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Abstract

For the development of complex software systems, two paradigms have become
popular in industry: model-based development and Agile software development.
In model-based development, models are the core development artifacts, par-
ticularly in early development phases such as specification and design. The
short development cycles of Agile development, and in particular continuous
integration, are sometimes seen as conflicting with the apparent longer develop-
ment phases in model-based development. We study how software development
can benefit from combining these two paradigms successfully into continuous
model-based development.

In this licentiate thesis, we present four papers studying continuous model-
based development of complex embedded systems in industry. The first two
papers present investigations of the current state-of-the-art and state-of-practice
of combining model-based development and continuous integration. In par-
ticular, specific challenges to the combination are identified. In the third and
fourth papers, we focus on one of those challenges: model synchronization,
i.e., the management of consistency between disparate development artifacts
describing the same system or parts of it. We propose a lightweight approach
that notifies developers of arisen inconsistency between different models. Lastly,
we consider the aspect of variability among different development artifacts.
In particular, we provide automated support for alleviating manual tasks in
maintaining consistency across model variants organized in a product line.
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Sammanfattning

Två populära paradigmer för utveckling av komplexa mjukvarusystem är modell-
baserad utveckling och agil mjukvaruutveckling. I modellbaserad utveckling är
modeller kärnartiklar för mjukvaruutveckling, speciellt för att uttrycka specifika-
tion och design. De korta utvecklingscyklerna i agil utveckling, i synnerhet vid
kontinuerlig integration, ses ibland som motstridiga med de längre utvecklings-
faserna i modellbaserad utveckling. Vi fokuserar på hur mjukvaruutveckling
kan dra nytta av att de två paradigmerna framgångsrikt kan kombineras till
kontinuerlig modellbaserad utveckling.

I denna licentiatavhandling presenterar vi fyra artiklar som studerar kontin-
uerlig modellbaserad utveckling av komplexa inbyggda system inom industrin.
De två första artiklarna presenterar undersökningar av den aktuella situatio-
nen och specifika utmaningar för att kombinera modellbaserad utveckling och
kontinuerlig integration. I den tredje och fjärde artikeln fokuserar vi på en av
dessa utmaningar: modellsynkronisering, det vill säga hanteringen av konsistens
mellan olika utvecklingsartefakter som beskriver samma system. Vi föreslår en
metod som informerar utvecklare när inkonsistens mellan olika modeller intro-
duceras. Slutligen undersöker vi variabilitet mellan olika utvecklingsartefakter
och presenterar ett automatiskt stöd för att förenkla det manuella arbetet att
upprätthålla konsistens mellan modellvarianter organiserade i en produktlinje.
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Samenvatting

Voor de ontwikkeling van complexe softwaresystemen zijn twee praktijken
breed omarmd: model-gebaseerde ontwikkeling en Agile softwareontwikkeling.
In model-gebaseerde ontwikkeling staan modellen centraal, in het bijzonder
in vroege ontwerpfases. De ontwikkelcycli in model-gebaseerde ontwikkeling
worden vaak gezien als lang en stug, en daarmee conflicterend met de korte
ontwikkelcycli in Agile methodes en nadrukkelijk continuous integration. We
onderzoeken hoe software ontwikkeling kan profiteren van een combinatie van
deze twee praktijken: continue model-gebaseerde ontwikkeling.

In deze licentiaat1 thesis presenteren we vier wetenschappelijke artikelen
die dit onderwerp onderzoeken in de context van ontwikkeling van complexe
embedded softwaresystemen in bedrijven die machines ontwikkelen waarvan
deze systemen deel uitmaken. De eerste twee artikelen presenteren onderzoek
naar de huidige standaarden en uitdagingen, zowel in de literatuur als in de
praktijk. In het derde en vierde artikel verleggen we de focus naar een van
die uitdagingen: modelsynchronisatie. Daarmee wordt bedoeld, het ervoor
zorgen dat verschillende artefacten (zoals modellen en programmacode), die
worden ontwikkeld om een systeem te ontwerpen en te implementeren, elkaar
niet tegenspreken. We stellen een “lichtgewicht” benadering voor, waarbinnen
ontwikkelaars melding krijgen van ontstane tegenstrijdigheden tussen verschil-
lende artefacten. Als laatste bijdrage in deze thesis ontwikkelen we automatische
ondersteuning voor het onderhouden van consistentie tussen modellen in een
productlijn, die varianten van een systeem beschrijven.

1Licentiaat is een Zweedse academische graad halverwege tussen een master (MSc) en een
doctor (PhD).
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Chapter 1

Introduction

In the development of modern embedded systems, most innovation comes from
software, leading to expressions like “this car runs on code” [1]. Hence, there has
been a lot of work aiming at improving the productivity of software development
and the quality of the resulting artifacts. We discuss two of the most prominent
paradigms that have been widely adopted to achieve those gains: Model-Based
Development (MBD) and Agile software development [2].

In MBD, models are used for the design of systems, and possibly for their
implementation too [3]. Within system design, it is beneficial to abstract some
of the implementation details away in favor of a more human-oriented view of
structure and functionality. Models can be used at all stages of the development
and for different purposes, from communication to the automatic generation
of code. In this work, we use the term MBD to refer to practices in which
models are used as core software development artifacts, meaning that the models
are expected to undergo frequent changes and the resulting implementation is
expected to be consistent with these models. We exclude from our scope those
MBD practices in which models are created for temporary documentation or
communication between stakeholders only. Note that this scope is thus much
wider than the UML-specific focus of the Agile Modeling (AM) paradigm
described by Ambler [4].

Since the publication of the Agile manifesto [2], software development has
increasingly focused on shortening development cycles. Ideally, customers
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4 Chapter 1. Introduction

are regularly presented with an enhanced implementation, allowing them to
adjust the requirements and thereby the product to their needs. Important
among the Agile practices is Continuous Integration (CI) [5], in which multiple
developers collaborate on a software project and each of them integrates her
work frequently into a shared repository. In the CI paradigm, an integration
is followed by an automated build as well as automated execution of a test
suite, giving the developers an up-to-date overview of the status of a project
throughout the development. This allows early detection of errors and prevents
a difficult integration period of uncertain length at the end of the project.

Benefits to the productivity of software development in industry have been
reported for both CI [6] and MBD [7], separately. Yet, the application of
both practices in combination in industrial development projects is sometimes
met with skepticism [8]. We hypothesize that combining MBD and CI into
continuous MBD can improve the productivity of software development. In this
work, we study the state-of-the-art, and the state-of-practice in several industrial
environments, to identify challenges to this combination. Thereafter, we provide
approaches to alleviate tasks that currently involve a large manual effort and are
thereby impeding the introduction of short development cycles.

In particular, we focus on tasks related to model synchronization, i.e., en-
suring consistency across various development artifacts, which is a general
challenge to MBD as well [9]. In a development setup where all artifacts are
code, a build system typically notices inconsistent definitions between different
portions of code. For example, the code will not compile when a class does
not implement all the methods defined in an interface. In MBD, it often occurs
that no formal links exist between artifacts, and consequently, these types of
inconsistencies might go unnoticed for a long time. The ultimate consequence
of this might be late changes to the implementation or even an incorrect imple-
mentation. When moving to Agile development, with its shorter development
cycles and aim of continuously integrating the development artifacts, keeping
them consistent becomes both more important and more challenging. Different
artifacts sooner rely on each other, and hence, inconsistencies may be propagated
faster across artifacts and can be more difficult to resolve. One way to address
this challenge is by frequently checking the consistency across artifacts, through
automated checking mechanisms.
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5

Many approaches have been presented to deal with inconsistency across
models. Existing approaches aim to satisfy different sets of requirements in
various settings. We study the problem in two industrial settings. From the first
of these, we obtain requirements for a consistency checking approach that can
support continuous MBD. This has resulted in an approach that is less expressive
and can not automatically resolve inconsistencies, but requires a lower effort
than existing approaches for defining and maintaining consistency checks.

In the above introduction of consistency checking, we have focused on
the consistency across different development artifacts that describe the same
system, possibly at different levels of abstraction. An additional dimension of
the problem emerges when the MBD setting also includes different variants of
the to-be-developed system. Typically, variability is managed using software
product lines [10], in which the development is based on structured reuse of
development artifacts across different product variants. To preserve the integrity
of the product line and the opportunities for reuse, those artifacts should be kept
consistent with each other. We study this aspect in a second setting, a model-
based software product line in which changes must be propagated between
models describing various derived products. As with the previously discussed
type of consistency checking, reducing the manual effort for this task is vital to
allow for shorter development cycles and eventually, continuous MBD.

Thesis outline This licentiate thesis contains two parts. Part I is an overview
of the thesis and is organized as follows. We first discuss our research process
and introduce research goals in Chapter 2, after which background and related
work to the thesis are discussed in Chapter 3. In Chapter 4, we provide an
overview of the included papers and the contributions brought by each of them.
In Chapter 5, we present conclusions and an outline of future work towards a
doctoral thesis. Part II includes the collection of included papers.
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Chapter 2

Research Overview

In this chapter, we introduce the overall research goals of the thesis and how we
used both empirical and constructive research methods to achieve them.

2.1 Research Goals

The essence of MBD is to abstract from the implementation by capturing the
problem space in models [3]. We consider MBD to refer to development
practices in which models are created and maintained as core development
artifacts. That is, we require models to explicitly play a central role during
development and we require the implementation to conform to it.

Nevertheless, we include in our scope a broad range of MBD practices,
since not all artifacts have to be models. We also consider those development
settings in which graphical models play a smaller role, e.g. because textual code
is written manually. For “models”, we refer to system design, software design,
or software implementation models. These models can be expressed in various
modeling languages. Models may provide support for, e.g. automated analysis,
simulation, or code generation. Furthermore, different models can be used to
describe systems at different levels of abstraction. For example, a company may
use MBD to capture the system requirements and structure in a SysML [11]
model, whereas individual features are implemented in Simulink [12] models or
code.
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Figure 2.1. Three examples of possible artifacts in different model-based development
projects.

More examples of MBD settings are illustrated in Figure 2.1. In the figure,
we show three settings in which different models are used for the system view
and the software view. In setting 1 , the high-level system design is captured in
a SysML model; this model does not contain any implementation details, but
rather outlines the structure of the software as it is divided into components.
Furthermore, the system model deals with concerns on dividing functionality
across software components and hardware components. Hence, in this setting,
code is not automatically generated from the model. In setting 2 , we see that
part of the implementation is automatically generated, from Simulink software
models. The overall system design is again done in a SysML model and, addi-
tionally, Simulink models are created to design specific Software components.
Among these example settings, there is a common need for the artifacts to be
consistent with each other. Tool choices can vary across different settings too,
as is illustrated by setting 3 .

MBD promises to improve the productivity of software development [3].
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2.1 Research Goals 9

Indeed, among the reported benefits is a reduced total development time of
software systems [13]. However, MBD is traditionally viewed as “waterfall-
like”, with long development cycles and formal checks between each step in
the cycle. After the publication of the Agile manifesto [2] and the more recent
popularity gained by DevOps, short development cycles have become the norm
in software development. One of the first steps in the DevOps paradigm and
also one of the development practices promoted in Agile software development
is CI. Our focus on CI is motivated by the state-of-practice at industrial partners.
Due to the stringent safety requirements of their developed embedded systems,
companies typically do not continuously deliver, let alone continuously deploy
their software.

To illustrate continuous MBD and the CI activities on top of the existing
MBD activities, consider setting 2 from Figure 2.1. In the CI paradigm,
the SysML model is subject to frequent changes. As a consequence, also the
software models, in this example Simulink models, are subject to changes,
following the updated system model. Then, also the code is generated again,
following the changes to the Simulink models. As with code, also modeling
artifacts should be integrated into a shared repository. The automation facilities
of the CI pipeline can then be utilized to provide insight into the developed
artifacts, for example through simulating the models or automatically analyzing
them. The intended result of continuously integrating models too is to accelerate
the feedback loop to developers, for example by allowing frequent inspection of
the adherence of the code to the intended design.

To summarize, both the MBD and CI paradigms separately give improved
productivity in software development; and their combination can yield additional
benefits. Therefore, we propose to enhance existing MBD practices with CI
features. To this end, we formulated our first research goal as follows:
RG1: To identify impediments towards the adoption of continuous integration
in model-based development.

Towards achieving this research goal, we first identified the state-of-the-
art and state-of-practice of the combination of MBD and CI. In particular, we
investigated existing MBD practices in the development settings at our industrial
partners and identified improvement opportunities for them. As a result, we
found the need to automate some of the labor-intensive manual tasks in MBD,
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10 Chapter 2. Research Overview

so that more frequent development iterations could be established. This resulted
in the second research goal, which instead aimed at identifying actions that
are currently performed manually and that would need to be at least partially
automated to eventually make more frequent development iterations possible
and beneficial. Our second research goal was:
RG2: To alleviate labor-intensive manual tasks that impede the adoption of
short development iterations in industrial MBD settings.

2.2 Research Methodology

An old critique of software engineering research in a new guise states that
“most software engineering research has the same effect on programmers that
astronomy has on stars” [14]. The research community recognizes the limited
practical relevance of software engineering research and suggests industry-
academia collaborations as one of the means to improve it [15]. We performed
our research in close collaboration with industrial partners through Software
Center1, an organization featuring 5 Swedish universities and 15 companies
collaborating in software engineering research projects. The research presented
in this thesis is the result of collaborations with three of the Software Center
member companies, as well as two external companies.

Our research was performed in 6-month “sprints”, following the commonly
recommended best practice for industry-academia research collaborations of
organizing the research in iterations so that research topics can frequently be
fine-tuned to maximize their relevance [16]. Each of these sprints was started
with a research proposal agreed upon with the partner companies. At the end
of each sprint, research directions for the next sprint were proposed and results
were presented in a joint workshop open to all companies in Software Center.

The iterative nature of our research process is closely related to the well-
known constructive research methodology [17]. This methodology describes
the common practice in software engineering research of creating knowledge by
constructing solutions to well-defined problems. To identify a well-defined prob-
lem, constructive research is often preceded by empirical studies investigating

1https://www.software-center.se/
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1https://www.software-center.se/
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the state-of-the-art and the state-of-practice [17].
In this thesis, we present two papers (Paper A and Paper B) presenting empir-

ical studies reporting on the state-of-the-art and state-of-practice of continuous
MBD, addressing RG1. The other two papers (Paper C and Paper D), present
the construction of new approaches in collaboration with our industrial partners,
addressing RG2. Organizing the research in sprints has allowed us to use the
results from Paper A and Paper B for refining RG2 and for creating specific
research projects for Paper C and Paper D. Notably, the findings of Paper A and
Paper B show a lack of automated support for model synchronization, impact
analysis, and co-evolution. These results have then inspired the work leading to
Paper C, which targets support for consistency checking in a continuous MBD
setting, and Paper D, which targets impact analysis and co-evolution in another
industrial MBD setting. Figure 2.2 summarizes our research process in terms of
the contributions and their interdependencies.

The aforementioned process describes the relation between our research
goals and contributions. While the work addressing both research goals involved
industrial partners, RG1 aimed at identifying general research problems in the
area, whereas RG2 aimed at proposing an approach in specific industrial settings.
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12 Chapter 2. Research Overview

Therefore, in Paper A and Paper B, we used empirical methods [18] to capture
the state-of-practice and identify the requirements for a new approach.

In Paper A, we describe the state-of-the-art by comparing the most-used
COTS modeling tools in industry. Existing state-of-the-art literature reviews
on the combination of Agile development and MBD, e.g. [19], tend to agree
on high-level challenges such as tool immaturity and steep learning curve of
MBD. We complement this knowledge by providing insights into available
tooling, the features they support, and their shortcomings. For similar reasons,
in Paper B, we conducted an interview study with practitioners. Our main
objective was to identify diverse states of practice and identify open research
challenges related to them. To obtain insights complementing existing literature,
we involved practitioners from our partner companies. We performed semi-
structured interviews [20] to provide interviewees the opportunity for personal
input, while still ensuring to discuss a set of pre-defined topics.

To address RG2, we further extended the empirical work using constructive
research, in which we proposed approaches within concrete industrial settings.
In this way, the collaboration differed from that in Paper B, which included
interviews with engineers from several companies. Both the collaborations for
Paper C and Paper D started by defining research goals for which the results of
Paper A and Paper B were used as input. Upon the definition of research goals,
the collaborations continued with several iterations of proposals for an approach
to address the goals. Once a promising way forward had been identified, we
then implemented the approach and lastly validated it.

In Paper C, we developed an approach for making developers aware of
inconsistencies between models. We presented a prototype implementation and
an evaluation of the approach on a limited use-case. Our evaluation indicated
new requirements for a lightweight consistency checking approach. The results
represent the first step towards an industry-level approach.

In Paper D, we worked in a setting in which variants of products are devel-
oped using models. We developed an approach for propagating changes from the
product line to derived products. The study considered a model-based product
line setting in industry, thereby making it a different setting than studied in
Paper C. Hence, Paper C and Paper D are denoted in Figure 2.2 as independent
papers, both originating from RG2.
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Chapter 3

Background and Related Work

This chapter contains background information and related work to the work
presented in this thesis.

3.1 Model-Based Development

Several names and corresponding acronyms are in use to describe the notion
of using models as key software development artifacts. Common ones in-
clude model-driven engineering (MDE), model-based development (MBD), and
model-based software engineering. In our work, we refer to MBD, to emphasize
that models are core development artifacts but the development includes also
other artifacts such as textual documentation or code.

Figure 3.1 illustrates the four layers of the modeling stack as originating
from the object management group (OMG) core specification [21]. The bottom
layer (M0, object layer) represents the real world, each of the three layers above
it represents an abstraction of the layer below that layer. The first layer above the
bottom, layer M1, contains models of the real world. At this point, it should be
noted that the real-world layer can also house artifacts such as code, so M1 could
contain e.g. a UML class diagram as an abstraction of some implementation. M2,
contains so-called meta-models, which denote the type of constructs that can be
used to express models in M1. UML itself is an example of a metamodel. M3,
provides meta-metamodels, the final abstraction layer since a meta-metamodel

13

Chapter 3

Background and Related Work

This chapter contains background information and related work to the work
presented in this thesis.

3.1 Model-Based Development

Several names and corresponding acronyms are in use to describe the notion
of using models as key software development artifacts. Common ones in-
clude model-driven engineering (MDE), model-based development (MBD), and
model-based software engineering. In our work, we refer to MBD, to emphasize
that models are core development artifacts but the development includes also
other artifacts such as textual documentation or code.

Figure 3.1 illustrates the four layers of the modeling stack as originating
from the object management group (OMG) core specification [21]. The bottom
layer (M0, object layer) represents the real world, each of the three layers above
it represents an abstraction of the layer below that layer. The first layer above the
bottom, layer M1, contains models of the real world. At this point, it should be
noted that the real-world layer can also house artifacts such as code, so M1 could
contain e.g. a UML class diagram as an abstraction of some implementation. M2,
contains so-called meta-models, which denote the type of constructs that can be
used to express models in M1. UML itself is an example of a metamodel. M3,
provides meta-metamodels, the final abstraction layer since a meta-metamodel

13

29
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Figure 3.1. Layers of the modeling stack

describes not only instances at M2 but also itself. Examples of meta-metamodels
include Meta Object Facility (MOF)1 and Ecore2. Our work is mostly concerned
with instances at M1 level and instances at M0, but must take into account also
M2, since different instances of M1 might conform to different instances of M2.

Model-to-model transformations can be created to convert models conform-
ing to one metamodel into models conforming to another metamodel. For this
purpose, specialized model transformation languages have been developed, such
as ATL3 and QVTo4. Also, model-to-text transformations can be created, e.g. to
generate code from models. Some modeling tools include such transformations
and thereby support for code generation from their models.

3.1.1 Model-based systems engineering

In model-based systems engineering (MBSE), a diagrammatic system model is
used as the central artifact containing architecture and design, thereby replacing
textual documentation. The best-known language supporting this paradigm
is the Systems Modeling Language (SysML), which is an extended subset of
UML [11]. SysML provides a modeler with several diagrams to describe the
requirements, structure, and behavior of a system [22]. Although these diagrams

1https://www.omg.org/mof/
2https://wiki.eclipse.org/Ecore
3https://www.eclipse.org/atl/
4https://projects.eclipse.org/projects/modeling.mmt.qvt-oml
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3.1 Model-Based Development 15

may still be complemented with textual descriptions, the idea of MBSE is that
the system model forms the central development artifact. This ideally enables
the automatic generation of source code and documentation from the system
model. In practice, automatic generation of code is not always done because
it requires the model to be completed down to a very low level of abstraction,
i.e., to contain a great amount of detail. Among our industrial partners, we have
encountered MBSE practices in which the system model is rather a guide for
the manual development of code from it. Nevertheless, also in these practices,
the eventual implementation is required to be consistent with the system model,
in the sense that these two descriptions of the system should not contradict each
other.

3.1.2 Model-based product lines

When developing software systems, companies may need to express different
versions of that system that vary on certain points. To manage this type of
variability, software product line engineering (SPLE) prescribes an organization
of development artifacts in product lines [10]. Various structured ways of
establishing product lines are known in the literature. On the other hand, clone-
and-own is an unstructured practice in which reuse is initially organized through
copy-and-paste [23].

We refer to software product lines in which models are central development
artifacts as model-based product lines. In general, software product lines are
organized as one central development “line” from which product variants can
be derived. Changes in the main product line may need to be propagated to
those derived variants, for example in case of bug-fixes. The changes that
need to be propagated are typically smaller than complete files. When the
development artifacts are text-based, files can in most cases be merged to achieve
the propagation. In model-based product lines, diagrammatic models may need
to be merged, which is notoriously challenging. Moreover, the localization of
the part of the model that requires propagation is not straightforward. In Paper D,
we study this problem in an industrial setting.
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16 Chapter 3. Background and Related Work

3.1.3 Adoption of MBD in industry

Towards achieving our first research goal (RG1), we identified challenges in
combining MBD and CI. Some of the resulting challenges are shared with gen-
eral challenges to the introduction of modeling practices in industry, which are
reported plentiful in the literature (e.g. [24]). For example, tool interoperability,
tool usability, and a steep learning curve are usual suspects among reported
challenges to the industrial adoption of modeling. Furthermore, challenges
are not limited to tooling issues, also human factors must be considered [25].
Despite being well-known for years, these remain open research challenges [9].

Our results offer a new perspective on these known challenges. We study
those settings in which MBD has already been introduced and propose ways
to make them more continuous. We expect the different perspectives to yield
complementary findings and thus we also expect our results to improve the
adoption of MBD in industry.

3.2 Agile software development

The manifesto for Agile software development [2] aims for customer satisfaction
through frequent delivery of working software. The main effect of adopting the
practices outlined in the manifesto is that development cycles become shorter,
thereby allowing for frequent course adjustments. A fundamental ingredient for
achieving this is Continuous Integration (CI) [5]. In the “stairway to heaven”
model, CI is the third step on the evolution path from traditional engineering to
continuous deployment [26].

3.2.1 Continuous Integration

In Paper A, we define CI as: “a collaborative development practice where
software engineers frequently, at least daily, integrate their work into a shared
repository.” Besides enabling frequent deliveries of the software to clients, CI
also prevents the need for a complex integration period after the implementation
of all parts, which can be hard to plan for and take exceedingly long to complete.
As can be seen from the definition, CI is concerned only with the development
of software. The next stage is then to frequently release versions of the software
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3.2 Agile software development 17

(continuous delivery). Continuous delivery in turn can be followed by frequently
deploying the releases on customer devices (continuous deployment). Figure 3.2
illustrates these phases. Further extensions of the continuous development
paradigm are made in DevOps (Development and Operations), in which data
of the usage of the deployed software is used as input for new development
iterations [27]. In this thesis, we focus only on continuous integration, not the
subsequent stages.

Build Test  Release  Deploy Develop

Continuous 
Integration

Continuous 
Delivery 

Continuous 
Deployment 

Figure 3.2. Stages of continuous development.

3.2.2 Agile model-driven development

Under the term Agile model-driven development (AMDD), several authors
have presented work towards introducing Agile practices while using models
as core development artifacts. Zhang et al. [28] have presented benefits of
combining the two paradigms from experiences at Motorola. They present
how their development processes were set up to allow for shorter development
cycles, continuous integration, and frequent testing. Other case studies also
find the potential benefits of applying Agile practices in MBD [29]. Rumpe has
presented research results on Agile model-based software engineering using
(executable) UML, presenting challenges such as model management, model
composition, refactoring, and model quality [30]. Lano et al. [31] also advise
a process to follow when combining Agile and modeling practices, among
their tips are to do regular integration and testing. Another case study shows a
successful adoption of Agile MBD and highlights the close coupling of software
development with physical systems as a challenging aspect [32]. The authors
address that challenge by using plant models to enable a virtual test environment,
rather than relying on sparsely available physical systems, thereby contributing
to shortening development increments in their model-based development. Given
these experiences, there seems to be support for our hypothesis that MBD
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18 Chapter 3. Background and Related Work

and Agile in combination can improve development productivity. This notion
is supported by the MDE research community, which has identified making
modeling more Agile as one of the current research challenges [9].

We limit our focus to continuous integration (CI), one of the key practices
in Agile development. Some recent work has been published towards methods
and processes enabling the combination of MBD and CI. The most important
of those works consider more involved modeling practices, in which models
are the only development artifacts and code is generated from them. Hence,
the problems they identify are closely related to that way of working. Gatcía-
Díaz et al. identify model versioning and incremental artifact generation as two
problems in combining modeling and CI [33]. Considering a similar level of
involvement of models, Garcia and Cabot propose to utilize the continuous
delivery pipeline to deal with the co-evolution of models, metamodels, and
model transformations [34]. The authors propose to chain existing activities and
tools using the automation capabilities of Jenkins5.

3.3 Consistency Management

The detection and resolution of inconsistencies within or between different
diagrams of the same model (intra-model consistency checking) or between dif-
ferent models (inter-model consistency checking) have been studied extensively.
In this research, we focus on inter-model consistency checking. In particular,
in Paper C, we consider consistency between different views of a system, cap-
tured in different models that are potentially created using different modeling
languages and in different tools. In Paper D, we consider consistency between
different models describing system variants.

3.3.1 Relevance of consistency checking

The importance of consistency in the development process is undisputed [35]
but despite the considerable amount of work on model synchronization, it is still
considered an obstacle to industrial adoption of MBD [36]. Industrial evaluations
of multi-view modeling and its consistency problems are lacking [37], perhaps

5https://jenkins.io/
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3.3 Consistency Management 19

because of the complexity and scale of those environments. Selic identifies
the scale of industrial applications as one of the main challenges to overcome
for a model synchronization approach to be applicable [38]. In particular, he
argues that in many cases the number of consistency links is huge, resulting in
a large maintenance effort that is at constant risk of being neglected in favor
of more pressing issues [38]. Another often identified challenge is a lack of
tool interoperability in MBD [24], which naturally complicates the type of
consistency management we are interested in. Indeed, creating traceability
links between different models is required for effective tool interoperability and
consistency between models [39].

Several attempts have been made to define consistency. Some of them tried
to mathematically define [36] or create an ontology of possible inconsisten-
cies [40, 41]. To arrive at a common definition, we state that views that express
overlapping concerns are inconsistent when they contradict each other [42].

3.3.2 Consistency checking approaches

We now discuss several categories of existing consistency checking approaches
and reflect on the existence of so many approaches while at the same time, many
new approaches are still proposed.

Instant Model Synchronization

A significant amount of work has been done on approaches that promise the
automatic maintenance of consistency between views. Approaches based on
Triple Graph Grammars (TGGs) [43] or Single-Underlying Model (SUM) [44]
establish a bidirectional transformation between different diagrams, thereby
ensuring instant propagation of changes across different views of the system.
Furthermore, there are many other proposed mechanisms for model synchroniza-
tion, such as keeping models synchronized given a synchronized situation and
traceability links [45], or automatic bidirectional synchronization derived from a
one-directional model transformation [46]. Also, a hybrid approach is proposed,
in which model transformations are generated for change propagation between
views based on model difference, based on a common underlying meta-model
for all views [47].
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for all views [47].
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In our studied industrial settings, these model synchronization mechanisms
are typically not applicable. The first possible obstacle is the aforementioned
difference in detail captured in different models, which is particularly apparent in
the described case of keeping a system model and code consistent. Furthermore,
high-level system models are typically “modeling the future”, i.e. the high-level
models aim to describe the final product, whereas the code always represents
the latest state of development. Therefore, the code is not expected to always
conform to the latest version of the model. That also means that we don’t
want to automatically propagate (or at least not yet) changes in the high-level
model. Another key reason is that we need to support the iterative and flexible
development process in industry. Changes are not always definitive or fully
completed. Some developers may include temporary placeholder snippets in
models or code that are known to be inconsistent with other artifacts but will be
resolved in later stages. In such cases, it makes no sense to try to synchronize
the models, but it does make sense to make developers aware of the introduced
inconsistency so that it is not forgotten about. Also, there may be artifacts we
do not control, because they are third-party, open-source, or re-used from other
projects. Specifically, for the SUM approach, the consequence is that some
views are “read-only”, i.e., they can not be changed. But furthermore, this
reading may not be trivial at all, because the view could be expressed in any
modeling or programming language. For these reasons, we try to formulate
an approach not aimed at completely synchronizing models, but rather at an
approach that allows inconsistencies but notifies the engineers when they are
introduced. This follows established inconsistency tolerance ideas, which state
that inconsistency must be to some extend tolerated during development such
that development is not inhibited [48].

Other formalisms

Some other formalisms for detecting inconsistencies rely on common represen-
tations for different models. For example, Diskin et al. [49] propose to merge
graph representations of heterogeneous models and then use the resulting single
typed graph to detect inconsistencies. This approach is also an example of
representing models as graphs. In another proposed approach, models are repre-
sented as graphs denoting logical facts about the models [50]. Similar to the first
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3.3 Consistency Management 21

approach, the graphs are then used to derive contradictions. Other approaches
have been proposed in which models are represented by the operations that are
needed to construct them. After this representation step, logical rules are defined
to detect inconsistencies between the models [51].

Reflection

It is noteworthy that, although inconsistency challenges have been studied for
many years, there are still research articles being published on the topic, which
is still considered to be very challenging to achieve in industry. The result is that
all proposed approaches are created with a certain set of requirements in mind
that are identified as required for adoption in some particular industrial practice.
Consistently, we do not pretend that our approach is universally applicable and
somehow better than all the other proposed approaches of the past. Rather, we
identified our own set of requirements induced by the industrial settings under
study and have proposed an approach for meeting those requirements.
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Chapter 4

Research Results

In this chapter, we discuss the results of our research. We first present the
contributions of the thesis and how they were validated. Then, we highlight the
specific contributions brought by each of the four included papers.

4.1 Thesis Contributions

This thesis presents the following three research contributions.

• C1: Identified challenges of combining MBD and CI.

• C2: An approach for lightweight inter-model consistency checking in
continuous model-based development.

• C3: An approach for alleviating the change propagation process in a
model-based product line.

A mapping of contributions to research goals is shown in Table 4.1.

4.1.1 C1: Identified challenges towards combining MBD and CI

C1 is brought by Paper A and Paper B in which we identified the state-of-the-art
in modeling tools, the state-of-practice at several companies, and challenges
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24 Chapter 4. Research Results

Table 4.1. Mapping of contributions to research goals.

RG1 RG2

C1 X
C2 X
C3 X

towards combining MBD and CI. In the aspects of integration, building, testing,
and overall automation, several relevant practices for continuous MBD were
identified. We divided the identified challenges into the following categories:
human, business, non-functional, and functional. Although these challenges
are not specific to continuous MBD, some of them become more troublesome
when adopting shorter development cycles. In our research, we focused on those
challenges and in particular on model synchronization.

Another interesting result was discovering some MBD projects in which the
adoption of CI was not seen as a good idea. This seemed to stem mostly from
the existence of many manual steps in the current process, which are not easily
performed at a higher frequency. Moreover, we found that those among our
industrial partners that are most mature in the adoption of MBD and CI develop
all their models in one single tool. This is done to avoid some of the most
intimidating challenges, like tool interoperability and model synchronization.

Validation: The two papers forming this research contribution report on em-
pirical findings on challenges in continuous MBD. To ensure the validity of these
findings, several measures were taken in the design of these studies, such as
ensuring a sampling of study subjects working in different roles and at different
companies. More details are provided in Paper A and Paper B.

4.1.2 C2: Lightweight Approach to Consistency Management

Model synchronization, in particular managing consistency between different
artifacts, arose as one of the core challenges. Hence, we studied inter-model
consistency checking in industrial settings and proposed an approach for their
lightweight management, within a continuous integration pipeline. This contribu-
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4.1 Thesis Contributions 25

tion is described in Paper C, which presents an approach to manage consistency
between heterogeneous artifacts as well as a tool for a CI pipeline. We have
contributed to the existing state-of-the-art and practice by focusing both on the
continuous aspect of the consistency checks and their required “lightweightness”
for usage in industrial settings. Despite their lightweight nature, our consistency
checks still give useful information on structural inconsistencies.

Validation: The approach and functionality of the tool have been evaluated
using an example system commonly used in the relevant literature. To evaluate
the other important aspects related to usability and applicability in practice,
an evaluation with industrial partners is planned as future work. In fact, we
are currently working with an industrial partner on establishing these types of
consistency checks between their system model and corresponding code-base.

4.1.3 C3: Change Propagation in a Model-Based Product Line

This thesis contribution is carried by Paper D. It addresses MBD settings in
which multiple variants of software are developed in a clone-and-own product
line. In such settings, changes in the product line may need to be propagated
to derived products. Significant effort is spent on the analysis of the impact of
changes in the product line on derived products. Our contribution is an approach
for semi-automating the change propagation. We identified two benefits of our
approach: (i) the analysis and change propagation process is simplified, and (ii)
the approach can be used to move from a clone-and-own product line to a more
structured organization of reuse across variants.

The domain expertise of developers is required to make decisions on change
propagation since these choices depend on the requirements of the different
products. Therefore, we instead identified the tasks with the most manual effort
and provided techniques to automate those.

Validation: We evaluated the approach using publicly available models. Also,
we report on qualitative results in terms of experiences of applying the proposed
approach to industrial models.
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26 Chapter 4. Research Results

4.2 Paper Contributions

Below we list abstracts and brief descriptions of the contributions of the included
papers. A mapping of research contributions to included papers is shown in
Table 4.2.

Table 4.2. Mapping of research contributions to included papers.

PA PB PC PD

C1 X X
C2 X
C3 X

4.2.1 Personal Contributions

I have been the main author and driver of the work for all included papers.
The co-authors have been involved in all works through brainstorming and
discussions. Furthermore, they have provided feedback on drafts of the papers.

4.2.2 Included Papers

Paper A: Continuous integration support in modeling tools.
Abstract: Continuous Integration (CI) and Model-Based Development (MBD)
have both been hailed as practices that improve the productivity of software
development. Their combination has the potential to boost productivity even
more. The goal of our research is to identify impediments to realizing this
combination in industrial collaborative modeling practices. In this paper, we
examine certain specific features of modeling tools that, due to their immaturity,
may represent impediments to combining MBD and CI. To this end, we identify
features of modeling tools that are relevant to enabling CI practices in MBD
processes and we review modeling tools with respect to their level of support
for each of these features.
Paper contributions: Although the results are not surprising, the work con-
tributes to the body of knowledge on impediments towards adopting CI in MBD.
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Further, it strengthens some conclusions made previously by others that have
indicated impediments such as tool interoperability and model versioning.

Paper B: Impediments to Introducing Continuous Integration for Model-
Based Development in Industry
Abstract: Model-based development and continuous integration each separately
are methods to improve the productivity of development of complex modern
software systems. We investigate industrial adoption of these two phenomena
in combination, i.e., applying continuous integration practices in model-based
development projects. Through semi-structured interviews, eleven engineers at
three companies with different modeling practices share their views on perceived
and experienced impediments to this adoption. We find some cases in which
this introduction is undesired and expected to not be beneficial. For other cases,
we find and categorize several impediments and discuss how they are dealt with
in industrial practice. Model synchronization and tool interoperability are found
the most challenging to overcome and the ways in which they are circumvented
in practice are detrimental for introducing continuous integration.
Paper contributions: The main contribution of this work is the finding that,
in some of the studied settings, current practices actively inhibit companies
from developing in shorter development cycles. We identify those practices and
discuss how they are impeding the adoption of CI.

Paper C: Lightweight Consistency Checking for Agile Model-Based Devel-
opment in Practice.
Abstract: In model-based development projects, models at different abstraction
levels capture different aspects of a software system, e.g., specification or design.
Inconsistencies between these models can cause inefficient and incorrect devel-
opment. A tool-based framework to assist developers creating and maintaining
models conforming to different languages (i.e. heterogeneous models) and
consistency between them is not only important but also much needed in prac-
tice. In this work, we focus on assisting developers bringing about multi-view
consistency in the context of agile model-based development, through frequent,
lightweight consistency checks across views and between heterogeneous models.
The checks are lightweight in the sense that they are easy to create, edit, use and
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28 Chapter 4. Research Results

maintain, and since they find inconsistencies but do not attempt to automatically
resolve them. With respect to ease of use, we explicitly separate the two main
concerns in defining consistency checks, being (i) which modeling elements
across heterogeneous models should be consistent with each other and (ii) what
constitutes consistency between them. We assess the feasibility and illustrate
the potential usefulness of our consistency checking approach, from an indus-
trial agile model-based development point-of-view, through a proof-of-concept
implementation on a sample project leveraging models expressed in SysML
and Simulink. A continuous integration pipeline hosts the initial definition and
subsequent execution of consistency checks, it is also the place where the user
can view results of consistency checks and reconfigure them.
Paper contributions: Many approaches for checking inter-model consistency
exist. The contribution of this work is an approach for checking inter-model
consistency that is explicitly lightweight, i.e., easy to use and deploy in industrial
settings. Furthermore, the approach is generic, it can be applied to any modeling
language with a hierarchical structure that can be mapped onto a tree structure.
It represents a first step towards creating a lightweight consistency checking
approach that supports more types of structural consistency and can deal with
the evolution of the involved models.

Paper D: Co-evolution of Simulink Models in a Model-Based Product Line.
Abstract: Co-evolution of metamodels and conforming models is a known
challenge in model-driven engineering. A variation of co-evolution occurs in
model-based software product line engineering, where it is needed to efficiently
co-evolve various products together with the single common platform from
which they are derived. In this paper, we aim to alleviate manual efforts during
this co-evolution process in an industrial setting where Simulink models are
partially reused across various products. We propose and implement an approach
providing support for the co-evolution of reusable model fragments. A demon-
stration on a realistic example model shows that our approach yields a correct
co-evolution result and is feasible in practice, although practical application
challenges remain. Furthermore, we discuss insights from applying the approach
within the studied industrial setting.
Paper contributions: To handle variability across different versions of devel-
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4.2 Paper Contributions 29

oped software, product lines are adopted in industrial practice, often through
clone-and-own reuse. This causes a lack of traceability and systematic re-use
between variants. In this paper, we aid the hitherto manually performed process
of propagating changes made in the product line to derived products. We do not
anticipate the process to become completely automated in the future, but we
expect this to be a step towards providing more automated means of analysis to
help domain experts in their design decisions.
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Chapter 5

Conclusion

In industrial practice, a broad range of MBD settings can be encountered. Across
these settings, models are used at different levels of abstraction and in combi-
nation with various other types of artifacts. By advancing continuous MBD,
we aim to allow companies to adopt shorter development iterations and faster
feedback on their model-based designs.

This thesis presents three contributions to this goal. We first identified
the challenges of combining MBD and CI. Then, we presented an approach
for lightweight inter-model consistency checking in continuous model-based
development. Finally, we presented an approach for alleviating the change
propagation process in a model-based product line.

Both proposed approaches address model synchronization, a key challenge
in establishing continuous MBD. However, holistic support for continuous MBD
requires more improvements to functional aspects such as model synchronization
and tool interoperability, as well as to process aspects such as collaborating on
models and insight into quality metrics.

5.1 Future Work

In future research, we aim at extending and supplementing the presented ap-
proaches, and at addressing more of the identified challenges in various MBD
settings, thereby further advancing continuous MBD in industry.
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32 Chapter 5. Conclusion

Extensions of approaches in this thesis. We are currently working on an
industrial evaluation of the approach presented in Paper C. This might also lead
to further refinements of the approach to ensure its lightweight nature. One of
the starting points of Paper C is that the manual definition of traceability links
across artifacts requires too much manual effort. We plan to further improve
on our proposed approach in Paper C by establishing automated traceability
link discovery methods. In early work towards this goal, we are working on an
approach that uses information on the known structure of the model and naming
conventions in model and code. Using these inputs, we aim to provide accurate
suggestions for traceability links across artifacts.

The work of Paper D is planned to be extended with automated support for
suggesting changes to test cases upon a change to a model. In the current setting,
the majority of the test development effort is spent on ensuring test cases are
still up to date after the model they cover is updated. To alleviate that effort,
support for assessing the impact of model changes on test cases is needed in the
first place. In the second place, for specific kinds of changes, these assessments
may be improved by suggesting changes to the test cases that would synchronize
them with the model again. We aim to combine this with our current work to
establish a faster development cycle for models, their variants, and their test
cases. This is an important step towards establishing continuous MBD in the
model-based product line setting.

Support the functional aspects of continuous MBD. Additionally, we plan
to address challenges identified in Paper A and Paper B that were left unsolved.
In general, we work towards the goal of supporting continuous MBD in various
settings. To do so, our current results need to be extended in the area of model
synchronization and model management tasks. The latter includes e.g. auto-
mated analysis for change impact analysis, and model differencing and merging
for parallel development by multiple, possibly geographically distributed, devel-
opers. Approaches to those challenges should furthermore be compatible with
the continuous integration paradigm.

In Paper D, we incorporated the aspect of developing software variants.
Variability is typically organized in software product lines, which can be used
in MBD too. Models and parts of models can be re-used across different
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them with the model again. We aim to combine this with our current work to
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cases. This is an important step towards establishing continuous MBD in the
model-based product line setting.

Support the functional aspects of continuous MBD. Additionally, we plan
to address challenges identified in Paper A and Paper B that were left unsolved.
In general, we work towards the goal of supporting continuous MBD in various
settings. To do so, our current results need to be extended in the area of model
synchronization and model management tasks. The latter includes e.g. auto-
mated analysis for change impact analysis, and model differencing and merging
for parallel development by multiple, possibly geographically distributed, devel-
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the continuous integration paradigm.

In Paper D, we incorporated the aspect of developing software variants.
Variability is typically organized in software product lines, which can be used
in MBD too. Models and parts of models can be re-used across different
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5.2 Summary 33

product variants. An emerging challenge is then to manage both the dimensions
of variants and revisions of these models. This is particularly pressing in
component-based systems, where variation occurs on three levels since 1) the
components themselves exist in different variants (or alternatives), 2) across
systems, various configurations of multiple components are in use, and 3)
there are various systems expressed using these components and configurations.
On top of that, these variants all exist in different revisions through time. A
first challenge is then to optimize the way of modeling such systems to avoid
duplication of volatile information. Furthermore, consistency checking methods
are needed that are aware of these dimensions and can appropriately check
consistency between the appropriate versions of different artifacts.

Supporting the continuous MBD process. Supporting continuous MBD
would require, in addition to solutions to technical challenges, also improve-
ments to tooling that supports the development process of teams of developers.
For code-based software development, mature tools are available for supporting
activities such as code reviews and issue reporting. Mature continuous MBD
practices require such supporting tooling too, that furthermore is model-aware.

Another need in industrial practice is to get insight into the quality devel-
opment artifacts. In continuous MBD, these metrics should be defined and
measured across different artifacts, instead of being scoped to single models
or code. In this context, consistency is merely one quality metric among the
typically six: correctness, completeness, consistency, comprehensibility, con-
finement, and changeability [52]. The continuous integration pipeline could be a
good host for the calculation and presentation of quality metrics, as is typically
done in dashboards for code-based software development projects.

5.2 Summary

In this thesis, we have presented contributions that are aimed at advancing con-
tinuous MBD. We have shown different setups of continuous MBD, one in which
the continuous integration pipeline is utilized to include inter-model consistency
checking. In Paper A and Paper B, we identified challenges to continuous MBD
and in Paper C and Paper D, we presented approaches to alleviating two of these
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34 Chapter 5. Conclusion

challenges. The challenges have been identified through an investigation of
state-of-the-art modeling tools and their support for continuous integration, as
well as interviews with industrial MBD practitioners.

The proposed approaches are a lightweight consistency checking method
and an approach to assist in change propagation within a product line. The two
approaches have been defined in diverse MBD settings and in collaboration with
industrial partners from different domains. Both approaches reduce the needed
manual effort, which otherwise inhibits the adoption of short development cycles
and, ultimately, continuous MBD.
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