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Abstract
Many database management systems (DBMS) need to ensure atomicity and isolation of transactions for logical data con-
sistency, as well as to guarantee temporal correctness of the executed transactions. Since the mechanisms for atomicity and
isolation may lead to breaching temporal correctness, trade-offs between these properties are often required during the DBMS
design. To be able to address this concern, we have previously proposed the pattern-based UPPCART framework, which
models the transactions and the DBMS mechanisms as timed automata, and verifies the trade-offs with provable guarantee.
However, the manual construction of UPPCART models can require considerable effort and is prone to errors. In this paper,
we advance the formal analysis of atomic concurrent real-time transactions with tool-automated construction of UPPCART
models. The latter are generated automatically from our previously proposed UTRAN specifications, which are high-level
UML-based specifications familiar to designers. To achieve this, we first propose formal definitions for the modeling patterns
in UPPCART, as well as for the pattern-based construction of DBMSmodels, respectively. Based on this, we establish a trans-
lational semantics from UTRAN specifications to UPPCART models, to provide the former with a formal semantics relying
on timed automata, and develop a tool that implements the automated transformation. We also extend the expressiveness of
UTRAN and UPPCART, to incorporate transaction sequences and their timing properties. We demonstrate the specification
in UTRAN, automated transformation to UPPCART, and verification of the traded-off properties, via an industrial use case.

Keywords Transaction · Atomicity · Isolation · Temporal correctness · Unified modeling language · Model checking

1 Introduction

Many modern computer systems rely on database manage-
ment systems (DBMS) to maintain the logical consistency
of critical data, such as to ensure the correct balance of
bank accounts during a bank transfer. By employing a vari-
ety of transaction management mechanisms, DBMS ensures
logical data consistency under complex data management
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scenarios, such as transaction abortions and concurrent
access of data. Among these mechanisms, abort recovery
(AR) restores the consistent state of a database when a trans-
action is aborted due to errors and thus achieves atomicity
[1]. Rollback, for instance, is a common AR technique that
undoes all changes of an aborted transaction [1]. Concur-
rency control (CC) regulates concurrent access to data from
different transactions, which prevents inconsistent data due
to interference, and ensures isolation [1]. A widely adopted
CC technique is to apply locks on the data such that arbi-
trary access is prevented [2]. Together, AR and CC ensure
the logical consistency of critical data that the applications
rely on, hence contributing to the dependability of the overall
systems.

In addition to logical data consistency, another important
factor to the dependability of many database-centric systems
is the temporal correctness of transactions. Examples of sys-
temswhere the temporal property is crucial include industrial
control systems [3] and automotive systems [4], whose con-
figurations and states can be stored in databases. Reading an
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outdated sensor value or calibration parameter could result in
catastrophic consequences such as loss of lives. Finishing a
transaction too late could cause the production process to fall
behind schedule and lead to economic loss. In such real-time
database systems, transactions must be temporally correct,
meaning that they must be scheduled to use fresh data, and
have to meet specified deadlines [5].

The assurance of atomicity and isolation, however, may
stand at odds with enforcing temporal correctness, because
CC may cause a transaction to be blocked for a long time,
and AR often introduces extra workload when performing
recovery. To make matters worse, some CC algorithms may
directly abort transactions, while the recovery may again
lock the data and block other transactions further, which
entails complex behaviors in time and could lead to deadline
misses. Therefore, designing a real-time DBMS (RTDBMS)
requires careful trade-offs in transaction management [6],
with respect to deciding on proper “variants” [7] of atom-
icity and isolation, as well as selecting proper AR and CC
mechanisms. To achieve an appropriate trade-off, it is helpful
to specify all three properties explicitly, together with their
supporting AR, CC, and scheduling mechanisms, in a high-
level language if possible familiar to system designers. To
ensure the correctness of the trade-off, one should be able
to analyze such specifications, and reason about whether the
properties can be satisfied with the selected mechanisms.

This paper builds on top of our previouswork [8], inwhich
we took an initial step to specify and verify atomicity, iso-
lation and temporal correctness in a unified framework. We
proposed a Unified Modeling Language (UML) [9] profile
called UML for TRANsactions (UTRAN), for the specifi-
cation of transactions with atomicity, isolation and temporal
correctness properties. UTRAN models a transaction as an
activity, and includes explicit modeling elements to express
atomicity and isolation variants, as well as the AR, CC and
scheduling mechanisms. We also proposed a formal frame-
work, called UPPAAL for Concurrent Atomic Real-time
Transactions (UPPCART) [8], whichmodels real-time trans-
actions, together with the selected AR, CC and scheduling
mechanisms in the RTDBMS, as a network of UPPAAL
timed automata (TA) [10]. Constituents of the UPPCART
models are formulated as automata patterns, such that the
complexity of the models is tamed, and reuse of repeat-
able modeling pieces is enabled. The transactional properties
can then be formalized, and verified rigorously using the
state-of-the-art UPPAAL model checker [10]. The connec-
tion between UTRAN and UPPCART, however, is still not
formally defined, which prohibits automated transformation
for practices in complex systems. As a result, the current con-
struction of UPPCARTmodels requires considerablemanual
efforts and is prone to error.

In this paper, we contribute to the specification and verifi-
cation of atomic concurrent real-time transactions in several

aspects. We extend UTRAN and UPPCART to support
sequences of transactions, and their end-to-end deadlines.
Many real-time systemdesigns contain invocation dependen-
cies between transactions, that is, one transaction is started
only after the termination of another. For instance, an update
transaction executed by a sensor may trigger another transac-
tion that updates the speed of the vehicle. In such cases, it is
the end-to-end execution of the entire sequence that matters
to the system validation. Therefore, we extend our UTRAN
and UPPCART so as to cater for the specification and anal-
ysis of transaction sequences.

In order to help system designers to create well-formed
UTRAN specifications, we enhance the UTRAN definition
with static semantics constraints, defined in the Object Con-
straint Language (OCL) [11]. Specification errors violating
theOCLconstraints can be directly spotted by commonUML
editors, such asEclipse Papyrus 1 and IBMRational Software
Architect (RSA) 2.

We bridge the gap between UTRAN and UPPCART in
this paper, such that automated transformation is facilitated.
To achieve this, we first propose formal definitions of UPP-
CART patterns and connectors, in terms of UPPAAL TA,
based on which we are able to define the pattern-based con-
struction for UPPCART models. This formalism enables
us to create a translational semantics that maps the syn-
tactic structures in UTRAN with the UPPCART patterns,
which provides UTRAN with a formal semantics relying on
timed automata. The translation process is implemented in
our toolU2Trans f ormer [12], which transforms high-level
UTRAN specifications, into verifiable UPPCART models.

We also present an industrial use case to demonstrate
the specification, transformation, and verification of trans-
actions using the extended UTRAN and UPPCART. The
use case involves multiple construction vehicles working
autonomously in a quarry, with requirements on collision
avoidance and mission efficiency. To achieve this, we design
a two-layer collision avoidance system to moderate the
behaviors of the vehicles. Among them, the global collision
avoidance layer is backed by an RTDBMS that stores the
map of the quarry, and prevent vehicles colliding into each
other via concurrency control. The local layer utilizes a local
RTDBMS for ambient data that are used for obstacle avoid-
ance by individual vehicles. We use UTRAN to specify the
transaction sequences and transactions in both layers, as well
as the properties to be ensured.We then transform these spec-
ifications into UPPCART models with U2Transformer, and
verify the correctness of our design.

In brief, our contributions in this paper are listed as fol-
lows:

1 https://www.eclipse.org/papyrus/.
2 https://www.ibm.com/developerworks/downloads/r/architect.
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– extensions of UTRAN and UPPCART for transaction
sequences;

– OCL constraints for UTRAN;
– a formal definition of pattern-based construction for
UPPCART;

– a translational semantics from UTRAN to UPPCART,
and tool-supported transformations based on this;

– a use case that demonstrates UTRAN, UPPCART, the
transformation, and the verification.

The remainder of the paper is organized as follows. In
Sect. 2, we present the preliminaries of the paper. In Sect. 3,
we recall and extend the UTRAN profile. Section 4 intro-
duces the formal definition of pattern-based construction, as
well as the extended UPPCART framework. We propose the
translational semantics of UTRAN to UPPCART, as well as
our automated transformation, in Sect. 5, followed by our
use case in Sect. 6. We discuss the related work in Sect. 7,
after which we conclude the paper and outline future work
in Sect. 8.

2 Preliminaries

In this section, we present the preliminaries of this paper,
including the concepts of transactions, atomicity, isola-
tion and temporal correctness (Sect. 2.1), UML profiles
(Sect. 2.2), and UPPAAL timed automata (Sect. 2.3).

2.1 Real-time transactions

A DBMS models read and write operations of data as trans-
actions, and handles data consistency via transaction man-
agement. Traditionally, a transaction is a partially ordered
set of logically-related operations that as a whole ensures the
ACID properties [1]:atomicity (a transaction either runs com-
pletely or makes no changes at all), consistency (transactions
executed alone must ensure logical constraints), isolation
(concurrent transactions donot interferewith eachother), and
durability (committed changes are made permanent). The set
of operations is called awork unit (WU). The scope of a trans-
action is usually defined by the following operations: begin
(start a transaction), commit (terminate a transaction and
make its changes permanent and visible), and abort (termi-
nate a transaction and recover from its changes).We consider
two types of aborts in a database system: system aborts are
caused by system errors or data contentions and thus are
issued by the DBMS. User aborts are started by clients to
stop the transaction on the purpose of fulfilling application
semantics.

As complements to the classical transaction model with
full ACID assurance, a number of other transaction models
that define different variants of transaction properties have

been proposed, as well as themechanisms to realize them [7].
In this paper, we focus on the variants of atomicity, isolation,
and temporal correctness.

2.1.1 Atomicity

Full atomicity achieves an “all-or-nothing” semantics, in
which “commit” means completing “all” changes included
in the transaction, while “abort” means that “nothing” is
changed at all. In this paper, we particularly emphasize the
recovery of transactions terminated by errors, and focus on
the variants of atomicity upon transaction abortions.

We refer to the “nothing” semantics of full atomicity as
failure atomicity, which is achieved by rollback, a recovery
mechanism that restores database consistency by undoing all
changesmade by the to-be-aborted transaction [1]. Let us use
w

j
i to denote that transaction Ti writes data Dj . The sequence

< w0
1,w

1
1 > denotes that transaction T1 writes D0 and D1 in

order. If T1 gets aborted right after w1
1, its rollback sequence

is < w1
1, w

0
1 >. Due to the performance and functionality

restrictions of failure atomicity, a number of relaxed atom-
icity variants as options have been proposed, which allow
changes to be partially undone, or recover inconsistency
semantically using compensating operations [7,13]. We con-
sider the following abort recovery mechanisms for relaxed
atomicity in this paper. Immediate compensation executes a
sequence of operations immediately upon abortion, in order
to update the database into a consistent state. For instance,
the compensation for the aforementioned aborted transaction
T1 may be< w2

1 >, that is, to update D2 immediately instead
of rollback.Deferred compensation, in contrast to the imme-
diate execution of compensation, executes the compensating
operations to restore consistency as a normal transaction,
scheduled with other transactions. The deferred compensa-
tion for the previous example could be, for instance, that the
update of D2 is scheduled to take place after the termination
of other transactions rather than immediately. In both vari-
ants, designers can decide the operations flexibly depending
on the application semantics. An atomicity manager with
the knowledge of the atomicity variants then performs the
designed recovery at runtime.

2.1.2 Isolation

Isolation variants have been proposed as a series of levels
[7,14], for instance, the read uncommitted, read commit-
ted, repeatable read and serializable levels in the SQL-92
standard [15]. An isolation level is defined as the property
to preclude a particular set of phenomena, which are inter-
leaved transaction executions that can lead to inconsistent
data. Let us use r j

i to denote that transaction Ti reads data
Dj . The following sequence < r00 , w

0
1, w

1
1, r

1
0 > represents

the execution “T0 reads D0, T1 writes D0, T1 writes D1, T0
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reads D1”. In this execution, T0 reads an old version of D0

before the change of T1, but a new version of D1 after the
change of T1. Considering that D0 and D1 are a pair of con-
figuration parameters that are required to always be updated
together, the values read by T0 become inconsistent in this
sequence, which may break the safety requirements. There-
fore, the example execution is considered as an isolation
phenomenon, and should be avoided by the required iso-
lation level, such as the serializable level [15]. By adjusting
the precluded phenomena, isolation levels provide a flexible
way to relax isolation according to the particular semantics.

DBMS ensures isolation by applying concurrency control
on the access of data, which regulates the interleaved trans-
action executions according to a selected CC algorithm [2].
We consider a family of commonly applied CC algorithms
in this paper, called pessimistic concurrency control (PCC)
algorithms[2]. PCC exploits locking techniques to prevent
unwanted interleavings. Depending on the algorithm, a trans-
action needs to acquire a specific type of lock at a certain time
point before accessing the data, and releases the lock at a
certain time point after the usage of the data. Upon receiving
requests, the CC manager decides which transactions should
obtain the lock, wait for the lock, or even be aborted, accord-
ing to the resolution policy of the selected algorithm. In case
a transaction gets aborted by CC, the atomicity manager may
perform the abort and recovery of the transaction.

2.1.3 Temporal correctness

In a real-time database system, temporal correctness consists
of transaction timeliness, and temporal data consistency [5].
Timeliness means that transactions should meet their dead-
lines [5]. Temporal data consistency includes two aspects.
Absolute validity requires that data read by a transactionmust
not be older than a specified validity interval. Relative valid-
ity requires that, if a transaction reads a group of data, these
data must be generated within a specified interval so that the
results are temporally correct. RTDBMSmayemployvarious
scheduling policies to schedule the transaction operations,
in order to achieve better temporal correctness. Commonly
applied scheduling policies include first-in-first-out (FIFO),
round robin, or policies based on the priorities of the trans-
actions [2]. In addition to deadlines and validity intervals,
other important time-related information includes execution
times of the operations, and the arrival patterns of transac-
tions (whether a transaction is started with a period, with a
bounded inter-arrival interval, or randomly) [5].

Since temporal correctness is often crucial to the safety
of the system, full ACID assurance often needs to be relaxed
such that the former can be guaranteed [6]. For instance,
relaxed atomicity with compensation can be adopted, instead
of failure atomicity with rollback [16]. Real-time CC algo-
rithms often incorporate time-related information of the

transactions to achieve better timeliness. For instance, a
widely applied real-time PCC, Two-Phase locking - High
Priority (2PL-HP) [17], takes priorities and abortion into
consideration of its resolution policy. In this algorithm, a
transaction acquires a readlock (writelock) on data before
it performs a read (write) operation, and releases all locks
during commitment. A CC conflict occurs when two trans-
actions try to writelock the same data. In this situation, the
transaction with higher priority will be granted with the lock,
while the transaction with lower priority will be aborted by
the RTDBMS. As a result, transactions with higher priorities
are more likely to meet their deadlines.

2.2 UML Profiles andMARTE

UML is one of the most widely accepted modeling lan-
guage in software development, and has been extended for
various application domains [9]. A common way to extend
UML is through profiles. A profile defines a package of
stereotypes, which are domain-specific concepts that extend
existing UMLmetaclasses, as well as dependencies between
the defined stereotypes. Properties that are specific to these
concepts are defined as tagged values associated to the stereo-
types. When a stereotype is applied to a UML modeling
element, the instance of this element becomes an instance of
the domain-specific concept represented by the stereotype,
and extended with its properties.

In addition to developing specification languages for
particular domains, profiles may also be adopted to add sup-
plementary information for the purpose of analysis or code
generation. Modeling and analysis of real-time embedded
systems (MARTE) [18] is a profile that defines the basic
concepts to support the modeling of real-time and embedded
applications, as well as to provide time-related information
for performance and schedulability analysis. As timing infor-
mation is essential for our analysis and thus needs to be
supported in the specifications, we reuse the relevant con-
cepts from MARTE in this paper. The following MARTE
concepts are reused: (i) MARTE::NFP_Duration, a data type
for time intervals; (ii) MARTE::ArrivalPattern, a data type
for arrival patterns, such as periodic, sporadic and aperiodic
patterns.

2.3 UPPAAL timed automata and UPPAALmodel
checker

AnUPPAALTimedAutomaton (TA)[10] is defined as a tuple
A : :=(L, l0, X , V , I , Act, E), in which:

– L is a finite set of locations,
– l0 is the initial location,
– X is a finite set of clock variables,
– V is a finite set of discrete variables,
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(a) (b)

Fig. 1 A network of timed automata

– I : L → B(X) assigns invariants to locations, where
B(X) denotes the set of clock constraints,

– Act is a set of synchronization channels,
– E ⊂ L × B(X , V )× Act × R× L is a finite set of edges,

where B(X , V ) denotes the set of guards, R denotes the
set of assignments.

The state of a TA consists of the values of its clock vari-
ables, together with the current location. Multiple TA can
form a network of timed automata (NTA) via parallel com-
position (“||”) [19], by which individual TA are allowed to
carry out internal actions (i.e., interleaving), while pairs of
TA can perform hand-shake synchronization via channels
(see below). The state of an NTA then consists of the values
of all variables in theNTA, together with the currently visited
locations of each TA, respectively.

As an example, Fig. 1 shows an NTA modeling a sim-
ple concurrent real-time system, in which automaton A1
sporadically increments a variable a and synchronizes with
automaton A2. A1 consists of a set of locations (L1, L2 and
L3), and edges connecting them.Aclockvariable cl is defined
in A1 to measure the elapse of time, and progresses contin-
uously at rate 1. A discrete variable a is defined globally,
and shared by A1 and A2. At each location, an automaton
may stay at the location, as long as the invariant, which is
a conjunction of clock constraints associated with the loca-
tion, is satisfied. Alternatively and non-deterministically, the
automaton may take a transition along an edge, if the guard,
which is a conjunction of constraints on discrete or clock vari-
ables associated with the edge, is satisfied. In Fig. 1, A1 may
delay in L2 as long as cl≤ 3, or follow the edge to L3when cl
≥ 1. Each edge may have an associated action, which is the
synchronization with other automata via a channel. Binary
channels are used to synchronize one sender (indicated by a
mark “!”) with a single receiver (indicated by a mark “?”).
In Fig. 1, A1 sends a message to A2 via binary channel ch,
while taking the edge from L2 to L3. The synchronization
can take place only if both the sender and the receiver are
ready to traverse the edge. A broadcast channel is used to
pass messages between one sender and an arbitrary num-
ber of receivers. When using broadcast channels, the sender
does not block even if some of the receivers are not ready.

An edge may have an assignment, which resets the clocks
or updates discrete variables when the edge is traversed. In
UPPAAL TA, both guards and assignments can be encoded
as functions in a subset of the C language, which brings high
flexibility and expressiveness to modeling. In our example,
when A1 moves from L2 to L3, a is incremented using the
function inc(a).

A location marked as “U” is an urgent location, meaning
that the automaton must leave the location without delay in
time. Another automaton may fire transitions as long as time
does not progress. A location marked as “C” is a committed
location, which indicates no delay in time, and immediate
transition. Another automaton may not fire any transitions,
unless it is also at a committed location.

The UPPAAL model checker can verify properties speci-
fied asUPPAALqueries, inUPPAAL’s property specification
language [10] that is a decidable subset of Computation Tree
Logic (CTL) [20], possibly extended with clock constraints.
For instance, the invariance property “A1 never reaches loca-
tionL3” canbe specified as “A[ ] not A1.L3”, inwhich “A” is
a path quantifier and reads “for all paths”, whereas “[ ]” is the
“always” temporal operator and specifies that (not A1.L3) is
satisfied in all states of a path. If an invariance property is not
satisfied, the model checker will provide a counterexample.
The liveness property “If A1 reaches L2, it will eventu-
ally reach L3” can be specified, using the “leads-to (→)”
operator, as “A1.L2 → A1.L3”, which is equivalent to
“A[ ] (A1.L2 imply A <> A1.L3)”, where “<>” is the
“eventually” temporal operator and specifies that A1.L3 is
satisfied in finite time in at least one state of a path.

3 UTRAN

In this section, we recall the UTRAN profile firstly pro-
posed in our previous work [8], and present its extension
for transaction sequences, as well as the OCL constraints for
creating consistent UTRAN specifications. We first present
the domain model of real-time transactions in Section 3.1,
after which we introduce the UML profile diagram in Sec-
tion 3.2, including the OCL constraints.

3.1 Domain view

The domain model of real-time transactions is presented in
Fig. 2. A RTDBMSmanages a set of transactions. A transac-
tion can be conceptually modeled as an activity in the UML
activity diagram, which consists of a set of partially-ordered
operations, represented as UML actions in the containing
activity. Two types of operations are considered explicitly in
a transaction: DBOperations and TMOperations. DBOpera-
tions directly perform read and write access to the data. Such
read and write operations, denoted as ReadOP andWriteOP
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Fig. 2 Domain model of real-time transactions, extended from [8]. New concept marked with darker frame

respectively, are atomic, and theirworst-case execution times
are known a priori (assuming a given hardware platform). A
ReadOP may be assigned with an absolute validity inter-
val for the data it reads. TMOperations are the operations
that begin, commit and abort transactions. The times for the
RTDBMS to execute such TMOperations are also known a
priori. A precedence relation describes the order of the oper-
ations, as well as the maximal and minimal delays between
the operations. Such delays may include, not only the com-

munication overhead, but also the response times of the client
computations that do not interact with the database.

A transaction may be assigned with a TemporalCorrect-
nessSpecification for time-related properties, including the
priority, the relative deadline, and the period (or minimum
inter-arrival time) of the transaction, if applicable. A transac-
tion may also have a specified relative validity interval, for
the validity of a group of data read by the transaction, and the
arrival pattern of the transaction, such as periodic, sporadic
and aperiodic.
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Fig. 3 UTRAN profile for real-time transactions, extended from [8]. New structure marked with darker frame

Atomicity and isolation of transactions are also included
in the domain model. Multiple transactions managed by the
same RTDBMS are related to an RTDBMSScope, which
employs a scheduling policy, selected from FIFO, round
robin, and priority based. An IsolationSpecification is asso-
ciated with the RTDBMSScope, with an IsolationLevel
indicating the variant of isolation that should be provided
for the set of transactions. The IsolationSpecification is
associatedwith a set of IsolationPhenomena,which areOper-
ationPartialOrders that represent the illegal sequences of
operations.

A ConcurrencyControlAlgorithm defines a set of lock
types to be applied in the lock-based concurrency control. The
rules for obtaining and releasing locks are specified as Lock-
ingRule and UnlockingRule. A resolution policy describes
the resolution of lock conflicts on the shared data.

An AtomicitySpecification specifies the atomicity variant
and the desired recovery time. AnAtomicitySpecification can
be attached to a transaction, or to an abort operation. In the
former case, the AtomicitySpecification specifies the atom-
icity handling of system abortion by the RTDBMS, while in
the latter, it specifies the handling of user abortion via abort
operations. An AtomicitySpecification contains an Atomici-
tyVariant and its corresponding AbortRecoveryMechanism.
An AtomicityVariant is an enumeration of the supported
atomicity variants, which includes FailureAtomicity and
RelaxedAtomicity. An AbortRecoveryMechanism can be
selected from rollback, immediateCompensate, anddeferred-

Compensate. Without any AtomicitySpecification specified,
atomicity is totally relaxed, and the partially changed data
will not be recovered or compensated at all.

In this paper, we also consider transactions with invo-
cation dependencies, modeled as a TransactionSequence.
Its time-related constraints can be specified in the associ-
ated TemporalCorrectnessSpecification. A transaction in a
TransactionSequence can be started only if its prior one has
terminated (committed or aborted).

3.2 Profile

This subsection describes our previous UTRAN profile [8],
aswell as the extensions tomodel theTransactionSequence in
the extended domainmodel. The profile diagram is presented
in Fig. 3, with the new structure marked with darker frame.

In the existingUTRANprofile, the stereotype<<Transact
ion>> extends the UML Activity metaclass, and is mapped
to the Transaction domain element. Each<<Transaction>>

maybe associatedwith a<<TemporalCorrectnessSpecificati
on>>, and an <<AtomicitySpecification>>, both extend-
ing theUMLCommentmetaclass.A<<TemporalCorrectnes
sSpecification>> contains values of deadline, priority, arrival
pattern, period, and relative validity of the transaction. An
<<AtomicitySpecification>> specifies the selected Atom-
icityVariant and Abort-RecoveryMechanism, as well as the
recovery time, and the reference to the compensation trans-
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action, which is stereotyped with<<Compensation>> that
inherits <<Transaction>>.

Each action in a <<Transaction>> is a stereotyped
<<Operation>>. <<DBOperation>>, <<TMOperation
>> and <<ClientOperation>> map the DBOperation,
TMOperation andClientOperation, respectively.A<<DBOp
eration>> contains tagged values that specify the exe-
cution time for this operation, and the reference to the
data it accesses. <<ReadOP>> and <<WriteOP>> map
the ReadOP and WriteOP, respectively, and both extend
<<DBOperation>>. A <<TMOperation>> is associated
with the execution time for the transactionmanagement oper-
ation, which can be <<BeginOP>>, <<CommitOP>>,
or <<AbortOP>>. The PrecedenceRelation in the domain
view is mapped by the stereotype <<DelayedNext>>,
which extends the UMLmetaclass ActivityEdge with delays
between operations, and delays between sub-transactions.

The stereotype <<RTDBMSScope>> maps the RTDB
MSScope concept, which contains the transactions managed
by the RTDBMS. The stereotype also specifies the schedul-
ing policy, selected from the enumeration of SchedPolicy.
The stereotype <<IsolationSpecification>> maps Isola-
tionSpecation in the domain view, and specifies the isolation
level, the CC algorithm selected from the enumeration of
CCAlgorithm, as well as the disallowed phenomena explic-
itly. Each phenomenon is modeled as an activity stereotyped
as<<IsolationPhenomenon>>, which contains a sequence
of actions stereotyped as <<Operation>>.

TransactionSequence domain element, which contains the
id’s of the transactions in the sequence. The invocation
order and the delays between invocations are specified via
<<DelayedNext>> associated to <<Transaction>>.

3.2.1 Static semantics constraints for UTRAN

We present a set of static semantics constraints for correct
specifications in UTRAN. These constraints are formulated
in the Object Constraint Language (OCL) [11], as follows.

1. A <<Transaction>> must have one <<BeginOP>>,
one <<CommitOP>>, and at least one <<DBOperati
on>>.

Context Transaction
inv: self.operations ->
select(DBOperation)->size ()>=1

inv: self.operations ->
select(BeginOP)->size ()=1

inv: self.operations ->
select(CommitOP)->size ()=1

2. <<BeginOP>> marks the start of the transaction.
<<CommitOP>> and <<AbortOP>> mark the end
of the transaction. No <<Operation>> occurs before
a <<BeginOP>>, or after a <<CommitOP>> or an
<<AbortOP>>.

Context Operation
def: precedingOPs () : Set(Action)
=self.incoming.source

def: succeedingOPs () : Set(Action)
=self.outgoing.target

inv: self ->oclIsTypeOf(BeginOP) implies
(not self ->closure(precedingOPs)->
exits(Operation ))

inv: (self ->oclIsTypeOf(CommitOP) or
self ->oclIsTypeOf(AbortOP )) implies
(not self ->closure(succeedingOPs)->
exits(Operation ))

3. If ImmediateCompensate is selected as the AR, the
compensate transaction is executed by the DBMS with
no delays between its operations. Therefore, in this
case, the max_delay and min_delay values of every
<<DelayedNext>> edge in the <<Compensation>>

transaction are 0.

Context AtomicitySpecification
inv: (self.arMech=ARMechanism ::
ImmediateCompensate)

implies (self.compensation.
delayednexts ->
forall(max_delay =0
and min_delay =0))

4. Immediate compensation transactions are always exe-
cuted immediately by the DBMS after abortion. There-
fore, theydonot have<<TemporalCorrectnessSpecifica-
tion>>.
Context Compensation
inv: (self.atomspec.arMech=

ARMechanism :: ImmediateCompensate )
implies (self.tcspec ->size ()=0)

5. For deferred compensation transactions, the only mean-
ingful value in its<<TemporalCorrectnessSpecification>>

is priority.

Context Compensation
inv: (self.atomspec.arMech=
ARMechanism :: DeferredCompensate)
implies
(self.tcspec.relDeadline=null and
self.tcspec.pattern=null and
self.tcspec.period=null
and self.tcspec.relValidity=null and
self.tcspec.relValGroup=null)

6. Since cascade abortion introduces high unpredictabil-
ity and is hence not desired in real-time systems, we
assume that compensation transactions do not have user
abort operations, and do not get recovered after system
abortion. Therefore, a <<Compensation>> does not
have <<AbortOp>>, <<AtomicitySpecification>>,
or <<TemporalCorrectnessSpecification>>.
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Context Compensation

inv: self.tcspec=null

inv: self.atomspec=null

inv: not (self.operations ->exists(AbortOp ))

7. The execTime and absValidity values of every<<Opera-
tion>> in the<<IsolationPhenomenon>> are set to 0.
Context IsolationPhenomenon
inv: self.operations ->forall(execTime =0)
inv: self.operations ->select(ReadOP)->

forall(absValidity =0)

8. Since the start of the first sub-transaction also marks
the start of its containing transaction sequence, the first
<<Transaction>> has the same pattern and period attri-
butes as its corresponding<<TransactionSequence>>.
Since the other sub-transactions are started by the termi-
nation of their previous counterparts, their patterns and
periods may remain unspecified and can be derived later.
If the<<TransactionSequence>>’s priority is specified,
all <<Transactions>> inherit this priority value. The
sum of the relative deadlines of all <<Transactions>>

must be smaller than or equal to the relative deadline of
the <<TransactionSequence>>.

Context TransactionSequence
inv: self.transactions ->
first (). tcspec.pattern=self.
tcspec.pattern
inv: self.transactions ->
first (). tcspec.period=
self.tcspec.period
inv: self.tcspec.priority <>
null implies

(self.transactions ->
forall(tcspec.priority=
self.tcspec.priority ))

inv: self.transactions ->
collect(tcspec.relDeadline)->
sum <=self.tcspec.relDeadline

9. For a periodic or sporadic<<Transaction>>or<<Tran
sactionSequence>>, its period value should be no
smaller than its relative deadline. This rule eliminates
the following non-schedulable and undesirable execution
from early design: A transaction instance is started even
before a previous instance, which is known likely to still
be in execution.

Context TemporalCorrectness
Specification

inv: (self.pattern=periodic
or self.pattern=sporadic)
implies self.period >=
self.relDeadline

4 UPPCART framework

In this section, we extend our UPPCART (UPPaal for
Concurrent Atomic Real-time Transactions) framework, for
pattern-based formal modeling of real-time transactions with
concurrency control and abort recovery in UPPAAL TA.

Our UPPCART framework, first proposed in our previous
work [8], models the transactions, together with the CC algo-
rithm and the ARmechanisms, as a network of UPPAALTA.
Denoted as N , theNTAof themodeled real-time transactions
is defined as follows:

N : :=W1 || ... ||Wn || ACCManager || AATManager

|| O1 || ... || Ok || D1 || ... || Dm, || S1 || ... || Sl , (1)

where W1, ..., Wn are work unit automata of transactions T1,
..., Tn , respectively. They also model the work unit’s interac-
tionwith the transactionmanagerwith respect to concurrency
control and abort recovery. ACCManager is the CCManager
automaton that models the CC algorithm, and interacts with
the work unit TA. AATManager is the ATManager automaton
that models the atomicity controller of recovery mechanisms
upon abort of transactions. O1, ..., Ok are IsolationObserver
automata that observe the phenomena to be precluded by iso-
lation, bymonitoring thebehaviors of theworkunit automata.
When a work unit automaton performs a particular sequence
of transitions representing a phenomenon, the corresponding
IsolationObserver is notified and moves to a state indicating
this occurrence. D1, ..., Dm are data automata for the data
with temporal validity constraints. S1, ..., Sl are automata for
transaction sequences.

For each type of the aforementionedTA in N , we propose a
set of parameterized patterns and connectors for the pattern-
based construction. In the following, we propose a definition
of pattern-based construction, followed by the detailed pat-
terns for UPPCART in the next subsections.

A parameterized pattern (PP) of TA is a reusable structure
that models a repetitive behavior or property. Formally, we
defined a parameterized pattern as follows:

PP(P): :=(L pp, L pinit , X pp, Vpp, Ipp, Actpp, Epp)

∪ F, (2)

where P is a set of parameters (p1, p2, ...) that appear in
the tuple (L pp, L pinit , X pp, Vpp, Ipp, Actpp, Epp), and F is
a set of function signatures that appear in Epp.

A parameterized connector (PCon) is a structure that con-
nects two parameterized patterns. Formally, a parameterized
connector connecting parameterized patterns PPi and PPj

is defined as follows:

PCon(PPi , PPj ,P): :=(L pp_i × B(X pcon, Vpcon)
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× Actpcon × L pp_ j ) ∪ F. (3)

A parameterized pattern can be constructed from sub-
patterns and the connectors connecting them, as the unions
of their locations, variables, invariants, edges, actions, and
parameters.

The instantiation of PP assigns the parameters in P with
actual values, and provides the functions inFwith implemen-
tations.Using “p = v” to denote the assignment of parameter
p with value v, we define the instantiated pattern as:

P Ii (p1=v1, p2=v2, ...): :=
(L pi_i , Linit_i , X pi_i , Vpi_i , Ipi_i , Actpi_i , Epi_i ).

(4)

Similarly, the instantiation of Coni, j assigns the parame-
ters in P with actual values:

Coni, j (P Ii , P I j , p1 = v1, p2 = v2, ...): :=
(L pi_i × B(Xcon_i j , Vcon_i j ) × Actcon_i j × L pi_ j ),

(5)

which is a set of edges of a TA.
Given a TA A = (L, l0, X , V , I , Act, E), a set of instan-

tiated patterns PI, and a set of instantiated connectors CON,
A is a pattern-based construction from PI and CON, iff :

– L = ⋃
P Ii∈PI L pi_i ,

–
⋃

P Ii∈PI Linit_i = {l0},
– X = ⋃

P Ii∈PI X pi_i
⋃

Con j∈CON Xcon_ j ,
– V = ⋃

P Ii∈PI Vpi_i
⋃

Con j∈CON Vcon_ j ,
– Act = ⋃

P Ii∈PI Actpi_i
⋃

Con j∈CON Actcon_ j ,
– E = ⋃

P Ii∈PI Epi_i
⋃

CON,

which means that the locations, variables, actions and edges
of A are the unions of the respective counterparts in the com-
ponent instantiated patterns and connectors. We denote it as
A = ⋃̇

(PI,CON).
For the convenience of later presentations, we call a pat-

tern a skeleton of TA A, if Linit �= ∅ .

4.1 Patterns and connectors formodelingwork units

In the following subsections, we introduce the UPPCART
patterns and connectors for each automaton within the
parallel composition in Eq. 1, in the order of the work
unit automaton W , the transaction sequence automaton S,
CCManager automaton ACCManager , ATManager automa-
ton AATManager , IsolationObserver O , and data automaton
D.

trans_started

U trans_commi�ed

C
tc:=0

ready

U

miss_deadline

trans_aborted

tc>DEADLINE tr>RECOVERY_DEADLINE

C

ini�alize(�, PRIORITY)

tc<=DEADLINE

tc<=PERIOD
tc>=PERIOD
tc:=0

tr<=RECOVERY_DEADLINE

wait

ini�al

start_trans[�]?

Other instan�ated pa�erns

Fig. 4 Work unit skeleton (WUS) for a generic transaction Ti [8]

4.1.1 Work unit skeleton (WUS)

A work unit (WU) automaton models the work unit of a
transaction and its interaction with the CC and atomicity
managers. A WU skeleton (WUS), as shown in Fig. 4, is a
parameterized pattern that consists of the common variables,
locations and edges of a WU automaton. Formally, WUS is
defined as follows:

WUS(Pwus): :=(Lwus, Lwusini t , Xwus,

Vwus, Iwus, Actwus, Ewus)

∪ Fwus, (6)

The locations Lwus and edges Ewus are shown in Fig.
4, in which Lwusini t is the location initial. The parame-
ters Pwus , clock variables Xwus , discrete variables Vwus ,
as well as functions Fwus , are listed in Table 1. In Fig. 4,
the automaton starts from the initial location, initializes the
transaction with the specified id ti and priority p using func-
tion initialize(ti, p), and moves to the location ready. Upon
receiving the start_trans[ti]message, itmoves to the location
trans_started, which represents the begin of the transaction,
and resets clock variable tc. The location trans_committed
indicates the committed state of the transaction. Between
trans_started and trans_committed are a set of connected
instantiated patterns that model the database and transaction
management operations, and delays between the operations.
If the value of tc is greater than the specified DEADLINE,
the automaton moves to the location miss_deadline, indicat-
ing a deadline miss. Otherwise, it waits until the specified
PERIOD has been reached, and moves to begin for the next
activation. The location trans_aborted represents the aborted
state of the transaction. If the value of tr is greater than the
specified RECOVERY_DEADLINE, timeliness is breached,
and the WU automaton moves to miss_deadline.
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Table 1 Modeling elements of
the work unit skeleton

Element Type Explanation

ti Parameter Id of the modeled transaction

PRIORITY Parameter Priority of transaction ti

PERIOD Parameter Period/minimal inter-arrival time of
the transaction ti

DEADLINE Parameter Deadline of transaction ti’s
commitment

RECOVERY_ DEADLINE Parameter Deadline of transaction ti’s recovery

tc Clock variable Tracking the elapsed time of
transaction ti

tr Clock variable Tracking the elapsed time of the abort
recovery of ti

start_trans[ti] Channel Message to start the transaction ti

initialize(ti, p) Function Initialization of the transaction ti with
priority p

sch()==�
tp:=0, cs:=�

check_sched
C

enq_sch(�)
sch()!=�

cpu_free?

do_opera�on
tp<=WCET_op

C

C
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no�fy_op[�]!

cpu_free!
cs:=FREE, deq_sch(�)

finish_opera�on

start_opera�on

wait

no�fied_observer

Fig. 5 Operation Pattern (OP)[8]

4.1.2 Operation-CC, Locking and Unlocking Patterns, and
their Connectors

We define patterns to model the begin, commit, read and
write operations in each work unit. Since a transaction may
interact with the CC manager according to the specific CC
algorithm during the operations, our operation patterns also
comprises CC-related activities such as the locking and

unlocking activities. The pattern for modeling basic opera-
tions, the operation pattern (OP), is presented in Fig. 5. The
modeling elements are listed in Table 2. In OP, we model the
scheduling policy using three functions, namely, enq_sch(ti),
deq_sch(ti) and sch(). After the start_operation location, the
enq_sch(ti) function is called, which pushes the transaction
into the scheduling queue. On the edges from the location
check_sched, the function sch() checks whether the transac-
tion is the next one to be executed. If yes, the automaton
moves to do_operation, representing the execution of the
operation; otherwise, the automaton waits at location wait,
until the CPU is released by the occupying transaction or
the RTDBMS, indicated via the signal in the cpu_free chan-
nel. The automaton may stay at do_operation for at most
WCRT_op time units, and at leastBCRT_op time units, which
represent the longest and shortest time to complete the oper-
ation. Upon the completion of the operation, a signal is sent
to the IsolationObservers via channel notify_op[ti]. Before
reaching finish_operation, the CPU is set to be free, and the
transaction is removed from the scheduling queue by the
function deq_sch(ti). As an example, the corresponding func-
tions for a priority-based scheduling policy is listed in Listing
1.
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Listing 1 Functions for priority-based scheduling

//Push ti to the queue , sorted by priority
void enq_sch(ti) {

...
for(i=0;i<queue.size;i++) {

if(ti.priority < queue[i]. priority) {
queue[i+1] = queue[i];
queue[i] = ti;

...} }
}

// Delete ti from the queue , and sort the rest
void deq_sch(ti) {

...
for(i=0;i<queue.size;i++) {

if(ti == queue[i]) {
queue[i] = queue[i+1];

...} }
}

// Return the first ready transaction in the queue ,
//and the CPU is not occupied by others
int sch() {

...
for(i=0;i<queue.size;i++) {

if((cs==i||cs==FREE) && queue[i].state==READY) {
return i; }}

}

According to the selected CC algorithm, the transaction
needs to lock and unlock data, before or after the opera-
tions. This is modeled by the Locking Pattern (LP, Fig.
6) and Unlocking Pattern (UP, Fig. 7), which are com-
posed with the operation patterns. The locations and edges
are presented in the figures, while the parameters, variables
and functions are listed in Table 2. In the locking pattern,
the automaton sends a request to the CCManager via chan-
nel locktype[ti][di], in which “locktype” is parameterized
for the particular type of lock, such as a readlock, specified
by the CC algorithm. The automaton then either moves to
location finish_locking, if it is granted by CCManager via
channel grant[ti][di]; or releases CPU and gets blocked at
location wait_for_lock, until CCManager grants it later. In
the Unlocking pattern, the automaton sends the request via
channel unlock[ti][di], which is received and processed by
the CCManager. A database operation may lock (or unlock)
several data items altogether, depending on the CC algo-
rithm.The combinationofmultiple lock/unlocks aremodeled
by the connectors. The connector connecting two Locking

patterns is defined as Con(LPi , LPj ) in Table 3, and the
connector connecting two unlocking patterns is defined as
Con(U Pi ,U Pj ) in Table 3.

The composition of LP and UP with OP is illustrated in
Fig. 8, which forms the Operation-CC Pattern (OCCP).
Formally, OCCP is defined as follows:

OCCP: :=
⋃̇

(LP ∪ OP ∪ UP, CONoccp), (7)

in which LP,OP and UP are previously defined sets of lock-
ing, operation and unlocking patterns, respectively. The set
of connectors is defined as:

CONoccp:=Con(OP, LP ′) ∪ Con(OP,U P ′)
∪ {Con(Begin,WUS)}
∪ {Con(Commit,WUS)}. (8)

Con(OP, LP ′) is a connector that connects an OP with a
group of LP, as defined in Table 3, in which LP ′ is a pattern
composed of a set of LP , starting with LPi and ending with
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Table 2 Modeling elements of
the operationand locking and
unlocking patterns

Element Type Explanation

ti Parameter Id of the modeled transaction

di Parameter Id of the data to be accessed

op Parameter Name of the operation

locktype Parameter The type of lock according to the selected CC

BCRT_op (WCRT_op) Parameter Best (worst) case response time of the operation

tp Clock variable Temporary variable for tracking the time of individual
operations

cs Integer variable Indicating the possession of the CPU

FREE Constant Indicating that the CPU is free

cpu_free Broadcast channel Release of CPU

locktype[ti][di] Channel Request sent by ti to the CCManager for a “locktype”
of lock on data di

grant[ti][di] Channel Grant of lock on data di for ti from CCManager

wait[ti][di] Channel Reject of ti’s lock request on data di fromCCManager

unlock[ti][di] Channel ti unlocking data di

notify_op[ti] Broadcast channel Notification of completion of ti’s operation

enq_sch(ti) Function Adding transaction ti in the scheduling queue

sch() function Returning the next transaction from the scheduling
queue according to the selected policy

deq_sch(ti) Function Removing transaction ti from the scheduling queue

wait[�][di]?

try_to_lock_di

C

C

C

wait_for_lock

C

cpu_free!
cs:=FREE

grant[�][di]?
cs:=�
finish_locking

start_locking

grant[�][di]?

locktype[ti][di]!

Fig. 6 Locking Pattern (LP)[8]

LPj . Con(OP,U P ′) is a connector that connects an OP
with a group of UP, as defined in Table 3, in which U P ′ is
a pattern composed of a set of U P , starting with U Pi and
ending with U Pj . Con(Begin,WUS) and Con(Commit,
WUS) are connectors that connect the begin OP and commit
OP to the work unit skeleton WUS, also defined in Table 3.

4.1.3 Delay Pattern and its Connector

The delay pattern (DP) in Fig 9 models the delays between
operations, formally defined as follows:

C

C start_unlocking

finish_unlocking

unlock[ti][di]!

Fig. 7 Unlocking Pattern (UP)[8]

DP(Pdp) : :=(Ldp,∅, Xdp,∅, Idp,∅,∅) ∪ ∅, (9)

which contains one location and its invariant as shown in Fig
9, and a parameter MAX_delay. The automaton may stay at
location delay for at most MAX_delay time units.

Assuming that OPi and OPj model the operations before
and after a delay modeled by DP , respectively, the connec-
tors to connect OPi and DP is defined as Con(OPi , DP)
in Table 3. The connector for connecting DP with OPj is
defined as Con(DP, OPj ) in Table 3, in which MIN_delay
is a parameter and denotes the lower bound of the delay.

4.1.4 Abort and Recovery Patterns, and their Connectors

The abort recovery mechanisms are modeled by the Roll-
backImComp Pattern (RIP, Fig. 10), and the Deferred-
Comp Pattern (DCP, Fig. 11), respectively, which are
composed into the work unit automata. The former (RIP)
models the rollback and immediate compensation mecha-
nisms, which are executions of series of operations by the
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Table 3 Definitions of connectors in UPPCART

Connector Identifier Definition

Con(LPi , LPj ) { f inish_locking_i → start_locking_ j}
Con(U Pi ,U Pj ) { f inish_unlocking_i → start_unlocking_ j}
Con(OP, LP ′) {check_sched sch()==ti−−−−−−→

cs:=ti
star t_locking_i, f inish_locking_ j

tp:=0−−−→ do_operation}
Con(OP,U P ′) {noti f ied_observer −→ start_unlocking_i ,

f inish_unlocking_ j
cpu_ f ree!−−−−−−−−−−−−−−→

cs:=FREE,deq_sch(ti)
f inish_operation}

Con(Begin,WUS) {trans_started → start_operation}
Con(Commit,WUS) { f inish_operation → trans_committed}
Con(OPi , DP) { f inish_operation_i tp:=0−−−→ delay}
Con(DP, OPj ) {delay tp≥MI N_delay−−−−−−−−−→ start_operation_ j}
Con(DP,U AP) {delay tp≥MI N_delay−−−−−−−−−→ start_user_abort}
Con(U AP,WUS) { f inish_user_abort → trans_aborted}
Con(U AO, RI P) {wait1

abort_trans[ti]?−−−−−−−−−→
tr :=0

start_rollback, wait2
abort_trans[ti]?−−−−−−−−−→

tr :=0
start_rollback,

abort_noti f ied
cpu_ f ree!−−−−−−→
cs:=FREE

f inish_user_abort}

Con(U AO, DCP) {wait1
abort_trans[ti]?−−−−−−−−−→

tr :=0
start_de f erred_op, wait2

abort_trans[ti]?−−−−−−−−−→
tr :=0

start_de f erred_op,

abort_noti f ied
cpu_ f ree!−−−−−−→
cs:=FREE

f inish_user_abort}

Con(OCCP, RI P) {wait
abort_trans[ti]?−−−−−−−−−→

tr :=0
start_rollback, do_operation

abort_trans[ti]?−−−−−−−−−→
tr :=0

start_rollback,

wait_ f or_lock
abort_trans[ti]?−−−−−−−−−→

tr :=0
start_rollback}

Con(OCCP, DCP) {wait
abort_trans[ti]?−−−−−−−−−→

tr :=0
start_de f erred_op, do_operation

abort_trans[ti]?−−−−−−−−−→
tr :=0

start_de f erred_op,

wait_ f or_lock
abort_trans[ti]?−−−−−−−−−→

tr :=0
start_de f erred_op}

Con(DP, RI P) {delay abort_trans[ti]?−−−−−−−−−→
tr :=0

start_rollback}

Con(DP, DCP) {delay abort_trans[ti]?−−−−−−−−−→
tr :=0

start_de f erred_op}
Con(RI P,WUS) {abort_noti f ied → trans_aborted}
Con(DCP,WUS) {abort_noti f ied → trans_aborted}
Con(T SS, SSPi ) {seq_started → start_sub_i}
Con(SSPj , T SS) {sub_ j_terminated → seq_terminated}
Con(SSPi , DP) {sub_i_terminated

tp:=0−−−→ delay}
Con(DP, SSPj ) {delay tp≥MI N_delay−−−−−−−−−→ start_sub_ j}

DBMS immediately after the abort. In case of rollback, the
recovery operations redo the write operations that have been
completed by the aborted transaction. In case of immediate
compensation, the operations are specified for the transaction
explicitly. The latter (DCP) models the deferred compensa-
tion mechanism, which executes a separate transaction for
compensation. The locations and edges are shown in the fig-
ures, while parameters, variables and functions are listed in
Table 4.

In the RIP pattern (Fig. 10), each operation is represented
by a location op_n, at which the automaton may stay for
at most (least) WCRT_opn (BCRT_opn) time units. When
all operations are completed, the completion of recovery
is reported to the ATManager via channel report_abort[ti],
removes the transaction from the scheduling queue by
function deq_sch(ti), and notifies the IsolationObserver via
channel notify_abort[ti].

In case of deferred compensation, a compensating trans-
action is modeled as a separate work unit, using the work
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sch()==�
cs:=�

check_sched

C

C

enq_sch(�)
sch()!=�

cpu_free?

do_opera�on
tp<=WCRT_op

C

C

tp>=BCRT_op
no�fy_op[�]!

cpu_free!
cs:=FREE, deq_sch(�)

finish_opera�on

start_opera�on

Instan�ated Locking/Unlocking Pa�erns

Instan�ated Locking/Unlocking Pa�erns

tp:=0

wait

notified_observer

Fig. 8 Operation-CC Pattern (OCCP)[8]

Fig. 9 Delay Pattern (DP)[8] delaytp<=MAX_delay

unit skeleton and the operation patterns. The DeferredComp
pattern (Fig. 11) starts the compensation transaction via the
channel start_trans[ci], where ci is the id of the compensat-
ing transaction. The work unit automaton then immediately
reports to ATManager and removes the transaction from the
scheduling queue.When the compensating transaction ci has
committed, the work unit automaton receives the notification
of ci, and notifies that transaction is aborted and recovered
via channel notify_abort[ti].

The above two recovery patterns are composed into awork
unit skeleton via the UserAbort Pattern, if they model the
recovery for user abort; or via the System Abort Connec-
tors, if the recovery is performed for system abort.

4.1.5 UserAbort Pattern (UAP)

This pattern is defined as a composition of a recovery pat-
tern (RIP or DCP) with a UserAbortOp (UAO) pattern as
shown in Fig. 12. When the work unit is scheduled as the
next one to be executed, according to function sch(ti), it issues
the abort request to ATManager via channel user_abort[ti].
After it gets the permission from ATManager via channel
abort_trans[ti], the automaton proceeds to the correspond-
ing abort recovery pattern. When the recovery is completed,
the automaton sets the CPU to be free. Formally, UAP is
defined as follows:

U AP : :=
⋃̇

(({RI P} || {DCP}) ∪ {U AO}, CONuap),

(10)

Here, the locations and edges of U AO are defined in Fig.
12, while the parameters, variables and functions are listed
in Table 4. CONuap contains connectors Con(U AO, RI P)
and Con(U AO, DCP), as defined in Table 3.

The UAP can be composed with the delay pattern rep-
resenting the delay before the user abort operation, using
the connector Con(DP,U AP) in Table 3. The UAP is
composed with the work unit skeleton using the connector
Con(U AP,WUS) in Table 3.

4.1.6 System Abort Connectors

System abort and its consequent recovery activities may take
place either during one operation, or between the execution
of two operations. We define the following connectors to
model both behaviors. For the system abortion that occurs
within one operation, we define Con(OCCP, RI P) and
Con(OCCP, DCP) that compose an instantiatedOperation-
CC pattern with a RollbackImComp pattern or a Deferred-
Comp pattern, respectively, as illustrated in Fig. 13. When
the OCCP receives a signal via channel abort_trans[ti] from
theATManager, it moves to the corresponding abort recovery
patterns. The connectors are defined as Con(OCCP, RI P)
and Con(OCCP, DCP), respectively, in Table 3.

Fig. 10 RollbackImComp
Pattern (RIP)[8] tp <=WCRT_op1

start_rollback/
start_immed_comp

tp >=BCRT_op1
C tp:=0

op_1
tp:=0 C…

trans_rolledback/
trans_compensated

report_abort[�]!
deq_sch(�)

C
no�fy_abort[�]!

abort_no�fied

Fig. 11 DeferredComp Pattern
(DCP)[8]

start_deferred_comp
C

wait_for_comp
C

trans_compensated

start_trans[ci]! no�fy_commit[ci]?

C

report_abort[�]!
deq_sch(�)

C

no�fy_abort[�]!

abort_no�fied

async_report
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Table 4 Modeling elements of
the abort and recovery patterns

Element Type Explanation

ti Parameter Id of the modeled transaction

ci Parameter Id of compensation transaction

op Parameter Name of the operation

BCRT_op (WCRT_op) Parameter Best (worst) case response time of the operation

tp Clock variable Temporary variable for tracking the time of individual
operations

tr Clock variable Tracking the recovery time

cs Integer variable Indicating the possession of the CPU

FREE Constant Indicating that the CPU is free

report_abort[ti] Channel Message that reports to the ATManager that the abor-
tion of ti is done

abort_trans[ti] Channel Message from the ATManager that starts the abortion
of ti

user_abort[ti] Channel Message that notifies to the ATManager that a user
abort operation of ti is issued

start_trans[ci] Channel Message that starts the compensation transaction ci

notify_abort[ti] Broadcast channel Notification of abortion of the transaction ti

notify_commit [ci] Broadcast channel Notification of commitment of the transaction ci

cpu_free Broadcast channel Release of CPU

enq_sch(ti) Function Adding transaction ti in the scheduling queue

sch() function Returning the next transaction from the scheduling
queue according to the selected policy

deq_sch(ti) Function Removing transaction ti from the scheduling queue

sch()==�
tp:=0, cs:=DBMS

check_sched
C

enq_sch(�)
sch()!=�

cpu_free?

start_user_abort

C
user_abort[�]!

abort_trans[�]?
tr:=0

Instan�ated Abort
Recovery Pa�erns

C finish_user_abort

cpu_free!
cs:=FREE

call_ATManager

abort_trans[�]?
tr:=0

wait1

wait2

Fig. 12 UserAbort Pattern (UAP)[8]

For system aborts that occur between operations, we
define the following connectors Con(DP, RI P) and
Con(DP, DCP) in Table 3, which connect a Delay pattern
with a RollbackImComp pattern or a DeferredComp pattern
respectively.

Fig. 13 System Abort
Connector Con(OCCP, RI P)
and Con(OCCP, DCP)[8]

abort_trans[�]?
tr:=0

Instan�ated 
Opera�on-CC 

Pa�ern

Instan�ated Abort 
Recovery Pa�erns

U trans_aborted

In addition, to connect the recovery patterns with the work
unit skeleton, we define connectors Con(RI P,WUS), and
Con(DCP,WUS), respectively, in Table 3.

4.1.7 Pattern-based Construction of a WU Automaton

With these definitions of patterns and connectors, a work unit
automaton W is a pattern-based construction, as follows:

W : :=
⋃̇

({WUS}
⋃

OCCP
⋃

UAP
⋃

DP,CON),

(11)

in which,
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trans_started

U trans_commi�ed

Opera�ons with CC and abort 
recovery

C

…

tc:=0
ready

U

miss_deadline

trans_aborted

tc>DEADLINE tr>RECOVERY_DEADLINE

C

ini�alize(�, p)

…tc<=DEADLINE

tc<=PERIOD
tc>=PERIOD
tc:=0

tr<=RECOVERY_DEADLINE

wait

ini�al

start_trans[�]?

Delays

Fig. 14 Illustration of pattern-based construction of a WU automaton

– WUS is an instantiated WUS for the basic structure of
W , defined in Equation 6;

– OCCP is a set of instantiated OCCP, defined in Equa-
tion 7, each representing a begin, commit, read or write
operation;

– UAP is a set of instantiated UAP, defined in Equation 10,
each representing a user abort operation;

– DP is a set of instantiated DP, defined in Equation 9, each
representing a delay between two operations;

– CON is a set of instantiated connectors defined in
Table 3: Con(Begin,WUS), Con(Commit,WUS),
Con(U AP,WUS), Con(DP, OCCP), Con(OCCP,
DP), for each OCCP, DP and UAP.

The pattern-based construction of a WU automaton is
illustrated in Fig. 14.

4.2 Patterns and Connectors for Modeling
TransactionSequence

The modeling units in this subsection model the basic struc-
ture of a TransactionSequence, as well as the interactions
between the TransactionSequence and its sub-transactions.

4.2.1 TransactionSequence Skeleton (TSS)

The skeleton of a TransactionSequence, presented in Fig.
15, resembles the work unit skeleton of a transaction, in
which its basic locations represent the ready, start, termi-

C

U

ts>DEADLINE
miss_deadline

Instan�ated Delay Pa�ern

ts<=PERIOD

ts>=PERIOD
ts:=0

wait
C

_terminated

ready

…

ini�al

ts<=DEADLINE

ini�alize(si, p)

start_trans[si]?
ts:=0

_started

  detaitnatsnI SSP

seq

seq

Fig. 15 TransactionSequence Skeleton (TSS)

Table 5 Modeling elements of the TransactionSequence skeleton

Element Type Explanation

si Parameter Id of the modeled
transaction
sequence

p Parameter Priority of
transaction
sequence si

PERIOD Parameter Period/minimal
inter-arrival time
of the transaction
sequence si

DEADLINE Parameter Deadline of
transaction
sequence si’s
commitment

ts Clock variable Tracking the elapsed
time of transaction
sequence si

start_trans[si] Channel Message to start the
transaction
sequence si

initialize(si, p) Function Initialization of the
transaction
sequence si with
priority p

nation and deadline-missing states, respectively. Formally,
TSS is defined as follows:

T SS(Ptss) : :=(Ltss, Ltssini t , Xtss,

Vtss, Itss, Acttss, Etss)

∪ Ftss, (12)
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Fig. 16 Sequence Sub-transaction Pattern (SSP)

in which the parameters, variables and functions are defined
in Table 5. A clock variable ts keeps track of the time spent by
the sequence. If the value of ts exceeds the specified deadline,
the automaton will reach the miss_deadline location.

4.2.2 Sequence Sub-transaction Pattern (SSP)

A TransactionSequence skeleton incorporates a series of
instantiated Sequence Sub-transaction Patterns (SSP), shown
in Fig. 16, which models the behavior of starting a sub-
transaction and waiting for its termination. SSP is formally
defined as follows:

SSP(Pssp) : :=(Lssp,∅,∅,∅, Issp, Actssp, Essp)

∪ ∅, (13)

where the locations and edges are defined as shown in Fig.
16, and Pssp contains a parameter ti that represents a sub-
transaction. The TransactionSequence automaton starts a
sub-transaction ti by sending amessagevia the start_trans[ti]
channel, which is received by the WU automaton of transac-
tion ti. Then the TransactionSequence automaton waits for
the broadcast signals of either commitment or abortion of ti.

4.2.3 TransactionSequence Connectors

To connect a TransactionSequence with its sub-transactions,
we define the following connectors in Table 3: Con(T SS,
SSPi ), and Con(SSPj , T SS).

We also define the following connectors to connect two
sub-transaction with delay between them: Con(SSPi , DP)
and Con(DP, SSPj ) in Table 3 in which DP is a delay pat-
tern.

With these definitions of patterns and connectors, we
define a TransactionSequence automaton S as the following
pattern-based construction:

S : :=
⋃̇

({T SS}
⋃

SSP
⋃

DP,CON), (14)

in which,

– T SS is an instantiated TSS, defined in Equation 12, for
the basic structure of the sequence automaton;

– SSP a set of instantiated SSP, defined in Equation 13,
each representing the control of a sub-transaction;

– DP is a set of instantiated DP, defined in Equation 9, each
representing a delay between two sub-transactions;

– CON is a set of the following instantiated connectors
defined in Table 3: Con(T SS, SSP), Con(SSP, T SS),
Con(DP, SSP),Con(SSP, DP), for each SSP andDP.

4.3 CCManager Skeleton (CCS)

The CCManager skeleton, presented in Fig. 17, provides a
common structure for modeling various CC algorithms, and
the interaction with the transactions and the atomicity man-
ager. Formally, CCS is defined as follows:

CCS(Pccs) : :=(Lccs, Lccsini t , Xccs,

Vccs, Iccs, Actccs, Eccs)

∪ Fccs, (15)

in which the locations and edges are defined as shown in
Fig. 17. Table 6 lists the parameters and variables, as well
as functions to encode the resolution policy of a CC algo-
rithm. In this skeleton, the CCManager calls satisfyPolicy()
when it receives a locking request, in order to decide whether
the requester should be granted with the lock. If the function
returns true, and no other transactions should be aborted, as
suggested by needAbort(), the requester is granted with the
lock. If any transactions need to be aborted due to concur-
rency conflicts, CCManager sends a signal toATManager via
channel cc_conf, and waits until all abort and recovery have
been processed, before it grants the lock to the requester. On
the other hand, if satisfyPolicy() returns false, the requester
either gets aborted, decided by needAbort() according to the
CC algorithm, or gets blocked and has to wait.

In case the CCManager receives an unlocking request, it
updates the status of the transaction and the locks, and grants
locks to all legitimated blocked transactions, decided by the
getNext() function.

Automaton ACCManager is then constructed by instantiat-
ing the CCManager skeleton, according to the selected CC
algorithm. For instance, Listing 2 shows the function satisfy-
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C

C

C

C

C

cs_dbms==0
i:trans_t, j:data_t
locktype[i][j]?
updateRequest(i,j,LOCKTYPE), 
cs_dbms:=1

cs_dbms==0 
i:trans_t, j:data_t 
unlock[i][j]?
updateUnlock(), cs_dbms:=1

next_id==-1
cs_dbms:=0

getNext()

needAbort() 
cc_conf!

!needAbort() 
grant[request_id][data_id]!
updateGrant()sa�sfyPolicy()

sa�sfy:=true

!sa�sfyPolicy()
sa�sfy:=false next_id!=-1

grant[next][data_id]!
updateGrant(), getNext()

lock_request_received unlock_request_received

decide_grant

decide_reject

decide_grant_next

call_ATManager

grant[request_id][data_id]!
updateGrant()

!needAbort() 
wait[request_id][data_id]!
updateReject()

C
cc_conf_handled?

C

cs_dbms:=0

idle

atomicity_resolved

needAbort() 
cc_conf! call_ATManager2

Ccc_conf_handled? atomicity_resolved2

C

cs_dbms:=0

Fig. 17 CCManager Skeleton (CCS) [8]

Table 6 Modeling elements of
the CCManager skeleton

Element Type Explanation

LOCKTYPE Parameter Type of the lock

request_id Integer variable Id of the requesting transaction

data_id Integer variable Id of the requested data

next_id Integer variable Id of the next transaction to be granted with locks

cs_dbms Integer variable Indicating critical section for handling request atom-
ically

satisfy Boolean variable Indicating whether the requester request_id should be
granted with the lock

cc_conf Channel Notification of CC conflict to ATManager

cc_conf_handled Channel Resolution of CC conflict by ATManager

satisfy Policy() Function Checking if the requester request_id should be granted
with the lock according to the selected CC algorithm

needAbort() Function Checking if any transaction should be aborted due to
CC

getNext() Function Getting the next transaction to be granted with locks

update Request() Function Updating status of transaction request_id and data
data_id on request

update Grant() Function Updating status of transaction request_id and data
data_id after grant

update Reject() Function Updating status of transaction request_id and data
data_id after reject

update Unlock() Function Updating status of transaction request_id and data
data_id after unlock

cc_conf_detected
C getAbort() C

cc_conf?
error_type:=CC

abort_id!=-1
abort_trans[abort_id]! C

report_abort[abort_id]?
updateAbort(), getAbort()

abort_id==-1 && error_type==CC
cc_conf_handled!

idle
do_abort abort_done

i:trans_t
user_abort[i]?

abort_id:=i, error_type:=USER

user_abort_detected
C

start_abort

abort_id==-1 && error_type==USER

Fig. 18 ATManager Skeleton (ATS)[8]
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Policy() of the CCManager that models the conflict detection
of the 2PL-HP algorithm.

Listing 2 Functions for 2PL-HP CCManager

// Check if the requester should be granted with the lock
bool satisfyPolicy () {

...
if(data_id not locked) return true;
else if(data_id is readlocked) {

if(locktype == readlock) return true;
if(locker has lower priority) return true;
else return false;

} else {
if(locker has lower priority) return true;
else return false; }

}

4.4 ATManager Skeleton (ATS)

We separate the atomicity control model into an ATMan-
ager automaton, and the abort recovery parts in work unit
automata. The ATManager models the decisions on aborted
transactions upon errors, conflicts or user’s instructions. The
work unit automata include the instantiated abort recovery
patterns that model the selected mechanisms for the specific
transactions. We distinguish two types of abort, which are
user abort that is issued by a client using an abort opera-
tion deliberately, and system abort that occurs due to internal
conflicts and system failures, such as CC conflicts.

OurATManager skeleton provides a common structure for
modeling the atomicity manager. Formally, ATS is defined
as follows:

AT S(Pats) : :=(Lats, Latsini t , Xats,

Vats, Iats, Actats, Eats)

∪ Fats, (16)

in which the locations and edges are defined in Fig. 18,
while the parameters, variables and functions are listed in
Table 7. The ATManager may receive user abort requests
via user_abort[i] channel, or system abort due to CC via
cc_conf channel from CCManager. Other types of errors,
such as communication errors, can be modeled in a similar
way. The function getAbort() specifies the logic to decide the
transaction to be aborted. The automaton then sends the abort
signal to the corresponding work unit automaton via channel
abort_trans[abort_id], and waits until the abort is done by
the work unit automaton. ATManager then updates the status
and locks of transactions and data using the function update-
Abort(), and checks if more transactions need to be aborted.

The construction of automaton AATManager is achieved by
instantiating this ATManager Skeleton.

4.5 IsolationObserver Skeleton (IOS)

The skeleton for an IsolationObserver is shown in Fig. 19.
Formally, IOS is defined as follows:

I OS(Pios) : :=(Lios, Liosini t , Xios,

Vios, Iios, Actios, Eios)

∪ ∅, (17)

in which the locations and edges are defined in Fig. 19.
The parameters include transaction ids ti and tm, as well as
data ids dj and dn. Each IsolationObserver observes a speci-
fied sequence of operations, by accepting the corresponding
notification messages from the work unit automata via the
notify_op[ti][di] channel when an operation is completed. If
the monitored sequence indicating the phenomenon occurs,
the automaton moves to the isolation_phenomenon location.

4.6 Data Skeleton (DS)

Fig. 20 presents the skeleton of data. Formally, DS is defined
as follows:

DS(Pds) : :=(Lds, Ldsini t , Xds, Vds, Ids, Actds, Eds)

∪ ∅, (18)

in which the locations and edges are defined in Fig. 20. The
parameters include a list of transaction ids trans_t, as well as
data id di. The clock variable age is reset every time a write

123



Specification and automated verification of atomic concurrent...

Table 7 Modeling elements of the ATManager skeleton

Element Type Explanation

abort_id Integer variable Id of the aborting transaction

error_type Integer variable Type of error that causes abortion

CC Constant Indicating the abortion caused by CC

USER Constant Indicating the abortion caused by user abort operation

cc_conf Channel Notification of CC conflict to ATManager

cc_conf_handled Channel Resolution of CC conflict by ATManager

report_abort[ti] Channel Message that reports to the ATManager that the abortion of ti is done

abort_trans[ti] Channel Message from the ATManager that starts the abortion of ti

user_abort[ti] Channel Message that notifies to the ATManager that a user abort operation for ti is issued

getAbort() Function Getting the transaction to be aborted

updateAbort() Function Updating status of transaction and data after transaction ti gets aborted

isola�on_phenomenon

no�fy_read [�][dj]?

no�fy_write[tm][dn]?

…

r_i_j

r_i_j_w_m_n

idle

C
no�fy_commit[�]?
/no�fy_abort[�]?

no�fy_commit[�]?
/no�fy_abort[�]?�_commi�ed/

�_aborted

Fig. 19 IsolationObserver Skeleton (IOS)[8]

Fig. 20 Data Skeleton (DS)[8]

operation is performed on the data. The value of age hence
represents how old the data is since the last update.

4.7 Summary of Modeling

Given a set of transactions and the selectedCC andARmech-
anisms, theUPPCARTmodel of theRTDBMScan be created
by the parallel composition of its component TA, which are
constructed via the pattern-based construction by instanti-
ating our proposed patterns and connectors. Formally, the
pattern-based construction of the RTDBMS is defined as fol-
lows:

N : :=W1 || ... ||Wn || ACCManager || AATManager

|| O1 || ... || Ok || D1 || ... || Dm, || S1 || ... || Sl ,

in which:

– Wi : :=⋃̇
({WUSi } ⋃

OCCPi
⋃

UAPi
⋃

DPi ,CONi ),

– ACCManager : :=⋃̇
({CCS},∅),

– AATManager : :=⋃̇
({AT S},∅),

– Oi : :=⋃̇
({I OSi },∅),

– Di : :=⋃̇
({DSi },∅),

– Si : :=⋃̇
({T SSi } ⋃

SSPi
⋃

DPi ,CONi ).

The pattern-based construction allows large parts of exist-
ing models to be reused, in case a different CC or AR is
selected, and the models need to be updated. An example is
presented in our previous work [21], which demonstrates the
easy adjustments when different CC algorithms are selected
for the same sets of transactions and data.

It is possible to extend UPPCART tomodel more varieties
of transaction management and behaviors. For instance, one
can also add a TA to the parallel composition, to model the
dispatching pattern of transactions from the clients. This TA
sends signals via the start_trans[i] channel to each Wi , with
a specific order and predefined intervals. It may even receive
the notify_commit[i] signals from Wi , such that the end-to-
end deadline of a sequence of transactions can be monitored.

4.8 Verification

With the transactions as well as the atomicity and concur-
rency control mechanisms modeled in UPPAAL TA, we are
able to formally verify the atomicity, isolation and temporal
correctness properties using UPPAAL Model Checker.

Table 8 lists the patterns to formalize the properties in
UPPAAL queries. Among them, atomicity is formalized as a
liveness property, that the automaton Ai representing trans-
action Ti eventually reaches the dedicated trans_rollback or
trans_compensated location if the abort_id equals i. Isola-
tion and temporal correctness are formalized as invariance
properties. The isolation property is specified as the isola-
tion_phenomenon locations are not reachable. The timeliness
property is formalized as the miss_deadline location of the
analyzed Ti is not reachable, while temporal validity proper-
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Table 8 UPPAAL query patterns for verifying transactional properties[8]

Property Type Property Description UPPAAL Query Pattern

Atomicity Ti aborted due to ERRORTYPE is eventually rolled
back (compensated)

(AT Manager .abort_id == i &&
AT Manager .error_t ype == ERRORTY PE)→
Ai .trans_rolledback (Ai .trans_compensated)

Isolation The specified isolation phenomena never occur A [ ] not (O1.isolation_phenomenon || ... ||
On .isolation_phenomenon)

Timeliness Ti never misses its deadline A [ ] not Ai .miss_deadline

Absolute Validity When read by Ti , Dj is never older than the absolute
validity interval AVI(j)

A [ ] (Ai .read_di_done imply Dj .age <=
AV I ( j))

Relative Validity Whenever Ti reads Dj or Dl , the age differences of Dj
and Dl is smaller than or equal to the relative validity
interval RVI(j,l)

A[ ] ((Ai .read_d j_done || Ai .read_dl_done) imply
((Dj .age − Dl.age <= RV I ( j, l)) &&
(Dl.age − Dj .age <= RV I ( j, l))))

ties are formalized as the states where the ages of data exceed
their thresholds are never reachable.

5 FromUTRAN to UPPCART

We provide a translational semantics from UTRAN to UPP-
CART, in order to bridge the gap between the high-level
description of transactions and the verifiable models for
reasoning about the transaction properties. In this way, the
formal semantics of UTRAN is defined using UPPAAL TA,
which also lays the foundation of automated transformation
from UTRAN to UPPCART models. In this section, we first
introduce the semantic definitions of UTRAN (Section 5.1),
followed by the tool automation for the transformation (Sec-
tion 5.2).

5.1 Translational Semantics of UTRAN

Weencode the formal semantics ofUTRAN in terms ofUPP-
CART as follows:

Definition 1 [Semantics of<<RTDBMSScope>>] An<<

RTDBMSScope>> in UTRAN is formally defined as an
UPPCART NTA NRT DBMS , whose definition is given in
Equation 1.

Definition 2 [Semantics of <<IsolationSpecification>>]
An<<IsolationSpecification>> in the<<RTDBMSScope
>> is formally defined as ACCManager and a set of
IsolationObservers in NRT DBMS . The ACCManager is an
instantiation of the CCManager skeleton with the selected
CC algorithm, that is, the value of CCAlgori thm in the
<<IsolationSpecification>>. An<<IsolationPhenomenon
>> specified in the<<IsolationSpecification>> is defined
as an instantiated IsolationObserver skeleton.

Definition 3 [Semantics of<<Transaction>>] A<<Trans
action>> Ti in the <<RTDBMSScope

>> is formally defined as a work unit TA Wi , according
to Equation 11, in the parallel composition of NRT DBMS .

The <<Operations>> within a <<Transaction>> are
defined as follows:

Definition 4 [Semantics of<<BeginOp>>,<<CommitOp
>>, <<ReadOp>> and <<WriteOp>>] A <<BeginOp
>>,<<CommitOp>>,<<ReadOp>>or<<WriteOp>>

is formally defined as an instantiated OCCP. The data
j read by <<ReadOP>> r, with r .did == j and
r .absValidi t y > 0, is defined as a Data automaton Di j

by instantiating the Data skeleton.

Depending on the value ofCCAlgori thm in the<<Isola
tionSpecification>>, the OCCP is defined by composing
an OP (operation), with zero or more LP (locking) or UP
(unlocking).

For instance, if CCAlgori thm ∈ {2PL-HP, R2PL},
the operations with CC are defined as follows:

– For the<<BeginOP>>,OCCPbegin : :=⋃̇
({OPbegin},

∅).
– For each <<ReadOP>> r, with r .t id == i and
r .did == j , OCCPi : :=⋃̇

({OPi , LPi }, {Con(
OPi , LPi )}), in which the parameter locktype in LPi is
readlock.

– For each <<WriteOP>> w, with w.t id == i and
w.did == j , OCCPi : :=⋃̇

({OPi , LPi }, {Con(OPi ,
LPi )}), in which the parameter locktype in LPi is write-
lock.

– For the <<CommitOP>>, OCCPcommit : :=⋃̇
({OP

commit } ⋃
U P ′, {Con(OPcommit ,U P ′)}), inwhichU P ′

is a pattern composed of a set of unlocking patterns for
all data read or written by the transaction.

If CCAlgori thm ∈ {Short Readlock}, the operations
with CC are defined as follows:
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– For the<<BeginOP>>,OCCPbegin : :=⋃̇
({OPbegin},

∅).
– For each <<ReadOP>> r, with r .tid == i and
r .did == j , OCCPi : :=⋃̇

({OPi , LPi ,U Pi },
{Con(OPi , LPi ),Con(OPi ,U Pi )}), inwhich theparam-
eter locktype in LPi is readlock.

– For each <<WriteOP>> w, with w.tid == i and
w.did == j , OCCPi : :=⋃̇

({OPi , LPi }, {Con(OPi ,
LPi )}), in which the parameter locktype in LPi is write-
lock.

– For the <<CommitOP>>, OCCPcommit : :=⋃̇
({OP

commit } ⋃
U P ′, {Con(OPcommit ,U P ′)}), inwhichU P ′

is a pattern composed of a set of unlocking patterns for
all data writen by the transaction.

Definition 5 [Semantics of<<DelayedNext>>]A<<Dela
yedNext>> edge is formally defined as an instantiated DP,
together with connectorsCon(OCCPi , DP) andCon(DP,
OCCPj ), where OCCPi and OCCPj are the source and
target<<Operation>> of the<<DelayedNext>>, respec-
tively.

Definition 6 [Semantics of <<AtomicitySpecification>>]
An <<AtomicitySpecification>> associated with the
<<Transaction>> is formally defined as a construction of
patterns and connectors, depending on the values in the spec-
ification. We define a Con(OCCP, RI P) for each OCCP,
if arMech ∈ {Rollback, ImmediateCompensate}; or
a Con(OCCP, DCP) for each OCCP, if arMech ∈
{Def erredCompen-sate}. For each DP, we define a Con
(DP, RI P) or a Con (DP, DCP).

Definition 7 [Semantics of<<AbortOp>>]Each<<Abort
Op>> is formally defined as an instantiated UAP, which is
composed with a Con(OCCP, RI P) or a Con(OCCP,
DCP), depending on the value of attribute arMech in the
associated <<AtomicitySpecification>>.

Definition 8 [Semantics of <<TransactionSequence>>] A
<<TransactionSequence>> Seqi is formally defined as a
TA Si , according to Equation 14, whose construction ele-
ments are defined by the following:

1. Each <<Transaction>> in the sequence is defined as
an instantiated Sequence Sub-transaction Pattern (SSP),
together with the connectors Con(T SS, SSP) and Con(
SSP, T SS).

2. Each<<DelayedNext>> between the<<Transactions
>> is defined as an instantiatedDP, aswell as instantiated
connectors Con(DP, SSP) and Con(SSP, DP).

5.2 Automated Transformation

Automated transformation from UTRAN specifications to
UPPCART models can reduce the efforts of system design-

ers by shielding them from the under-the-hood formalism.
In this section, we developed a Java-based tool prototype,
called U2 − Trans f ormer [12], which provides automated
transformation based on the previously mentioned mapping.

U2Transformer accepts a system model defined in UML
with the UTRAN profile, created in common UML editors
including Eclipse Papyrus modeling environment 3 and IBM
Rational Software Architect (RSA) environment 4, in their
respective XML format. The tool parses the UTRAN speci-
fications and returns the XML-format UPPCARTmodels for
the UPPAAL tool. More implementation details of the tool
can be referred to in our extended report [22].

5.3 Validation of U2Transformer

As the first step of validation, we create a series of unit test
cases to test the individual mappings in Section 5.1. They
generate pieces of UPPCART models corresponding to the
selected subsets of UTRAN concepts. These cases include
transformation of single transactions with only one type of
the properties, as well as sequences of transactions with mul-
tiple properties. The generated models are manually checked
for their correctness. The test units arewritten using the JUnit
framework, and are included in the source files of the tool.

We also apply a common approach to test model trans-
formation, that is, to compare the automatically generated
model with an expected output model [23]. We use the
example UTRAN specification and its manually-generated
corresponding UPPCARTmodel from our previous work [8]
as a reference for the validation.

The UTRAN example in [8] specifies the transactions
managing the configuration data and mission status of an
autonomous wheel loader. It involves three ordinary transac-
tions, one compensation transaction, five data objects, aswell
as the atomicity, isolation and temporal correctness specifi-
cations. The UPPCART model is created manually by the
authors, which is a network of UPPAAL TA that conforms
to Equation 1. We use the same UTRAN specification as the
input of U2Transformer, and run the translation. The gen-
erated UPPCART model contains the same elements (e.g.,
individual automata and global variables) as the manually
created model, and satisfy the same atomicity, isolation and
temporal correctness properties.

6 Case Study

In this section, we demonstrate UTRAN, UPPCART and the
tool-supported transformation, via the specification and ver-
ification of a transaction-based system.

3 https://www.eclipse.org/papyrus/.
4 https://www.ibm.com/developerworks/downloads/r/architect.
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Fig. 21 Map and paths of vehicles in our case study
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Fig. 22 Illustration of collision avoidance through transactions and CC

Autonomous construction vehicles such as wheel loaders
and excavators are considered as a promising trend to reduce
costs and avoid safety hazards in construction and mining
sites. In this case study,we consider a quarrywhere rawmate-
rials (e.g., iron ores) aremined by excavators, and transported
by a group of wheel loaders to crushers deployed on the site.
A mission is decided for each wheel loader and excavator,
which follows a designed path in order to complete its job,
such as transportation of materials, and maintenance activ-
ities, such as charging the battery. In order to ensure safety
while maintaining productivity, we design a two-layer colli-
sion avoidance system to prevent collisions between vehicles
achieved by the global collision avoidance layer, as well as
with obstacles such as rocks and holes, achieved by the local
collision avoidance layer. The functionalities of both layers
rely on the datamanagement and transaction control provided
by their DBMS. In the following subsections, we present the
design of the DBMS in these two layers, as well as the ver-
ification of the crucial temporal and logical properties using
our proposed framework and tool, respectively.

6.1 Global Collision Avoidance Layer

The center of the global collision avoidance layer is a
global DBMS that stores the map of the quarry, which is
divided into smaller cells of a grid. The mission of a vehicle

is represented as a sequence of cells that it should visit. Fig. 21
presents the map of the quarry in our case study. Three wheel
loaders are deployed at Cells 7, 10 and 17, whose plans are
determined to carry materials to the crushers at Cells 9 and
18, respectively. On the way back from the crushers, some
of the wheel loaders are scheduled to refuel at the charging
stations at Cell 12, as shown in their paths respectively. An
excavator digs the ores at Cell 11. From time to time, the
excavator also needs to charge at Cell 12. As illustrated in
the figure, the vehicles not only share the crushers and the
power stations, but their paths also overlap in multiple cells.

In order to avoid collision with each other, the vehicles are
not allowed to operate in the same cell simultaneously. To
achieve optimal productivity, each wheel loader is scheduled
to operate its mission with a specific period, and is expected
to finish by a given deadline. In addition, since there are
more wheel loaders than excavators, it is further required to
allow the excavator to be charged whenever necessary for
better productivity. In other words, the excavator should be
prioritized to use the charging station.

We achieve global collision avoidance by leveraging con-
currency control of the DBMS to prevent multiple vehicles
operating in the same cell simultaneously. The key idea is
to let a vehicle lock the cell before entering it, and unlock it
when the vehicle is about to leave the cell. As illustrated in
Fig. 22, the entire path of a vehicle is modeled as transaction
sequence, while the activity of passing an individual cell,
including the performed job in it, is modeled as a transac-
tion. Before entering a cell, a vehicle starts a transaction and
performs a write operation on the cell data, which results
in a lock on the cell. Before the vehicle leaves the cell, it
commits the transaction, which releases the lock and allows
other vehicles to enter this cell. We assume the committing
vehicle is in full stop before entering the next cell. Therefore,
even if another vehicle may enter the unlocked cell before
the committing vehicle leaves, these two are not operating
their tasks simultaneously, and hence are considered safe.
To ensure immediate access of the high-priority vehicle, we
apply a priority-based CC (2PL-HP [17]), which aborts the
low-priority transaction when two transactions try to lock the
same data.

Based on this, we identify 4 transaction sequences in the
global layer, each for one vehicle in Fig. 21; with a total
number of 18 transactions, each controlling one vehicle pass-
ing one cell, and 2 compensation transactions re-entering the
charging stations. The sequences and transactions are listed
in Table 9. For temporal correctness, in this case study we
focus on the end-to-end deadlines of the sequences. The iso-
lation constraint imposed by safety requires that two vehicles
should not use the same cell, especially the power station, that
is, no simultaneous access to Cell 12. In addition, since the
excavator has a higher priority, the wheel loaders L1 and L2
may be aborted when they are using the power station. We
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Table 9 Transactions in the global collision avoidance layer

Vehicle Transaction sequence Contained trans-
actions

Sequence deadline Atomicity Isolation

L1 S1L1 G17, G18, G13,
G12, G17

2000s When G12 (charging) gets
aborted, redo G12

Vehicles should not access
the power station simultane-
ously. That is, transactions
do not access Cell 12 simul-
taneously.

L2 S2L2 G7, G8, G9, G14,
G13, G12, G7

2100s When G12 (charging) gets
aborted, redo G12

L3 S3L3 G1, G9, G10 2500s

E1 S4E1 G11, G12, G11 2400s

Fig. 23 Excerpt of the UTRAN specification for the global layer using the Papyrus tool

hence add the atomicity requirement that when charging gets
aborted, the vehicle should redo the charging later when the
station is free.

6.1.1 Specification in UTRAN

Fig. 23 presents an excerpt from the Eclipse Papyrus
tool that exhibits the specification of transaction sequence
S1L1. The sequence contains five <<Transactions>>.
Each <<Transaction>> includes three <<Operations>>:
one <<BeginOP>>, one <<WriteOP>> that writes the
cell data, and one <<CommitOP>>. The time to per-
form the operation in the cell (e.g., digging, cruising,
crushing, or charging) is specified as the delay in the
<<DelayedNext>> edge between the<<WriteOP>> and
the <<CommitOP>>. The timing properties of S1L1

are specified in its attached <<TemporalCorrectnessSpecifi
cation>>. <<Transaction>> G12 is associated with an
<<AtomicitySpecification>>,which refers to<<Compens
ation>> RedoCharge1 as its deferred compensating trans-
action. An <<IsolationPhenomenon>>, E1- L1Conflict,
specifies the interleavings that results in the simultaneous
access of Cell 12, which should be prevented by the CC. The
complete specification can be found in our online repository
[12].

6.1.2 Construction of UPPCARTmodels

We applied U2Transformer to generate UPPCART models.
As shown in Fig. 24, we used the command-line interface
to specify the Eclipse Papyrus format, the path to the input
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Fig. 24 Transformation of the
UTRAN specification using
U2Transformer

Fig. 25 Excerpt of the UPPCART models for S1L1 from the UPPAAL tool

UTRAN file, and the output path for the generated UPPAAL
model. The transformation took 4.097s.

Figure 25 shows an example of the generated UPPCART
model for S1L1, which corresponds to the<<TransactionSe
quence>> S1L1 in Fig. 23. The main structure of this TA
is an instantiation of the TransactionSequence Skeleton and
represents the basic structure of the sequence S1L1. Its sub-
transactions, including G17, G18, G13, G12, and G17_2,
are modeled by instantiation of the sub-transaction patterns,
respectively.

6.1.3 Optimization

During the simulation and verification of the generated mod-
els, we realize that the number of channels is large, which
causes very long time for UPPAAL to reach a conclusion.
For instance, we have a matrix of channels for write locks,
whose number is a multiplication of the number of transac-
tions and the number of data. This contributes greatly to the
state space, which results in extremely long verification time.
Therefore, we have performed a few optimizations in the TA
models. First, we merge the begin operation with the write

operation in each sub-transaction. This is because the delays
between these two operations are negligible (inmilliseconds)
compared with themission time (in hundreds or thousands of
seconds). This way, we can reduce the channels related to the
begin operations. Second, since within each sequence, only
one sub-transaction can be executed at any time, we there-
fore use the sequence ID to identify its sub-transactions in the
channels. This considerably reduces the number of channels
without changing the semantics of the models. For instance,
the number of channels for write locks is now a multipli-
cation of the number of sequences and the number of data,
which is significantly smaller than using separate transaction
ID’s. Both the original and the optimized UPPCARTmodels
are presented in our online repository [12].

6.1.4 Verification of the global layer

We verify the optimized models against the requirements
using the UPPAALmodel checker (version 4.1.19). The ver-
ification PC is equipped with an Intel i7-4800MQCPU (2.70
GHz, 8 cores), 16GB memory, and Ubuntu 16.04 (64-bit).
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The verification results, presented in Table 10, show that the
current design satisfies all imposed requirements.

6.2 Local collision avoidance layer

The local collision avoidance layer allows a vehicle to move
around an obstacle in its way, by monitoring the surround-
ings using a camera, a sensor and a lidar. Timely update and
access of the surrounding data, as well as correct reaction to
the detection of obstacles, are crucial to the safety of the vehi-
cle. The data and all related transactions are listed inTable 11.
In our case, these data are stored in the vehicle’s local DBMS,
and updated periodically by transactions UpdateCamera,
UpdateSensor, and UpdateLidar respectively. Another trans-
action MoveVehicle reads these data, and checks if any
obstacle occurs. If the path is clear, the vehicle moves for-
ward for a period of time, and commits the transaction. If
an obstacle occurs, the MoveVehicle transaction is aborted,
after which a compensation AvoidObstacle is started tomove
around the obstacle, and updates a log with the obstacle posi-
tion for the future updates of vehicle paths.

Similar to the design of the global layer, we specify
the local layer in UTRAN, as presented in Fig. 26. Each
transaction in Table 11 is specified as an activity stereo-
typed with <<Transaction>> (or <<Compensation>>

for AvoidObstacle), with their properties specified in the
attached <<TemporalCorrectnessSpecification>> and
<<AtomicitySpecification>>. We generate the UPPAAL
models from this UTRAN specification using our tool. The
complete specifications and the TA models are presented in
our online repository [12].

The verification results of the local collision avoidance
layer are listed in Table 12. The desired atomicity and tempo-
ral correctness properties are satisfied by the current design,
according to the verification results.

Since all desired requirements have been satisfied, no
trade-offs among the properties are necessary in our cur-
rent design. However, in case any violation was detected by
the verification, indicating conflicts among the properties,
the designer would need to revise the design with trade-
off decisions. Such trade-offs may involve adjustments in
the selected CC, AR and scheduling mechanisms, as well
as in the variants of the properties. The revised specifica-
tions are then formalized and checked as mentioned above.
Such revising-and-model-checking iterations continue until
we reach a design that satisfies all desired properties.

7 Related work

Researchers have made a number of efforts in the speci-
fication of transaction-based systems and their properties.
Among them, ASSET [24] and KALA [25] specify flexi-

ble transaction models with procedural languages, in which
operations andARmechanisms are specifiedusingprimitives
provided by the languages. ReflecTS [26] allows specifi-
cation of various ACID properties of flexible transaction
models. Compared to these works, our supports specifica-
tion of temporal correctness for transactions and transaction
sequences, and the selection of CC algorithms. Several high-
level description languages opt for extending UML with
elements related to the topic. In the real-database profile pro-
posed byMarouane et al. [27], the authors extendMARTE for
real-time database systems and incorporate timing properties
such as transaction timeliness. However, neither transaction
sequence nor atomicity or isolation are their focus. Unified
transaction modeling language (UTML) [28] and its exten-
sion [29] extend UML for transactions with various selection
of the ACID properties. In these works, atomicity and isola-
tion are treated as monolithic properties respectively, rather
than a spectrum of variants. Temporal correctness of trans-
actions and transaction sequences is not addressed.

Some influential work include the Business Process Exe-
cution Language (BPEL) [30], the Business Process Model
andNotation (BPMN) [31], and their extensions. Both BPEL
andBPMNareXML-based, high-level description languages
for specifying business processes,which can be considered as
a flexible transaction model with various atomicity options.
Rollback and compensation can be specified at transaction
level and for internal activities. Invocation dependencies
between transactions are also supported by these languages.
Charfi et al. [32] and Sun et al. [33] introduce extra concepts
for transactions to BPEL, which allow explicit specification
of atomicity policies. Compared with their work, our pro-
posed profile can specify variants of isolation for a group
of transactions, as well as timing properties for transactions
and transaction sequences. Watahiki et al. [34] propose to
strengthen BPMN with temporal constraints, and generate
UPPAAL models for verification. Isolation and CC are out
of the scope of this framework.

As for formalmodeling and analysis of transaction proper-
ties, the ACTA framework [35] specifies transaction models
in first order logic and allows for formal reasoning. Derks
et al. [13] propose to model and verify transactions with
atomicity variants in Petri nets. Gallina [7] uses higher-order
logic to specify transaction properties, which can be formally
analyzed by the Alloy tool. A number of formal languages
for transaction models have been discussed by Gallina [7].
However, these frameworks are restricted in the formal spec-
ification and analysis of ACID, while timeliness, especially
the impact of CC and abort recoverymechanisms on the time,
are not included. In a more recent work, Liu et al. [36] model
a transaction model using Maude, and analyze only proper-
ties regarding logical consistency. Lanotte et al. [37] propose
a timed-automata-based language for long running trans-
actions with timing constraints. Committing protocols for
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Table 11 Transactions in the local collision avoidance layer

Transaction Description Period Deadline Atomicity Temporal correctness

UpdateCamera Write camera 200ms 150ms When MoveVehicle is
aborted, execute
AvoidObstacle for
compensation
immediately.

The absolute validity
intervals of camera,
sensor and lidar are
400ms. The relative
validity interval of the
group {camera, sensor,
lidar} read by
MoveVehicle is 400ms.

UpdateSensor Write sensor 200ms 150ms

UpdateLidar Write lidar 200ms 150ms

MoveVehicle Read camera, snesor and lidar, If
no obstacles, move forward
1200ms. Otherwise, abort.

2000ms 2000ms

AvoidObstacle Move around the obstacle. Write
log.

Fig. 26 Excerpt of the UTRAN specification for the local layer using the Papyrus tool

atomicity variants can be modeled and analyzed. In contrast
to these works, our work provides a formal framework for
modeling transactions together with abort recovery and CC
mechanisms, in which atomicity, isolation, temporal correct-
ness, as well as their impacts on each other, can be analyzed
in a unified framework. Our recent work [38] proposes the
UPPCART-SMC framework, which models the transaction
system as stochastic timed automata, and applies statistical
model checking [39] to analyze the same properties as we
do in this paper. Although UPPCART-SMC avoids the state
explosion problem and thus can analyze large systems, it only

provides probabilistic assurance of the properties. On the
contrary, UPPCART in this paper applies exhaustive model
checking and provides a formal guarantee of the properties.

Pattern-based techniques have been considered useful in
modeling real-time systems with timed automata. Dong et
al. [40] propose a set of TA patterns for common timing
constraints, such as delay and deadline. Mekki et al. [41]
introduce TA observer patterns for time-related requirement
in UML statecharts. Étienne André [42] proposes a set of
TA observer patterns for timing constraints and behaviors
of real-time systems. In our work, we also apply pattern-
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based techniques tomodel real-time transactions.Weprovide
a formal definition of patterns and pattern-based modeling in
our context. Our patterns are not only used to model time-
related behaviors and observe timing properties, but also used
to specify transaction management mechanisms and capture
data inconsistency.

Researchers have proposed many tool chains for model-
ing and analyzing various aspects of critical systems, within
the model-driven engineering paradigm. Examples include
the work of Biehl et al. [43], ViTAL [44] and CHESS [45].
In these tool chains, domain-specific languages are imple-
mented to be applied by users to create system specifications,
which are then transformed into formal models for rigorous
analysis.Ourwork shares the samemodel-driven engineering
approach, facilitated with our own language, formal seman-
tics, and transformation.

8 Conclusions and future work

In this paper, we have presented a high-level specification
language that extends our previously proposed UTRAN pro-
file. In addition to the specification of transactions with
atomicity, isolation and temporal correctness properties, the
extendedUTRANprofile also supports specification of trans-
action sequences and their timing constraints. We have also
extended our previously proposed UPPCART framework, a
pattern-based formal framework that models transactions in
UPPAAL timed automata, with counterparts for transaction
sequences.

We have proposed a formal definition of pattern-based
construction of UPPCART models, based on which we are
able to provide amapping between theUTRANelements and
UPPCART patterns, and automate the transformation from
UTRAN to UPPCART. Designers can specify the transac-
tions in UML diagrams with UTRAN using existing UML
editors, and transform them into formal models that can be
rigorously analyzed by UPPAAL. The automated transfor-
mation is supported by our tool U2Transformer.

We also have performed an industrial use case that
involves collision avoidance of autonomous vehicles via
transaction management. In the case study, we applied
UTRAN to specify the transactions in the system, and trans-
formed them into UPPCART models using U2Transformer.
The desired atomicity, isolation and temporal correctness
properties were successfully verified by UPPAAL model
checker. A lesson learned from the use case is that, the
automatically generated models can be further optimized
according to the application semantics. By reducing, for
instance, the number of channels, the models may achieve
much smaller state space and result in much shorter verifica-
tion time and lower memory consumption. This is important
for large systems sincewe use exhaustivemodel checking for

the analysis. Such optimization, admittedly, requires knowl-
edge in formal modeling with UPPAAL. Nevertheless, our
proposed tool automation greatly reduces the efforts to con-
struct the formal models.

Although only a set of property variants and mechanisms
are selected and presented in this paper, our work can be used
as a general framework for creating formally assured designs
for a wider variety of transaction models applied in data and
process management. Both transaction properties, and trans-
action management mechanisms, can be traded-off in the
development process, guided by formal verification. Support
for advanced transaction models such as nested transactions
[46] and SAGAs [47] can be easily added, as we have done
for transaction sequences in this paper. Other CC, AR and
scheduling mechanisms can also be modeled and checked in
our framework following the same principles.

As we have learned from the use case, automatically
generated formal models may not be optimal in terms of
verification performance. Manual optimization of the mod-
els can help to reduce verification time, and sometimes is
even necessary for the verification process to reach a conclu-
sion. However, this introduces extra development costs since
domain knowledge is often required, risks of errors arise dur-
ing manual optimization. A solution to this, as a future work,
is to devise “optimization patterns” with domain expertise
that are formally proven and integrated as part of the formal
transformation process.

Our other future work includes to develop a better tool
chain, based on best practices in model-driven engineering,
that integrates specification, model generation and verifica-
tion. A more thorough validation of the model transforma-
tion, including more evidences frommathematical reasoning
and testing, should be considered in the future tool chain
development. Selection between UPPCART andUPPCART-
SMC,basedonheuristics such as verification timeormemory
consumption, may also be supported by tool automation in
the future. Another future work is to incorporate the verifi-
cation of the user-defined functions for different transaction
management mechanisms, which are encoded in C, and can
be verified using existing program verifiers.

Acknowledgements Open access funding provided by Mälardalen
University. The Swedish Research Council (VR) is gratefully acknowl-
edged for supporting this research by the project “Adequacy-based
Testing of Extra-Functional Properties of Embedded Systems”.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the

123



S. Cai et al.

permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Gray, J., Reuter, A.: Transaction Processing: Concepts and Tech-
niques. Morgan Kaufmann Publishers Inc., Burlington (1992)

2. Elmasri, R.A., Navathe, S.B.: Fundamentals of Database Systems.
Addison-Wesley Longman Publishing Co. Inc, Boston (2004)

3. Han, S., et al.: On co-scheduling of update and control transactions
in real-time sensing and control systems: algorithms, analysis, and
performance. IEEETrans.Knowl.DataEng. 25, 2325–2342 (2013)

4. Cai S., Gallina, B., Nyström, D., Seceleanu, C.: Customized real-
time data management for automotive systems: a case study. In:
The 43rd Annual Conference of the IEEE Industrial Electronics
Society, pp. 8397–8404 (2017)

5. Ramamritham, K.: Real-time databases. Distrib Parallel Databases
1(2), 199–226 (1993)

6. Stankovic, J.A., et al.: Misconceptions about real-time databases.
Computer 32(6), 29–36 (1999)

7. Gallina, B.: PRISMA: a software product line-oriented process for
the requirements engineering of flexible transaction models, Ph.D.
thesis, University of Luxembourg (2010)

8. Cai, S., Gallina, B., Nyström, D., Seceleanu, C.: Specification and
formal verification of atomic concurrent real-time transactions. In:
The 23rd IEEE Pacific Rim International Symposium on Depend-
able Computing (2018)

9. The unified modeling language specification version 2.5.1, Stan-
dard, OMG. https://www.omg.org/spec/UML/2.5.1/. Accessed on
09 Jan 2019

10. Larsen, K., et al.: UPPAAL in a nutshell. Int. J. Softw. Tools Tech-
nol. Transfer 1, 134–152 (1997)

11. Object Constraint Language version 2.4, Standard, OMG. https://
www.omg.org/spec/OCL/2.4. Accessed on 09 Jan 2019

12. Cai, S.: The code repository. Password: SOSYM2019. https://
www.idt.mdh.se/personal/sica/sosym/. Accessed on 30 Aug 2019

13. Derks, W., Dehnert, J., Grefen, P., Jonker, W.: Customized atomic-
ity specification for transactional workflows. In: The Proceedings
of the 3rd International Symposium on Cooperative Database Sys-
tems for Advanced Applications, pp. 140–147 (2001)

14. Adya,A., et al.: Generalized isolation level definitions. In: Proceed-
ings of the 16th International Conference on Data Engineering, pp.
67–78 (2000)

15. ISO/IEC 9075:1992 Database Language SQL, Standard, Interna-
tional Organization for Standardization

16. Soparkar, N., et al.: Adaptive commitment for distributed real-time
transactions. In: Proceedings of the third Conference on Informa-
tion and Knowledge Management, pp. 187–194 (1994)

17. Abbott, R.K., Garcia-Molina, H.: Scheduling real-time transac-
tions: a performance evaluation. ACM Trans. Database Syst. 17,
513–560 (1992)

18. UML profile for marte specification version 1.1, Standard, OMG.
https://www.omg.org/spec/MARTE/1.1/

19. Milner, R.: Communication and Concurrency, vol. 84. Prentice
Hall, Upper Saddle River (1989)

20. Clarke, E.M., et al.: Automatic verification of finite-state con-
current systems using temporal logic specifications. ACM Trans.
Program. Lang. Syst. 8(2), 244–263 (1986)

21. Cai, S., Gallina, B., Nyström, D., Seceleanu, C.: A formal approach
for flexible modeling and analysis of transaction timeliness and
isolation. In: Proceedings of the 24th International Conference on
Real-Time Networks and Systems, pp. 3–12 (2016)

22. Cai, S., Gallina, B., Nyström, D., Seceleanu, C.: Specification and
automated verification of atomic concurrent real-time transactions:
extended report. Tech. rep. http://www.es.mdh.se/publications/
5792-

23. Mottu, J.-M., Baudry, B., Le Traon, Y.: Model transformation
testing: oracle issue. In: 2008 IEEE International Conference on
Software Testing Verification and Validation Workshop, IEEE, pp.
105–112 (2008)

24. Biliris, A., Dar, S., Gehani, N., Jagadish, H., Ramamritham, K.:
ASSET: A system for supporting extended transactions. In: ACM
SIGMOD Record, vol. 23, pp. 44–54 (1994)

25. Fabry, J., D’Hondt, T.: KALA: Kernel aspect language for
advanced transactions. In: Proceedings of the 2006 ACM Sym-
posium on Applied Computing, pp. 1615–1620 (2006)

26. Arntsen, A.-B., Karlsen, R.: Reflects: a flexible transaction service
framework. In: Proceedings of the 4thWorkshop on Reflective and
Adaptive Middleware Systems, ACM, p. 4 (2005)

27. Marouane, H., Duvallet, C., Makni, A., Bouaziz, R., Sadeg, B.:
An UML profile for representing real-time design patterns. J King
Saud Univ. Comput. Inf. Sci

28. Nektarios, G., Christodoulakis, S.: UTML: Unified transaction
modeling language. In: Proceedings of the 3rd International Con-
ference on Web Information Systems Engineering, pp. 115–126
(2002)

29. Distante, D., Rossi, G., Canfora, G., Tilley, S.: A comprehensive
design model for integrating business processes in web applica-
tions. Int. J. Web Eng. Technol. 3(1), 43–72 (2006)

30. Web services business process execution language version
2.0, Standard, OASIS. http://docs.oasis-open.org/wsbpel/2.0/OS/
wsbpel-v2.0-OS.html

31. Business process model and notation specification version 2.0,
Standard, OMG. https://www.omg.org/spec/BPMN/2.0/

32. Charfi, A., Schmeling, B., Mezini, M.: Transactional BPEL pro-
cesses with AO4BPEL aspects. In: Fifth European Conference on
Web Services, pp. 149–158 (2007)

33. Sun, C.-A., el Khoury, E., Aiello, M.: Transaction management
in service-oriented systems: requirements and a proposal. IEEE
Trans. Serv. Comput. 4(2), 167–180 (2011)

34. Watahiki, K., Ishikawa, F., Hiraishi, K.: Formal verification of busi-
ness processes with temporal and resource constraints. In: IEEE
International Conference on Systems, Man, and Cybernetics, pp.
1173–1180 (2011)

35. Chrysanthis, P.K., Ramamritham, K.: Synthesis of extended trans-
action models using ACTA. ACM Trans. Database Syst. 19,
450–491 (1994)

36. Liu, S., Ölveczky, P. C., Rahman, M.R., Ganhotra, J., Gupta, I.,
Meseguer, J.: Formal modeling and analysis of RAMP transaction
systems. In: Proceedings of the 31st Annual ACM Symposium on
Applied Computing, pp. 1700–1707 (2016)

37. Lanotte, R., Maggiolo-Schettini, A., Milazzo, P., Troina, A.: Mod-
eling long-running transactions with communicating hierarchical
timed automata. In: Formal Methods for Open Object-Based Dis-
tributed Systems, Springer, pp. 108–122 (2006)

38. Cai, S., Gallina, B., Nyström, D., Seceleanu, C.: Statistical model
checking for real-time databasemanagement systems: a case study.
In: Proceedings of the 24th IEEE Conference on Emerging Tech-
nologies and Factory Automation (ETFA), IEEE (2019)

39. David, A., Larsen, K.G., Legay, A.,Mikučionis,M., Poulsen, D.B.,
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