
Towards Consistency Checking Between a
System Model and its Implementation?

Robbert Jongeling1[0000−0002−1863−3987], Johan Fredriksson2, Federico
Ciccozzi1[0000−0002−0401−1036], Antonio Cicchetti1[0000−0003−0416−1787], and Jan

Carlson1[0000−0002−8461−0230]

1 Mälardalen University, Väster̊as, Sweden
<firstname>.<lastname>@mdh.se

2 Saab AB, Järfälla, Sweden
<firstname>.<lastname>@saabgroup.com

Abstract. In model-based systems engineering, a system model is the
central development artifact containing architectural and design descrip-
tions of core parts of the system. This abstract representation of the
system is then partly realized in code. Throughout development, both
system model and code evolve independently, incurring the risk of them
drifting apart. Inconsistency between model and code can lead to errors
in development, resulting in delayed or erroneous implementation. We
present a work in progress towards automated mechanisms for check-
ing consistency between a system model and code, within an industrial
model-based systems engineering setting. In particular, we focus on auto-
matically establishing traceability links between elements of the system
model and parts of the code. The paper describes the challenges in achiev-
ing this in industrial practices and outlines our envisioned approach to
overcome those challenges.

Keywords: Model-based systems engineering · Consistency checking · Agile
model-based development

1 Introduction

The engineering of complex systems requires a team of engineers, each having
specific expertise and working on different artifacts. A commonly investigated
challenge is the management of consistency between the many different arti-
facts describing various aspects of the same system; for instance, consistency
between a system model and code in model-based systems engineering (MBSE).
There is empirical evidence indicating that inconsistency feedback improves the
performance of software engineers in scenarios where the code needs to be up-
dated after a change in the model [14]. Furthermore, the literature is rich in
approaches that deal with consistency between artifacts, each considering a set
of requirements identified as necessary for industrial adoption; they are discussed

? This research is supported by Software Center https://www.software-center.se.

https://www.software-center.se


2 R. Jongeling et al.

in Section 4. However, few studies apply their approaches to industrial settings.
In this paper, we report on a work in progress towards creating and evaluating
an approach for checking the structural consistency between a system model and
its corresponding implementation.

2 MBSE in the industrial setting under study

There are many different ways in which MBSE is adopted in industry. We do
not discuss them all, but describe in this section how the MBSE paradigm is
practiced in the industrial setting we study in this paper. Nevertheless, note that
the proposed approach in Section 3 is not limited only to the industrial setting
described in this paper. The outlined MBSE way-of-working within the stud-
ied setting is based on well-established standards such as the INCOSE systems
engineering handbook [24], Friedenthal’s “a practical guide to SysML ”[8], and
the ISO42010 standard [10]. Hence, our findings are expected to be generalizable
beyond the scope of this specific scenario under study.

Several system engineers and around a dozen software engineers are involved
in a collaborative effort to design and implement those systems. In this collabo-
ration, the system engineers are mostly concerned with capturing the intended
system design in a system model. This model is the core development artefact
and contains the structural and functional design of the system. The functional-
ity is decomposed into function blocks and then further implemented by smaller
components. The model also captures the allocation of those components to ei-
ther software or hardware. Note that the refinement of the system model into
implementation is a manual effort, the system model does not contain enough
detail to automatically generate code from it.

2.1 Overview of the system model

The system model is described using SysML diagrams. Each function block is
represented by a block in a block definition diagram (BDD) containing a combi-
nation of system components, supplemented by an interface described by SysML
Full ports. Each system component is described by a block in the internal block
diagram (IBD) corresponding to the function block it is contained in. A system
component contains attributes, operations, and signal receptions in the form
of three proxy ports (for input, output, and test). Each operation defined in
the system component is defined with an activity diagram. Furthermore, each
system component contains a state machine defining its behavior. A schematic
overview of these meta-elements is shown in Figure 1.

We are primarily interested in checking the consistency between the soft-
ware realization of system components as defined in the system model, and the
code implementing it. In the system model, the software realization consists of
software blocks. They are defined in BDDs and then elaborated in IBDs, which
define interfaces between different software blocks and the protocols by which
messages are sent between them. Like function blocks, both software blocks and
hardware blocks also define their own interfaces as SysML full ports.



Towards system model and implementation consistency 3

Function
Block

1..*

System
Component

Function
System

Interface
(Proxy port)

Operation
(Activity diagram)

State machine

Value type

1..*

1..*

1

0..*

1..*

1..* 1..*

Hardware
Block

Software
Block1..*

Interface
(Full port)

1

1..* Interface
(Full port)

1

1..*

Hardware
System

Software
System

1..* 1..*

Hardware
Definitions

Software
Definitions

Function
Definitions

Legend:

Fig. 1. Simplified overview of meta-elements composing a system model. Not depicted
are the native, foreign, and test interfaces of function blocks.

2.2 Motivation for consistency checking

Development based on inconsistent artefacts can cause delays in development
or worse, can cause the eventual implementation to be erroneous. For example,
when the code violates interface definitions in the system model, some refac-
toring might be required to obtain the desired system. The longer such an in-
consistency goes unnoticed, the more other code could be created that relies on
it and therefore needs to be refactored upon eventual discovery of the incon-
sistency. Inconsistencies therefore need to be identified as early as possible and
resolved before it causes harm. But complete consistency is also not possible,
nor desirable, since the development should also not be inhibited. Awareness
of inconsistencies soon after their introduction allows developers to decide the
best course of action [12]. Therefore, we aim to detect, but not automatically re-
pair, introduced inconsistencies between the system model and its corresponding
implementation.

In the industrial setting under study, software engineers typically do not view
the system model directly. Rather, changes to the system model are gathered by
system engineers and presented to software engineers during handover meetings.
These presentations, together with documents generated from the system model,
serve as the primary input for software engineers to work on the implementation.
At the same time, the system engineers have a limited view on what parts of
the system model are implemented where in the code. The lack of traceability
between system model and code complicates collaborative development, a lot.

Among other things, this lack of traceability inhibits development in shorter
cycles [11]. The main concern, though, is the lack of impact analysis and thereby
the potential late discovery of errors. Indeed, system engineers have, in this
setting, limited support to assess the impact of potential changes in the system



4 R. Jongeling et al.

model to related code, and late discovery of errors may induce large repair efforts.
Hence, we aim to improve the communication between system engineers and
software engineers, by providing inconsistency feedback to them both during
their development activities.

2.3 Challenges

A model-code consistency checking approach requires two ingredients: i) trace-
ability or navigation between model and code elements, determining which part
of the model is realized by which part of the code, and ii) consistency rules that
express what it means for elements to be consistent [20]. The first challenge to
identifying inconsistencies is the scale of the system model under consideration,
which implies that manually creating traceability links is not feasible. Automat-
ing this task yields numerous other challenges. We have summarized them in
Table 1, and will detail them in the remainder of this section.

Model The SysML system model in this case study consists of BDDs, IBDs,
state machines, and activity diagrams. In total, a model of a complex system can
consist of hundreds of system components defined across dozens of diagrams. The
corresponding code-base is similarly large, consisting of dozens of code files and
make files across several repositories. To establish traceability between the model
and the code, we must first determine which parts of the model are implemented
in the code. The number of required traceability links scales with the number of
model elements. Furthermore, navigating the model and code base to find the
appropriate elements is a labor-intensive task.

As described, the model addresses several concerns and not all of them are
reflected in the code, as for instance the allocation of system components to
hardware. Hence, our approach should only attempt to identify code elements
realizing model elements that are expected to be realized in the code.

When comparing model and code elements, some amount of inconsistency
is to be expected, since the system model typically aims to describe the final
product, whereas the code naturally always represents the current state of the

Table 1. Challenges to consistency checking in our industrial use-case.

Model Size
Distribution over many diagrams
Addresses multiple concerns

Code Spread out over different repositories
Names mostly similar to model
Variety in implementation of same concepts

Evolution Existing model and code base
Model and code evolve throughout project
Way-of-working should not be hindered
Model aims to capture end product, code captures current state



Towards system model and implementation consistency 5

implementation. Our goal is not to ensure complete consistency all the time, but
rather to indicate inconsistency as something that might signal problems in an
early stage.

Code The implementation of the system model is spread out over a large num-
ber of code files. Among these are also additional artefacts such as make-files,
required for building the system, that could be utilized to find dependencies that
might not be described in the system model. A common software engineering
practice is to organize such a project by creating several repositories to sepa-
rate common, re-used functionality from components describing functionality for
specific systems. This division is only shown at the software level and is not rep-
resented in the system model. Consequently, some additional effort is required
to locate the implementation corresponding to given model elements, in order
to create traceability links.

To trace elements between the artefacts, we cannot rely solely on the names
of the elements. Partially, this is due to the complexity and separate evolution
of system model and implementation code. The names are not purposefully ob-
fuscated, but names of code elements diverge from names of model elements.
This can happen, among other reasons, due to coding standards, typical use
of abbreviations, or simply the impossibility of having spaces within names of
code elements. In this way a model element “Hardware Monitor” can become
“hw mon” in the code.

Evolution It is also important to note that both a system model and a large
code base already exist and are evolved separately throughout system develop-
ment. We are not starting from scratch, but rather aim to introduce traceability
links between the existing development artefacts. Beyond aforementioned scaling
concerns, this also means that any proposed approach should not inhibit existing
development processes.

3 Approach

In this section, we outline our envisioned approach to automatically establish-
ing traceability links between model elements and code, within the described
development scenario. We plan to extend this approach to report on the level of
consistency between the linked artifacts, too.

3.1 Automatically discovering traceability links

In establishing traceability links, we can distinguish between two stages: initial
creation and maintenance throughout development. Below, we describe our en-
visioned approach to these two stages while keeping in mind the challenges as
outlined in Table 1.



6 R. Jongeling et al.

Creating traceability links in an existing MBSE project As described in
Section 2, we target traceability between those parts of the system model that
have a corresponding representation in the code. In the described setting, there
is a high naming consistency between for example C++ namespaces and SysML
interfaces. As another example, state machines contained in system components
are typically implemented in distinct classes in the code, where each state is
expected to correspond to a method inside these classes. The patterns are typical,
but not necessarily followed throughout the implementation. Hence, we cannot
rely on them exclusively but require some additional input.

We outline here our plan to match model elements despite their differences,
following the previously mentioned example of linking “Hardware Monitor” to
“hw mon”. A dictionary is established for the translation of common abbrevi-
ations to their full form. In this way, “hw” and “mon” can be understood as
“hardware” and “monitor” respectively. On top of that, some rewrite rules are
created to transform naming from models and code into a common format. An
example need for such rules is to remove spaces from all names of model ele-
ments. Using these rules, we can translate “hardware monitor” to “hw mon”.
Finally, name comparisons should be case insensitive. Now, we can link “Hard-
ware Monitor” to “hw mon”.

By applying these rules, some elements may be mapped directly, because after
rule application, their name is identical. However, also collisions might occur
where several names are all equal or very similar. To deal with this, we envision
our approach as going through the model “top-down”, i.e., starting from function
blocks and following the model hierarchy down to the functionality defined in
it. In this way, we aim to drastically narrow the search scope for elements to be
matched. Since we have knowledge of which types of model elements are likely
matched to which types of code elements, we can furthermore be more confident
to suggest correct links. We follow the hierarchy as outlined in Figure 1. In
the next step, we look at matching C++ namespaces to interfaces described as
SysML full ports. Most model elements lower in the hierarchy are then expected
to be found within the linked namespace. In cases where this does not yield a
result, we plan to apply the name similarity approach to a wider set of artifacts.

Maintaining traceability links when artifacts evolve To be useful, a set
of discovered traceability links needs to be updated throughout the evolution of
the system. Newly implemented functionality should be reflected by additional
traceability links. Removed or refactored functionality can lead to obsolete or
outdated links that need to be discarded or updated. Hence, we envision an
updating mechanism to be executed after a newly committed change to the
model or code.

Changes can break existing links, for example due to the renaming of one
of the linked elements. In this case, we cannot automatically assume that the
traceability link should be kept, so instead we reapply the discovery stage for the
affected function block. We believe that, in our setting, it is better than updating



Towards system model and implementation consistency 7

the link automatically, because a rename might indicate also the following of a
new system design. In other settings, the other alternative may be preferable.

4 Related Work

Despite the recognition of the importance of consistency [10] and the large body
of work on consistency checking topics, few empirical evaluations and industrial
applications have been published [4]. Indeed, model synchronization is still con-
sidered a challenge to industrial adoption of MDE. Selic identifies the scale of
industrial applications as one of the main challenges to overcome for a model
synchronization approach to be applicable. In particular, the number of consis-
tency links can be huge and then the effort to maintain them will be very high
and thus at constant risk of being neglected in favor of more pressing issues [22].

We focus in this work not on automatically synchronizing the model and code,
but rather on identifying inconsistencies arising during development and provid-
ing modelers and developers with insights into them. Many formalisms have
been proposed for capturing consistency rules. From languages like OVL [15]
and EVL [16], to graph pattern matching approaches [9], to triple-graph gram-
mars [21] and triple-graph patterns [7]. It should be mentioned that some of
these approaches go further than merely identifying inconsistencies and addi-
tionally aim to repair. Devising another such approach is not the focus of this
paper. Instead, we focus on the first required ingredient for consistency check-
ing. Given an existing system model and corresponding implementation, we aim
to automatically create traceability links between elements of the system model
and parts of the code.

In further discussing the related work, it is important to note that we are not
considering requirements traceability. Rather, we discuss here some approaches
dealing with traceability between heterogeneous artifacts. For example, linking
(parts of) artifacts using XML [23]. Or more formal approaches, such as “seman-
tically rich” links [18], meaning that the links are formalized and can be automat-
ically validated. Dependencies between different artifacts can also be explicitly
modeled to enable inconsistency detection and a better overall management of
the development process [19]. Building on top of that, another approach pro-
poses modeling the development process to better identify and handle emerging
inconsistencies [5]. This approach seems most appropriate when applied from
the beginning of a new development project. Whereas in our case, we want to
identify inconsistencies in already existing system model and corresponding code
base.

Other types of approaches consider applying information retrieval methods to
discover traceability links, although such methods are prone to reporting a large
number of false positives [17]. In our work, we hope to limit these by combining
the purely syntactic name information with the semantic information of model
element types. For example, in the studied setting, a class name is not likely
matched with the name of a state in a state machine; rather, that state would
be matched to a function name. The revision history of development artifacts



8 R. Jongeling et al.

can be utilized as well to detect traceability links by assessing what elements
have been changed together in the past [13]. In our scenario, this approach is
less suitable, since there is a clear separation between development of the system
model and the code.

The concept of megamodeling is aimed at establishing links between models
and model elements [6]. Megamodeling proposed a global modeling management
framework, aimed at applying modeling techniques to numerous, large, com-
plex artifacts distributed throughout a development setting and expressed in
disparate modeling languages [3]. An example implementation is the tool AM33,
which supports the automatic generation of traceability links based on exist-
ing model transformations. In the remainder of our work we will benefit from
the concepts explored in megamodeling, particularly in the area of maintaining
traceability links throughout the system’s evolution.

It is clear that automated ways of obtaining traceability links are valuable
to MBSE or any software development projects [1]. Furthermore, means to be
notified of violations of architectural consistency are desired [2]. Nevertheless, few
approaches of automating the discovery of traceability links have been studied
in industrial settings.

5 Conclusion and future work

In this paper, we have discussed a work in progress towards checking consistency
between a system model and code in a large scale industrial MBSE setting. We
have outlined the state-of-practice and argued that consistency checking would
be beneficial for both system engineers and software engineers. Although we
have not yet implemented and rolled out consistency checks, we have identified
challenges to its implementation and ideas to overcome them. These are summa-
rized in Table 1 and are related to the system model, code, and the development
process. In conclusion, establishing traceability links between system model and
code in a real industrial setting is far from a trivial task.

The continuation of this work consists of three phases. In the first phase, we
plan to implement automated support for discovering traceability links between
elements of the system model and the implementation code. This will build fur-
ther on the envisioned approach as briefly outlined in Section 3. We expect to
add additional means of discovering links once we get to the implementation
phase. The second phase consists of ensuring the semi-automated maintenance
of traceability links when the model or code evolves. For some cases, this may be
trivial once a link has been established and therefore there indeed is a code ele-
ment corresponding to the model element. For more elaborate structural checks,
like possible interface violations in the code, however, it remains necessary to
evaluate the discovered links. In the final phase, we aim to calculate, given these
traceability links, the structural consistency between the linked elements. And
then, we aim to visualize the discovered consistency within the system model.

3 https://wiki.eclipse.org/AM3

https://wiki.eclipse.org/AM3


Towards system model and implementation consistency 9

References

1. Aizenbud-Reshef, N., Nolan, B.T., Rubin, J., Shaham-Gafni, Y.:
Model traceability. IBM Systems Journal 45(3), 515–526 (2006).
https://doi.org/10.1147/sj.453.0515

2. Ali, N., Baker, S., O’Crowley, R., Herold, S., Buckley, J.: Architecture consistency:
State of the practice, challenges and requirements. Empirical Software Engineering
23(1), 224–258 (2018). https://doi.org/10.1007/s10664-017-9515-3

3. Allilaire, F., Bézivin, J., Bruneliere, H., Jouault, F.: Global model management in
eclipse gmt/am3 (2006)

4. Cicchetti, A., Ciccozzi, F., Pierantonio, A.: Multi-view approaches for software and
system modelling: a systematic literature review. Software & Systems Modeling pp.
1–27 (2019). https://doi.org/10.1007/s10270-018-00713-w

5. Dávid, I., Denil, J., Gadeyne, K., Vangheluwe, H.: Engineering process transforma-
tion to manage (in) consistency. In: Proceedings of the 1st International Workshop
on Collaborative Modelling in MDE (COMMitMDE 2016). pp. 7–16 (2016)

6. Favre, J.M.: Towards a basic theory to model model driven engineering. In: 3rd
workshop in software model engineering, wisme. pp. 262–271. Citeseer (2004)

7. Feldmann, S., Kernschmidt, K., Wimmer, M., Vogel-Heuser, B.: Managing inter-
model inconsistencies in model-based systems engineering: Application in auto-
mated production systems engineering. Journal of Systems and Software 153,
105–134 (2019). https://doi.org/10.1016/j.jss.2019.03.060

8. Friedenthal, S., Moore, A., Steiner, R.: A practical guide to SysML: the systems
modeling language. Morgan Kaufmann (2014)

9. Herzig, S., Qamar, A., Paredis, C.: An approach to Identifying Inconsistencies
in Model-Based Systems Engineering. Procedia Computer Science 28, 354–362
(2014). https://doi.org/10.1016/j.procs.2014.03.044

10. ISO/IEC/IEEE: ISO/IEC/IEEE 42010:2011(E) Systems and soft-
ware engineering – Architecture description. Tech. rep. (Dec 2011).
https://doi.org/10.1109/IEEESTD.2011.6129467

11. Jongeling, R., Carlson, J., Cicchetti, A.: Impediments to introducing continuous
integration for model-based development in industry. In: 2019 45th Euromicro
Conference on Software Engineering and Advanced Applications (SEAA). pp. 434–
441. IEEE (2019). https://doi.org/10.1109/SEAA.2019.00071

12. Jongeling, R., Ciccozzi, F., Cicchetti, A., Carlson, J.: Lightweight consistency
checking for agile model-based development in practice. Journal of Object Tech-
nology 18(2), 11:1–20 (July 2019). https://doi.org/10.5381/jot.2019.18.2.a11, the
15th European Conference on Modelling Foundations and Applications

13. Kagdi, H., Maletic, J.I., Sharif, B.: Mining software repositories for traceabil-
ity links. In: 15th IEEE International Conference on Program Comprehension
(ICPC’07). pp. 145–154. IEEE (2007). https://doi.org/10.1109/ICPC.2007.28

14. Kanakis, G., Khelladi, D.E., Fischer, S., Tröls, M., Egyed, A.: An em-
pirical study on the impact of inconsistency feedback during model and
code co-changing. Journal of Object Technology 18(2), 10:1–21 (2019).
https://doi.org/10.5381/jot.2019.18.2.a10

15. Kolovos, D., Paige, R., Polack, F.: The Epsilon Object Language (EOL). In: Eu-
ropean Conference on Model Driven Architecture-Foundations and Applications.
pp. 128–142. Springer (2006). https://doi.org/10.1007/11787044 11

16. Kolovos, D., Paige, R., Polack, F.: Detecting and Repairing Inconsisten-
cies Across Heterogeneous Models. In: 2008 1st International Conference on

https://doi.org/10.1147/sj.453.0515
https://doi.org/10.1007/s10664-017-9515-3
https://doi.org/10.1007/s10270-018-00713-w
https://doi.org/10.1016/j.jss.2019.03.060
https://doi.org/10.1016/j.procs.2014.03.044
https://doi.org/10.1109/IEEESTD.2011.6129467
https://doi.org/10.1109/SEAA.2019.00071
https://doi.org/10.5381/jot.2019.18.2.a11
https://doi.org/10.1109/ICPC.2007.28
https://doi.org/10.5381/jot.2019.18.2.a10
https://doi.org/10.1007/11787044_11


10 R. Jongeling et al.

Software Testing, Verification, and Validation. pp. 356–364. IEEE (2008).
https://doi.org/10.1109/icst.2008.23

17. Lucia, A.D., Fasano, F., Oliveto, R., Tortora, G.: Recovering traceability links in
software artifact management systems using information retrieval methods. ACM
Transactions on Software Engineering and Methodology (TOSEM) 16(4), 13–es
(2007). https://doi.org/10.1145/1276933.1276934

18. Paige, R.F., Drivalos, N., Kolovos, D.S., Fernandes, K.J., Power, C., Olsen,
G.K., Zschaler, S.: Rigorous identification and encoding of trace-links in
model-driven engineering. Software & Systems Modeling 10(4), 469–487 (2011).
https://doi.org/10.1007/s10270-010-0158-8

19. Qamar, A., Paredis, C.J., Wikander, J., During, C.: Dependency modeling and
model management in mechatronic design. Journal of Computing and Information
Science in Engineering 12(4) (2012). https://doi.org/10.1115/1.4007986

20. Riedl-Ehrenleitner, M., Demuth, A., Egyed, A.: Towards model-and-code consis-
tency checking. In: 2014 IEEE 38th Annual Computer Software and Applications
Conference. pp. 85–90. IEEE (2014). https://doi.org/10.1109/COMPSAC.2014.91

21. Schürr, A.: Specification of graph translators with triple graph grammars. In: Inter-
national Workshop on Graph-Theoretic Concepts in Computer Science. pp. 151–
163. Springer (1994). https://doi.org/10.1007/3-540-59071-4 45

22. Selic, B.: What will it take? a view on adoption of model-based meth-
ods in practice. Software & Systems Modeling 11(4), 513–526 (2012).
https://doi.org/10.1007/s10270-012-0261-0

23. Service, G., Nentwich, C., Capra, L., Emmerich, W., Finkelstein, A.: Xlinkit: A
consistency checking and smart link generation service. ACM Transactions on In-
ternet Technology 2 (11 2001). https://doi.org/10.1145/514183.514186

24. Walden, D.D., Roedler, G.J., Forsberg, K., Hamelin, R.D., Shortell, T.M.: Systems
engineering handbook: A guide for system life cycle processes and activities. John
Wiley & Sons (2015)

https://doi.org/10.1109/icst.2008.23
https://doi.org/10.1145/1276933.1276934
https://doi.org/10.1007/s10270-010-0158-8
https://doi.org/10.1115/1.4007986
https://doi.org/10.1109/COMPSAC.2014.91
https://doi.org/10.1007/3-540-59071-4_45
https://doi.org/10.1007/s10270-012-0261-0
https://doi.org/10.1145/514183.514186

	Towards Consistency Checking Between a System Model and its Implementation

