
Challenges in Using Neural Networks in Safety-
Critical Applications

Håkan Forsberg
School of Innovation, Design and

Engineering
Division of Intelligent Future

Technologies
Mälardalen University

721 23 Västerås, Sweden
Email: hakan.forsberg@mdh.se

Joakim Lindén
Gripen C/D, Saab Aeronautics, Järfälla,

Sweden
Email: joakim.linden@saabgroup.com

Johan Hjorth
School of Innovation, Design and

Engineering
Division of Intelligent Future

Technologies
Mälardalen University

721 23 Västerås, Sweden
Email: johan.hjorth@mdh.se

Torbjörn Månefjord
Avionics Systems, Saab, Huskvarna, Sweden
Email: torbjorn.manefjord@saabgroup.com

Masoud Daneshtalab
School of Innovation, Design and Engineering

Division of Intelligent Future Technologies
Mälardalen University, 721 23 Västerås, Sweden

Email: masoud.daneshtalab@mdh.se

Abstract—In this paper, we discuss challenges when using
neural networks (NNs) in safety-critical applications. We address
the challenges one by one, with aviation safety in mind. We then
introduce a possible implementation to overcome the challenges.
Only a small portion of the solution has been implemented
physically and much work is considered as future work. Our
current understanding is that a real implementation in a safety-
critical system would be extremely difficult. Firstly, to design the
intended function of the NN, and secondly, designing monitors
needed to achieve a deterministic and fail-safe behavior of the
system. We conclude that only the most valuable implementations
of NNs should be considered as meaningful to implement in safety-
critical systems.

Keywords—avionics, safety-critical, machine learning, deep
neural networks

I. INTRODUCTION

Machine learning (ML) in dependable systems are genuinely
researched nowadays. ML aims at achieving artificial
intelligence (AI) through learning from data. AI, in turn, is the
theory and development of systems which are able to execute
tasks normally requiring human intelligence [1]. Deep learning
(DL) is a subset of ML that uses deep neural networks (DNNs)
to bring the learning capability closer to the function of the
human brain [2].

In autonomous ground-based vehicles, DNNs have been
investigated for a long time to support object detection and
classification. Mainly with focus on reliability and security.
Reliability includes research on correct training and validation
of input data, physical errors (mostly transient faults) in the deep
neural network itself and data input distortion such as adverse
weather conditions, i.e. snow, heavy rain or fog. Security
includes adversarial attacks (human made attack on input data
to fool the neural network as much as possible). Adversarial
attacks are of specific interest for avionics in certain
applications, e.g. autonomous landing. Both the reliability and
security research concentrate on maximizing the correct
classification of images (true positives) in presence of
disturbances.

For aviation, there has been a tremendous increase in interest
of using AI in dependable systems the last years. In 2019, both
SAE and EUROCAE, created standardization committees and
working groups to prepare for the use of AI in aviation [3, 4].
The Aerospace Vehicles Systems Institute (AVSI) and their
working group AFE-87 has been working on the topic of
machine learning the last years. As a result from this research
[5], they are currently setting up another working group,
“Machine Learning Certification” [6]. In addition, the DEEL
Project works with dependable, certifiable and explainable
artificial intelligence for critical systems [7]. This project has
participants from both academic and industry from several
disciplines including aviation. The certification authorities also
seriously focus on the issue of enabling AI in aviation. The
European Aviation Safety Agency (EASA) released an Artificial
intelligence roadmap [2] recently and their AI Task Force
together with Daedalean AG, published a report in the field of
concepts of design assurance for neural networks [1].

Reliability and security are both prerequisites for the use of
deep neural networks in safety-critical systems. However,
several other issues have to be dealt with for safety, including
systematic faults, which include design faults in both hardware
and software. Design faults are among other means dealt with
using deterministic hardware and software and structured
requirements driven development process, containing black box
requirements written without knowledge of the internal
structure, white box requirements (derived from the internal
structure) and verification. Static neural networks which are not
trained during operation, are indeed deterministic in the sense
that the same input gives the same output. The problem is
however that in practice the full input space cannot be used when
training the neural network [8]. Also, signal distortions due to
limited precision or weather disturbances (in case of image
processing) will always be present. Therefore, only a statistical
description of the neural network’s function can be attained. In
addition, a structured development process for developing a
system containing neural networks must differ from that of the
traditional case, since the white box requirements obviously
need another approach.

This work is partially supported by Vinnova within the project SafeDeep:
Dependable Deep Learning for safety-Critical Airborne Embedded Systems
and partially by the Swedish Knowledge Foundation within the project
Dependable Platforms for Autonomous systems and Control.

978-1-7281-9825-5/20/$31.00 ©2020 IEEE

When using DNNs for object classification in safety-critical
applications it is important to correctly classify the objects.
However, it is of equal importance to minimize incorrectly
classified objects. For instance, it is of high significance not to
mistake a highway for a runway when an aircraft performs a
machine vision-guided approach. Once the aircraft is
approaching the runway it is of little importance to correctly
classify a car or a fire truck on the landing strip. It is more
important to detect an obstacle (foreign object debris) even if it
is incorrectly classified rather than not detecting it at all.

We believe diverse redundant systems are needed to cope
with the scenarios above. These systems may or may not include
the time domain (i.e. history of classified objects and moving
targets) and may consist of deterministic or statistical monitors.
Additional redundant architectures may be necessary for
symmetric faults. For each of the challenges described, we
discuss possible solutions including new or existing fault
tolerant architectures. The main emphasis is on algorithm level,
where deep neural networks are used in the decision loop and
monitored by diverse redundant architectures, see Figure 1.

Figure 1. A reliable and secure DNN with diverse monitors, each specified for
a task such as detecting transients in the DNN, untrained input data, reduced
false negatives or false positives

In a broader scope, artificial intelligence may be used in the
behavioral level (e.g. for planning and decisions), as add-on to
monitor erroneous behavior in traditional deterministic systems,
or even to detect anomalies in the development process for
safety-critical products. These areas are subject to further
research and not covered in this article.

The paper is organized as follows: In Section II, we present
challenges in using neural networks in safety-critical systems. In
Section III, we exemplify a possible implementation to cope
with the challenges and in Section IV we discuss the challenges
and the proposed implementation. Finally, Section V concludes
the paper.

II. CHALLENGES

In this section, we introduce challenges in using neural
networks in safety-critical applications. Some of these
challenges have arisen from previous research performed at
Saab or MDH. In some cases, the challenges have emerged from
other researchers. But rather than repeating their challenges, we
expand or complement their ideas.

A. Relevant Operating Parameters
The representativeness of the dataset used for training a

neural network (NN) for a specific function is perhaps the most
essential objective of the learning process. It includes steps such
as identifying which variables affect the data and the conditions
and boundaries on those variables within which the system is
intended to operate. In the case of visual perception avionics
systems this could include weather conditions, geography, time
of day, flight scenario, type of sensors used, and their properties
related to perception.

1) Data Management
Data is usually split into three parts named according to their

use – training, validation and test. The first two can be treated
similarly from an assurance point of view and are used in the
design phase of the NN. The test set, however, needs some
special tending to; it needs to be prepared with care and
independently from the other datasets, since its intended use is
to verify the NN design.

The challenges with dataset creation are manifold, especially
in the context of supervised learning, where data labels are
required, and the annotation process is cumbersome and error
prone. The process of acquiring the data itself often entails
expensive flight tests. Therefore, the need for synthetically
generated data is apparent. Synthetic data is also what enables
the testing of specific corner cases identified which might not be
reachable (in a safe manner) during normal or sub-normal
operating conditions. Gaidon, Wang, Cabon and Vig [9] report
that training on entirely synthetic data and testing on real data
reduces accuracy compared to training exclusively on real data,
which in turn performs worse than training on synthetic data first
and then fine-tuning with real data training afterwards. Hence
synthetic data is not only a necessity but also desired.

In creating the dataset, the traditional process of
requirements-based engineering can be used. Before
establishing the dataset, both real and synthetic, a holistic view
of which properties the dataset shall have, in order for the data
to be as complete as possible, must be specified. The use cases
and the safety cases can be addressed in a dataset requirement
specification. Special considerations for security and adversarial
attacks, may also be added.

2) Weather Impact
Although the Use Case and ConOps perception system

description in [1] is a commendable effort to lay the land for the
introduction of NN in avionics systems, it is important to
consider the impact adverse weather would have on such a
system. Designing a perception system which should function in
reduced visibility weather conditions will most probably require
sensors of different modalities (e.g. Electro-Optical (EO), Short-
Wave Infra-Red (SWIR), Long-Wave Infra-Red (LWIR) or
other) since neither sensor modality alone will be able to
penetrate weather like snow, fog and heavy rain.

3) Data Synthesis
Generating synthesized visual data in different scenic

settings is a challenging task. Although simulator tools
specializing in photorealistic rendering has emerged over the
last couple of years, primarily to support the development of
automotive perception systems, the tools mostly focus on

…

Monitor 1

Monitor 2

Monitor n

Reliable and Secure DNN

emulating EO sensors. Hence there is a need for physically
correct rendered sensor data for several types of weather for
several sensor modalities. Some work in this direction [10] has
been done by modeling transmission of electromagnetic
radiation through atmospheric conditions using the MODTRAN
(MODerate resolution atmospheric TRANsmission, [11])
software, although limited to IR wavelengths.

Using a framework such as Scenic scenario description
language [12] coupled with a sufficiently realistic rendering
backend could be one way of handling the generation of
synthetic images, where parameters can programmatically be
varied within the operating limits of the system.

B. Uncertainties in classifying correct images
A major problem with deep learning methods is the

incapability of guaranteeing that the predicted outcome is
correct. Both false and missed predictions may occur. Phan,
Khan, Salay and Czarnecki [13] as well as Levin and Vidimlic
[14] propose the use of Bayesian Neural Networks to mitigate
the effects of such predictions.

Uncertainty may be categorized into two types, Aleatoric
and Epistemic [1]. Aleatoric uncertainty is data dependent.
Noise in the data is captured by the model which results in the
ambiguity of training input. Epistemic uncertainty is model
dependent and caused by the Neural Network's inability to
interpret the input. It may be a result of incompleteness of
training data [15].

Bayesian Neural Networks (BNN) implement probability
theory and approximates the uncertainty of the network output.
Thus, providing additional information to interpret objects in the
operational environment correctly [14].

An example where a BNN would be beneficial to implement
is when the network is presented with data that differs from
training data. The network itself may be confident of the output,
even though no possibility of correctly assessing the input is
possible due to the lack of correct training data. By adding a new
parameter, Network uncertainty, more knowledge may be
gained before reaching a conclusion based on Network output.

The concept of uncertainty in predictions is also discussed
by Cluzeau et al. [1] for design assurance of neural networks.
They discuss two types of uncertainty estimations, multiple
neural network implementations, where the networks should
agree on the output, and Monte Carlo dropout. Monte Carlo
dropout refers to a Bayesian model, where a probability
distribution is acquired during the Network testing. The variance
and mean may then be obtained from the probability distribution
and used as metrics of confidence in the output.

Henne, Schwaiger, Roscher and Weiss [16] evaluate
different methods for uncertainty estimations from a safety-
critical perspective. In their paper, Monte Carlo dropout is
compared to three other uncertainty estimators. Further, the
Softmax output of the tested networks is used as a baseline,
together with the uncertainty estimations. The Softmax function
takes as input a vector y of R real numbers. Then it normalizes
the vector y into a probability distribution consisting
of R probabilities which are proportional to the exponentials of
the input numbers [17].

The performance of the networks is quantified with network
certainty and whether the prediction is correct, resulting in four
possible outcomes. The most critical outcome in a safety-critical
point of view is where the model is incorrect in its prediction,
yet confident that it is correct. The model’s performance is
determined by comparing the number of certain and correct
samples with the number of certain and incorrect samples. The
benchmark evaluation by Henne et al. [16] show that all tested
uncertainty estimations perform better when compared to
Softmax predictions. When applying the developed benchmark,
it is concluded that no one method can be said to have the best
performance. Further, the benchmark shows that sampling free
methods are more cautious, resulting in higher rejection rates of
false predictions. However, the high rejection rates also result in
predictions that are correct, becoming uncertain. Sampling-
based methods also show promising results in the benchmark
tests, but with certainty values higher when compared to
sampling free methods.

C. Hardware and software certification considerations
When it comes to hardware and software certification of

safety-critical systems using neural networks (NNs), traditional
design assurance methods may only be used for some parts of
the system. The software involved at algorithm level in the NN
part must use another approach, mainly because of the design
is dependent on the data set used for training the network. Also,
the full input space can typically not be used in the training
process due to the nature of the problems to solve, e.g. images
in the size of 512 x 512 pixels, each with 2^24 possibilities of
colors (assuming 8 bits per RGB color). The output results can
also only be statistically confirmed. Cluzeau et al. [1] have
addressed the concern with data dependent design by
introducing the W-shaped development cycle for learning
assurance as an extension to traditional design assurance. In their
development cycle, data used for training, validation and test,
become part of the development cycle and will be assured in the
same way as the rest of the design, to make sure systematical
faults have been reduced to an acceptable level. Cluzeau et al.
[1] assume no new hardware to implement the neural networks
and suggest therefore traditional hardware design assurance
methods to be used for the underlying electronics. In addition,
they assume a systems architecture which does not change
dynamically under normal operation. Adaptive system
architectures using machine learning are much more complex in
its nature and is a challenge of its own for use in safety-critical
systems. Yet, adaptive systems are common for similar systems
in domains other than aviation.

Since deep neural networks (DNNs) are heavily compute
intensive not only for training but for normal operation, it will
be a challenge to use traditional hardware as the underlying
electronics in the final system, including established
commercial-off-the-shelf (COTS) components. In fact, even if
these COTS components are well-established, they will be used
differently when used in a DNN such that service experience
assurance arguments may be of less significance. We believe
new emerging COTS-based computing-platforms such as
heterogeneous computing platforms exploiting massive
parallelism, will be used for real implementations of DNN-based
systems.

In previous research [18], we have suggested the use of
Overarching Properties (Intent, Correctness and Acceptability)
together with assurance cases to argument that assurance
objectives can be met for future computing platforms based on
new COTS technology. The informal meaning of the three
overarching properties are [19]: 1) What the product is
supposed to do is properly captured, 2) the product does what
it is supposed to do, and 3) the product does not cause harm.
The last one relies on that no development decisions do
compromise the original safety assessment. Figure 2 shows a
graphical example of an assurance case. For COTS we
introduced sub-claims on two levels, at the isolated COTS
component level and at the COTS integrated component level.
The top-level claim is COTS component operates demonstrably
airworthy in its system context. This claim is further divided into
initial and continuous airworthiness [18]. Assurance cases may
be used for both software and hardware design assurance [20].

Figure 2. Graphical presentation of an assurance case. The top-level claim
(leftmost) is decomposed until each sub-claim can be substantiated by evidence.
The argument part consists of strategies used to decompose claims and sub-
claims.

D. Robustness and adversarial attacks
To be able to use a DNN in a safety-critical system, it has to

be robust. It must handle unintentional variations in the form of
natural variations in inputs such as noise or degraded operations.
It must also be able to handle intentional variations made by
humans with the purpose to mislead the network to perform
incorrectly [5]. A major problem with DNNs is that small
changes in inputs (for humans seemingly invisible) can make the
DNNs completely fail in detecting the correct output [21, 22].
Human made disturbances are also called adversarial attacks and
can be applied during the training phase of the network or in
normal operation. Neural networks that dynamically learn
during normal operation are considered to be most vulnerable
for these kinds of attacks [5] and should therefore be avoided in
safety-critical systems. In addition, if proper learning assurance
is applied, such as the W-model described in [1], the risk for
adversarial attacks during training should be considered low.

The research field addressing intentional variations and
some natural phenomena, e.g. sensor degradation and aging, is
called Adversarial Machine Learning [5]. It has grown fast the
last years. Promising research show significant improvements in
making the networks robust, not only for intentional but also for
unintentional alterations.

E. Performance metrics
Naturally, many neural networks are trying to mimic a

perception function of some sort, but it is not universally defined
what ‘good perception’ is, rather it depends on the context of the
system in which the perception function is used. For the case of
vision guided landing the task is to detect runway(s) on the
ground and use the position of the detected runway to provide
navigational support to other systems. In this context it is critical
not to mistake a freeway or other road-like objects for a runway,
i.e. the precision of the detector of the runway class needs to be
high (minimizing false positives). Conversely when
approaching ground and we have runway in sight, the perception
task might now shift to detect foreign object debris (FOD) or
other (misplaced) vehicles disqualifying the use of the runway.
In this context it is critically important not to miss any such
object as this could lead to catastrophic consequences, i.e. the
recall of the detector is what matters (minimizing false
negatives).

F. Transient faults in deep neural networks
While most of the discussions concern systematic faults

when it comes to DNNs in safety-critical applications, transient
and permanent faults should not be neglected. In fact, DNNs are
in many cases vulnerable to soft-errors due to the internal
hardware structure used (e.g. accelerators with a large amount
of buffer memory) [23]. Traditional but expensive solutions may
of course be used for this purpose, i.e. triple modular redundancy
(TMR) with voting or rad-hardened hardware. In the case of
triplicating DNNs, failed units have to be detected and restarted,
if soft errors may occur often. Other solutions may use
information redundancy, e.g. error correction codes or cyclic
redundancy checks, to cope with soft errors in the DNN. In
addition, there are other methods that can be used. Schorn,
Guntoro and Ascheid [23] have developed a successful solution
for dealing with soft errors in DNNs, an error detection and
mitigation network (EDMN). They detect anomalies in the
output of the DNN with another monitoring NN. A feed-forward
neural network to detect critical errors in the large DNN. The
monitor network still has to be correctly trained which increases
the overall complexity of the system, but the results are
impressing (at least for their application - detecting road signs).
Since the EDMN is very small, this network may be triplicated
without much overhead, to overcome soft errors in the monitor.
To improve the error detection, they use time redundancy in the
form of sequential similar images, which they feed their EDMN
with.

Claim 1

Claim 1.1

Claim 1.2

Claim

Evidence
A

Argument

Claim 2

Claim 2.1

Claim 2.2

Evidence
B

Evidence
C

Evidence
D

Figure 3. One possible implementation of a system for machine vision-guided approach using a deep neural network in the form of a convolutional neural network
(CNN). The pre-processing merges the sensors and downscales the images. To detect transient errors in the robust CNN, a smaller neural network may be used as

a monitor. To mitigate for false and missed predictions in the CNN, an uncertainty estimation detector is discussed to be used in parallel with the CNN. To
mitigate for other incorrect CNN behavior, a history monitor is advised to be used in the post-processing part.

III. POSSIBLE IMPLEMENTATION
In this section we discuss one possible implementation of a

machine vision-guided approach system using a convolutional
neural network (CNN). A CNN is a is a class of DNNs which
applies to analyzing visual imagery. To overcome the presented
challenges, we believe a diverse redundant system is needed.
Figure 3 shows our possible implementation and the 15 bullets
below describe the solution in more detail. It should be
mentioned that one inspiration source for the discussed
implementation has been J.M. Cluzeau et al. [1] (Chapter 9.)

• Three different sensor types are used as inputs. These
are Electro-Optical (EO), Short-Wave Infra-Red
(SWIR) and Long-Wave Infra-Red (LWIR) sensors. By
using diverse sensors, the effects of snow, fog and heavy
rain seem more manageable.

• The preprocessing unit merges different sensor data and
downscales the images.

• To reach specific corner cases when training the CNN,
synthetic data must be created and used. Corner cases
may not be reached in a safe manner through real flight
data recording. Real flights are also very expensive. For
autonomous landing, different approach angles and
weather conditions should be synthesized. Software
should be used to correctly handle realistic rendering of
synthetic images, including programs to model weather
conditions physically correct.

• The CNN should be trained with a combination of
synthetic and real data. Synthetic data first and real data
afterwards, see [9].

• The CNN should be robust enough to handle both
intentional as well as unintentional variations, including
untrained input data. At least to an acceptable level. The
parameter describing the networks capability to
correctly classify untrained input data is called
generalizability [1].

• If a proper learning assurance such as the W-model [1]
is used, the susceptibility to human made variations
(adversarial attacks) during training is reduced.

• For the pre-processing and post-processing, traditional
design assurance à la RTCA/DO-178C and RTCA/DO-
254 should be used. For all neural networks where
training is part of the design, a learning assurance [1] or
similar process should be used in order to reduce
systematic faults to an acceptable level. If any new
COTS technology is used to implement the DNNs,
assurance cases may be discussed with the certification
authorities as an alternative method to argument that the
assurance objectives can be met. For an example of how
to use assurance cases for new emerging COTS
technology, see Forsberg and Schwierz [18].

• For the training data, a data set requirement
specification will address the properties of the data as
well as the safety cases and security requirements.
This will ensure the completeness of the training data

Main Robust CNN

EO sensor

SWIR sensor

LWIR sensor

Non-NN-based
safety monitor

Output

Global monitor

Output

Redundant system

Uncertainty estimation detector
(UED)

UED monitor

CNN transient
detector and

monitor
Pre-

processing
Post-

processing

History
monitor

Output

and independence in defining the training data from test
data.

• The neural networks used are static during operation,
i.e. they are trained, frozen and baselined before use.
Neural networks that dynamically learn during normal
operation add significant complexity [1] and are
considered more vulnerable to adversarial attacks [5].

• Different flight phases require different CNN
characteristics. When detecting the runway, false
positives should be minimized and when approaching
the runway, the CNN should shift to detect FOD, i.e.
minimizing false negatives. This could be performed by
training the network for the first scenario followed by
the second. At runtime, the CNN starts with the first
configuration and then reloads for its second task when
approaching the airstrip.

• The role of the uncertainty estimation detector in Figure
3 is extremely important. It mitigates (at least to some
extent) the major problem with deep learning methods,
to guarantee that the predicted outcome is correct.
Bayesian neural networks (BNNs) seem very promising
for this task, see e.g. [13] and [14].

• Depending on the underlying hardware, DNNs may be
vulnerable to transient faults. Typically, it is too
expensive to triplicate the DNNs, in terms of reliability,
capacity and power. Instead a much simpler DNN
detector and monitor may be used, see [23] for instance.
Several researchers also try to prune the networks while
maintaining robustness. Other methods to reduce the
hardware cost (size and power) include the use of the
residue number system [24].

• A typical monitor for real-time systems keep track of
the history of previous outputs. For our CNN, the
history of classified objects and moving targets may be
used. We have added this monitor in the post-processing
part in Figure 3. A similar approach is described by
Cluzeau et al. [1]. A history monitor may be very useful
in detecting incorrect CNN behavior.

• For our application, machine vision-guided approach,
an additional non-neural network-based safety monitor
that detects anomalies in the runway position by finding
the runway outline perspective view lines, may be used.

• For symmetric faults, we assume redundant systems are
used. See Figure 3.

IV. DISCUSSIONS
From the discussed implementation above, it is easy to say

that deep neural networks (DNNs) will be very hard to
implement in safety-critical systems. The most advanced DNNs,
the ones that can be trained during operation, or recurrent DNNs
(not mentioned earlier in this article) are so complex to predict
the results from such that they should be avoided in safety-
critical systems, at least until the community knows more about
how to handle those networks. But even for the “simpler”
DNNs, it is not sufficient to use the DNN itself since it can

incorrectly classify the objects to be identified or even miss to
detect the objects, to a too high degree. It is also impossible to
train or validate the complete input space. In addition, DNNs
typically need high-performance hardware during normal
operation, which often are vulnerable to soft errors. To protect
from these errors and false predictions, many of the best
solutions suggested from researchers often involve other simpler
neural networks, simply due to their supremacy in detecting
abnormal activations in large and complex networks. These
simpler networks may also be vulnerable to soft errors and
should be protected. Finally, the complexity in designing NNs
including DNNs to work correctly for its intended operations
need new assurance approaches to ensure systematic faults are
limited to an acceptable level. Some of these approaches also
seem to mitigate for intentional variations of the inputs, at least
during the training phase.

There are several sayings used in the safety community, e.g.
keep it simple or complexity is your enemy. So why on earth
should DNNs be used in safety-critical systems? Simply because
of their superiority in certain applications, e.g. object detection
and classification. No other solutions seem to be close to the
performance of the DNNs.

 In our future research, we will study fault-tolerant
architectures for safety-critical applications involving DNNs.
Our goal is to keep the systems as simple as possible, yet
sufficiently safe and efficient. We will also continue to research
design assurance for new hardware technologies supporting
DNNs.

V. CONCLUSIONS
In this paper we have introduced challenges in implementing

DNNs in safety-critical applications and proposed a solution to
cope with these challenges. The solution is mainly on a
theoretical basis. It addresses the holistic view of implementing
a working concept of DNNs in safety-critical airborne
applications. The outcome indicates that a real application will
be very complex to implement, which is in contrast to the
simplicity the safety community always strives for. The
complexity concerns both designing the intended function as
well as the monitors to achieve a fail-safe behavior of the
system.

REFERENCES

[1] J.M. Cluzeau et al., “Concepts of design assurance for neural networks
(CoDANN),” Public Report Extract, EASA AI Task Force and Daedalean
AG, Version 1.0, March 31, 2020.

[2] EASA, Artificial intelligence roadmap – a human-centric approach to AI
in aviation. Version 1.0, February 2020.

[3] SAE, “Artificial intelligence in aviation,” SAE Standardization
Committee G-34. [Online]. Available:
https://www.sae.org/works/committeeHome.do?comtID=TEAG34
[Accessed: July 15, 2020].

[4] EUROCAE, “Artificial Intelligence,” European Organisation for Civil
Aviation Electronics, Working Group WG-114.

[5] D. Redman, D. Ward and M. Carrico, “AFE 87 – Machine Learning,”
Aerospace Vehicles Systems Institute, Final Report, Issue 1.0, May 7,
2020.

[6] AVSI, “Machine Learning Certification,” Aerospace Vehicles Systems
Institute, Project AFE 89.

[7] The DEEL Project, “Dependable, Certifiable & Explainable Artificial
Intelligence for Critical Systems.” [Online]. Available:
https://www.deel.ai/ [Accessed: July 15, 2020].

[8] R. Salay, R. Queiroz and K. Czarnecki. “An analysis of ISO 26262: Using
machine learning safely in automotive software,” (2017): n. pag. Print.

[9] A. Gaidon, Q. Wang, Y. Cabon and E. Vig. “Virtual worlds as proxy for
multi-object tracking analysis,” In 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). Las Vegas, Nevada, USA, 2016,
pp. 4340–4349.

[10] J. Corné and U. Helander Sjöblom, “Investigation of IR transmittance in
different weather conditions and simulation of passive IR imaging for
flight scenarios,” M.S. thesis, KTH Royal Institute of Technology,
Stockholm, Sweden, 2019.

[11] A. Berk, P. Conforti, R. Kennett, T. Perkins, F. Hawes and J. van den
Bosch, “MODTRAN6: a major upgrade of the MODTRAN radiative
transfer code,” In Proc. SPIE 9088, Algorithms and Technologies for
Multispectral, Hyperspectral, and Ultraspectral Imagery XX, 90880H
(June 13, 2014); doi:10.1117/12.2050433.

[12] D. J. Fremont et al. “Scenic: a language for scenario specification and
scene generation,” In Proc. of the 40th ACM SIGPLAN Conference on
Programming Language Design and Implementation - PLDI 2019
(2019).

[13] B. Phan, S. Khan, R. Salay and K. Czarnecki, “Bayesian uncertainty
quantification with synthetic data,” 10.1007/978-3-030-26250-1_31,
2019.

[14] A. Levin and N. Vidimlic, “Improving situational awareness in aviation:
Robust vision-based detection of hazardous objects,” M.S. thesis, IDT,
MDH, Västerås, Sweden, 2020.

[15] S. Shafaei, S. Kugele, M.H. Osman and A. Knoll, “Uncertainty in
machine learning: a safety perspective on autonomous driving,” In:
Gallina B., Skavhaug A., Schoitsch E., Bitsch F. (eds) Computer Safety,

Reliability, and Security. SAFECOMP 2018. Lecture Notes in Computer
Science, vol 11094. Springer, Cham, 2018.

[16] M. Henne, A. Schwaiger, K. Roscher and G. Weiss, “Benchmarking
uncertainty estimation methods for deep learning with safety-related
metrics” In SafeAI@ AAAI (pp. 83-90), 2020.

[17] I. Goodfellow, Y. Bengio and A. Courville, Deep Learning, MIT Press,
Ch. 6., ISBN 978-0-26203561-3, 2016.

[18] H. Forsberg and A. Schwierz, “Emerging COTS-based computing
platforms in avionics need a new assurance concept,” In IEEE/AIAA 38th
Digital Avionics Systems Conference (DASC), San Diego, CA, USA,
2019.

[19] M. C. Holloway, DOT/FAA/TC-xx/xx: Understanding the overarching
properties: first steps, Limited release document, September 2018.

[20] J. Wlad, Verocel, “Certification initiatives ongoing for unmanned aircraft
systems,” in Military Embedded Systems, April 26th, 2018.

[21] A. Nguyen, J. Yosinski and J. Clune, “Deep neural networks are easily
fooled: High confidence predictions for unrecognizable images,” In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2015.

[22] E.R. Balda, A. Behboodi and R. Mathar, Adversarial Examples in Deep
Neural Networks: An Overview. In: Pedrycz W., Chen SM. (eds) Deep
Learning: Algorithms and Applications. Studies in Computational
Intelligence, vol 865. Springer, Cham, 2020.

[23] C. Schorn, A. Guntoro, and G. Ascheid, “Efficient on-line error detection
and mitigation for deep neural network accelerators,” In International
Conference on Computer Safety, Reliability, and Security, Springer,
Cham, 2018, pp. 205-219.

[24] M.V. Valueva, N.N. Nagornov, P.A. Lyakhov, G.V. Valuev and N.I.
Chervyakov, “Application of the residue number system to reduce
hardware costs of the convolutional neural network
implementation,” Mathematics and Computers in Simulation, 2020.

