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Abstract 

 
Vehicular manufacturers want to reduce the num-

ber of electronic components in the vehicles foremost 
to reduce cost and complexity, but not to the price of 
decreased functionality or quality. In this work we 
outline a method to facilitate a reduction of hardware 
components in vehicles, through integration of large 
real-time software components to the same hardware 
platform. The focus is on controlling the interference 
caused by the integration, but practical issues as sys-
tem architecture and hardware independency both in 
implementation and specification of components are 
also considered. 

1. Introduction 

Component Based Development (CBD) is believed 
to facilitate scalability and flexibility to integrate and 
transfer functions; enhance maintainability, and sim-
plify reuse. In the vehicle industry CBD is practiced 
with hardware components called Electronic Control 
Units (ECUs). Typically every major vehicular func-
tion is implemented within an own ECU, and vehicle 
manufactures tend to be system integrators of ECUs 
developed by third parties. This implies that the elec-
tronic contents in the vehicles increase with the num-
ber of functions in the vehicles. Several reasons to stop 
this trend exist. There is not much physical space for 
more ECUs in the vehicles. The system is integrated 
around a shared communication bus, which is a poten-
tial problem since it gather all complexity and creates 
dependencies around the bus. As always, the most im-
portant argument for a decreased number of ECUs is 
that there is money to save in decreasing the number of 
hardware components. Firstly there is money to save 
on a reduction of all electrical equipment that an ECU 
requires, e.g., network interface card, cabling, mother-
board. Secondly, the price relative to performance 
characteristics of micro controllers themselves yields 
more performance for less money, i.e., it is cheaper to 
purchase one powerful micro controller than achieving 

the same performance with two or more weaker micro 
controllers. 

The long term objective with the work is to facili-
tate a reduced number of hardware components in the 
vehicles, through integration of vehicle functions to the 
same ECUs. This will decrease production cost, and 
overall complexity. The production cost is deceased 
through lower hardware cost, the gain increase with 
the production volume. The complexity around the bus 
can be decreased through the effects of a lower number 
of connected ECUs. However, only software in ECUs 
that is physically close enough is cost effective to inte-
grate, otherwise cost of cablings to sensors and actua-
tors can consume the gain, due to required cable 
length. 

The contribution with this paper, is the introduction 
of large software components denoted SoftECUs, and 
interference control when several SoftECUs share a 
hardware platform. A SoftECU encapsulate a major 
vehicle function, it can contain as much software as all 
the software shipped within a traditional ECU. Given 
that several SoftECUs is integrated on the same physi-
cal ECU, the focus of the work is to control the inter-
ference that come from the integration, i.e., the inter-
ference the SoftECUs can cause to each others. The 
interference can take two forms, spatial, or temporal. 
Furthermore, the method scales to SoftECUs that are 
processor independent. The main reason for introduc-
ing processor independency is to simplify system evo-
lution, e.g., migration to another processor when the 
current is too slow or no longer produced.  

Vehicle systems can be classified as safety-critical, 
embedded real-time systems. Recent research and de-
velopment efforts taking place in academia and indus-
try have resulted in component technologies for such 
systems. Here a sample of such technologies is men-
tioned. The Rubus Component Model [5], from Arcti-
cus Systems is used in the vehicle industry. It is tai-
lored for resource constrained systems with real-time 
requirements. PErvasive COmponent Systems 
(PECOS) [9] developed by ABB and academic part-
ners, is aimed for small embedded systems (field de-
vices). It supports prediction of run-time properties as 
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memory consumption and timeliness. Prediction-
enabled Component Technology (PECT) [23] is ongo-
ing research from Carnegie Mellon University; it fo-
cuses on prediction of run-time attributes on system 
level from components. AutoComp [15] is ongoing 
research at Mälardalen Real-Time Research Centre, the 
focus is to provide a full component model at design 
time, and during compile time transform it to a re-
source effective mature real-time operating system. 
These technologies could all be suitable for vehicular 
systems, but they use small components for developing 
functions. While the approach in this work is to define 
large components (SoftECUs), which can be used for 
integration of several functions to the same hardware 
platform, the components under integration could be 
built using one of the mentioned technologies.  

Outline: Section 2, gives a general overview of in-
tegration of SoftECUs, section 3 the overall architec-
ture of a component technology supporting SoftECUs. 
Section 4 defines the SoftECUs, while section 5 deal 
with the specification of temporal attributes. Section 6, 
address the integration. While section 7 derives a 
model of the run-time behavior, eventually sections 8 
contain discussions, conclusions, open issues and fu-
ture work. 

2. General Overview 

A general overview of the intended usage of SoftE-
CUs is given in figure 1. Each SoftECU is developed, 
verified and merchandised independently, by sub-
system suppliers. Suppliers use their own tools and 
create a suitable internal architecture during develop-
ment of a SoftECU. The main difference for sub sys-
tem suppliers compared to the situation in the business 
segment today, is that components are delivered as 
software only (SoftECUs), instead of both software 
and hardware (ECUs).  

However, in order to secure that the SoftECUs will 
be assigned a share of the processor that are sufficient, 
when sharing the processor with other SoftECUs, we 
propose an additional specification of the SoftECUs 
processor share requirements. The specification is de-
noted the temporal reservation of the SoftECU. The 
temporal reservation is a cornerstone in this work, and 
its origin is from one of the three possibilities listed 
below: 
• the temporal reservation can be provided by the 

developer; 
• the temporal reservation can be in the form of re-

quirements expressed by the integrator; 
• it can be negotiated between involved parties; 

The task for the system integrator is besides build-
ing a system with correct functionality, to verify that 
all inference caused by the integration is controlled, 
and it is here the technical contribution of the method 
is applicable. The interference caused by the integra-
tion is either spatial or temporal. For spatial interfer-
ence each SoftECU is executing within a memory pro-
tected process, with possibility for multi–threading or -
tasking within the process. The temporal interference 
on the other hand is eliminated by a time sharing algo-
rithm residing in the RTE that shall be used in coop-
eration with a couple of specified integration steps. 

Furthermore, the method optionally let the temporal 
specification be separated from the hardware platform, 
given that the speedup ratio between the development 
hardware and known reference hardware platform can 
be determined. Hardware independency is proven 
through practical use for software without real-time 
requirements; but becomes an issue when dealing with 
real-time applications. The problem comes from exe-
cution time variations on different hardware, and tem-
poral analysis rely on execution time specifications. 
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SoftECU
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SoftECU SoftECU SoftECU SoftECUSoftECU

ECU

SoftECU

Supplier

 
Fig. 1, usage of softECUs 

3. Component Technology Architecture  

This section gives a rough description of the archi-
tecture of a component technology, suitable for the 
vehicular domain and SoftECUs. Basic terms used 
throughout the paper are also introduced and ex-
plained. The terminology and basic system architecture 
is with the purpose to be appropriate for the domain 
influenced from the AUTOSAR1 standardization pro-
ject, which is a standardization effort taking place in 
the vehicle domain by some major actors. 

A schematic overview showing relationships be-
tween different concepts is shown in figure 2. On the 
top level in the figure, there are two interconnected 
ECUs. The interconnection is typically a CAN2 or 

                                                           
1 AUTOSAR Homepage: http://www.autosar.org 
2 CAN Homepage: http://www.can-cia.de/can/ 
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LIN3 bus, and there are also a number of upcoming 
standards as TT-CAN4, and Flexray5. Each ECU has as 
a layered architecture; the contents in each of the lay-
ers are briefly described below:  
• in the hardware layer the microcontroller, hard-

ware parts for communication, I/O units, and dif-
ferent types of memory, are the main blocks; 

• the hardware abstraction layer contain hardware 
dependent code, and provides a hardware inde-
pendent interface for the above layers; 

• basic software typically include, device drivers, 
transfer layers for communication technologies, 
and diagnostics software;  

• Eventually, the RTE consists of interface for the 
SoftECUs, provides communication channels, and 
implements a processor sharing algorithm. 

The focus in this paper is on controlling the inter-
ference the different SoftECUs will cause each others 
when they share the same physical ECU. Looking at 
the layered architecture in figure 2 again, the interface 
that is addressed by this research is between the SoftE-
CUs, and the RTE. However, the interface between the 
RTE and the SoftECUs contain more than interference 
control. In brief the RTE must contain a full flavored 
programming interface for the SoftECUs, it contains 
interface to communication mechanisms, and I/O units 
and it maintain a consistent view of the system time.  
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Fig. 2, a schematic picture showing the relation-

ship between different concepts 

4. The SoftECU  

A SoftECU is described by definition 1, in the re-
maining part of this section the definition is motivated, 
explained and enlarged.  

Definition 1 A SoftECU is a software unit that con-
tains a major part of a vehicular function. It can be in 
pre-compiled intermediate format (black-box), or in 
                                                           
3 LIN Homepage: http://www.lin-subbus.de 
4 TT-CAN Homepage: http://www.can-cia-de/can/ttcan 
5 Flexray Homepage: http://www.flexray-group.com 

source code format (white-box). It comply with the 
rules of the underlying run-time environment, and can 
execute on a node alone, or sharing the node with 
other SoftECUs.  

A SoftECU encapsulates a major part of a vehicular 
function; it is a unit of exchange between suppliers of 
vehicular functions and vehicular manufacturers. 
When building distributed vehicular functions that is 
physically distributed over the vehicle, it is necessary 
to deliver the function as several SoftECUs. 

The SoftECUs can be black-box, meaning that the 
source code of the SoftECUs do not have to be directly 
visible for a system integrator. The integrators knowl-
edge of a SoftECU can be limited to the associated 
specification of the SoftECU. However the compo-
nents can also be delivered as source code, in some 
cases vehicle manufacturers need full access to the 
source code, e.g., for verification of safety critical 
functions. 

The SoftECUs are not allowed to have hidden de-
pendencies; the only dependencies that are allowed are 
exchanging data on the shared bus (virtual bus within 
node boundaries) utilizing interfaces provided by the 
RTE. It is compatible with the form of interaction that 
is used in the business segment today.  

The SoftECUs must comply with the rules defined 
by the RTE, which can be compared to a component 
framework, middleware, or operating system. How-
ever, the descriptions of the RTE in this work only 
address problems that come from the integration itself, 
i.e., processor sharing problems.  

A SoftECU can execute on a processor alone or 
sharing it with other SoftECUs, under controlled inter-
ference. The interference SoftECUs can cause each 
others is either temporal or spatial. Controlling tempo-
ral interference is a matter of maintaining real-time 
constraints of all SoftECUs, thus they have their real-
time constraints specified. Control of spatial interfer-
ence is achieved with memory protection.  

Further requirements on the specification of SoftE-
CUs must be added for achieving other qualities than 
interference control. As for the ECUs used today, a 
functional description, specification of interconnection 
to specific hardware components, amount and rate of 
data transferred on the bus.  

5. Specifying the Processor Share Re-
quirements  

Each SoftECU has to specify the share of the proc-
essor that it requires, the share is specified with an 
arbitrary number of reservations, each reservation as a 
tuple in the reservation vector R. To specify how much 
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processing time a SoftECU requires, and when it re-
quires that time, a specification that consists of two 
parameters is suggested: 
• R={<SD,T,D,J>1…<SD,T,D,J>n} is the reservation 

vector, where each of the tuples represents a res-
ervation of a pre-emptive and re-entrant service 
time SD, that is reserved at a rate T, which is the 
period time of the reservation. Furthermore, each 
reservation can be reserved with the optional tem-
poral constraints, deadline D and jitter J. Jitter is a 
constraint of the periodicity of the activation point 
expressed as a maximum allowed deviation from 
the nominal period time, while deadline is the lat-
est point in time relative to each activation when 
the reserved service time must have been granted. 
The different parameters of a reservation are visu-
alized in figure 3. We note that the following con-
ditions must be true for the reservation to be valid 
(SD <= D <= T) and (J <= T).  

• The other part of the specification is the parameter 
PD. The parameter is optional but required if proc-
essor independency are desired. It represents the 
speedup of the development platform related to a 
reference platform, i.e., the speedup of the plat-
form where R is valid. Determining the speedup in 
the general case between two hardware platforms 
is non-trivial, this work does not provide any solu-
tion rather a discussion in a succeeding section, 
but given that it is possible we show how the tem-
poral reservation in R can be handled to become 
processor independent. Notice that the method 
does not require PD, which is the reason why it is 
separated from the reservation vector. 
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D D
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T ± J
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Fig. 3, visualisation of the different attributes in 

a reservation, specifying a service time S that is re-
served at a rate T, with a jitter requirement J, and 
deadline D. Developers specify SoftECUs processor 

share requirements with an arbitrary number of 
reservations in the requirements vector R. 

5.1. The Reservation Vector 
The service time required from activities that can 

execute with the same rate in the SoftECU are grouped 
and assigned a reservation in the reservation vector. 
However the activities that are grouped must be pre-
emptive and re-entrant within the boundaries created 

by the reservation, since the distribution of the reserva-
tion shall be under total control by the RTE. The 
method allows several such allocations, and can de-
scribe complex real-time behavior. Below we discuss 
how to specify the processor share reservation for pe-
riodic, sporadic and single loop activities. However, 
the basis for the specification is to transform all types 
of reservations to periodic reservations. A basic condi-
tion is that the SoftECUs and the RTE are synchro-
nized and have exactly the same timekeeping, which is 
not a big deal if services provided by the RTE are util-
ized. 

Some activities may already be of periodic nature, 
e.g., commonly used real-time tasks. These are the 
most straight forward type of activities to allocate a 
reservation for. The service time requirements for all 
tasks with the same period time are summed and ex-
pressed as one allocation. When the characteristics of 
the application allow, tasks with period times that are 
multiples of each others can be assigned a reservation 
with the lowest rate. Let the Fixed Priority Tasks (FPS) 
tasks in table 1 correspond to all tasks implemented in 
a SoftECU, two examples of suitable reservations for 
that SoftECU are R1 = {<4,5,-,->} and R2 = {<3,5,-,->, 
<3,15,-,->}. The resulting run-time behavior for the 
reservation R1 is illustrated in figure 4, while the run-
time behavior for the reservation R2 is illustrated in 
figure 5.  

 T P C 
A 5 H 1 
B 5 M 2 
C 15 L 3 

Table 1, a set of FPS tasks within a SoftECU, the 
tasks have period time (T), priority (P) High (H), 
Medium (M), or Low (L), and execution time (C). 

5 10 15 20 25 30
t

A
B
C
R1

 
Fig. 4, execution trace of tasks A, B, and C, 

served with the reservation R1 

In figure 4, the SoftECU has service time reserved 
for its tasks with a single periodic reservation, result-
ing in spare capacity for other SoftECUs of one time 
unit every fifth. In the figure at time 0, the reservation 
of 4 time units made in R1 is served. Internally in the 
SoftECU resulting in that the high priority task A exe-
cutes 1 time unit, followed by the medium priority task 
B that executes 2 time units. Eventually within the first 
instance of the allocated service time task C starts to 
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execute for 1 time unit, but is cut off since the reserved 
4 time units has elapsed. The same pattern is repeated 
for all instances of the reserved service time. Notice 
that task C, will get its 3 time units of execution with a 
periodicity of 15 time units as required, but sliced in 
three different parts.  

In figure 5, the SoftECU has service time reserved 
with two different period times. In the figure at time 0, 
the reservation of 3 time units every 5th is served. In-
ternally in the SoftECU resulting in that the high prior-
ity task A executes 1 time unit, followed by the me-
dium priority task B that executes 2 time units. The 
reservation of 3 time units every 15th is also served 
from time 0, and that capacity is used for execution of 
task C for two time units. At time 5, task A and B be-
comes ready for execution again and the service time 
allocated as 3 every 5th is served, A and B use that 
time, before the low priority task C can execute its 
remaining 1 time unit. Finally at time 10, service time 
for three time units are reserved, and used by A and B. 
The described pattern is repeated every 15th time units.  
 

5 10 15 20 25 30
t

A
B
C
R2

 
Fig. 5, execution trace of tasks A, B, and C, 

served with the reservation R2 

Sporadic activities are another base class of activity 
that often can be identified; they can arrive at the sys-
tem at an arbitrary point in time with a known maxi-
mum arrival rate. Reserving capacity for a sporadic 
process is done by allocating the capacity for the case 
with the maximum arrival rate. This is done by setting 
the period time for the reservation to the maximum 
arrival rate, when the analysis in conjunction with the 
integration is performed, i.e., during analysis sporadic 
activities are treated as periodic activities. While dur-
ing run-time the RTE has instead of serving the reser-
vation periodically, serve it when a certain event occur 
but not more often than the reserved capacity.  

Another expected type of internal implementation is 
those implemented as a single cyclic program, called 
single (or main) loop program. Capacity for these must 
also be done by a periodic reservation. The period time 
shall be set to correspond to the cycle time. The length 
of the reservation shall be the execution time for one 
cycle in the loop. 

Jitter and deadline constraints can be specified for 
the reservations, they are typically deduced from con-
trol applications for performance reasons, and much of 

the applications in vehicles are related to control ac-
tivities, e.g., various engine, wheel-spin, and brake-
lock control. Typically computer based control appli-
cations suffer of unpredictable or to long input to out-
put latencies (sampling-actuation delays) and varying 
periodicity in the samples (sampling jitter). Input out-
put latency is restricted through the deadline, and con-
straints on the periodicity through setting maximum 
allowed jitter. A tool that can be used for simulating 
these parameters impact on control performance, and 
find the suitable jitter and deadline constraints for the 
reservations is JitterBug [8].  

5.2. The Speedup 
As an option, the temporal reservation for the 

SoftECUs can be processor independent. It relies on 
that the speedup ratio between different processors can 
be determined. That is a non-trivial problem; it is not 
even clear how processor performance shall be ex-
pressed, even less how to determine it [13]. In [18] it is 
argued that the only consistent measure, when report-
ing performance of a processor in a single number, is 
the total execution time. Current state of practice is to 
determine it through some form of benchmark pro-
gram, e.g., Whetstone the first major synthetic bench-
mark [6], or Rhealstone a Real-Time benchmark [7]. In 
this case it might be possible to determine the speedup 
through execution or analysis of the SoftECU in ques-
tion, since it is not a comparison of the processors that 
are desired rather the speedup for the particular code in 
the SoftECU. However the actual method to find the 
speedup is not in focus of this work, but given that it is 
possible, it is used to achieve processor independent 
reservation specifications of the SoftECUs.  

6. Integration  

Integration in a SoftECU based system involves all 
the engineering work done by the system integrator, it 
involves all from specifying the functional require-
ments for the system, its SoftECUs and to verification. 
In this work, the focus is limited to joining SoftECUs 
that are verified in isolation to the same platform. 
Firstly run-time mechanisms addressing the integration 
problem residing in the RTE are described, followed 
by the main activities in the integration process; even-
tually a model describing the effects of the integration 
on 0the run-time behavior inside SoftECUs is pre-
sented. 

6.1. The Run-Time Environment  
The focus is on the parts of the RTE that address 

the problems that come from the integration of several 
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SoftECUs to the same hardware platform, each 
SoftECU is assumed to be verified by suppliers possi-
bly on hardware platforms different from the integra-
tion platform.  

Each SoftECU is a single process in the integration 
platform; the process is scheduled for execution as 
specified through the processor share requirements. 
The method to control spatial inference is memory 
protection, each SoftECU is allocated to an own mem-
ory protected process. As the SoftECUs executes in 
separated processes with separate address spaces, they 
cannot directly interfere with each others data. How-
ever all shared resources, such as any common plat-
form code or data must also be protected, otherwise 
spatial interference could occur indirectly through that 
shared resource. Memory protection is practically pos-
sible and is common in many systems; it might require 
hardware support for performance reasons. Such 
hardware support is implemented in many modern 
processors [13]. 

The main run-time mechanism in the integration 
platform from a temporal view is a processor sharing 
algorithm, which guarantees that all processes will get 
the reserved share. It should be possible to use a re-
source sharing algorithm based on General Processor 
Sharing (GPS) [11][12], which originally was intended 
for flow control in gateway nodes. For instance the 
Stride scheduling algorithm [22], the Earliest Eligible 
Virtual Deadline First algorithm (EEVDF) [21], and 
the Earliest completion-time GPS algorithm (EGPS) 
[19]. However, we propose Fixed Priority Scheduling 
(FPS) with the simple extension that processes always 
gets the service time they request and no more. The 
motivation for FPS before other more advanced sched-
uling algorithms or processor sharing algorithms, is 
that the behavior has been widely analyzed 
[1][2][14][17], it is mature and proven by wide use in 
commercial products. The application of FPS with 
static service time as in this case, makes the jitter 
analysis techniques even simpler. 

The RTE should also offer communication and I/O 
mechanisms, as briefly described in section 3. Suitable 
extensions in an integration platform for the vehicular 
industry might be built in monitoring support, for effi-
cient fault localization in workshops. Furthermore, 
additional mechanisms catering for safety like redun-
dancy and safety kernels.  

6.2. Integration Activities 
Before integration, or migration to another plat-

form, some engineering activities shall be done. The 
purpose is to find out if it is possible to integrate the 
desired SoftECUs on the desired platform, i.e., will the 

SoftECUs get the share of the processor that is speci-
fied through their allocations.  

The trick is not only that SoftECUs get a time share 
equal to the required service time, the time must also 
be given within certain boundaries. Consider moving 
SoftECUs to slower platforms, with a single deadline 
that is equal to the length of the allocated service time, 
it is impossible to move such a SoftECU to slower 
platform. However this is detected with ordinary real-
time analysis. The basic condition for a platform mi-
gration is that SoftECUs get the same computing 
power within all allocated intervals. A processor with 
speedup ratio 3, executes the same code three times as 
fast. The different steps required for integration is 
listed below: 
1. For SoftECUs developed and verified on another 

platform, find the speedup for the hardware plat-
form used for integration. The result PI is the 
speedup for the integration platform relative to the 
same reference platform, as the speedup for the 
development platform is relative to. For SoftECUs 
developed for the integration platform directly, set 
PI=PD≠0 

2. Calculate service time requirements for all reser-
vations relative to the chosen integration platform; 
replace SD representing the service time required 
on the development platform with SI using equa-
tion 1, where SI represents the service time re-
quirement on the integration platform. 

SI = SD*PD /PI    (1) 
3. Calculate offsets [20][10] that are used for con-

trolling the jitter. The offset for an allocation rep-
resent the earliest time, relative to the start of each 
period, when the reserved service time SI can be 
serviced. The offset (O) is calculated for all ser-
vices time reservations with jitter constraints, 
methods that can be used are, e.g., [4] or [16].  

4. Next step is to perform a priority assignment for 
FPS scheduling of the reservations. This can be 
done by, e.g., [3], or [16]. 

5. Eventually, temporal analysis has to be performed; 
it has been extensively covered in the research 
community. With exact analysis we can calculate 
response times for all allocations and verify that 
all deadlines are met, as if they were real-time 
tasks. The number of calculations necessary has 
been reduced for priorities assigned using a dead-
line monotonic heuristics in [3]. More general FPS 
analysis techniques with complex constraints is 
presented in [14]. 
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6.3. Run-Time Behaviour 
The parameters supplied by the developer in the 

reservation vector restrict the window when the re-
served time can be serviced. In this section a model of 
the run-time behavior with respect to parameters in the 
reservation vector and hardware is presented. The 
model gives an expression for the time an event gener-
ated and taking place inside a SoftECU can occur, 
given a possible interval of occurrence on the devel-
opment platform. The model can be used to calculate 
the impact of integration for different events, e.g., start 
and completion times for sampling-actuation, or tasks.  

T

D

SD

estD(E) t
lstD(E)

estD(E)estD(E)

E

 
Fig. 6, the relative interval [estD(E), lstD(E)] for 

the occurance of an internally generated event E 

Figure 6 shows an interval with the earliest start 
time estD(E), and latest start time lstD(E). The interval 
represents the time of an event E generated internally 
in the SoftECU, relative to the activation of an instance 
of reserved service time, when the SoftECU is exe-
cuted in isolation on the development platform. That is 
the case when the reserved time can be served immedi-
ately utilizing the full capacity of the processor until 
completion. The occurrence of the event must be ex-
pressed as an interval, due to possible variations of 
execution times for preceding activities.  

The earliest start time of the event estI(E), relative 
to the activation of an instance of reserved service 
time, on another hardware platform together with other 
SoftECUs is illustrated to the left in figure 7. It occur 
when the SoftECU is served with the reserved time 
immediately, and execute undisturbed until comple-
tion. However, the speedup between the integration 
platform and the development platform must be con-
sidered. The expression is given in equation 2, the rela-
tive speedup of the integration platform compared to 
the development platform (PD/PI) times the start time 
of the earliest start time of the event on the develop-
ment platform. 

The latest start-time lstI(E) relative to the activation 
of an instance of reserved service time is given by 
equation 3, and illustrated to the right in figure 7. All 
reserved service time are served before the deadline of 
the reservation, which is guaranteed through temporal 

analysis during the integration. Thus, the latest start-
time lstI(E) for an internally generated event is as close 
to the deadline as possible without violating it. That 
situation appears when the reservation is exposed to 
the maximum temporal interference from SoftECUs.  

estI(E) = estD(E) * PD/PI    (2) 
lstI(E) = (D – O) – PD/PI * (SD +lstD(E))   (3) 

T

D

estI(E)

O
T

D

O

tlstI(E)

D
 

Fig. 7, the earliest and latest occurrence of an in-
ternally generated event estI(E) and lstI(E), under 
maximum interference from other SoftECU, and 
possibly on another processor than the temporal 

reservation is aimed for 

The possible interval for the occurrence of an event 
E, independent of hardware platform and other SoftE-
CUs is thus given by the interval [estI(E),lstI(E)]. The 
fundamental information can be used for deriving ex-
pressions for many important temporal run-time char-
acteristics. Consider the start (Ts) and completion time 
(Tc) of a periodic task in a SoftECU, then 
[estI(Ts),lstI(Ts)] and [estI(Tc), lstI(Tc)] are possible 
intervals for occurrence of the events that the task 
starts and finish its execution respectively. It is trivial 
to determine expressions for e.g., maximum response 
time max(R) (4), minimum and maximum time be-
tween two consecutive activations min(T) (5) and 
max(T) (6). In figure 8, max(R) max(T), and min(T) is 
visualized. 

max(R) = lstI(Tc) – estI(Ts)  (4) 
max(T) = T + estI(Ts) - lstI(Ts)  (5) 
min(T) = T + lstI(Ts) - estI(Ts)  (6) 

t

min(T)
max(R)

max(T)
T T

D

lstI(Ts)

estI(Ts)

lstI(Tc)

estI(Tc)

D

lstI(Ts)

estI(Ts)

lstI(Tc)

estI(Tc)

 
Fig. 8, visualisation of maximum response time 

max(R), maximum and minimum time and mini-
mum time between two consecutive activations, 

max(T), and min(T) 
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7.  Conclusions 

In this paper we have presented a method for con-
trol of interference caused by integration of large real-
time software components, denoted SoftECUs. We 
show how the method can be used with specification 
of real-time constraints that can be processor inde-
pendent, given that it is possible to determine the 
speedup between processors. The usage context and 
main parts of a component technology using the 
method is also briefly described. 

As future work, the first step is to verify this 
method in practice, then iterative add and verify differ-
ent parts towards a full software component model 
supporting the integration of software components 
containing different vehicular functions to the same 
hardware platform. 
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