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Abstract—Moving towards new technologies, such as Time
Sensitive Networking (TSN), in industries should be gradual with
a proper integration process instead of replacing the existing ones
to make it beneficial in terms of cost and performance. Within
this context, this paper identifies the challenges of integrating
a legacy EtherCAT network, as a commonly used technology
in the automation domain, into a TSN network. We show that
clock synchronization plays an essential role when it comes
to EtherCAT-TSN network integration with important require-
ments. We propose a clock synchronization mechanism based on
the TSN standards to obtain a precise synchronization among
EtherCAT nodes, resulting to an efficient data transmission.
Based on a formal verification framework using UPPAAL tool
we show that the integrated EtherCAT-TSN network with the
proposed clock synchronization mechanism achieves at least 3
times higher synchronization precision compared to not using
any synchronization.

Index Terms—Time-sensitive networking, TSN, clock synchro-
nization, EtherCAT, formal verification.

I. INTRODUCTION

Technology is in continuous development and when new
technical know-hows become available for use, this often
opens up possibilities to design a new types of solutions. For
manufacturers of systems or products, the availability of new
technical solution provides a possibility to get an advantage
over competitors. However, the opportunities of new solutions
always come with the challenge of their integration with
existing legacy solutions and implementation. Such challenges
are common in large industrial systems and solutions where
everything is not (or cannot be) changed at once, when a new
technology is going to be utilized.

One of the new technologies, which offers a set of ef-
ficacious features for industrial systems, is Time-Sensitive
Networking (TSN). It was introduced by the IEEE TSN task
group1 in 2012, presenting several interesting features such
as offline scheduled traffic and support for frame preemption.
TSN seems promising to enable new solutions within the
context of modern industrial systems and solutions. TSN
allows for multiple flows of time critical traffic, subject to
requirements on bounded latency, to share the same network
as generic traffic. Such capabilities are hinting towards the
possibility to integrate multiple legacy networks onto one
TSN network. However, it is common that legacy technology

1https://1.ieee802.org/tsn/

currently in use does not support all TSN requirements.
Moreover, for companies it is cost-effective and beneficial
if they gradually move towards new technologies instead of
fully replacing the existing ones. Therefore, solutions towards
integrating a legacy systems onto a TSN network in a way
that the services are not disturbed are essential.

One of the vastly used industrial communication technolo-
gies in industrial systems, in particular in the automation
domain, is EtherCAT (Ethernet for Control Automation Tech-
nology)2 [1]. EtherCAT was introduced in the market in 2003,
and its main advantage is the short latency that is imposed
to the message frames due to the on-the-fly read and write
procedure. In short, a train of frames, known as a telegram, is
initiated by a master node and circulated in the network. The
telegram passes through all slave nodes and, while passing
through a slave node, the data can be read, written and updated
with a latency that is only posed by the hardware propagation
delay. Another feature given by the EtherCAT technology is
that it provides clock synchronization among the slave nodes
and the master node. Such clock synchronization is commonly
used in the system where EtherCAT is deployed and hence
must also be supported in the case of adopting a potential
replacing technology such as TSN.

Contributions. In order to allow industry to adopt TSN so-
lutions, a proper integration methodology should be designed.
In this paper, we consider EtherCAT as a legacy network in
an automation industry. Among different requirements in in-
tegrating EtherCAT devices onto a TSN network, an essential
component is the clock synchronization to maintain proper
behavior of the communication among the EtherCAT devices.
Thus, the main target of this paper is the clock synchronization
requirements for such integration. The main contributions of
this paper are as follows:

• We formulate the problem of having inconsistent clock
synchronization mechanisms in an integrated EtherCAT-
TSN network and we describe the effects of this incon-
sistency in the network behavior.

• We propose a solution to integrate the clock synchro-
nization mechanisms described by the two network tech-
nologies, i.e., EtherCAT and TSN, to obtain a precise
synchronization.

2https://www.ethercat.org/en/technology.html



• We model three different architectures including: (i) a
solely EtherCAT network, (ii) an integrated EtherCAT-
TSN network without clock synchronization mechanism,
and (iii) an integrated EtherCAT-TSN network with our
proposed clock synchronization solution. The modeling
is based on a formal verification framework, using UP-
PAAL3, to show the performance of the network with
respect to the clock precision.

Outline. The paper is organized as follows. Section II
describes the basics of clock synchronization in both TSN and
EtherCAT. Section III presents the related work. Section IV
formulates the problem, while Section V proposes our solu-
tion. Then, utilizing a formal modeling framework, Section VI
evaluates the solution. Finally, Section VII concludes the paper
and gives future directions.

II. BASICS OF CLOCK SYNCHRONIZATION PROTOCOLS

This section presents the background information on clock
synchronization for both technologies highlighted in this pa-
per, i.e., EtherCAT and TSN. The information gives basis for
the proposed solution in this paper.

A. EtherCAT Clock Synchronization

According to its specification, EtherCAT presents three
different synchronization modes: (a) free run, (b) synchronous
with Synchronous Message (SM) event, and (c) synchronous
with Distributed Clock (DC) SYNC event.

a) Free run mode: In free run mode there is no synchro-
nization between nodes in the network. In this mode, all clocks
in the nodes run independently, hence there are no timing-
related properties provided. The other two modes provide
different levels of synchronization, which will be described
in more details below.

b) Synchronous with SM event mode: In this mode the
slave nodes are synchronized with the master node by means
of SMs that are sent by the master node. The SM messages
are used for two different purposes. The first purpose is to
exchange data among the slave nodes and the master node,
whereas the second purpose is to use the same messages for
synchronization among the slave nodes and the master node.

The main drawback of this mode is its low precision which
is in the level of a few microseconds. The low precision in
this mode is the consequence of the high level of jitter for the
SM messages. The main reason is that typically the EtherCAT
master nodes are implemented in standard PCs with network
interfaces that do not support low-jitter communication.

c) Synchronous with DC SYNC event mode: In this mode
a dedicated message is used for clock synchronization. The
main advantage of this mode is its high precision compared
to the SM event mode, which is in the level of nanoseconds
whereas the SM event mode provides a level of a few mi-
croseconds. To achieve this precision, the master node executes
the Delay Measurement (DM) mechanism, shown in Fig. 1.

The master node measures the delays between the reference
clock (notated by RC in the figure) and the slave clocks

3http://www.uppaal.org/

(notated by SC in the figure). The reference clock is typically
the clock of the first slave node in the EtherCAT strand,
while the slave clocks are the clocks in the other slave
nodes of the EtherCAT strand. This mechanism initiated by
the master node sends a special message, known as the DM
Transmission (DM T). When the slave nodes supporting
the DC SYNC receive this message, they record the time
(T1 or T2i depending on whether the slave node has the
reference clock or not). Once the message arrives to the last
slave node, the message has to return to the master node. At
this moment it is renamed to DM Response (DM R). When
DM R message is received by a slave node, the slave node
records the time in which the message was received (T4 or T3i
depending on whether the slave node is the reference clock or
not). With these values, the local delay of the RC (LDRC)
and the local delay of the SC (LDSC), the delay between
the reference clock and the slave clocks is calculated by the
EtherCAT master node by: T4−T1−T3i+T2i−LDRC−LDSCi

2 .

Fig. 1: Delay Measurement Mechanism.

The master node transmits this value to the slave nodes
by means of another dedicated message, known as DM
Calculated (DM C). At this point the master node peri-
odically sends a SM message. The period of this transmission
depends on the precision that is desired. This message records
the local time of the reference clock by its reception. Then,
when the message arrives at the other slave nodes, they add
their delays to the local time of the reference clock saved in
the message, and they update their internal clock. Finally, note
that the EtherCAT master node can be synchronized with slave
nodes by becoming a DC slave.

B. TSN Clock Synchronization

The mechanism providing the TSN clock synchronization
(gPTP) is described in the IEEE 802.1AS standard and consists
of three main parts including the Best Master Clock Algorithm
(BMCA), the Propagation Delay Measurement (PDM) mech-
anism and the Transport of Time-synchronization Information



(TTI). BMCA is used to determine the grandmaster clock,
which is the reference clock in the TSN network, as well as
the hierarchy between the different time-aware systems. Time-
aware systems are the nodes in a TSN network that supports
clock synchronization and scheduled traffic transmission. The
PDM mechanism is used once the hierarchy is established
in order to measure the propagation delay between systems.
The TTI mechanism is used to forward the grandmaster
time to synchronize the others time-aware systems. All three
mechanisms are presented in more detail below.

Fig. 2: Example of TSN time-synchronization spanning tree.

1) BMCA: The BMCA constructs a time-synchronization
spanning tree with the grandmaster as the root. One example
of this can be seen in Fig. 2. In the figure, we can note
two remarks. First, each system can be either grandmaster
time-aware systems or slave time-aware systems. The second
observation is that the system ports can be Master ports
(M), Slave ports (S), Passive ports (P) or Disabled ports
(D). To determine all these behaviors, each system sends
a special broadcast message called announce message
periodically. The announce message contains different
parameters and in this paper, for the sake of simplicity,
we focus only on two of them: systemIdentity and
stepsRemoved. systemIdentity, specifies how good
the clock of the system sender of the message is, while
stepsRemoved indicates how far the receiver is from the
transmitter. Specifically, stepsRemoved is increased every
time the announce message is forwarded. This means that
if we have a line topology with three systems, and the first
system in the line transmits its announce message, the
message arrives to the second system with a value in the
parameter stepsRemoved equal to 0. However, this system
will increase stepsRemoved before forwarding it to the
next system. Thus, the last system is going to receive the
announce message, sent by the first system, with a value
in the parameter stepsRemoved equal to 1.

As it can be seen in Fig. 3, when a system does not
have an assigned role, it can become a slave time-aware
system if it receives an announce message from a better
clock, which means a better systemIdentity parameter,
or it can become a grandmaster if, after a defined period
of time (defined by the periodicity of which the announce
message is transmitted), it does not receive any announce
message from a better clock. If a system is a grandmaster or

a slave time-aware system, then something similar can happen.
If a granmaster time-aware system receives an announce
message from a better clock, it becomes a slave time-
aware system. In case a slave does not receive an announce
message from a better clock after a defined period of
time, it becomes a grandmaster time-aware system. On the
other hand, depending on the proximity to the grandmaster,
ports in a system have different roles and this proximity
can be determined thanks to the stepsRemoved parameter.
Specifically, the port closest to the grandmaster clock becomes
the slave port, and only one port in the system can present
this role. In a link, the port closest to the grandmaster clock
becomes a master port. Finally, if a port is disabled, it becomes
a disabled port and if it is none of the master, slave or disabled
ports, then it becomes a passive port.

Fig. 3: Time-aware system BMCA evolution.
2) PDM: Once the spanning tree with the grandmaster as

the root is created, the slave time-aware systems can carry
out PDM to measure the propagation delay. This process
is shown in Fig. 4. PDM starts with one system sending a
delay request Pdelay_request through its slave port to
another system, which can be the grandmaster or another slave
time-aware system, and records the time when the message
was transmitted (T1). The responder receives the message
through its master port, records the time when the message was
received (T2), sends T2 back to the initiator and records the
time when the message was transmitted. The initiator receives
T2 and records the time when the message was received (T4).
Finally, the responder sends T3 to the initiator, so it calculates
the delay by Delay = (T4−T1)−(T3−T2)

2 .

Fig. 4: PDM diagram.
3) TTI: Once the spanning tree with the grandmaster as

the root is created and the slave time-aware systems have
measured the delays, TTI is executed. TTI consists of systems



sending their local time through their corresponding master
ports to the systems connected to them. The systems that
receive the message through their slave port adds the delay
measured and update their local time accordingly.

III. RELATED WORK

The TSN task group4 was formed in 2012 with the aim of
extending industrial network standards with support of time
sensitive traffic, e.g. time-triggered transmission on top of
the other traffic classes, scheduled traffic, frame preemption
support and clock synchronization. There is a lot of research
ongoing around TSN features, e.g. studying the effects of
time-aware shapers [2], fault tolerance issues [3], scheduling
policies [4] and load balancing in TSN networks [5]. The
EtherCAT foundation has been part of TSN standardiza-
tion and working on EtherCAT TSN Communication Profile,
ETG.1700 S(D) V0.9.15. One of the main challenges is to add
stream adaptation logic in the network to be able to translate
EtherCAT frames to TSN frames and vice versa. The proposed
solution by the EtherCAT foundation describes a segment
identifier to be added in the destination MAC addresses as
the information is not changed during the transmission of the
frames. Then, in each stream adapter the TSN VLAN tag will
be added or removed. A special device is developed, e.g.,
EK1000 by Bechoff AG, to serve the stream adaptation.

One of the key features with EtherCAT is the clock syn-
chronization between master and slave nodes or only among
slave nodes. Most of the works in the literature are focused
on studying and improving the performance of the Ether-
CAT networks. For example, the work in [6] evaluates the
EtherCAT synchronization mechanism based on experiments,
while the work in [7] shows the effects of using different
synchronization schemes on the end-to-end traffic latency. The
effects of using distributed clocks are also studied in [8]–
[10]. Several works addressed the problem of improving clock
synchronization in EtherCAT devices from different point of
view. In this context, the work presented in [11] actively
measures the synchronization error and compensates the error
with a proposed mechanism. Moreover, the work presented
in [12] proposed to use a central oscillator to coordinate the
clocks among the nodes. The work in [13] proposed a method
to integrate the clock synchronization with control loops to
improve the precision of the synchronization. Most of the
above mentioned works evaluated their proposals based on
simulation experiments.

A major problem in the proposed synchronization methods
and improvements is the fact that in most of the cases the
EterCAT master node is implemented on a general-purpose
hardware with a real-time operating system, e.g., RT-Linux,
hence no precise clock can be obtained. In these cases, a jitter
can be created up to 18µs dependening on the hardware and
the master node configurations, according to [14]–[17]. By
improving the master node, e.g., by replacing it with a special-
purpose hardware, the precision of 20ns can be achieved [18].

4https://1.ieee802.org/tsn/
5https://www.ethercat.org

According to our survey, and to the best of our knowledge,
there is no work addressing the challenges of integrating
EtherCAT devices onto a TSN network, in particular from the
clock synchronization perspective, except the frame adaptation
identified by EtherCAT TSN Communication profile.

IV. PROBLEM DESCRIPTION

Considering the network technologies in the types of sys-
tems that we target, if a legacy installation that is built around
the EtherCAT technology is updated with a TSN network,
or if a new system is designed that combines both TSN and
EtherCAT networks, two key challenges must be considered,
including stream adaption and clock synchronization. The
former challenge is necessary to be addressed, e.g. by adding
EK1000 hardware6, or by providing adaption directly in the
TSN bridge port connected to the EtherCAT devices, such
that the TSN network will be able to handle the EtherCAT
telegrams, as pointed out in Section III. The latter challenge
concerning clock synchronization requires solutions to handle
new sources of jitters that are introduced by the Time-Division
Multiplexed (TDM) behavior of the TSN network.

Fig. 5 shows three scenarios of connecting a master node
(M) to multiple slave nodes (Ss) in an EtherCAT network. In
Fig. 5a, the master node is directly connected to the slave
nodes, while in Figs. 5b and 5c the EtherCAT nodes are
connected through a TSN network. The difference between
the two latter scenarios is if clock synchronization is present
(Fig. 5c) or not (Fig. 5b). Additionally, in each scenario
we can see how the bandwidth is managed and utilized in
the network. In case of no TSN network integrated into
the EtherCAT network, the master node transmits EtherCAT
frames through the network, utilizing any available bandwidth
in the network without any interruption, consequently resulting
in very low jitter for the frames. The low amount of jitter in the
EtherCAT network is because of the hardware interface of the
EtherCAT master node. However, when the TSN network is
integrated into the EtherCAT network the frame transmissions
are coordinated by time slots that are configured by the TSN
network. Note that a TSN network defines gate mechanisms
resulting to time slots reservation for frame transmission.
Therefore, a generated frame by a master node within the
EtherCAT network may experience variation of delays, known
as jitters, as shown in Fig. 5b.

The jitters that are added to a closed control loop can, in
the worst case, result in a control system that is unstable and
thereby unable to provide the designed efficiency. More details
in this regard will be described in Section V. However, even if
the introduced jitter caused by lack of clock synchronization
can be ultimately tolerated by the control loops in a particular
application, the control loop stability analysis (conducted at
design time) must be re-assessed, which can result in a
situation where the entire system must be verified from scratch,
causing a significant investment cost. This cost is likely to be
higher in the case of large legacy systems.

6https://www.beckhoff.com



(a) EtherCAT network behavior without TSN network.

(b) EtherCAT network behavior with TSN network but without clock
synchronization between them.

(c) EtherCAT network behavior with TSN network and clock syn-
chronization between them.

Fig. 5: EtherCAT network behaviors depending on the pres-
ence of a TSN network, possibly with clock synchronization.

Due to the above-mentioned reasons, it is essential to
synchronize the EtherCAT master node with the TSN network
and the IO nodes, i.e., the EtherCAT slave nodes, as depicted
in Fig. 5c. The jitter that is caused by integrating the TSN
network can be mitigated by applying a clock synchronization
where the frame transmission can be scheduled and aligned by
its corresponding time slot in the TSN network. It is beneficial
to use the TSN clock synchronization source because all the
different EtherCAT IO slave nodes are synchronized to the
same time source, i.e., the TSN grandmaster clock, without
introducing any cost of an additional hardware, e.g., cost
of EL6688 time synchronization modules7, apart from the
network interface which was already necessary to benefit from
the characteristics of TSN.

Note that the network configuration in which the TSN
network resides between the master node and the slave nodes
of the EtherCAT network is not the only possible architecture.
In fact, our proposed solution for clock synchronization allows
that the TSN network be connected at any point of the Ether-
CAT network. However, the configuration that is presented in
this section offers many benefits. The main motivation for this
configuration is that many different communication protocols
might be used in industry and multiple EtherCAT master

7https://www.beckhoff.com/english.asp?ethercat/el6688.

Fig. 6: Clock synchronization protocols and hierarchy in an
integrated TSN-EtherCAT network.

nodes might be used. Therefore, this configuration allows us
to connect the master nodes to all devices regardless of the
communication protocol via a direct link to the TSN network.
Thanks to this configuration we can decrease the number of
connectors and cables, hence reducing complexity, weight and
cost and at the same time increasing the integrability between
network components.

V. PROPOSED SOLUTION

The objective of this solution is to integrate the clock
synchronization protocols described above with a minimum
number of modifications in the devices currently used. Thanks
to this integration, the EtherCAT transmissions can be synchro-
nized with the TSN network, ensuring the correct operation
of the former. This allows companies to start adopting TSN
solutions while maintaining their legacy systems, and, at the
same time, providing benefits of the combined network.

A. Design
The proposed solution is based on an EtherCAT master

node as a reference clock of the DC synchronization from
the EtherCAT point of view and the same master node as a
time-aware system (grandmaster or slave time-aware system
depending on the BMCA mechanism described in Section II)
from the TSN point of view. This can be achieved by using
an improved network interface in the master node, that can
handle gPTP together with a hardware clock to minimize
the jitter in the transmission. Thanks to this approach, we
can synchronize the EtherCAT master node with the TSN
network and the EtherCAT slave nodes with the EtherCAT
master node achieving high precision between each of the
elements of the combined network. Specifically, as both TSN
and EtherCAT have similar precision, in the order of hundred
nanoseconds. This precision will be maintained throughout the
whole system. Fig. 6 shows the explained configuration. The
text on the arrows indicates the clock synchronization protocol,
while the arrowheads indicate who is the master and who
is the slave in that synchronization protocol (the arrowhead
points to the slaves from the master). The gPTP arrow is
bidirectional because the EtherCAT master node behaves as
a TSN time-aware system. The EtherCAT master node runs
all mechanisms described in Section II-B, hence it can behave
as a grandmaster or slave clock. On the other hand, the DC
Sync’s arrow is unidirectional as, from the point of view
of the EtherCAT network, the EtherCAT master node always
behaves as a reference clock.

B. Implementation
To achieve a proper implementation of the integrated solu-

tion some aspects should be taken into account. Firstly, all



EtherCAT synchronization streams should be scheduled in
advance, i.e., TSN should know properties such as period,
offset, and payload of the DM T, DM C, DM R and SM
messages, and should have a dedicated TT queue for them.
This implies to configure TSN queues and the Gate Control
Lists (GCLs) offline [19]. The schedule and the dedicated TT
queue is a key piece to prevent the jitter of the EtherCAT
synchronization messages. However, the offline scheduling of
synchronization streams is not sufficient because even if the
TSN network is aware of when these specific messages are
going to be transmitted, if the local time at the TSN network
and the EtherCAT master node is not the same then the
messages can still suffer from jitter. This can cause several
erroneous behaviors in the EtherCAT network, which the
details will be discussed in Section VI-C.

Secondly, as anticipated above, the EtherCAT master node
should be synchronized with the TSN network before using
the EtherCAT synchronization mechanism to synchronize with
the EtherCAT slave nodes. If this order is not respected the
EtherCAT delays can be wrongly calculated. As pointed out
in Section II-A, the DM mechanism relies on the symmetric
propagation of messages. If the EtherCAT master node is
not synchronized with the TSN network before executing the
DM mechanism, DM T can be blocked by the TSN network
(as we show in Section VI). However, DM R will not be
blocked because, as the transmission through the slave nodes is
deterministic, once the DM T goes through the TSN network,
when DM R comes back the TSN network will not block
the message because it will be expecting it, regardless of the
potential blocking that DM T may have suffered. If DM T
can be blocked, and DM R cannot, then the propagation delay
is not symmetric and, as pointed out, the delay is wrongly
calculated. Thanks to this minor change (the improved network
interface in the EtherCAT master to behave both as a TSN
time-aware system and as an EtherCAT reference clock),
the EtherCAT network operates as if the TSN network was
not there. From the clock synchronization mechanism’s point
of view, all delays can be calculated correctly and the SM
messages will not be blocked. Hence, the clock synchro-
nization between the EtherCAT master node and the slave
nodes will be correct. Additionally, as an SM message can
be used for data transmission these messages will also be
transmitted as expected. Moreover, the clock synchronization
between all devices in the combined network ensures a correct
transmission of other types of messages used in EtherCAT as
the TSN network can be scheduled to guarantee it. However,
this scheduling is beyond the scope of this paper.

VI. EVALUATION

In this section, we assess the correctness of the proposed
clock synchronization. As a consequence, we can ensure a
proper SM data transmission resulting to a correct EtherCAT
data transmission given a proper TSN scheduling.

A. UPPAAL concepts

To formally verify the correctness of the proposed solution,
and to compare the behavior of a system that combines TSN

and EtherCAT with and without the solution proposed in
Section V, we used the UPPAAL model checker. UPPAAL is a
tool for modeling and verification of real-time systems.

Systems in UPPAAL are modeled as networks of timed
automata (finite state machines extended with a special kind
of temporal variables called clocks that progress at the same
pace) [20], extended with data types like integers, arrays, etc.
The automata that conform to the system are instantiations of
one or more templates, and those are constructed by means
of locations, edges, variables, and clocks. In addition, it is
possible to coordinate the operation of different automata
using channels. Channels are special variables that can force
two or more automata to take a specific edge at the same
time. UPPAAL provides a formal query language that can be
used to specify the properties that we want to check in the
model. These queries have two parts: state formula and path
formula. State formulae are expressions that can be true or
false depending on the state of the system, understanding as
state of the system the active locations of the automata plus the
value of all variables and clocks at certain moment. UPPAAL
does an exhaustive search of all possible states and the path
formula indicates, to the query, which has to be the distribution
of the states at which the state formula is true in the whole
state space. For example, one path formula may require the
state formula to be true for the whole state space to satisfy
the query.

B. UPPAAL models

We have created 3 different UPPAAL models 8. All of them
modeled an EtherCAT network in which the reference clock
is located in the EtherCAT master node, as described in the
proposed solution in Section V. In addition, all three EtherCAT
networks consist of one EtherCAT master and two slave nodes.
In the following, we present a brief overview of the models
and queries that are developed for evaluation purposes.

The first model M1 (Fig. 7a) consists of an EtherCAT
network with one master and two slave nodes and no TSN
network. All devices (master and slave nodes) include one
oscillator (OX in the figure) and one local clock (CX in
the figure), which operates as a simple counter only. At the
beginning of the execution of the model each oscillator non-
deterministically (to allow all possible combinations of choices
to be checked in the state space) decides its period, which can
vary between 9 and 10 time units. After that, each oscillator
increases the local time of its corresponding local clock in
10 units every 9 or 10 time units, depending on the previous
choice. This asymmetric evolution of local clocks emulates
the drift between the local clocks. Additionally, each device
has a core, which, relying on the local time provided by the
local clocks, carries out the main actions. In this figure the
core templates are MX, SX and LSX, which carry out the
actions corresponding to the EtherCAT master, slave and last
slave nodes respectively. We had to differentiate between slave

8The UPPAAL models are publicly available at https://github.com/
DanielBujosa/ETFA2020 TSN EtherCAT ClockSync.git.



and last slave nodes because intermediate slave nodes in the
network chain just need to receive and forward the messages,
the last slave node is responsible of receiving the message and
forwarding the response.

(a) UPPAAL M1 model.

(b) UPPAAL M2 model.

(c) UPPAAL M3 model.

Fig. 7: TSN-EtherCAT clock synchronization integration UP-
PAAL models.

The second model M2 (Fig. 7b) consists of the same
EtherCAT network as in the M1 model but adding a TSN
network between the EtherCAT master and the two slave
nodes. The TSN network also presents an oscillator (O0)
and a clock (C0) but its core template, represented as N0
in the figure, carries out the main actions corresponding to
the TSN network. In this model, these actions consist of
receiving the EtherCAT messages and forwarding them at its
corresponding time slot, according to local time provided by
the clock. In this case, the clock synchronization mechanism
of the TSN network (gPTP) is not integrated with the clock
synchronization protocol of the EtherCAT network.

The third model M3 (Fig. 7c) consists of the same EtherCAT
and TSN networks as the M2 model but including the mecha-
nism used to synchronize the EtherCAT master node with the
TSN network, as explained in Section V. This mechanism is
implemented in two new entities called MASX and NASX in
the EtherCAT master node and the TSN network respectively.
These entities provide a gPTP clock synchronization between
both devices.

C. UPPAAL queries

In this paper we have analyzed 3 behaviors that are key to
ensure good clock synchronization in a network that combines
EtherCAT and TSN sub-networks.

The first behavior investigated was whether the messages
used in the clock synchronization mechanisms described in
Section II-A can be blocked by the TSN network. It is very

important to check this behavior for two reasons. From the
point of view of the delay measurement mechanism, it is
important for the transmission delay to be always almost the
same, both for the DM T message and for the DM R message.
If the transmission delay changes, then the calculation of
delays in EtherCAT might be incorrect. In this way, as the
DM R message cannot be blocked since the TSN network
is scheduled to be in the time slot corresponding to the
response once the DM T message has been sent, as explained
in Section V, if the DM T message can be blocked, there will
be a difference in the transmission delay and, therefore, the
delay measurement will not be carried out correctly. On the
other hand, from the point of view of the clock synchronization
mechanism, if the SM message can be blocked, and also
the delay is wrongly measured, the clock synchronization
precision drops greatly.

The second and third behaviors we checked were the delays
calculated by means of the delay measurement mechanism,
described in Section II-A, and the maximum time difference
between the clocks of the different devices in the UPPAAL
model (CX) that conform the network, respectively. In both
cases we compared the results obtained by the M2 and M3
models with the ones obtained by the M1 model. Thus, we
could measure the impact of combining a TSN and EtherCAT
network with and without the solution proposed in this paper.

D. Results

Here we present the results obtained once the above tests
have been carried out.

By checking if the messages used in the clock synchroniza-
tion mechanism described in Section II-A can be blocked, we
determined that all synchronization messages transmitted by
the master node in the M2 model may be blocked by the TSN
network while in the M3 model none of the synchronization
messages can be blocked. These potential blocks, as explained
before, can cause problems both measuring the delays between
the master node and each of the slave nodes, and may also
interfere in the correct clock synchronization of them. To
verify this, we obtained the delays measured in the M2 and
M3 models and compared them with those obtained in the M1
model. Moreover, we did the same for the difference between
the clocks, i.e., we measured the maximum difference between
the different clocks of the system in the M2 and M3 models
and we compared them with those obtained by the M1 model.

TABLE I: Delay measurement comparison.

Compared models Delay S1 Delay S2

No TSN (M1) vs No Sync TSN (M2) 100% 67%

No TSN (M1) vs Sync TSN (M3) 25% 0%

Improvement M3 vs M2 x4 x67⁄0

In both Table I and Table II, the first row shows the
difference between values measured in the M2 model and the
M1 model as a percentage, while the second row does the
same with respect to the M3 model. This value is calculated
by dividing the absolute value of the subtraction of the results



obtained in the corresponding models by the result obtained
by the M1 model. On the other hand, the third row show the
improvement that the M3 model supposes with respect to the
M2 model. This value is calculated by dividing the percentage
obtained in the first row by the one obtained in the second row.

TABLE II: Clock difference comparison.

Compared models M-S1
clock diff

M-S2
clock diff

S1-S2
clock diff

No TSN (M1) vs No Sync TSN (M2) 200% 217% 171%

No TSN (M1) vs Sync TSN (M3) 60% 33% 29%

Improvement M3 vs M2 x3.3 x6.5 x6

As it can be seen in the third row of Table I, the M3 model,
which implements the proposed solution in this paper, is at
least 4 times more precise than the M2 model carrying out
the delay measurement. Moreover, as it can be seen in the
third row of Table II, the M3 model present a precision in
the clock synchronization between EtherCAT clocks that is at
least 3 times better than what is achieved by the M2 model.

In the second row of the tables we can see that there is
a difference between the M1 model and the M3 model. The
maximum difference shown in Table I is 25%, whereas in
Table II it is 60%. However, these high values are due to
the abstractions applied to the model, which are described in
Section VI-B. As we had to increase the variation of the clocks
to 10% and reduce the periods by several orders of magnitude,
all the variations were greatly increased.

On the other hand, as an additional aspect, we tried to mea-
sure the maximum difference between the TSN grandmaster
clock and the EtherCAT reference clock. However, we could
not find a maximum value for the M2 model. That is an
expected result because, as there is no integration between the
EtherCAT and the TSN clock synchronization mechanisms,
both clocks can drift indefinitely.

VII. CONCLUSIONS

TSN has shown potentials to be a promising technology
for future industrial communication systems thanks to its
features, such as support for mixed hard and soft real-time
communications, flexibility of the traffic requirements and
fault tolerance mechanisms. For this reason, industries have
shown interest to adopt the TSN technology. However, they
can encounter various obstacles, one of those being the
legacy system support. Therefore, in this paper, we analyzed
the integrability of TSN with EtherCAT, a protocol widely
used in the automation domain today. We proposed a clock
synchronization mechanism based on the TSN standards to
achieve a high synchronization precision among EtherCAT
nodes. We showed that the proposed clock synchronization
mechanism is an essential component for a correct behav-
ior of the network with respect to data transmission. We
formally verified the correctness as well as the precision
of the proposed mechanism based on a formal verification
framework using UPPAAL tool. According to our verification,
the integrated EtherCAT-TSN network with the proposed clock

synchronization mechanism obtains at least 3 times higher
synchronization precision among the nodes compared to not
using any mechanism. The future work aims at performing an
experimental implementation of the proposed solution in order
to evaluate the solution’s performance apart from the correct
operation demonstrated in this paper.
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