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Abstract—In this paper, we discuss challenges when using 
neural networks (NNs) in safety-critical applications. We address 
the challenges one by one, with aviation safety in mind. We then 
introduce a possible implementation to overcome the challenges. 
Only a small portion of the solution has been implemented 
physically and much work is considered as future work. Our 
current understanding is that a real implementation in a safety-
critical system would be extremely difficult. Firstly, to design the 
intended function of the NN, and secondly, designing monitors 
needed to achieve a deterministic and fail-safe behavior of the 
system. We conclude that only the most valuable implementations 
of NNs should be considered as meaningful to implement in safety-
critical systems. 

Keywords—avionics, safety-critical, machine learning, deep 
neural networks 

I. INTRODUCTION

Machine learning (ML) in dependable systems are genuinely 
researched nowadays. ML aims at achieving artificial 
intelligence (AI) through learning from data. AI, in turn, is the 
theory and development of systems which are able to execute 
tasks normally requiring human intelligence [1]. Deep learning 
(DL) is a subset of ML that uses deep neural networks (DNNs)
to bring the learning capability closer to the function of the
human brain [2].

In autonomous ground-based vehicles, DNNs have been 
investigated for a long time to support object detection and 
classification. Mainly with focus on reliability and security. 
Reliability includes research on correct training and validation 
of input data, physical errors (mostly transient faults) in the deep 
neural network itself and data input distortion such as adverse 
weather conditions, i.e. snow, heavy rain or fog. Security 
includes adversarial attacks (human made attack on input data 
to fool the neural network as much as possible). Adversarial 
attacks are of specific interest for avionics in certain 
applications, e.g. autonomous landing. Both the reliability and 
security research concentrate on maximizing the correct 
classification of images (true positives) in presence of 
disturbances. 

For aviation, there has been a tremendous increase in interest 
of using AI in dependable systems the last years. In 2019, both 
SAE and EUROCAE, created standardization committees and 
working groups to prepare for the use of AI in aviation [3, 4]. 
The Aerospace Vehicles Systems Institute (AVSI) and their 
working group AFE-87 has been working on the topic of 
machine learning the last years. As a result from this research 
[5], they are currently setting up another working group, 
“Machine Learning Certification” [6]. In addition, the DEEL 
Project works with dependable, certifiable and explainable 
artificial intelligence for critical systems [7]. This project has 
participants from both academic and industry from several 
disciplines including aviation. The certification authorities also 
seriously focus on the issue of enabling AI in aviation. The 
European Aviation Safety Agency (EASA) released an Artificial 
intelligence roadmap [2] recently and their AI Task Force 
together with Daedalean AG, published a report in the field of 
concepts of design assurance for neural networks [1]. 

Reliability and security are both prerequisites for the use of 
deep neural networks in safety-critical systems. However, 
several other issues have to be dealt with for safety, including 
systematic faults, which include design faults in both hardware 
and software. Design faults are among other means dealt with 
using deterministic hardware and software and structured 
requirements driven development process, containing black box 
requirements written without knowledge of the internal 
structure, white box requirements (derived from the internal 
structure) and verification. Static neural networks which are not 
trained during operation, are indeed deterministic in the sense 
that the same input gives the same output. The problem is 
however that in practice the full input space cannot be used when 
training the neural network [8]. Also, signal distortions due to 
limited precision or weather disturbances (in case of image 
processing) will always be present. Therefore, only a statistical 
description of the neural network’s function can be attained. In 
addition, a structured development process for developing a 
system containing neural networks must differ from that of the 
traditional case, since the white box requirements obviously 
need another approach.  
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When using DNNs for object classification in safety-critical 
applications it is important to correctly classify the objects. 
However, it is of equal importance to minimize incorrectly 
classified objects. For instance, it is of high significance not to 
mistake a highway for a runway when an aircraft performs a 
machine vision-guided approach. Once the aircraft is 
approaching the runway it is of little importance to correctly 
classify a car or a fire truck on the landing strip. It is more 
important to detect an obstacle (foreign object debris) even if it 
is incorrectly classified rather than not detecting it at all.  

We believe diverse redundant systems are needed to cope 
with the scenarios above. These systems may or may not include 
the time domain (i.e. history of classified objects and moving 
targets) and may consist of deterministic or statistical monitors. 
Additional redundant architectures may be necessary for 
symmetric faults. For each of the challenges described, we 
discuss possible solutions including new or existing fault 
tolerant architectures. The main emphasis is on algorithm level, 
where deep neural networks are used in the decision loop and 
monitored by diverse redundant architectures, see Figure 1. 

Figure 1. A reliable and secure DNN with diverse monitors, each specified for 
a task such as detecting transients in the DNN, untrained input data, reduced 
false negatives or false positives 

In a broader scope, artificial intelligence may be used in the 
behavioral level (e.g. for planning and decisions), as add-on to 
monitor erroneous behavior in traditional deterministic systems, 
or even to detect anomalies in the development process for 
safety-critical products. These areas are subject to further 
research and not covered in this article. 

The paper is organized as follows: In Section II, we present 
challenges in using neural networks in safety-critical systems. In 
Section III, we exemplify a possible implementation to cope 
with the challenges and in Section IV we discuss the challenges 
and the proposed implementation. Finally, Section V concludes 
the paper. 

II. CHALLENGES

In this section, we introduce challenges in using neural 
networks in safety-critical applications. Some of these 
challenges have arisen from previous research performed at 
Saab or MDH. In some cases, the challenges have emerged from 
other researchers. But rather than repeating their challenges, we 
expand or complement their ideas. 

A. Relevant Operating Parameters
The representativeness of the dataset used for training a

neural network (NN) for a specific function is perhaps the most 
essential objective of the learning process. It includes steps such 
as identifying which variables affect the data and the conditions 
and boundaries on those variables within which the system is 
intended to operate. In the case of visual perception avionics 
systems this could include weather conditions, geography, time 
of day, flight scenario, type of sensors used, and their properties 
related to perception. 

1) Data Management
Data is usually split into three parts named according to their

use – training, validation and test. The first two can be treated 
similarly from an assurance point of view and are used in the 
design phase of the NN. The test set, however, needs some 
special tending to; it needs to be prepared with care and 
independently from the other datasets, since its intended use is 
to verify the NN design.  

The challenges with dataset creation are manifold, especially 
in the context of supervised learning, where data labels are 
required, and the annotation process is cumbersome and error 
prone. The process of acquiring the data itself often entails 
expensive flight tests. Therefore, the need for synthetically 
generated data is apparent. Synthetic data is also what enables 
the testing of specific corner cases identified which might not be 
reachable (in a safe manner) during normal or sub-normal 
operating conditions. Gaidon, Wang, Cabon and Vig [9] report 
that training on entirely synthetic data and testing on real data 
reduces accuracy compared to training exclusively on real data, 
which in turn performs worse than training on synthetic data first 
and then fine-tuning with real data training afterwards. Hence 
synthetic data is not only a necessity but also desired. 

In creating the dataset, the traditional process of 
requirements-based engineering can be used. Before 
establishing the dataset, both real and synthetic, a holistic view 
of which properties the dataset shall have, in order for the data 
to be as complete as possible, must be specified. The use cases 
and the safety cases can be addressed in a dataset requirement 
specification. Special considerations for security and adversarial 
attacks, may also be added. 

2) Weather Impact
Although the Use Case and ConOps perception system

description in [1] is a commendable effort to lay the land for the 
introduction of NN in avionics systems, it is important to 
consider the impact adverse weather would have on such a 
system. Designing a perception system which should function in 
reduced visibility weather conditions will most probably require 
sensors of different modalities (e.g. Electro-Optical (EO), Short-
Wave Infra-Red (SWIR), Long-Wave Infra-Red (LWIR) or 
other) since neither sensor modality alone will be able to 
penetrate weather like snow, fog and heavy rain.  

3) Data Synthesis
Generating synthesized visual data in different scenic

settings is a challenging task. Although simulator tools 
specializing in photorealistic rendering has emerged over the 
last couple of years, primarily to support the development of 
automotive perception systems, the tools mostly focus on 
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emulating EO sensors. Hence there is a need for physically 
correct rendered sensor data for several types of weather for 
several sensor modalities. Some work in this direction [10] has 
been done by modeling transmission of electromagnetic 
radiation through atmospheric conditions using the MODTRAN 
(MODerate resolution atmospheric TRANsmission, [11]) 
software, although limited to IR wavelengths. 

Using a framework such as Scenic scenario description 
language [12] coupled with a sufficiently realistic rendering 
backend could be one way of handling the generation of 
synthetic images, where parameters can programmatically be 
varied within the operating limits of the system. 

B. Uncertainties in classifying correct images 
A major problem with deep learning methods is the 

incapability of guaranteeing that the predicted outcome is 
correct. Both false and missed predictions may occur. Phan, 
Khan, Salay and Czarnecki [13] as well as Levin and Vidimlic 
[14] propose the use of Bayesian Neural Networks to mitigate 
the effects of such predictions. 

Uncertainty may be categorized into two types, Aleatoric 
and Epistemic [1]. Aleatoric uncertainty is data dependent. 
Noise in the data is captured by the model which results in the 
ambiguity of training input. Epistemic uncertainty is model 
dependent and caused by the Neural Network's inability to 
interpret the input. It may be a result of incompleteness of 
training data [15]. 

Bayesian Neural Networks (BNN) implement probability 
theory and approximates the uncertainty of the network output. 
Thus, providing additional information to interpret objects in the 
operational environment correctly [14]. 

An example where a BNN would be beneficial to implement 
is when the network is presented with data that differs from 
training data. The network itself may be confident of the output, 
even though no possibility of correctly assessing the input is 
possible due to the lack of correct training data. By adding a new 
parameter, Network uncertainty, more knowledge may be 
gained before reaching a conclusion based on Network output. 

The concept of uncertainty in predictions is also discussed 
by Cluzeau et al. [1] for design assurance of neural networks. 
They discuss two types of uncertainty estimations, multiple 
neural network implementations, where the networks should 
agree on the output, and Monte Carlo dropout. Monte Carlo 
dropout refers to a Bayesian model, where a probability 
distribution is acquired during the Network testing. The variance 
and mean may then be obtained from the probability distribution 
and used as metrics of confidence in the output. 

Henne, Schwaiger, Roscher and Weiss [16] evaluate 
different methods for uncertainty estimations from a safety-
critical perspective. In their paper, Monte Carlo dropout is 
compared to three other uncertainty estimators. Further, the 
Softmax output of the tested networks is used as a baseline, 
together with the uncertainty estimations. The Softmax function 
takes as input a vector y of R real numbers. Then it normalizes 
the vector y into a probability distribution consisting 
of R probabilities which are proportional to the exponentials of 
the input numbers [17]. 

The performance of the networks is quantified with network 
certainty and whether the prediction is correct, resulting in four 
possible outcomes. The most critical outcome in a safety-critical 
point of view is where the model is incorrect in its prediction, 
yet confident that it is correct. The model’s performance is 
determined by comparing the number of certain and correct 
samples with the number of certain and incorrect samples. The 
benchmark evaluation by Henne et al. [16] show that all tested 
uncertainty estimations perform better when compared to 
Softmax predictions. When applying the developed benchmark, 
it is concluded that no one method can be said to have the best 
performance. Further, the benchmark shows that sampling free 
methods are more cautious, resulting in higher rejection rates of 
false predictions. However, the high rejection rates also result in 
predictions that are correct, becoming uncertain. Sampling-
based methods also show promising results in the benchmark 
tests, but with certainty values higher when compared to 
sampling free methods. 

C. Hardware and software certification considerations 
When it comes to hardware and software certification of 

safety-critical systems using neural networks (NNs), traditional 
design assurance methods may only be used for some parts of 
the system. The software involved at algorithm level in the NN 
part must use another approach, mainly because of the design 
is dependent on the data set used for training the network. Also, 
the full input space can typically not be used in the training 
process due to the nature of the problems to solve, e.g. images 
in the size of 512 x 512 pixels, each with 2^24 possibilities of 
colors (assuming 8 bits per RGB color). The output results can 
also only be statistically confirmed. Cluzeau et al. [1] have 
addressed the concern with data dependent design by 
introducing the W-shaped development cycle for learning 
assurance as an extension to traditional design assurance. In their 
development cycle, data used for training, validation and test, 
become part of the development cycle and will be assured in the 
same way as the rest of the design, to make sure systematical 
faults have been reduced to an acceptable level. Cluzeau et al. 
[1] assume no new hardware to implement the neural networks 
and suggest therefore traditional hardware design assurance 
methods to be used for the underlying electronics. In addition, 
they assume a systems architecture which does not change 
dynamically under normal operation. Adaptive system 
architectures using machine learning are much more complex in 
its nature and is a challenge of its own for use in safety-critical 
systems. Yet, adaptive systems are common for similar systems 
in domains other than aviation. 

Since deep neural networks (DNNs) are heavily compute 
intensive not only for training but for normal operation, it will 
be a challenge to use traditional hardware as the underlying 
electronics in the final system, including established 
commercial-off-the-shelf (COTS) components. In fact, even if 
these COTS components are well-established, they will be used 
differently when used in a DNN such that service experience 
assurance arguments may be of less significance. We believe 
new emerging COTS-based computing-platforms such as 
heterogeneous computing platforms exploiting massive 
parallelism, will be used for real implementations of DNN-based 
systems.  



In previous research [18], we have suggested the use of 
Overarching Properties (Intent, Correctness and Acceptability) 
together with assurance cases to argument that assurance 
objectives can be met for future computing platforms based on 
new COTS technology. The informal meaning of the three 
overarching properties are [19]: 1) What the product is 
supposed to do is properly captured, 2) the product does what 
it is supposed to do, and 3) the product does not cause harm. 
The last one relies on that no development decisions do 
compromise the original safety assessment. Figure 2 shows a 
graphical example of an assurance case. For COTS we 
introduced sub-claims on two levels, at the isolated COTS 
component level and at the COTS integrated component level. 
The top-level claim is COTS component operates demonstrably 
airworthy in its system context. This claim is further divided into 
initial and continuous airworthiness [18]. Assurance cases may 
be used for both software and hardware design assurance [20]. 

 

Figure 2. Graphical presentation of an assurance case. The top-level claim 
(leftmost) is decomposed until each sub-claim can be substantiated by evidence. 
The argument part consists of strategies used to decompose claims and sub-
claims.  

D. Robustness and adversarial attacks 
To be able to use a DNN in a safety-critical system, it has to 

be robust. It must handle unintentional variations in the form of 
natural variations in inputs such as noise or degraded operations. 
It must also be able to handle intentional variations made by 
humans with the purpose to mislead the network to perform 
incorrectly [5]. A major problem with DNNs is that small 
changes in inputs (for humans seemingly invisible) can make the 
DNNs completely fail in detecting the correct output [21, 22]. 
Human made disturbances are also called adversarial attacks and 
can be applied during the training phase of the network or in 
normal operation. Neural networks that dynamically learn 
during normal operation are considered to be most vulnerable 
for these kinds of attacks [5] and should therefore be avoided in 
safety-critical systems. In addition, if proper learning assurance 
is applied, such as the W-model described in [1], the risk for 
adversarial attacks during training should be considered low. 

The research field addressing intentional variations and 
some natural phenomena, e.g. sensor degradation and aging, is 
called Adversarial Machine Learning [5]. It has grown fast the 
last years. Promising research show significant improvements in 
making the networks robust, not only for intentional but also for 
unintentional alterations. 

E. Performance metrics 
Naturally, many neural networks are trying to mimic a 

perception function of some sort, but it is not universally defined 
what ‘good perception’ is, rather it depends on the context of the 
system in which the perception function is used. For the case of 
vision guided landing the task is to detect runway(s) on the 
ground and use the position of the detected runway to provide 
navigational support to other systems. In this context it is critical 
not to mistake a freeway or other road-like objects for a runway, 
i.e. the precision of the detector of the runway class needs to be 
high (minimizing false positives). Conversely when 
approaching ground and we have runway in sight, the perception 
task might now shift to detect foreign object debris (FOD) or 
other (misplaced) vehicles disqualifying the use of the runway. 
In this context it is critically important not to miss any such 
object as this could lead to catastrophic consequences, i.e. the 
recall of the detector is what matters (minimizing false 
negatives). 

F. Transient faults in deep neural networks 
While most of the discussions concern systematic faults 

when it comes to DNNs in safety-critical applications, transient 
and permanent faults should not be neglected. In fact, DNNs are 
in many cases vulnerable to soft-errors due to the internal 
hardware structure used (e.g. accelerators with a large amount 
of buffer memory) [23]. Traditional but expensive solutions may 
of course be used for this purpose, i.e. triple modular redundancy 
(TMR) with voting or rad-hardened hardware. In the case of 
triplicating DNNs, failed units have to be detected and restarted, 
if soft errors may occur often. Other solutions may use 
information redundancy, e.g. error correction codes or cyclic 
redundancy checks, to cope with soft errors in the DNN. In 
addition, there are other methods that can be used. Schorn, 
Guntoro and Ascheid [23] have developed a successful solution 
for dealing with soft errors in DNNs, an error detection and 
mitigation network (EDMN). They detect anomalies in the 
output of the DNN with another monitoring NN. A feed-forward 
neural network to detect critical errors in the large DNN. The 
monitor network still has to be correctly trained which increases 
the overall complexity of the system, but the results are 
impressing (at least for their application - detecting road signs). 
Since the EDMN is very small, this network may be triplicated 
without much overhead, to overcome soft errors in the monitor. 
To improve the error detection, they use time redundancy in the 
form of sequential similar images, which they feed their EDMN 
with. 
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Figure 3. One possible implementation of a system for machine vision-guided approach using a deep neural network in the form of a convolutional neural network 
(CNN). The pre-processing merges the sensors and downscales the images. To detect transient errors in the robust CNN, a smaller neural network may be used as 

a monitor. To mitigate for false and missed predictions in the CNN, an uncertainty estimation detector is discussed to be used in parallel with the CNN. To 
mitigate for other incorrect CNN behavior, a history monitor is advised to be used in the post-processing part. 

III. POSSIBLE IMPLEMENTATION 
In this section we discuss one possible implementation of a 

machine vision-guided approach system using a convolutional 
neural network (CNN). A CNN is a is a class of DNNs which 
applies to analyzing visual imagery. To overcome the presented 
challenges, we believe a diverse redundant system is needed. 
Figure 3 shows our possible implementation and the 15 bullets 
below describe the solution in more detail. It should be 
mentioned that one inspiration source for the discussed 
implementation has been J.M. Cluzeau et al. [1] (Chapter 9.) 

• Three different sensor types are used as inputs. These 
are Electro-Optical (EO), Short-Wave Infra-Red 
(SWIR) and Long-Wave Infra-Red (LWIR) sensors. By 
using diverse sensors, the effects of snow, fog and heavy 
rain seem more manageable. 

• The preprocessing unit merges different sensor data and 
downscales the images. 

• To reach specific corner cases when training the CNN, 
synthetic data must be created and used. Corner cases 
may not be reached in a safe manner through real flight 
data recording. Real flights are also very expensive. For 
autonomous landing, different approach angles and 
weather conditions should be synthesized. Software 
should be used to correctly handle realistic rendering of 
synthetic images, including programs to model weather 
conditions physically correct. 

• The CNN should be trained with a combination of 
synthetic and real data. Synthetic data first and real data 
afterwards, see [9]. 

• The CNN should be robust enough to handle both 
intentional as well as unintentional variations, including 
untrained input data. At least to an acceptable level. The 
parameter describing the networks capability to 
correctly classify untrained input data is called 
generalizability [1]. 

• If a proper learning assurance such as the W-model [1] 
is used, the susceptibility to human made variations 
(adversarial attacks) during training is reduced. 

• For the pre-processing and post-processing, traditional 
design assurance à la RTCA/DO-178C and RTCA/DO-
254 should be used. For all neural networks where 
training is part of the design, a learning assurance [1] or 
similar process should be used in order to reduce 
systematic faults to an acceptable level. If any new 
COTS technology is used to implement the DNNs, 
assurance cases may be discussed with the certification 
authorities as an alternative method to argument that the 
assurance objectives can be met. For an example of how 
to use assurance cases for new emerging COTS 
technology, see Forsberg and Schwierz [18]. 

• For the training data, a data set requirement 
specification will address the properties of the data as 
well as the safety cases and security requirements. 
This  will ensure the completeness of the training data 
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and independence in defining the training data from test 
data. 

• The neural networks used are static during operation, 
i.e. they are trained, frozen and baselined before use. 
Neural networks that dynamically learn during normal 
operation add significant complexity [1] and are 
considered more vulnerable to adversarial attacks [5]. 

• Different flight phases require different CNN 
characteristics. When detecting the runway, false 
positives should be minimized and when approaching 
the runway, the CNN should shift to detect FOD, i.e. 
minimizing false negatives. This could be performed by 
training the network for the first scenario followed by 
the second. At runtime, the CNN starts with the first 
configuration and then reloads for its second task when 
approaching the airstrip. 

• The role of the uncertainty estimation detector in Figure 
3 is extremely important. It mitigates (at least to some 
extent) the major problem with deep learning methods, 
to guarantee that the predicted outcome is correct. 
Bayesian neural networks (BNNs) seem very promising 
for this task, see e.g. [13] and [14]. 

• Depending on the underlying hardware, DNNs may be 
vulnerable to transient faults. Typically, it is too 
expensive to triplicate the DNNs, in terms of reliability, 
capacity and power. Instead a much simpler DNN 
detector and monitor may be used, see [23] for instance. 
Several researchers also try to prune the networks while 
maintaining robustness. Other methods to reduce the 
hardware cost (size and power) include the use of the 
residue number system [24]. 

• A typical monitor for real-time systems keep track of 
the history of previous outputs. For our CNN, the 
history of classified objects and moving targets may be 
used. We have added this monitor in the post-processing 
part in Figure 3. A similar approach is described by 
Cluzeau et al. [1]. A history monitor may be very useful 
in detecting incorrect CNN behavior. 

• For our application, machine vision-guided approach, 
an additional non-neural network-based safety monitor 
that detects anomalies in the runway position by finding 
the runway outline perspective view lines, may be used. 

• For symmetric faults, we assume redundant systems are 
used. See Figure 3. 

IV. DISCUSSIONS 
From the discussed implementation above, it is easy to say 

that deep neural networks (DNNs) will be very hard to 
implement in safety-critical systems. The most advanced DNNs, 
the ones that can be trained during operation, or recurrent DNNs 
(not mentioned earlier in this article) are so complex to predict 
the results from such that they should be avoided in safety-
critical systems, at least until the community knows more about 
how to handle those networks. But even for the “simpler” 
DNNs, it is not sufficient to use the DNN itself since it can 

incorrectly classify the objects to be identified or even miss to 
detect the objects, to a too high degree. It is also impossible to 
train or validate the complete input space. In addition, DNNs 
typically need high-performance hardware during normal 
operation, which often are vulnerable to soft errors. To protect 
from these errors and false predictions, many of the best 
solutions suggested from researchers often involve other simpler 
neural networks, simply due to their supremacy in detecting 
abnormal activations in large and complex networks. These 
simpler networks may also be vulnerable to soft errors and 
should be protected. Finally, the complexity in designing NNs 
including DNNs to work correctly for its intended operations 
need new assurance approaches to ensure systematic faults are 
limited to an acceptable level. Some of these approaches also 
seem to mitigate for intentional variations of the inputs, at least 
during the training phase. 

There are several sayings used in the safety community, e.g. 
keep it simple or complexity is your enemy. So why on earth 
should DNNs be used in safety-critical systems? Simply because 
of their superiority in certain applications, e.g. object detection 
and classification. No other solutions seem to be close to the 
performance of the DNNs.  

 In our future research, we will study fault-tolerant 
architectures for safety-critical applications involving DNNs. 
Our goal is to keep the systems as simple as possible, yet 
sufficiently safe and efficient. We will also continue to research 
design assurance for new hardware technologies supporting 
DNNs. 

V. CONCLUSIONS 
In this paper we have introduced challenges in implementing 

DNNs in safety-critical applications and proposed a solution to 
cope with these challenges. The solution is mainly on a 
theoretical basis. It addresses the holistic view of implementing 
a working concept of DNNs in safety-critical airborne 
applications. The outcome indicates that a real application will 
be very complex to implement, which is in contrast to the 
simplicity the safety community always strives for. The 
complexity concerns both designing the intended function as 
well as the monitors to achieve a fail-safe behavior of the 
system. 
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