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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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1. Introduction  

Life Cycle Engineering (LCE) may be regarded as an 
established discipline [1], however it is currently under further 
development for societal challenges, such as the transition 
towards a circular economy [2], and thanks to newly 
implemented technologies such as Artificial Intelligence (AI). 
LCE employs the lifecycle perspective and provides a set of 
methodologies such as lifecycle design [1]. Several lifecycle 
design methods can be powerful to consider foreseeable 
consequences within upcoming phases (e.g., production, use, 
and post-use treatment) early in design [1]. A number of 
manufacturers have service businesses in the use phase by, for 
example, providing continuous maintenance [3], and such 
businesses often provide opportunities to get data on products 
in use. Moreover, many companies have a high potential to 
design and provide the products and services holistically as a 

Product/Service System (PSS) [4], which is an integrated 
system of products and services. 

The manufacturing industry today faces the megatrend of 
digitalization, which involves AI (artificial intelligence), 
Industry 4.0, Cyber Physical System (CPS) [5], among others. 
Accordingly, data-driven smart manufacturing [6] is proposed, 
and new capabilities of designing smart products are needed for 
designers [7]. Some advanced cases with documented potential 
are found in literature: e.g., smart techniques were applied to 
make prioritization of maintenance activities, which resulted in 
cost minimization [8]. 

The major missing knowledge is, however, what value, in 
general, can be created and captured out of data in the whole 
lifecycle [9]. Also, the great challenge is that the value creation 
and capture need to be designed and managed from a holistic 
lifecycle perspective by avoiding sub-optimization (e.g., 
optimization of energy use in a factory). Research applying AI 
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1. Introduction  

Life Cycle Engineering (LCE) may be regarded as an 
established discipline [1], however it is currently under further 
development for societal challenges, such as the transition 
towards a circular economy [2], and thanks to newly 
implemented technologies such as Artificial Intelligence (AI). 
LCE employs the lifecycle perspective and provides a set of 
methodologies such as lifecycle design [1]. Several lifecycle 
design methods can be powerful to consider foreseeable 
consequences within upcoming phases (e.g., production, use, 
and post-use treatment) early in design [1]. A number of 
manufacturers have service businesses in the use phase by, for 
example, providing continuous maintenance [3], and such 
businesses often provide opportunities to get data on products 
in use. Moreover, many companies have a high potential to 
design and provide the products and services holistically as a 

Product/Service System (PSS) [4], which is an integrated 
system of products and services. 

The manufacturing industry today faces the megatrend of 
digitalization, which involves AI (artificial intelligence), 
Industry 4.0, Cyber Physical System (CPS) [5], among others. 
Accordingly, data-driven smart manufacturing [6] is proposed, 
and new capabilities of designing smart products are needed for 
designers [7]. Some advanced cases with documented potential 
are found in literature: e.g., smart techniques were applied to 
make prioritization of maintenance activities, which resulted in 
cost minimization [8]. 

The major missing knowledge is, however, what value, in 
general, can be created and captured out of data in the whole 
lifecycle [9]. Also, the great challenge is that the value creation 
and capture need to be designed and managed from a holistic 
lifecycle perspective by avoiding sub-optimization (e.g., 
optimization of energy use in a factory). Research applying AI 
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authors have applied  AI methods and techniques to improve 
production for specific applications, such as fault diagnosis, 
process adjustment and monitoring, and these have proven to 
be feasible and successful; for some examples, see [41-44]. 
However, these are not enough to make a breakthrough for 
using AI in LCE; these are more “one-shot” successful 
applications, but not leading to the systematic use of AI in the 
full lifecycle of products. 

3. Vision, concepts, and methods 

3.1. Vision  

A large number of traditional engineering activities for the 
environmental aspect in practice are often associated with a 
weak or non-explicit connection between different phases (such 
as improving energy efficiency in a machining process or a 
factory). Thus, there is an ongoing risk of sub-optimization. 
One reason for this may be the way of looking at or addressing 
engineering as a number of activities and processes in a 
sequence or independently. By lifting up the perspective to a 
highly integrated collaborative view that is coordinated by 
business intelligence (e.g., [45]) with the support of global 
memory, the focus can be shifted from sub-optimization to 
optimizing the complete lifecycle. This shift is considered as a 
natural step seen from the Industry 4.0 perspective where 
digitalization in a factory (e.g., intelligent production systems 
[46]) is the first step, followed by the global intelligence and 
optimization step.  

Our vision is to advance existing LCE towards more 
dynamic engineering that enables continuous and flexible 
improvement and optimization on all levels. Information from 
all corners of the lifecycle together with external factors (from 
end user, environment, economic aspects, etc.) are used to 
improve the product lifecycle, as depicted by Fig. 1. This new 
way of LCE is composed of a number of already-existing 
activities such as design, production, and maintenance. 
However, these activities will not necessarily be arranged in a 
sequence but coordinate and, if needed, interfere with 
whichever activity is relevant. This is realized by business 
intelligence: for example, ordering the right numbers for new 
production and remanufacturing based on the quality conditions 
of products (cores) that are coming back to a factory after use 
and the current or upcoming supply of components. Key 
enabling technologies are digitalizing activities in each 
element, communicating data, information, and experience 
within and between the elements using, for example, the 
Internet of Things (IoT), and analyzing data to derive useful 
information and insights with AI. These technologies realize 
interrelations between and among the activities with a shorter 
time to respond and higher accuracy in information, which 
increases the relevance of the systems perspective on the related 
activities. As feedback and its time delays are among the central 
features of a system in general, business intelligence giving 
feedback plays a paramount role. This enables dynamic, holistic 
life cycle engineering that continuously and flexibly improves 
and evolves. Based on the discussion above, this new way of 
LCE is termed adaptive and intelligent LCE (AI-LCE). 

3.2. Concepts  

Table 2 lists some of the properties for AI-LCE and 
traditional LCE. While both have the lifecycle perspective, AI-
LCE offers a number of benefits. Essential technologies for the 
vision are data storage, communication (e.g., IoT), and 
integration and reasoning. 

Table 2. Comparison between traditional LCE and AI-LCE. 

 Traditional LCE AI-LCE 
Perspective Lifecycle perspective Lifecycle perspective 
Digitalization and IoT Beneficial but not 

required   
A foundation for 
deployment 

Time for changing 
activities  

Typically, longer than 
a lifecycle 

Within a lifecycle 
(even on real time) 

Accuracy of changes 
made 

Low High 

Intelligence used Mainly human 
intelligence 

Human and artificial 
intelligence 
(complementary) 

Data storage used Local databases Uniform data access 
(e.g., data lake) 

 
 
By adopting the emerging concept of data lakes, we see a 

number of benefits such as transparency with retained 
confidentiality and integrity of the data and information 
collected and stored. In AI-LCE, data will not be stored only 
when its usage is predefined; data will be stored also to enable 
integrating new AI applications when available and when they 
add value. In previous projects by the authors, a lack of relevant 
data was found to be one major obstacle to implement AI in the 
lifecycle. By stepping away from a normal database approach 
where data is structured and stored locally for a specific purpose 
(and if no specific application requests it, it is not stored), we 
open up the possibility to continuously add more and more AI 
functionality (AI modules), producing feedback and improving 
the overall lifecycle in all stages. Data lakes separate structures 
from data, which enables structuring data in different ways to 
match the users (optimization or AI modules), and access 
permissions and confidentially can be handled more efficiently. 
Traditionally, data is structured in tables and such formats that 
optimize the use by some particular module, which often makes 
the data difficult to be used beyond the intended use. This limits 
its use by e.g., AI modules.  

The data lake concept also enables accessible-for-business 
intelligence functionality of both real-time data and historical 
data to be used for analysis and improvement on all levels of 
LCE. The transparency of data increases, since the data in a data 
lake is associated with a description enabling other users to use 
the data in different ways; on the other hand, locally stored or 
cloud stored data is often defined in a way limiting how the data 
is used. Managing vast amounts of data collected during all life 
cycle phases and making it available, for example, for 
monitoring, advanced AI, and statistics, we see the emerging 
concept of data lakes as one potential solution. A data lake 
stores all enterprise lifecycle data (enabling uniform 
access/distribution): raw copies of source data; historical 
visualization, advanced analytics, and AI [47], enabling 
seamless information flows across aligned sub-systems and 
business intelligence. A data lake may also keep sensitive data
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to the sustainability issues in real-world cases is limited, though 
there are a few exceptions (e.g., [10]). The application of AI 
and the assessment of its implications with the lifecycle 
perspective are among the major missing scientific insights  
[11]. Filling the knowledge gaps will guide the manufacturing 
industry to exploit the potential of AI. 

This paper, given the opportunity with these gaps, presents 
a vision and concepts for an emerging paradigm of LCE, termed 
Adaptive and Intelligent Life Cycle Engineering (AI-LCE). 
Literature review and analysis is adopted as the research 
method. This proposed, new way of engineering adapts the 
activities throughout the lifecycle such as design, logistics, 
production, maintenance, repair, and remanufacturing by 
collecting and using data from the lifecycle as well as applying 
AI methods and techniques. The major advantage lies in its 
adaptability: the time needed to adjust and change activities 
either reactively or proactively is significantly shorter than with 
the current practice of LCE, as needed adjustments are 
implemented directly within the current product lifecycle or 
even in real time. Also, the accuracy of the changes made is 
increased for the relevant actors. The major advantage lies in 
highly effective problem identification from the lifecycle 
perspective and efficient problem solving through suitable AI 
methods and techniques. 

The remainder of this paper is structured as follows: Section 
2 describes the state of the art and research gaps in LCE and AI 
specifically. Section 3 then presents the vision and its related 
concepts. Finally, Sections 4 and 5 provides the discussions and 
implications and concludes the paper, respectively. 

2. State of the art and research gaps  

An improvement potential is found for feedback loops from 
product quality to improve the manufacturing process and 
system management in industry according to Lee et al. [12]. 
Gopalakrishnan [13] states that current maintenance decisions 
are rarely fact based, and Garg et al. [14] assert that much of the 
Computerized Maintenance Management System (CMMS) 
data are rarely analyzed to be used for coordination or decision 
support. Labib [15] also states that commercially available 
CMMS software lacks decision analysis support for 
management. One major issue with the data in, for instance, 
CMMS is that it is often of free-text character and thus analyzed 
manually, which both consumes resources and takes time [16]. 

Further, it is recognized that a systematic approach to and 
integration of AI is needed before the real impact of Industry 
4.0 can be harvested [17]. Such a systematic approach would 
assist decision-making not only within maintenance and quality 
improvement within operations but within the entire lifecycle 
(e.g., design procurement, production design, 
manufacturing/assembly, operations, service, reuse, 
remanufacturing and recycling).  

In relation to AI and digitalization, new concepts and 
techniques have also been recently proposed, for example, deep 
learning [18], cloud manufacturing [19], and data-driven smart 
manufacturing [6]. Furthermore, the importance of data-driven 
decision making on a digital business strategy and in the 
industrial domain is highlighted by [20]. According to the 
literature, decision-support and knowledge-based systems 
based on data-driven methodologies are being developed using 
different Machine Learning (ML) methods, for example, 
Support Vector Machines (SVM), fuzzy logic, clustering, deep 
learning, k-Nearest Neighbour (kNN), dynamic Bayesian 
networks, Artificial Neural Networks (ANN) and hidden 
Markov models [21-23]. The predictive maintenance (PdM) 
4.0 [24] approach uses data analytics and ML techniques to 
predict failures at a high level of accuracy, enabling self-
awareness of technical health. The literature also shows that 
PdM based on ML is gaining interest from the industry sector 
(Table 1) [25, 26]; Table 1 presents recent advancement of AI 
and ML algorithms in manufacturing industries. 

Research applying and integrating AI with sustainability 
issues is, however, limited thus far with a few exceptions 
including the application of a genetic algorithm support vector 
machine multiple kernel learning to improve efficiency in smart 
electricity grids [10]. The potential impact of lifecycle data on 
resource efficiency and effectiveness has been highlighted, for 
example, when it comes to insight gathered by service 
technicians and its impact activities both upstream (design) and 
downstream (remanufacturing) in the lifecycle [27, 28]. While 
prior research further indicates the potential positive impacts of 
the utilization of lifecycle data on resource efficiency and 
effectiveness, its utilization still poses a challenge for 
businesses designing and providing PSSs [29]. Furthermore, 
most of these AI techniques have hardly been systematically 
applied to reduce, solve, or prevent real-world problems from a 
lifecycle perspective. The application of AI and the assessment 
of its implications are among the major missing insights. The  

Table 1. List of AI and ML algorithms in manufacturing industries .  

x 

Year References Goal Method 
2019 [30] [31] Predictive maintenance Support Vector Machines (SVM) and Artificial Neural Networks (ANN) 
2019 [32] Anomaly detection Autoencoder and Extreme learning machines 
2019 [33]  Predictive maintenance Unsupervised clustering algorithm and a pattern recognition neural network 
2019 [34] Predictive maintenance Chronicle mining and neural network 
2018 [31] Fault detection Principal Component Analysis (PCA), Hotelling's T-squared distribution (T2 statistics), K-

means, Hierarchical clustering, Fuzzy C-Means clustering and Model-based clustering 
2018 [35]  Predictive maintenance Generalized linear models, Random forest, Gradient boosting machine and Deep learning 
2017 [36]  Classify defect Multilayer perceptron (MLP) 
2017 [37] Tool wear Prediction Random Forest (RFs), Feed-Forward Back Propagation (FFBP) neural networks,  Artificial 

Neural Networks (ANN), Support Vector Regression (SVR) 
2017 [38] Predicting potential failure Auto Regressive Integrated Moving Average 
2017 [39]  Predictive maintenance Random forest algorithm 
2017 [40]  Predictive maintenance Classification, Support Vector Machines (SVM) based regression and clustering 
2017 [25]  Predictive maintenance Linear regression, Logistic regression, Neural networks, Decision trees, Random forests, 

Gradient boosting machines, 
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authors have applied  AI methods and techniques to improve 
production for specific applications, such as fault diagnosis, 
process adjustment and monitoring, and these have proven to 
be feasible and successful; for some examples, see [41-44]. 
However, these are not enough to make a breakthrough for 
using AI in LCE; these are more “one-shot” successful 
applications, but not leading to the systematic use of AI in the 
full lifecycle of products. 

3. Vision, concepts, and methods 

3.1. Vision  

A large number of traditional engineering activities for the 
environmental aspect in practice are often associated with a 
weak or non-explicit connection between different phases (such 
as improving energy efficiency in a machining process or a 
factory). Thus, there is an ongoing risk of sub-optimization. 
One reason for this may be the way of looking at or addressing 
engineering as a number of activities and processes in a 
sequence or independently. By lifting up the perspective to a 
highly integrated collaborative view that is coordinated by 
business intelligence (e.g., [45]) with the support of global 
memory, the focus can be shifted from sub-optimization to 
optimizing the complete lifecycle. This shift is considered as a 
natural step seen from the Industry 4.0 perspective where 
digitalization in a factory (e.g., intelligent production systems 
[46]) is the first step, followed by the global intelligence and 
optimization step.  

Our vision is to advance existing LCE towards more 
dynamic engineering that enables continuous and flexible 
improvement and optimization on all levels. Information from 
all corners of the lifecycle together with external factors (from 
end user, environment, economic aspects, etc.) are used to 
improve the product lifecycle, as depicted by Fig. 1. This new 
way of LCE is composed of a number of already-existing 
activities such as design, production, and maintenance. 
However, these activities will not necessarily be arranged in a 
sequence but coordinate and, if needed, interfere with 
whichever activity is relevant. This is realized by business 
intelligence: for example, ordering the right numbers for new 
production and remanufacturing based on the quality conditions 
of products (cores) that are coming back to a factory after use 
and the current or upcoming supply of components. Key 
enabling technologies are digitalizing activities in each 
element, communicating data, information, and experience 
within and between the elements using, for example, the 
Internet of Things (IoT), and analyzing data to derive useful 
information and insights with AI. These technologies realize 
interrelations between and among the activities with a shorter 
time to respond and higher accuracy in information, which 
increases the relevance of the systems perspective on the related 
activities. As feedback and its time delays are among the central 
features of a system in general, business intelligence giving 
feedback plays a paramount role. This enables dynamic, holistic 
life cycle engineering that continuously and flexibly improves 
and evolves. Based on the discussion above, this new way of 
LCE is termed adaptive and intelligent LCE (AI-LCE). 

3.2. Concepts  

Table 2 lists some of the properties for AI-LCE and 
traditional LCE. While both have the lifecycle perspective, AI-
LCE offers a number of benefits. Essential technologies for the 
vision are data storage, communication (e.g., IoT), and 
integration and reasoning. 

Table 2. Comparison between traditional LCE and AI-LCE. 

 Traditional LCE AI-LCE 
Perspective Lifecycle perspective Lifecycle perspective 
Digitalization and IoT Beneficial but not 

required   
A foundation for 
deployment 

Time for changing 
activities  

Typically, longer than 
a lifecycle 

Within a lifecycle 
(even on real time) 

Accuracy of changes 
made 

Low High 

Intelligence used Mainly human 
intelligence 

Human and artificial 
intelligence 
(complementary) 

Data storage used Local databases Uniform data access 
(e.g., data lake) 

 
 
By adopting the emerging concept of data lakes, we see a 

number of benefits such as transparency with retained 
confidentiality and integrity of the data and information 
collected and stored. In AI-LCE, data will not be stored only 
when its usage is predefined; data will be stored also to enable 
integrating new AI applications when available and when they 
add value. In previous projects by the authors, a lack of relevant 
data was found to be one major obstacle to implement AI in the 
lifecycle. By stepping away from a normal database approach 
where data is structured and stored locally for a specific purpose 
(and if no specific application requests it, it is not stored), we 
open up the possibility to continuously add more and more AI 
functionality (AI modules), producing feedback and improving 
the overall lifecycle in all stages. Data lakes separate structures 
from data, which enables structuring data in different ways to 
match the users (optimization or AI modules), and access 
permissions and confidentially can be handled more efficiently. 
Traditionally, data is structured in tables and such formats that 
optimize the use by some particular module, which often makes 
the data difficult to be used beyond the intended use. This limits 
its use by e.g., AI modules.  

The data lake concept also enables accessible-for-business 
intelligence functionality of both real-time data and historical 
data to be used for analysis and improvement on all levels of 
LCE. The transparency of data increases, since the data in a data 
lake is associated with a description enabling other users to use 
the data in different ways; on the other hand, locally stored or 
cloud stored data is often defined in a way limiting how the data 
is used. Managing vast amounts of data collected during all life 
cycle phases and making it available, for example, for 
monitoring, advanced AI, and statistics, we see the emerging 
concept of data lakes as one potential solution. A data lake 
stores all enterprise lifecycle data (enabling uniform 
access/distribution): raw copies of source data; historical 
visualization, advanced analytics, and AI [47], enabling 
seamless information flows across aligned sub-systems and 
business intelligence. A data lake may also keep sensitive data
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to the sustainability issues in real-world cases is limited, though 
there are a few exceptions (e.g., [10]). The application of AI 
and the assessment of its implications with the lifecycle 
perspective are among the major missing scientific insights  
[11]. Filling the knowledge gaps will guide the manufacturing 
industry to exploit the potential of AI. 

This paper, given the opportunity with these gaps, presents 
a vision and concepts for an emerging paradigm of LCE, termed 
Adaptive and Intelligent Life Cycle Engineering (AI-LCE). 
Literature review and analysis is adopted as the research 
method. This proposed, new way of engineering adapts the 
activities throughout the lifecycle such as design, logistics, 
production, maintenance, repair, and remanufacturing by 
collecting and using data from the lifecycle as well as applying 
AI methods and techniques. The major advantage lies in its 
adaptability: the time needed to adjust and change activities 
either reactively or proactively is significantly shorter than with 
the current practice of LCE, as needed adjustments are 
implemented directly within the current product lifecycle or 
even in real time. Also, the accuracy of the changes made is 
increased for the relevant actors. The major advantage lies in 
highly effective problem identification from the lifecycle 
perspective and efficient problem solving through suitable AI 
methods and techniques. 

The remainder of this paper is structured as follows: Section 
2 describes the state of the art and research gaps in LCE and AI 
specifically. Section 3 then presents the vision and its related 
concepts. Finally, Sections 4 and 5 provides the discussions and 
implications and concludes the paper, respectively. 

2. State of the art and research gaps  

An improvement potential is found for feedback loops from 
product quality to improve the manufacturing process and 
system management in industry according to Lee et al. [12]. 
Gopalakrishnan [13] states that current maintenance decisions 
are rarely fact based, and Garg et al. [14] assert that much of the 
Computerized Maintenance Management System (CMMS) 
data are rarely analyzed to be used for coordination or decision 
support. Labib [15] also states that commercially available 
CMMS software lacks decision analysis support for 
management. One major issue with the data in, for instance, 
CMMS is that it is often of free-text character and thus analyzed 
manually, which both consumes resources and takes time [16]. 

Further, it is recognized that a systematic approach to and 
integration of AI is needed before the real impact of Industry 
4.0 can be harvested [17]. Such a systematic approach would 
assist decision-making not only within maintenance and quality 
improvement within operations but within the entire lifecycle 
(e.g., design procurement, production design, 
manufacturing/assembly, operations, service, reuse, 
remanufacturing and recycling).  

In relation to AI and digitalization, new concepts and 
techniques have also been recently proposed, for example, deep 
learning [18], cloud manufacturing [19], and data-driven smart 
manufacturing [6]. Furthermore, the importance of data-driven 
decision making on a digital business strategy and in the 
industrial domain is highlighted by [20]. According to the 
literature, decision-support and knowledge-based systems 
based on data-driven methodologies are being developed using 
different Machine Learning (ML) methods, for example, 
Support Vector Machines (SVM), fuzzy logic, clustering, deep 
learning, k-Nearest Neighbour (kNN), dynamic Bayesian 
networks, Artificial Neural Networks (ANN) and hidden 
Markov models [21-23]. The predictive maintenance (PdM) 
4.0 [24] approach uses data analytics and ML techniques to 
predict failures at a high level of accuracy, enabling self-
awareness of technical health. The literature also shows that 
PdM based on ML is gaining interest from the industry sector 
(Table 1) [25, 26]; Table 1 presents recent advancement of AI 
and ML algorithms in manufacturing industries. 

Research applying and integrating AI with sustainability 
issues is, however, limited thus far with a few exceptions 
including the application of a genetic algorithm support vector 
machine multiple kernel learning to improve efficiency in smart 
electricity grids [10]. The potential impact of lifecycle data on 
resource efficiency and effectiveness has been highlighted, for 
example, when it comes to insight gathered by service 
technicians and its impact activities both upstream (design) and 
downstream (remanufacturing) in the lifecycle [27, 28]. While 
prior research further indicates the potential positive impacts of 
the utilization of lifecycle data on resource efficiency and 
effectiveness, its utilization still poses a challenge for 
businesses designing and providing PSSs [29]. Furthermore, 
most of these AI techniques have hardly been systematically 
applied to reduce, solve, or prevent real-world problems from a 
lifecycle perspective. The application of AI and the assessment 
of its implications are among the major missing insights. The  

Table 1. List of AI and ML algorithms in manufacturing industries .  

x 

Year References Goal Method 
2019 [30] [31] Predictive maintenance Support Vector Machines (SVM) and Artificial Neural Networks (ANN) 
2019 [32] Anomaly detection Autoencoder and Extreme learning machines 
2019 [33]  Predictive maintenance Unsupervised clustering algorithm and a pattern recognition neural network 
2019 [34] Predictive maintenance Chronicle mining and neural network 
2018 [31] Fault detection Principal Component Analysis (PCA), Hotelling's T-squared distribution (T2 statistics), K-

means, Hierarchical clustering, Fuzzy C-Means clustering and Model-based clustering 
2018 [35]  Predictive maintenance Generalized linear models, Random forest, Gradient boosting machine and Deep learning 
2017 [36]  Classify defect Multilayer perceptron (MLP) 
2017 [37] Tool wear Prediction Random Forest (RFs), Feed-Forward Back Propagation (FFBP) neural networks,  Artificial 

Neural Networks (ANN), Support Vector Regression (SVR) 
2017 [38] Predicting potential failure Auto Regressive Integrated Moving Average 
2017 [39]  Predictive maintenance Random forest algorithm 
2017 [40]  Predictive maintenance Classification, Support Vector Machines (SVM) based regression and clustering 
2017 [25]  Predictive maintenance Linear regression, Logistic regression, Neural networks, Decision trees, Random forests, 

Gradient boosting machines, 
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Thus, knowledge representation (deductive learning) and 
inductive machine learning will complement each other. ML in 
knowledge graphs has evolved recently as a class of mature 
techniques to combine rule-based systems and data mining. 
Machine Learning as a Service (MLaaS) is a definition of 
various cloud-based platforms that cover most infrastructure 
issues such as data pre-processing, model training, and model 
evaluation, with further prediction. These resultant models or 
algorithms will communicate via REpresentational State 
Transfer (REST) [49], that is, RESTful Web services into the 
demanded platforms. Amazon Machine Learning services, 
Azure Machine Learning, Google Cloud AI, and IBM Watson 
are regarded as four leading cloud MLaaS services that allow 
for fast model training and deployment [50]. Currently, the 
APIs from these four vendors can be broadly divided into three 
large groups: 
 Text recognition, translation, and textual analysis, 
 Image and video recognition and related analysis, and 
 Other, that includes specific uncategorized services. 

4.3. Readiness and business feasibility  

A high level of digitalization is a prerequisite for moving 
towards AI-LCE. The different techniques and methods in both 
AI, digitalization, and LCE are all available, so AI-LCE is a 
matter of taking the traditional LCE to a new level by 
integrating it in the current digitalization, providing concepts, 
methods, tools, mechanisms, and uniform data storage/access. 
AI-LCE would also enable a solution to the challenge with 
integrity and data safety when using external platforms and 
external data storage. The external storage, e.g., RESTful Web 
services, as discussed above in the technical feasibility is not 
acceptable in all industrial enterprises since access to this data 
by competition, customer, subcontractors, and the public may 
cause great damage.  

4.4. Impacts  

Applying a dynamic, holistic LCE approach that enables 
continuous and flexible improvement gives LCE a means to 
more effectively optimize the whole lifecycle and deploy 
improvements faster, both on a detailed level and on the grand 
scale of the product lifecycle. By enabling continuous 
improvements, new releases of products and services are more 
of a marketing aspect. There is also a trend towards continuous 
improvements appreciated by customers, which is also an 
advantage from a sustainability perspective and in reducing the 
need for selling new products from a profit perspective and 
shifting the focus to selling improvements and new 
functionality to existing customers as well as new customers. 
Tesla may be seen as such an example; it sells the same car 
model for many years, but all aspects of the lifecycle are 
continuously improved, and new services and performance 
enhancements are released and offered to both new and existing 
customers. 

One benefit of this approach, from an environmental 
perspective, is that it is easier to get an overview of the total 
lifecycle and also identify where investments in environmental 
improvements have the biggest effect. It most likely will also 

reduce sub-optimization, where an environmental improvement 
in one phase causes more negative environmental impact in 
other phases. Ways to reduce overall environmental impact in 
forms of energy use, resource use, and emissions will be easier 
to identify with AI-LCE since the effects of a local change can 
be assessed and evaluated from the overall lifecycle 
perspective.   

5. Concluding remarks  

This paper presented a vision with the needed concepts and 
methods for an emerging paradigm of life cycle engineering, 
which is termed AI-LCE. This new way of engineering adapts 
the activities throughout the lifecycle by intelligently collecting 
and using data from the lifecycle as well as applying AI 
methods. The major advancement lies in the time needed for 
and the accuracy in actions. AI-LCE has a potential to enhance 
both environmental and economic performance as well as value 
creation throughout the lifecycle. This much needed expansion 
of LCE is developed by employing the state of the art from 
multiple disciplines in a holistic and fully integrated lifecycle 
approach. Numerous application areas are expected: for 
instance, issues caused by deviations in production may be 
promptly captured for required changes to be implemented back 
in design directly within the same generation. Also, causes 
identified in repair may be feedback to redesign services to 
avoid similar problems from occurring. 

The authors, taking advantage of their knowledge and 
experience in LCE and AI, have just begun tackling this grand 
challenge into AI-LCE. This research will be further carried out 
in close collaboration with manufacturers and AI solution 
providers. Real data from different phases in the lifecycle will 
be collected from the participating companies and used as the 
foundation for showing the proof of concept. 
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to and receive outputs from the business intelligence, which exchanges information with the memory. 

 

securely in house and only share portions of the data selectively 
with different users, e.g. AI functionality. Furthermore, a data 
lake requires discipline in giving all data clear meanings so as 
to be accessed and used by other modules, functions and 
systems, which is the main added value of a data lake. 

3.3. Methods for AI-LCE 

The needed methods will be developed by applying various 
techniques in a hybrid approach from AI (including machine 
learning and Natural Language Processing (NLP)), data 
modelling, and domain knowledge from engineering and 
management. Here, problem and solution ontologies will be 
developed to define relations between key terms. NLP will be 
used to identify key terms in problem and solution descriptions 
and Case-Based Reasoning (CBR) to identify similar problem-
solution patterns to given problems. The AI solution may be 
installed as a multi-domain solution, domain-specific, or even 
within a company, allowing the provision of specific 
knowledge and protecting it. As a baseline, it will first provide 
general solutions to this domain problems without taking time 
constraints into account. Specifically, ML approaches, like 
support vector machines and neural networks, will be used to 
solve problems like forecast or decision support. Clustering 
approaches based on variations of k-means and spectral 
methods will be developed to enable data grouping according 
to their similarity. This will be used for different purposes, for 
example, to enable grouping the most similar consumers as an 
enabler for the application of demand response schemes. A 
general CBR approach will be developed in a way that it may 
be used to solve multiple, different problems. Finally, semantic 
knowledge (ontologies) will be developed to support the AI 
system’s and solution’s interoperability. AI techniques are 

essential to dynamically identify correlations and patterns 
between data of different lifecycle phases and enable 
continuous improvements and optimization.  

4. Discussions and implications  

4.1. Potential 

A report by McKinsey [48], as an example, states the 
followings: Better predictive maintenance can reduce 
equipment downtime by up to 50% and reduce equipment 
capital investment by 3 to 5%. Improved operations can reduce 
maintenance costs by 5 to 10% and increase output by 3 to 5% 
by avoiding unplanned outages. In manufacturing, these 
savings have a potential economic impact of nearly $630 billion 
per year in 2025. Adding the effects by improvement with the 
more holistic view involving multiple lifecycle phases, the 
potential of AI-LCE will be substantial. 

4.2. Technical feasibility  

By using AI techniques and methods together with domain 
knowledge, the proposed approach enables the discovery of 
anomalies, analyze their consequences, and suggests solutions 
for how to amend them. A number of suitable AI techniques 
and methods will be selected and applied to available data as a 
proof of concept. The challenge is to both adapt and develop 
new techniques and methods suitable for specific challenges at 
hand and available data. Self-learning algorithms, still 
conforming to the pre-defined rules, will also cover the 
situations that lie outside these rules. Instead, ML methods can 
train algorithms. The training can be performed through 
simulated environment data, field testing, and operational data. 
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Thus, knowledge representation (deductive learning) and 
inductive machine learning will complement each other. ML in 
knowledge graphs has evolved recently as a class of mature 
techniques to combine rule-based systems and data mining. 
Machine Learning as a Service (MLaaS) is a definition of 
various cloud-based platforms that cover most infrastructure 
issues such as data pre-processing, model training, and model 
evaluation, with further prediction. These resultant models or 
algorithms will communicate via REpresentational State 
Transfer (REST) [49], that is, RESTful Web services into the 
demanded platforms. Amazon Machine Learning services, 
Azure Machine Learning, Google Cloud AI, and IBM Watson 
are regarded as four leading cloud MLaaS services that allow 
for fast model training and deployment [50]. Currently, the 
APIs from these four vendors can be broadly divided into three 
large groups: 
 Text recognition, translation, and textual analysis, 
 Image and video recognition and related analysis, and 
 Other, that includes specific uncategorized services. 

4.3. Readiness and business feasibility  

A high level of digitalization is a prerequisite for moving 
towards AI-LCE. The different techniques and methods in both 
AI, digitalization, and LCE are all available, so AI-LCE is a 
matter of taking the traditional LCE to a new level by 
integrating it in the current digitalization, providing concepts, 
methods, tools, mechanisms, and uniform data storage/access. 
AI-LCE would also enable a solution to the challenge with 
integrity and data safety when using external platforms and 
external data storage. The external storage, e.g., RESTful Web 
services, as discussed above in the technical feasibility is not 
acceptable in all industrial enterprises since access to this data 
by competition, customer, subcontractors, and the public may 
cause great damage.  

4.4. Impacts  

Applying a dynamic, holistic LCE approach that enables 
continuous and flexible improvement gives LCE a means to 
more effectively optimize the whole lifecycle and deploy 
improvements faster, both on a detailed level and on the grand 
scale of the product lifecycle. By enabling continuous 
improvements, new releases of products and services are more 
of a marketing aspect. There is also a trend towards continuous 
improvements appreciated by customers, which is also an 
advantage from a sustainability perspective and in reducing the 
need for selling new products from a profit perspective and 
shifting the focus to selling improvements and new 
functionality to existing customers as well as new customers. 
Tesla may be seen as such an example; it sells the same car 
model for many years, but all aspects of the lifecycle are 
continuously improved, and new services and performance 
enhancements are released and offered to both new and existing 
customers. 

One benefit of this approach, from an environmental 
perspective, is that it is easier to get an overview of the total 
lifecycle and also identify where investments in environmental 
improvements have the biggest effect. It most likely will also 

reduce sub-optimization, where an environmental improvement 
in one phase causes more negative environmental impact in 
other phases. Ways to reduce overall environmental impact in 
forms of energy use, resource use, and emissions will be easier 
to identify with AI-LCE since the effects of a local change can 
be assessed and evaluated from the overall lifecycle 
perspective.   

5. Concluding remarks  

This paper presented a vision with the needed concepts and 
methods for an emerging paradigm of life cycle engineering, 
which is termed AI-LCE. This new way of engineering adapts 
the activities throughout the lifecycle by intelligently collecting 
and using data from the lifecycle as well as applying AI 
methods. The major advancement lies in the time needed for 
and the accuracy in actions. AI-LCE has a potential to enhance 
both environmental and economic performance as well as value 
creation throughout the lifecycle. This much needed expansion 
of LCE is developed by employing the state of the art from 
multiple disciplines in a holistic and fully integrated lifecycle 
approach. Numerous application areas are expected: for 
instance, issues caused by deviations in production may be 
promptly captured for required changes to be implemented back 
in design directly within the same generation. Also, causes 
identified in repair may be feedback to redesign services to 
avoid similar problems from occurring. 

The authors, taking advantage of their knowledge and 
experience in LCE and AI, have just begun tackling this grand 
challenge into AI-LCE. This research will be further carried out 
in close collaboration with manufacturers and AI solution 
providers. Real data from different phases in the lifecycle will 
be collected from the participating companies and used as the 
foundation for showing the proof of concept. 
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securely in house and only share portions of the data selectively 
with different users, e.g. AI functionality. Furthermore, a data 
lake requires discipline in giving all data clear meanings so as 
to be accessed and used by other modules, functions and 
systems, which is the main added value of a data lake. 

3.3. Methods for AI-LCE 

The needed methods will be developed by applying various 
techniques in a hybrid approach from AI (including machine 
learning and Natural Language Processing (NLP)), data 
modelling, and domain knowledge from engineering and 
management. Here, problem and solution ontologies will be 
developed to define relations between key terms. NLP will be 
used to identify key terms in problem and solution descriptions 
and Case-Based Reasoning (CBR) to identify similar problem-
solution patterns to given problems. The AI solution may be 
installed as a multi-domain solution, domain-specific, or even 
within a company, allowing the provision of specific 
knowledge and protecting it. As a baseline, it will first provide 
general solutions to this domain problems without taking time 
constraints into account. Specifically, ML approaches, like 
support vector machines and neural networks, will be used to 
solve problems like forecast or decision support. Clustering 
approaches based on variations of k-means and spectral 
methods will be developed to enable data grouping according 
to their similarity. This will be used for different purposes, for 
example, to enable grouping the most similar consumers as an 
enabler for the application of demand response schemes. A 
general CBR approach will be developed in a way that it may 
be used to solve multiple, different problems. Finally, semantic 
knowledge (ontologies) will be developed to support the AI 
system’s and solution’s interoperability. AI techniques are 

essential to dynamically identify correlations and patterns 
between data of different lifecycle phases and enable 
continuous improvements and optimization.  

4. Discussions and implications  

4.1. Potential 

A report by McKinsey [48], as an example, states the 
followings: Better predictive maintenance can reduce 
equipment downtime by up to 50% and reduce equipment 
capital investment by 3 to 5%. Improved operations can reduce 
maintenance costs by 5 to 10% and increase output by 3 to 5% 
by avoiding unplanned outages. In manufacturing, these 
savings have a potential economic impact of nearly $630 billion 
per year in 2025. Adding the effects by improvement with the 
more holistic view involving multiple lifecycle phases, the 
potential of AI-LCE will be substantial. 

4.2. Technical feasibility  

By using AI techniques and methods together with domain 
knowledge, the proposed approach enables the discovery of 
anomalies, analyze their consequences, and suggests solutions 
for how to amend them. A number of suitable AI techniques 
and methods will be selected and applied to available data as a 
proof of concept. The challenge is to both adapt and develop 
new techniques and methods suitable for specific challenges at 
hand and available data. Self-learning algorithms, still 
conforming to the pre-defined rules, will also cover the 
situations that lie outside these rules. Instead, ML methods can 
train algorithms. The training can be performed through 
simulated environment data, field testing, and operational data. 
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