di ∩ Dj �= ∅.

A set of operations{o1, o2, o3} is recursively cyclic if
operationo1 is implemented using operationo2, which in turn
is implemented using operationo3, and operationo3 makes a
recursive cycle by being implemented using the operationo 1

(see figure 6). Having recursively cyclic sets of operations in
the component and between different components, makes tem-
poral analysis, e.g., WCET analysis, of the system composed
out of components inherently difficult. Hence, RTCOM in its
current form only supports non-recursively cyclic operation
sets. The following definition characterizes this property.

Definition 5: A component configurationC for which the
operationsO can be ordered into a sequence< o1, . . . , on >
with the non-recursively cyclic property, is considered to be
well-formed for the purpose of WCET analysis.

The functional part of RTCOM represents the actual code
implemented in the component, and is characterized by defi-
nition 6.

Definition 6 (Functional part): Let c belong to a well-
formed component setC. Then the functional part of com-
ponentc is represented by the tuple< M, O >, whereM is
the set of mechanisms of the component andO is the set of
operations implemented by the component.

The functional part of RTCOM, its constituents, their rela-
tionship and properties introduced so far, we illustrate through
a small example of an ordinary linked list implemented based
on RTCOM. The functional part of the linked list compo-
nent, i.e., the code, consists of component mechanisms and
operations (as prescribed by definition 6). The mechanisms
needed are the ones for the manipulation of nodes in the

policy

listInsert()
listRemove()
listFindFirst()

createNode()
deleteNode()
getNextNode()
linkNode()
unlinkNode()

mechanisms

Fig. 7. The functional part of the linked list component

list, i.e.,createNode, deleteNode, getNextNode,
linkNode, and unlinkNode (see figure 7). Opera-
tions in the linked list component, namelylistInsert,
listRemove, andlistFindFirst, are implemented us-
ing the underlying component mechanisms. In this exam-
ple, listInsert uses the mechanismscreateNode and
linkNode to create and link a new node into the list in
first-in-first-out (FIFO) order. Thus, the implementation of
the operations in a component defines the behavior of the
component. Here, the component provides a FIFO ordering
of nodes in the list, and, hence, exhibits the FIFO component
policy.

The policy of a component can be changed or modified
by weaving of application aspects into the component code,
i.e., functional part of the component. Therefore, application
aspects are directly dependent on the functional part of RT-
COM. The definition of application aspects is influenced by
two requirements: (i) preserving information hiding of the
component to the largest extent possible, and (ii) enabling tem-
poral analysis of the resulting woven components. To satisfy
the two requirements we utilize the notion of mechanisms as
building blocks of application aspects, and provide application
aspects as follows.

Definition 7 (Application aspects): An application aspect
a ∈ A is a set of tuples< at, P > where:

– t ∈ {before, after, around};
– at is an advice of typet defined by mapping

at = f(K), K ⊆ M ; and
– P is a set of pointcuts that describes the subset

of operations in components that can be preceded,
succeeded, or replaced by adviceat depending on
the type of the advice.

Definition 7 extends the traditional definition of
programming-language level aspects by specifying pointcuts
and advices in terms of mechanisms and operations. This
enables performing temporal analysis of thewoven system,
and thereby use of aspects in real-time environments.
This also enables existing aspect languages to be used for
implementing application aspects in real-time systems, and
enables existing weavers to be used to integrate aspects into
components while maintaining predictability of the real-time
system. In RTCOM, pointcuts refer to operations, implying
that a pointcut in an application aspect points to one or
several operations of a component where modifications of
the component code are allowed. Having mechanisms of
the components as basic building blocks of the advices is a

TEŠANOVIĆ et al.: ASPECTS AND COMPONENTS IN REAL-TIME SYSTEM DEVELOPMENT 7

aspect listPriority{
1:
2: pointcut listInsertCall(List_Operands * op)=
3: call("void listInsert(List_Operands*)")&&args(op);
4:
5: advice listInsertCall(op):
6: void before(List_Operands * op){
7: while
8: the node position is not determined
9: do
10: node = getNextNode(node);
11: /* determine position of op->node based
12: on its priority and the priority of the
13: node in the list*/
14: }
15: }

Fig. 8. ThelistPriority application aspect

decisive factor in enabling temporal analysis of the resulting
woven code (see section IV-C for details on performing
WCET analysis). Furthermore, the implementation of a whole
application aspect is not limited only to mechanisms of one
component since an aspect can contain any finite number
of advices that can precede, succeed, or replace operations
through out the system configuration. Advices and, hence,
application aspects can be implemented using the mechanisms
from a number of components.

Assume that we want to change the policy of the
linked list component given in figure 7 from FIFO to
priority-based ordering of the nodes. This can be achieved
by weaving an appropriate application aspect. Figure 8
shows thelistPriority application aspect, which con-
sists of one named pointcutlistInsertCall, identifying
listInsert operation of the component as a join point
in the component code (lines 2-3). ThelistInsertCall
before advice is implemented using the component mechanism
getNextNode to determine the position of the node based
on its priority (lines 5-14). Weaving of thelistPriority
application aspect into the code of the linked list component
would result in a component where each execution of the
operationlistInsert is preceded by the execution of the
advicelistInsertCall, i.e., before placing the node into
the list its position is determined based on its priority.

Expressing semantics of aspect weaving formally (definition
9), requires an introduction of the mathematical interpretation
of the sequential execution of two code fragments in the
following manner. Given thatx andy represent two code frag-
ments, andxy denotes their sequential compositions (resulting
from a textual concatenation of the two pieces of code), then
we can define the mathematical interpretation of the codexy
as follows.

Definition 8: Let x and y be two pieces of code (two
sequences of statements in some programming language). Let
o and o′ be the mathematical representation ofx and y,
respectively. Then we denote the mathematical representation
of the codexy by glue(o, o′).

Using the formal notation introduced so far, we can formally
express the semantics of application aspect weaving as follows.

Definition 9 (Weaving of application aspects): Let
a =< at, P > be an application aspect whereat = f(K),
K ⊆ M , and P is a set of pointcuts,P ⊆ O. Weaving of

application aspecta ∈ A in the componentc =< M, O, I >,
results in a componentc′ =< M, O′, I > where for all
o′i ∈ O′ the following holds:

– if oi ∈ O\P theno′i=oi

– if oi ∈ P then

o′i =




glue(at, oi) if t = before
glue(oi, a

t) if t = after
at if t = around

For example, assume that we have component
c =< M, O, I > such that M is the set of mechanisms,
O = {o1, . . . , o6} is the set of operations, andI the set of
component interfaces. Then, weaving of application aspect
a, consisting of advicesabefore

1 , aafter
2 , and their respective

pointcut sets,P1 = {o1, o3} andP2 = {o6}, would result in
componentc′ =< M, O′, I > where

O′ = {glue(abefore
1 , o1), o2, glue(abefore

1 , o3),

o4, o5, glue(o6, a
after
2)}.

Hence, in componentc′, the execution of operationso1 and
o3 are preceded by the execution of the code of advice
abefore
1 , and the execution of operationo6 is succeeded by the

execution of adviceaafter
2 . Operationso2, o4, ando5 remain

unchanged.
Weaving application aspects into the code of a component

does not change the implementation of mechanisms, only the
implementation of operations within the component. Thus,
operations are flexible parts of the component as their imple-
mentation can change by weaving application aspects, while
mechanisms are fixed parts of the component infrastructure.
Since advices are implemented using the mechanisms of
the components, each advice can change the behavior of
the component by changing one or more operations in the
component.

To enable easy implementation of application aspects into a
component, the design of the functional part of the component
is performed in the following manner. First, mechanisms,
as basic blocks of the component, are implemented. Here,
particular attention should be given to the identified application
aspects, and the table that reflects the crosscutting effects of
application aspects to different components should be made to
help the designer in the remaining steps of the RTCOM design
and implementation. Next, the operations of the component
are implemented using component mechanisms (see definition
3). Note that the implemented operations provide an initial
component policy, i.e., basic and somewhat generic component
functionality. This initial policy we denote apolicy framework
of the component. The policy framework could be modified by
weaving different application aspects to change the component
policy.

The development process of the functional part of a compo-
nent results in a component colored with application aspects.
Therefore, in the graphical view of RTCOM in figure 4,
application aspects are represented as vertical layers in the
functional part of the component as they influence component
behavior, i.e., change component policy.

8 JOURNAL OF EMBEDDED COMPUTING, FEBRUARY 2004

C. Run-Time System Dependent Part of RTCOM

The run-time system dependent part of RTCOM accounts
for temporal behavior of the functional part of the compo-
nent code, not only without aspects but also when aspects
are woveninto the component. Hence, run-time aspects are
part of the run-time dependent part of RTCOM; they are
represented as horizontal parallel layers to the functional part
of the component as they describe component behavior (see
figure 4). In the run-time part of the component, run-time
aspects are expressed as attributes of operations, mechanisms,
and application aspects, since those are the elements of the
functional part of the component, and thereby influence the
temporal behavior of the component.

We now illustrate how run-time aspects are represented and
handled in RTCOM using WCET as an example of a run-
time aspect. One way of enabling predictable aspect weaving
is to ensure an efficient way of determining the WCET of the
operations and/or real-time system that have been modified
by weaving of aspects. WCET specifications in RTCOM are
based on the following two observations:

• aspect weaving does not change WCET of mechanisms
since mechanisms are fixed parts of RTCOM; and

• aspect weaving changes operations by changing the num-
ber of mechanisms that an operation uses, thus, changing
their temporal behavior.

Therefore, if the WCETs of mechanisms are known and fixed,
and the WCET of the policy framework and aspects are given
as a function of mechanism used, then the WCET of a com-
ponentwovenwith aspect(s) can be computed by calculating
the impact of aspect weaving to WCETs of operations within
the component (in terms of mechanism usage). To facilitate
efficient WCET analysis of different configurations of aspects
and components, WCET specifications within run-time part of
RTCOM should satisfy the following:

• the WCET for each mechanism is known and declared in
the WCET specification;

• the WCET of every operation is determined based on
the WCETs of the mechanisms, used for implementing
the operation, and the internal WCET of the body of the
function or the method that implements the operation,
i.e., manages the mechanisms; and

• the WCET of every advice that changes the implemen-
tation of the operation is based on the WCETs of the
mechanisms used for implementing the advice and the
internal WCET of the body of the advice, i.e., code that
manages the mechanisms.

Figure 9 shows the WCET specification for mechanisms
in the component, where for each mechanism the WCET is
declared and assumed to be known. Similarly, figure 10 shows
the WCET specification of the component policy framework.
Each operation defining the policy of the component declares
what mechanisms it uses, and how many times it uses a
specific mechanism. This declaration is used for computing
WCETs of the operations or the component (without aspects).
Figure 11 shows the WCET specification of an application
aspect. For each advice type (before, around, after) that
modifies an operation, the operation it modifies is declared

mechanisms(listOfParameters){
mechanism{

 name [nameOfMechanism];
 wcet [value of wcet];
 }
 mechanism{
 name [nameOfMechanism];
 wcet [value of wcet];
 }

}

Fig. 9. Specification of the WCET of component mechanisms

policy(listOfParameters){
operation{

 name [nameOfOperation];
uses{
 [Name of mechanism] [Number of times used];

 }
intWcet [Value of internal operation wcet

(called mechanisms excluded)]
 }
 operation{

...
 }
 ...
}

Fig. 10. Specification of the WCET of a component policy framework

together with the mechanisms used for the implementation
of the advice, and the number of times the advice uses these
mechanisms. WCET specifications of aspects and components
can also have a list of parameters used for expressing the value
of WCETs.

Figure 12 presents an instantiation of a WCET specification
for the policy framework of the linked list component. Each
operation in the framework is named and its internal WCET
(intWcet) with the number of times it uses a particular
mechanism are declared (see figure 12). The WCET specifica-
tion for the application aspectlistPriority that changes
the policy framework is shown in figure 13. Since the maxi-
mum number of elements in the linked list can vary, the WCET
specifications are parameterized with thenoOfElements
parameter.

The resulting WCET of the component,woven with ap-
plication aspects, is computed using a tool we developed
called aspect WCET analyzer [21]. The aspect WCET analyzer

aspect(listOfParameters){
advice{

 name [nameOfAdvice];
 type [typeOfAdvice:before, after, around];

changes{
 name [nameOfOperation];

uses{
 [nameOfMechanism] [Number of times used];
 }
intWcet[Value of internal advice wcet

(called mechanisms excluded)]
 }
 }

}

Fig. 11. Specification of the WCET of an application aspect

TEŠANOVIĆ et al.: ASPECTS AND COMPONENTS IN REAL-TIME SYSTEM DEVELOPMENT 9

policy(noOfElements){
 operation{
 name listInsert;
 uses{
 createNode 1;
 linkNode 1;
 }
 intWcet 1ms;
 }
 operation{
 name listRemove;
 uses{
 getNextNode noOfElements;
 unlinkNode 1;
 deleteNode 1;
 }
 intWcet 4ms;
 }
....
}

mechanisms{
 mechanism{
 name createNode;
 wcet 5ms;
 }
 mechanism{
 name linkNode;
 wcet 4ms;
 }
 mechanism{
 name getNextNode;
 wcet 2ms;
 }

....
}

Fig. 12. The WCET specification of the policy framework

aspect listPriority(noOfElements){
advice{
name listInsertCall;
type before;
changes{
name listInsert;

uses{
getNextNode noOfElements;

}
}
intWcet 4ms+0.4*noOfElements;

}
....
}

Fig. 13. The WCET specification of thelistPriority application aspect

performs automated aspect-level WCET analysis [22], [23],
which is an approach for determining the WCET of a real-
time system composed using aspects and components. The
main goal of aspect-level WCET analysis is determining the
WCET of different real-time system configurations consisting
of aspects and components before any actual aspect weaving
(system configuration) is performed, and, hence, help the de-
signer of a configurable real-time system to choose the system
configuration fitting the WCET needs of the underlying real-
time environment without paying the price of aspect weaving
for each individual candidate configuration. The aspect WCET
analyzer performs the computations using a set of rules that
define how to compute a new WCET of an operationwoven
with aspects, depending on the type of an advice in the aspect.
For example, for the advice of the type before modifying an
operation, the new WCET of the operation would be computed
using the value of an old WCET (i.e., WCET of an operation
without aspects), and augmenting that value with the WCET of
the before advice. This rule reflects the fact that the code of the
before advice would, after aspect weaving, be inserted before
the code of the operation. Similar rules exist for the advices of
types after and around. Following the example of the linked
list component, we can compute the WCET of the operation
listInsert modified with the advicelistInsertCall
of the type before as illustrated in figure 14.

D. Composition Part of RTCOM

The composition part of RTCOM refers both to the func-
tional part and the run-time part of a component, and is
represented as the third dimension of the component model

(aspectualized)listInsertWcet
 = listInsertWcet(without aspects) + (before)listInsertCallWcet
 = 14 + 2.4*noOfElements

where

listInsert(without aspects)
 = intWcet + ∑ mechanism*usage
 = 1 + createNodeWcet*1 + linkNodeWcet*1
 = 1 + 5*1 + 4*1 = 10

(before)listInsertWcet
 = intWcet+ ∑ mechanism*usage
 = 4 + 0.4*noOfElements+ getNextNodeWcet*noOfElements
= 4+2.4*noOfElements

Fig. 14. An example of WCET calculations for an operation modified with
an advice

RTCOM

Composition
interface

 Functional
interface

(provided)
Configuration

interface

Functional
interface
(required)

Fig. 15. Interfaces supported by RTCOM

(see figure 4). Given that there are different application aspects
that can bewoven into the component, composition aspects
represented in the composition part of RTCOM should contain
information about component compatibility with respect to dif-
ferent application aspects, as well as with respect to different
components.

E. RTCOM Interfaces

RTCOM supports three different types of interfaces (see
figure 15): (i) functional interface, (ii) configuration interface,
and (iii) composition interface.

Functional interfaces of components are classified in two
categories, namely provided functional interfaces, and required
functional interfaces. Provided interfaces reflect a set of opera-
tions that a component provides to other components or to the
system. Required interfaces reflect a set of operations that a
component requires from other components. Having separation
to provided and required interfaces eases component exchange
and addition of new components into the system.

The configuration interface is intended for the integration
of a real-time system with the run-time environment. This
interface provides information of temporal behavior of each
component, and reflects the run-time aspect of the component.
Combining multiple components results in a system that
also has a configuration interface, and enables the designer
to inspect the behavior of the system towards the run-time
environment (see figure 16).

Composition interfaces, which correspond to join points,
are embedded into the functional component part. The
weaver identifies composition interfaces and uses them for

10 JOURNAL OF EMBEDDED COMPUTING, FEBRUARY 2004

RTCOM

Real-Time System

System's configuration
interface

Composition
interface

Aspects
weaved into
component

System's
functional interface

System's
functional interface

Provided
functional
interface

Required
functional
interface

Configuration
interface

Fig. 16. Interfaces and their role in the composition process

aspect weaving. Composition interfaces are ignored at compo-
nent/system compile-time if they are not needed, and are “ac-
tivated” only when certain application aspects arewoveninto
the system. Thus, the composition interface allows integration
of the component and aspectual part of the system. Aspect
weaving can be performed either on the component level,
weaving application aspects into component functionality, or
on the system level, weaving application aspects into the
monolithic system.

Explicit separation of software component interfaces into
composition interfaces and functional interfaces was intro-
duced in [19].

V. COMET: A COMPONENT-BASED EMBEDDED

REAL-TIME DATABASE

This section shows how to apply the introduced concept
of aspectual component-based development on a design and
development of a concrete real-time system by presenting the
application of the design method to development of a config-
urable real-time embedded database system, called COMET.

A. Background

The goal of the COMET project is to enable development
of a configurable real-time database for embedded systems,
i.e., enable development of different database configurations
for different embedded and real-time applications. The types
of requirements we are dealing with can best be illustrated on
the example of one of the COMET targeting application areas:
control systems in the automotive industry. These systems
are typically hard real-time safety-critical systems consisting
of several distributed nodes implementing specific function-
ality. Although nodes depend on each other and collaborate
to provide required behavior for the overall vehicle control
system, each node can be viewed as a stand-alone real-
time system, e.g., nodes can implement transmission, engine,
or instrumental functions. The size of the nodes can vary
significantly, from very small nodes to large nodes. Depending
on the functionality of a node and the available memory, dif-
ferent database configurations are preferred. In safety-critical
nodes tasks are often non-preemptive and scheduled off-line,
avoiding concurrency by allowing only one task to be active
at any given time. This, in turn, influences functionality of a
database in a given node with respect to concurrency control.
Less critical nodes, having preemptable tasks, would require

USER INTERFACE

RECOVERY
& LOGGING

MEMORY HANDLING

DBMS

INDEXING

LOCKING

TRANSACTION
MANAGER

TRANSACTION
SCHEDULER

Fig. 17. COMET decomposition into a set of components

concurrency control mechanisms. Furthermore, some nodes
require critical data to be logged, e.g., warning and errors,
and require backups on startup and shutdown, while other
nodes only have RAM (main-memory), and do not require
non-volatile backup facilities from the database. Hence, in the
narrow sense of this application area, the goal was to enable
development of different COMET configurations to suit the
needs of each node with respect to memory consumption,
concurrency control, recovery, different scheduling techniques,
and transaction and storage models.

In the following sections we show how we have reached our
goal by applying ACCORD to the design and development of
the COMET system.

B. COMET Components

Following the ACCORD design method presented in section
III we have first performed the decomposition of COMET
into a set of components with well-defined functions and
interfaces. COMET has seven basic components (see figure
17): user interface component, transaction scheduler com-
ponent, locking component, indexing component, recovery
and logging component, memory handling component, and
transaction manager component.

Theuser interface component (UIC) enables users to access
data in the database, and different applications often require
different ways of accessing data in the system. All the oper-
ations on data in the database are received via the UIC. The
main activities of the UIC consist of receiving and parsing
the incoming requests from the application and the user. UIC
takes the incoming requests and devises the execution plans.

Thetransaction scheduler component (TSC) provides mech-
anisms for performing scheduling of transactions coming into
the system, based on the scheduling policy chosen. COMET
is designed to support a variety of scheduling policies, e.g.,
EDF and RM [24]. The TSC is also in charge of maintaining
the list of all transactions in the system, including scheduled
transactions as well as unscheduled but active transactions,
i.e., transactions submitted for execution. Hard real-time ap-
plications, such as real-time embedded systems controlling
a vehicle, typically do not require sophisticated transaction
scheduling and concurrency control, i.e., the system allows
only one transaction to access the database at a time [25].
Therefore, the TSC should be a flexible and exchangeable part
of the database architecture.

TEŠANOVIĆ et al.: ASPECTS AND COMPONENTS IN REAL-TIME SYSTEM DEVELOPMENT 11

COMET Aspects

Run-Time Composition Application

Security

Transaction
Compatibility

VersioningTemporal
Constraints

Resource demand

Memory
Optimization

Real-Time Scheduling

Flexibility
Portability

Concurrency Control

Synchronization

Fig. 18. Classification of aspects in an embedded real-time database system

The locking component (LC) deals with locking of data, and
it provides mechanisms for lock manipulation and maintains
lock records in the database. The LC provides the policy
framework for the lock administration in which all locks are
granted. This policy framework can be changed into a specific
policy according to which the LC deals with lock conflicts by
weaving concurrency control aspect (see section V-D).

The indexing component (IC) deals with indexing of data.
Indexing strategies could vary depending on the real-time
application with which the database should be integrated, e.g.,
t-trees [26] and multi-versioning suitable for applications with
a large number of read-only transactions [27]. Additionally, it
is possible to customize an indexing strategy depending on the
number of transactions active in the system and the indexing
algorithm needed.

The recovery and logging component (RLC) is in charge of
recovery and logging of data in the database. As COMET
stores data in main-memory, there is a need for different
recovery and logging techniques, depending on the type of
the storage, e.g., non-volatile EEPROM or Flash.

The memory handling component (MHC) manages access
to data in the physical storage. For example, each time a tuple
is added or deleted, the MHC is invoked to allocate and release
memory. Generally, all reads or writes to/from the memory in
COMET involve the MHC.

Thetransaction manager component (TMC) coordinates the
activities of all components in the system with respect to
transaction execution. For example, the TMC manages the
execution of a transaction by requesting lock and unlock
operations provided by the LC, followed by requests to the
operations, which are provided by the IC, for inserting or
updating data items.

C. COMET Aspects

Following ACCORD, after decomposing the system into a
set of components with well-defined interfaces, we decompose
the system into a set of aspects. The decomposition of COMET
into aspects is presented in figure 18, and it fully corresponds
to the ACCORD decomposition (given in section III-A) in
three types of aspects: run-time, composition, and application
aspects. However, as COMET is the real-time database system,
refinement to the application aspects is made to reflect both
real-time and database issues. Hence, in the COMET decom-
position of application aspects, the real-time policy aspect
is refined to include real-time scheduling and concurrency
control policy aspects, while the real-time property aspect

TABLE I

CROSSCUTTING EFFECTS OF DIFFERENT APPLICATION ASPECTS ON THE

COMET COMPONENTS

Components

Application
aspects

Transaction

Real-time
scheduling

Concurrency
control
Memory

optimization

Synchronization

Security

U
IC

T
M

C

T
S

C

LC IC M
H

C

R
LC

X X X X X X

X X

X X X

X

X

X X

X X X X

X X

X

X

X

X

X

X

X

X

(in ACCORD) is replaced with the transaction model aspect,
which is database-specific. The crosscutting effects of the
application aspects to COMET components are shown in the
table I. Note that application aspects can also crosscut or
depend on other application aspects. In this paper, however, we
primarily focus on crosscutting effects of application aspects
to different components. For more details on dependencies
and inter-relationships of aspects we refer interested readers
to [28], [29].

As can be seen from table I, all identified application
aspects crosscut more than one component. For example, the
concurrency control (CC) aspect crosscuts several components,
namely TSC, LC, and TMC in the following manner. The
TMC is responsible for invoking the LC to obtain and release
locks. The way the LC is invoked by the TMC depends on
the CC policy enforced in the database and, hence, needs
to be adjusted separately for each type of CC policy, i.e.,
each type of the CC aspect. Furthermore, the way to deal
with lock conflicts is enforced by the LC. Hence, the LC
should be modified with CC aspect to facilitate lock resolution
policy prescribed by the CC policy of the CC aspect. Since
scheduling and CC are tightly coupled in the sense that CC
polices typically require information about the transactions in
the system maintained by the TSC, this means that the TSC
should be modified by CC aspect to provide adequate support
for the chosen CC policy.

The application aspects could vary depending on the par-
ticular application of the real-time system, thus, particular
attention should be made to identify the application aspects
for each real-time system.

D. COMET RTCOM

Components and aspects in COMET are implemented based
on RTCOM (discussed in section IV). Hence, the functional
part of components is implemented first, together with ap-
plication aspects. We illustrate this process, its benefits and
drawbacks, by the example of one component (namely the
LC) and one application aspect (namely the CC aspect).

The LC performs the following functionality: assigning
locks to requesting transactions and maintaining a lock table,

12 JOURNAL OF EMBEDDED COMPUTING, FEBRUARY 2004

policy

mechanisms

aspect CCpolicy{
1: resolveConflict(LC_Operands * op){
2: /*apply specific CC policy to resolve
3: lock conflict*/
4: /* for HP-2PL */
5: for all lockHolders on op.dataItem
6: if lockRequester.priority>lockHolder.priority
7: then abort each lockHolder
8: else block locRequester
9: }
10: pointcut getReadLockCall(LC_Operands * op)=
11: call("void getReadLock(LC_Operands*)")&&args(op);
12: pointcut getReadWriteCall(LC_Operands * op)=
13: call("void getWriteLock(LC_Operands)")&&args(op);
14: advice getReadLockCall(op):
15: void before(LC_Operands * op){
16: if the write-lock is already held
17: then
18: /*there is a conflict which needs
19: to be resolved by applying CC policy */
20: resolveConflict(op);
21: }
22: advice getWriteLockCall(op):
23: void before(LC_Operands * op){
24: if write- or read-lock is already held
25: then
26: /*there is a conflict which needs
27: to be resolved by applying CC policy */
28: resolveConflict(op);
29: }
30: }

Locking Component Concurrency control aspect

policy{
 operation{
 name getRealLock;
 uses{
 insertLockRecord 1;
 findLockRecord 1;
 }
 intWcet 1ms;
....
}
mechanisms{
 mechanism{
 name insertLockRecord;
 wcet 5ms;
 }
....
}

getReadLock()
getWriteLock()
releaseLock()
......

insertLockRecord()
removeLockRecord()
findLockRecord()
deallocLock()
insertLockHolder()
removeLockHolder()
....

changes

uses

Run-time part,
WCET aspect

Functional
part

Fig. 19. The locking component and the concurrency control aspect

thus, it records all locks obtained by transactions in the system.
As can be seen from the table I, the LC is crosscut with several
application aspects. The application aspect that influences the
policy, i.e., changes the behavior of the LC, is a CC aspect,
which defines the way lock conflicts should be handled in the
system. To enable tailorability of the LC, and reuse of code
in the largest possible extent, the LC is implemented with the
policy framework in which lock conflicts are ignored and locks
are granted to all transactions. The policy framework can be
modified by weaving CC aspects that define other ways of
handling lock conflicts. As different CC policies in real-time
database systems exist, the mechanisms in the LC should be
compatible with most of the existing CC algorithms.

The LC contains mechanisms such as (see left
part of the figure 19): insertLockRecord(),
removeLockRecord(), etc., for maintaining the
table of all locks held by transactions in the system.
The policy part consists of the operations performed on
lock records and transactions holding and/or requesting
locks, e.g., getReadLock(), getWriteLock(),
releaseLock(). The operations in the LC are implemented
using underlying LC mechanisms. The mechanisms provided
by the LC are used by the CC aspects implementing the
class of pessimistic (locking) protocols, e.g., HP-2PL [30]
and RWPCP [31]. However, as a large class of optimistic
protocols is implemented using locking mechanisms, the
mechanisms provided by the LC can also be used by CC
aspects implementing optimistic protocols, e.g., OCC-TI [32]
and OCC-APR [33].

The right part of the figure 19 represents the specification

for the real-time CC aspect (lines 1-30) that can be applied
to a class of pessimistic locking CC protocols. We chose to
give more specific details for the HP-2PL protocol, as it is
both commonly used in main-memory database systems and
a well-known pessimistic CC protocol.

The CC aspect has several pointcuts and advices that
execute when the pointcut is reached. As defined by the
RTCOM pointcut model, the pointcuts refer to the operations:
getReadLockCall() and getWriteLockCall()
(lines 10 and 12). The first pointcut intercepts the call to the
functiongetReadLock(), which grants a read lock to the
transaction and records it in the lock table. Similarly, the
second pointcut intercepts the call to the function that gives a
write lock to the transaction and records it in the lock table.
Before granting a read or write lock, the advices in lines 14-21
and 22-29 check if there is a lock conflict. If conflict exists,
the advices deal with it by calling the local aspect function
resolveConflict() (lines 1-9), where the resolution of
the conflict should be done by implementing a specific CC
policy. As this function is called from the advices it can be
considered a part the body of each advice (equivalent would
be to place the code of the function in each advice separately).
Furthermore,resolveConflict() traverses the list of
transactions holding a lock using underlying mechanisms of
the LC. Hence, the overall advices are implemented using
mechanisms of the LC to traverse the lock table (lines 16-19
and 24-27) and the list of transactions holding a lock (in the
functionresolveConflict()).

So far we have shown that the CC aspect affects the policy
of the LC, but the CC aspect also crosscuts other components

TEŠANOVIĆ et al.: ASPECTS AND COMPONENTS IN REAL-TIME SYSTEM DEVELOPMENT 13

(see table I). In the example of the CC aspect implementing
pessimistic HP-2PL protocol (see figure 19), the aspect uses
the information about transaction priority (lines 5-8), which is
maintained by the TSC, thus crosscutting the TSC. Optimistic
protocols, e.g., OCC-TI, would require additional pointcuts
to be defined in the TMC, as the protocol (as compared to
pessimistic protocols) assumes execution of transactions in
three phases: read, validate and write.

Additionally, depending on the CC policy implemented, the
number of pointcuts and advices varies. For example, some CC
policies (like RWPCP, or optimistic policies) require additional
data structures to be initialized. In such cases, an additional
pointcut namedinitPolicy() could be added to the aspect
that would intercept the call to initialize the LC. A before
adviceinitPolicy would then initialize all necessary data
structures in the CC aspect after data structures in the LC have
been initialized.

E. Wrap-up

Here, we give the benefits and drawbacks of applying
ACCORD to the development of COMET platform. We use
the given example of the LC and CC aspect (see section V-D)
to draw our conclusions. The benefits of applying ACCORD
to the development of COMET platform are the following (in
the context of the given example of the LC and CC aspect).

• Clean separation of concurrency control as an aspect that
crosscuts the LC code is enabled, thus, allowing high
code reusability as the same component mechanisms are
used in almost all CC aspects.

• Efficient tailoring of the component and the system to fit
a specific requirement (in this case specific CC policy),
as weaving of a CC aspect into the LC changes the policy
of the component by changing the component code, and
leaving the configuration of COMET unchanged.

• Having the LC functionality encapsulated into a com-
ponent, and the CC encapsulated into an application
aspect enables reconfiguring COMET to support non-
locking transaction execution (excluding the LC), if other
completely non-locking CC protocol is needed.

The drawbacks experienced in applying ACCORD to real-
time system development are the following.

• A great number of components and aspects available
for system composition can result in an explosion of
possible combinations of components and aspects. This
is a common problem for all software systems using
components, and extensive research has being done in
identifying and defining good composition rules for the
components [6], [19], [34].

• The coarse-granularity of RTCOM may result in non-
negligible component code overhead, e.g., due to a large
number of mechanisms implemented in the component in
order to support tailorability through weaving of appli-
cation aspects. Restricting the number of mechanisms in
the component policy framework initially, and adding the
mechanisms in the component “on-demand”, i.e., when
required by the application or an application aspect, could

be one way of dealing with the code overhead.5

Hence, there is a trade-off between achieving good tai-
lorability and flexibility of components, tractable combinations
of aspects and components, and the optimization of the compo-
nent infrastructure, i.e., number of mechanisms, for a particular
application.

VI. RELATED WORK

In this section we address the research in the area of
component-based real-time and database systems, and the real-
time and database research projects that are using aspects to
separate concerns.

The focus in existing component-based real-time systems is
enforcement of real-time behavior. In these systems a compo-
nent is usually mapped to a task, e.g., passive component [1],
binary component [35], and port-based object component [36].
Therefore, analysis of real-time components in these solutions
addresses the problem of temporal scopes at a component
level as task attributes [1], [35], [36]: WCET, release time,
deadline. ACCORD with its RTCOM model supports mapping
of a component to a task, and takes a broader view of
the composition process by allowing real-time systems to be
composed out of tasks and components that are not necessarily
mapped to a task. ACCORD, in contrast to other approaches
building real-time component-based systems [1], [35], [36],
enables support for multidimensional separation of concerns
and allows integration of aspects into the component code.
VEST [1], [37] indeed uses aspect-oriented paradigm but
does not provide a component model that enables weaving of
application aspects into the component code, rather it focuses
on composition aspects.

In the area of database systems, theaspect-oriented
databases (AOD) initiative aims at bringing the notion of
separation of concerns to databases. The focus of this ini-
tiative is on providing a non-real-time database with limited
configurability using only aspects (i.e., no components) [38].
To the best of our knowledge, KIDS [39] is the only research
project focusing on construction of a configurable database
composed out of components (database subsystems), e.g.,
object management and transaction management. Commercial
component-based databases introduce limited customization of
the database servers [40], [41], by allowing components for
managing non-standard data types, data cartridges and Dat-
aBlade modules, to be plugged into a fully functional database
system. A somewhat different approach to componentization
is Microsoft’s Universal Data Access Architecture [42], where
the components are data providers and they wrap data sources
enabling the translation of all local data formats from different
data stores to a common format. However, from a real-time
point of view none of the component-based database ap-
proaches discussed enforce real-time behavior and use aspects
to separate concerns in the system.

Existing real-time design methods [1], [37], [43]–[46] focus
on task structuring and two different views on the system,

5Note that the ACCORD framework is not restrictive and allows flexible
augmentation of mechanisms within the component.

14 JOURNAL OF EMBEDDED COMPUTING, FEBRUARY 2004

temporal and structural, with moderate emphasis on the in-
formation hiding. The analysis of the real-time system under
design, although missing from early design approaches [43],
[44], has been highlighted as important for the real-time
system development [1], [37], [45], [46]. Furthermore, con-
figuration guidelines and tools for system decomposition and
configuration have been an essential part of all design methods
for real-time systems so far and have, more or less, been
enforced by all existing real-time design methods. RT-UML
[47] is an example an infrastructure that provides configuration
tools in a form of a visual language. Note, however, that RT-
UML cannot be considered a design method as it essentially
provides only syntax, not semantics, for the real-time system
design, e.g., its powerful expressiveness could be used by
a design method as means of specifying real-time software
components [48].

In contrast to real-time design methods, modern software
engineering design methods [2], [19], [49], [50] primarily
focus on the component model, strong information hiding,
and interfaces as means of component communication. Also,
the notion of separation of concerns is considered to be
fundamental in software engineering as it captures aspects of
the software system early in the system design [16]–[19], [51].

It can be observed that there is a gap between the design
approaches from different communities as the real-time com-
munity has focused primarily on real-time issues not exploiting
modularity of software to the extent that the software engineer-
ing community has done. ACCORD helps in bridging this
gap as it provides support for aspects and aspect weaving
into the code of the components, efficient component and
system tailoring, and better reusability and flexibility of real-
time software - the issues that have not been fully addressed
by existing real-time design approaches.

VII. SUMMARY

In recent years, one of the key research challenges in
software engineering research community has been enabling
configuration of systems and reuse of software by composing
systems using components from a component library. Our
research focuses on applying aspect-oriented and component-
based software development to real-time system development
by introducing a novel concept of aspectual component-based
real-time system development (ACCORD). In this paper we
presented ACCORD and its elements, which we have applied
in the development of a real-time database system, called
COMET. ACCORD introduces the following into real-time
system development: (i) a design method, which enables
improved reuse and configurability of real-time and database
systems by combining basic ideas from component-based
and aspect-oriented communities with real-time concerns,
thus bridging the gap between real-time systems, embedded
systems, database systems, and software engineering, (ii) a
real-time component model, called RTCOM, which enables
efficient development of configurable real-time systems, and
(iii) a new approach to modeling of real-time policies as
aspects improving the flexibility of real-time systems. In the
COMET example we have shown that applying ACCORD

could have an impact on the real-time system development
in providing efficient configuration of real-time systems, im-
proved reusability and flexibility of real-time software, and
modularization of crosscutting concerns.

There are a number of research challenges left to be re-
solved. We consider the following issues crucial to successful
application of ACCORD, and, thus, the focus of our future
work.

To successfully apply ACCORD to real-time system de-
velopment we should develop a tool environment that would
support the ACCORD development process, including: (i)
identification of components and aspects based on system
requirements, (ii) automated extraction of information that
reflects run-time behavior of components and aspects built on
RTCOM, (iii) automated extraction of the compositional needs
of components, and (iv) automated configuration of a real-
time systems out of chosen set of components and aspects.
Currently, there is a limited understanding of effects on the
performance and memory consumption when building systems
with components and aspects. Further investigation is essential
for this class of performance-constrained systems.

The ideas and notions introduced by RTCOM could be
applicable to a wider spectrum of application domains, and
not necessarily limited to real-time systems. Thus, on a larger
scale, formalizing the model would help generalizing it to
different application domains. On a smaller scale, we need to
identify tradeoffs in the real-time component model with re-
spect to mechanisms in the component that enable tailorability
by aspect weaving.

ACKNOWLEDGMENTS

The authors would like to thank Dr. Simin Nadjm-Tehrani
for comments and discussions on the formalization of the real-
time component model. This work is financially supported by
the Swedish Foundation for Strategic Research (SSF) via the
SAVE project and the ARTES network, and the Center for
Industrial Information Technology (CENIIT) under contract
01.07.

REFERENCES

[1] J. Stankovic, “VEST: a toolset for constructing and analyzing component
based operating systems for embedded and real-time systems,” in
Proceedings of the Embedded Software, First International Workshop
(EMSOFT 2001), ser. Lecture Notes in Computer Science, vol. 2211.
Tahoe City, CA, USA: Springer-Verlag, October 2001, pp. 390–402.

[2] C. Szyperski,Component Software - Beyond Object-Oriented Program-
ming. Addison-Wesley, 1999.

[3] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M.
Loingtier, and J. Irwin, “Aspect-oriented programming,” inProceedings
of the ECOOP, ser. Lecture Notes in Computer Science, vol. 1241.
Springer-Verlag, 1997, pp. 220–242.

[4] H. Ossher and G. Kiczales, Eds.,Proceedings of the 1st International
Conference on Aspect-Oriented Software Development. ACM Press,
2002.

[5] W. G. Griswold and M. Aksit, Eds.,Proceedings of the 2nd International
Conference on Aspect-Oriented Software Development. ACM Press,
2003.

[6] J. Bosch,Design and Use of Software Architectures. ACM Press in
collaboration with Addison-Wesley, 2000.

[7] I. Crnkovic and M. Larsson, “A case study: Demands on component-
based development,” inProceedings of 22th International Conference of
Software Engineering. Limerick, Ireland: ACM, June 2000, pp. 23–31.

TEŠANOVIĆ et al.: ASPECTS AND COMPONENTS IN REAL-TIME SYSTEM DEVELOPMENT 15

[8] I. Crnkovic, M. Larsson, and F. Lüders, “State of the practice:
Component-based software engineering course,” inProceedings of 3rd
International Workshop of Component-Based Software Engineering.
IEEE Computer Society, January 2000.

[9] W. Fleisch, “Applying use cases for the requirements validation of
component-based real-time software,” inProceedings of 2nd IEEE
International Symposium on Object-Oriented Real-Time Distributed
Computing (ISORC). Saint-Malo, France: IEEE Computer Society
Press, May 1999, pp. 75–84.

[10] Microsoft, “The component object model specification,” Available at:
http://www.microsoft.com/com/resources/comdocs.asp, February 2001.

[11] A. Münnich, M. Birkhold, G. Färber, and P. Woitschach, “Towards an
architecture for reactive systems using an active real-time database and
standardized components,” inProceedings of International Database
Engineering and Application Symposium (IDEAS). Montreal, Canada:
IEEE Computer Society Press, August 1999, pp. 351–359.

[12] OMG, “The common object request broker: Architecture and specifica-
tion,” OMG Formal Documentation (formal/01-02-10), February 2001,
Available at: ftp://ftp.omg.org/pub/docs/formal/01-02-01.pdf.

[13] K. R. Dittrich and A. Geppert,Component Database Systems. Morgan
Kaufmann Publishers, 2000, ch. Component Database Systems: Intro-
duction, Foundations, and Overview.

[14] L. Freidrich, J. Stankovic, M. Humphrey, M. Marley, and J. Haskins,
“A survey of configurable, component-based operating systems for em-
bedded applications,”IEEE Micro, vol. 21, no. 3, pp. 54–68, May/June
2001.

[15] B. Meyer and C. Mingins, “Component-based development: From buzz
to spark,” IEEE Computer, vol. 32, no. 7, pp. 35–37, July 1999, guest
Editors’ Introduction.

[16] Y. Coady, G. Kiczales, M. Feeley, and G. Smolyn, “Using AspectC to
improve the modularity of path-specific customization in operating sys-
tem code,” inProceedings of the Joint European Software Engineering
Conference (ESEC) and 9th ACM SIGSOFT International Symposium
on the Foundations of Software Engineering (FSE-9), 2002.

[17] O. Spinczyk, A. Gal, and W. Schröder-Preikschat, “AspectC++: an
aspect-oriented extension to C++,” inProceedings of the 40th In-
ternational Conference on Technology of Object-Oriented Languages
and Systems (TOOLS Pacific 2002). Sydney, Australia: Australian
Computer Society, February 2002, AspectC++ can be downloaded from:
http://www.aspectc.org.

[18] The AspectJ Programming Guide, Xerox Corporation, September 2002,
available at: http://aspectj.org/doc/dist/progguide/index.html.

[19] U. Aßmann,Invasive Software Composition. Springer-Verlag, Decem-
ber 2002.

[20] I. Crnkovic and M. Larsson, Eds.,Building Reliable Component-Based
Real-Time Systems. Artech House Publishers, July 2002.

[21] A. Tešanovíc, D. Nyström, J. Hansson, and C. Norström, “Aspect-level
WCET analyzer: a tool for automated WCET analysis of a real-time
software composed using aspects and components,” inProceedings of
the 3rd International Workshop on Worst-Case Execution Time Analysis
(WCET 2003), Porto, Portugal, July 2003.

[22] A. Tešanovíc, D. Nyström, J. Hansson, and C. Norström, “Aspect-
level worst-case execution time analysis of real-time systems compo-
sitioned using aspects and components,” inProceedings of the 27th
IFAC/IFIP/IEEE Workshop on Real-Time Programming (WRTP’03).
Poland: Elsevier, May 2003.

[23] A. Tešanovíc, D. Nyström, J. Hansson, and C. Norström, “Integrat-
ing symbolic worst-case execution time analysis into aspect-oriented
software development,” OOPSLA 2002 Workshop on Tools for Aspect-
Oriented Software Development, November 2002.

[24] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-
ming in hard real-time traffic environment,”Journal of the Association
for Computing Machinery, vol. 20, no. 1, pp. 46–61, January 1973.

[25] D. Nyström, A. Tešanović, C. Norström, J. Hansson, and N.-
E. Bånkestad, “Data management issues in vehicle control systems:
a case study,” inProceedings of the 14th Euromicro International
Conference on Real-Time Systems, Vienna, Austria, June 2002.

[26] H. Lu, Y. Y. Ng, and Z. Tian, “T-tree or b-tree: Main memory
database index structure revisited,” inProceedings of the 11th Australian
Database Conference, 2000, pp. 65–73.

[27] R. Rastogi, S. Seshadri, P. Bohannon, D. W. Leinbaugh, A. Silberschatz,
and S. Sudarshan, “Improving predictability of transaction execution
times in real-time databases,”Real-Time Systems, vol. 19, no. 3, pp.
283–302, November 2000, Kluwer Academic Publishers.

[28] J. Kienzle, Y. Yu, and J. Xiong, “On composition and reuse of aspects,”
in In Proceedings of the Workshop on Foundations of Aspect-Oriented
Languages (FOAL 2003), Boston, USA, March 2003.

[29] H. Sipma, “A formal model for cross-cutting modular transition sys-
tems,” in In Proceedings of the Workshop on Foundations of Aspect-
Oriented Languages (FOAL 2003), Boston, USA, March 2003.

[30] R. K. Abbott and H. Garcia-Molina, “Scheduling real-time transactions:
a performance evaluation,”ACM Transactions on Database Systems,
vol. 17, no. 3, pp. 513–560, September 1992.

[31] L. Sha, R. Rajkumar, S. H. Son, and C.-H. Chang, “A real-time locking
protocol,” IEEE Transactions on Computers, vol. 40, no. 7, pp. 793–800,
September 1991.

[32] J. Lee and S. H. Son, “Using dynamic adjustment of serialization order
for real-time database systems,” inProceedings of the 14th IEEE Real-
Time Systems Symposium, December 1993.

[33] A. Datta and S. H. Son, “Is a bird in the hand worth more than two birds
in the bush? Limitations of priority cognizance in conflict resolution
for firm real-time database systems,”IEEE Transactions on Computers,
vol. 49, no. 5, pp. 482–502, May 2000.

[34] F. Bachmann, L. Bass, C. Buhman, S. Comella-Dorda, F. Long,
J. Robert, R. Seacord, and K. Wallnau, “Technical concepts of
component-based software engineering,” Software Engineering Institute,
Carnegie Mellon University, Tech. Rep. CMU/SEI-2000-TR-008, 2000.

[35] D. Isovic, M. Lindgren, and I. Crnkovic, “System development with
real-time components,” inProceedings of ECOOP Workshop - Pervasive
Component-Based Systems, France, June 2000.

[36] D. S. Stewart, “Designing software components for real-time applica-
tions,” in Proceedings of Embedded System Conference, San Jose, CA,
September 2000, class 408, 428.

[37] J. Stankovic, R. Zhu, R. Poornalingam, C. Lu, Z. Yu, M. Humphrey,
and B. Ellis, “VEST: an aspect-based composition tool for real-time
systems,” inProceedings of the 9th Real-Time Applications Symposium
2003. Toronto, Canada: IEEE Computer Society Press, May 2003.

[38] A. Rashid and E. Pulvermueller, “From object-oriented to aspect-
oriented databases,” inProceedings of DEXA 2000, ser. Lecture Notes
in Computer Science, vol. 1873. Springer-Verlag, 2000, pp. 125–134.

[39] A. Geppert, S. Scherrer, and K. R. Dittrich, “KIDS: Construction of
database management systems based on reuse,” Department of Computer
Science, University of Zurich, Tech. Rep. ifi-97.01, September 1997.

[40] “All your data: The Oracle extensibility architecture,” Oracle Technical
White Paper. Oracle Corporation. Redwood Shores, CA, February 1999.

[41] “Developing DataBlade modules for Informix-Universal Server,” In-
formix DataBlade Technology. Informix Corporation, 22 March 2001,
available at http://www.informix.com/datablades/.

[42] “Universal data access through OLE DB,” OLE DB Technical
Materials. OLE DB White Papers, 12 April 2001, available at
http://www.microsoft.com/data/techmat.htm.

[43] H. Gomaa, “A software design method for real-time systems,”Commu-
nications of the ACM, vol. 27, no. 9, pp. 938–949, September 1984.

[44] H. Gomaa, “A software design method for Ada based real time systems,”
in Proceedings of the 6th Washington Ada symposium on Ada. McLean,
Virginia, United States: ACM Press, 1989, pp. 273–284.

[45] H. Kopetz, R. Zainlinger, G. Fohler, H. Kantz, P. Puschner, and
W. Schütz, “The design of real-time systems: from specification to
implementation and verification,”Software Engineering Journal, vol. 6,
no. 3, pp. 72–82, 1991.

[46] A. Burns and A. Wellings,HRT-HOOD: a Structured Design Method for
Hard Real-Time Ada Systems, ser. Real-Time Safety Critical Systems.
Elsevier, 1995, vol. 3.

[47] B. P. Douglass,Real-Time UML: Developing Efficient Objects for
Embedded Systems. Addison-Wesley, 2000.

[48] I. Crnkovic, B. Hnich, T. Jonsson, and Z. Kiziltan, “Specification,
implementation, and deployment of components,”Communications of
the ACM, vol. 45, no. 10, pp. 35–40, October 2002.

[49] A. Dogac, C. Dengi, and M. T. Öszu, “Distributed object computing
platform,” Communications of the ACM, vol. 41, no. 9, pp. 95–103,
1998.

[50] M. T. Özsu and B. Yao,Component Database Systems, ser. Data Man-
agement Systems. Morgan Kaufmann Publishers, 2000, ch. Building
Component Database Systems Using CORBA.

[51] M. Aksit, J. Bosch, W. van der Sterren, and L. Bergmans, “Real-time
specification inheritance anomalies and real-time filters,” inProceedings
of the ECOOP ’94, ser. Lecture notes in computer science, vol. 821.
Springer-Verlag, 1994, pp. 386–407.

16 JOURNAL OF EMBEDDED COMPUTING, FEBRUARY 2004

Aleksandra Tešanovíc received the B.Sc. degree
in electrical engineering from University of Banja
Luka, Bosnia and Herzegovina, in 1999, and the Li-
centiate degree in computer science from Linköping
University, Sweden, in 2003. She is currently a
Ph.D. student at the Department of Computer
Science, Linköping University, Sweden. Her cur-
rent research interests include software engineer-
ing methods, composition techniques, and tools for
component-based real-time and embedded systems.

Dag Nyström received his M.Sc. in computer en-
gineering during 2001 and his Licentiate degree in
2003, both from Mälardalen University, Sweden. He
is currently employed as a Ph.D. student at the
Department of Computer Science and Engineering,
Mälardalen University, Sweden. His current research
interest is mainly data management in vehicular
control-systems.

Jörgen Hanssonreceived the B.Sc. and M.Sc. de-
gree from University of Skövde, Sweden, in 1992
and 1993 respectively. He received his Ph.D. de-
gree in 1999 from Linköping University, Sweden.
He is an Assistant Professor at the Department
of Computer Science in Linköping University. He
has authored/co-authored 30 papers and edited two
books in these areas. His research has focused on
techniques for ensuring robustness and timeliness in
complex real-time applications that are prone to tran-
sient overloads. He has been involved in the design

and construction of the DeeDS system, a distributed active real-time database
system suitable for large complex real-time systems. His current research
interests include techniques and methodologies for repositories functioning
in real-time, adaptive overload management, and component-based software
architectures for embedded and real-time systems. Dr. Hansson serves as
the Director of the National Graduate School in Computer Science (CUGS)
in Sweden. Dr. Hansson has served as Program and General Chair for the
International Workshop on Active and Real-Time Database Systems (ARTDB-
95, ARTDB-97).

Christer Norström is professor in Computer En-
gineering at Mälardalen University. He is Dean for
the faculty of Science and Technology at Mälardalen
University. He is one of the founding members of the
Department of Computer Science and Engineering.
Previously he was working as manager for future
technology at ABB Automation Technology Prod-
ucts/ Robotics. He has also worked as a consul-
tant, in particular for the automotive industry. His
research interests are design of complex real-time
systems, system and software engineering for real-

time systems. Christer is very interested in technology transfer from academia
to industry and he has manifested that through several successful transfers
to the automotive industry. Christer was instrumental to the forming of a
dynamic innovation system Robotdalen, which was granted 100 MSEK 2003.
Christer has given numerous courses on real-time system for industry both in
Sweden and in Europe. He received a Ph.D from Royal Institute of Technology
(KTH), Stockholm in 1997, became Docent at KTH in 2001, and Professor
at Mälardalen University 2002. In year 2001 he was awarded best teacher at
Mälardalen University.

