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Abstract
Model-based testing (MBT) is a test design technique that
supports the automation of software testing processes and
generates test artefacts based on a systemmodel representing
behavioural aspects of the system under test (SUT). Previous
research has shown some positive aspects of MBT such as
low-cost test case generation and fault detection effective-
ness. However, it is still a challenge for both practitioners
and researchers to evaluate MBT tools and techniques in real,
industrial settings. Consequently, the empirical evidence re-
garding the mainstream use, including the modelling and test
case generation using MBT tools, is limited. In this paper, we
report the results of a case study on applying GraphWalker,
an open-source tool for MBT, on an industrial cyber-physical
system (i.e., a Train Control Management System developed
by Bombardier Transportation in Sweden), from modelling
of real-world requirements and test specifications to test case
generation. We evaluate the models of the SUT for complete-
ness and representativeness, compare MBT with manual test
cases written by practitioners using multiple attributes as
well as share our experiences of selecting and using Graph-
Walker for industrial application. The results show that a
model of the SUT created using both requirements and test
specifications provides better understanding of the SUT from
testers’ perspective, making it more complete and represen-
tative than the model created based only on the requirements
specification alone. The generated model-based test cases
are longer in terms of the number of test steps, achieve better
edge coverage and can cover requirements more frequently
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in different orders while achieving the same level of require-
ments coverage as manually created test cases.
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1 Introduction
The technological transformation towards complex systems
such as Cyber Physical Systems (CPSs), which are character-
ized by networks of embedded systems and strong human-
computer interactions, amplify the need of rigorous verifica-
tion and validation activities. Since software is a growing and
an essential part of such complex systems [25], software test-
ing increases the confidence in the correctness of the overall
system properties. In the safety-critical domain, verification
and validation through software testing assumes even more
importance as a failure can result in substantial damage and
even loss of life. Thus, several techniques have been intro-
duced to increase the efficiency and effectiveness of software
testing and to automate its processes. Model-based testing
(MBT) [27] is one such technique that automates the software
testing processes, including the generation of test artefacts.
MBT has shown to provide increased effectiveness in terms
of fault detection rate in software systems [22]. Also, as most
of the processes involved in MBT are either semi or fully
automated, it promises to provide a drastic fall in the cost
for generating and maintaining test artefacts.
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Despite the promise of MBT, the industrial adoption of
it is slow and there is a need for more industrial case stud-
ies that evaluate the strengths and weaknesses of MBT [26].
Moreover, since manual test generation is still widely used in
industrial practice, more systematic studies on how manual
test design compares with MBT and how it can be adopted
in the industrial safety-critical domain are needed. Given
that for safety-critical systems, rigours testing needs to be
performed according to certain standards, it is important to
bring more evidence on how MBT tools compare with, what
is perceived as rigorous manual test design performed by
industrial practitioners. Inline with this need, we present the
results of an industrial case study conducted in collaboration
with Bombardier Transportation (BT) in Sweden. We have
modelled the fire indication system of the train control man-
agement system (TCMS) in GraphWalker (GW)1 using two
sources (requirement specifications and test specifications).
GW is an open source MBT tool for generating test artefacts
meeting certain coverage criteria. We have evaluated the
generated models for completeness and representativeness.
Furthermore, the test cases generated by GW have been com-
pared with manual test cases from practitioners. Lastly, we
documented our experience of selecting and on-going use of
GW for both industrial application and research purposes.
The main objectives of this study are as follows:

• Model the industrial system under test (SUT) based
on two different input sources (requirements and test
specifications) and analyse the differences in terms of
model completeness and representativeness.

• Compare the tool-generated test cases with manual
test cases written by practitioners.

• Document the experiences of selecting and using an
MBT tool in the industrial safety-critical domain.

Our results indicate that the input sources/artefacts influ-
ence the completeness and representativeness of the model
used for MBT. In our case, the requirements specification,
together with the test specification, resulted in an improved
representation of the structure and behavior of the system
under test (SUT). The user-specified edge coverage crite-
rion was optimized better by GW-generated test cases when
compared with practitioners’ test cases; also covering each
requirement multiple times in different orders. Our experi-
ences in using GW indicate that it supports an easy to adopt
modeling notation and has the ability of both offline and
online test generation. In addition, GW is an open-source
tool actively developed and maintained by its community
that is applicable to test generation in practice.
The rest of the paper is organized as follows. Section 2

presents a description of a representative set of related stud-
ies. Section 3 describes the case study design, including the
research questions, case selection and data collection pro-
cedures. Section 4 describes the results of the case study,
1https://github.com/GraphWalker/graphwalker-project/wiki

Section 5 presents the threats to the validity of the study,
Section 6 presents a discussion on the results while the con-
clusions and future work appear in Section 7.

2 Related Work
Numerous researchers have provided a comparison between
manual testing, semi-automated testing and MBT (e.g. [11],
[15], [18], [19], [20], [22]) to evaluate the efficiency and effec-
tiveness of MBT with respect to cost and time. We have also
found two studies ([9, 24]) that evaluated the effectiveness
of GW in terms of fault detection and cost. In this section,
we briefly summarize these related studies, while refer the
reader to several review papers on MBT for a more complete
reading on the subject [10, 16, 17, 23, 26].
A notable comparison to test a web-based application

through MBT has been presented in [22]. Results showed
that MBT is a systematic approach and can detect more
functional faults than manual testing. Nevertheless, the time
required byMBT activities was higher than the time required
by manual test design. Manual test design was also found to
be more effective in detecting GUI-related issues. Similarly, a
new MBT technique and a comparison between manual and
automatic test generation has been presented in [15]. The
authors proposed a test automation language framework
for the creation of concrete test values by mapping it with
abstract tests generated using MBT. They also presented an
empirical comparison between automated and manual test
generation in terms of mapping between abstract and con-
crete tests. The empirical evaluation showed that automatic
test generation provides efficient tests with a better mapping.

Pretschner et al. [20] conducted an empirical study in the
networking domain to compare the automatic and manual
MBT techniques in terms of model coverage, detected faults,
and code coverage. The focus of this study was to evalu-
ate the quality of generated tests by both techniques and to
study the correlation between model and implementation
coverage. The evaluation highlighted a moderate positive
correlation between the implementation Condition/Decision
coverage and model coverage. Moreover, the study also con-
cluded that MBT is more effective in detecting the logical
and requirement faults [20]. Marques et al. [18] compared
the manual and adhoc testing techniques with MBT. The
study evaluated the performance of techniques in terms of
efficiency, effectiveness, precision and relative recall for bug
detection. The results showed that the techniques have al-
most equivalent time, effectiveness, precision and relative
recall for bug detection. The results provided mathemati-
cal explanation of the comparison between both techniques
and indicated that both techniques have almost equivalent
impact on bug detection. However, manual tests provided
better detection rate of logical faults whereas model-based
tests provided better evaluation of system documentation
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and could cover all possible scenarios with more precision
for complex use cases.
Mouchawrab et al. [19] analyzed state-based round-trip

path coverage testing technique and structure-based edge
coverage testing technique to assess the fault detection rate,
factors that affect the effectiveness of these techniques and
cost from tester’s perspective. The empirical study showed
that the state-based testing and structural testing could be
used together to achieve better fault detection rate. Similarly,
Enoiu et al. [11] conducted a detailed study to measure the
effectiveness and efficiency of specification-based manually
generated tests and implementation-based manually and au-
tomatically generated tests in terms of fault detection. The re-
sults suggest that specification-based tests are more effective
for detecting faults than implementation-based automated
tests, whereas implementation-based tests have higher effi-
ciency rate for fault detection than the specification-based
tests created manually.
Rashid et al. [9] developed a prototype tool (CANoe+)

using CANoe and GW to increase the functional coverage of
generated test cases and evaluated its effectiveness in terms
of fault detection by comparing it with CANoe. The results
showed that CANoe+ provided better function coverage by
reporting all failed functionalities whereas CANoe did not
report a single injected fault. Similarly, in [24], an exploratory
study used GW to investigate the effectiveness of keyword
and behaviour driven test automation framework in Agile
Development (AD) in terms of cost. The results suggested
that MBT improved the maintenance, functional coverage
and flexibility for AD aswell as provided effective continuous
integration by reducing the cost.

Overall, there is a need to validate these MBT approaches
against relevant industrial systems such that more knowl-
edge is built on how to efficiently create models using dif-
ferent sources of information and how the resulting model-
based test cases compare with manually created test cases
in industry.

3 Case Study Design
To investigate the impact of input artifacts on modeling
and to compare MBT with manual test design, as well as
to reflect on our experiences of selecting and working with
GW, we conducted an industrial case study, starting with the
modeling of the fire indication sub-system of an on-going
TCMS project at BT. Throughout our investigation in this
case study, we also consulted with the test team at BT to
understand their test generation process and analyzed their
test artefacts to compare themwith artefacts generated using
MBT. With slight modifications, we report our case study
results influenced by the guidelines of Runeson and Höst [21]
and the paper by Schulze et al. [22].

3.1 Research Questions
Our aim in this case study is to answer the following research
questions:

• RQ1:What are the differences in considering two types
of artifacts, requirements specifications and test speci-
fications, as an input to the modeling process of MBT?

• RQ2: How do the model-based test cases compare with
test cases manually written by practitioners?

• RQ3: What are the initial experiences in selecting and
using an open-source MBT tool for both research and
industrial application?

3.2 Case Selection
In discussions with BT, we selected an on-going TCMS devel-
opment project for the MOVIA2 vehicle product family as a
‘case’ in this study. The MOVIA is BT’s family of metro train
cars and they are currently operational in various metro rail
networks across the globe. The ‘unit of analysis’ in our case
study translates to the SUT for the selected software develop-
ment project, which is the TCMS. The following sub-section
provides further details on the SUT.

3.2.1 SUT. The case has been selected from an industrial
system developed by BT, a world leader in the manufactur-
ing of trains and railway systems. The SUT is a TCMS that
is currently being developed with a testing process highly
influenced by safety standards and regulations. TCMS is a
high capacity, infrastructure backbone built upon an open
standard IP-technology that allows easy integration of all
control and communication functions on-board the train. It
is considered as the centre of the distributed system that
controls the flow of information both on the train between
the different subsystems like converters, doors, heating, ven-
tilation and air-conditioning and also between the train and
the ground. TCMS is designed to perform all tasks related to
modern vehicle control.

As shown in Figure 1, the TCMS consists of multiple TCMS
devices of specific types, which are connected internally via
the system Multi-function Vehicle Bus (MVB) and Ethernet
Consist Network (ECN). Both bus systems are also used
to interconnect other systems at the vehicle. The Modular
Input/Output (MIO) devices are used to interconnect with
the conventional train lines of the vehicle whereas Modular
Input/Output Unit – Safe (MIO-S) deals with safety critical
Input/Output analog signals. The connection between the
TCMS instances of different vehicles is established via the
bus systems Wired Train Bus (WTB) and Ethernet Train
Bus (ETB). The Centralized Traffic Control (CTC) is used
to consolidate the train routing decisions. A TCMS device
of a certain type may appear multiple times depending on
the required scalability or redundancy demands for a certain

2https://www.railway-technology.com/projects/bombardier-movia-metro-
cars/
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Figure 1. Illustration of TCMS architecture.

product. TCMS uses Central Control Units (CCU) to control
multiple train functions; CCUO controls the basic functions,
CCUS executes the safety critical functions and CCUD is
a logical component that manages the diagnostic history
database. The HMIs (Human Machine Interfaces) are also
foreseen for each driver’s desk.

3.2.2 Industrial scenario for modeling and test gen-
eration. In this case study, the selected requirements of the
SUT were related to the multi-purpose TCMS devices to
detect fire in the cab (the driver’s compartment). The fire
detection system in TCMS is used to detect two types of fire:
external fire and internal fire. It uses two instances of a de-
vice known as the Fire Detection Control Unit (FDCU-1 and
FDCU-2) to signal the TCMS about the status of both types
of fire. Both devices can have two states: slave and master
in order to detect fire. The TCMS indicates the external or
internal fire based on the signals sent by the devices and the
current state of these devices.

On the real train, the FDCU devices communicate with fire
and smoke sensors. When a sensor detects smoke/fire, FD-
CUs send signals informing TCMS MIO-S device. The MIO-S
device communicates using MVB network with the CCUS
device. CCUS computes some logic (based on the system
requirements) and provides an output signal. This signal is
transmitted to the MIO-S device to lit a LED as indication of
fire/smoke on the driver’s desk, via electrical wiring.

3.3 Data Collection Procedures
The data collection for the case study and inputs required
for modelling was performed using two different data col-
lection techniques [14]: direct contact with the testing team
at BT and independent analysis of the artefacts produced by
practitioners.
Through consultations with the testing team at BT, the

SUT to be modelled was selected from an on-going devel-
opment project, for which the practitioners developed test
cases manually and provided access to relevant artefacts

(such as requirements specification and test specification)
related to the SUT. One member from academia spent numer-
ous hours to understand BT’s test process, SUT and the test
cases written by industrial professionals. He also underwent
trainings by an experienced test lead at BT to get acquainted
with the test procedures and the software-in-the-loop test-
ing process at BT. The academic team coordinated efforts
to bring clarity in understanding the SUT and the testing
process at BT. This involved numerous email exchanges and
meetings between the industrial and academic parties as
well as thorough scrutiny of the test related artefacts by the
academic team. The manual test data was collected by using
a post-mortem analysis of the available artifacts.
The engineering processes of software development at

BT are performed according to safety standards and regu-
lations (e.g., EN 50128 standard is used for designing test
cases). Each test case should contribute to the demonstration
that a specified requirement has indeed been covered and
satisfied. Executing test cases on TCMS is supported by a
test framework that includes the comparison between the
expected results with the actual outcome. In the following
subsections we present the artefacts available for modelling
the specific industrial scenario of the SUT in GW.

3.3.1 Requirements Specification. The requirements
for the specific industrial scenario (Section 3.2.2) contained
all the details about under what circumstances the TCMS
should indicate external and internal fires in the cabs. These
requirements have been specified in natural language,
but follows a pattern of ‘Given-Then-Within’ scenario
description, similar to the ‘Given-When-Then’ template as
common in Behavior Driven Development3. The ‘Given’
clause specified the actions, ‘Then’ clause specified the
observable outcome and ‘Within’ clause specified the timing
constraints of each requirement. The ‘Given’ and ‘Then’
clauses for a requirement occasionally included multiple
boolean operators (AND/OR) to join conditions together.
The requirements thus followed the following template:

GIVEN {Statement 1} AND/OR {Statement 2}
THEN TCMS shall {Statement 3}
WITHIN {t Seconds}

3.3.2 Test Specification. The main component in the test
specification document included manually written test cases
in natural language, corresponding to the specified require-
ments. An example of a test specification is shown in Figure 2.
Each test case was designed in a series of test steps, where for
each test step, the action and the expected result was speci-
fied. In addition, the pre-conditions and the post-conditions
for each test case were also specified, along with essential
metadata (such as priority, execution environment etc.) and
traceability to related requirements.

3https://dannorth.net/introducing-bdd/
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Figure 2. An illustration of a manually written test specifi-
cation.

4 Results
This section describes our findings in terms of modelling as-
pects, behavioural differences between test cases generated
through GW and manual test cases, and our initial experi-
ences for selecting and using GW for industrial use.

4.1 Model-based Testing Using GraphWalker
In this study, we developed two versions of the model for
test case generation: in the first version, we modelled the ex-
pected behaviour of the SUT by exploring the requirements
specification document alone and discussing the result with
the testing team, whereas in the second version, the model
was created by developing an understanding of the SUT
using both requirements specification as well as the test
specification and then discussing the result with the testing
team. In this section, we discuss the modelling process and
the difference between the two versions of the model.

4.1.1 Modelling the SUT using Requirements Specifi-
cation. The first step of modelling the SUT involved under-
standing the SUT by talking to the testing team and exploring
the requirements specification document. The researchers
examined the requirements specification and identified the
possible states of the SUT and then added the guard con-
ditions according to the expected behaviour (as shown in
Figure 3).
Guard conditions are Boolean expressions that affect the

behaviour of the FSM model by enabling or disabling the
actions or transitions upon evaluation. The FSM-basedmodel
in GW consists of nodes (round-edged rectangular boxes)
and directed edges (arrows). The nodes represent the state
of the SUT, whereas edges represent the requests/decisions
when a certain event occurs. TCMSisActive node shows the
active state of TCMS while InternalFire, ExternalFire
and ExternalAndInternalFire nodes represent types of
fire indicated by the TCMS. The indication of fire depends
on the signals sent by FDCUs, so the node and edges were
added showing the active state of the FDCUs. The signals

Figure 3. Initial FSM-based model created using the require-
ments specification

Figure 4. Final FSM-basedmodel created using requirements
specifications

sent by the FDCU are added as actions on edges covering
the requirements of the SUT to generate test cases. Figure 4
represents the final model created using the requirements
specification.

4.1.2 Modelling the SUT using Requirements and
Test Specification. In the second version, we refined the
model using the previous knowledge as well as exploring the
test specification document. The test specification helped
us to understand the test objectives, test scenarios and be-
haviour of the SUT from a tester’s perspective. One new
nodes Reset was added to the model representing states
where the SUT can be reset to its initial state with corre-
sponding input values. This node was missing in the first
version as it was not specified in the requirements spec-
ification. On the other hand, a tester considered it as an
obvious requirements while designing the tests in the test
specification document. Similarly, 10 edges were added in
the initial model of the second version which helped us
identify the possible signals of FDCUs in the final model
to cover the scenarios needed to generate data for com-
plete test suite. Figure 5 and Figure 6 depict the initial
and final model created using both specifications, respec-
tively. The final model (Figure 6) consists of three diagrams;
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Figure 5. Initial FSM-based model created from require-
ments and test specifications.

two diagrams representing FDCUs and one diagram rep-
resenting the TCMS as black box. These diagrams con-
tain shared nodes, which are used by GW while travers-
ing from one diagram to another. FDCU1 is an initial and
shared node whereas FDCU1Signal, FDCU2, FDCU2Signal,
TCMSisActive and FDCUsFireSignals are other shared
nodes. Moreover, MasterState and SlaveState nodes rep-
resent the ‘Master’ and ‘Slave’ states of the FDCU. The pur-
pose of developing two separate diagrams explicitly repre-
senting the FDCUs in the final version of the model was
to cover more test scenarios. GW can traverse through the
elements of FDCU diagrams providing the TCMS different
combinations of signals using random walks. The single-
diagram model, on the other hand, can only provide the
specific values of signals provided by the user as actions on
its edges. Moreover, by generating randomwalks for the final
model, we were able to identify an incorrect guard condition,
which was not identified in the single-diagram model.

In discussions with the test team at BT, it was also con-
cluded that the final model represented the behavior of the
SUT more completely than the first version of the model
which was created using the requirement specification alone.

4.1.3 ModellingAspects. MBT is known to provide a bet-
ter understanding of the domain and the SUT to generate
testware [13]. However, in order to create a complete and
representative model of the SUT, all relevant details about
the test object or SUT need to be made available.

The Degree of Test Model Completeness and Model
Evolution. As shown in Figure 4, the first version of the
model was created using requirements specifications and it
contained behavioural aspects of the SUT. However, the sec-
ond version of the model, created using both requirements
and test specifications, contained more complete informa-
tion about the expected behaviour of the SUT as well as
incorporated tester’s perspective to cover all the scenarios
as depicted in Figure 6. The second version of the model

includes additional information about the states of the SUT,
which were not mentioned in requirements specification.
For example, there is a condition where the TCMS can be
reset to its initial state before testing the next scenarios for
indicating internal or external fire in both cabs. This specific
additional information about the condition, which was only
available in the test specification, resulted in the addition of
one new node in the model representing TCMS as well as
creation of the models representing FDCUs in the second
version as compared to the first version of the model of the
same SUT.
Thus, in order to create a complete behavioral model of

the SUT, relying only on requirements specification resulted
in less-than-optimal model (having fewer edges and states)
in our case. While, the model created using both types of
artifacts (requirements and test specifications) led to a more
complete representation of the scenarios and expected be-
havior. This, in turn, is expected to help generate test cases
that realistically cover more testing scenarios.

Model Representativeness. Moreover, in our case, the
test specification also provided information about the SUT
in a more clearer and concrete way, which included infor-
mation about signals sent by the FDCUs to the TCMS. Re-
quirements specification did contain information about the
FDCUs (i.e., FDCUs could be in a master or slave state), but
did not clarify the total number of FDCUs used to signal
the TCMS. Similarly, it was also not clear from the require-
ments specification alone if FDCUs should send the signals
about its states along with fire indication to the TCMS or
not. Thus, in our case, understanding and analyzing both
requirements and test specifications resulted in a more rep-
resentative model of the SUT. Therefore, according to our
analysis, to generate quality tests using MBT, one should
consider different characteristics of the test object and test
objectives while creating the MBT model. And the model of
the SUT created using both requirements and test specifi-
cations is more complete and representative than the model
created using the requirements specification alone.
Additionally, as we have created the final model in an

incremental approach by getting continuous input from the
testing team at BT; we also observed that the lack of domain
knowledge or access to teammembers working on SUT could
cause conformance issues between the model and the SUT.
Moreover, it can directly affect the effort for developing the
model and quality of generated test cases.

We observed that input artifacts influence the usefulness of
the resultingmodel forMBT. Input artifacts for the modelling
of the SUT should include the documents from which the
requirements can be inferred but also the test specification
from manual test planning activities.
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Figure 6. Final FSM-based shared model with multiple diagrams created from requirements and test specifications having
shared nodes

4.2 Behavioural Differences Between MBT and
Manually Created Test Cases

GW walks the directed graph of the SUT in a fashion deter-
mined by the “generator” algorithm and generates tests on
every run until the “stopping condition” is met. There are a
variety of generator algorithms available in GW to traverse
the model, however, not all of themwere suitable for compar-
ison with manual test generation and we discuss this limita-
tion in Section 6. Thus, we used the random generator for the
comparison with manual test generation, which navigates
the model in a random fashion or takes a random walk from
each node. In this comparison, we have evaluated four differ-
ent stopping conditions for GW: edge_coverage(100) in which
the test generation is stopped when 100% of unique edges
are traversed, vertex_coverage(100) when test generation is
stopped when 100% of unique nodes/states are traversed,
requirement_coverage(100) in which the test generation is
stoppedwhen 100% of unique requirements are traversed and
length(100) when 100 edge-node pairs are traversed. There
are other supported stopping conditions in GW that were
found not suitable for comparison with manual test cases;
this limitation is discussed in Section 6.

Edge coverage is a stronger coverage criterion than node
coverage alone as it includes traversing of both elements of a
model (nodes and edges) [13]. We have used “edge coverage
%” as a measure to quantify how thoroughly a model has
been validated for each stopping condition. However, for

manually written test cases, we have calculated the “edge
coverage %” by comparing “action” and “expected result”
defined for each step with the edges representing similar
actions or transitions in the model. There are several other
model coverage criteria available [8, 13], but we leave the
measurement of those as a future work (Section 7). “Require-
ments coverage frequency” depicts the number of times a
certain requirement gets covered using multiple test steps;
it is particularly beneficial to cover a requirement multiple
times in a safety critical system (as is provided by TCMS)
as well as to uncover interaction faults at system level. As
GW generates the test cases using random walks through
the model, the “number of test steps generated” can vary
for each attempt. So, we generated test cases 3 times and se-
lected the test cases with maximum number of test steps and
have reported the figures in “Number of Test Steps Gener-
ated” and “Edge Coverage %” columns in Table 1. The reason
to select the highest number of test steps in the three test
generation attempts is to optimize the edge coverage as well
as to improve the frequency of requirements coverage. Simi-
larly, requirements coverage frequency of each requirement
can get affected through random walks. Subsequently, we
calculated the minimum and maximum requirements cov-
erage frequency provided by the generated test steps for
the three execution attempts, as reported in the column “Re-
quirements Coverage Frequency (Min–Max)” of Table 1; the
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value of this metric for manual test cases remains constant
due to deterministic, sequential order of coverage.

The results show that manually written test cases have 26
test steps and covered the requirements in a sequential order
whereas MBT generated higher numbers of test steps using
different stopping conditions in a random order. Model-based
test cases resulted in an increased requirements coverage fre-
quency, when looking at the maximum figures, than the man-
ually written test cases. All the test cases generated by GW
using different stopping conditions provided 100% require-
ments coverage. The same is also true for manual test cases.
However, test cases generated using edge_coverage(100) pro-
vided full edge coverage whereas partial edge coverage was
achieved by other stopping conditions and manually written
test cases.

After analysing manually written and GW-generated test
cases, we found that as GW generates the test steps by
traversing the edges and nodes, thirteen test steps are re-
quired in our case to cover one specific scenario. However,
these steps can vary depending on the number of diagrams
representing the SUT as well as the edges and nodes tra-
versed by GW to fulfill requirements; an example of it is
shown in Table 2. The manually written test cases, on the
other hand, require one test step per requirement as shown
in Table 3. Furthermore, test steps generated by GW also in-
clude complete and clear details (i.e. signals from each FDCU
and its respective values) in test steps while manual test steps
do not contain such details for each signal. In Table 2, the
“Test Steps” column for GW-generated test cases represent
nodes and edges, “Action/Expected Result” represents the
specified actions at edges and resulting nodes.

Model-based test cases are able to optimize user-specified
edge coverage criterion better than manually-written test
cases; they also tend to cover each requirement multiple
times more in best case scenarios, in different order, while
achieving the same level of requirements coverage as manu-
ally created test cases.

4.3 Initial Experience with GW for Industrial Case
Modeling and Test Generation

In this section, we summarize our experiences of selecting
and making use of GW as the MBT tool of choice for appli-
cation on the TCMS industrial case.

4.3.1 Selection of GW as an MBT Tool. Both indus-
trial and academic/research considerations played its role
in the selection of GW as the model-based tool of choice
in this work. Previous research [7] shows that applicabil-
ity, usability and expressiveness are important attributes
for MBT tool selection from an industrial uptake point of
view. Two other important attributes of tool selection for

our industrial partner were open source availability and con-
tinuous development/maintenance of the tool. From an aca-
demic/research point of view, in addition to all of the above
mentioned attributes, we were particularly interested in the
less-researched aspect of online test generation capability as
compared to the more prevalent offline test generation capa-
bility of the tool. In order to compare a representative sample
of the available tools, we did a non-exhaustive search for
MBT tools and compared them against important attributes.
The results are summarized in Table 4. GW was selected due
to its active development/maintenance in terms of latest year
of modification, its availability as an open source tool, its
features of both offline and online test generation as well as
usability in terms of modeling the SUT as a state machine
that is understandable to both researchers and practitioners.

4.3.2 Using GW for Test Generation. GW is available
in three versions: GraphWalker studio, GraphWalker CLI,
and GW4E as Eclipse plugin. All the three versions provide
some detailed and well-formatted online documentations
and tutorials for support and learning purposes. We have
found GW4E more user-friendly than GraphWalker studio
and GraphWalker CLI in terms of debugging, execution of
tests, and generating information for testers and developers
but it supports limited stopping criteria (i.e., time duration
in our case). In our experience, GraphWalker studio and
GraphWalker CLI provide more functionality and options,
but are less usable and user-friendly. GraphWalker studio can
be used for modelling and validating the model by traversing
through the model elements, but does not explicitly generate
test artifacts. Whereas, the lack of a user interface in the
GraphWalker CLI results in cumbersome activities due to
the repetitive and manual use of CLI commands when using
the test generation functionality. Furthermore, GraphWalker
CLI requires the use of an additional tool for modelling of the
SUT in JSON/graphML modelling language and it generates
the test cases in JSON format.

The GW tool is an industrial applicable open-source and
actively developed/maintained MBT tool, having the ability
of offline and online test generation, along with the support
of the well-known state machines graphical notation. The
Eclipse plugin of GW is relatively more user-friendly for an
industrial user, but supports a limited set of stopping criteria.

5 Validity Threats
The threats to the validity of this study are discussed in this
section and are divided in the following three classes.

Internal Validity. One internal threat relates to learning
since the second version of the model could be modelled
in a better way because we gained more experience with
GW and understood the industrial domain better with time.
However, we mitigated this factor by consulting and getting
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Table 1. Comparison between manually written and MBT generated test cases using different stopping conditions provided
by GW

Test
Design
Tech-
nique

Stopping Conditions Order of
Coverage

Number of
Test Steps
Generated

Edge Cover-
age%

Requirements
Coverage
Frequency
(Min–Max)

Manual Until the end of manually designed test scenarios Sequential 26 70 4
MBT (1) edge_coverage(100) random 2703 100 7–84
MBT (2) vertex_coverage(100) random 900 57.5 1–26
MBT (3) requirement_coverage(100) random 1202 55 1–41
MBT (4) length(100) random 2021 62.5 6–53

Table 2. An example of test steps generated by GW

Sr.# Test Steps Action/Expected Result

1 FDCU1 FDCU is Active
2 isMaster “Signal1 = true; Signal2= true;"
3 MasterState FDCUisInMasterState
4 ExternalFire “Signal3=false;"
5 FDCU1Signal FDCU1FiresSignals
6 FDCU2 FDCU is Active
7 isSlaveInValid “SignalX = true;"
8 SlaveState FDCUisInSlaveState
9 InternalAlarmAnd-

InValid
“SignalZ = false; SignalY = false;"

10 FDCU2Signal FDCU2FiresSignals
11 TCMSisActive TCMS get the Signals
12 indicate “SignalToIndicateNofire=false;

Time= 200;"
13 ExternalFire External Fire Indicated

continuous input on the correctness of both the SUT models
from the testing team at BT.

External Validity & Reliability. We argue that if an-
other person with similar experience of the modelling envi-
ronment and testing domain knowledge will replicate this
study, the results should be similar, disregarding GW’s ran-
domness in test generation. However, different modelling
notations and different test generation algorithms may pro-
vide different results. Another issue is the number of repeated
trials of test case generation to have valid data for evaluation.
We repeated the test generation process for each stopping
condition three times to take into account the possible vari-
ations in the number of test steps generated each time and
reported the highest number of generated steps. We give the
motivation of selecting the highest number of generated test
steps in Section 4.2, however, this choice can be improved in
the future based on a systematic experimental evaluation of
the number of test generation trials.

Construct Validity. We looked into existing measures
from the literature. For example, the modeling aspects used
for comparison were inspired from the taxonomy of MBT
provided by Kramer et al. [13]. We also used well-known
behavioral measures of test generation, while few were in-
fluenced by the industrial applicability point of view, such
as frequency of requirements coverage as it is an important
aspect of testing from an industrial perspective as it can
uncover interaction faults on a system level.

6 Discussion
Requirements and test specifications help in understanding
the behavioural aspects of the SUT in a better way. These
documents not only provide information about the SUT but
also cover the testers’ perspective, thus covering all scenarios
meeting the test objectives.

At our industrial partner, manually written test specifica-
tion follow a sequential order to cover requirements. The test
steps to cover the first requirement are written and executed
first and engineers follow this order in a systematic way. Con-
versely, through GW when the random generator is selected,
test cases are randomly generated. Hence, MBT-generated
test cases can exploit the SUT through exploring different
paths, increasing the chances of uncovering unknown faults
and interesting interaction scenarios not possible through a
sequential execution order of test steps.

During GW test generation, we also tried with other avail-
able path generators and stopping conditions but identified
certain limitations. For this study, we only considered the
path generator and stopping conditions that provide 100%
requirements coverage as this is an important metric for
BT at this level of testing. While using the quick_random
path generator with different stopping conditions, we were
unable to generate test cases because GW started traversing
a specific path in a continuous loop, unless a threshold value
was reached for the test steps, resulting in too many test
cases with similar test steps. Weight_random path generator
requires weight at each edge, which represents the probabil-
ity of an event to happen; this information was not available
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Table 3. An equivalent, manually created test step corresponding to the example in Table 2 (the pre- and post-conditions are
omitted for clarity)

Step No. Action Expected Result

1 Set external fire from master FDCU-1 by setting signalA=false External fire is indicated in both cabs

Table 4. A non-exhaustive comparison of a brief selection of available MBT tools.

Tools Modelling Lan-
guage

Type License Mode of Test-
ing

Last Mod-
ified

Uppaal [5] Timed automata Academic &
Industrial

Free for non-profit use
only

Offline 2019

Uppal Tron [6] Timed automata Academic &
Industrial

Free for non-profit use
only

Online &
Offline

2009

SpecExplorer [4] Model programs
in C#

Academic &
Industrial

Commercial Offline 2013

MoMuT [2] UML, Timed Au-
tomata & Textual

Academic &
Industrial

Free for non-profit use
only/Partly open source

Offline 2020

NModel [3] Model programs
in C#

Academic &
Industrial

Open Source Online &
Offline

2010

GraphWalker [1] State Machines Academic &
Industrial

Open Source Online &
Offline

2020

in our industrial scenario, thus Weight_random path genera-
tor was not used. Similarly, A_star path generator generates
the test steps for a specified node or edge, hence is unable
to provide 100% requirements coverage. Moreover, GW4E
does not support the time_duration stopping condition, so
we were unable to generate the test cases using this stop-
ping condition. However, while experimenting, we found
that the time provided as a parameter to time_duration stop-
ping condition in GraphWalker studio can affect the number
of generated test steps, model and requirements coverage
as well as frequency of requirements coverage. Similar ef-
fects were also observed using the length stopping condition
as number of generated test steps depends on the value of
length provided. A systematic experimentation to quantify
the affects of such parameter changes is left as a future work.

Broader Impact. Here we discuss any potential negative
impact of our research, inline with the spirit of the blog
post written by Hecht et al. [12]. The evidence regarding the
prevailing use of MBT is rather limited. This is especially
problematic if we consider relying on MBT for thoroughly
testing industrial safety-critical systems (e.g., trains, cars, nu-
clear power plants) where failures can lead to loss of human
lives. Our aim is to provide aid to the testers in test case and
test script generation, so that they can invest their time in
more productive activities of investigating root cause anal-
ysis of bugs and to design better testing scenarios, helping
them to optimize relevant coverage criteria. The purpose

is not to replace them. Moreover, MBT requires human ef-
fort, such as in creation of correct models and to correctly
generate concrete test cases. Our results investigate the use
of MBT and identify the empirical evidence for, or how to
improve, the use of it in practice when testing industrial
safety-critical systems. In addition, our results aim to pro-
vide more evidence on how to improve the adoption and
deployment of MBT in an industrial setting as well as how
the resulting test cases can perform comparably with manual
test design performed by industrial engineers.

7 Conclusion and Future Work
This study has a focus on the modelling aspect of MBT as
well as explores the behavioural differences between man-
ually written and MBT generated test cases using an open-
source MBT tool (i.e., GW). Based on the case study done
in close collaboration with BT developing the safety criti-
cal TCMS, our results show that a testing team can create a
complete and representative model of the SUT using both
requirements and test specifications. This study also shows
that GW-generated test cases provide higher frequency of
requirements coverage than manually written test cases. GW
can generate a complete test suite with random path genera-
tor fulfilling the edge coverage criterion. Lastly, the attractive
features of GW and our experience of adapting it for a real-
world, industrial scenario can help further research on the
capabilities of MBT and GW in other domains.
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As future work, we see the need to perform a more thor-
ough and rigorous evaluation of different coverage criteria
provided by GW, generate test scripts using GW, evaluate
it with manually created test scripts in terms of efficiency
and fault-detection effectiveness, explore the online testing
capabilities of GW and running it as a Restful service.
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