
Engineering Applications of Artificial Intelligence 95 (2020) 103878

A
a
S

A

K
S
A
I
N
O
I
D

1

s
p
b
o
T
s
2
i
i
t
t

o
i

r

h
R
A
0
(

Contents lists available at ScienceDirect

Engineering Applications of Artificial Intelligence

journal homepage: www.elsevier.com/locate/engappai

novel methodology to classify test cases using natural language processing
nd imbalanced learning
ahar Tahvili a,b,∗, Leo Hatvani a,∗∗, Enislay Ramentol c,∗∗, Rita Pimentel d,g, Wasif Afzal a,

Francisco Herrera e,f

a School of Innovation, Design and Engineering, Mälardalen University, Västerås, Sweden
b Global Artificial Intelligence Accelerator (GAIA), Ericsson AB, Sweden
c Department of Financial Mathematics, Fraunhofer Institute for Industrial Mathematics, Germany
d RISE SICS, Västerås AB, Sweden
e Department of Computer Science and AI, University of Granada, Spain
f Faculty of Computing and Information Technology - North Jeddah, King Abdulaziz University, Saudi Arabia
g Department of Industrial Economics and Technology Management, Norwegian University of Science and Technology, Norway

R T I C L E I N F O

eywords:
oftware testing
rtificial intelligence

mbalanced classification
atural language processing
ptimization

FROWANN
oc2Vec

A B S T R A C T

Detecting the dependency between integration test cases plays a vital role in the area of software test
optimization. Classifying test cases into two main classes – dependent and independent – can be employed
for several test optimization purposes such as parallel test execution, test automation, test case selection and
prioritization, and test suite reduction. This task can be seen as an imbalanced classification problem due to
the test cases’ distribution. Often the number of dependent and independent test cases is uneven, which is
related to the testing level, testing environment and complexity of the system under test. In this study, we
propose a novel methodology that consists of two main steps. Firstly, by using natural language processing we
analyze the test cases’ specifications and turn them into a numeric vector. Secondly, by using the obtained data
vectors, we classify each test case into a dependent or an independent class. We carry out a supervised learning
approach using different methods for handling imbalanced datasets. The feasibility and possible generalization
of the proposed methodology is evaluated in two industrial projects at Bombardier Transportation, Sweden,
which indicates promising results.
. Introduction

Software testing is an important and effort-intensive activity in the
oftware development life cycle (SDLC), and thus test optimization
lays a vital role in the testing domain. According to reports from
oth academia and industry, the process of software testing can take
f up to 50% of the total development cost (Alégroth et al., 2016).
he testing cost can be decreased by using test automation, test case
election and prioritization and test suite minimization (Nardo et al.,
015). The research results indicate that the application of an artificial
ntelligence (AI) technique has real potential for making a positive
mpact on software testing. Moreover, the increase in availability of AI
echnologies provides opportunities to improve the existing software
esting processes (Chen et al., 1995).

Nowadays, the process of testing can be performed manually, semi-
r fully automated. In a manual testing procedure, a set of test spec-
fications needs to be created for every system under test (SUT). The

∗ Corresponding author at: Global Artificial Intelligence Accelerator (GAIA), Ericsson AB, Sweden.
∗∗ Corresponding authors.

E-mail addresses: sahar.tahvili@mdh.se (S. Tahvili), leo.hatvani@mdh.se (L. Hatvani), enislay.ramentol@itwm.fraunhofer.de (E. Ramentol),
ita.pimentel@ntnu.no (R. Pimentel), wasif.afzal@mdh.se (W. Afzal), herrera@decsai.ugr.es (F. Herrera).

manual testing process is still a popular approach especially in the
safety critical systems, where assurance arguments ultimately depend
on human judgment (Chechik et al., 2019). Since both manual test
creation and manual test execution are time and resource consuming
processes, it can be beneficial to apply AI technologies, such as machine
learning and deep learning, for analyzing test cases.

Reports from different industries show that the dependencies be-
tween the integration of test cases have a direct impact on the test
execution results, where the dependent test cases can fail after each
other if they are ranked in the wrong order (Parsa et al., 2016; Arlt
et al., 2015). Nonetheless, classifying test cases into dependent and
independent classes is a challenging task because of the following
reasons:

1. It requires capturing and analyzing various testing artifacts such
as requirement specifications, test records, system architecture,
signal information, among others.
ttps://doi.org/10.1016/j.engappai.2020.103878
eceived 22 October 2019; Received in revised form 20 June 2020; Accepted 4 Au
vailable online 14 August 2020
952-1976/© 2020 The Authors. Published by Elsevier Ltd. This is an open access
http://creativecommons.org/licenses/by/4.0/).
gust 2020

article under the CC BY license

https://doi.org/10.1016/j.engappai.2020.103878
http://www.elsevier.com/locate/engappai
http://www.elsevier.com/locate/engappai
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2020.103878&domain=pdf
mailto:sahar.tahvili@mdh.se
mailto:leo.hatvani@mdh.se
mailto:enislay.ramentol@itwm.fraunhofer.de
mailto:rita.pimentel@ntnu.no
mailto:wasif.afzal@mdh.se
mailto:herrera@decsai.ugr.es
https://doi.org/10.1016/j.engappai.2020.103878
http://creativecommons.org/licenses/by/4.0/


S. Tahvili, L. Hatvani, E. Ramentol et al. Engineering Applications of Artificial Intelligence 95 (2020) 103878

v
i
t
t
a
F
f

2

e
M
a
p
i
c

2

a
p
T
o
d
e
d
h
𝑇
t
h
2
b
t
U
o
t
o
a
L
g

c
𝑇
o
d
𝑇
f
D
o
m
i
t
k
t
a
c

w
2
c
w
a

2. The problem suffers from imbalanced class distribution, which is
still a challenging problem in data mining (Lopez et al., 2013).

Since the main goal of the dependency detection between test cases
is test efficiency and cost minimization, the new approaches should
be accurate, applicable in different contexts and should not require
extra efforts. Employing AI techniques on manual test cases can provide
useful input, which can be utilized for test optimization purposes.

In this study, we aim to split manual integration test cases into two
main classes: dependent and independent. To tackle our problem, we
propose a two-step methodology.

(I) The first step is to obtain a numeric dataset format. In this
regard, we use neural networks model that turns the manual
descriptions of the test cases into numeric vectors of descriptive
features. Afterwards, each of the test cases is assigned to a deci-
sion attribute (“dependent” or “independent”). As stated earlier,
in many cases, the number of dependent and independent test
cases is unevenly distributed, which means that we are facing a
class imbalance problem.

(II) The second step is to carry out a supervised learning classifica-
tion for imbalanced datasets. The imbalance classification has
become a top issue within the machine learning community.

There are many examples of real-world applications that study this
problem, such as medical applications (Mazurowskia et al., 2008; Gao
et al., 2016), image recognition (Kubat et al., 1998; Buda et al., 2018),
risk management (Huang et al., 2006) or anomaly detection (Khreich
et al., 2010). Indeed, a different variety of solutions for class imbalance
problems have been proposed in recent years. They can be divided into
four main groups: data level, design of specific classification algorithms,
cost sensible and ensembles. Although the wide range of solutions
currently available are state of the art, finding the most appropriate so-
lution for a specific problem can lead to a fairly extensive experimental
study. For our study, we select a set of well-known methods from the
four-groups mentioned above.

The proposed methodology is evaluated on industrial case-studies
at Bombardier transportation (BT) in Sweden. Two on-going testing
projects – projects 𝐴 and 𝐵 – are selected, where all designed infor-
mation for these two projects is extracted from BT’s database. Both
projects are designed for testing trains, where a separate team is behind
each. Although they both test a train product, the test cases which are
designed for testing project 𝐴 should not be utilized for project 𝐵.

The organization of the paper is laid out as follows: Section 2 pro-
ides a background of the initial problem. The dependency detection
n the software testing domain and an overview of the usage of AI
echnologies in this area are presented in Section 3. Section 4 describes
he structure of the proposed methodology. Two industrial case studies
re shown in Section 5. The obtained results are depicted in Section 6.
inally, Section 7 concludes the paper and clarifies some points of
uture directions of this study.

. Preliminaries

This section provides the preliminaries for the present study. We
xplain the need of separating dependent and independent test cases.
oreover, some relevant theoretical elements are also described to

chieve a better understanding of our proposal. Later in this section, we
rovide some background information about natural language process-
ng (NLP) and the utilized method in this paper, Doc2Vec. Finally, the

lass imbalance problem and its most relevant solutions are presented. c

2

Fig. 1. Example of an embedded digraph of dependencies for five test cases.

.1. Dependency detection

Dependency between integration test cases can be considered as
critical criterion for test optimization in any form of test selection,

rioritization, scheduling (Yoo and Harman, 2007; Elbaum et al., 2002;
ahvili et al., 2016a) and test automation. There are several kinds
f dependencies between test cases e.g. abstract dependency, causal
ependency or temporal dependency. In our previous work (Tahvili
t al., 2019) we defined a new type of dependency called functional
ependency, which usually occurs between integration test cases, and
as a direct effect on the test execution results. Given that test case
𝐶2 is functionally dependent on test case 𝑇𝐶1, if 𝑇𝐶1 fails during

he testing process, 𝑇𝐶2 will fail as well. This kind of dependency
as been observed in several cases in different domains (Arlt et al.,
015; Tahvili et al., 2016b). Therefore, detecting the dependencies
etween test cases is important, since it can be utilized later for ranking
hem for execution based on their relationship with other test cases.
sually in this approach, test cases are connected and following each
ther in succession as a directed graph (chain). Thus, independent
est cases (e.g. 𝑇𝐶1 in Fig. 1) should be executed first and then all
ther dependent test cases. To clarify the explanation, let us consider
dummy example,1 with five test cases: TC1, TC2, TC3, TC4 and TC5.

et us assume that we can describe the following embedded directed
raph of dependencies:

As we can see in Fig. 1, 𝑇𝐶1, 𝑇𝐶3 and 𝑇𝐶4 are independent test
ases, 𝑇𝐶2 depends on 𝑇𝐶1. 𝑇𝐶5 directly depends on 𝑇𝐶2, 𝑇𝐶3 and
𝐶4, where we call them as the precedents, and indirectly depends
n 𝑇𝐶1. The presented test cases in Fig. 1 can be executed in a
ifferent order such as first all independent test cases (𝑇𝐶1, 𝑇𝐶3 and
𝐶4) are ranked first for execution, or 𝑇𝐶1 and 𝑇𝐶2 are scheduled

or execution first and later two independent test cases 𝑇𝐶3 and 𝑇𝐶4.
etecting this grid of dependencies is required to analyze several layers
f the testing process such as requirement specifications and software
odules. However, the mentioned required information is not available

n all testing projects and sometimes the process of capturing them
akes more time than any random test execution. On the other hand,
nowing the dependency between test cases can be utilized for other
est optimization purposes such as parallel test execution and test
utomation, where independent test cases can be considered as good
andidates for automation in a semi-automated testing procedure.

For clustering and classifying test cases based on their dependencies,
e can employ just their test specifications. Previously (Tahvili et al.,
019), we divided test cases from one industrial project into several
lusters based on their dependencies. However, in the current study,
e are aiming to classify all test cases into two groups: dependent
nd independent as mirrored in Fig. 2. The main reasons behind this

1 It is dummy in the sense that the number of test cases is very small
ompared with real industry cases.



S. Tahvili, L. Hatvani, E. Ramentol et al. Engineering Applications of Artificial Intelligence 95 (2020) 103878
Fig. 2. Classifying test cases into two main classes: dependent and independent.

approach can be summarized as 1 - improving the obtained results
from the clustering approach in Tahvili et al. (2019), 2- employing the
ground truth for labeling data, and thereby applying a supervised learn-
ing approach, and 3- applying a different methodology for classifying
test cases into dependent and independent.

2.2. On the use of natural language processing

Table 1 shows an example of a manual test case for a safety
critical system which consists of test case ID, test case description,
expected test result, test steps, corresponding requirements, etc. In this
example, two requirements (SRS-BHH-LineVolt1707 and SRS-
BHH-Speed2051) are assigned to the test case.

As mentioned in Section 1 in a manual testing procedure, all testing
artifacts (e.g. requirements and test cases) are written by testers. There-
fore, employing natural language processing techniques might provide
highly useful information, which can be utilized for test optimization
purposes.

Examples include automatic test creation from the textual require-
ments and automatic testing oracle generation for unusual behaviors
from Javadoc comments (Goffi et al., 2016), as well as automatic test
generation from bug reports (Fazzini et al., 2018). Heretofore, some
NLP techniques are employed by us for: extracting test case execution
time (Tahvili et al., 2018a), scheduling test cases for execution based on
their semantic similarity (Tahvili et al., 2018c), detecting the functional
dependency between test cases through analyzing requirement specifi-
cations (Tahvili et al., 2018b) and also test case specifications (Tahvili
et al., 2019). However, not all required test artifacts for dependency
detection are accessible in all testing processes at industries. A deep un-
derstanding of test specifications can help us to detect the dependencies
between test cases in a more promising way.

2.2.1. Neural networks in natural language processing
Although employing classical machine learning approaches (e.g.

Naive Bayes, Support Vector Machine) received a great deal of at-
tention for text analysis, neural networks models are shown to per-
form better for more complex tasks such as sentiment analysis and
translation (Majumder et al., 2017).

Neural embedding models usually refer to methods for embed-
ding words or documents into a vector space via utilizing neural
networks (Maslova and Potapov, 2017). The neural networks take
over adjacent word embeddings, where the information contained in
adjacent words is learned effectively. Therefore, they show better per-
formance compared to other text analysis methods on classification
3

Fig. 3. The structure of the PV-DBOW model.

tasks e.g. sentiment analysis, spam detection, and also topic catego-
rization (Zhang et al., 2015). Word2Vec, Doc2Vec, and FastText (Joulin
et al., 2016) can be mentioned as some examples of the neural networks
models for word and document embedding.

Doc2Vec was first proposed by Le and Mikolov (2014) in 2014. It
has excellent scalability and has filled in gaps of previous approaches
where the semantics of the words were ignored. Another of its advan-
tages is that it learns from unlabeled data, meaning that it is applicable
for tasks that do not have enough labeled data, which is often the
case in industrial applications. The approach is also independent of
the language and it can be applied to most languages with minimal
modification. The goal of the algorithm is to create a fixed-length nu-
meric representation of a document, regardless of its length. Indeed, for
each document, Doc2Vec provides an 𝑛-dimensional vector, in which
each dimension can be interpreted as a feature. Doc2Vec represents
a document with a non-fixed length into a vector and concatenates
each word of that document. There are several variants of the Doc2Vec
method. In this paper, we use paragraph vectors with a distributed bag
of words model (PV-DBOW) which uses a single layer neural networks
to predict whether a word is contained in a given document.

Fig. 3 shows the basic idea behind the PV-DBOW model. We need
to consider that the PV-DBOW model ignores the context words in
the input, but it forces the model to predict words randomly sampled
from the paragraph in the output and a Paragraph ID (Witt and Seifert,
2017). Moreover, the Paragraph Matrix in Fig. 3 is the matrix where
each column represents the vector of a paragraph. Matrix 𝐷 has the
embeddings for ‘‘seen’’ paragraphs for words. For ‘‘unseen’’ paragraphs,
the model is again ran by gradient descent to derive a document
vector (Le and Mikolov, 2014; Witt and Seifert, 2017). For instance,
given a sentence including three words ‘‘[W1 W2 W3]’’ (see Fig. 3),
two words are sampled from it.

After training these neural networks, we can extract the trained
values to form feature vectors. These vectors are intended to represent
the concepts of the documents. Each element of the vector creates an
abstraction for several terms from the corpus. Given a large enough
corpus, the distance between the vectors corresponding to semantically
similar documents is lower than the ones that are not. Doc2Vec is based
around learning vector representations of words using neural networks.
It is trained using stochastic gradient descendent, where the gradient
is obtained via back-propagation. Therefore, each time we apply the
algorithm to a group of documents, we get a different set of vectors.
Nevertheless, the relative distance of semantically related documents is
statistically indistinguishable from run to run (Rekabsaz et al., 2017).
This means that for each run, it is expected that the vectors from the
two different classes keep a higher distance, while the vectors from
the same class have a lower distance, which is the key point for the
classification step. Taking this into account, in order to keep the vectors
comparable, we run Doc2Vec at the same time for both training and
testing documents. Previously (Tahvili et al., 2019), we showed the



S. Tahvili, L. Hatvani, E. Ramentol et al. Engineering Applications of Artificial Intelligence 95 (2020) 103878

p

o
a
e
c
2
2

f
w
k
m
c

g

Table 1
A test case specification designed at Bombardier Transportation.

Test case name: Auxiliary Compressor Control Date: 2020-03-20

Test case ID Test level (s) Test Result Comments
3EST001845-2032 -
RCM (v.1)

Sw/Hw Integration

Test configuration
TCMS baseline:
TCMS 1.2.3.0
Test rig: VCS
Release 1.16.5
VCS Platform 3.24.0

Requirement(s)
SRS-BHH-Line
Voltage 1707
SRS-BHH-Speed
2051
Tester ID
BR−1211
Initial State
No active cab

Step Action Reaction Pass/Fail

1 Lock and set Auxiliary reservoir pressure
< 5.5 bar

Signal Command auxiliary
compressor

2 Activate cab 𝐴2 lock and set signal
braking mode from ATP to 109

Signal braking mode to IDU is set
to 109

3 Lock and set Auxiliary reservoir pressure
> 5.5 bar

Signal Auxiliary compressor is
running to IDU is set to FALSE

4 Wait 20 s
5 Reset dynamic brake in the train for 5 s IDU in 𝐵1 car as On
6 Set Auxiliary reservoir pressure < 5.5 bar Signal Auxiliary compressor is

running to IDU is set to FALSE
7 Clean up
relationship between test case semantics similarity and their functional
dependency using Doc2Vec and a clustering algorithm, with a F-score
of 0.75.

2.3. On the use of imbalance learning

As emphasized earlier, the dependency problem suffers from an
imbalanced dataset. The class imbalance problem appears when one
concept (the minority class) to be classified is significantly less repre-
sented than the other (the majority class). The imbalanced ratio (IR) is
a well-known measure in the imbalanced domain. It is a ratio between
the number of samples in the majority class and the number of samples
in the minority class (see Eq. (1)).

𝐼𝑅 =
𝑀𝑎𝑗𝑜𝑟𝑖𝑡𝑦𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠
𝑀𝑖𝑛𝑜𝑟𝑖𝑡𝑦𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠

. (1)

Some researchers consider that a dataset suffers from an imbalanced
roblem if the IR is higher than 3. We can compute the IR using Eq. (1).

To find a more appropriate solution for imbalanced proportion
f classes, we use imbalanced learning, which has recently become
top research topic in the machine learning community (Fernández

t al., 2018). The classification task can become very complicated when
oncepts are not equally represented in the data sample (Batista et al.,
004; Bi and Zhang, 2018; Galar et al., 2013; Jensen and Cornelis,
011; Khan et al., 2018; Ramentol et al., 2015).

The main problem with imbalanced data is that traditional classi-
iers do not take into account class distribution. Instead, they operate
ith global metrics, and as a consequence, the less represented class,
nown as minority or positive, tends to be poorly classified while the
ajority, or negative, tends to be very well classified. However, the

oncept of greatest interest is usually in the minority class.
This phenomenon has attracted a lot of attention resulting in a set of
ood solutions. These solutions can be divided into four main groups:

4

I. Data level solutions (Ramentol et al., 2012; Batista et al., 2004;
Han et al., 2005; Chawla et al., 2002): This group of solutions
consists of modifying the data distribution, via removing ex-
amples from the majority class, known as undersampling, or
by creating examples from the minority class, known as over-
sampling. Moreover, any combinations of undersampling and
oversampling, is known as hybrid solutions.

II. Cost sensitive solutions (Ting, 2002; Zadrozny et al., 2003;
Zhou and Liu, 2010): This group of solutions consists of the use
of solutions at data level, algorithm level or both at the same
time, in order to minimize higher cost errors.

III. Ensemble solutions (Galar et al., 2012, 2013): Ensemble so-
lutions in imbalanced domains are mostly a combination of an
ensemble with one of the techniques above. The most common
ensemble are the solutions which use a data level approach or a
cost sensitive solution.

IV. Algorithm level solutions (Cieslak et al., 2012; Ramentol et al.,
2015): This group of solutions consists of modifying the learning
algorithm in order to deal directly with the imbalance data.
These solutions could be more versatile since it does not modify
the data distribution. For example, modifying the cost per class
or adjusting probability estimation in the leaves of the decision
trees.

In this work we compare the performance of ten proposed imbal-
ance approaches in the state of the art. Next, a short description of
each of them is given.

1. Synthetic Minority Oversampling Technique (SMOTE)
(Chawla et al., 2002): This oversampling technique creates syn-
thetic examples through performing an interpolation of one
minority example and its nearest neighbor.



S. Tahvili, L. Hatvani, E. Ramentol et al. Engineering Applications of Artificial Intelligence 95 (2020) 103878
2. Synthetic Minority Oversampling Technique with Edited Nearest
Neighbor (SMOTE-ENN) (Batista et al., 2004): This hybrid so-
lution first creates synthetic examples using SMOTE, and then
removes the examples which are misclassified by their three
closest neighbors. ENN is also able to remove examples from
both classes.

3. SMOTE-Borderline 1 (Han et al., 2005): This method presents
a modified version of the original SMOTE. Instead of creating
synthetic examples, SMOTE-Borderline 1 utilizes all the minor-
ity examples and only oversamples those minorities which are
considered as “Borderline”. The method classifies every minority
example into three categories: noise, danger and safe, attending
to the number of nearest neighbors in the majority class. Finally,
in the SMOTE phase, only the examples in danger will be used
for generating new ones.

4. SMOTE-Borderline 2 (Han et al., 2005): This method is very
similar to the SMOTE-Borderline 1 and they only differ from
each other by the generating strategy for the synthetic exam-
ples. SMOTE-Borderline 2 uses danger examples for generat-
ing synthetic examples and minorities nearest neighbor. This
method also finds the nearest neighbor in both classes. Later,
its nearest majority neighbor will be multiplied by a random
number between 0 and 0.5, and therefore, the newly generated
examples are closer to the minority class.

5. Safelevel (Bunkhumpornpat et al., 2009): This method defines a
safe level for every minority example, which creates synthetic
examples closer to them.

6. Spider (Stefanowski and Wilk, 2008): This method removes ma-
jority examples that can affect the correct classification of the
minority examples. Later, it creates synthetic examples using
the minority examples which are “overwhelmed” by objects
surrounding the majority classes.

7. Cost Sensitive–C4.5 (Ting, 2002): This method builds some deci-
sion trees that try to minimize the number of high cost errors
and, as a consequence, leads to the minimization of the total
misclassification costs in most cases.

8. SVM-Cost Sensitive (Vapnik, 2013): This method biases tradi-
tional Support Vector Machine classifier (SVM) in a way that
will push the boundary away from the positive instances using
different error costs for the positive and negative classes.

9. EUSBOOST (Galar et al., 2012): This algorithm belongs to the
ensemble group. It combines boosting with the use of Evo-
lutionary Undersampling (EUS), where each chromosome has
a binary coding that represents the presence or non-presence
of the example in the dataset. The fitness function takes into
account the imbalance distribution favoring the minority class.

10. IFROWANN (Ramentol et al., 2015): This algorithm is a power-
ful classifier specifically designed for imbalanced data. It is based
on the Fuzzy Rough Nearest Neighbor (FRNN) classifier (Jensen
and Cornelis, 2011). It computes the sum of the memberships of
each example to the fuzzy-rough lower and upper approximation
of each class, which is then assigned to the class with the
higher sum. IFROWANN introduces the use of Ordered Weighted
Average (OWA) operators to determine the positive and negative
regions, in order to consider the differences between the num-
bers of examples in classes. The authors proposed the use of 6
different weighting strategies combined with 3 alternatives for
defining the fuzzy: Minimum, Average and Łukasiewicz.

3. Related work

In this section, we discuss the related work from two dimensions
of interest, beginning with some of the proposed solutions for solving
the dependency problem in the software testing domain and then
presenting a non-exhaustive overview of the use of NLP approaches in

software testing.

5

3.1. Dependency identification in software testing

To avoid unproductive testing of unaffected components in a mod-
ified program, Bates and Horwitz (1993) identify components through
program dependence graphs and slicing with test adequacy data. A
new diagram type, a dependency chart, is introduced by Ryser and
Glinz (2000) to manage dependencies and interrelations between sce-
narios of system testing. Haidry and Miller (2013) use a directed
graph to identify functionally dependent test cases. An approach to
automatically detect redundant test cases based on logical dependency
between structured requirements is given by Arlt et al. (2015). In
our earlier work (Tahvili et al., 2019), we divided test cases into
dependent and independent classes using semantic text similarity, clus-
tering and random undersampling. However, random undersampling
causes missing some data points, where some important information
about the decision boundary between the minority and majority class
(independent test cases in Tahvili et al., 2019) might be eliminated.
On the other hand, the application of text similarity techniques in
software testing is already a growing research topic, where researchers
have applied it for test selection (Unterkalmsteiner et al., 2016), test
prioritization (Thomas et al., 2014a) and prioritization of test automa-
tion (Tahvili et al., 2019).

3.2. Natural language processing in software testing

Chen et al. (2015) wrote a survey paper on the use of topic models
in software engineering. Topic models discover structure within an
unstructured collection of written text through statistical properties of
word frequencies. Latent Semantic Indexing (LSI) and Latent Dirichlet
Allocation (LDA) are two examples of topic models. A topic is a
collection of words that co-occur frequently and are often semantically
related. Organization of unstructured text into topics helps to index,
searching and clustering of information. In software testing, Islam et al.
(2012) used LSI to link test cases and software requirements. This was
employed to prioritize test cases using a multi-objective optimization
approach. Thomas et al. (2014b) applied LDA in test suites to give
higher priority to test cases that test different functionalities of the
software under test. Chen et al. (2017) adopted LDA to find topics
in source code files and test cases. Based on topic defect density and
how well-tested a topic is, less-tested and defect-prone topics are then
suggested as candidates for allocating more testing resources. Lin et al.
(2017) proposed a NLP-based approach for improving the effectiveness
of crawling-based web application testing. They applied three transfor-
mations sequentially to feature vectors: Bag-of-words, tf-idf and LSI.
The evaluation of their approach on input topic identification showed
improved accuracy. Preeti et al. (2017) used NLP to extract combi-
natorial test design model elements from use case specification using
Alchemy API and NLTK with Python scripts. They combined the results
with combinatorial test design model elements extraction from use case
diagrams using a rules-based approach. The parameters and values
are then presented as a list of suggestions to the test designer. Nak-
agawa and Tsuchiya (2015) proposed a linguistic approach to extract
constraints from requirements document for combinatorial test design.
They identify constraints based on the distance between the words in
the requirements document using a coupling metric. Zalmanovici et al.
(2016) provide a clustering approach where a test suite is automatically
clustered into disjoint clusters. These clusters can then be exploited in
different ways: treating each cluster as a functional part, suggesting
redundant tests in a cluster, and creating input for combinatorial testing
by extracting a model per cluster. Test clustering is achieved using
Levenshstein distance and DBScan is used as the clustering algorithm.
Clustering of test cases has also been experimented by Yoo et al. (2009)
using hamming distance, Leon and Podgurski (2003) using Euclidean
distance, Arafeen and Do (2013) using tf-idf for requirements based
testing.

In this work, we propose a novel methodology for analyzing the
test case specifications and then dividing test cases into dependent



S. Tahvili, L. Hatvani, E. Ramentol et al. Engineering Applications of Artificial Intelligence 95 (2020) 103878
Fig. 4. The required input, steps and expected output of the proposed methodology in this study.
i
t
t
c
b
c
t
s

d

i
W
o
s
p

and independent classes, using a supervised learning approach. The
most important difference between exiting solutions and our proposed
methodology is the required input. Most of the proposed approaches
require several testing artifacts e.g. requirement specifications and
architecture of the software product. The proposed methodology in this
work just needs the test case specifications, which are always available
in all testing projects.

4. The methodology

This section provides a methodology for solving the initial problem.
The main goal of this paper is to split manual integration test cases into
dependent and independent classes. The proposed methodology in this
study can mainly be divided into two main steps:

I. Text analysis: Since the manual test cases are written in text,
employing NLP technologies for latent semantic analysis can
provide some clues for dependency detection. In this step, all
designed test cases need to be parsed and converted to another
format (e.g. vectors) for further syntactic analysis.

II. Classification: In this step, all test cases need to be classified
as dependent or independent. If the number of dependent and
independent test cases is very different, then this step may
suffer from an imbalanced dataset, and therefore a special algo-
rithm which can handle it should be applied. Otherwise, other
classification algorithms can be utilized in this step.

Since the data preprocessing might have a significant impact on
the generalization performance of supervised machine learning al-
gorithms (Kotsiantis et al., 2006), thus the input data need to be
preprocessed in an early stage of the proposed solution in this study.
Data preprocessing can be performed in the form of data cleaning,
data integration, transformation, and reduction. However, based on
the data type, size, and quality, one or more of the mentioned data
preprocessing methods need to be applied to the raw data. Since the
input data in this study is manual integration test cases written in a
natural text, determinately, we applied tokenization on the original test
cases to process the raw data. Table 2 shows the tokenized version of
the presented test case in Table 1.

In Section 6.1 Experimental Setup, we provide more details regard-
ing the utilized data preprocessing in the current study.

Excluding the text from each test case, a ground truth (GT) for
the training set is required as we are using a classification algorithm
to address the problem (supervised learning). As can be observed in
Fig. 4, there are two possible scenarios where our methodology can
be used: having a least 20% of the data already labeled or having a

previous similar project with 100% of the examples labeled. Given that

6

Table 2
The tokenized version of the presented test case in Table 1.

no active cab lock and set auxiliary reservoir pressure 5.5 bar signal
command auxiliary compressor activate cab a2 lock and set signal braking
mode from atp to 109 signal braking mode to idu is set to 109 lock and set
auxiliary reservoir pressure 5.5 bar signal auxiliary compressor is running
to idu is set to false wait 20 s reset dynamic brake in the train for 5 s
idu in b1 car as on set auxiliary reservoir pressure 5.5 bar signal auxiliary
compressor is running to idu is set to false clean up

we intend to apply this methodology in a real industrial context, the
division between training and test sets needs to be carefully chosen. The
common choices are 80%–20%, 70%–30% or 50%–50% at most. However,
t is not realistic to ask the experts to label 80%, 70% or even 50% of
he test cases. This would be a time-consuming process leading them
o reject our methodology. Having this in mind, we propose that the
ompany takes the responsibility of labeling 20% of the data, which will
e used to train the model. It is important that the 20% of the test cases
hosen to be labeled represents the complete dataset. In other words,
he distribution between dependent and independent test cases in the
ample and in the whole dataset should be similar.

To decide the training size as 20%, we did experimentation with
ifferent possibilities: 5%, 10%, 15%, 20%, 25% and so on. The results

start to increase in 20%. That is why we recommend 20% as the
minimum percent of labeled data when using our methodology. Due
to page restriction, this study is not included in the paper.

Next, we describe our methodology for both mentioned steps in
detail. Fig. 4 represents a generic overview of the methodology pro-
posed in this study for classifying dependent and independent manual
integration test cases.

As we can see in Figs. 4(a) and 4(b), the discussed steps are mapped
with step 1 and step 2. Moreover, the raw data need to be processed
before we apply each of the mentioned steps. As stated earlier in this
section, there are several ways to process raw data for supervised
learning purposes. However, in the described case in this study, since
the input is test cases that are written in a natural text, thus all test cases
need to be tokenized in advance. As can be seen in Fig. 4(a), for the
first scenario, just 80% of all test cases are used (since 20% of the data
s labeled before), wherein Fig. 4(b), 100% of test cases are employed.

e need to consider that, regardless of the utilized data portion (80%
r 100%), all raw data (manual integration test cases in the present
tudy) need to be preprocessed (tokenized in this case) as a part of the
roposed methodology in this study.

• Input: Our methodology has been designed to operate from two

types of entries:



S. Tahvili, L. Hatvani, E. Ramentol et al. Engineering Applications of Artificial Intelligence 95 (2020) 103878

a

5

o
p
d
a

5

t
𝐵
r
s
p
d

r

Fig. 5. The input–output signals, requirements, and test cases in the testing platform (TCMS).
(a) Having at least 20% of the data labeled (from one project).
As shown in Fig. 4(a).

(b) Having previous similar project with 100% of labeled exam-
ples (using unseen data), which is mirrored in Fig. 4(b).

• Data Preprocessing: As the natural language test cases are com-
monly stored in various rich text formats and even spreadsheets,
the text is extracted from them. The text is then preprocessed
using standard tokenization methods to remove the majority of
punctuation and convert all the text to lowercase.

• Step 1: Latent semantic analysis technique then reads the text
documents and provides a set of vectors with 𝑛-dimensional fea-
tures, where each vector represents a text document. This step
can be performed by using various implementations of neural
embedding models for text analysis such as Gensim (Rehurek
and Sojka, 2010), Paragraph vectors (see Section 2.2.1), and
fastText (Joulin et al., 2016).

• Step 2: Applying supervised learning on the imbalanced data
provided from step 1, each vector is classified into one of the two
classes. This step can be performed by using various implementa-
tions of the mentioned imbalance approaches in Section 2.3.

• Output: For each test case to be classified, a class label is auto-
matically assigned.

At the end of the procedure all test cases from the initial dataset are
ssigned to either independent or dependent class.

. Industrial Case studies

This section analyzes the feasibility of the proposed methodol-
gy, which has been done through studying two on-going testing
rojects 𝐴 and 𝐵 at Bombardier Transportation (BT) in Sweden. All
esigned requirements and test case specifications for the two projects
re extracted from DOORS2 database at BT.

.1. Case studies

The units of analysis in these case studies are requirements and
est specifications at the integration testing level for projects 𝐴 and
, where for both projects, there exists the ground truth. Table 3

epresents some additional information about the projects. As we can
ee, the number of independent test cases is different for the two
rojects, which emphasizes the need for an automated approach for
ependency detection.

2 Rational Dynamic Object Oriented Requirements System, which is a
equirement management tool.
7

Table 3
The units of analysis in the industrial case study.

Project Requirement Test case Independent test case Dependent test case IR

𝐴 3201 1748 328 1420 4.33
𝐵 3401 2028 1511 517 2.92

Moreover, there is a considerable imbalanced ratio between inde-
pendent and dependent test cases in both projects 𝐴 and 𝐵. According
to Table 3 the number of independent test cases for project 𝐴 is equal to
328 whereas the number of dependent test cases for this project is equal
to 1420. On the other hand, the number of independent test cases for
project 𝐵 is equal to 1511, whereas the dependent test cases is equal
to 517 for this project. The inserted information in Table 3 indicates
that the dependency detection problem suffers from an imbalanced
classification problem.

5.2. The ground truth

As stated earlier, the dependencies between requirements and test
cases are detected by analyzing the signal communications between
software modules (Tahvili et al., 2018b). In this regard, the structure of
the Train Control Management System (TCMS) which is the testing plat-
form at BT is analyzed by us. Fig. 5 shows a part of the TCMS platform,
where the traceability graph between software modules, requirements,
and test cases is visible.

As we can be seen in Fig. 5 two test cases are functionally dependent
on each other if the output internal signal from the corresponding
software module enters as an input internal signal to another corre-
sponding software module. Indeed, if there exists any shared internal
signal between two software modules (transmitting and receiving the
same internal signal), then these two modules are depending on each
other. Thereby, there is a dependency between all requirements and
test cases that are assigned to test those software modules. For instance,
TC7 is functionally dependent on TC2 because an internal signal from
Module3 enters to Module5. The proposed approach in Tahvili et al.
(2018b) was applied on both projects 𝐴 and 𝐵, and the results are
utilized in this paper as the ground truth, where we know the depen-
dencies between test cases. Since the provided information in Fig. 5 is
not available for all testing projects, we need to employ other method-
ologies for detecting the dependencies between test cases. However, the
test cases are usually available and detecting the dependencies through
analyzing them might be applicable in different industries.

As highlighted earlier, the presented results in Tahvili et al. (2018b)
(Fig. 5 in the current study) are utilized here as the ground truth for
labeling the vectors provided by Doc2Vec. In the example presented in

Fig. 5 we have a dataset of test cases and we want our model to identify



S. Tahvili, L. Hatvani, E. Ramentol et al. Engineering Applications of Artificial Intelligence 95 (2020) 103878

o
t
k

2
l

s
p
s
a
a
c
K
J
a
l
i
h
w
e
r

m
s
e
(

e

6

o
d
p

d
p
t
a
t
a
I
M
g
i

a
a
o
s
w
t

e
I
f

Fig. 6. Partial dependency graph for the requirements and test cases for the project
𝐴 (the ground truth). The blue squares represent requirements and the red circles
represent test cases. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

dependent test cases. Since we only have two classes, we need to use
a binary classifier. In other words, we need to decide whether if a test
case is dependent (class 1) or not dependent (class 0) from any of the
other test cases. For instance, in the above-mentioned example, TC7 is
labeled as a dependent (class 1).

In the upcoming section, the feasibility of the proposed methodol-
gy is evaluated by comparing the obtained results in this study with
he ground truth. From the ground truth (also presented in Table 3) we
now that our dataset in Project A has 1748 instances, from which 1420

are independent (majority class) and only 328 are dependent (minority
class). As we explained before, this means that the datset suffers from a
class imbalance problem, with an imbalance ratio of 4.3 using Eq. (1).
Indeed, there are more than four independent test cases for each de-
pendent test case (Tahvili et al., 2019). Using the signal information in
Fig. 5 helped us to visualize the dependency relationships between test
cases (via requirements), which has been partially mirrored in Fig. 6.
This figure highlights that detecting the dependencies between test
cases (red nodes) is very challenging, therefore applying an automated
approach can help testers and test managers to rank test cases for
execution in a more efficient way.

6. Experimental evaluation

In this section we evaluate the performance of our methodology
using two projects from Bombardier Transportation, Sweden. The eval-
uation is performed in two parts: the first part will contain an overall
evaluation of the proposed methodology through applying a semi-
supervised classification method (Isaac et al., 2015). In the second part
we evaluate the proposed methodology using unseen data.

6.1. Experimental setup

The test cases were obtained as a set of Microsoft Excel documents
from which we removed formatting and extraneous information. First
we extract only the initial state and test steps (actions and reactions,
as shown in Table 1) as pure text. These are then tokenized by con-

verting all letters to lowercase and replacing any punctuation other

8

than (),.!?\’ with spaces. For the example, for the test case in
Table 1, this produces output presented in Table 2. To associate feature
vectors with documents, we used Doc2Vec (Mikolov et al., 2013; Ilenic,
2017) method, which trains neural networks using the content of the
document and extracts the values from a layer of neurons as feature
vectors. We generated 128 real-value features for each document over
100 training epochs. Increasing the number of features or training
epochs, in our case, did not yield more accurate results.

The rest of the parameters were as follows: the batch was set to 32,
noise words were used to sample from the noise distribution, and the

earning rate was set to 0.001.
In this experiment we use 5-fold cross validation, applying a semi-

upervised classification method. The semi-supervised classification ap-
lies to problems where the number of labeled examples (the training
ample) is less than the unlabeled examples (the test sample). We
ttempted to show that although only 20% of the ground truth is
vailable, it is still possible to classify the remaining test cases. To
lassify the feature vectors and consequently the test cases, we used
EEL3 (Triguero et al., 2017). KEEL is a software tool developed in
ava4 that provides the implementation of the most relevant state of the
rt data mining algorithms. This tool has a module called ‘‘Imbalanced
earning’’. All the algorithms used in our comparative analysis are
mplemented in this module. The data partitions used in our study
ave been made using the KEEL module ‘‘Data Management’’. In this
ay we guarantee a uniform distribution of examples by classes for
ach partition (Triguero et al., 2017). Any interested reader can easily
eproduce our proposal.

The original data distribution in project 𝐴 is: 328 examples in the
inority class and 1420 examples in the majority. When the data is

plit for the cross validation, we get the following data distribution: 65
xamples in the minority class and 384 examples in the majority class
with an imbalance ratio of 4.3).

We also provide all experimental setup, data description and param-
ters and lastly, we present and discuss the obtained results.

.2. Parameters

For our experimental study we select ten (from the 4 main groups
f solutions) of the most representative algorithms for imbalanced
omain. All the selected algorithms have shown good performance in
revious studies.

As we mentioned before our experiments can be perfectly repro-
ucible by any interested reader. In this regard, Table 4 presents the
arameters which have been used in this study. For each method,
he parameters shown in Table 4 are the ones recommended by the
uthors, and thus the ones used in our experimental study. Regarding
o IFROWANN classifier, the authors propose 18 configurations of the
lgorithm as a result of combining 3 t-norms and 6 weighting strategies.
n this study we use an average fuzzy relation, as the authors suggest.
oreover, we apply three weighted strategies, namely 𝑤1, 𝑤2 and 𝑤3,

iven that those are the ones recommended by the authors when the
mbalance ratio is low.

Usually the companies have several projects with the same char-
cteristics, especially in regard to the distribution between dependent
nd independent test cases. Due to the fact that we know the labels
f all test cases in this specific case, we proceed to the experimental
tudy using cross validation. We use a 5-fold cross validation, and as
e mentioned before, only 20% of the data is trained which is then

ested on the remaining 80%.
Table 5 shows the results of the 3 IFROWANN configurations for

ach of the 5 partitions as well as the average. As we can see, the best
FROWANN configuration is obtained for 𝑎𝑣 − 𝑤1, which will be used
or the performance comparison with other algorithms. Moreover, the

3 Knowledge and Extraction based on Evolutionary Learning.
4 Available at: https://sci2s.ugr.es/keel/index.php.

https://sci2s.ugr.es/keel/index.php


S. Tahvili, L. Hatvani, E. Ramentol et al. Engineering Applications of Artificial Intelligence 95 (2020) 103878

b
s
p

b
o
a
n
t
c
r

Table 4
Parameters recommended by the state of the art methods.

Method Parameters and values

SMOTE
Number of Neighbors = 5, Type of SMOTE = both,
Balancing = Yes, Quantity of generated examples = 1
Distance Function = HVDM, Type of Interpolation = standard

S-ENN

Number of Neighbors ENN = 3, Number of Neighbors SMOTE = 5
Type of SMOTE = both, Balancing = Yes
Quantity of generated examples = 1, Distance Function (SMOTE) = HVDM
Distance Function (ENN) = Euclidean

S-BL1

Number of Neighbors for SMOTE = 5
Number of Neighbors for considering a instance BORDER = 3
Type of Borderline SMOTE = 1, Type of SMOTE = Both
Balancing = Yes, Quantity of generated examples = 1
Distance Function = HVDM, Type of Interpolation = standard
Alpha = 0.5, Mu = 0.5

S-BL2

Number of Neighbors for SMOTE = 5
Number of Neighbors for considering a instance BORDER = 3
Type of Borderline SMOTE = 2, Type of SMOTE = Both
Balancing = Yes, Quantity of generated examples = 1
Distance Function = HVDM, Type of Interpolation = standard
Alpha = 0.5, Mu = 0.5

Safelevel

Number of Neighbors for SMOTE = 5, Type of SMOTE = Both
Balancing = Yes, Quantity of generated examples = 1
Distance Function = HVDM, Type of Interpolation = standard
Alpha = 0.5, Mu = 0.5

SPIDER Number of Neighbors = 3, Distance Function = HVDM,
Preprocessing Option = WEAK

C4.5 pruned = TRUE, confidence = 0.25, instancesPerLeaf = 2

CS-C4.5 pruned = TRUE, confidence = 0.25, instancesPerLeaf = 2
minimumExpectedCost = TRUE

CS-SVM Kernel Type = polynomial, C = 100.0, eps = 0.001

EUSBOOST

pruned = TRUE, confidence = 0.25, instancesPerLeaf = 2
Number of Classifiers = 10, Algorithm = ERUSBOOST
Train Method = NORESAMPLING, Quantity of balancing SMOTE = 50
IS Method = HammingEUB_M_GM

IFROWANN Weighting strategy = 𝑤1, 𝑤2, 𝑤3

Fuzzy Relation = average
a
c
s
m
i
b

s
p
o
M
t
t
A
m
u

6

i

Table 5
AUC results of the three IFROWANN configurations.

worst result is obtained with 𝑎𝑣−𝑤3. From this experimental study we
can conclude that despite the fact that 𝑎𝑣−𝑤3 is highly recommended
y IFROWANN authors for low imbalance problems, when the training
et is much smaller than the test set , 𝑎𝑣−𝑤3 does not have the better
erformance.

As we explained before, standard classification methods tend to be
iased by the class most represented. This is due to the optimization
f global metrics, such as error or accuracy, which do not take into
ccount the distribution of the instances by classes. As a result of this,
otably precision is achieved in the class that is represented most, while
he instances concerning the lesser represented class tend to be poorly
lassified. In all the utilized methods, we use the parameters which are
ecommended by the authors.
 p

9

In imbalanced learning the area under the Receiver Operating Char-
cteristic (ROC) curve, known as AUC (area under curve) is a very
ommon metric for showing the diagnostic ability of a binary clas-
ifier. Indeed, the ROC curve plots the rate of correctly classified
inority instances against the rate of incorrectly classified majority

nstances (Huang and Ling, 2005) and the AUC represents the trade-off
etween them (Fawcett, 2006).

Table 6 represents the AUC values of the selected approaches from
tate of the art algorithms using the presented data in Table 3 from
roject 𝐴 at BT. As highlighted in Table 6, IFROWANN shows an
utstanding result (AUC = 0.83) compared to all other approaches.
oreover, CS-SVM has the highest AUC among the selected classifica-

ion methods. In conclusion, the presented results in Table 6 can help us
o put the rest of the classification methods into the same level (50 ≤
UC ≤ 60). In the next subsection, the performance of all presented
ethods in Table 6 is studied on another testing project at BT, used as
nseen data.

.3. Model evaluation using unseen data

In order to assess the generalizability of the proposed methodology
n this study, the data of another testing project at Bombardier trans-
ortation is collected as unseen data. In fact, the ability to perform well



S. Tahvili, L. Hatvani, E. Ramentol et al. Engineering Applications of Artificial Intelligence 95 (2020) 103878
Table 6
AUC results for the state of the art classification methods.
Fig. 7. Partial dependency graph for the requirements and test cases for project 𝐵. The
blue nodes represent requirements and the red nodes test cases. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)

on unseen data can provide some clues for the model generalization,
which is the desirable characteristic of any demanded model (Wohlin
et al., 2000).

To obtain this target, all designed requirements and test cases for
project 𝐵 are utilized. The size of the captured data for the project 𝐵 is
already presented in Table 3. The dependencies between requirements
and thereby test cases for the project 𝐵 are detected through using
our tool sOrTES.5 Fig. 7 shows the dependency between requirements
(blue nodes) and thereby test cases (red nodes) for the project 𝐵. In
other words, the ground truth for the dependencies between test cases
exists for the performance evaluation of the proposed methodology. It
should be kept in consideration that the testing team which works on
the project 𝐵 is completely different from the project 𝐴. Thus, there is
no common test case between these two projects. Moreover, the way
that the testers wrote the test cases is slightly different. Nonetheless all
test cases are designed to test trains, which means that both have the
same number of sub-level function groups (SLFG). The number of test
cases as well as the ratio of dependent and independent test cases are
completely different (see Table 3).

5 Stochastic Optimizing TEstcase Scheduling, see Tahvili et al. (2019).
10
In order to evaluate the proposed dependency detection method-
ology on a set of unseen data (project 𝐵), the following steps are
conducted:

1. A number of 3401 requirement specifications and 202 test speci-
fications are extracted from the DOORS database.

2. The ground truth for the dependency between requirements and
thereby test cases is detected via using sOrTES (Tahvili et al.,
2019).

3. All test case specifications are inserted to the Doc2Vec.
4. The provided vectors by Doc2Vec are used as an input to the

imbalanced classification method in order to train the algorithm.
5. The test cases from project 𝐴 are used as a target for dependency

detection using the imbalanced classification method.
6. The provided dependent and independent classes by imbalance

learning are then compared with the ground truth for the project
𝐴.

7. The steps 4 to 6 are repeated for the various imbalanced clas-
sification algorithms and then the results are compared (see
Table 7).

The AUC values using unseen data are summarized in Table 7,
which indicates that IFROWANN performance on unseen data is good
(AUC = 0.76) and is still superior than all other methods. Thus, the
proposed methodology is likely to accommodate other projects within
the same domain. From this experimental study we infer that when
the training set is sufficiently large — implying that the domain of the
variables are well covered 𝑎𝑣 − 𝑤1 and 𝑎𝑣 − 𝑤3 show the best results.
Nevertheless, 𝑎𝑣 − 𝑤1 proved to be the most stable configuration in
both experiments. Furthermore, 𝑎𝑣−𝑤2 presents the highest difference
in performance. This is due to the definition of the weighting vectors,
since for 𝑎𝑣−𝑤2 the weight values of the majority class decrease more
rapidly than in the other configurations.6

Additionally, Fig. 8 represents the harmonic relationship between
the false positive and true positive rates using the proposed method-
ology in this study. Each point represents the rates of false positive
and true positive for a specific threshold. The closer the curve is to the
top-left corner, the better the algorithm’s performance. Indeed, Fig. 8
shows the probability of dividing test cases into two classes, dependent
and independent test cases, using unseen data.

6.4. Threats to validity

Finally, we discuss the validity threats, the research limitations and
challenges in conducting the present study.

• Construct validity addresses if the study measures what we
intend it to measure (Robson and McCartan, 2011). The major

6 More details can be found in the original paper (Ramentol et al., 2015).



S. Tahvili, L. Hatvani, E. Ramentol et al. Engineering Applications of Artificial Intelligence 95 (2020) 103878

w
o
p

w

Table 7
AUC results of the state of the art classification methods, where
the model is trained on the project 𝐵 and tested on the project
𝐴.

Fig. 8. ROC curve analysis for classifying test cases into dependent and independent.

construct validity threat in the present study is the way that the
vectors are obtained from the Doc2Vec tool. Writing test cases
in a more formal way might directly affect the performance of
Doc2Vec. Since test cases are written by the testers some param-
eters such as language skill, domain knowledge and experience
influence the quality of the test cases. This issue is even obvious
in the presented results. Our analysis indicates that the test cases
from project 𝐴 are created with higher quality when compared to
project 𝐵.

• Internal validity addresses the conclusions of the study (Runeson
and Höst, 2008). In order to reduce the threats to internal validity,
a diverse number of state of the art algorithms are applied and the
obtained results are compared.

• External validity refers to the generalization of the findings
(Wohlin et al., 2000). The proposed methodology in this study
has been applied to only two industrial testing projects in the
railway domain, however, it should be applicable to other similar
contexts in other testing domains. Since the classification steps are
designed for solving imbalanced datasets, the proposed method-
ology can also be applied for solving other imbalanced problems
11
as well. Moreover, the context information has been provided in
Section 6 to enable comparison with other proposed approaches
in the testing domain.

• Conclusion validity addresses the factors which can affect the
observations and may lead to an inaccurate conclusion (Cozby
and Rawn, 2012). Utilizing the human’s judgment, decision and
supervision might decrease this threat. Since the proposed
methodology in this study is designed and developed for an
industrial usage at Bombardier, a close collaboration and dialogue
with the subject mater experts (SME) is established in order to
ensure the industry’s requisite and needs. Moreover, the detected
results (independent and dependent test cases) are presented in a
few project meetings at BT.

• Reliability addresses the repeatability and consistency of the
study (Runeson and Höst, 2008). The text analysis step of this
study is very sensitive and relies on the way that test cases are
designed, which is usually a common problem faced by many
researchers in the area of natural language processing. In con-
sultation with the SMEs at BT, a set of wrongly spelled words
were found in the test case specifications. Thus, the data in the
DOORS database sometimes contains ambiguity, uncertainty and
spelling issues, which have a direct impact on the performance
of the Doc2Vec tool. Doc2Vec searches for semantic similarity for
providing the vectors. In the case that no semantic similarity is
found between two test cases, they will end up as independent
test cases later on. This issue can directly impact the accuracy of
the proposed solution. In addition, most of the language parsing
techniques have some performance issues when a large set of data
needs to be processed. There are demerits in the available tools
for natural language processing.

7. Concluding remarks

In this paper, we present a novel methodology for splitting man-
ual test cases into dependent and independent classes. The proposed
methodology uses neural networks model for natural language process-
ing and imbalanced learning for the classification task. Our proposal
has been validated in two real industrial case studies in Bombardier
Transportation, Sweden.

We make the following contributions.

I. From a machine learning point of view:

• A novel two-steps methodology is proposed.
• Doc2Vec proves to be a good tool when transforming the

manual test cases into feature vectors.
• IFROWANN performs well when splitting dependent and

independent test cases as an imbalance learning algorithm.

II. From a software testing point of view:

• It is possible to classify, with an acceptable accuracy, the
test cases of a project as dependent or not from only
knowing 20% of the ground truth.

• By having the ground truth of a previous project, it is
possible to classify all the test cases of an unseen project
with a high accuracy.

• The membership degree to the minority class provided
by IFROWANN (called 𝑃𝑒𝑟𝑡𝑚𝑖𝑛) can be used to define an
execution order.

We highlight that the proposed methodology is not limited to soft-
are testing. It can be applied in other types of problems where a set
f text documents should be split into two main classes with a high
robability of class imbalance data such as use Liu et al. (2009).

The main future direction of this study is tool making. Previously,
e designed, implemented and developed two tools: ESPRET7 (Tahvili

7 EStimation and PRediction of Execution Time.



S. Tahvili, L. Hatvani, E. Ramentol et al. Engineering Applications of Artificial Intelligence 95 (2020) 103878
et al., 2018a) and sOrTES (Tahvili et al., 2019) for execution time pre-
diction and test scheduling, respectively. Both tools are utilized at BT
today, which in turn help us to modify our tools. Having an automated
tool for dependency detection is demanded by our industrial partner
and can be used for different purposes such as test automation, test
selection and prioritization. Furthermore, the dependencies between
each and every test case need to be detected as well. Hitherto, all test
cases are divided into two main classes. The independent test cases can
be executed without order or parallel with other test cases, but the
execution order of the dependent class of test cases needs to be detected
in the future.

Another future direction of this work is to reduce the training set
even more (e.g. 15% or 10% instead of 20%) and also applying different
architecture in the word embeddings such as the proposed adaptation
of the Skip-gram model by Ye et al. (2016). Moreover, other text mining
algorithms such as string-matching, token-based, edit-based algorithms
(e.g. Levenshtein distance that previously employed for similarity de-
tection between test cases Landin et al., 2020) can be considered as a
replacement for the text analysis step of this work.

The goal is to minimize the human efforts and judgment for data
labeling. Furthermore, in the limit we have planned to apply some
unsupervised learning approaches such as clustering. However, the fea-
sibility of the proposed methodology needs to be analyzed on different
industrial testing projects.

CRediT authorship contribution statement

Sahar Tahvili: Conceptualization, Methodology, Contact with the
industrial partner, Data collection. Leo Hatvani: Conceptualization,
Methodology, Implementation (text analysis), Visualization. Enislay
Ramentol: Conceptualization, Methodology, Implementation (classifi-
cation). Rita Pimentel: Conceptualization, Methodology. Wasif Afzal:
State of the art. Francisco Herrera: Supervision.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This work was supported by VINNOVA through TESTOMAT project,
the European Union’s Horizon 2020 research and innovation program
under grant agreement No 871319 and ERCIM ‘‘Alain Bensoussan’’
Fellowship Programme. The authors are thankful to Dr. Ola Sellin at
Bombardier Transportation AB in Västerås, Sweden for his valuable
comments and suggestions. Francisco Herrera would like to thank the
Spanish Government for its funding support (SMART-DaSCI project,
TIN2017-89517-P).

References

Alégroth, E., Feldt, R., Kolström, P., 2016. Maintenance of automated test suites in
industry: An empirical study on visual GUI testing. Inf. Softw. Technol. 73, 66–80.

Arafeen, M.J., Do, H., 2013. Test case prioritization using requirements-based cluster-
ing. In: Proceedings of the 2013 IEEE Sixth International Conference on Software
Testing, Verification and Validation. IEEE Computer Society, USA.

Arlt, S., Morciniec, T., Podelski, A., Wagner, S., 2015. If A fails, can B still succeed?
inferring dependencies between test results in automotive system testing. In: 2015
IEEE 8th International Conference on Software Testing, Verification and Validation,
ICST, pp. 1–10.

Bates, S., Horwitz, S., 1993. Incremental program testing using program depen-
dence graphs. In: Proceedings of the 20th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages. POPL’93, ACM.

Batista, G., Prati, R., Monard, M., 2004. A study of the behaviour of several methods
for balancing machine learning training data. SIGKDD Explor. 6 (1), 20–29.

Bi, J., Zhang, C., 2018. An empirical comparison on state-of-the-art multi-class
imbalance learning algorithms and a new diversified ensemble learning scheme.
Knowl.-Based Syst. 158, 81–93.
12
Buda, M., Maki, A., Mazurowski, M., 2018. A systematic study of the class imbalance
problem in convolutional neural networks. Neural Netw. 106, 249–259.

Bunkhumpornpat, C., Sinapiromsaran, K., Lursinsap, C., 2009. Safe-Level-SMOTE: Safe-
level-synthetic minority over-sampling technique for handling the class imbalanced
problem. In: Pacific-Asia Conference on Knowledge Discovery and Data Mining,
Vol. 3644, pp. 475–482.

Chawla, N., Bowyer, K., Hall, L., Kegelmeyer, W., 2002. SMOTE: Synthetic minority
over-sampling technique. J. Artif. Intell. Res. 16, 321–357.

Chechik, M., Salay, R., Viger, T., Kokaly, S., Rahimi, M., 2019. Software assurance in an
uncertain world. In: Hähnle, R., van der Aalst, W. (Eds.), Fundamental Approaches
to Software Engineering. Springer International Publishing, pp. 3–21.

Chen, I., Bastani, F., Tsao, T., 1995. On the reliability of AI planning software in
real-time applications. IEEE Trans. Knowl. Data Eng. 7 (1), 4–13.

Chen, T., Thomas, S., Hassan, A., 2015. A survey on the use of topic models when
mining software repositories. Empir. Softw. Eng. 21 (5), 1843–1919.

Chen, T., Thomas, S.W., Hemmati, H., Nagappan, M., Hassan, A.E., 2017. An empirical
study on the effect of testing on code quality using topic models: A Case study on
software development systems. IEEE Trans. Reliab. 66 (3), 806–824.

Cieslak, D.A., Hoens, T.R., Chawla, N.V., Kegelmeyer, W.P., 2012. Hellinger distance
decision trees are robust and skew-insensitive. Data Min. Knowl. Discov. 24
(136–158).

Cozby, P., Rawn, C., 2012. Methods in Behavioural Research. McGraw-Hill Ryerson.
Elbaum, S., Malishevsky, A.G., Rothermel, G., 2002. Test case prioritization: a family

of empirical studies. IEEE Trans. Softw. Eng. 28 (2), 159–182.
Fawcett, T., 2006. An introduction to ROC analysis. Pattern Recognit. Lett. 27, 861–874.
Fazzini, M., Prammer, M., d’Amorim, M., Orso, A., 2018. Automatically translating bug

reports into test Cases for mobile apps. In: Proceedings of the 27th ACM SIGSOFT
International Symposium on Software Testing and Analysis. ISSTA 2018, ACM, pp.
141–152.

Fernández, A., García, S., Galar, M., Prati, R., Krawczyk, B., Herrera, F., 2018. Learning
from Imbalanced Data Sets. Springer.

Galar, M., Fernández, A., Barrenechea, E., Bustince, H., Herrera, F., 2012. A review on
ensembles for the class imbalance problem: Bagging-, boosting-, and hybrid-based
approaches. IEEE Trans. Syst. Man Cybern. C 42 (4), 463–484.

Galar, M., Fernández, A., Barrenechea, E., Herrera, F., 2013. EUSboost: Enhancing
ensembles for highly imbalanced data-sets by evolutionary undersampling. Pattern
Recognit. 46, 3460–3471.

Gao, X., Chen, Z., Tang, S., Zhang, Y., Li, J., 2016. Adaptive weighted imbalance
learning with application to abnormal activity recognition. Neurocomputing 173,
1927–1935.

Goffi, A., Gorla, A., Ernst, M.D., Pezzè, M., 2016. Automatic generation of oracles
for exceptional behaviors. In: Proceedings of the 25th International Symposium on
Software Testing and Analysis. ISSTA 2016, ACM, pp. 213–224.

Haidry, S., Miller, T., 2013. Using dependency structures for prioritization of functional
test suites. IEEE Trans. Softw. Eng. 39 (2), 258–275.

Han, H., Wang, W., Mao, B., 2005. Borderline-SMOTE: A New Over-Sampling Method
in Imbalanced Data Sets Learning. Springer-Verlag, pp. 878–887.

Huang, Y., Hung, C., Jiau, H., 2006. Evaluation of neural networks and data mining
methods on a credit assessment task for class imbalance problem. Nonlinear Anal.
RWA 7 (4), 720–747.

Huang, J., Ling, C., 2005. Using AUC and accuracy in evaluating learning algorithms.
IEEE Trans. Knowl. Data Eng. 17 (3), 299–310.

Ilenic, N., 2017. A PyTorch implementation of Paragraph Vectors (doc2vec). GitHub
repository, GitHub, https://github.com/inejc/paragraph-vectors.

Isaac, T., Salvador, G., Francisco, H., 2015. Self-labeled techniques for semi-supervised
learning: taxonomy, software and empirical study. Knowl. Inf. Syst. 42, 245–284.

Islam, M., Marchetto, A., Susi, A., Scanniello, G., 2012. A multi-objective technique
to prioritize test Cases based on latent semantic indexing. In: Proceedings of the
2012 16th European Conference on Software Maintenance and Reengineering. IEEE
Computer Society, USA.

Jensen, R., Cornelis, C., 2011. Fuzzy rough nearest neighbour classification and
prediction. Theoret. Comput. Sci. 412 (42), 5871–5884.

Joulin, A., Grave, E., Bojanowski, P., Douze, M., Jégou, H., Mikolov, T., 2016.
FastText.zip: Compressing text classification models.

Khan, S., Bennamoun, M., Sohel, F., Togneri, R., 2018. Cost-sensitive learning of deep
feature representations from imbalanced data. IEEE Trans. Neural Netw. Learn.
Syst. 29 (8), 3573–3587.

Khreich, W., Granger, E., Miri, A., Sabourin, R., 2010. Iterative boolean combination
of classifiers in the ROC space: An application to anomaly detection with HMMs.
Pattern Recognit. 43, 2732–2752.

Kotsiantis, S., Kanellopoulos, D., Pintelas, P., 2006. Data preprocessing for supervised
learning. Int. J. Comput. Sci. 1, 111–117.

Kubat, M., Holte, R., Matwin, S., 1998. Machine learning for the oil spills in satellite
radar images. Mach. Learn. 30, 195–215.

Landin, C., Tahvili, S., Haggren, H., Längkvist, M., Muhammad, A., Loutfi, A.,
2020. Cluster-based parallel testing using semantic analysis. In: The Second IEEE
International Conference on Artificial Intelligence Testing.

Le, Q., Mikolov, T., 2014. Distributed representations of sentences and documents. In:
Proceedings of the 31st International Conference on International Conference on
Machine Learning - Vol. 32. ICML’14, JMLR, pp. II–1188–II–1196.

http://refhub.elsevier.com/S0952-1976(20)30224-4/sb1
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb1
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb1
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb2
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb2
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb2
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb2
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb2
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb4
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb4
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb4
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb4
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb4
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb5
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb5
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb5
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb6
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb6
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb6
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb6
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb6
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb7
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb7
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb7
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb9
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb9
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb9
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb10
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb10
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb10
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb10
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb10
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb11
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb11
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb11
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb12
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb12
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb12
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb13
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb13
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb13
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb13
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb13
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb14
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb14
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb14
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb14
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb14
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb15
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb16
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb16
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb16
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb17
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb18
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb18
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb18
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb18
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb18
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb18
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb18
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb19
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb19
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb19
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb20
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb20
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb20
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb20
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb20
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb21
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb21
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb21
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb21
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb21
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb22
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb22
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb22
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb22
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb22
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb23
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb23
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb23
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb23
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb23
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb24
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb24
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb24
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb25
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb25
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb25
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb26
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb26
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb26
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb26
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb26
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb27
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb27
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb27
https://github.com/inejc/paragraph-vectors
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb29
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb29
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb29
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb30
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb30
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb30
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb30
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb30
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb30
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb30
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb31
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb31
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb31
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb32
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb32
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb32
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb33
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb33
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb33
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb33
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb33
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb34
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb34
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb34
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb34
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb34
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb35
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb35
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb35
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb36
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb36
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb36
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb38
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb38
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb38
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb38
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb38


S. Tahvili, L. Hatvani, E. Ramentol et al. Engineering Applications of Artificial Intelligence 95 (2020) 103878

R

R

R

R

R

R

S

T

T

Leon, D., Podgurski, A., 2003. A comparison of coverage-based and distribution-based
techniques for filtering and prioritizing test cases. In: 14th International Symposium
on Software Reliability Engineering.

Lin, J., Wang, F., Chu, P., 2017. Using semantic similarity in crawling-based web
application testing. In: 2017 IEEE International Conference on Software Testing,
Verification and Validation, ICST.

Liu, Y., Loh, H., Sun, A., 2009. Imbalanced text classification: A term weighting
approach. Expert Syst. Appl. 36 (1), 690–701.

Lopez, V., Fernandez, A., Garcia, S., Palade, V., Herrera, F., 2013. An insight into
classification with imbalanced data: Empirical results and current trends on using
data intrinsic characteristics. Inform. Sci. 250, 113–141.

Majumder, N., Poria, S., Gelbukh, A., Cambria, E., 2017. Deep learning-based document
modeling for personality detection from text. IEEE Intell. Syst. 32 (2), 74–79.

Maslova, N., Potapov, V., 2017. Neural network doc2vec in automated sentiment
analysis for short informal texts. In: Karpov, A., Potapova, R., Mporas, I. (Eds.),
Speech and Computer. Springer International Publishing, Cham, pp. 546–554.

Mazurowskia, M., Habasa, P.A., Zuradaa, J., Lob, J., Bakerb, J., Tourassib, G., 2008.
Training neural network classifiers for medical decision making: The effects of
imbalanced datasets on classification performance. Neural Netw. 21, 427–436.

Mikolov, T., Chen, K., Corrado, G., Dean, J., 2013. Efficient estimation of word
representations in vector space, CoRR. pp. 1–12.

Nakagawa, H., Tsuchiya, T., 2015. Towards automatic constraints elicitation in pair-
wise testing based on a linguistic approach: elicitation support using coupling
strength. In: 2015 IEEE/ACM 2nd International Workshop on Requirements
Engineering and Testing.

Nardo, D., Alshahwan, N., Briand, L., Labiche, Y., 2015. Coverage-based regression
test Case selection, minimization and prioritization: A Case study on an industrial
system. Softw. Test. Verif. Reliab. 25 (4), 371–396.

Parsa, M., Ashraf, A., Truscan, D., Porres, I., 2016. On optimization of test paral-
lelization with constraint. In: 1st Workshop on Continuous Software Engineering
Co-Located with Software Engineering, pp. 164–171.

Preeti, S., Milind, B., Narayan, M.S., Rangarajan, K., 2017. Building combinatorial test
input model from use case artefacts. In: 2017 IEEE International Conference on
Software Testing, Verification and Validation Workshops, ICSTW.

Ramentol, E., Caballero, Y., Bello, R., Herrera, F., 2012. SMOTE-RSB∗: a hybrid prepro-
cessing approach based on oversampling and undersampling for high imbalanced
data-sets using SMOTE and rough sets theory. Int. J. Knowl. Inf. Syst. 33, 245–265.

amentol, E., Vluymans, S., Verbiest, N., Caballero, Y., Bello, R., Cornelis, C., Her-
rera, F., 2015. IFROWANN: Imbalanced fuzzy-rough ordered weighted average
nearest neighbor classification. IEEE Trans. Fuzzy Syst. 23 (5), 1622–1637.

ehurek, R., Sojka, P., 2010. Software framework for topic modelling with large
corpora. In: Proceedings of the LREC 2010 Workshop on New Challenges for NLP
Frameworks. ELRA, pp. 45–50.

ekabsaz, N., Lupu, M., Hanbury, A., 2017. Exploration of a threshold for similarity
based on uncertainty in word embedding. In: Jose, J.M., Hauff, C., Altıngovde, I.S.,
Song, D., Albakour, D., Watt, S., Tait, J. (Eds.), Advances in Information Retrieval.
Springer International Publishing, Cham, pp. 396–409.

obson, C., McCartan, K., 2011. Real World Research : A Resource for Users of Social
Research Methods in Applied Settings, third ed. Wiley-Blackwell, Chichester, West
Sussex ; Hoboken, N.J.

uneson, P., Höst, M., 2008. Guidelines for conducting and reporting case study
research in software engineering. Empir. Softw. Eng. 14 (2), 131.

yser, J., Glinz, M., 2000. Using dependency charts to improve scenario-based testing -
Management of inter-scenario relationships: Depicting and managing dependencies
between scenarios. In: Proceedings of the 17th International Conference on Testing
Computer Software, TCS’00.

tefanowski, J., Wilk, S., 2008. Selective pre-processing of imbalanced data for
improving classification performance. In: Proceedings of the 10th International
Conference on Data Warehousing and Knowledge Discovery, DaWaK08, Turin, pp.
283–292.

ahvili, S., Afzal, W., Saadatmand, M., Bohlin, M., Ameerjan, S.H., 2018a. ESPRET: A
tool for execution time estimation of manual test Cases. J. Syst. Softw. 135, 1–43.

ahvili, S., Ahlberg, M., Fornander, E., Afzal, W., Saadatmand, M., Bohlin, M.,
Sarabi, M., 2018b. Functional dependency detection for integration test cases. In:
2018 IEEE International Conference on Software Quality, Reliability and Security
Companion, QRS-C, pp. 207–214.
13
Tahvili, S., Bohlin, M., Saadatmand, M., Larsson, S., Afzal, W., Sundmark, D., 2016a.
Cost-benefit analysis of using dependency knowledge at integration testing. In:
Product-Focused Software Process Improvement. Springer International Publishing,
pp. 268–284.

Tahvili, S., Hatvani, L., Felderer, M., Afzal, W., Bohlin, M., 2019. Automated functional
dependency detection between test cases using doc2vec and clustering. In: 2019
IEEE International Conference on Artificial Intelligence Testing, AITest, pp. 19–26.

Tahvili, S., Hatvani, L., Felderer, M., Afzal, W., Saadatmand, M., Bohlin, M., 2018c.
Cluster-based test scheduling strategies using semantic relationships between test
specifications. In: Proceedings of the 5th International Workshop on Requirements
Engineering and Testing. RET ’18, ACM, pp. 1–4.

Tahvili, S., Pimentel, R., Afzal, W., Ahlberg, M., Fornander, E., Bohlin, M., 2019.
SOrTES: A supportive tool for stochastic scheduling of manual integration test
Cases. IEEE Access 1–19.

Tahvili, S., Saadatmand, M., Larsson, S., Afzal, W., Bohlin, M., Sundmark, D., 2016b.
Dynamic integration test selection based on test case dependencies. In: 2016 IEEE
Ninth International Conference on Software Testing, Verification and Validation
Workshops, ICSTW, pp. 277–286.

Thomas, S., Hemmati, H., Hassan, A., Blostein, D., 2014a. Static test Case prioritization
using topic models. Empir. Softw. Eng. 19 (1), 182–212.

Thomas, S., Hemmati, H., Hassan, A., Blostein, D., 2014b. Static test Case prioritization
using topic models. Empir. Softw. Eng. 19 (1), 182–212.

Ting, K., 2002. An instance-weighting method to induce cost-sensitive trees. IEEE Trans.
Knowl. Data Eng. 14 (3), 659–665.

Triguero, I., González, S., Moyano, J.M., García, S., Alcalá-Fdez, J., Luengo, J.,
Fernández, A., del Jesús, M.J., Sánchez, L., Herrera, F., 2017. KEEL 3.0: An open
source software for multi-stage analysis in data mining. Int. J. Comput. Intell. Syst.
10 (1), 1238–1249.

Unterkalmsteiner, M., Gorschek, T., Feldt, R., Lavesson, N., 2016. Large-scale infor-
mation retrieval in software engineering - an experience report from industrial
application. Empir. Softw. Eng. 21 (6), 2324–2365.

Vapnik, V., 2013. The Nature of Statistical Learning Theory. Springer.
Witt, N., Seifert, C., 2017. Understanding the influence of hyperparameters on text

embeddings for text classification tasks. In: Kamps, J., Tsakonas, G., Manolopou-
los, Y., Iliadis, L., Karydis, I. (Eds.), Research and Advanced Technology for Digital
Libraries. Springer International Publishing, Cham, pp. 193–204.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M., Regnell, B., Wesslén, A., 2000.
Experimentation in Software Engineering: An Introduction. Kluwer Academic
Publishers.

Ye, X., Shen, H., Ma, X., Bunescu, R., Liu, C., 2016. From word embeddings to
document similarities for improved information retrieval in software engineering.
In: 2016 IEEE/ACM 38th International Conference on Software Engineering, ICSE,
pp. 404–415.

Yoo, S., Harman, M., 2007. Pareto efficient multi-objective test Case selection. In:
Proceedings of the 2007 International Symposium on Software Testing and Analysis.
ISSTA ’07, ACM, pp. 140–150.

Yoo, S., Harman, M., Tonella, P., Susi, A., 2009. Clustering test cases to achieve effective
and scalable prioritisation incorporating expert knowledge. In: Proceedings of the
Eighteenth International Symposium on Software Testing and Analysis. Association
for Computing Machinery, New York, NY, USA.

Zadrozny, B., Langford, J., Abe, N., 2003. Cost-sensitive learning by cost-proportionate
example weighting. In: Proceedings of the 3rd IEEE International Conference on
Data Mining, ICDM 03, pp. 435–442.

Zalmanovici, M., Raz, O., Tzoref-Brill, R., 2016. Cluster-based test suite functional
analysis. In: Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering. Association for Computing Machinery,
New York, NY, USA.

Zhang, X., Zhao, J., LeCun, Y., 2015. Character-level convolutional networks for text
classification. In: Proceedings of the 28th International Conference on Neural
Information Processing Systems - Vol. 1. NIPS’15, MIT Press, Cambridge, MA, USA,
pp. 649–657.

Zhou, Z., Liu, X., 2010. On multi-class cost-sensitive learning. Comput. Intell. 26 (3),
232–257.

http://refhub.elsevier.com/S0952-1976(20)30224-4/sb41
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb41
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb41
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb42
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb42
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb42
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb42
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb42
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb43
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb43
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb43
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb44
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb44
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb44
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb44
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb44
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb45
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb45
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb45
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb45
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb45
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb46
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb46
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb46
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb48
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb48
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb48
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb48
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb48
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb51
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb51
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb51
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb51
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb51
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb52
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb52
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb52
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb52
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb52
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb53
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb53
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb53
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb53
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb53
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb54
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb54
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb54
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb54
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb54
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb54
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb54
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb55
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb55
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb55
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb55
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb55
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb56
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb56
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb56
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb59
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb59
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb59
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb61
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb61
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb61
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb61
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb61
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb61
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb61
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb63
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb63
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb63
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb63
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb63
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb63
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb63
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb64
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb64
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb64
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb64
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb64
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb66
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb66
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb66
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb67
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb67
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb67
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb68
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb68
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb68
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb69
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb69
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb69
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb69
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb69
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb69
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb69
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb70
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb70
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb70
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb70
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb70
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb71
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb72
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb72
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb72
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb72
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb72
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb72
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb72
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb73
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb73
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb73
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb73
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb73
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb75
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb75
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb75
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb75
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb75
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb76
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb76
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb76
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb76
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb76
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb76
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb76
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb78
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb78
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb78
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb78
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb78
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb78
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb78
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb79
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb79
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb79
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb79
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb79
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb79
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb79
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb80
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb80
http://refhub.elsevier.com/S0952-1976(20)30224-4/sb80

	A novel methodology to classify test cases using natural language processing and imbalanced learning
	Introduction
	Preliminaries
	Dependency detection
	On the use of natural language processing
	Neural networks in natural language processing

	On the use of imbalance learning

	Related work
	Dependency identification in software testing
	Natural language processing in software testing

	The methodology
	Industrial Case studies
	Case studies
	The ground truth

	Experimental evaluation
	Experimental setup
	Parameters
	Model evaluation using unseen data
	Threats to validity

	Concluding remarks
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References


