JOURNAL OF EMBEDDED COMPUTING, FEBRUARY 2004 1

Aspects and Components in Real-Time System
Development:
Towards Reconfigurable and Reusable Software

Aleksandra Te$ano®f, Dag Nystronh, Jorgen Hanssdn and Christer Norstréin
*Link6ping University, Department of Computer Science, Linképing, Sweden
fMalardalen University, Department of Computer Engineering, Vasteras, Sweden

Abstract— Increasing complexity of real-time systems, and embedded real-time systems that require continuous hard-
demands for enabling their configurability and reusability are ware and software upgrades.
strong motivations for applying new software engineering prin-
ciples, such as aspect-oriented and component-based develop- However, there are aspects of real-time and embedded
ment. In this paper we _|ntroduce a novel concept of aspectual systems that cannot be encapsulated in a component with
component-based real-time system development. The concept . .
is based on a design method that assumes decomposition otvell-defined interfaces as they crosscut the structure of the
real-time systems into components and aspects, and providesoverall system, e.g., synchronization, memory optimization,
a real-time component model that supports the notion of time power consumption, and temporal attribut@spectoriented

and temporal constraints, space and resource management con-softwaredevelopment (AOSD) has emerged as a new principle
straints, and composability. Initial results show that the successful for software development that provides an efficient way of
application of the proposed concept has a positive impact on real-

time system development in enabling efficient configuration of Modularizing crosscutting concerns in software systems [3]-
real-time systems, impoved reusability and flexibility of real- [5]. AOSD allows encapsulating crosscutting concerns of a
time software, and modularization of crosscutting concerns. system in “modules”, called aspects.

We provide arguments for this by presenting an application . . .
of the proposed concept on the design and development of Applying AOSD in real-time and embedded system devel-

a configurable embedded real-time database, called COMET. 0Opment would reduce the complexity of the system design
Furthermore, using the COMET system as an example, we and development, and provide means for a structured and
introduce a novel way of handling concurrency in a real-time efficient way of handling crosscutting concerns in a real-time
nggggjtfinsyf:‘irg‘ g’;’grire concurrency is modeled as an aspectyfiyare system. Hence, the integration of the two disciplines,
g y ' _ CBSD and AOSD, into real-time systems development would

Index Terms—Embedded systems, real-time systems, software enable: (i) efficient system configuration using components
components, aspects, database systems, temporal analysis. and aspects from the library based on the system require-
ments, (ii) easy tailoring of components and/or a system for

I. INTRODUCTION a specific application, i.e., reuse context, by changing the

) behavior (code) of a component by applying aspects. This
R EAL-TIME and embedded systems are being usegsuits in enhanced flexibility of the real-time and embedded

widely in modern society of today. However, successfpftware through the notion of system configurability and
deployment of embedded and real-time systems depends @mponent tailorability. However, due to specific demands of
low development costs, high degree of tailorability and quickugl-time systems, applying AOSD and CBSD to real-time
ness to market [1]. Thus, the introduction of themponent- system development is not straightforward. For example, we
basedsoftwaredevelopment (CBSD) [2] paradigm into real-neeq to provide methods for analyzing temporal behavior of
time and embedded systems development offers significaadjividual aspects and components as the development process
benefits, namely: of real-time systems has to be based on a software technology
« configuration of embedded and real-time software fdahat supports predictability in the time domain. Furthermore, if
a specific application using components from the conwe want to use both AOSD and CBSD in real-time system de-
ponent library, thus, reducing the system complexity agelopment, we need to provide methods for efficient temporal
components can be chosen to provide the functionalignalysis of different configurations of components and aspects.
needed by the system; Additionally, CBSD assumes a component to be a black box,
« rapid development and deployment of real-time softwan@here internals of components are not visible, while AOSD
as many software components, if properly designed amdomotes white box components, i.e., the entire code of the
verified, can be reused in different embedded and realomponent is visible to a component user. This implies that we
time applications; and need to provide support for aspect integration into component
« evolutionary design as components can be replaced aode, while preserving information hiding of a component to
added to the system, which is appropriate for compleke largest degree possible. Hence, to be able to successfully

2 JOURNAL OF EMBEDDED COMPUTING, FEBRUARY 2004

apply software engineering techniques such as AOSD aadpport for long-term maintenance and system evolution, and
CBSD in real-time systems, the following questions need tften unsatisfactory quality of software [6]. CBSD is an
be answered. emerging development paradigm that enables this transition
o What is the appropriate design method that will allovby allowing systems to be assembled from a pre-defined
integration of the two software engineering techniqueset of components explicitly developed for multiple usages.

into real-time systems? Developing systems out of existing components offers many
« What component model and aspects are appropriate fuvantages to developers and users, such as decreased devel-
real-time and embedded environments? opment costs, increased quality of software, shortened time-

« What component model can capture and adopt principlég-market, and reduced maintenance costs [6]-[9].
of CBSD and AOSD in real-time and embedded environ- Software components are the core of CBSD. However,
ments? different definitions and interpretations of a component ex-

In this paper we investigate and address these research qigfs-In general, within software architecture, a component
tions by proposing a novel concept aépetual component- is considered to be a unit of composition with explicitly
basedeal-time systendevelopment (ACCORD). The conceptspecified interfaces and quality attributes, e.g., performance,
is founded on a design method that decomposes real-tiigal-time, and reliability [6]. In systems where COM [10] is
systems into components and aspects, and providesltme used as a component framework, a component is generally
componenmmodel (RTCOM) that supports the notion of timeassumed to be a self-contained binary package with precisely
and temporal constraints, space and resource management €@fined standardized interfaces [11]. Similarly, in the CORBA
straints, and composability. RTCOM is the component modepmponent framework [12], a component is assumed to be
addressing real-time software reusability and composability By CORBA object with standardized interfaces. A component
combining aspects and components. It is our experience &N be also viewed as a software artifact that models and
far that applying the proposed concept has a positive impagiplements a well-defined set of functions, and has well-
on the real-time system development in enabling efficiediefined (but not standardized) component interfaces [13].
configuration of real-time systems, improved reusability and Hence, the universal definition of a component that would
flexibility of real-time software, and a structured way ofoe suitable for every component-based system does not cur-
handling crosscutting concerns. We show that ACCORD caantly exist. The definition of a component clearly depends on
be successfully applied in practice by describing the way wibe implementation, architectural assumptions, and the way
have applied it in the design and development obmponent- the component is to be reused in the system. However, all
basedembedded redime database system (COMET). In thecomponent-based systems have a common fartponents
COMET example we present a novel approach to modeliragje for composition [2].
and implementing real-time policies, e.g., concurrency control All types of components, independent of their definition,
and scheduling, as aspects that crosscut the structure of a reafnmunicate with its environment through well-defined in-
time system. Modularization of real-time policies into aspecterfaces, e.g., in COM and CORBA interfaces are defined
allows customization of real-time systems without changing an interfacedefinition language (IDL), Microsoft IDL and
the code of the components. CORBA IDL. Furthermore, independently of application area,

The paper is organized as follows. In section Il a backa software component is normally considered to hiahaek
ground to component-based and aspects-oriented softwhox properties [9], [13]: each component sees only interfaces
development is presented. In section Il we present an outliné other components, thus, internal state and attributes of the
of ACCORD and its design method. We present RTCOM inomponent are strongly encapsulated.
section IV. In section V we show an application of ACCORD While frameworks and standards for components today
to the development of COMET. In the COMET example werimarily focus on CORBA, COM, or JavaBeans, the increas-
describe a new way of modeling real-time concurrency controlg need for component-based development has also been
policy as an aspect in a real-time database system. Relaigehtified in the area of real-time and embedded systems [1],
work is presented in section VI. The paper finishes (sectigh4], [15].
VII) with a summary containing the main conclusions and

directions for our future research. B. Aspect-Oriented Software Development

Il. BACKGROUND AOSD has emerged as a new principle for software devel-
In this section, background to component-based and aspeapment, and is based on the notion of separation of concerns
oriented software development is presented (sections II-A, af8]. Typically, AOSD implementation of a software system has
[I-B). Main differences between components in componenthe following constituents:
based and aspect-oriented software development are then di§- components, written in a component language, e.g., C,
cussed in section II-C. C++, and Java;

« aspects, written in a corresponding aspect language, e.g.,

A. Component-Based Software Development AspectC [16], AspectC++ [17], and AspectJ [18] devel-
The need for transition from monolithic to open and flexible oped for Javd; and

systems has emerged due to shortcomings in traditional soft-
ware development, such as high development costs, inadequatgéhese aspect languages share many similarities with AspectJ.

TESANOVIC et al.: ASPECTS AND COMPONENTS IN REAL-TIME SYSTEM DEVELOPMENT 3

« an aspect weaver, which is a special compiler that comvhite box and a black box component.
bines components and aspects in a process called aspet¥hile CBSD uses black box as an abstraction metaphor
weaving. for the components, AOSD uses the white box component

Components used for system composition in AOSD argetaphor to emphasize that all details of the component
white box components. A white box component is a piecénplementation should be revealed. Both black box and white
of code, e.g., program, function, and method, completel§ox component abstractions have their advantages and dis-
accessible by the component user. White box components advantages. For example, hiding all details of a component
not enforce information hiding, and are fully open to changegplementation in a black box manner has the advantage that
and modifications of their internal structure. In AOSD on@ component user does not have to deal with the component
can modify the internal behavior of a component by weavingiternals. In contrast, having all details revealed in a white box
different aspects into the code of the component. manner allows a component user to freely optimize and tailor

Aspects are commonly considered to be a property ofthe component for a particular software system.
system that affect its performance or semantics, and thatThe main motivation and the main benefits of CBSD overlap
crosscuts the functionality of the system [3]. Aspects afnd complement the ones of AOSD. Furthermore, making
software such as persistence and debugging can be descridgigects and aspect weaving usable in CBSD would allow
separately and exchanged independently of each other withuproved flexibility in tailoring of components and, thus,
disturbing the modular structure of the system [19]. enhanced reuse of components in different systems. To allow

In existing aspect languages, each aspect declaration ceapects to invasively change the component code and still pre-
sists of advices and pointcuts.paintcut in an aspect language serve information hiding to the largest extent possible requires
consists of one or more join points, and it is describechanging a black box component. This, in turn, implies using
by a pointcut expression. Aoin point refers to a point in the gray box abstraction metaphor for the component. The
the component code where aspects shouldvbeen, e.g., a gray box component preserves some of the main features of a
method, a type (struct or union). Figure 1 shows the definitidslack box component, such as well-defined interfaces as access
of a named pointcuget LockCal | , which refers to all points to the component, and it also allows aspect weaving to
calls to the function, i.e., join poinget Lock() within the change the behavior and the internal state of the component.
program with which the aspect is to beven, and exposes a

single integer argument to that call. lll. ACCORD DesiGNMETHOD

We have argued that the growing need for enabling de-
velopment of configurable real-time and embedded systems
poi ntcut get LockCal | (int | ockl d) = that can be tailored for a specific application, and managing

cal | ("void getLock(int)")&Sargs(lockld); the complexity of the requirements in the real-time system
design, calls for an introduction of new concepts and new
software engineering paradigms into real-time system devel-
Fig. 1. An example of the pointcut definition opment. In this section we present ACCORD as a proposal
to address these new needs. Through the notion of aspects
and components, ACCORD enables efficient application of the

advi ce get LockCal | (1 ockld): divide-and-conquer approach to complex system development.
C d after (int locklid) To effectively apply ACCORD, we provide a design method
cout <<”Lock requested is”<<lockld<<end!; with the following constituents.
} « A decomposition process with two sequential phases:
(i) decomposition of the real-time system into a set
Fig. 2. An example of the advice definition of components, and (ii) decomposition of the real-time

system into a set of aspects.

Components, as software artifacts that implement a num-

ber of well-defined functions, and where they have well-

defined interfaces.

« Aspects, as properties of a system affecting its perfor-
mance or semantics, and crosscutting the functionality of
the system [3].

« A real-time component model (RTCOM) that describes
a real-time component, which supports aspects but also
enforces information hiding. RTCOM is specifically de-
veloped to: (i) enable an efficient decomposition process,

C. Components vs. Aspects (i) su_pport the not_iqn of time e_md temporal constraints,
and (iii) enable efficient analysis of components and the
composed system.

The design of a real-time system using ACCORD method is

2The example presented is written in AspectC++. performed in two phases. In the first phase, a real-time system

An advice is a declaration used to specify the code that
should run when the join points, specified by a pointcut *
expression, are reached. Different kinds of advices can be
declared, such as: (Defore advice code is executed before
the join point, (ii) after advice code is executed immediately
after the join point, and (iiljpround advice code is executed in
place of the join point. Figure 2 shows an example of an after
advice. With this advice each call gt Lock() is followed
by the execution of the advice code, i.e., printing of the lock
id.

Next, we discuss the notion of a component in CBSD and
AOSD with a particular focus on abstraction metaphors: a

4 JOURNAL OF EMBEDDED COMPUTING, FEBRUARY 2004

Aspects in Real-Time Systems the components. We informally define application aspects as
} ‘ programming (aspect) language-level constructs encapsulating
o Time Composition Application crosscutting concerns that invasively change the code of the
Resource demand Compatibility Egg:;;mg Fggﬁ;gg Compor_]ent- N
Temporal Versioning Memory Run-tlme_ a;pects are critical as they refer to aspect_s of
Constraints Flexibility Optimization the monolithic real-time system that need to be considered
Portability Synchronization when integrating the system into the run-time environment.

Security

Run-time aspects give information needed by the run-time
system to ensure that integrating a real-time system would not
compromise timeliness, nor available memory consumption.
Therefore, each component should have declared resource

is decomposed into a set of components. Decompositiondgmands in its resource demand aspect, and should have
guided by the need to have functionally exchangeable uniformation of its temporal behavior contained in the temporal
that are loosely coupled, but with strong cohesion. In theonstraints aspect, e.g., worst-case execution time (WCET).
second phase, a real-time system is decomposed into a sef 3¢ temporal aspect enables a component to be mapped to a
aspects. Aspects crosscut components and the overall systi&k (or a group of tasks) with specific temporal requirements.
This phase typically deals with non-functional requiremé@ntgdditionally, each component should contain information of
and crosscutting concerns of a real-time system, e.g., resout¢@ platform with which it is compatible, e.g., real-time operat-
management and temporal attributes. After the design, cofid system supported, and other hardware related information.
ponents and aspects are implemented based on RTCOM. This information is contained in the portability aspect. It
Analogous to the classical object-oriented design methd®l imperative that the information contained in the run-time
that initially identifies objects as building blocks of a sysaspect is provided to ensure predictability of the composed
tem, ACCORD initially identifies components and aspec&ystem, ease the integration into a run-time environment,
as building blocks of a real-time software system. Henc@nd ensure portability to different hardware and/or software
ACCORD can be viewed as an extension to the classiddptforms. We informally define run-time aspects as language-
object-oriented design method, which in turn implies thdhdependent design-level constructs encapsulating crosscutting

ACCORD is founded on a well-established design method.concerns that contain the information describing the compo-
nent behavior with respect to the target run-time environment.

A. Aspects in Real-Time Systems This implies that the run-time aspects do not invasively change
We classi . i foll the code of the component.
e classify aspects in a real-time system as follows (SeeComposition aspects describe with which components a

figure 3): (i) application aspects, (ii) run-time aspects, anéjomponent can be combined (compatibility aspect), the ver-

(iii) composition aspects. sion of the component (version aspect), and possibilities of

Application aspects can change the internal behavior _Ofextending the component with additional aspects (flexibility
components as they crosscut the code of the components in

Th lication in thi ¢ h i _rggﬁect). Composition aspects can be viewed as language-
systerc:]. r?_ ?Fp |cat|:)q In t |soclontel;<téz e(;s to the apE 'C?;'C?Hdependent design-level constructs encapsulating crosscutting
towa_r s which a real-time and embedde system s ould B&ncerns that describe the component behavior with respect to
configured, €.9., memory opt|m'|zat|on aspect, synchronlzan(me composition needs of each component. This implies that
e_lspect, ;ecurlty aspe_ct, real-t_|m_e_ property aspect, ar_1d ret,acl'mposition aspects do not invasively change the code of the
time policy aspect. Since optimizing memory usage is Orl%mponent

of the key issues n embedded sys.tems and it cro_ss'cutg th?—|aving separation of aspects in different categories eases
structure of.ar(.eal-tlme system, we view memory,°pt,'m'zat'°|rbasoning about different embedded and real-time related
as an ?Pp“ca“"” aspegt of the system..Secunty IS anotr?g uirements, as well as the composition of the system and
application aspect that influences behavior ar_ld_stru_cturei integration into a run-time environment. For example, the
a_systfam, €9, the_system must be able tp d!StII’IQUISh USEIR-time system could define what (run-time) aspects the
yv|th dlffer(_ant security _clearance. Synchronization, entanglergal_tirne system should fulfill so that proper components
in the entire system, is encapsulated and represented by & aoqjication aspects could be chosen from the library
;ynchromzaﬂop aspect. Memory opt|.m|zat|on, sync'hromz%hen composing a monolithic system. This approach offers a
tion, ant_d_securlty are _commonly mentloned aspects m_AOS gnificant flexibility as additional aspect types can be added
[3]. Add_ltlonally, real-time prope_rt|es and policies are viewe 0 components, and therefore, to the monolithic real-time
as application aspects as they influence the overall structug Etem, further improving the integration with the run-time
behavior of the system. Depending on the requirements hvironment

a gystem, .real-time prqperties and policies could be furtherAfter aspects are identified, we recommend that a table is
refined, W,h'Ch we show n the example of the COME,T SySttade with all the components and all identified application
(see section V-C). Application aspects enable tailoring of tr’g\s

" o ects, in which the crosscutting effects to different compo-
components for a specific application, as they change codengﬁts are recorded (an example of one such table is given

3Non-functional requirements are sometimes referred to as extra-functiofb/S€ction V-C). As we show in the next section, this step
requirements [20]. is especially useful for the next phase of the design, where

Fig. 3. Classification of aspects in real-time systems

TESANOVIC et al.: ASPECTS AND COMPONENTS IN REAL-TIME SYSTEM DEVELOPMENT 5

é\i\o‘\ o A denotes a set of application aspects of a real-time
ro«&"& system under (jevelopment; and .
PR o I =1;UI Ul is the set of component interfaces, where
P : S — Iy is a set of functional interfaces of component
| @otien SRR | tional i
o NS — I. is a set of compositional interfaces of component
Functional! Operation(02) °°\\><\°Q@\\°
i ¢ — I, is a set of configuration interfaces of component
] Z RS R . .
+ | (mechanisms) 1{@“‘;);\‘9}\,3\} Within RTCOM we define a component as follows.
! | Temporal constr. xggg; O Definition 1 (Component): A component ¢ is a tuple
oo = ot < M,O,I >, whereM is a set of mechanisms encapsulated
Run-time | e el - o
part ! | Resource demand oS by component, O is a set of operations of componentand
i f}\a\xogg\\\v\ I is a set of component interfaces.
]
| Portability [Osype] | ¥ The following sections provide the follow-up definitions
! d . . .
L Hardware type and extensive elaboration on each of the constituents of the

_ _ definition 1 using the notation introduced in this section.
Fig. 4. A real-time component model (RTCOM)

B. Functional Part of RTCOM
each component is modeled and designed to take into accounto define the functional part of RTCOM, we first need

identified application aspects. to define the notion of mechanisms and operations of a
component, as follows.
1IV. REAL-TIME COMPONENTMODEL (RTCOM) Definition 2 (Mechanlsms) A set of mechanisms\/ of
In this section we present RTCOM, which can be Viewegomponent is a non-empty set of functions encapsulated by

. o . __..component.
as a component colored with aspects, both inside (apphcanonDeﬁnition 3 (Operations): A set of operations) of com-

aspects), and outside (run-time and composition aspects). RT-

) : ;" .ponentc is a set of functions implemented in where for
COM is a language-independent component model, consisti ! :

. . o X .edch operatioro € O there exists a non-empty subset of
of the following parts (see figure 4): (i) the functional part, (ii) .)
the run-time system dependent part, and (iii) the com ositigr]]eChamsmSK € M, a subset of operations from other
part Y P part P components@\{c}), and a mapping such that= f(K, L).

.The implication of definition 2 is the establishment of
RTCOM represents a coarse-granule component model as it . . .
.) o . .mechanisms as fine-granule methods or functions of each
provides a broad infrastructure within its functional part. This o e
Cﬁ)mponent. Definition 3 implies that each component pro-

broad infrastructure enables tailoring of a component througndes a set of operations to other components and/or to the

weaving of application aspects, thereby changing the funC:3;{stem. Operations can be viewed as coarse-granule methods

tionality and the behavior of the component to suit the need : : . :
- o " I function calls as they are implemented using the underlying

of a specific application. In contrast, traditional componen . i X A
mponent mechanisms. Additionally, each operation within

models are fine-grained and allow controlled configuration . .
) L e component can call any number of operations provided
a component to adopt it for use in different system. Althoug .

y other components in the system. An example of how

this type of fine-grained component is typically more optima . . .
. : ; : . ‘operations and mechanisms could be related in a component

for a particular functionality provided by the component in_ . o i L
Is given in figure 5. For example, operation € O is imple-

terms of code size, it does not allow component tailoring}h .

: k : ented using the subset of component mechan{smsg ms},
but merely fine-tuning of a restricted set of parameters N ile operationos is implemented using the subspin,) of
the component [20]. For each component implemented baseH P 2 P 9 2

on RTCOM, the functional part of the component is ﬁrsgomponent mechanisms. Furthermore, each operation in the

. . S mponent can mechanism in its implementation one or
implemented together with the application aspects, then tﬁo ponent can use a mechanis s Implementation one o

e
run-time system dependent part and the run-time aspects ar

se%/_eral times, e.gg; usesm; once andngs three times.

. " he relationship between the operations in a component and
implemented, followed by the composition part and rules for P P P
composing different components and application aspects.

within a system configuration should be precisely defined to
enable temporal analy$iof real-time software composed of
RTCOM components. Given that RTCOM is primarily targeted

A. Notation towards hard real-time systems, efficient WCET analysis is
We use the following notation to provide a formalizec®n essential requirement. To provide means for satisfying this
framework for RTCOM: requirement, we introduce the notion of non-recursively cyclic
. C denotes a set of components of a real-time systeffft Of operations as follows. _ _
under development, i.e., the configuration, andt C' Definition 4 (Non-recursively cyclic set): Given the' opera-
represents a component in the system: tion sequence< oy,...,0, > let f; be the mapping that

« M denotes a set of meCh?n'SmS; 4Temporal analysis refers both to static WCET analysis of the code and
« O denotes a set of operations; dynamic schedulability analysis of the tasks.

6 JOURNAL OF EMBEDDED COMPUTING, FEBRUARY 2004

listlnsert()
_ |'i st Remove()
—policy— I'i stFindFirst()

creat eNode()
—mechanisms—| del et eNode()
get Next Node()
| i nkNode()
unl i nkNode()

Fig. 7. The functional part of the linked list component

list, i.e.,cr eat eNode, del et eNode, get Next Node,
I i nkNode, and unl i nkNode (see figure 7). Opera-

Fig. 5. Operations and mechanisms in a compomrent

calls tions in the linked list component, namely st | nsert,
> I i st Remove, andl i st Fi ndFi r st, are implemented us-
0, —cals 0, %03 ing the underlying component mechanisms. In this exam-
ple,l i stlnsert uses the mechanisms eat eNode and
Fig. 6. An example of the recursively cyclic set of operatids, 02,03} | i NkKNode to create and link a new node into the list in

first-in-first-out (FIFO) order. Thus, the implementation of
. _ . the operations in a component defines the behavior of the
defines the operation;, i.e., o; = fi(K;,O;), where each component. Here, the component provides a FIFO ordering

O; is defined by of nodes in the list, and, hence, exhibits the FIFO component
- O, ={oi1,...,0im} for somem, and policy.
— 0ik = fir(Kik, Oix), 1 <k <m. The policy of a component can be changed or modified
Let D; = O U... U O, be the operation domain of thePy weaving of application aspects into the component code,
functions at leveli. The operation sequence o, ...,0, > I-€., functional part of the component. Therefore, application
is non-recursively cyclic if and only if for alD;, D;, i < j, @aspects are directly dependent on the functional part of RT-
D;ND; #0. COM. The definition of application aspects is influenced by

A set of operations{o, 00,03} is recursively cyclic if tWwo requirements: (i) preserving information hiding of the
operationo; is implemented using operatien, which in turn componentto the largest extent possible, and (i) enabling tem-
is implemented using operatien, and operatiows; makes a Poral analysis of the resulting woven components. To satisfy
recursive cycle by being implemented using the operation the two requirements we utilize the notion of mechanisms as
(see figure 6). Having recursively cyclic sets of operations #uilding blocks of application aspects, and provide application
the component and between different components, makes tefgpects as follows.
poral analysis, e.g., WCET analysis, of the system composedP€finition 7 (Application aspects): An application aspect
out of components inherently difficult. Hence, RTCOM in itgt € A is a set of tuples< o', P > where:

current form only supports non-recursively cyclic operation — t € {before,after,around};

sets. The following definition characterizes this property. — a is an advice of typet defined by mapping
Definition 5: A component configuratiod' for which the a' = f(K), K C M; and

operationsD can be ordered into a sequencevy, ..., 0, > — P is a set of pointcuts that describes the subset

with the non-recursively cyclic property, is considered to be of operations in components that can be preceded,

well-formed for the purpose of WCET analysis. succeeded, or replaced by advieé depending on
The functional part of RTCOM represents the actual code the type of the advice.

implemented in the component, and is characterized by defi-Definition 7 extends the traditional definition of

nition 6. programming-language level aspects by specifying pointcuts

Definition 6 (Functional part): Let ¢ belong to a well- and advices in terms of mechanisms and operations. This
formed component sef’. Then the functional part of com- enables performing temporal analysis of teven system,
ponentc is represented by the tuple M, O >, whereM is and thereby use of aspects in real-time environments.
the set of mechanisms of the component ahdis the set of This also enables existing aspect languages to be used for
operations implemented by the component. implementing application aspects in real-time systems, and

The functional part of RTCOM, its constituents, their relaenables existing weavers to be used to integrate aspects into
tionship and properties introduced so far, we illustrate througtomponents while maintaining predictability of the real-time
a small example of an ordinary linked list implemented basesystem. In RTCOM, pointcuts refer to operations, implying
on RTCOM. The functional part of the linked list compo-that a pointcut in an application aspect points to one or
nent, i.e., the code, consists of component mechanisms a®Veral operations of a component where modifications of
operations (as prescribed by definition 6). The mechanisrtie component code are allowed. Having mechanisms of
needed are the ones for the manipulation of nodes in thlge components as basic building blocks of the advices is a

TESANOVIC et al.: ASPECTS AND COMPONENTS IN REAL-TIME SYSTEM DEVELOPMENT 7

aspect ITstPriorityf application aspeat € A in the component =< M, O, I >,
2: pointcut 1istinsertCall(List_Operands * op)= results in a component’ =< M,0O’,I > where for all
3: call ("void listlnsert(List_Operands*)")&&args(op); o0 c O’ the following holds:

4: ¢ '

5: advice listlnsertCall (op): i . /=,

6: void before(List_Operands * op){ If 0i € O\P then 0;=0i

7: while — if 0; € P then

8: the node position is not detern ned

9: do .

10: node = get Next Node(node) ; glue(at,oi) if ¢ = before

11: /* deternmine position of op->node based U .ot i =

12: on its priority and the priority of the 9; giue(o“a) !ft after

13: node in the list*/ a if ¢ = around

1‘5‘) } For example, assume that we have component

c=<M,O,I > such thatM is the set of mechanisms,
O = {o1,...,06} Is the set of operations, anfl the set of
component interfaces. Then, weaving of application aspect
a, consisting of advices’“/°™®, a2/%" "and their respective
I,,%ointcut sets,P; = {01,035} and P> = {os}, would result in
=< M,O', I > where

Fig. 8. Thel i stPriority application aspect

decisive factor in enabling temporal analysis of the resulti ;

woven code (see section IV-C for details on performing@MPonent

WCET analysis). Furthermore, the implementation of a whole , before before

application aspect is not limited only to mechanisms of one O = {glue(a; ,01), 02, glue(a; ,03),

component since an aspect can contain any finite number 04, 05, glue(og, a3 ')},

of advices that can precede, succeed, or replace operations

through out the system configuration. Advices and, hencdence, in component’, the execution of operations, and

application aspects can be implemented using the mechanisspsare preceded by the execution of the code of advice

from a number of components. al{ef‘”“e, and the execution of operatien is succeeded by the
Assume that we want to change the policy of thexecution of advicezgft”. Operationss, o4, andos remain

linked list component given in figure 7 from FIFO tounchanged.

priority-based ordering of the nodes. This can be achievedweaving application aspects into the code of a component
by weaving an appropriate application aspect. Figure dbes not change the implementation of mechanisms, only the
shows thel i st Priority application aspect, which con-implementation of operations within the component. Thus,
sists of one named pointcut st I nsert Cal | , identifying operations are flexible parts of the component as their imple-
l'istInsert operation of the component as a join poinimentation can change by weaving application aspects, while
in the component code (lines 2-3). Thést I nsert Call mechanisms are fixed parts of the component infrastructure.
before advice is implemented using the component mechanigince advices are implemented using the mechanisms of
get Next Node to determine the position of the node base¢he components, each advice can change the behavior of
on its priority (lines 5-14). Weaving of thei st Priority the component by changing one or more operations in the
application aspect into the code of the linked list componeabmponent.
would result in a component where each execution of the 1o enable easy implementation of application aspects into a
operationl i st I nsert is preceded by the execution of thecomponent, the design of the functional part of the component
advicel i st I nsert Cal |, i.e., before placing the node intojs performed in the following manner. First, mechanisms,
the list its position is determined based on its priority. as basic blocks of the component, are implemented. Here,
Expressing semantics of aspect weaving formally (definitiogarticular attention should be given to the identified application
9), requires an introduction of the mathematical interpretatiagspects, and the table that reflects the crosscutting effects of
of the sequential execution of two code fragments in thgpplication aspects to different components should be made to
following manner. Given that andy represent two code frag- help the designer in the remaining steps of the RTCOM design
ments, andry denotes their sequential compositions (resultingnd implementation. Next, the operations of the component
from a textual concatenation of the two pieces of code), thefte implemented using component mechanisms (see definition
we can define the mathematical interpretation of the cagle 3). Note that the implemented operations provide an initial
as follows. component policy, i.e., basic and somewhat generic component
Definition 8: Let z and y be two pieces of code (two functionality. This initial policy we denote policy framework
sequences of statements in some programming language). dfthe component. The policy framework could be modified by
o and o’ be the mathematical representation ofand y, weaving different application aspects to change the component
respectively. Then we denote the mathematical representatjswiicy.
of the codexry by glue(o, o). The development process of the functional part of a compo-
Using the formal notation introduced so far, we can formallyient results in a component colored with application aspects.
express the semantics of application aspect weaving as followserefore, in the graphical view of RTCOM in figure 4,
Definition 9 (Weaving of application aspects): Let application aspects are represented as vertical layers in the
a =< a', P> be an application aspect whet¢ = f(K), functional part of the component as they influence component
K C M, and P is a set of pointcutd; C O. Weaving of behavior, i.e., change component policy.

C. Run-Time System Dependent Part of RTCOM

The run-time system dependent part of RTCOM accounts
for temporal behavior of the functional part of the compo-
nent code, not only without aspects but also when aspects
are woveninto the component. Hence, run-time aspects are
part of the run-time dependent part of RTCOM; they are
represented as horizontal parallel layers to the functional part
of the component as they describe component behavior (see
figure 4). In the run-time part of the component, run-time

aspects are expressed as attributes of operations, mechani§s?-

and application aspects, since those are the elements of the
functional part of the component, and thereby influence the
temporal behavior of the component.

We now illustrate how run-time aspects are represented and
handled in RTCOM using WCET as an example of a run-

JOURNAL OF EMBEDDED COMPUTING, FEBRUARY 2004

mechani sms(1i st Of Par anet er s) {

nmechani sn{
name [nameOF Mechani snj ;
wecet [val ue of wcet];
mechani sn{
nanme [nameOf Mechani sni ;
wcet [val ue of wcet];

Specification of the WCET of component mechanisms

policy(listOf Paraneters){

operation{
name
uses{

[Name of mechanisnmi [Nunber of tinmes used];

[nameCf Oper ati on] ;

intWet [Value of internal operation wcet

time aspect. One way of enabling predictable aspect weaving (call et meehani sms. exel uded)]

is to ensure an efficient way of determining the WCET of the }
operations and/or real-time system that have been modified | °Pe"at'ont
by weaving of aspects. WCET specifications in RTCOM are }
based on the following two observations:
« aspect weaving does not change WCET of mechanisms
since mechanisms are fixed parts of RTCOM; and
« aspect weaving changes operations by changing the nu
ber of mechanisms that an operation uses, thus, changing

their tgmporal behavior.) ~ together with the mechanisms used for the implementation
Therefore, if the WCETSs of mechanisms are known and fixeg the advice, and the number of times the advice uses these

and the WCET of the policy framework and aspects are givgRechanisms. WCET specifications of aspects and components
as a function of mechanism used, then the WCET of a comgan, also have a list of parameters used for expressing the value
ponentwovenwith aspect(s) can be computed by calculatings \wcETs.
the impact of aspect weaving to WCETs of operations within rigure 12 presents an instantiation of a WCET specification
the component (in terms of mechanism usage). To facilitafgr the policy framework of the linked list component. Each
efficient WCET analysis of different configurations of aspectgperation in the framework is named and its internal WCET
and components,WCET specificz_ations within run-time part ‘UpntV\tet) with the number of times it uses a particular
RTCOM should satisfy the following: mechanism are declared (see figure 12). The WCET specifica-
« the WCET for each mechanism is known and declared tion for the application aspetti st Pri ori ty that changes
the WCET specification; the policy framework is shown in figure 13. Since the maxi-
« the WCET of every operation is determined based amum number of elements in the linked list can vary, the WCET
the WCETs of the mechanisms, used for implementingpecifications are parameterized with theCf El ement s
the operation, and the internal WCET of the body of thgarameter.
function or the method that implements the operation, The resulting WCET of the componentoven with ap-
i.e., manages the mechanisms; and plication aspects, is computed using a tool we developed

« the WCET of every advice that changes the implemeralled aspect WCET analyzer [21]. The aspect WCET analyzer
tation of the operation is based on the WCETs of the

mechanisms used for implementing the advice and the
internal WCET of the body of the advice, i.e., code that
manages the mechanisms.

Fni%;_. 10. Specification of the WCET of a component policy framework

aspect (i st Of Paranet ers){
advi ce{
nane [namedf Advi ce] ;

Figure 9 shows the WCET specification for mechanisms Lﬁgﬁgg‘s{ype““’"‘ ce:before, after, around];
in the component, where for each mechanism the WCET is name [nameCf Qper ation];
H . uses{
declared and assumed to be known. Similarly, figure 10 shows [namet Mechani smj [Number of times used]:

the WCET specification of the component policy framework.
Each operation defining the policy of the component declares
what mechanisms it uses, and how many times it uses a }
specific mechanism. This declaration is used for computing
WCETSs of the operations or the component (without aspects).
Figure 11 shows the WCET specification of an application
aspect. For each advice type (before, around, after) that
modifies an operation, the operation it modifies is declarédd. 11.

intWet[Value of internal advice wcet
(cal l ed nechani sms excl uded)]

Specification of the WCET of an application aspect

TESANOVIC et al.: ASPECTS AND COMPONENTS IN REAL-TIME SYSTEM DEVELOPMENT 9

pol i cy(noCf El ement s) {

nechani sms{

(aspectualized)listinsertWcet

oper ati on{ nechani sn{ = listinsertWcet(without aspects) + (before)listinsertCallWcet
nane |istlnsert; name creat eNode; = 14 + 2.4*noOfElements
uses{ wcet 5ns; :
creat eNode 1;
linkNode 1; mechani sn{ where
name | i nkNode;
intWet 1ns; weet 4ms; listinsert(without aspects)
z)pera“ on{ irechani snf = intWcet + X mechanism*usage
nane | i st Renove: name get Next Node; =1 + createNodeWcet*1 + linkNodeWcet*1
uses{ wecet 2ns; =1+5*1+4*1 =10
get Next Node noCf El ement s; }
32: ;‘Exgg 11 (before)listinsertWcet
' } . = intWcet+ X mechanism*usage
intWet 4ns; =4 + 0.4*noOfElements+ getNextNodeWcet*noOfElements

} = 4+2.4*noOfElements

Fig. 14. An example of WCET calculations for an operation modified with

. I . an advice
Fig. 12. The WCET specification of the policy framework

Composition

aspect listPriority(noCfEl ements){ interface
advi ce{
name listlnsertCall; g
tﬁpe before; RTCOM _
changes{ Functional
nane |istlnsert; .
uses{ |nterface
get Next Node noCf El enent s; (required)
}
} Functional
intWet 4ns+0.4*noOf El ement s; interface . X
} (provided) Configuration
e p interface
}

Fig. 15. Interfaces supported by RTCOM
Fig. 13. The WCET specification of tHa st Pri ori t y application aspect

) see figure 4). Given that there are different application aspects
performs automated aspect-level WCET analysis [22], [23h4t can bewoveninto the component, composition aspects
which is an approach for determining the WCET of a realepresented in the composition part of RTCOM should contain
time system composed using aspects and components. Fh8 mation about component compatibility with respect to di-

main goal of aspect-level WCET analysis is determining th@ent application aspects, as well as with respect to different
WCET of different real-time system configurations CO”S'S“”Qomponents.

of aspects and components before any actual aspect weaving
(system configuration) is performed, and, hence, help the de-
signer of a configurable real-time system to choose the systemRTCOM Interfaces
configuration fitting the WCET needs of the underlying real-

time environment without paying the price of aspect weavin o : . - . .
S . . : ure 15): (i) functional interface, (ii) configuration interface,
for each individual candidate configuration. The aspect WC o
aqg (iif) composition interface.

nalyzer performs th m ion in f rul h . X e
analyzer performs the computations using a set of rules tha unctional interfaces of components are classified in two

define how to compute a new WCET of an operatiaoven
c&\tegorles, namely provided functional interfaces, and required

with aspects, depending on the type of an advice in the asp ‘ | . .
For example, for the advice of the type before modifying a%uncnonal interfaces. Provided interfaces reflect a set of opera-

operation, the new WCET of the operation would be compute'c?nS that a component provides to other components or to the

using the value of an old WCET (i.e., WCET of an operatioﬁyStem' Required interfaces reflect a set of operations that a

without aspects), and augmenting that value with the WCET CPmpOT‘e”t requires f'rom.other components. Having separation
0. provided and required interfaces eases component exchange

the before advice. This rule reflects the fact that the code of ta%d addition of new components into the svstem
before advice would, after aspect weaving, be inserted before_l_h fiquration int fp is intended yth '.t i
the code of the operation. Similar rules exist for the advices o? € configuration intertace IS ihtended for the integration

types after and around. Following the example of the linked' @ real-time system with the run-time environment. This

list component, we can compute the WCET of the operatidﬂterface provides information of temporal behavior of each
listlnsert r,nodified with the advicé i st I nsert Cal | component, and reflects the run-time aspect of the component.

of the type before as illustrated in figure 14. Combining m““?p'e c_omponents results in a system t_hat
also has a configuration interface, and enables the designer
to inspect the behavior of the system towards the run-time
D. Composition Part of RTCOM environment (see figure 16).
The composition part of RTCOM refers both to the func- Composition interfaces, which correspond to join points,
tional part and the run-time part of a component, and @re embedded into the functional component part. The
represented as the third dimension of the component modetaver identifies composition interfaces and uses them for

RTCOM supports three different types of interfaces (see

10 JOURNAL OF EMBEDDED COMPUTING, FEBRUARY 2004

Provided

functional . Composition DBMS
interface | USER INTERFACE
TCOM Required
functional
i interface TRANSACTION
A TRANSACTION SCHEDULER
l c * MANAGER
onfiguration N
. Real-Time System iigiace
System's!
functional interface RECOVERY LOCKING
System's & LOGGING
Aspects functional interface
weaved into
System's configuration | INDEXING |
component interface
| MEMORY HANDLING |

Fig. 16. Interfaces and their role in the composition process

Fig. 17. COMET decomposition into a set of components

aspect weaving. Composition interfaces are ignored at compo-
nent/system compile-time if they are not needed, and are “asancurrency control mechanisms. Furthermore, some nodes
tivated” only when certain application aspects a@veninto require critical data to be logged, e.g., warning and errors,
the system. Thus, the composition interface allows integrati@md require backups on startup and shutdown, while other
of the component and aspectual part of the system. Aspeedes only have RAM (main-memory), and do not require
weaving can be performed either on the component levelon-volatile backup facilities from the database. Hence, in the
weaving application aspects into component functionality, @rarrow sense of this application area, the goal was to enable
on the system level, weaving application aspects into thievelopment of different COMET configurations to suit the
monolithic system. needs of each node with respect to memory consumption,
Explicit separation of software component interfaces intooncurrency control, recovery, different scheduling techniques,
composition interfaces and functional interfaces was intr@and transaction and storage models.

duced in [19]. In the following sections we show how we have reached our
goal by applying ACCORD to the design and development of
V. COMET: A COMPONENTBASED EMBEDDED the COMET system.

REAL-TIME DATABASE

This section shows how to apply the introduced concegt COMET Components
of aspectual component-based development on a design anfollowing the ACCORD design method presented in section
development of a concrete real-time system by presenting thewe have first performed the decomposition of COMET
application of the design method to development of a configdto @ set of components with well-defined functions and

urable real-time embedded database system, called COMEMterfaces. COMET has seven basic components (see figure
17): user interface component, transaction scheduler com-

ponent, locking component, indexing component, recovery

A. Background and logging component, memory handling component, and
The goal of the COMET project is to enable developmentansaction manager component.

of a configurable real-time database for embedded systemsTheuser interface component (UIC) enables users to access
i.e., enable development of different database configuratiodata in the database, and different applications often require
for different embedded and real-time applications. The typesfferent ways of accessing data in the system. All the oper-
of requirements we are dealing with can best be illustrated ations on data in the database are received via the UIC. The
the example of one of the COMET targeting application areasiain activities of the UIC consist of receiving and parsing
control systems in the automotive industry. These systertigee incoming requests from the application and the user. UIC
are typically hard real-time safety-critical systems consistingkes the incoming requests and devises the execution plans.
of several distributed nodes implementing specific function- Thetransaction scheduler component (TSC) provides mech-
ality. Although nodes depend on each other and collaborageisms for performing scheduling of transactions coming into
to provide required behavior for the overall vehicle controlhe system, based on the scheduling policy chosen. COMET
system, each node can be viewed as a stand-alone rémldesigned to support a variety of scheduling policies, e.g.,
time system, e.g., nodes can implement transmission, engieB®F and RM [24]. The TSC is also in charge of maintaining
or instrumental functions. The size of the nodes can vatje list of all transactions in the system, including scheduled
significantly, from very small nodes to large nodes. Dependirtgansactions as well as unscheduled but active transactions,
on the functionality of a node and the available memory, difze., transactions submitted for execution. Hard real-time ap-
ferent database configurations are preferred. In safety-critiqdications, such as real-time embedded systems controlling
nodes tasks are often non-preemptive and scheduled off-lireyvehicle, typically do not require sophisticated transaction
avoiding concurrency by allowing only one task to be activecheduling and concurrency control, i.e., the system allows
at any given time. This, in turn, influences functionality of anly one transaction to access the database at a time [25].
database in a given node with respect to concurrency contrdherefore, the TSC should be a flexible and exchangeable part
Less critical nodes, having preemptable tasks, would requiéthe database architecture.

TESANOVIC et al.: ASPECTS AND COMPONENTS IN REAL-TIME SYSTEM DEVELOPMENT 11

COMET Aspects TABLE I
‘ CROSSCUTTING EFFECTS OF DIFFERENT APPLICATION ASPECTS ON THE
\ \ COMETCOMPONENTS
Run-Time Composition Application .
. Transaction
Resource demand Compatibility Real-Time Scheduling Components
Temporal Versioning Concurrency Control SN c a 6 o) ';E % 2
Constraints Flexibility gs;?rﬁirzyation Appllcat{o ol o6 ol3|8d
Portability Synchronization aspects
Security Transaction X | XX | X | X|X]|X
. o)) Real-time X
Fig. 18. Classification of aspects in an embedded real-time database system scheduling X
Concurrency X | x X X
control
Thelocking component (LC) deals with locking of data, and Op"t/i';’;‘;%n X | X | x| x| x X
it provides mechanisms for lock manipulation and maintains 1 x x| x
lock records in the database. The LC provides the policy Synchronization X
framework for the lock administration in which all locks are Security X X | X X | x

granted. This policy framework can be changed into a specific
policy according to which the LC deals with lock conflicts by

weavin_g concurrency control aspect (s_ee _secti(_)n V-D). (in ACCORD) is replaced with the transaction model aspect,

The indexing component (IC) deals with indexing of data. \ nich is database-specific. The crosscutting effects of the
Inde_xmg stra_tegle§ could vary depending on the real—tlm(;ppncation aspects to COMET components are shown in the
application with which the database should be integrated, efile |. Note that application aspects can also crosscut or

t-trees [26] and multi-versioning suita_ble for applicgtions Wit_faepend on other application aspects. In this paper, however, we
a large number of read-only transactions [27]. Additionally, if,imarily focus on crosscutting effects of application aspects
is possible to customize an indexing strategy depending on

different components. For more details on dependencies

number of transactions active in the system and the indexig inter-relationships of aspects we refer interested readers
algorithm needed. to [28], [29].

Therecovery and logging component (RLC) is in charge of — Aq "can he seen from table I, all identified application

recovery and logging of data in the database. As COME]gects crosscut more than one component. For example, the
stores data in main-memory, there is a need for differephnqrrency control (CC) aspect crosscuts several components,
recovery and logging techniques, depending on the type Hglmely TSC, LC, and TMC in the following manner. The

the storage, e.g., non-volatile EEPROM or Flash. TMC is responsible for invoking the LC to obtain and release
The memory handling component (MHC) manages access oeks. The way the LC is invoked by the TMC depends on

to data in the physical storage. For example, each time a tu CC policy enforced in the database and, hence, needs
is added or deleted, the MHC is invoked to allocate and releage ;o adjusted separately for each type of CC policy, i.e.,
memory. _Generally, all reads or writes to/from the memory i@ach type of the CC aspect. Furthermore, the way to deal
COMET mvolye the MHC. i with lock conflicts is enforced by the LC. Hence, the LC
Thetransaction manager component (TMC) coordinates the g4 he modified with CC aspect to facilitate lock resolution
actlvmes_ of all components in the system with respect olicy prescribed by the CC policy of the CC aspect. Since
transaction execution. For example, the TMC manages tQgheqyling and CC are tightly coupled in the sense that CC
execution of a transaction by requesting lock and unlogkyjices typically require information about the transactions in
operations provided by the LC, followed by requests {0 the system maintained by the TSC, this means that the TSC
operations, which are provided by the IC, for inserting 0gnqid be modified by CC aspect to provide adequate support
updating data items. for the chosen CC policy.
The application aspects could vary depending on the par-
C. COMET Aspects ticular application of the real-time system, thus, particular

Following ACCORD, after decomposing the system into gttention should be made to identify the application aspects

set of components with well-defined interfaces, we decompo@¥ €ach real-time system.

the system into a set of aspects. The decomposition of COMET

into aspects is presented in figure 18, and it fully corresponfs COMET RTCOM

to the ACCORD decomposition (given in section IlI-A) in Components and aspects in COMET are implemented based
three types of aspects: run-time, composition, and application RTCOM (discussed in section V). Hence, the functional
aspects. However, as COMET is the real-time database syst@art of components is implemented first, together with ap-
refinement to the application aspects is made to reflect bailication aspects. We illustrate this process, its benefits and
real-time and database issues. Hence, in the COMET decaiinrawbacks, by the example of one component (namely the
position of application aspects, the real-time policy aspettC) and one application aspect (namely the CC aspect).

is refined to include real-time scheduling and concurrency The LC performs the following functionality: assigning
control policy aspects, while the real-time property aspeticks to requesting transactions and maintaining a lock table,

12 JOURNAL OF EMBEDDED COMPUTING, FEBRUARY 2004

aspect CCpol i cy{
gz: @efstﬁgi) 1: resolveConflict(LC Operands * op){
. . * H i 1
- policy - rel easeLock() 2: / *apply speci fi f CC policy to resolve
3: | ock conflict*/
""" 4: [* for HP-2PL */
. 5: for all |ockHol ders on op.dataltem
Functional i nsert LockRecor d() 6 if 1 ockRequester.priority>l ockHol der.priority
part r emoveLockRecor d() 7. then abort each | ockHol der
fi ndLockRecor d() < 8 el se bl ock | ocRequester
deal | ocLock() &, |9
. i nsert LockHol der () ‘9% 10: pointcut get ReadLockCal | (LC Operands * op)=
~mechanisms r emoveLockHol der () 11: call("void get ReadLock(LC Operands*)") &8ar gs(op) ;
‘% . pointcut getReadWiteCall (LC Qperands * op)=
N call ("void getWiteLock(LC Operands)")&&args(op);
pol i cy{ advi ce get ReadLockCal | (op):
ope?lation{ : voi d before(LC _Operands * op){
nane get Real Lock; 13 IftLZﬁ wite-lock is already held
usiei{sertLockRecord 1: 18: /*there is a conflict which needs
fi ndLockRecor d 1f 19: to be resolved by applying CC policy */
’ 20: resol veConflict (op);
. : . 21: }
Run-time part, | Intvéet 1ms; 22: advice getWiteLockCall (op):
WCET aspect } o 23: voi d before(LC Qperands * op){
mechani sns{ ;g |Ih\g:1|te» or read-lock is already held
WﬁgxlfnmsertLockRecord' 26: /*there is a conflict which needs
weet 5 ’ 27: to be resol ved by applying CC policy */
} ' 28: resol veConflict(op);
29: }
Ce 30.
} }
Locking Component Concurrency control aspect

Fig. 19. The locking component and the concurrency control aspect

thus, it records all locks obtained by transactions in the systefor the real-time CC aspect (lines 1-30) that can be applied
As can be seen from the table I, the LC is crosscut with sevetal a class of pessimistic locking CC protocols. We chose to
application aspects. The application aspect that influences tlige more specific details for the HP-2PL protocol, as it is
policy, i.e., changes the behavior of the LC, is a CC aspetipth commonly used in main-memory database systems and
which defines the way lock conflicts should be handled in thee well-known pessimistic CC protocol.
system. To enable tailorability of the LC, and reuse of code The CC aspect has several pointcuts and advices that
in the largest possible extent, the LC is implemented with tl’@(ecute when the pointcut is reached. As defined by the
policy framework in which lock conflicts are ignored and lockiRTCOM pointcut model, the pointcuts refer to the operations:
are granted to all transactions. The policy framework can kgt ReadLockCal I () and get Wi teLockCall ()
modified by weaving CC aspects that define other ways gfhes 10 and 12). The first pointcut intercepts the call to the
handling lock conflicts. As different CC policies in rea|-timefunction get ReadLock() , Which grants a read lock to the
database systems exist, the mechanisms in the LC shouldi@saction and records it in the lock table. Similarly, the
compatible with most of the existing CC algorithms. second pointcut intercepts the call to the function that gives a
The LC contains mechanisms such as (see lefitrite lock to the transaction and records it in the lock table.
part of the figure 19): insertlLockRecord(), Before grantinga read or write lock, the advices in lines 14-21
renoveLockRecord(), etc., for maintaining the and 22-29 check if there is a lock conflict. If conflict exists,
table of all locks held by transactions in the systenthe advices deal with it by calling the local aspect function
The policy part consists of the operations performed onesol veConflict () (lines 1-9), where the resolution of
lock records and transactions holding and/or requestinige conflict should be done by implementing a specific CC
locks, e.g., getReadLock(), getWitelLock(), policy. As this function is called from the advices it can be
rel easeLock() . The operations in the LC are implementedonsidered a part the body of each advice (equivalent would
using underlying LC mechanisms. The mechanisms providée to place the code of the function in each advice separately).
by the LC are used by the CC aspects implementing theirthermore,r esol veConfli ct () traverses the list of
class of pessimistic (locking) protocols, e.g., HP-2PL [30fansactions holding a lock using underlying mechanisms of
and RWPCP [31]. However, as a large class of optimistibe LC. Hence, the overall advices are implemented using
protocols is implemented using locking mechanisms, thmechanisms of the LC to traverse the lock table (lines 16-19
mechanisms provided by the LC can also be used by Gd 24-27) and the list of transactions holding a lock (in the
aspects implementing optimistic protocols, e.g., OCC-TI [3Zunctionr esol veConflict()).
and OCC-APR [33]. So far we have shown that the CC aspect affects the policy
The right part of the figure 19 represents the specificatiaf the LC, but the CC aspect also crosscuts other components

TESANOVIC et al.: ASPECTS AND COMPONENTS IN REAL-TIME SYSTEM DEVELOPMENT 13

(see table I). In the example of the CC aspect implementing be one way of dealing with the code overhéad.

pessimistic HP-2PL protocol (see figure 19), the aspect usegjence, there is a trade-off between achieving good tai-
the information about transaction priority (lines 5-8), which igorapility and flexibility of components, tractable combinations
maintained by the TSC, thus crosscutting the TSC. Optimistig aspects and components, and the optimization of the compo-

protocols, e.g., OCC-TI, would require additional pointcutent infrastructure, i.e., number of mechanisms, for a particular
to be defined in the TMC, as the protocol (as compared gypjication.

pessimistic protocols) assumes execution of transactions in
three phases: read, validate and write.

Additionally, depending on the CC policy implemented, the
number of pointcuts and advices varies. For example, some CQn this section we address the research in the area of

policies (like RWPCP, or optimistic policies) require additionatomponent-based real-time and database systems, and the real-
data structures to be initialized. In such cases, an additiofighe and database research projects that are using aspects to
pointcut named ni t Pol i cy() could be added to the aspectseparate concerns.
that would intercept the call to initialize the LC. A before The focus in existing component-based real-time systems is
advicei ni t Pol i cy would then initialize all necessary datagnforcement of real-time behavior. In these systems a compo-
structures in the CC aspect after data structures in the LC haygnt is usually mapped to a task, e.g., passive component [1],
been initialized. binary component [35], and port-based object component [36].
Therefore, analysis of real-time components in these solutions
addresses the problem of temporal scopes at a component
level as task attributes [1], [35], [36]: WCET, release time,
Here, we give the benefits and drawbacks of applyingeadline. ACCORD with its RTCOM model supports mapping
ACCORD to the development of COMET platform. We usef a component to a task, and takes a broader view of
the given example of the LC and CC aspect (see section V-tle composition process by allowing real-time systems to be
to draw our conclusions. The benefits of applying ACCORRomposed out of tasks and components that are not necessarily
to the development of COMET platform are the following (inmapped to a task. ACCORD, in contrast to other approaches
the context of the given example of the LC and CC aspecthuilding real-time component-based systems [1], [35], [36],

« Clean separation of concurrency control as an aspect tif@ables support for multidimensional separation of concerns
crosscuts the LC code is enabled, thus, allowing highnd allows integration of aspects into the component code.
code reusability as the same component mechanisms ¥eST [1], [37] indeed uses aspect-oriented paradigm but
used in almost all CC aspects. does not provide a component model that enables weaving of

« Efficient tailoring of the component and the system to figPplication aspects into the component code, rather it focuses
a specific requirement (in this case specific CC policyn COmposition aspects.
as weaving of a CC aspect into the LC changes the policy!n the area of database systems, thepecteriented
of the component by changing the component code, agi@tabases (AOD) initiative aims at bringing the notion of
leaving the configuration of COMET unchanged. separation of concerns to databases. The focus of this ini-

« Having the LC functionality encapsulated into a comtiative is on providing a non-real-time database with limited
ponent, and the CC encapsulated into an applicati&@nfigurability using only aspects (i.e., no components) [38].
aspect enables reconfiguring COMET to support nor© the best of our knowledge, KIDS [39] is the only research
locking transaction execution (excluding the LC), if otheproject focusing on construction of a configurable database

completely non-locking CC protocol is needed. composed out of components (database subsystems), e.g.,
The drawbacks experienced in applying ACCORD to reaP—bject management and tran;action mapagement. Co.mm_ercial
time system development are the following. component-based databases introduce Ilmlted customization of

. the database servers [40], [41], by allowing components for

« A great number of components and aspects availaQlg;naging non-standard data types, data cartridges and Dat-
for system composition can result in an explosion ofgjade modules, to be plugged into a fully functional database
possible combinations of components and aspects. Thisstem. A somewhat different approach to componentization
is a common problem for all software systems using icrosoft's Universal Data Access Architecture [42], where
components, and extensive research has being doneR components are data providers and they wrap data sources
identifying and defining good composition rules for thgnapling the translation of all local data formats from different
components [6], [19], [34]. _ data stores to a common format. However, from a real-time

. The_cparse-granulanty of RTCOM may result in NONKoint of view none of the component-based database ap-
negligible component code overhead, e.g., due 10 a larggyaches discussed enforce real-time behavior and use aspects
number of mechanisms implemented in the component jg separate concerns in the system.

order to support tailorability through weaving of appli- Existing real-time design methods [1], [37], [43]-[46] focus

cation aspects. Restricting the number of mechanisms 4 ask structuring and two different views on the system,
the component policy framework initially, and adding the

mechanisms in the component “on-demand”, i.e., Whensyote that the ACCORD framework is not restrictive and allows flexible
required by the application or an application aspect, couldigmentation of mechanisms within the component.

V1. RELATED WORK

E. Wrap-up

14 JOURNAL OF EMBEDDED COMPUTING, FEBRUARY 2004

temporal and structural, with moderate emphasis on the iceuld have an impact on the real-time system development
formation hiding. The analysis of the real-time system undén providing efficient configuration of real-time systems, im-
design, although missing from early design approaches [43foved reusability and flexibility of real-time software, and
[44], has been highlighted as important for the real-timenodularization of crosscutting concerns.
system development [1], [37], [45], [46]. Furthermore, con- There are a number of research challenges left to be re-
figuration guidelines and tools for system decomposition arsblved. We consider the following issues crucial to successful
configuration have been an essential part of all design methagsplication of ACCORD, and, thus, the focus of our future
for real-time systems so far and have, more or less, beeork.
enforced by all existing real-time design methods. RT-UML To successfully apply ACCORD to real-time system de-
[47]is an example an infrastructure that provides configuratiorelopment we should develop a tool environment that would
tools in a form of a visual language. Note, however, that RBupport the ACCORD development process, including: (i)
UML cannot be considered a design method as it essentiaitientification of components and aspects based on system
provides only syntax, not semantics, for the real-time systeraquirements, (ii) automated extraction of information that
design, e.g., its powerful expressiveness could be used taflects run-time behavior of components and aspects built on
a design method as means of specifying real-time softwalRT COM, (iii) automated extraction of the compositional needs
components [48]. of components, and (iv) automated configuration of a real-
In contrast to real-time design methods, modern softwatiene systems out of chosen set of components and aspects.
engineering design methods [2], [19], [49], [50] primarilyCurrently, there is a limited understanding of effects on the
focus on the component model, strong information hidinggerformance and memory consumption when building systems
and interfaces as means of component communication. Alseith components and aspects. Further investigation is essential
the notion of separation of concerns is considered to Iier this class of performance-constrained systems.
fundamental in software engineering as it captures aspects offhe ideas and notions introduced by RTCOM could be
the software system early in the system design [16]-[19], [513pplicable to a wider spectrum of application domains, and
It can be observed that there is a gap between the desigpt necessarily limited to real-time systems. Thus, on a larger
approaches from different communities as the real-time corseale, formalizing the model would help generalizing it to
munity has focused primarily on real-time issues not exploitingifferent application domains. On a smaller scale, we need to
modularity of software to the extent that the software engineddentify tradeoffs in the real-time component model with re-
ing community has done. ACCORD helps in bridging thispect to mechanisms in the component that enable tailorability
gap as it provides support for aspects and aspect weavibygaspect weaving.
into the code of the components, efficient component and
system tailoring, and better reusability and flexibility of real- ACKNOWLEDGMENTS
time software - the issues that have not been fully addresse

by existing real-time design approaches. dI'he authors would like to thank Dr. Simin Nadjm-Tehrani

for comments and discussions on the formalization of the real-
time component model. This work is financially supported by
VII. SUMMARY the Swedish Foundation for Strategic Research (SSF) via the

In recent years, one of the key research challenges \YE Project and the ARTES network, and the Center for

software engineering research community has been enablg?dggimal Information Technology (CENIIT) under contract

configuration of systems and reuse of software by composi
systems using components from a component library. Our
research focuses on applying aspect-oriented and component- REFERENCES

bas_ed SOﬁV_Vare development to real-time system developmeft ;. stankovic, “VEST: a toolset for constructing and analyzing component
by introducing a novel concept of aspectual component-based based operating systems for embedded and real-time systems,” in

i i Proceedings of the Embedded Software, First International Workshop
real-time system develOp.ment (ACCORD).' In this paper V\.Ie (EMSOFT 2001), ser. Lecture Notes in Computer Science, vol. 2211.
presented ACCORD and its elements, which we have applied Tanoe city, CA, USA: Springer-Verlag, October 2001, pp. 390-402.

in the development of a real-time database system, callgd] C. SzyperskiComponent Software - Beyond Object-Oriented Program-

COMET. ACCORD introduces the following into real-time _ mMng. Addison-Wesley, 1999.
L . 9 . [’§>] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M.
system development: (i) a design method, which enable Loingtier, and J. Irwin, “Aspect-oriented programming,” Rnoceedings

improved reuse and configurability of real-time and database of the ECOOP, ser. Lecture Notes in Computer Science, vol. 1241.
systems by combining basic ideas from component—basigl Springer-Verlag, 1997, pp. 220-242.

. " . . H. Ossher and G. Kiczales, Ed®roceedings of the 1st International
and aspect-oriented communities with real-time concerns,” conference on Aspect-Oriented Software Development. ACM Press,

thus bridging the gap between real-time systems, embedded 2002.
systems, database systems, and software engineering, (ii)[sb. W. G. Griswold and M. Aksit, EdsProceedings of the 2nd International

. . Conference on Aspect-Oriented Software Development. ACM Press,
real-time component model, called RTCOM, which enables 5593 A P

efficient development of configurable real-time systems, anh] J. Bosch,Design and Use of Software Architectures. ACM Press in

(i) a new approach to modeling of real-time policies as__ collaboration with Addison-Wesley, 2000.
[7] I. Crnkovic and M. Larsson, “A case study: Demands on component-

aspects improving the erxibiIity of real-time Sy_StemS- In the based development,” iBroceedings of 22th International Conference of
COMET example we have shown that applying ACCORD Software Engineering. Limerick, Ireland: ACM, June 2000, pp. 23-31.

TESANOVIC et al.: ASPECTS AND COMPONENTS IN REAL-TIME SYSTEM DEVELOPMENT

(8]

(9]

(20]

[11]

[12]

[13]

[14]

(18]

[16]

[17]

(18]
[29]
[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

I. Crnkovic, M. Larsson, and F. Luders, “State of the practicg29]
Component-based software engineering coursePrisceedings of 3rd
International Workshop of Component-Based Software Engineering.

IEEE Computer Society, January 2000. [30]
W. Fleisch, “Applying use cases for the requirements validation of
component-based real-time software,” Rroceedings of 2nd |IEEE
International Symposium on Object-Oriented Real-Time Distributed [31]
Computing (ISORC). Saint-Malo, France: IEEE Computer Society
Press, May 1999, pp. 75-84.

Microsoft, “The component object model specification,” Available af32]
http://www.microsoft.com/com/resources/comdocs.asp, February 2001.
A. Munnich, M. Birkhold, G. Farber, and P. Woitschach, “Towards an

15

H. Sipma, “A formal model for cross-cutting modular transition sys-
tems,” in In Proceedings of the Workshop on Foundations of Aspect-
Oriented Languages (FOAL 2003), Boston, USA, March 2003.

R. K. Abbott and H. Garcia-Molina, “Scheduling real-time transactions:
a performance evaluation ACM Transactions on Database Systems,
vol. 17, no. 3, pp. 513-560, September 1992.

L. Sha, R. Rajkumar, S. H. Son, and C.-H. Chang, “A real-time locking
protocol,” |EEE Transactions on Computers, vol. 40, no. 7, pp. 793-800,
September 1991.

J. Lee and S. H. Son, “Using dynamic adjustment of serialization order
for real-time database systems,” fnoceedings of the 14th |IEEE Real-
Time Systems Symposium, December 1993.

architecture for reactive systems using an active real-time database[88H A. Datta and S. H. Son, “Is a bird in the hand worth more than two birds

standardized components,” iBroceedings of International Database
Engineering and Application Symposium (IDEAS). Montreal, Canada:
IEEE Computer Society Press, August 1999, pp. 351-359.

OMG, “The common object request broker: Architecture and specifid@4]
tion,” OMG Formal Documentation (formal/01-02-10), February 2001,
Available at: ftp://ftp.omg.org/pub/docs/formal/01-02-01.pdf.

K. R. Dittrich and A. GeppertComponent Database Systems. Morgan
Kaufmann Publishers, 2000, ch. Component Database Systems: Inf&5]
duction, Foundations, and Overview.

L. Freidrich, J. Stankovic, M. Humphrey, M. Marley, and J. Haskins,
“A survey of configurable, component-based operating systems for €j86]
bedded applications /EEE Micro, vol. 21, no. 3, pp. 54-68, May/June
2001.

B. Meyer and C. Mingins, “Component-based development: From bui&7]
to spark,”|EEE Computer, vol. 32, no. 7, pp. 35-37, July 1999, guest
Editors’ Introduction.

Y. Coady, G. Kiczales, M. Feeley, and G. Smolyn, “Using AspectC to
improve the modularity of path-specific customization in operating sy{88]
tem code,” inProceedings of the Joint European Software Engineering
Conference (ESEC) and 9th ACM SIGSOFT International Symposium

on the Foundations of Software Engineering (FSE-9), 2002. [39]
O. Spinczyk, A. Gal, and W. Schroder-Preikschat, “AspectC++: an
aspect-oriented extension to C++,” iAroceedings of the 40th In-
ternational Conference on Technology of Object-Oriented Languages [40]

and Systems (TOOLS Pacific 2002). Sydney, Australia: Australian
Computer Society, February 2002, AspectC++ can be downloaded frq#t]
http://www.aspectc.org.

The AspectJ Programming Guide, Xerox Corporation, September 2002,

available at: http://aspectj.org/doc/dist/progguide/index.html. [42]
U. ABmann,Invasive Software Composition. Springer-Verlag, Decem-

ber 2002.

I. Crnkovic and M. Larsson, EdsBuilding Reliable Component-Based [43]

Real-Time Systems. Artech House Publishers, July 2002.

A. TeSanowE, D. Nystrém, J. Hansson, and C. Norstrom, “Aspect-levei4]
WCET analyzer: a tool for automated WCET analysis of a real-time
software composed using aspects and component$tdoeedings of
the 3rd International Workshop on Worst-Case Execution Time Analysis
(WCET 2003), Porto, Portugal, July 2003.

A. TeSanowt, D. Nystrom, J. Hansson, and C. Norstrom, “Aspect-
level worst-case execution time analysis of real-time systems compo-
sitioned using aspects and components,”’Piroceedings of the 27th [46]
IFAC/IFIP/IEEE Workshop on Real-Time Programming (WRTP’03).
Poland: Elsevier, May 2003.

A. TeSanow, D. Nystrom, J. Hansson, and C. Norstrém, “Integratf47]
ing symbolic worst-case execution time analysis into aspect-oriented
software development,” OOPSLA 2002 Workshop on Tools for Aspedé8]
Oriented Software Development, November 2002.

C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogram-
ming in hard real-time traffic environmentJournal of the Association [49]
for Computing Machinery, vol. 20, no. 1, pp. 46-61, January 1973.

D. Nystrom, A. TeSanogi C. Norstrém, J. Hansson, and N.-

E. Bankestad, “Data management issues in vehicle control systefB€]
a case study,” inProceedings of the 14th Euromicro International
Conference on Real-Time Systems, Vienna, Austria, June 2002.

H. Lu, Y. Y. Ng, and Z. Tian, “T-tree or b-tree: Main memory [51]
database index structure revisited,”"Hroceedings of the 11th Australian
Database Conference, 2000, pp. 65-73.

R. Rastogi, S. Seshadri, P. Bohannon, D. W. Leinbaugh, A. Silberschatz,
and S. Sudarshan, “Improving predictability of transaction execution
times in real-time databasesReal-Time Systems, vol. 19, no. 3, pp.
283-302, November 2000, Kluwer Academic Publishers.

J. Kienzle, Y. Yu, and J. Xiong, “On composition and reuse of aspects,”
in In Proceedings of the Workshop on Foundations of Aspect-Oriented
Languages (FOAL 2003), Boston, USA, March 2003.

[45]

in the bush? Limitations of priority cognizance in conflict resolution
for firm real-time database system&ZEE Transactions on Computers,

vol. 49, no. 5, pp. 482-502, May 2000.

F. Bachmann, L. Bass, C. Buhman, S. Comella-Dorda, F. Long,
J. Robert, R. Seacord, and K. Wallnau, “Technical concepts of
component-based software engineering,” Software Engineering Institute,
Carnegie Mellon University, Tech. Rep. CMU/SEI-2000-TR-008, 2000.
D. Isovic, M. Lindgren, and I|. Crnkovic, “System development with
real-time components,” iRroceedings of ECOOP Workshop - Pervasive
Component-Based Systems, France, June 2000.

D. S. Stewart, “Designing software components for real-time applica-
tions,” in Proceedings of Embedded System Conference, San Jose, CA,
September 2000, class 408, 428.

J. Stankovic, R. Zhu, R. Poornalingam, C. Lu, Z. Yu, M. Humphrey,
and B. Ellis, “WEST: an aspect-based composition tool for real-time
systems,” inProceedings of the 9th Real-Time Applications Symposium
2003. Toronto, Canada: IEEE Computer Society Press, May 2003.

A. Rashid and E. Pulvermueller, “From object-oriented to aspect-
oriented databases,” iRroceedings of DEXA 2000, ser. Lecture Notes

in Computer Science, vol. 1873. Springer-Verlag, 2000, pp. 125-134.
A. Geppert, S. Scherrer, and K. R. Dittrich, “KIDS: Construction of
database management systems based on reuse,” Department of Computer
Science, University of Zurich, Tech. Rep. ifi-97.01, September 1997.
“All your data: The Oracle extensibility architecture,” Oracle Technical
White Paper. Oracle Corporation. Redwood Shores, CA, February 1999.
“Developing DataBlade modules for Informix-Universal Server,” In-
formix DataBlade Technology. Informix Corporation, 22 March 2001,
available at http://www.informix.com/datablades/.

“Universal data access through OLE DB,” OLE DB Technical
Materials. OLE DB White Papers, 12 April 2001, available at
http://www.microsoft.com/data/techmat.htm.

H. Gomaa, “A software design method for real-time syster@sfhmu-
nications of the ACM, vol. 27, no. 9, pp. 938-949, September 1984.

H. Gomaa, “A software design method for Ada based real time systems,”
in Proceedings of the 6th Washington Ada symposiumon Ada. McLean,
Virginia, United States: ACM Press, 1989, pp. 273-284.

H. Kopetz, R. Zainlinger, G. Fohler, H. Kantz, P. Puschner, and
W. Schiitz, “The design of real-time systems: from specification to
implementation and verification Software Engineering Journal, vol. 6,

no. 3, pp. 72-82, 1991.

A. Burns and A. WellingsHRT-HOOD: a Structured Design Method for

Hard Real-Time Ada Systems, ser. Real-Time Safety Critical Systems.
Elsevier, 1995, vol. 3.

B. P. Douglass,Real-Time UML: Developing Efficient Objects for
Embedded Systems. Addison-Wesley, 2000.

I. Crnkovic, B. Hnich, T. Jonsson, and Z. Kiziltan, “Specification,
implementation, and deployment of componentSgmmunications of

the ACM, vol. 45, no. 10, pp. 35-40, October 2002.

A. Dogac, C. Dengi, and M. T. Oszu, “Distributed object computing
platform,” Communications of the ACM, vol. 41, no. 9, pp. 95-103,
1998.

M. T. Ozsu and B. YaoComponent Database Systems, ser. Data Man-
agement Systems. Morgan Kaufmann Publishers, 2000, ch. Building
Component Database Systems Using CORBA.

M. Aksit, J. Bosch, W. van der Sterren, and L. Bergmans, “Real-time
specification inheritance anomalies and real-time filtersPrioceedings

of the ECOOP '94, ser. Lecture notes in computer science, vol. 821.
Springer-Verlag, 1994, pp. 386-407.

16

Aleksandra TeSanowt received the B.Sc. degree
in electrical engineering from University of Banja
Luka, Bosnia and Herzegovina, in 1999, and the Li
centiate degree in computer science from Linkdpin
University, Sweden, in 2003. She is currently
Ph.D. student at the Department of Compute

JOURNAL OF EMBEDDED COMPUTING, FEBRUARY 2004

Joérgen Hanssonreceived the B.Sc. and M.Sc. de-
gree from University of Skdvde, Sweden, in 1992
and 1993 respectively. He received his Ph.D. de-
gree in 1999 from Link6ping University, Sweden.
He is an Assistant Professor at the Department
of Computer Science in Linkdping University. He

Science, Linkdping University, Sweden. Her cur
rent research interests include software engineq
ing methods, composition techniques, and tools fd
component-based real-time and embedded syste

has authored/co-authored 30 papers and edited two
books in these areas. His research has focused on
techniques for ensuring robustness and timeliness in
complex real-time applications that are prone to tran-
sient overloads. He has been involved in the design
and construction of the DeeDS system, a distributed active real-time database
system suitable for large complex real-time systems. His current research
interests include techniques and methodologies for repositories functioning
in real-time, adaptive overload management, and component-based software
Dag Nystrom received his M.Sc. in computer en-architectures for embedded and real-time systems. Dr. Hansson serves as
gineering during 2001 and his Licentiate degree ithe Director of the National Graduate School in Computer Science (CUGS)
2003, both from Mélardalen University, Sweden. Haén Sweden. Dr. Hansson has served as Program and General Chair for the
is currently employed as a Ph.D. student at th&nternational Workshop on Active and Real-Time Database Systems (ARTDB-
Department of Computer Science and Engineerin@5, ARTDB-97).
Malardalen University, Sweden. His current research
interest is mainly data management in vehicular
control-systems.

Christer Norstrom is professor in Computer En-
gineering at Malardalen University. He is Dean for
the faculty of Science and Technology at Mélardalen
University. He is one of the founding members of the
Department of Computer Science and Engineering.
Previously he was working as manager for future
technology at ABB Automation Technology Prod-
ucts/ Robotics. He has also worked as a consul-
tant, in particular for the automotive industry. His
research interests are design of complex real-time
systems, system and software engineering for real-
time systems. Christer is very interested in technology transfer from academia
to industry and he has manifested that through several successful transfers
to the automotive industry. Christer was instrumental to the forming of a
dynamic innovation system Robotdalen, which was granted 100 MSEK 2003.
Christer has given numerous courses on real-time system for industry both in
Sweden and in Europe. He received a Ph.D from Royal Institute of Technology
(KTH), Stockholm in 1997, became Docent at KTH in 2001, and Professor
at Méalardalen University 2002. In year 2001 he was awarded best teacher at
Malardalen University.

I

