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Abstract—Deep neural networks (DNN) have achieved quality
results in various applications of computer vision, especially in
image classification problems. DNNs are computational intensive,
and nowadays, their acceleration on the FPGA has received much
attention. Many methods to accelerate DNNs have been proposed.
Despite their performance features like acceptable accuracy or
low latency, their use is not widely accepted by software designers
who usually do not have enough knowledge of the hardware
details of the proposed accelerators. HLS tools are the major
promising tools that can act as a bridge between software
designers and hardware implementation. However, not only most
HLS tools just support C and C++ descriptions as input, but also
their result is very sensitive to the coding style. It makes it difficult
for the software developers to adopt them, as DNNs are mostly
described in high-level languages such as Tensorflow or Keras. In
this paper, an integrated toolchain is presented that, in addition
to converting the Keras DNN descriptions to a simple, flat, and
synthesizable C output, provides other features such as accuracy
verification, C level knobs to easily change the data types from
floating-point to fixed-point with arbitrary bit width, and latency
and area utilization adjustment using HLS knobs.

Index Terms—Deep Neural Networks, Convolutional neural
networks, CNN, accelerator, high-level synthesis

I. INTRODUCTION

In recent years, Deep Neural Networks (DNN) have become
very successful in computer vision and classification problems.
Numerous tools are used to design and implement this type
of networks, most notably Tensorflow and related libraries
such as Keras, PyTorch, and Caffe. These tools provide
the necessary facilities from the design stage of the neural
network layers to the training and testing stages. After that
the designing, training, and testing are complete, there exist
two main outputs. First, the structure of the network layers
is specified. It includes the dimensions of the layers, the
dimensions of the kernels, the number of input and output
layers, the activation functions associated with each layer, etc.
Second, the weights and biases required for the inference
stage are finalized and ready to be used. From this stage
onwards, the use of neural networks in various applications
such as classification begins. Performance and energy con-
sumption are usually two of the most important parameters
in a DNN hardware implementation. DNN demands high
computational power. Processors usually do not provide the
necessary performance for the inference step. Although GPUs
are high-performance inference accelerators, they consume a
lot of energy and cannot be deployed in many battery-based
embedded applications. Therefore, the synthesis of the deep
neural network on FPGA or ASIC seems promising. They
offer a high level of parallelism and are much more efficient in

terms of power consumption and performance [1]. Note that in
this paper, we use FPGA to refer to hardware implementation,
but the presented methods can also be used for ASIC.

The main challenge of implementing DNNs on FPGA is
that neural network software designers usually have little
knowledge of the underlying hardware and digital design, and
this gap limits the use of FPGAs by them. The HLS was
invented to fill this gap to allow developers to meet their
needs without having to know the hardware details. However,
HLS tools usually only support low-level languages such as
C or C++, while DNN designers typically use high-level tools
such as Tensorflow, Keras, PyTorch, or Caffe, among others,
to describe their networks.

In this paper, to fill the gap between a high-level description
of a DNN network in Keras and its low-level description
in C, we provide a full toolchain that, in addition to the
conversion, offers features such as conversion result verifica-
tion and straightforward user-configurable quantization. This
toolchain provides DNN users with rapid prototyping of their
algorithms without worrying about the hardware details. In
addition, the description in C is entirely flat. By flat, we mean
that it does not use any functions and function calls. This is
very useful for the implementation of the network by HLS
and allows designers to easily add the HLS directives to the
generated C design in a fine-grained manner. Moreover, a flat
implementation is the most suitable type of design description
for HLS tools as it allows them to apply both inter- and
intra-layer optimizations. It should be noted that although the
proposed process is based on the Keras input, with a some
extensions, it can also be used for other high-level model
descriptions such as Caffe. In summary, the main contributions
and features of this work are:

• Providing a full toolchain including the Keras to C
conversion and conversion accuracy verification.

• The generated C has easy-to-use knobs to switch the HLS
implementation from floating point to fixed point with
arbitrary quantization levels.

• The generated C code is in ANSI C, and thus, it can be
used in almost all the open-source and commercial HLS
tools.

• The C code is flat, allowing the HLS users to easily add
directives such as pipeline and unroll in a fine-grained
way. This also enables the intra-layer optimizations.

• For verification and accuracy evaluation, a file-to-memory
interface is implemented that allows using the tool for
large networks with many parameters and large datasets.
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II. RELATED WORK

The methods to implement the inference computation of a
DNN on the FPGA can be divided into three categories [2],
[3]. In this section we discuss some of the most important
and recent works in each category. The first way to run a
DNN on an FPGA is to directly implement the neural network
at the Register Transfer Level (RTL). These implementations
are directly synthesized to the FPGA [4], [5]. Although they
usually offer an implementation with acceptable performance
and quality, in practice, using them is not possible for neural
network designers, which are usually users with little hardware
knowledge [6]. Moreover, the generated results have spe-
cific features, like quantization, accuracy, and area utilization,
which are not easily alterable.

The second category includes the HW/SW co-design of a
DNN. The control and scheduling of the execution of the
hardware elements in the hardware part are performed by
the software running on the CPU. They may use various
technologies and tools to handle the hardware elements and
the HW-SW communication. Some of them such as [1] and
[6] used OpenCL [7]. In [8], the Pthread feature of the Legup
synthesis tool [9] was used. Authors of [10] proposed their
own Instruction Set Architecture (ISA), and [11] and [12] used
the Xilinx SDAccel [13] and SDSoC [14] respectively. The
first problem with these methods is that the generated output
cannot be tweaked or optimized, i.e. the user cannot modify
the design by considering the limitations or freedoms in
performance, area utilization, or quantization level. The second
drawback of these methods is that the users are imposed and
limited to using heterogeneous environments in which both
CPU and FPGA exist, as the CPU is responsible for controlling
the hardware elements.

The third category, relevant to our contribution, are those
that transform the DNN inference to a C/C++ or LLVM
code. In this case, the end user may have the freedom to
change and tweak the design to get the desired performance,
accuracy, and area utilization. This is an important feature
because the user may prefer to sacrifice the accuracy for lower
latency or sacrifice the latency for lower area utilization. By
searching through the articles and tools related to this category,
we found seven works. Four of these works generated code
that could not be synthesized by HLS [15]–[18]. The main
target for these works was embedded CPUs. There were only
three cases that could be synthesized by the HLS. The first
was a tool that converts a design in Tensorflow to LLVM
code with the help of Google XLA compiler [19], [20]. The
LLVM code is then synthesized to FPGAs using the Legup
synthesis tool [9]. Due to the use of LLVM, tweaking the
generated code or setting high-level HLS knobs is impossible
for the user. Besides, Legup is an open-source tool which
is limited to specific Altera FPGAs and a few high-level
synthesis and scheduling algorithms [21]. The second tool
provided a C++ version of neural network, but was limited
to multi-layer perceptron (MLP) networks and did not support
convolution layers [22]. Another tool in this area was an online

tool that supported DNN networks and produced synthesizable
output in C language [23]. This tool only converted layers as
functions, as opposed to our flat implementation, and did not
provide features like verification or adjusting the quantization
levels. On top of that, it could only be used for small networks
such as LeNet [24], and medium or large networks like
AlexNet or VGG was not supported. Table I summarizes the
works in this category.

TABLE I
SUMMARY OF THE MOST RELATED WORKS

Work HLSs/FPGAs Tweakable CNN Flat Verification Large Networks
[19], [20] Legup/Altera No Yes Yes No Yes

[22] All Yes No No No No
[23] All Yes Yes No No No

III. DEEPHLS TOOLCHAIN

DNN network designers and programmers often use a
high-level language such as Keras or TensorFlow to define,
train, and test their neural networks. On the other hand,
implementing these networks on the FPGA requires a low-
level language or library like C or OpenCL. In this work, we
have considered Keras [25] as the input description, although
the toolchain can be extended to also support other languages
like TensorFlow and Caffe. Keras is an easy-to-learn, easy-to-
use deep learning library that allows fast implementation and
experimentation while allowing integration with TensorFlow
functionality. DeepHLS generates ANSI C to model the output
since it can be synthesized by most HLS tools and to all
FPGAs, either SoC or non-SoC ones. The toolchain seeks to
satisfy all the user’s needs in a complete process from just after
the network description in Keras is finished by the designer
to the end of creating a desired C model. Figure 1 shows the
overall flow of DeepHLS. The input of this process is a DNN
that has been modeled, trained, and tested in Keras plus the test
data that was used in the DNN design phase. The three blocks
at the center of this figure are the contributions of DeepHLS.

A. Preprocessing

The first tool of the toolchain is the initial processing of
the network and its test data. This tool is fully implemented
in Python, to be seamlessly and fully compliant with DNN
design in Keras. The output of this step is the files containing
the memory dump of the test data and network parameters,
including weights and biases.

B. Synthesizable C code generation

In this step, the input Keras code is processed and the
specifications of each layer are extracted [26]. The Keras
code is a brief description that, for the sake of simplicity of
description, does not specify many of the layer’s specifications.
Most of the layers’ information must be inferred based on
the type of a layer, the parameters, and the previous layers.
Figure 2 shows a description of Keras from a Lenet-5 network
[24] as an example input. Correspondingly, Table II shows
all the information extracted from this description. After the
structure extraction stage, the output code generation begins.



Fig. 1. The overall view of the proposed toolchain

Fig. 2. Keras description of the LeNet-5

For each layer, in addition to defining the layer output array,
the necessary loops to perform the layer output calculation are
automatically implemented.

TABLE II
EXTRACTED INFORMATION FROM KERAS DESCRIPTION IN FIGURE 2

Layer Layer Padding Filters Kernel Stride Activation Input Output
1 Conv2D Valid 6 (5, 5) (1, 1) Relu (28, 28, 1) (24, 24, 6)
2 MaxPool2D - - (2, 2) (2, 2) - (24,24,6) (12,12,6)
3 Conv2D Valid 16 (5, 5) (1, 1) Relu (12,12,6) (8,8,16)
4 MaxPool2D - - (2, 2) (2, 2) - (8,8,16) (4,4,16)
5 Flatten - - - - - (4,4,16) (256,1,1)
6 Dense - - - - Relu (256,1,1) (120,1,1)
7 Dense - - - - Relu (120,1,1) (84,1,1)
8 Dense - - - - Softmax (84,1,1) (10,1,1)

While producing the output C file, various features are
considered so that the output will be easier to handle for
creating an optimized implementation on FPGA.

• At a single point of the output, a new data type is defined,
and all the data required in the code, including input data,
weights, and biases, are defined based on this specific
type. The user can easily adjust the DNN data type before
final synthesis on FPGA only at this one point, and
accordingly, the type of all input data, parameters, and
intermediate data are adjusted. This can be specifically
very helpful for changing the network data type from
floating-point to fixed-point with any arbitrary precision.

Obviously, these changes may affect network accuracy.
These effects can be easily observed and evaluated by the
next tool of the toolchain, described in the next section.

• All layers are defined in one file and in one function.
This allows HLS to perform universal and intra-layer
optimizations (unlike tools that define each layer as a
function with specific parameters).

• All loops are labeled. This not only makes the code and
the HLS output report more readable, but also allows
the end user to be able to apply HLS directives to each
individual loop by addressing it in a separate directive
file (such as the directive.tcl file in Xilinx HLS tool).

C. DNN Testbench

In the previous sections, the steps to create a ready-to-
synthesize C file was explained. In this section, we describe the
DNN testbench tool, which makes it possible for the designers
to test and simulate the created file. The designer can obtain
the accuracy of the produced code by executing it on the same
test data that was used in the preprocessing stage. If the data
type is exactly the same as what was used in the Keras design
phase (e.g., the 32-bit floating-point), the accuracy must be
exactly the same.

This tool is essential for two reasons. The first reason is
that the designer can make sure that the code created by the
previous tool is correct. On the other hand, by changing the
data type from floating-point to fixed-point of arbitrary sizes,
the designer can see its effect on accuracy and determine the
desired fixed-point size before sending it to HLS for synthesis.
Examples of these settings are described in the next section.

IV. EXAMPLES AND RESULTS

To ensure the correct operation of the entire toolchain,
we tested it on three well-known DNNs including LeNet-5
[24], AlexNet [27], and VGG [28], as small, medium, and
large scale DNNs respectively. We applied all the tools in
the chain and finally synthesized the generated C code using
the Xilinx Vivado HLS tool on Xilinx Kintex-7 (xc7k480t-
ffv901-1), which is a medium-size non-SoC FPGA. The results
showed that the generated C code obtained exactly the same
accuracy as the original Keras design when the same data type
(32-bit floating point) was chosen. Regarding the latency, in
the absence of any HLS optimizations and without changing
the data types to fixed-point, our toolchain generated a result
with a latency of 905,772 clock cycles, in contrast to 1,275,700
clock cycles in [19], for the first layer of the LeNet-5 network.
Table III shows the area utilization of the floating-point
implementation of the experimented networks.

TABLE III
SYNTHESIS RESULTS OF THREE DNNS OF VARIOUS SIZES

CNN BRAM FF LUT
VGG 616 7991 21636

AlexNet 326 4200 11257
LeNet-5 16 2348 5763



Fig. 3. Accuracy Loss and LUT Utilization as a function of the number of
fractional bits

Additionally, as an application of the DNN testbench tool,
we tested the AlexNet network for fixed-point data types with
various sizes. We changed the fixed-point fraction size from
24 bits to 8 bits to assess its influence on the accuracy. We
also synthesized all versions to be able to compare the area
utilizations. Figure 3 shows the results. The numbers beside
each point imply the number of bits considered for the fraction
in a fixed-point representation. As can be seen, by choosing 12
bits for the fraction, the accuracy loss is almost zero. Choosing
more bits for the fraction has no effect on the accuracy and
only increases the area utilization.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed an integrated toolchain that
in addition to converting the Keras DNN descriptions to a
simple, flat, and synthesizable C output, provides features like
accuracy verification, data type knobs to support floating-point
and fixed-point types, and enabling the user to adjust the
latency and area utilization using HLS knobs. We tested
all the tools on DNNs of three various sizes. The results
showed the feasibility of the flow and its scalability as well
as various outputs it can generate to facilitate the decision
making during the acceleration of the DNNs. It should be
noted that the toolchain currently does not support Recurrent
Neural Networks (RNN), and in the future, we are going to
extend our work to support them too.
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