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Abstract—RESTful APIs are an increasingly common way to
expose software systems functionality and it is therefore of high
interest to find methods to automatically test and verify such
APIs. To lower the barrier for industry adoption, such methods
needs to be straightforward to use with a low effort. This paper
introduces a method to explore the behaviour of a RESTful API.
This is done by using automatic property-based tests produced
from OpenAPI documents that describe the REST API under
test. We describe how this method creates artifacts that can be
leveraged both as property-based test generators and as a source
of validation for results (i.e., as test oracles). Experimental results,
on both industrial and open source services, indicate how this
approach is a low effort way of finding real faults. Furthermore,
it supports building additional knowledge about the system under
test by automatically exposing misalignment of specification and
implementation. Since the tests are generated from the OpenAPI
document this method automatically evolves test cases as the
REST API evolves.

Index Terms—Property-based testing, OpenAPI, REST

I. INTRODUCTION

Representational state transfer (REST) is an architecture
style, introduced by Fielding, that describes constraints on
web services [[1]. With REST, a system resource is exposed
by a URI and created, read, updated and deleted with HTTP
verbs. A service that uses the REST architecture is said to
be RESTful. REST APIs are a common way of exposing web
services on the internet. The web-site Programmablewel{!]con-
tains more than 20,000 APIs in their directoryﬂ This includes
well known services such as Twitteﬂ YouTubeﬂ FacebookE]
and cloud providers such as Microsoft Azurdﬂ and Amazon
Web Servicesﬂ REST APIs are also commonly used when
exposing internal interfaces in a microservice architecture [2].
Test methods targeting REST APIs can thus be useful both on
the internal and external interfaces of a software system.

The automatic exploration of RESTful APIs has the po-
tential to save developer and tester effort, get insights from
the system under test (SUT) and fill the gaps of lack of tests
where such gaps exist. Recent results by Atlidakis et al. [3]]
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and Arcuri [4] have shown that fault finding can be done
automatically for REST APIs, both as a black- or white-box
approach. We think such approaches could help developers and
testers in exploring functionalities of REST APIs, particularly
if more properties are evaluated other than HTTP status codes.
In our experience, exploring functionalities of a SUT is
mostly a manual effort in industry, and for good reasons.
Some insights about a SUT need a human in the loop, such
as evaluating if a usability pattern makes sense in the given
domain. However, it may be valuable to automate the parts
of exploration that can be done by machines, and in doing so
freeing up human effort to be spent where it is of best use.
REST APIs are increasingly commonly described with
OpenAPI 5], which aims to standardize how RESTful APIs
are described. Several frameworks for building REST APIs
also include OpenAPI support. The OpenAPI document speci-
fying REST APIs opens up an interesting way for an automatic
tool to interact with the SUT, thus serving as a possible
interaction model for automatic exploration of REST APIs.
However, the interaction model is only one piece of the
puzzle. Methods for generating input data to tests and some
way to evaluate the results, an oracle, are also needed. In
addition, to have a useful technique in industry, a meaningful
and efficient test reporting is also of high importance. If
analyzing the results from automated testing is associated with
a high cost, potential adoption in industry might be rather low.
In this paper, we propose a method to leverage OpenAPI
documents to automatically generate tests. Test inputs are
generated using a two-fold mechanism: (i) randomly generated
values that are agnostic to the specification, as well as (ii)
randomly generated values that conform to the parameter
specification in the given OpenAPI document. Test oracles,
used to provide verdict on the conformance of response data,
are also automatically generated from the OpenAPI document.
They assert the REST API results in a property-based fashion.
The choice of property-based testing is made due to its
suitability for random exploration, the availability of libraries
in that domain, and the feature of shrinking. Shrinking is a
feature that, when a test case fails, aims at producing the
smallest failing example possible. Property-based testing also
allows for formulating and checking several properties of the
test results such as if the response body conforms to a given
specification, resulting in a stronger oracle than only asserting



on the status code of an HTTP response.

In order for our method to be suitable to a wide range of
REST APIs, with as little developer effort as possible, we
develop the method as a black-box approach. The approach
described in this paper has been evaluated in an industrial case
study at ABB and on the large open-source software (OSS)
GitLah?| Experimental results show that we can find faults and
gain insights of the SUT given an OpenAPI document in an
automated way.

To summarize we make the following contributions:

e We introduce a method to help developers and testers

automatically explore RESTful APIs with low effort.

e We describe how the combination of available open
source libraries can be used to implement such a method,
as well as provide a proof-of-concept implementation,
thus lowering the barrier of entry for industry.

« We investigate how the configuration of generators effect
the status code coverage and fault finding probability.

o We present the results of applying the method to multiple
APIs developed and used in industry as well as in OSS.

II. BACKGROUND

Before going into the details of this work, we would like
to provide some context and explanations of the terms used.

A. OpenAPI

OpenAPI, also known as Swagger, is a way of describing
REST APIs [5]. OpenAPI specification describes the for-
mat which needs to be followed by an OpenAPI document.
OpenAPI document describes an instance of a REST API
whose description follows the OpenAPI specification.

Since much of the documentation and tooling around
OpenAPI refer to Swagger it is worth to mention the history of
the names. Swagger was the original name prior to OpenAPI,
when the ownership was given to the OpenAPI Initiative [6].
The Swagger name is still used to refer to the tooling as well as
the OpenAPI specification. However, in this paper, we further
refer to it as OpenAPI. We have also chosen to target the 2.0
version of the OpenAPI specification [7]]. The reason to not
use the later, 3.0 version, is that the 2.0 is still largely in use
and it is the version used in the industrial system which is part
of our evaluation.

An OpenAPI-described REST API contains a set of avail-
able HTTP verbs (GET, POST, PUT etc.), the parameters and
the responses. The parameters describe where the parameter
is used in the request (path, query, body etc.), its name, type,
and format. Responses are indexed by an HTTP return code
and provide details of the structure of the response, if it is a
value, an array or a complex object.

Figure |1| shows a simple example of an OpenAPI document
described in JSON format, which is following the 2.0 version
of the OpenAPI specification. We can see examples of the
available paths and its parameters and expected results. In
addition, there is a small definition that specifies the structure
of a data type, called object in this example.

8https://about.gitlab.com/

1| {"swagger": "2.0",

2| "info": {

3 "version": "1.0.0",

4 "title": "Example Service API",
5| "basePath": "/theservice",

6| "paths": {

7 "/api/vl/objects/{objectId}": {
8 "get": {

9 "tags": [],

10 "summary": "Object model lookup",
11 "parameters": [

12 { "name": "objectId",

13 "in": "path",

14 "required": true,

15 "type": "string",

16 "format": "uuid"}],

17 "responses": {

18 "200": {

19 "schema": ({

20 "Sref": "#/definitions/ObjectInfo"}}}}1},
21 "definitions": {

22 "ObjectInfo": {

23 "type": "object",

24 "properties": ({

25 "objectId": {

26 "format": "uuid",

27 "type": "string"},

28 "name": {

29 "type": "string"}}}}}}

Fig. 1. OpenAPI document in JSON-format

B. Property-based testing

The main idea of property-based testing (PBT) is to generate
input data and to check if defined properties hold when exer-
cising the SUT with that input. To get a better understanding
of the basic principle, let us look at an example of using PBT
to test a sort function, which sorts a given list of numbers. The
first step would be to generate a random list of input numbers.
Such a generator is most likely included in a PBT library, but
if not, the means to create custom generators are typically
there. When we know that we can generate input data we can
formulate a property of the function. An invariant of the sort
function is that the number at position n in the resulting list
should be less than or equal to the number at position n+1.
To make this into a test we will check the property. Checking
will exercise the SUT for a given number of iterations. Each
iteration is given input data from our generator and verifies
that our defined property holds for each such input.

The feature of shrinking is also common in PBT. This means
that whenever random data has been generated to which a
property has failed, the library will try to find the smallest
input that fails the property in the same way by shrinking it.
An example of shrinking is provided later on in Section

Formulating properties can be challenging. One such chal-
lenge is how to make a model of the SUT without re-
implementing the functionality of the property to be tested.
This challenge can be avoided by instead of trying to model
the implementation, formulating invariants or symmetries.
Examples of invariants of a sorting algorithm are that the input
and the output should be of equal length and that all input
values should exist in the output. These invariants are true
given any randomly generated input. Further, depending on
the problem at hand we might be able to find symmetries that



should hold. A symmetry is when the input data is invariant
given a set of operations. As an example, consider a lossless
compression algorithm. If we start with generated data and
then compress and decompress the data, the symmetry of the
compression should ensure that we end up with the same data
that we started with.

QuickCheck [8]] is known as the first tool for property-based
testing. Today there exist re-implementations of QuickCheck
in a number of languages, reaching multiple platforms. A
few such examples are PropEr [9] for Erlang, ScalaCheckﬂ
for Scala on the JVM, and FSCheck{T_U] for F# on .NET. Our
implementation uses the Clojure variant called TestCheck}
TestCheck contains basic generators and also the components
needed to define own more complex generators. A reason to
choose TestCheck is that Clojure.spec can produce TestCheck
generators out of data specifications.

C. Clojure.spec

Clojure.specfz] is a library for the ClojureE] functional
programming language. Clojure.spec provides functionality to
define specifications of data and to validate if given data
conforms to such a specification. These specifications are
referred to as specs. Clojure.spec also provides means to
produce random data generators given a spec. As we shall see,
this gives us leverage in our approach when we can use specs
to both generate random input data and to validate responses.

As a small example to give an intuition of the basics of a
spec, here is an example of a spec called ::age that defines that
to be a valid age the given data must be a natural integelm
and less than 150.

(s/def (s/and nat—-int? #(< % 150)))

The simplest form of validation is to use the valid?
function. The result will be a boolean representing if the data
is valid checked against the spec.

(s/valid?

To use this spec as a generator we first create a generator
from the spec with gen. This returns a generator for that spec
that can be used in any place where a generator is needed.

Here we use it to produce 10 sample values.
(002111016 1 26 8)

:rage

:tage 15) => true

(sample (s/gen ::age)) =>
The benefits of using Clojure.spec is both that we can use
it as a random data generator and that we can leverage the

same specs for validation.

III. PROPOSED METHOD

We propose a method that for a given specification,
OpenAPI in our case, produces input generators that are
used in property-based tests as well as produce automatic
oracles. The properties checked in the tests, with previously
produced input generators, are a combination of predefined

9https://www.scalacheck.org/
10nttps://fscheck.github.io/FsCheck/
https://github.com/clojure/test.check
2https://clojure.org/about/spec
Bhttps://clojure.org/

4Inclusive of 0, according to ISO 80000-2

static properties and properties automatically derived as valid
responses from the specification. Static properties are provided
as status codes since success/failure codes are built into HTTP,
while valid responses are specified in the OpenAPI document.
This produces an automatic oracle that is able to validate if
response from the SUT conforms to what is specified, as well
as able to identify discrepancy in the given OpenAPI document
and response codes received from the SUT.

We aim for a black-box method for test generation of
REST APIs, that is as automated as possible. The reason for
choosing an automatic black-box approach is to make it easy
for developers and testers to use, and for the method to apply
to any system using an OpenAPI documented API. We are thus
not constrained by implementation details such as languages
and platforms.

The proposed approach also makes it straightforward to
guide input when it is needed, by having custom generators.
This allows testers and developers to guide the input in a way
that makes sense for a given SUT. For example, the distribution
of string generation between any kind of strings and pattern-
based strings, like alpha-numeric strings or UUID (Universally
Unique IDentifier), can be changed. By doing so, we can
ensure that the SUT receives both valid and invalid inputs.
A high frequency of any kind of strings would test the SUT
in a more fuzzy approach while generating valid input expose
a higher number of functionalities in the SUT to be tested.

In addition, our method proposes the bidirectional use of
the specification. By doing so, a specification is used both
to generate valid input as well as to generate a verdict in
the form of an automated oracle. The oracle is used to
validate that responses conform to the given specification.
Since this method automatically derives tests and oracles from
the specification of the API under test, both the tests and
oracles will automatically evolve with any changes to the API
and its specification.

To make results approachable and useful, we propose to
leverage the already available method of shrinking, where any
property that fails will produce a result that is shrunken to its
smallest reproducible case.

Furthermore, we seek to support additional test objectives
to fault finding during the testing of the API. Finding faults
and failures while fulfilling coverage criteria are considered
traditional goals of a testing process and we would like to
extend this goal with our method. The properties of an API
that are validated when running our generated tests include not
only correctness measures but can also check, for example,
that all received responses are part of the specified behaviour.
Such properties give the ability to draw insights of how the
SUT behaves. If a response code is received that is not part
of the published OpenAPI document, then the behaviour of
the SUT and the specification have diverged. While this may
not be a fault in the system’s behaviour, it is nevertheless an
important insight.

In essence, running tests that only result in a pass or fail
result is a missed opportunity to gain new knowledge. If a test
passes 100% of the time, over time the probability of a failure



will be lowered for each test execution, a point will be reached
where no new knowledge is gained about the SUT with the
computing effort given. As stated by Feldt, such a test case,
still active but not effective for finding failures, has grown
old [10]. We try to solve this lack of knowledge gathering
by generating new test cases that evolve with the selected
interaction model, when the OpenAPI document describing
the service evolves so does the tests generated, and to not
only focus on fault finding properties.

IV. IMPLEMENTATION

To evaluate our proposed method, we implemented a proof-
of-concept tool, called QuickREST [11]]. QuickREST lever-
ages our method and applies it to REST APIs that are specified
with an OpenAPI document.

The overarching process of QuickREST when applying our
method to REST APIs, which will be described in detail in
following subsections, is as follows:

1) Acquire the OpenAPI document, via HTTP or a file.
2) Parse the JSON document to an internal format.

a) Attach specifications for the parameters.
b) Attach specifications for the responses.

3) Generate specifications for data definitions.
4) Make test generators based on the specifications.
5) Check the properties for each of the HTTP verbs defined.

a) If in a stateful sequence of operations, store the
response.
b) Select next input from the collected responses.

6) Report the test result.

Figure 2] is an example of how a REST API, as described
in Figure [T} would be processed and tested.

A. Parse the JSON document

The first step of parsing is to represent the JSON data
of the OpenAPI document in a format that is more suitable
to work with in the language of choice. The JSON data is
translated into extensible data notatiorE] (EDN), which is a
subset of Clojure, making the data of the OpenAPI document
very accessible in a Clojure program.

The second step of parsing is to attach Clojure.spec specifi-
cations to the defined parameters and responses. The attached
specs will be used both for input generation and for result val-
idation. Figure [2] shows an example of this where "Objectld”
(12 - 16 in Figure [I) and “ObjectInfo” (22 - 29 in Figure [T
are attached and used.

The OpenAPI specification for parameters and responses
state that the type can be a basic value-type such as number,
boolean etc. or a schema reference to a complex object.

For basic value types, predefined specifications were made
in the implementation. During parsing, the parameter/response
type is then mapped to the spec for that specific type and
format. For example, the OpenAPI parameter type of string
with the type of UUID will map to the predefined spec shown

Bhttps://github.com/edn-format/edn

Value type param
"Objectld"

Complex type param
"ObjectInfo”

-
l OpenAPI Document
i
i
|
|
|
|

v EDN representation \

string-uuid"

|
|
Complex type spec !
"Objectinfo" !

3. Generate from
Spec

Test generation

"/api/vl/objects/<random UUID>"

|
i
| Path generator
|
|
|

| . |
i Properties 2 !
I None 500 . Documented I
i Status code Relicibesl status code | |

|
|

Fig. 2. Example of creation and usage of Specs

in Figure {] This spec specifies (line 4) that the input should
be a string and match the regular expression of a UUID. The
: :string-uuid spec has a custom generator that generates
a UUID and then makes a string from that UUID. We need
a custom generator in this case since the default one would be
a string generator. The likelihood that the default generator
would generate a random string that actually matches the
UUID regex is very low and generation would fail.

The types in the OpenAPI document that are references to
complex objects will be parsed and a reference to a spec is
attached. The definition in Figure [3| that references an array
of ObjectInfo will be attached as a reference to the spec
rarray/ObjectInfo. In the case where the reference is to
a single object and not to an array, as the 200 response in Fig-
ure [T} the result would be :definitions/ObjectInfo.

In summary, the parsing step of our process starts with
the OpenAPI document in JSON format and results in the
OpenAPI document represented in a format suitable for further
processing, specifications attached to basic value types and
reference types, for both parameters and responses.

B. Generating specifications of the definitions

To be able to use the spec references of parameters and re-
sponses of complex objects, for input generation and response
validation, the actual specs need to be created.



{"200":
{"description":"The query request was su
"schema":
{"uniqueItems":false,
"type":"array",
"items":{"$ref":"#/definitions/ObjectInfo"}}}}

ccessful.",

o v A W —

Fig. 3. Definition of complex object reference

(s/def
::string-uuid
(s/with-gen
(s/and string? #(re-matches uuid-regex %))
#(gen/fmap str (s/gen uuid?))))

[T ST -

Fig. 4. A string uuid spec

The specs are created based on the definitions part of the
OpenAPI document. The definitions specify the types used by
other parts of the document, such as parameters to HTTP verbs
or expected responses. The definitions are specified using the
JSON Schema specification [[12]. Given that the definitions
are defined in JSON Schema, implementation is needed to
translate JSON Schema to Clojure.spec specifications.

Figure [5] shows an example of how the EDN represen-
tation of the definitions part of the document in Figure [I]
is used to produce specs. Lines 1 - 8 show the call to the
definitions-to-spec function with two arguments. The
first argument is a string naming a namespace for the resulting
specs, used to avoid naming conflicts. The second argument
is the EDN-data produced by parsing the JSON Schema.

The result of this function call are three specs: One for each
property of the object and one that ties these properties to the
object. The specs for the properties, lines 10 - 12 in figure [3
reference the predefined specs for that type and format. The
spec defining the object, starting in line 13, states the name
of the spec, :definitions/ObjectInfo, and that the
object is a collection of keys followed by the expected name
of the keys, which also is a reference to its spec.

When the specs have been created for all definitions in the
document, the pieces needed to be able to generate input data
and to validate responses are in place.

C. Make test generators

To automatically produce examples of the request param-
eters in the document, generators are required. According to
the OpenAPI specification, parameters can be of five different
kinds. Those are Path, Query, Header, Body, and Form []].
The tool’s request generator must take those different kinds
into consideration since the HTTP request will look different
for different kinds of parameters.

For example, if the type of the parameter is query, the
generated parameter value should be included in the URL as
/objects ?id=value where id is the parameter. In the case of a
body parameter nothing changes in the URL but the generated
parameter value should be included in the body value of the
HTTP request.

(definitions-to-specs

1

2 "prefix"

3 {:ObjectInfo

4 {:type "object",

5 :properties

6 {:objectId {:format "uuid",
ttype "string"},

8 :name {:type "string"}}}})

9| =>

10| ((s/def :prefix/objectId

11 :openapi.specs/string-uuid)

12| (s/def :prefix/name :openapi.specs/string)
13| (s/def

14 :definitions/ObJjectInfo

15 (s/keys :reg-un [:prefix/objectId

16 :prefix/name])))

Fig. 5. Edn representation to specs

(gen/sample
=>
({:objectId "2acf532d-c60e-472c-8530-c3b5d138327b",
:name ""}

:objectId "3cbOfcbe-2f6f-47c6-83de-bccca7c3fdec3",
:name "Ax"}

{:objectId "148aab47-61a8-4132-8d79-2572c015b822",
:name "WNDPO"})

(s/gen :definitions/ObjectInfo))

1
2
3
4
sio{
6
7
8

Fig. 6. Generation of data from spec

When making the generators we use the specs that have
been attached to each parameter. We can leverage that Clo-
jure.spec has the ability of producing TestCheck compatible
generators from specs. Figure [6] shows an example of how
straight forward it is to generate examples when we can use
the specs created in previous steps.

The URL generators will iterate over each parameter and
insert the generated value in the URL (Path, Query) or as
attached data (Header, Body, Form). To increase the likelihood
of generating edge-cases the generators can generate data
that is outside the specification. In the OpenAPI document,
parameters can be marked as required. This will be reflected in
the specs produced and such values will always be included in
the generated value. However, the generators can be configured
to not include required parameters. This allows the generators
to produce test cases that test the SUTs ability to handle
missing input. Further, generators can also be configured to
produce values out of range.

The result of this step are URL generators that can randomly
produce valid URLSs to call the API with random input.

D. Check properties

With all the specifications in place for the documents
parameters, responses and definitions, as well as the generators
for the URLs, the last step is to build the test properties
and check them. The form of the properties are that for all
generated URLs for an endpoint, the responses should:

e have a non 500 status code
¢ have a body payload that conforms to the defined spec
e have a status code that is defined in the document



To be able to use previously gained results, stateful proper-
ties can be used. Two ways of implementing stateful properties
are to either feed the current state to the generators or to use
the current state as a guard.

If the state is given to the generators, the next generated
input will be randomly selected from the current state. As an
example, a stateful generator could be given a list of valid
objects to perform a lookup operation on and return a random
item from that list. In the second case a model such as an FSM
can be used to verify if the generated data is valid given the
current state in the model. If it is not valid it will be thrown
away and a new value will be generated.

To be able to generate requests that contain valid input we
have used the approach where we give previous results as input
to some generators. This is explained further in Section

When using a property-based approach, testing the SUT
is the process of checking that our defined properties hold
for the generated URLs and input data. The process of one
test run is then to map the check function on all our URL
generators. Given the generated URL the API will then be
called. The received result will be checked for the properties
defined. The number of tests generated for each end-point is
easily configured.

E. Stateful sequences

It quickly becomes apparent that to be effective for stateful
systems and to be able to have status code coverage our
approach needs to be more intelligent than what only randomly
generated input will give. This is also a finding of Atlidakis
et al. [3]. For example, if looking up an object is done via
a path parameter with the URL template /objects/{id} and
the parameter is specified as a UUID, then the probability of
randomly generating a UUID that is identical to an object in
the system is very low. Most likely, one would get only 404
response codes (object not found), and never cover the case of
looking up an actual object in the system (status code 200).

Our approach is to start out with a pure random input and
if we get any result, creating new resources or finding existing
ones, store that as a source for future input generation. This
means that if we generate a search string that gives a result
that was not empty, we store the objects returned. At the next
step when generating data for the endpoint that requires an
id we search the stored results for entities that contain the
attribute id, if we find any, those entities are then used as a
source for our generator. In our implementation we simplified
to only support objects with id as identifier but the method
can be generalized with more engineering effort.

We then start out with pure random input, which is also
useful as fuzzy testing, but as we are successful in searches,
we learn valid objects that are stored in the system.

FE. Report the test results

To be useful to practitioners the presentation of testing
results is important. To save time it should be easy to see the
overall result of the test run, but at the same time enough
details should be provided to debug any failing test. The

1| ;; Successful result

2| {:result true,

3 :pass? true,

4 :num-tests 100,

5 :time-elapsed-ms 8607,

6 :seed 1558358174968}

7

8| ;; Failed result

9| {:shrunk

10| {:total-nodes-visited 10,
11 :depth 5,

12 :pass? false,

13 :result false,

14 :result-data nil,

15 :time-shrinking-ms 791,
16 :smallest

17 [{:url

18 "http://service/api/vl/objects?query=<...>",
19 :body [1}1},

20 :failed-after-ms 5666,

21 :num-tests 38,

22| :seed 1558358168511,

23 :fail

24 [{:url

25| "http://service/api/vl/objects?query=<...>"
26 :body []1}1,

27 :result false,

28 :result-data nil,

29 :failing-size 37,

30 :pass? false}

Fig. 7. Default output from TestCheck

default output of TestCheck gives a succinct view of the result.
Figure[/| provides an example of a successful and failed result.
When a test fails, TestCheck will report the failed input and
the smallest example after shrinking.

In addition to the output from TestCheck, our implemen-
tation collects data on each test executed. Each API call
is recorded, and each returned result is also stored. This
information can be used by developers when debugging any
failures found. In addition to serving as debug information of
all calls made, it is also used to present a frequency table of
each endpoint and its return codes. This table shows the URL,
the verb called, the response code, and how many calls had
this return code. It is thus possible to analyze if all endpoints
were tested and if all expected return codes were covered.

V. EVALUATION

To evaluate the proposed approach, a multiple case study
was undertaken. The research questions we investigated were:

« RQI1: How do different stateless generators compare in
terms of response code coverage and fault finding?

o« RQ2: How do stateful generators compare to stateless
generators in terms of response code coverage and fault
finding?

e RQ3: Which additional insights, supplementary to fault
finding, can the approach provide?

To answer these questions, we developed a proof-of-concept
tool, QuickREST, that implements the proposed approach and
applied it in our experiments on several services developed in
industry and one open-source project.



A. Studied Cases

The cases selected to evaluate the proposed approach were
a collection of services developed as a back-end for a mobile
application in industry, and the open-source development man-
agement service GitLab. The mobile back-end was selected
since it was available at our industry partner and that it
was composed of services with a REST API described with
OpenAPIL The reason for selecting GitLab as a testing target
is to be able to compare our approach with another approach
of testing REST-APIs (i.e., using RESTler [3])).

1) Mobile back-end: The system has two main parts. The
client side is a mobile application running on either Android
or i0S. The main use cases for the mobile application are to
search for process objects, such as motors or pumps, and to
display information of these objects. The information ranges
from name and type to trends of live run-time values.

The mobile application connects to a back-end that is
specifically designed to serve the mobile application. The
back-end consists of several services that work together to
solve the mobile client use cases. These services are web-
services and expose their APIs via REST. The API is also
described using OpenAPI. These are the services that we have
been using as our system under test.

2) GitLab: As stated by GitLab, ”GitLab is a single ap-
plication for the entire software development lifecycle. From
project planning and source code management to CI/CD,
monitoring, and security” [[13]]. GitLab can be run both as
an on-premise solution or as a Software-as-a-service (SaaS)
hosted by GitLab. GitLab is available both as a community
edition (GitLab CE), which is open-source, and a enterprise
edition (GitLab EE), which is closed-source.

GitLab has an extensive REST API [14]. However, there
is no official OpenAPI document describing the API. For
our evaluation, we have manually produced an OpenAPI
document including the end-points selected for inclusion in the
experiments. The selection was based on the API operations
evaluated by RESTler [3]. With that selection we knew of
the existence of a bug [[15]], requiring a stateful interaction
of first creating a resource, delete the resource and then edit
the deleted resource, all within a very short period of time.
With the knowledge of this bug we could try to reproduce the
findings of RESTler with our method.

We ran GitLab CE locally via a monolithic Docke file
[16]. Being monolithic means that the different services that
make up a GitLab installation run as one node. This is not
a setup for high performance, compared to installing GitLab
on a cluster of servers, but it is a setup that is reasonable for
a developer to test on as part of their development workflow,
thus making it interesting.

B. Experimental Setup

In the evaluation, we exercised all services of the described
mobile back-end system as well as the selected GitLab end-
points. Each evaluation run of a service consisted of each
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individual end-point being tested with randomly generated
input. Each end-point was exercised with 10 tests per iteration
and after 30 iterations the number of tests were increased by an
order of magnitude. The increase in the number of test cases
per iteration allows for larger sizes of the generated input.
The returned status codes were used as a coverage criterion
and included in the test reports. We wanted to cover all status
codes defined in the OpenAPI document.

To enable evaluation of RQ1, different frequencies for basic
type generators were explored to observe if this changed the
number of bugs found. In the first iteration of evaluation,
alphanumeric strings were used as the basis for random
string generation. The reason being that we would generate
valid URLs. In later iterations any string was used to also
include invalid input. To further evaluate the effect of different
generator frequencies two end-points, where input validation
bugs had been found in GitLab, were selected. One of these
end-points required string input and one required integer input.

To evaluate stateful interactions compared to stateless in-
teractions (RQ2) sequences of API calls were generated and
executed. The result of each call, if it had a body with a
payload, were stored in an in-memory database. This made
previous results available for input selection of coming calls
in the sequence. For example, if the first call in the sequence
was a successful POST operation that returned a new resource,
that result was stored. If the second operation was a DELETE
that required an id, a search would be performed in the
database for an id property. If found, that result was used
as input. This made sure that we could evaluate valid stateful
sequences. If no previous results were present in the database,
input was generated in the same way as for stateless tests. To
evaluate if the stateful generators could find faults we aimed
to reproduced a known bug in GitLab found by RESTler [15]],
requiring a stateful interaction.

In the experimental setup each endpoint of the service
described in the OpenAPI document was individually tested.
Specs were derived from the OpenAPI document and then
used as generators. The generator for each endpoint was then
given to TestCheck to validate if the defined properties would
hold. The properties would check for status codes that do
not indicate a crash, that the body of the response was valid
according to the specification, and that the returned status code
in the response actually is specified in the OpenAPI document.
The last two properties were used to evaluate RQ3, where
any failed check on those properties indicate a misalignment
between the SUT and the OpenAPI document.

C. Results

1) RQI: How do different stateless generators compare in
terms of response code coverage and fault finding?: In the
experiments, we defined bugs as test cases that resulted in
a 500 status code. We found several new bugs during the
experiments using a fully automatic approach, both in the
mobile back-end and in GitLab [17]-[20]. The tested APIs had
no problem in handling random input of alphanumeric strings.
However, when the string generator was changed to include



TABLE I
GENERATOR EFFICIENCY FOR STRING VALIDATION BUG

T'rqi1 show the percentage of iterations that found the bug using either a
generator producing any string or a generator only producing alphanumeric
strings. Each setup was iterated 30 times.

Test cases / Iteration Generator Ty,

Strings ~ A/N Strings

100 0.0% 0.0%

1000 13.3% 0.0%

10000 63.3% 0.0%
TABLE II

GENERATOR EFFICIENCY FOR INT VALIDATION BUG

T'rqi1 show the percentage of iterations that found the bug using either a
generator producing any integer or a generator only producing natural
integers (>0). Each setup was iterated 30 times.

Test cases / Iteration Generator Ty,

nat-int int

10 0.0% 0.0%
100 93.3% 60.0%
1000 100.0%  100.0%

any strin not only alphanumeric strings, bugs were quickly
found. This set of bugs was produced without any statefulness,
i.e. without taking previous interaction results in consideration,
or generating sequences of API calls. Since these bugs were
not dependent on any sequence of calls or specific states, all
bugs were categorized as input validation bugs.

As described in the setup, two known bugs in GitLab were
selected to evaluate the ability to find bugs by the different
type of generators. Table [I| shows the effectiveness in finding
the input validation bug where a string was required and
Table [l where an integer was required. Looking at the test
results of the string and integer generators, it is reasonable to
think that we should always use the string generator and the
nat-int generator since those were most effective in finding
the input validation bugs. However, in addition to finding
faults, effective generators should produce input that result in
coverage of all defined response codes. Table [lII| presents the
frequencies of different response codes for a POST method
in GitLabs API, when tested with generators with different
probabilities of strings and alphanumeric-strings. In Table
we can see that the string generator is useful for finding the
input validation bug (500) but will not generate any input that
is valid for the end-point, no 201 responses. To achieve full
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TABLE III
RESPONSE CODE COVERAGE OF POST METHOD

Using the POST method of an API path with a known bug coverage should
include 201 (resource created), 400 (bad request) and 500 (internal server
error). 100 test cases / iteration for 30 iterations.

Response Generator P(Str, A/N Str)
Code {1,0} {o0,1} {05,05} {0.3,0.7} {0.1, 0.9}
201 0.0% 86.5% 15.7% 30.5% 63.0%
400 83.6% 13.5% 71.0% 55.2% 31.8%
500 16.4% 0.0% 13.3% 14.3% 5.2%

coverage of the defined response codes a mix of generators
had to be used.

The automatic generation of generators might then, depend-
ing on the implementation, produce generators that do not get
full response code coverage. To mitigate this, it is valuable
to allow the user to tweak the generators or let the imple-
mentation learn a distribution that results in full coverage. In
summary, care should be taken when implementing automatic
generators to produce the intended range of input values.

2) RQ2: How do stateful generators compare to stateless
generators in terms of response code coverage and fault
finding?: We reproduced the known bug in GitLab that re-
quired stateful interactions [[15]. A stateful interaction requires
stateful generators, that use data previously seen as a basis to
generate new input. Therefore it was not possible to find those
kinds of faults with only stateless generators.

Stateful generators greatly increased the likeliness of getting
response code coverage on API operations that are dependent
on some existing state. Covering a successful response code
of a DELETE operation was substantially simplified by first
creating the resource with a stateful generator. To get the same
coverage with a stateless generator an existing UUID must be
generated, and that probability will be low.

While stateful generators simplify covering some cases, they
bring their own set of challenges. When random sequences of
API calls are generated, random input can be used. But to
be able to perform multiple operations on the same resource,
the identity of the resource should be selected from a known
source, as a database or model. To be effective, stateful
properties can use random input for the creation of new
resources and random sequences of API calls, but guided input
to be able to perform multiple operations on the same resource.

In the cases where the identity of a resource is not consistent
in an OpenAPI document, a mapping might be required from
the user. For example, if a POST request on api/persons is
performed and the result is a JSON object with the identity
property of personId but the DELETE end-point is specified
as api/person/{id}, we need some input to make that connec-
tion. Hence, stateful generators are limited to how well the
identity relationships are expressed in the specification. This
is also an area where the implementation could apply learning
to realize implicit resource relationships in complex systems.
In summary, random input is effective for both stateless and
stateful properties but need to be guided for stateful resource
selection.

3) RQ3: Which additional insights, supplementary to fault
finding, can the approach provide?: We found that several
of the service APIs were under-specified. Consequently, the
tests produced a failure when a response code is received that
could not be found in the given OpenAPI document. The lack
of specification was both for responses and parameters. For
the responses the tool could automatically detect this since it
is expressed in the properties checked during testing. To find
the under-specified parameters we had to check the log files of
the SUT. An example of an under-specified parameter was one
that was specified as an array of strings but, to be valid input



to the SUT, it had to be an array of strings with the format
of UUID. From the tools perspective, it got a 400 status code
(i.e., malformed input) but the tool could not infer that this is
due to lack of specification rather than random input. Looking
at the logs of the SUT made the problem apparent, since the
input was logged as not conforming to UUIDs.

The UI of the SUT was used after running several tests.
This revealed that in some places very long strings, that had
been produced as random input, were not truncated and made
the UI look bad.

Most of these problems were found by observation by a
human. It could be argued that this then could be found
without any tool. But we found that the tool is an augmentation
to a human doing exploratory testing. The human tester does
not have to manually produce test cases but can run the tool
and act as an observer.

VI. RELATED WORK

Property-based testing has been used to find faults with
success on real industry systems, in multiple domains, such
as telecom systems [21]], file synchronization services [22],
automotive systems [23|] and databases [24].

For web services, as we target, PBT have been used for
services implementing Web Services Description Language
(WSDL) specifications, translating the specification to gen-
erators and properties [25]-[27]. For REST services Seijas et
al. proposed PBT, however according to the authors this was
a highly manual approach [28].

Jsongen, is a library for Quviq QuickCheck introduced by
Fredlund et al. [29] to generate input from JSON Schema
to test web services. It was extended by Earle et al. [30] to
include a service’s behaviour, to automatically explore a web
service. JSON Schema is related to OpenAPI since parts of
an OpenAPI document is expressed in JSON Schema. While
JSON Schema is considering only data, OpenAPI also includes
the service model.

Aichernig et al. proposes an approach to use business rules
in the form of XML, and from those create extended finite
state machines used in PBT tests [31]. This is an automatic
approach and has some level of intelligence, by walking the
FSM, but requires that the services behaviour is available as
such an XML artifact.

OpenAPI/Swagger documents have been used to generate
tests, both in black- and white-box testing. EvoMaster is
a white-box approach that generate tests based on a given
Swagger document [4]. Usage of EvoMaster require some
developer implementation effort. To require as little developer
interaction as possible and to be agnostic of the target platform
and languages used, we have used a black-box approach.

RESTIer introduces a similar approach to ours by using an
automatic black-box approach to intelligently fuzzy-test REST
APIs [3]. As stated by the authors, RESTler aims to be a
security testing tool. However our goal is to not only find faults
but to explore the given REST API and in doing this we test
the services with a wider scope of properties. Both RESTler
and our approach use the status codes from the REST API calls

as an oracle, but in addition to that we also validate that any
payload received actual conforms to the specification in the
OpenAPI doc, resulting in a stronger oracle. Our approaches
also differ in that we use randomly generated input, not a
predefined dictionary.

Ed-douibi et al. propose a model-based approach testing
REST APIs specified with OpenAPI [32]. This approach is
related to ours with the main difference that we use a property-
based method for test generation. Our approach does not
only generate static test cases but it also randomly generates
parameter values and sequences of operations that leverages
previously returned results to perform stateful operations.

VII. DISCUSSION AND FUTURE WORK

QuickREST turns out to be a tool that allows developers
and testers to easily test and explore REST APIs. Developers
will get quick and actionable feedback while developing, with
the option to manually tweak the tests. Testers can both use
the tool to find faults and also to exercise a system while
doing other tests. However, to get more conclusive results
QuickREST would need to be applied to a larger set of systems
under test. Here we discuss some implications that our results
might have for practitioners and for future research.

A. Developer friendly

As individual end-point tests can be generated in seconds,
it is a very developer friendly approach since it can be used
during development without interrupting a continuous work-
flow. However, as the number of end-points and parameters
increase, so does the time required. Hence, larger tests may
be more appropriate for a continuous integration server.

B. Shrinking

As described in Section shrinking of generated ran-
dom input is a common feature of PBT. We experienced
this firsthand during our experiments. Here we describe two
examples of shrinking of the input that produced two of the
bugs described. One path parameter and one body parameter.

Figure 8] shows a piece of an example of pre-shrinked
generated input as a body to be used in a POST request. The
result of the automatic shrinking process is shown in Figure [9]
Just by comparing the generated input from before and after
shrinking it is apparent that the smaller input is preferable as
a reproducing case for developers.

In the case of a failing Path example, parameters con-
tains unprintable characters so we do not include a ver-
batim example. The form of an url with path parameters
is /api/vl/objects?name=<random input here>.
In our case the shrinking process could shrink the random
parameter from 20 characters down to 2 characters.

The shrinking feature of PBT is very useful for developers
who want a reproducing case as small as possible. However,
for a fully automatic approach you can get “stuck” with
shrinking. For example, if we have an end-point with input
bugs in several of the parameters, shrinking will bring that
down to the first case. This means that to get further in our



testing we have to exclude that parameter. This might require
manual effort, thus breaking the full automation. However, it
could be argued that this kind of shrinking problem forces an
agile approach where a developer needs to fix the first found
bug before continuing with further testing.

C. Mutate the specification

In an OpenAPI document, parameters can be specified as
required. To produce valid input to the API this needs to be
respected. But it is useful for an automatic approach to in some
cases leave out required parameters or change the specified
type, mutating the API specification. This will produce test
cases for a proper input validation of not only the value of a
parameter but if the parameter itself exists or not.

D. Iterate over parameters

The size of the input domain covered will be dependant of
how many parameters are included. Given an end-point with,
for example, 5 required parameters, and 100 tests. Each test
case will generate input for all parameters and thus after 100
iterations we have not gone as deep in each parameter as would
be the case if there were only a single parameter. Therefore,
an automatic approach would get larger input coverage by
producing tests for each parameter before starting to use
combinations of parameters.

E. Before going stateful, make sure API handles input

Generating stateful interactions will not be effective in find-
ing stateful bugs if the SUT does not handle generated input.
If the SUT does not handle input validation any sequence of
interactions will shrink to just one call, the one with bad input.
We recommend starting with stateless input generation and
when the API can handle that, add stateful sequences.

F. Stateful shrinking might not be accurate

When shrinking is performed the API will be called,
changing the state of the system. This can result in that the
shrunken output is not actually exactly what will produce the
error. However, we observed that in our cases, the sequence
was correct but not the input parameter values. In that case,
consulting the logs from the system will show the actual input
used in the sequence.

G. Augment with manually created model

An automatic approach is a good way to get a lot of testing
done with a low effort. However, to get maximum leverage out
of this kind of approach a model could be helpful in guiding
stateful interactions. Such a model then keeps track of the
expected state of the system, guiding valid operations and is
a source of verification of how the system should look like.

VIII. CONCLUSION

We have introduced a method and a proof-of-concept
implementation to automatically test REST-APIs described
with OpenAPI by leveraging PBT. The described approach
leverages existing libraries and techniques and to the best of
our knowledge this is the first approach that uses automatic

{:body
[ ...

{:variables #:c0{:T \F},
:description "x",
:objectId "077de3d9-3£50-4756-bb45-eceb6lbe3leBa2",
:model "",
rtype "',
9 :name "v7"}
10 {:properties {},
11 :variables {\@ "\""},
12 :description "8",
13 :objectId "d9%d22ce-939c-4332-8702-0430e38£04c5",
14 :model "sO",
15 ctype "",
16 :name "00O"}
17 R
18 L1

© 9w AW —

Fig. 8. Abbreviated pre-shrinked input (60 lines)

{:body
[{:variables {1.0 0},
:objectId "ec9c007f-5278-45a7-8aa2-b4cbl3cefell",
:model "",
ttype "",
:name ""}1}

o wm A W —

Fig. 9. Complete shrinked input

PBT in combination with OpenAPI documents to test REST
APIs, with the intent of not only finding faults but also to
learn more about the SUT. The experimental results on a real
industry software system show that this approach can find real
faults and help in gaining new knowledge of the system with
a very low effort from the developers and testers.

PBT is a useful technique with substantial tool support that
can be leveraged in industry. For example, the capabilities
of Clojure’s dynamic data processing in combination with
Clojure.spec and TestCheck was shown to be a powerful tool-
chain to automate our method. The act of shrinking is indicated
as a rather useful feature for industry.

In our experience, the usage of PBT in industry seems rather
limited. This is unfortunate since, as we have shown, it is an
approachable technique that can find real bugs and can be
extensively utilised in part of a developer workflow.

To make this approach more effective and more suitable
for deeper exploration, we could augment it by a model of the
call sequences a real user would perform. In addition, it would
be useful to help humans by automatically analyzing the logs
while running tests. Exploratory testing is an important part
of ensuring the quality of software systems but automation in
this area is lacking although there are opportunities for it. The
results presented in this paper show that it is possible to assist
humans in exploration of REST-APIs with QuickREST.
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