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Abstract

Deep Learning (DL) has recently become a topic of study in different applications including healthcare, in which
timely detection of anomalies on Electrocardiogram (ECG) can play a vital role in patient monitoring. This paper
presents a comprehensive review study on the recent DL methods applied to the ECG signal for the classification
purposes. This study considers various types of the DL methods such as Convolutional Neural Network (CNN), Deep
Belief Network (DBN), Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), and Gated Recurrent
Unit (GRU). From the 75 studies reported within 2017 and 2018, CNN is dominantly observed as the suitable technique
for feature extraction, seen in 52% of the studies. DL methods showed high accuracy in correct classification of Atrial
Fibrillation (AF) (100%), Supraventricular Ectopic Beats (SVEB) (99.8%), and Ventricular Ectopic Beats (VEB)
(99.7%) using the GRU/LSTM, CNN, and LSTM, respectively.
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1. Introduction

Cardiovascular Disease (CVD) is the main cause of human death, responsible for 31% of the worldwide deaths
in 2016 (Benjamin et al., 2018), from which 85% happened due to heart attack. The annual burden of CVD on the
European and American economy is estimated to be e210 billion and $555 billion, respectively (Wilkins et al., 2017;
Benjamin et al., 2018). The traditional CVD diagnosis paradigm is based on individual patient’s medical history and5

clinical examinations. These results are interpreted according to a set of the quantitative medical parameters to classify
the patients based on the taxonomy of medical diseases.

In many cases, the traditional rule-based diagnosis paradigm is inefficient due to dealing with large amount of
heterogeneous data, and requires significant analysis and medical expertise to achieve adequate accuracy in diagnosis.
The problem will become more pronounced in places, where there is a lack of medical experts and clinical equipment,10

especially in developing countries. This motivates the requirement for a reliable, automatic, and low-cost system for
monitoring and diagnosis. This requirement is becoming more demanded by the healthcare providers, such that appro-
priate medical assessments can be linked to utilizing Compute Aided Diagnosis Systems Computer-Aided Diagnosis
(CADS). A CADS is composed of automatic monitoring procedures of health conditions working based on analy-
sis of physiological signals for monitoring and evaluating functionality of the corresponding organ. CADSs provide15

individuals with portable and straightforward solutions to make them informed about their diseases.
Electrocardiogram (ECG) is a non-stationary physiological signal, representing electrical activity of heart. It is not

only used to look for pathological patterns among the heartbeats, but also used to measure the beats’ regularity as well
as other conditions like mental stress.

Deep Neural Network (DNN) has been widely used for classification and prediction purposes in different domains.20

Recently, it has been noticed that DNNs are being developed sharply with a significant effect on the accuracy in clas-
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sification for a wide range of medical tasks. Modern CADS systems leverage DNNs to detect arrhythmia of captured
ECG signal leading to decrease the cost of continuous heart monitoring and improving the quality of predictions.
However, an ECG-based automatic arrhythmia classification is typically faced with several important challenges.

1.1. Arrhythmia Classification Challenges25

The main challenges of CADS in arrhythmia classification can be summarized as follows:

1. The symptoms of the arrhythmia might not be seen during the ECG signal capturing period (Ceylan & Özbay,
2007).

2. ECG signal properties (such as period, and amplitude) vary from person to person and depends on different
factors such as age, gender, physical conditions, and lifestyle. Finding a generalized framework along with the30

related standards to be functional for general population is problematic (Ceylan & Özbay, 2007; Joshi et al.,
2009).

3. Morphology of ECG signal is often not stationary even for one testing person because physical state such as
running, walking, and sleeping.

4. The volume of data to be considered for ECG signal analysis is large. Hence there is a higher probability of35

having a false diagnosis of arrhythmia.
5. The noise, artifacts and interference can result in morphological variations and discrepancies in the captured

ECG signal (Adams & Choi, 2012; Dinakarrao et al., 2019).

1.2. The Study Objectives

The main objective of this study is to cover a broad range of Deep Learning (DL) topics in arrhythmia classification.40

To this end, we first show a big picture of most common learning models used in the studied papers (see Section 2).
Then, we present an overview of the arrhythmias from the medical perspective (see Section 3), performance evaluation
metrics of ECG classifiers (see Section 5), and the existing ECG databases (see Section 4). The second objective is
to provide a tabular representation to be used as a quick reference. Therefore, we categorized the studied papers
according to 1 their main focus to be on heart arrhythmia(s), 2 their utilized DNNs for both feature extraction and45

classification, and 3 variants of different Deep Learning methods for arrhythmia classification. The final objective
of this review is to analyze arrhythmia classification methods in terms of technical limitations, performance, and the
inference overhead (see Section 9).

1.3. Contributions of This Study Paper

We summarize and compare notable studies within 2017 and 2018 based on the DL-based methods to overcome50

the challenges exist in arrhythmia classification. The main contributions of this review are listed below:

1. We reviewed the structure of different popular DL-based methods employed in the related studies.
2. Presenting an overview of the characteristics of the notable heart arrhythmia considered in the reviewed papers.
3. Presenting the widely accepted datasets as well as the evaluation metrics exist in this community for detecting

and comparing different arrhythmia.55

4. ECG arrhythmia is presented in a categorized manner based on the classification method, dataset and the papers
cited them.

5. analyzing different arrhythmia classification methods along with comparing them based on their reported per-
formance.

6. Finally, discussing on the conclusions explicitly obtained from this paper by doing the following analysis:60

• Analyzing the contribution percentage of each learning method in the studied papers in order to find the
most popular technique.

• Analyzing the contribution percentage of each arrhythmia in the studied papers in order to target the most
interesting and less considered applications.

• Presenting the most accurate arrhythmia classification method along with reported accuracy in order to65

help researchers to select the technique depending on their needs.
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1.4. Paper Organization

This paper is organized as follows: Section 2 presents a general overview of DL methods used in the throughout of
this review. Section 3 gives the medical background, needed to gain sufficient understanding of ECG characteristics
discussed in this paper. Section 4 describes ECG databases used for training and testing. Common metrics accepted70

in the community for measuring, and comparing the accuracy and quality of the results, are all presented in Section 5.
Section 6 presents the research methodology of the paper. In Section 7, different taxonomies of the reviewed papers in
terms of the DL-based categorization, and the heart diseases based categorization is presented. Section 8 reviews the
outstanding methods in detail while summarizing all the other papers in Table 6 to Table 11. In addition, we present
the search results in this section. Further discussions on the limitations, DL computational complexity, and future75

research trend for ECG arrhythmia classification are presented in Section 9. Finally, Section 10 concludes the paper.

1.5. Acronyms

The acronyms of cardiology and DL terms used in this paper are listed in glossary Section, Appendix A.

2. Deep Learning Techniques

The topic of Deep Learning (DL) refers to the studies on knowledge extraction, predictions, intelligent decision80

making, or in another term recognizing intricate patterns using a set of the data, so called training data.Comparing to
the traditional learning techniques, DNNs are more scalable since higher accuracy is usually achieved by increasing
the size of the network or the training dataset. Shallow learning models such as decision trees and Support Vector
Machine (SVMs) are inefficient for many modern applications, meaning that they require a large number of observa-
tions for achieving generalizability, and imposing significant human labour to specify prior knowledge in the model85

(Goodfellow et al., 2016)(Loni et al., 2020).
In the recent years, several Deep Learning (DL) models have been proposed to improve the accuracy of differ-

ent learning tasks, including Multilayer Perceptron (MLP), Convolutional Neural Network (CNN), Recurrent Neural
Network (RNN), Long Short-Term Memory (LSTM), and Deep Belief Network (DBN). Time-growing neural net-
work is an elaboration of time-delayed neural network, recently introduced to the context of learning theory (Ghare-90

hbaghi et al., 2014)(A Gharehbaghi, 2015). Although the idea of deep time growing neural network is well-tailored
for biological signals, especially those with cyclic characteristics (Gharehbaghi & Lindén, 2018)(Gharehbaghi et al.,
2019b)(Gharehbaghi et al., 2019a)(Gharehbaghi & Babic, 2018), application of this powerful method has not been
studied for ECG classification, yet.

2.1. Multilayer Perceptron (MLP)95

MLP is the most frequently used supervised neural network appearing effective in learning complex systems. The
MLP architecture is variable, however, it consists of several layers of neurons connected to each other in a feed-forward
manner. Each neuron is the weighted sum of its inputs passed through a non-linear function (Goodfellow et al., 2016).

2.2. Convolutional Neural Network (CNN)

CNN is one of the most popular DNN architecture usually trained by a gradient-based optimization algorithm100

(LeCun et al., 1998). In general, a CNN consists of multiple back-to-back layers connected in a feed-forward manner.
The main layers are including convolutional layer, normalization layer, pooling layer, and fully-connected layer. Three
first layers are responsible for extracting features, while fully-connected layers are in charge of classification. In
Fig. 1, a general architecture of the CNN is represented for the classification task (Ciresan et al., 2012). Table 2 shows
different popular CNN architectures where their efficiency has been proved for different problems (Appendix B).105
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Figure 1: Illustration of Convolutional Neural Network (CNN) architecture.
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Figure 2: Illustration of Deep Belief Network (DBN) architecture (Qiao et al., 2018).

2.3. Deep Belief Network (DBN)
In 2006, Hinton proposed DBNs which are composed of multiple Restricted Boltzmann Machine (RBM) layers.

DBN is a powerful learning model used to model evolving random variables over time. As Fig. 2 shown, the DBN
layers are composed of RBMs. Each RBM, within a given layer, receives the inputs of the previous layer and feeds
the RBM in the next layer. Training DBNs is conducted by training RBMs, layer by layer from bottom to up.110

RBM has been proposed in 1986 (Hinton et al., 1986). RBM is an undirected model for binary random vari-
ables used effectively in modeling distributions over binary-valued data. A Boltzmann machine is a particular type of
Markov random fields that are composed of symmetric networks with binary random units (Keyvanrad & Homayoun-
pour, 2015). Each RBM contains a layer of visible units that represent the data and a layer of hidden units that learn to
represent features and capture higher-order correlations. As seen in Fig. 3, the two layers are connected by weighted115

connections, Wij, and there is no connection within a layer.
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Figure 3: The architecture of RBM model. White nodes are Visible Units and brown nodes are Hidden Units (Hinton et al., 2006).

2.4. Recurrent Neural Network (RNN)
RNN is an extension of an Artificial Neural Network (ANN) whose weights are shared across time. RNN is the

most proper learning model for learning sequential input data and the time-series data classification where the feedback
and the present value is fed again into the network and the output contains the adding of values in the memory (Liu120
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& Kim, 2018). At each time step, the RNN receives an input, updates its hidden state, and makes a prediction. RNN
uses gradient descent algorithm through time for training the weights. Fig. 4 illustrates the underlying architecture of
the RNN. RNNs has highly dynamic behavior due to nonlinear activation functions used by the hidden units.

Input	layer Hidden	layers Output	layer

X0

X1

X2

Y0

Y1

Figure 4: The architecture of Deep Belief Network (DBN).

2.5. Long Short-Term Memory (LSTM)

LSTM is a specific type of traditional RNN designed for temporal sequences and the long-range dependencies125

(Chung et al., 2014; LeCun et al., 2015). LSTM uses memory blocks instead of simple RNN units where each
memory block includes one or more memory cells with a pair of adaptive multiplicative gates as the input and output
(Fig. 5). A memory block places information and updates them across time-steps based on the input and output gates.
The gates control the input and output flow of information to a memory cell.
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Figure 5: (a) General Structure of Long Short-Term Memory (LSTM) architecture. (b) Detailed structure of
acrlonglstm (LSTM) functionality.

2.6. Bidirectional Recurrent Neural Network (BRNN)130

The main goal of BRNN is to simultaneously get information from past and future states of the sequence by
connecting two hidden layers of opposite directions to the same output (Schuster & Paliwal, 1997) (Fig. 6). LSTM-
BRNN can be easily achieved by replacing the nonlinear units in Fig. 6 with the LSTM blocks.
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Figure 6: The illustration of the Bidirectional Recurrent Neural Network (BRNN) architecture.

2.7. Gated Recurrent Unit (GRU)

GRU is an improved version of LSTM with faster training process(Chung et al., 2014) (Fig. 7). It is simpler135

than LSTM with less computational complexity. GRU consists of gates that are collectively involved in balancing the
interior flow of units’ information. Input gate and forget gate are combined and formed a new gating unit typically
called as update gate. The update gate mainly focuses on balancing the state between the previous activation and the
candidate activation.

h
r ~ Input

Output

h

Figure 7: The architecture of Gated Recurrent Unit (GRU).

3. Medical Background140

This section gives a overview about the heart diseases that can be commonly detected from the ECG signal.
The ECG morphology reflects the heart status Kasper et al. (2018). In general, ECG provides two primary types of
information. First, by measuring time intervals on ECG, a cardiologist can determine how long the electrical wave
takes to pass through electrical conduction system of the heart. This information helps to find out if the electrical
activity is regular or irregular, fast or slow. Second, by measuring the strength of electrical activity, a cardiologist is145

able to find out if parts of the heart are too large or are overworked. Fig. 8 shows a normal ECG heartbeat sample
with different meaningful segments, including three important waves showing atrial depolarization (P-wave), ventral
depolarization (QRS complex wave), and repolarization (T-wave). Any disorder in electrical activity of heart neural
cells affects ECG signals, known as arrhythmia. The most common types of arrhythmia are breifly described in the
following sequels:150

3.1. Atrial Fibrillation (AF)

AF occurs when action potentials fire very rapidly within the atrium, resulting in a rapid atrial rate (roughly 400-
600 beats/minute). Therefore, P waves will not be seen since the atrial rate is so fast with low amplitude level (TRIAL,
2011) (Fig. 9.b).

3.2. Right Bundle Branch Block (RBBB) and Left Bundle Branch Block (LBBB)155

Bundle Branch Block is an interruption in the regular conduction system that leads to abnormal QRS morphology.
Typically, the right bundle depolarizes the Right Ventricle (RV). In an RBBB, the right bundle does not activate.
The right ventricle is instead depolarized by spreading the impulse from the left bundle through the Left Ventricle
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Figure 8: Influential segments and various usual intervals of a A pseudo Normal Sinus Rhythm (NSR). Source: (Pater, 2005).

(LV) and then to the RV. This pattern of electrical spread creates an aberrant QRS morphology. Typically, the left
bundle depolarizes the LV. In an LBBB, the left bundle does not activate. The LV is instead depolarized by spread of160

impulse from the right bundle through the RV and then to the LV. This pattern of electrical spread creates an aberrant
QRS morphology (Otten, 2005). Fig. 9.c and Fig. 9.d illustrates a sample ECG signal presenting LBBB and RBBB,
respectively.

3.3. Premature Atrial Contraction (PAC)) and Premature Ventricular Contraction (PVC)
PAC and PVC occur when the heart’s regular rhythm is interrupted by a premature or early beat. If the premature165

beat arises from the atria, it is called a PAC. If it arises from the ventricles, it is called PVC. Fig. 9.e and Fig. 9.f
illustrates a sample ECG signal presenting PAC and PVC, respectively.

3.4. Ectopic Beats
Ectopic atrial rhythms happen when a site outside of the sinus node within the atria creates action potentials faster

than the sinus node (with an atrial rate less than 100 beats/minute). Since this electrical activity does not originate170

from the sinus node, the P wave would not have its normal sinus appearance (Fig. 9.g). Ectopic beats are also frequent
during periods of stress or exercise, and they may happen by consumption of some foods such as alcohol (TRIAL,
2011).

3.5. Myocardial Infarction (MI)
MI (aka heart attack) happens when blood flow decreases or stops in a part of the heart, causing permanent damage175

to the heart muscle or arteries. Fig. 9.h shows the ECG diagram of MI. some of the MI patterns include the two below
groups:

1. Those with ST segment elevation or new RBBB/LBBB.
2. Those with ST segment depression or T-wave inversion.

3.6. Fusion Beat180

A fusion beat happens when electrical impulses from different sources act upon the same region of the heart
simultaneously. It is called a Ventricular Fusion Beats (VFB) if it acts upon the ventricular chambers, whereas colliding
currents in the atrial chambers produce Atrial Fusion Beats (AFB) (Conover, 2002; Huff, 2006).

3.7. Sinus Bradycardia
Sinus bradycardia is a sinus rhythm with a lower than normal rate (fewer than 60 beats per minute). The decreased185

heart rate causes decreased cardiac output resulting in symptoms such as lightheadedness, dizziness, hypotension,
vertigo, and syncope (Thornton & Hochachka, 2004) (Fig. 9.i).
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3.8. Tachycardia

Tachycardia happens when the heart rate exceeds the normal resting rate (so-called tachyarrhythmia). Generally, a
resting heart rate over 100 beats per minute in adults is accepted as tachycardia (Awtry et al., 2006). Fig. 9.j illustrates190

the ECG pattern of Tachycardia. Types of tachycardias are including:

1. Atrial or Supraventricular Tachycardia (SVT): is a fast heart rate staring in the upper heart chambers.
2. Sinus Tachycardia: happens when heart sends out electrical signals faster than usual leading to a normal increase

in the heart rate.
3. Ventricular Tachycardia (VT): is a series of more than three abnormal consecutive QRS complex heart rhythm195

with a duration beyond 120 ms and the ST-T vector that points opposite the QRS deflection (Bonow et al., 2011).

3.9. Atrial Flutter (AFL)

AFL is a prevalent abnormal heart rhythm that starts in the atrial chambers of the heart (Sawhney et al., 2009; Link,
2012). When it first occurs, it is usually associated with a fast heart rate and is classified as a type of SVT (Fig. 9.k).

3.10. Ventricular Flutter (VF)200

It is an unstable arrhythmia in which a tachycardia affecting the ventricles with a rate of over 150-300 beats per
minute. VF is a possible transition stage between VT and fibrillation that can cause sudden cardiac death (Bonow
et al., 2011). A sinusoidal waveform characterizes it without clear definition of the T-waves and QRS.

3.11. Ventricular Fibrillation (VFib)

VFib is a cardiac arrhythmia in which the heart quivers instead of pumping due to disorganized electrical activity205

in the ventricles characterized by showing irregular unformed QRS complexes without any clear P-waves (Baldzizhar
et al., 2016; Weiler et al., 2014) (Fig. 9.l). VFib results in cardiac arrest with loss of consciousness followed by death
in the absence of treatment (Baldzizhar et al., 2016; Weiler et al., 2014).

3.12. Idioventricular Rhythm

An idioventricular rhythm is highly similar to VT but with the ventricular rate less than 60 beats per minute.210

Therefore, the idioventricular rhythm is referred as a slow ventricular tachycardia.

3.13. Ventricular Bigeminy

Ventricular Bigeminy is an abnormal cardiac rhythm problem in which there are repeated rhythms heartbeats that
each sinus beat is followed by an ectopic beat and pause frequently.

3.14. Pacemaker Rhythm215

Pacemaker clinical syndrome representing the consequences of pacemaker implantation, regardless of the pacing
mode, due to suboptimal atrioventricular synchrony or dyssynchrony (Chalvidan et al., 2000). It is an iatrogenic dis-
ease resulting from medical treatment (Frielingsdorf et al., 1994). Individuals with a low heart rate before pacemaker
implantation are more at risk of developing pacemaker syndrome. Patients who develop pacemaker syndrome may
require pacemaker adjustment or fitting of another lead for better coordinating the timing of atrial and ventricular220

contraction.

4. Databases

For adhering the ethical aspects, most of the papers use the existing ECG records provided as online databases.
The most common ECG databases such as PhysioNet, MITDB, PTB, etc are labeled as normal and abnormal groups of
rhythms to train CADS systems. Table 3 specifies popular existing ECG databases used for many years in community225

(Appendix C).
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(a) NSR; Heart rate: 60-100 bpm; P-R:120-200 ms; QRS: <120ms (b) AF; Heart rate:Any; P-R: No; QRS: <120ms

(c) LBBB; Heart rate:Any; P-R:-; QRS: >120ms (d) RBBB Heart rate:Any; P-R:-; QRS: >120ms

(e) PAC; Heart rate: Any; P-R: -; QRS: <120ms (f) PVC; Heart rate: Any; P-R: -; QRS: >120ms

(g) Ectopic Beats (lead II and lead V1); Heart rate: Any; P-R: -; QRS: Any (h) MI; Heart rate: Any; P-R: -; QRS: -

(i) Sinus Bradycardia; Heart rate: <60 bpm; P-R:120-200 ms; QRS: <120ms (j) SVT; Heart rate: >150 bpm; P-R: -; QRS: <40ms

(k) AFL; Heart rate: Any; P-R: No; QRS: <120ms (l) VFib; Heart rate: >250bpm; P-R: -; QRS: >120

Figure 9: Illustrating different arrhythmias including: (a) Normal Sinus Rhythm , (b) Atrial Fibrillation, (c) Left Bundle Branch Block, (d) Right
Bundle Branch Block, (e) Premature Atrial Contraction, (f) Premature Ventricular Contraction, (g) Ectopic Beats (illustrating both lead II and lead
V1), (h) Myocardial Infarction, (i) Sinus Bradycardia, (j) Atrial or Supraventricular Tachycardia, (k) Atrial Flutter, and (l) Ventricular Fibrillation.

9



5. Performance Measurements

This section presents common quantitative metrics used for evaluation of classifiers’ performance. The classifi-
cation resulted from a learning method, can be either abnormal case or normal, named as positive class or negative
class, respectively. Result of the prediction can also be either true or false, implying on correct prediction or incorrect230

prediction, respectively. Thus, We can summarize classification into four possible states:

1. True positive (TP): Correct prediction of positive class
2. True negative (TN): Correct prediction of negative class
3. False positive (FP): Incorrect prediction of positive class
4. False negative (FN): Incorrect prediction of negative class235

Based on the classifications predictions, the Accuracy, Specificity, Sensitivity, Precision, Recall, Positive Predictive
Value (PPV), Negative Predictive Value (NPV) and Area under the Curve (AUC) are calculated in Equation 1 to
Equation 8.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Specificity =
TN

TN + FP
(2)

240

Sensitivity =
TP

TP + FN
(3)

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

PPV =
TP

TP + FP
(6)

NPV =
TN

TN + FN
(7)

245

AUC =
1

np

np∑
j=1

fj

fj =
1

T

T∑
t=1

wt |1 if Pj and 0 otherwise

wt =
1

2
(prect+1 − prect−1)

prect =
# of points i where pi and ci = 1

# of points i where pi

(8)

The traditional F-measure (F1 score) is the harmonic mean of precision and recall:

F1 =

(
recall−1 + precision−1

2

)−1

= 2.
precision . recall

precision+ recall
(9)
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6. Research Methodology

A topical survey is retrospectively performed on the reachable reports, published in the technical, interdisciplinary
and medical journals within 2017 and 2018, when the was introduced to the medical context. PubMed and Google250

Scholar are employed as the main search engines, using the following keywords:

1. Deep Learning (DL) and Electrocardiogram (ECG)
2. Deep Neural Network (DNN) and Electrocardiogram (ECG)
3. Convolutional Neural Network (CNN) and Electrocardiogram (ECG)
4. Deep Belief Network (DBN) and Electrocardiogram (ECG)255

5. Recurrent Neural Network (RNN) and Electrocardiogram (ECG)
6. Long Short-Term Memory (LSTM) and Electrocardiogram (ECG)
7. Gated Recurrent Unit (GRU) and Electrocardiogram (ECG)

Results of the survey are studied in light of two different manners: technical and applicative contents of the publi-
cations. In this perspective, the objective of the reviewed papers are basically categorized by technical and application,260

where the former includes classification and feature extraction, and the later contains classification of different kinds
of arrhythmia. It is worth noting that the deep learning methods are sometimes employed for feature extraction to pro-
vide informative inputs to another classifier, i.e. conventional classifier, in contrary to other applications in which the
deep learning methods serve as powerful classifiers. Superiority of different methods for specific research questions
of symptom detection are investigated and a pervasive comparison is performed.265

7. Taxonomy of the Review

This section categorized the studied papers in the four following groups including: 1 Method-based categoriza-
tion of feature extraction papers (Section 7.1). 2 Method-based categorization of classification papers (Section 7.2).
3 Method-based categorization of both feature extraction and classification papers (Section 7.3). 4 Arrhythmia-

based categorization of all the studied papers (Section 7.4).270

7.1. DL Methods Applied as Feature Extraction
There are a few papers that used DL techniques just as feature extraction (Table 4 in Appendix D). Although feature

selection by DL speeds up the process, our study indicates that the results are not excellent for finding abnormal
heartbeat. For example Li et al. (Li et al., 2018a) proposed considerable results on obstructive sleep apnea (OSA)
detection, they used two traditional classifiers including SVM and MLP. All in all, selecting features is a big challenge275

and sometimes is not possible due to noise and unsustainability, leading researchers to perform trial and error.

7.2. DL Methods Applied as Classification
Significant portion of the studied papers used DL techniques as the classification part. Xia (Xia et al., 2017)

proposed the best classification performance for detecting AF. Table 4 presents studied papers that use DNNs for
classification (Appendix D).280

7.3. DL Methods Applied as Both Feature Extraction and Classification
The majority of studied papers in this review applied at least one type of DL technique for feature extraction and/or

classification. According to the experimental results, DL are proven to be robust and efficient (Table 4). For instance,
Zhang (Zhang et al., 2017) proposed excellent results on detecting VEB, and SVEB by applying LSTM (a network
with two LSTM layers and two FCN layers). Although, DNNs can provide prosperous result, some cases show a285

violation due to the inherent uncertainty in the biological signals. For example Zhong et al. (Zhong et al., 2018)
employed a CNN in both parts for fetal QRS complex detection and the result was not perfectly good.

7.4. Arrhythmia-Based Categorization
Table 5 lists arrhythmia-Based heart diseases considered in the studied papers (Appendix E). Table 5 is highly

profitable for researchers to more efficiently fetch papers that contain a specified heart disease.290
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8. Results of the Review

In total, a number of 77 publications were found, from which 2 publications were excluded from the study, as their
common focus was noise removal that is well beyond the objective of the review. From the rest of the 75 publications,
We found 5 survey publications. Results of these 5 surveys are all compared and represented in Section 9. This
section presents a technical overview of the outstanding studies regarding the highest reported accuracy on ECG-based295

arrhythmia diagnosis. Besides, the summary of other studied articles are presented in Table 6 to Table 11.

8.1. Variants of Multilayer Perceptron (MLP)

Table 6 lists the specifications of all papers that used a MLP model for arrhythmia diagnosis (Appendix F). In
addition, the MLP techniques with highest accuracy are explained in below.

Sannino and De Pietro (Sannino & De Pietro, 2018) proposed a novel DL approach for classifying NSR, SVEB,300

VEB, and fusion of Ventricular and NSR. They found the best classification performance by proposing a MLP com-
posed of seven hidden layers with the ReLU activation function, and 5, 10, 30, 50, 30, 10 and 5 neurons in each layer,
respectively. The output layer leverages Softmax activation function, and the cost function was the cross-entropy. Sig-
nals are located on the P, R, and T peaks and proceeded to segment the ECG signal into single heartbeats. Accuracy
of the results were 100% on the training set, 99.09% on the test set and 99.68% on the Whole data.305

Li et al. (Li et al., 2018a) proposed a method to detect Obstructive Sleep Apnea (OSA) based on DNN and Hidden
Markov model (HMM) using a single-lead ECG signal. They used the verified R-peaks position to compute the
RR interval series and interpolate the RR interval series into 100 points. DNN extracted the features. Two types of
classifiers (SVM and ANN) were used to classify the features.

8.2. Variants of Convolutional Neural Network (CNN)310

CNN is widely used in various applications such as noise filtering, feature learning, and classifications. In general,
classification using CNNs is in the supervised learning approach. Table 7 lists the specifications of other papers
using CNN model for arrhythmia diagnosis (Appendix G). In addition, the CNN techniques with highest accuracy are
explained in below.

Liu et al. (Liu et al., 2018) proposed a multiple-feature-branch Convolutional Neural Network (MFB-CNN) for315

automated myocardial (MI) detection and localization using ECG. Each independent feature branch of the MFB-
CNN corresponded to a particular lead. The global fully-connected Softmax layer could have exploited the integrity,
summarizing all the feature branches. Based on the DL framework, no hand-designed features were used for analysis.
Furthermore, the patient-specific paradigm was adopted to manage the inter-patient variability, which was a significant
challenge for automated diagnosis. For class-based MI detection and localization, the average accuracies are 99.95%320

and 99.81%, respectively. For patient-specific experiment, the average accuracies of MI detection and localization are
98.79% and 94.82%, respectively.

Andreotti et al. (Andreotti et al., 2017) classified short segments of ECG into four distinct classes as part of the
PhysioNet database including NSR and AF. They compared a state-of-the-art feature-based classifier with a CNN
approach. They increased the number of AF and noisy recordings by 2,000 10-s ECG segments with AF from Phys-325

ioBank, Circulation 2000. Each ECG segment was preprocessed using 10th order band-pass Butterworth filters with
5Hz and 45Hz cut-off frequencies for narrow-band and 1Hz to 100Hz for wide-band filtering. They divided the prepro-
cessed ECG signals into 10-second segments with 50% overlap. They computed the features based on each segment
and then computed the summary statistics such as mean standard deviation and min/max. They used the 34 layers
ResNet (see Table 2) and 16 convolutional filters per layer. The feature-based classifier obtained an F1-score of 72.0%330

and 79% on the training set (5-fold cross-validation) and on the hidden test set, respectively. Similarly, CNN scored
72.1% on the augmented database and 83% on the test set. The latter method resulted in a final score of 79%.

Another best consequence is Al Rahhal et al. (Al Rahhal et al., 2018) proposed a CNN for VEB, and SVEB
classification. They utilized a continuous wavelet transform (CWT) and an 11-layer CNN. The utilized MITDB,
INCART, and SVDB databases. The maximum average accuracy on MITDB database for VEB and SVEB is 99.3%335

and 99.3%, respectively. Regarding the other databases, the obtained average accuracy by the method in for VEB is
equal to 99.23% (INCART database), and 99.4% (SVDB database). For SVEB, the average accuracy is 99.82% for
INCART database and 98.4% for SVDB database.
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8.3. Variants of Deep Belief Network (DBN)

There are a few papers applied DBN in their work for arrhythmia classification, therefore, DBN is highly poten-340

tial for further research. Table 8 lists the specifications of other papers using DBN model for arrhythmia diagnosis
(Appendix H).

Sayantan et al. (Sayantan et al., 2018) proposed a feature representation using Gaussian-Bernoulli Deep Belief
Network (GB-DBN), and a linear SVM classifier has been considered to train the models for the classification task.
The visible layer is a Gaussian RBM since the input features are real valued and the rest of layers are Bernoulli RBMs.345

The method achieved an accuracy of 99.5% in for SVEB and 99.4% accuracy for VEB on MIT-BIH Arrhythmia
Database. Also, it provides accuracy of 97.5% for SVEB and 98.6% for VEB on SVDB database.

Taji et al. (Taji et al., 2018) proposed a method to reduce the false alarm rate caused by poor-quality ECG measure-
ments during AF detection. They designed a DBN with three layers of RBMs. The first two RBMs were generative
RBMs which did not need labels, and the last layer included discriminative RBM which used data with their labels and350

classified the input data. Results show that for ECG with low Signal-Noise-Ratio (SNR), gating which is a remember
data mechanism, significantly improved the performance of AF detection. Without gating, the precision, recall, accu-
racy, and specificity at 20 dB were 25.5%, 29.3%, 58.7%, and 70.5%, respectively. With gating, there was a significant
improvement with these metrics becoming 65%, 68.1%, 81%, and 85%.

8.4. Variants of Recurrent Neural Network (RNN)355

Table 9 lists the specifications of other papers using RNN model for arrhythmia diagnosis (Appendix I). In addition,
the RNN techniques with highest accuracy are explained in below.

Wang et al. (Wang et al., 2019) proposed a global and updatable classification scheme named Global Recurrent
Neural Network (GRNN). Their has three main innovations. First, relying on the large capacity and fitting ability
of GRNN. Second, the GRNN improves generalization performance when training samples and test samples are360

from distinct databases. Finally, GRNN automatically learns the underlying differences among the samples from
different classes. The GRNN has four layers in total. In the morphological part, LSTM blocks were applied instead
of traditional RNN to memorize longer history. A 20-node fully-connected layer was added after the second LSTM
layer. The GRNN showed great fitting ability and high performance on the training set, with a minimum accuracy of
99.8% in VEB and SVEB detection.365

Zhang et al. (Zhang et al., 2017) proposed a patient-specific ECG classification to detect NSR, VEB, and SVEB.
They use RNN to learn time correlation of ECG signal points. Morphology information of the ECG signal including
theT wave of former beat and present beat are fed into RNN to learn the deep features automatically. According to the
experimental results, the classification accuracy for SVEB and VEB are 98.7% and 99.4%, respectively.

8.5. Variants of Long Short-Term Memory (LSTM)370

Table 10 lists the specifications of other papers using LSTM model for arrhythmia diagnosis (Appendix J).
Yildirim. (Yildirim, 2018) proposed a new model named () for classifying ECG signals. Two filter banks consisted

of high-pass and low-pass filters used for reducing noises. A new wavelet-based layer is used to generate ECG signal
sequences. In this layer, the ECG signals were decomposed into frequency sub-bands at different scales. These sub-
bands were used as sequences for the input of LSTM networks. They used the MIT-BIH arrhythmia database for375

considering five different types of heartbeats. These five types were NSR, PVC, Paced Beat, RBBB, and LBBB.
The results showed that the model gave a high recognition performance of 99.39%. It had been observed that the
wavelet-based layer proposed in the study significantly improved the recognition performance of CNN.

Faust et al. (Faust et al., 2018) proposed a DL model to detect AF beats. The data was partitioned with a sliding
window of 100 beats. The resulting signal blocks were directly fed into an RNN with LSTM. The system was validated380

and tested with data from the MIT-BIH Atrial Fibrillation Database. It achieved 98.51% accuracy with 10-fold cross-
validation (20 subjects) and 99.77% with blindfold validation (3 subjects). The proposed structure of system was
straight forward because there was no need for information reduction through feature extraction.
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8.6. Variants of Gated Recurrent Unit (GRU)

Table 11 lists the specifications of other papers using GRU model for arrhythmia diagnosis (Appendix K). In385

addition, the RNN techniques with highest accuracy are explained in below.
Singh et al. (Singh et al., 2018) proposed GRU, RNN and LSTM models for the effective detection of arrhythmia

from ECG signals that consisted of sixteen types of heartbeats divided into two groups of normal and arrhythmia
heartbeats. They evaluated three different neural networks. First, three layers of RNN had been used with 128, 256 and
100 neurons in each layer, respectively, with nine iterations. Second, a GRU with two gates, a reset gate, and an update390

gate. In this paper, three layers of RNN-GRU (Gated Recurrent Unit) have been used with 64, 128 and 100 number
of neurons in each layer, respectively (with five iterations). Third, using LSTM to model temporal sequences and
the long-range dependencies. The LSTM showed accuracy of 88.1%, sensitivity of 92.4% and specificity of 83.35%.
There were 64, 256 and 100 neurons per hidden layer, respectively which showed better detection of arrhythmia than
RNN and GRU as the accuracy of RNN was 85.4%, sensitivity was 80.6%, specificity was 85.7%, and GRU accuracy395

was 82.5%, sensitivity was 78.9%, and specificity was 81.5%.
Sujadevi (Sujadevi et al., 2017) employed different DL methods such as RNN, LSTM, and GRU to detect the

AF faster in the given electrocardiogram traces. Their methodology did not require any de-noising, filtering, and
preprocessing methods. The networks distinguished a signal as NSR and AF. They used the publicly available MIT-
BIH PhysioNet database. The experimental results demonstrate that the achieved accuracy by RNN, LSTM, and GRU400

is 95.0%, 100%, and 100%, respectively. Results were encouraging enough to use clinical trials for the real-time AF
classification.

9. Discussion

In the previous sections, we present the use of different DL methods in arrhythmia classification. In this section,
we not only compare our achievements with other surveys, but also present the relevance of a method to specific405

arrhythmia pattern. In addition, we analyze the computational complexity of different DL methods and the distribution
share of each arrhythmia and method statistically. Finally, the current DL limitations and future trends of DL-based
arrhythmia classification will be discussed.

9.1. Distinction to the Other Survey Papers

There exist other survey papers that focus on ECG signal feature extraction and classification including (Jambukia410

et al., 2015), (Dewangan & Shukla, 2015), (Luz et al., 2016), (Bizopoulos & Koutsouris, 2018), and (Dinakarrao
et al., 2019). Dewangan et al. (Dewangan & Shukla, 2015) discuss old-fashioned feature extraction techniques such
as Hidden Markov Model (HMM), and independent component analysis. (Jambukia et al., 2015) is a short survey
papers that mainly focus on machine learning techniques such as SVM and MLP. Luz et al. (Luz et al., 2016) review
automatic ECG-based abnormalities classification papers that consider ECG signal preprocessing, heartbeat segmen-415

tation, feature description and learning algorithms. Bizopoulos et al. (Bizopoulos & Koutsouris, 2018) survey deep
learning papers used imaging modalities and signal data from cardiology. Compared to these surveys, we only present
state-of-the-art deep learning techniques that provide the highest accuracy results. In addition, our review cover wide
topics including arrhythmias medical background, introduction on different deep learning methods, performance eval-
uation metrics, popular databases of ECG records, and discussion on computational complexity and limitations of420

deep learning methods used for ECG arrhythmia classification. Contemporary to our review, Diankaro et al. (Di-
nakarrao et al., 2019) presents a comprehensive survey on arrhythmia diagnosis. They analyzed a wide number of
techniques for arrhythmia detection, plus, their present performance and involved complexities with these techniques.
Compared to (Dinakarrao et al., 2019), we only focus on deep learning based techniques to consider more related
papers. In addition, we consider a broader range of arrhythmia such as PAC, PVC, Ectopic Beat, and MI. To the best425

of our knowledge, this is the first review paper covering all the popular ECG arrhythmia and analyzed performance
and characteristics of DL-based arrhythmia detection methods as well as the variants of these methods.
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9.2. The Methodological Comparison

In this section, we present an overall comparison on the share of each method for arrhythmia classification, and
the percentage of each arrhythmia regarding the total studied papers.430

We study applicability of six major DL methods on ECG arrhythmia classification including CNN, MLP, RNN,
LSTM, DBN, and GRU. The percentage of association of each model in the studied papers is illustrated in Fig. 10.a.
Unequivocally, CNN is the most favorable method for feature extraction (with 52% contribution). Fig. 10.b shows
the percentage of heart diseases which have been considered in studied papers. Classifying AF, and SVEB/VEB are
the most considered arrhythmia with 48% and 21% contribution, respectively. Besides, Fig. 11 summarizes studied435

arrhythmia based on the most reported performance (accuracy) concerning the classification methods for all the studied
arrhythmia.
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Figure 10: (a) The percentage of contributing each DL model in the studied articles. (b) The percentage of each heart diseases considered in the
studied articles. The category of each pie in the graph is specified in Table 5.
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Figure 11: Reporting the best accuracy for each studied arrhythmia regarding the classification method.

9.3. Relevance of the DL Methods

This study presented the DL methods commonly employed for detecting deflection of a ECG waves from its normal
range. A common feature of all the presented DL methods is their capabilities in preserving temporal variation of the440

signal, that is regarded as a necessity for arrhythmia classification. It is important to note that the variations can occur
both within the beats and over the beats. This necessitates a capability to learn both short term and long term learning

15



for an efficient classification. As can be seen in Fig. 9, the QRS complex is noticeably changed for cases with RBBB or
LBBB, and a dynamic classifier like LSTM can learn and classify such the variations of QRS complex. For cases with
premature atrial or ventricular contraction such the variations occur on certain beats, and therefore a dynamic classier445

which is capable to preserve long term memories can be of interest, as confirmed by the review results. Ectopic beats
on the other side entail deflection of P-Wave form the sinus form, and hence a dynamic method with capability to
preserve the short memory can provide a quick learning for the classification.

9.4. Computational Complexity of the DL Methods
In general, the processing complexity of DL methods is dependent on the number of required floating-point op-450

erations for processing the model. Such that there exist an strong correlation between floating-point operations of a
CNN model and the the model inference time (R2 = 0.8888, p−value < 0.0015) and the model energy consumption
(R2 = 0.9641, p − value < 0.0001) (Loni et al., 2019). The actual inference time of a DL method is dependent on
various parameters including: hardware platform, compiler optimization, and the utilized APIs for implementing the
model (e.g. TensorFlow (Abadi et al., 2016), PyTorch (Paszke et al., 2019), etc). Therefore, we present the computa-455

tional overhead of various DL methods in an abstract way summarized in Table 1. they need huge computing resource
for real-time processing (Loni et al., 2020). In general, DL methods are slower than other machine learning-based
techniques such as SVM (Dinakarrao et al., 2019).

Table 1: The computational complexity of different DLs Methods.

Deep Learning Method Computational Complexity
MLP medium-complexity
CNN high-complexity
DBN low-complexity
RNN medium-complexity

LSTM medium-complexity
GRU low-complexity

9.5. Limitations of the DL Methods
Despite the success of DL methods in improving the classification performance compared to traditional machine460

learning methods, thy have limitations. In this section, we list the major limitation of DL methods involved in arrhyth-
mia classification.

1. For smaller amount of training data, DL methods face the overfitting problem since the model highly pay at-
tention to training data and do not generalize well for the test data. Thus, shallow techniques provide better
performance on small amount of data samples.465

2. Most of the DL methods are disposed to learn the peculiarities such as the noise of ECG signal leading to
inaccurate results. Th problem is pronounced with the size of dataset.

3. In general, DNNs are computational intensive processing methods with huge memory footprint (Loni et al.,
2019) which their implementation is challenging on low-power embedded devices. Hence, DNN-based arrhyth-
mia classification are primarily deployed on software on CPU and/or GPUs that is not a real-time solution.470

Therefore, existing hardware implementations of DNN are huge to be deployed on the energy-constraint wear-
able devices.

4. Gradient of the complex models hardly converge to the optimal loss function due to the vanishing gradient
problem. Therefore, carelessly increasing DNN layers in order to achieve higher classification accuracy is not
necessarily gain benefit.475

5. According to the studied papers analysis, the proposed DL methods are effective for limited number of arrhyth-
mia classes (e.g. roughly six classes). Generating a complex model for classifying all the ECG arrhythmia are
not proven to be effective due to difficulty of training model and needed resources.

6. Most of the studied papers focused on ECG signal characteristics, however, other important characteristics
such as patients’ physical state (e.g. age, gender, physical conditions, lifestyle, etc) are still excluded in the480

community.
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9.6. Future Research Trend

According to the best classification methods represented in Fig. 11, CNN-based have proven to be effective for
arrhythmia classification. Recent trend of research in this scope shows that dynamic classification methods that are
capable to learn both short and long term contents of the signal in an efficient way, would be employed for such485

applications. CNN has shown excellent performance in classifying different types of arrhythmia. This powerful
method would be one of the most efficient learning tool for this application.

10. Conclusions

The study presented results of a review on different methods for classifying arrhythmia on ECG signals. The
objective of the review method was to investigate the most powerful Deep Learning methods detecting various types490

of arrhythmia. Technical details of the common methods were discussed. The GRU/LSTM, CNN, and LSTM, showed
outstanding results for correct classification of Atrial Fibrillation, Supraventricular Ectopic Beats, and Ventricular
Ectopic Beats, respectively. It is also concluded that the use of a proper type of Deep Learning method can considerably
improve the classification performance for the corresponding application.
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Appendices
Appendix A

Glossary

AF Atrial Fibrillation. 1, 6, 9, 11–15, 17, 29–37

AFL Atrial Flutter. 8, 9, 30, 33790

ANN Artificial Neural Network. 4, 12, 30

APB Atrial Premature Beats. 30, 33

BLSTM Bidirectional LSTM. 37

BRNN Bidirectional Recurrent Neural Network. 5, 6

CADS Computer-Aided Diagnosis. 1, 2, 8795

CHF Congestive Heart Failure. 30, 34, 35

CNN Convolutional Neural Network. 1, 3, 4, 11–13, 15–17, 28, 32–35

CVD Cardiovascular Disease. 1

DBN Deep Belief Network. 1, 3–5, 11, 13, 15, 16, 36

DL Deep Learning. 1–3, 11–17800

DNN Deep Neural Network. 1–3, 11, 12, 16, 29–31

DWT Discrete Wavelet Transform. 37

ECG Electrocardiogram. 1–3, 6–8, 11–17, 29–37

FCN Fully Connected Neural Network. 11, 32–36

GB-DBN Gaussian-Bernoulli Deep Belief Network. 13, 36805

GCNN Generic CNN. 34

GRNN Global Recurrent Neural Network. 13, 36

GRU Gated Recurrent Unit. 1, 6, 11, 14–17, 30, 36, 37

LBBB Left Bundle Branch Block. 6, 7, 9, 13, 16, 30, 33–35, 37

LSTM Long Short-Term Memory. 1, 3, 5, 6, 11, 13–17, 30, 35–37810

LV Left Ventricle. 6, 7

MI Myocardial Infarction. 7, 9, 12, 14, 29, 30, 32–34

MLP Multilayer Perceptron. 3, 11, 12, 14–16, 31
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NSR Normal Sinus Rhythm. 7, 9, 12–14, 29–37

PAC Premature Atrial Contraction. 7, 9, 14815

PAF Paroxysmal Atrial Fibrillation. 29, 30, 34

PVC Premature Ventricular Contraction. 7, 9, 13–15, 30, 33, 35, 37

RBBB Right Bundle Branch Block. 6, 7, 9, 13, 16, 29, 30, 33, 37

RBM Restricted Boltzmann Machine. 4, 13, 36

RNN Recurrent Neural Network. 1, 3–5, 11, 13–16, 30, 36, 37820

RV Right Ventricle. 6, 7

SNR Signal-Noise-Ratio. 13

SVEB Supraventricular Ectopic Beats. 1, 11–13, 15, 17, 29–34, 36

SVM Support Vector Machine. 3, 11–14, 16, 31, 34, 36

SVT Atrial or Supraventricular Tachycardia. 8, 9, 30, 33825

TDCNN Tuned Dedicated Convolutional Neural Network. 34

VEB Ventricular Ectopic Beats. 1, 11–13, 15, 17, 29–34, 36

VF Ventricular Flutter. 8, 29, 30, 33

VFB Ventricular Fusion Beats. 7

VFib Ventricular Fibrillation. 8, 9, 29–31, 33–35830

VT Ventricular Tachycardia. 8, 29, 30, 33–35

WPW Pre-Excitation. 29, 30, 33

27



Appendix B

Table 2: The architecture of different popular CNNs.

CNN Model Publish Year CNN Structure Achievement
AlexNet (Krizhevsky et al., 2012) 2012 5 convolutional layers + 3 An important architecture that attracted many

fully-connected layers researchers in the field of computer vision.
Clarifai (Yosinski et al., 2014) 2013 5 convolutional layers + 3 It was committed to see what’s

fully-connected layers happening inside the network.
SPP (He et al., 2015) 2014 5 convolutional layers + 3 By providing a spatial pyramid pooling,

fully-connected layers the size of the images is eliminated.
VGG (Simonyan & Zisserman, 2014) 2014 13-15 convolutional layers + 3 Complete evaluation of the network

fully-connected layers with incremental depth.
GoogLeNet (Szegedy et al., 2015) 2014 21 convolutional layers + 3 Increase network depth and width without

fully-connected layers increasing computational requirements.
ResNet (He et al., 2016) 2015 152 convolutional layers + 3 Increase network depth and provide a method

fully-connected layers to prevent gradient saturation.
Efficient DenseNet (Loni et al., 2020) 2020 121 convolutional layers + 1 An inference efficient CNN by

fully-connected layers optimizing DenseNet architecture.
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Table 3: The popular ECG databases.

Database Name Number of Recordings Data Sampling Information Included Disease

PhysioNet/Computing in Cardiology Challenge
(Goldberger et al., 2000)

Length: between 30 s and 60 s,
total of 12,186 ECGs were used: 8,528
in the public training set and 3,658
in the private hidden test set

Digitized in real-time
at 44.1 kHz and
24-bit resolution

NSR
AF

The DNNIH Arrhythmia Database (MITDB)
(Obtained between 1975 and 1979)
(Goldberger et al., 2000)

48 half-hour excerpts of two-channel
ambulatory ECG recordings, obtained
from 47 subjects. The subjects were
25 men aged 32 to 89 years, and
22 women aged 23 to 89 years,
Twenty-three recordings were
chosen at random from a set of
4000 24-hour ambulatory ECG
recordings collected from a mixed
population of inpatients (about 60%)
and outpatients (about 40%)

Digitized at 360 samples per
second per channel with 11-bit
resolution over a 10 mV range

Complex Ventricular,
Supraventricular Arrhythmias
Conduction Abnormalities

Physikalisch-Technische Bundesanstalt (PTB)
(Goldberger et al., 2000)

549 records from 290 subjects
(aged 17 to 87, mean 57.2;
209 men, mean age 55.5,
and 81 women, mean age 61.6)

Digitized at 1000 samples per second,
with 16 bit resolution over a range
of ± 16.384 mV. Resolution:
16 bit with 0.5 V/LSB
(2000 A/D units per mV)

MI
Cardiomyopathy/Heart Failure
Bundle Branch Block
Dysrhythmia
Myocardial hypertrophy
Valvular Heart Disease
Myocarditis

MIT-BIH Supraventricular
Arrhythmia Database (SVDB)
(Goldberger et al., 2000)

78 two-lead recordings of
approximately 30 minutes Digitized at 128 Hz

VEB
SVEB

PhysioNet, The ECG-ID Database
(Goldberger et al., 2000)

310 ECG recordings,
obtcitained from 90 persons

20 seconds, digitized at 500 Hz
with12-bit resolution over a
nominal ±10 mV range

NSR
AF

The MIT-BIH Atrial Fibrillation
Database (MIT-BIHAF)
(Goldberger et al., 2000)

25 long-term ECG recordings
of human subjects with atrial
fibrillation (mostly paroxysmal)

ECG signals each sampled at
250 samples per second with
12-bit resolution over a range
of ±10 millivolts.

NSR
AF

Creighton University VT Database (CUDB)
(Goldberger et al., 2000)

35 eight-minute ECG
recordings of human subjects

Digitized at 250 Hz with 12-bit
resolution over a 10 V range
(10 mV nominal relative to the
unamplified signals). Each record
contains 127,232 samples
(slightly less than 8.5 minutes).

Sustained VT
VF
VFib

The MIT-BIH Malignant Ventricular
Arrhythmia Database (VFDB)
(Goldberger et al., 2000)

22 half-hour ECG recordings Digitized at 250 Hz
Sustained VT
VF
VFib

The UCI cardiac arrhythmia
(Dua & Graff, 2017)

Number of Instances: 452
Number of Attributes:279 -

NSR
Old Inferior MI
Sinus Bradycardia
RBBB

Long Term ST Database
(LTSTDB). (Goldberger et al., 2000)

Contains 86 lengthy
ECG recordings of 80
human subjects

Digitized at 250 samples
per second with 12-bit resolution
over a range of ±10 millivolts.

NSR
SVEB
VEB

CinC Challenge 2000 Datasets.
(Goldberger et al., 2000) 70 records

16 bits per sample,
least significant byte first in each pair,
100 samples per second,
nominally 200 A/D units per mV

Sleep Apnea
NSR

E-HOL-03-0202-003 (Intercity Digital
Electrocardiogram Alliance—IDEAL)
Database
(University of Rocher Medical Center & Warehouse)

202 healthy subjects
24 hour Holter recordings

Sampling Frequency : 200Hz
Amplitude Resolution: 10 microV Healthy ECG signal

The PAF Prediction Challenge Database
(Goldberger et al., 2000)

50 record sets come from
48 different subjects

Digitized ECGs (16 bits per sample,
128 samples per signal per second,
samples from each channel alternating,
nominally 200 A/D units per mV).

PAF

St.-Petersburg Institute of Cardiological Technics
12-lead Arrhythmia Database (NCART)
(Goldberger et al., 2000)

75 annotated recordings extracted
from 32 Holter records. Each
record is 30 minutes long and
contains 12 standard leads

Each sampled at 257 Hz,
with gains varying from
250 to 1100 analog-to-digital
converter units per mV.

Acute MI
Prior MI
Coronary Artery Disease with Hypertension
Sinus Node Dysfunction
Supraventricular ectopy
WPW
AF
Bundle Branch Block

Fantasia Database- PhysioBank
(Goldberger et al., 2000)

20 young (21 - 34 years old)
and 20 elderly (68 - 85 years old)
rigorously-screened healthy subjects
underwent 120 minutes of continuous
supine resting

Digitized at 250 Hz.
Each heartbeat was annotated
using an automated arrhythmia
detection algorithm

Normal Sinus Rhythm while watching
a Fantasia movie

The MIT-BIH Normal Sinus Rhythm
(NSR) Database
(Goldberger et al., 2000)

18 long-term ECG recordings of
subjects, 5 men, aged 26 to 45,
and 13 women, aged 20 to 50

- Normal Sinus Rhythm (NSR)

BIDMC PPG and Respiration Dataset
(Goldberger et al., 2000)

The 53 recordings
within the dataset, each of
8-minute duration

Sampled at 125 Hz -
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Table 4: Categorizing DNNs based on the studied papers.

ANN Feature Extraction Classification Feature Extraction + Classification

CNN
(Tang et al., 2018), (Liu et al., 2018), (Labati et al., 2018),
(Takalo-Mattila et al., 2018), (Chen et al., 2018),
(Plesinger et al., 2017), (Sodmann et al., 2018)

(Rubin et al., 2018), (Xia et al., 2018), (Zhao et al., 2018), (Taherisadr et al., 2018),
(Kamaleswaran et al., 2018), (Zhai & Tin, 2018), (Jun et al., 2018), (Acharya et al., 2017b),
(Andreotti et al., 2017), (Acharya et al., 2017a), (Yang et al., 2018), (Xu et al., 2018)

(Al Rahhal et al., 2018), (Yildirim et al., 2018), (Acharya et al., 2019), (Fan et al., 2018),
(Zhong et al., 2018), (Savalia & Emamian, 2018), (Li et al., 2018b),
(Li et al., 2017), (Chandra et al., 2017), (Acharya et al., 2017c), (Xiang et al., 2018),
(Nguyen et al., 2018) (Pourbabaee et al., 2017), (Liu et al., 2017), (Acharya et al., 2018),
(Xia et al., 2017), (Xiong et al., 2017), (Isin & Ozdalili, 2017), (Poh et al., 2018)

MLP (Li et al., 2018a)
(Sannino & De Pietro, 2018), (Ghiasi et al., 2017), (Chamatidis et al., 2017),
(Majumdar & Ward, 2017), (Sadrawi et al., 2017), (shensheng Xu et al., 2017), (Luo et al., 2017) -

RNN (Wang et al., 2019), (Maknickas & Maknickas, 2017) (Singh et al., 2018), (Zhang et al., 2017), (Sujadevi et al., 2017)
LSTM (Yildirim, 2018) (Singh et al., 2018), (Faust et al., 2018), (Liu & Kim, 2018), (Sujadevi et al., 2017)
DBN (Sayantan et al., 2018) (Mathews et al., 2018) (Taji et al., 2018)
GRU (Schwab et al., 2017) (Sujadevi et al., 2017)

CNN & RNN
(Zihlmann et al., 2017), (Andersen et al., 2019), (Ji et al., 2018),
(Xie et al., 2018), (Shashikumar et al., 2018)

CNN & LSTM
(Oh et al., 2018), (Lui & Chow, 2018), (Sugimoto et al., 2018), (Warrick & Homsi, 2017),
(Yao et al., 2018), (Limam & Precioso, 2017), (Wang & Zhou, 2019), (Tan et al., 2018)

Table 5: Categorizing studied papers according their focus on diagnosing various heart arrhythmias detected by analyzing ECG.

# Heart Arrhythmias Papers

a

Normal Sinus Rhythm (NSR)
Left Bundle Branch Block (LBBB)
Right Bundle Branch Block (RBBB)
Atrial Premature Beats (APB)
Premature Ventricular Contraction (PVC)

(Oh et al., 2018), (Yildirim, 2018), (Mathews et al., 2018), (Li et al., 2017), (Isin & Ozdalili, 2017)

b
Supraventricular Ectopic Beats (SVEB)
Ventricular Ectopic Beats (VEB)

(Wang et al., 2019), (Sayantan et al., 2018), (Al Rahhal et al., 2018), (Ji et al., 2018), (Xie et al., 2018),
(Zhai & Tin, 2018), (Takalo-Mattila et al., 2018), (Li et al., 2018b), (Acharya et al., 2017c),
(Majumdar & Ward, 2017), (Sadrawi et al., 2017), (Zhang et al., 2017), (Luo et al., 2017)

c Atrial Fibrillation (AF)

(Savalia & Emamian, 2018), (Andersen et al., 2019), (Rubin et al., 2018), (Xia et al., 2018), (Zhao et al., 2018),
(Faust et al., 2018), (Shashikumar et al., 2018), (Kamaleswaran et al., 2018), (Fan et al., 2018), (Chen et al., 2018),

(Andreotti et al., 2017), (Maknickas & Maknickas, 2017), (Limam & Precioso, 2017), (Chandra et al., 2017),
(Schwab et al., 2017), (Acharya et al., 2017a), (Pourbabaee et al., 2017), (Taji et al., 2018), (Plesinger et al., 2017),

(Poh et al., 2018) (Xia et al., 2017), (Xiong et al., 2017), (Warrick & Homsi, 2017), (Zihlmann et al., 2017),
(Sujadevi et al., 2017), (Xu et al., 2018), (Ghiasi et al., 2017), (Sodmann et al., 2018)

d Myocardial Infarction (MI) (Liu et al., 2018), (Lui & Chow, 2018), (Sugimoto et al., 2018),
(Acharya et al., 2017b), (Liu et al., 2017), (shensheng Xu et al., 2017)

e Biometric Recognition (Labati et al., 2018), (Chamatidis et al., 2017)

f
Detecting Distracted and
Non-Distracted Drivers (Taherisadr et al., 2018)

g
Recognition of 8 pattern
images (signal pictures) (Jun et al., 2018)

h
Localize the Origins of
Premature Ventricular Contraction (PVC) (Yang et al., 2018)

i

Normal Sinus Rhythm (NSR)
Atrial Premature Beats (APB)
Atrial Flutter (AFL)
Atrial Fibrillation (AF)
Atrial or Supraventricular Tachycardia (SVT)
Pre-Excitation (WPW)
Premature Ventricular Contraction (PVC)
Ventricular Bigeminy
Ventricular Flutter (VF)
Idioventricular Rhythm
Ventricular Tachycardia (VT)
Fusion of Ventricular and NSR
Left Bundle Branch Block (LBBB)
Right Bundle Branch Block (RBBB)
Second-Degree Heart block
Pacemaker Rhythm

(Yildirim et al., 2018)

j Congestive Heart Failure (CHF) (Acharya et al., 2019), (Wang & Zhou, 2019)
k Fetal QRS complex detection (Zhong et al., 2018), (Xiang et al., 2018)
l Paroxysmal Atrial Fibrillation (PAF) (Pourbabaee et al., 2017)

m
Normal Sinus Rhythm (NSR)
Ventricular Fibrillation (VFib)
Ventricular Tachycardia (VT)

(Acharya et al., 2018), (Nguyen et al., 2018)

n

Normal Sinus Rhythm (NSR)
Supraventricular Ectopic Beats (SVEB)
Ventricular Ectopic Beats (VEB)
Fusion of Ventricular and and NSR

(Sannino & De Pietro, 2018)

o OSA Detection (Li et al., 2018a)

p
Normal and Abnormal Beats
(Separation of Regular and Irregular Beats) (Singh et al., 2018)

q Sleep Apnea (Liu & Kim, 2018)
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Table 6: Properties of some notable MLP-based ECG arrhythmia classification.

Application Ref. Method Database PerformanceFeature Extraction Classification
Normal Sinus Rhythm (NSR)
Supraventricular Ectopic Beats (SVEB)
Ventricular Ectopic Beats (VEB)
Fusion of Ventricular and and NSR
Heartbeats That Cannot be Classified

(Sannino & De Pietro, 2018)
Pre-RR interval Post-RR interval
Local average RR interval
Global average RR interval

MLP MITDB Accuracy: 99,68%

OSA Detection (Li et al., 2018a) MLP
SVM
MLP PhysioNet 2000

Accuracy: 100%,
Sensitivity: 100%,
Specificity: 100%

Abnormality of Heart Rhythm
AF (Ghiasi et al., 2017)

Morphological ECG Characteristics:
1. RR intervals histogram
2. Geometric
3. Fractal Dimension
4. Correlation coefficient
5. Variance of R peaks

MLP (Softmax Activation) PhysioNet 2017
Accuracy:
Training: 80%
Test: 71%

User Authentication (Chamatidis et al., 2017)
FT
DCT
DWT

1. KNN
2. MLP
3. Radial Basis Function Network
4. Random Forest
5. DNN

PTB

Accuracy:
1. 81.616% - 86.974%
2. 81.409% - 85.753%
3. 0.233% - 85.873%
4. 83.993% - 88.447%
5. Average accuracy:
80% (Small Database)

Fusion Beat
Supraventricular Ectopic Beats (SVEB)
Ventricular Ectopic Beats (VEB)

(Majumdar & Ward, 2017)

QRS Duration
RR Interval Amplitude of P, Q, R, S, T Points
Robust Deep Dictionary Learning -
(RDDL is their new approach)

MLP MITDB

Overall Accuracy: 97.0%
1. Fusion Beat:
Sensitivity: 100%, Specificity: 67.2%
2. SVEB:
Sensitivity: 16.9%, Specificity: 100%
3. VEB
Sensitivity: 90.1%, Specificity:100%

Supraventricular Ectopic Beats (SVEB)
Ventricular Ectopic Beats (VEB) (Luo et al., 2017) Stacked Denoising Auto-Encoder (SDA) MLP MITDB

VEB:
Accuracy: 99.1%, Sensitivity: 93.3%,
Specificity: 99.5%, Positive Predictive: 93.3%
SVEB:
Accuracy: 98.8%, Sensitivity: 71.4%,
Specificity: 99.8%, Positive predictive: 94.4%

Normal Sinus Rhythm (NSR)
Atrial Fibrillation (AF)
Supraventricular Ectopic Beats (SVEB)
Ventricular Ectopic Beats (VEB)
Ventricular Fibrillation (VFib)

(Sadrawi et al., 2017) FFT MLP
PhysioNet
CUDB
MITDB

VEB:
Sensitivity: 93.1%
False Positive Rate: 0.321%
Positive Predictive: 95.65%
SVEB:
Sensitivity: 79.87 %
False Positive Rate: 1.323 %
Positive Predictive: 67.14%
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Appendix H

Table 8: Properties of some notable DBN-based ECG arrhythmia classification.

Application Ref. Method Database PerformanceFeature Extraction Classification

SVEB
VEB (Sayantan et al., 2018) GB-DBN SVM

MITDB
SVDB

MITDB:
SVEB Accuracy: 99.5%, VEB Accuracy: 99.4%
SVDB:
SVEB Accuracy: 97.5%, VEB: Accuracy: 98.6%

AF (Taji et al., 2018) DBN+ RBM
MITDB
AFDB

Without Gating (at -20 dB):
Precision: 25.5%, Recall: 29.3%,
Accuracy: 58.7%, Specificity: 70.5%
With Gating:
Precision: 65%, Recall: 68.1%,
Accuracy: 81%, Specificity: 85%

Appendix I840

Table 9: Properties of some notable RNN-based ECG arrhythmia classification.

Application Ref. Method Database PerformanceFeature Extraction Classification

SVEB
VEB (Wang et al., 2019)

Morphological
and

Premature-or-Escape-Flag (PEF)
GRNN

MITDB
SVDB

LTSTDB-I (40 Records)

MITDB:
Accuracy: 97.4%, Sensitivity:85.7%, Specificity: 98.3%
SVDB:
Accuracy: 97.2%, Sensitivity :77.2%, Specificity :99.2%

NSR
AF (Maknickas & Maknickas, 2017)

RR, QQ, SS, PP, TT Intervals
SQ, PR, QT, ST Intervals PhysioNet challenge2017 F1-score: 0.78

NSR and Abnormal Beats
(separation of regular and
irregular beats)

(Singh et al., 2018)

1. 3-layer RNN
2. 3-layer RNN-GRU

3. 3-layer RNN
4. 3-layer RNN-GRU

5. 3-layer RNN-LSTM

MITDB

1. Accuracy: 85.4%, Sensitivity: 80.6%, Specificity: 85.7%
2. Accuracy:82.5%, Sensitivity: 78.9%, Specificity: 81.5%
3. Accuracy:85.4%, Sensitivity: 80.6%, Specificity: 85.7%
4. Accuracy:82.5%, Sensitivity: 78.9%, Specificity: 81.5%
5. Accuracy:88.1%, Sensitivity: 92.4%, Specificity: 83.35%

VEB
SVEB (Zhang et al., 2017) RNN (2 LSTM Layers + 2 FCN)

MITDB:
1. DS1=11 records
2. DS2=24 records
3. DS3=44 records

VEB:
1. DS1: Accuracy: 99.4%, Sensitivity: 97.6%,
Specificity: 99.7%, Positive Predictivity: 97.6%
2. DS2: Accuracy: 99.6%, Sensitivity: 97.5%,
Specificity: 99.8%, Positive Predictivity: 97.9%
3. DS3: Accuracy: 99.7%, Sensitivity: 97.1%,
Specificity: 99.9%, Positive Predictivity: 98.1%
SVEB:
1. DS1: Accuracy: 98.7%, Sensitivity: 87.4%,
Specificity: 99.4%, Positive Predictivity: 89.4%
2. DS2: Accuracy: 98.9%, Sensitivity: 86.7%,
Specificity: 99.5%, Positive Predictivity: 89.0%
3. DS3: Accuracy: 99.3%, Sensitivity: 85.9%,
Specificity: 99.7%, Positive Predictivity: 88.7%

NSR
AF (Sujadevi et al., 2017) RNN MITDB

Accuracy: 0.95, Precision: 1.00,
Recall: 0.889, F-score: 0.941

Appendix J

Appendix K
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Table 10: Properties of some notable LSTM-based ECG arrhythmia classification.

Application Ref. Method Database PerformanceFeature Extraction Classification
NSR
PVC
Paced Beat (PB)
LBBB
RBBB

(Yildirim, 2018) DWT
Bidirectional
LSTM

MITDB
(total records=7376) Accuracy: 99.39%

NSR and Abnormal Beats
(separation of regular
and irregular beats)

(Singh et al., 2018)

1. 3-layer RNN
2. 3-layer RNN-GRU

3. 3-layer RNN
4. 3-layer RNN-GRU

5. 3-layer RNN-LSTM

MITDB

1. Accuracy: 85.4%, Sensitivity: 80.6%, Specificity: 85.7%
2. Accuracy: 82.5%, Sensitivity: 78.9%, Specificity: 81.5%
3. Accuracy: 85.4%, Sensitivity: 80.6%, Specificity: 85.7%
4. Accuracy: 82.5%, Sensitivity: 78.9%, Specificity: 81.5%
5. Accuracy:88.1%, Sensitivity: 92.4%, Specificity: 83.35%

AF (Faust et al., 2018) Bidirectional LSTM MITDB
Accuracy: 98.51%, Sensitivity: 98.32%,
Specificity: 98.67%, Positive Predictive Accuracy: 98.39%

Sleep Apnea (Liu & Kim, 2018) LSTM
CinC Challenge

(Apnea) Accuracy: 98.4%

Table 11: Properties of some notable GRU-based ECG arrhythmia classification.

Application Ref. Method Database PerformanceFeature Extraction Classification

AF (Schwab et al., 2017)

Time since the last heartbeat (δRR)
Relative Wavelet Energy (RWE) Over 5 Frequency Bands
Total Wavelet Energy (TWE)
R amplitude
Q amplitude
QRS Duration

GRU and BLSTM
PhysioNet
Challenge 2017

Average F1-score: 0.79
Class-wise F1 of the NSR: 0.90
AF: 0.79
Other Arrhythmias: 0.68

AF
NSR (Sujadevi et al., 2017) GRU MITDB

Accuracy: 1.00
Precision: 1.00,
Recall: 1.00
F1-score: 1.00
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