
Characterization of Shared Resource Contention
in Multi-core Systems

Jakob Danielsson

2019

Till minne av morfar

iii

Abstract

Multi-core computers are infamous for being hard to use in time-critical sys-
tems due to execution-time variations as an effect of shared resource con-
tention. In this thesis we study the problem of shared resource contention
which occurs when multiple applications executing on different cores do not
have exclusive ownership of a shared resource. We investigate performance
variations of parallel tasks in multi-core systems and present a method to pin-
point the source of the resource contention using existing hardware perfor-
mance counters. Furthermore, we investigate methods to mitigate performance
variations using resource isolation techniques. We present a methodology for
verifying isolation and tested the achieved isolation using the Jailhouse hyper-
visor. We further investigate shared cache memory isolation techniques using
a page coloring tool called PALLOC. Page-coloring is used for partitioning
the cache, assigning specific cache lines to specific processes. Page coloring
can however cause system performance degradation since it decreases the to-
tal amount of cache memory available for each process. Finally, we propose
a dynamic partitioning assignment policy which assigns cache partitions to a
process according to an adaptive model based on the process performance. The
general conclusion from our investigations is that a large body of applications
can suffer from shared resource contention and that techniques for mitigating
resource contention are in dire need. Our methods measure and characterise
applications, identifies resource contention and finally study isolation tech-
niques.

v

Sammanfattning

Delad resursanvänding kan orsaka stora problem i dagens samhälle. Ett bra
exempel skulle kunna vara en arbetande programmerare som åker bussen till
jobbet varje morgon. Den delade resursen är i detta fall bussen som används
av fler personer än bara programmeraren. Programmeraren skall vara på job-
bet klockan 09:00 och varje bussresa tar cirka 25 minuter. Programmeraren
har räknat att bussen som går klockan 08:30 ger tillräcklig marginal för att
hinna fram till jobbet i tid. Ett problem som kan uppstå är om bussen är full
när den når fram till programmerarens hållplats. Om bussen skulle vara full
kan inte programmeraren gå på bussen och kommer då att komma för sent till
jobbet. Detta problem uppstår på grund av att bussen delas av flera personer
samt att bussen har en maxgräns på hur många personer som kan använda
åka. Detta fenomen kallas vetenskapligt för konkurens om delade resurser
och är vanligt förekommande även i datorer, speciellt i multi-core datorer där
flera kärnor körs samtidigt och därmed konkurerar om samma delade resurser.
Konkurensen om de delade resuserna har gjort multi-core datorer ökänt svåra
att inom använda tidskritiska system på grund av exekveringstidsvariationer
som uppstår, just på grund av just dessa konflikter. I denna avhandling un-
dersöker vi problemet med konkurens om delade resurser i multi-core datorer
genom att implementera program som medvetet framkallar konflikter. Vi har
undersökt prestandavariationer i parallella applikationer som körs på multi-
core datorer genom att mäta prestanda samt performance counters. Vi presen-
terar en metod som kan bestämma ursprunget av dessa prestandavariationer
samt också identifiera konflikter i delade Cache minnen, CPU, minnesbus och
lokala cachar. Vi har även undersökt metoder som helt eller delvis tar bort kon-
flikten om delade resurser, s.k., isolationstekniker. Dessa isolationstekniker in-
nefattar virtualiseringsverktyget Jailhouse samt cache partitioneringsverktyget
PALLOC. Vi använder våran metod för att undersöka till vilken grad Jailhouse
och PALLOC isolerar en specifik delad resurs. Fortsättningsvis undersöker vi
även prestandaförluster och andra begränsande faktorer så som användning-
sområden när isolationstekniker används. Slutligen så föreslår vi en Pearson-

vii

korrelationsbaserad policy som automatiskt anpassar cache partitionsstorleken
till applikationer för att minimera slöseri av cacheresuser. Den slutliga sam-
manfattningen av våra undersökningar är att en stor mängd applikationer kan
lida prestandaförluster som konsekvens av tävling om delade resurser. Våra
metoder karakteriserar applikationer, identifierar konflikter om resurser och
undersöker lämpliga isolationstekniker.

viii

Acknowledgments

I would like to express my gratitude towards my supervisors and co-authors,
Michael Sjödin, Moris Behnam, Tiberiu Seceleanu and Marcus Jägemar for
their patience, help and valuable discussions throughtout this thesis. The work
presented in this thesis has been funded by Mälardalens Högskola throughout
the DPAC project.

I would also like to thank my mother Annika Danielsson and father Chris-
ter Danielsson for supporting me. I want to acknowledge the value of the
technical discussions that I have had with my father and for taking his time to
read my thesis. I also thank my grandfather Bo Danielsson for taking his time
and reading my thesis.

I want to thank Nandinbaatar Tsog, my room-mate, my closest colleague,
my "brother-in-arms". I am very grateful that I got the opportunity to work
beside you for all these years and for all of the technical discussions that we
have had.

My final expression of gratitude goes to Ida Carlén, my girlfriend, who
has stood by my side through thick and thin during my master years and PhD
student years.

Jakob Danielsson
Västerås, 2019

ix

List of Publications

Papers included in thesis12

This paper is a collection of papers which include following publications:

Paper A: J. Danielsson, M. Jägemar, M. Behnam and M. Sjödin. Investigat-
ing Execution-Characteristics of Feature-Detection Algorithms. Work
in progress paper Published in proceedings of the 22nd Emerging Tech-
nologies and Factory Automation (ETFA). IEEE, 2017.

Paper B: J. Danielsson, M. Jägemar, T. Seceleanu, M. Behnam and M.
Sjödin. Measurement-based evaluation of data-parallelism for OpenCV
feature-detection algorithms. In 42nd Computer Society Signature
Conference on Computers, Software and Applications (COMPSAC).
IEEE, 2018.

Paper C: J. Danielsson, T. Seceleanu, M. Jägemar, M. Behnam and M.
Sjödin. Testing Performance-Isolation in Multi-Core Systems. In 43rd

Computer Society Signature Conference on Computers, Software and
Applications (COMPSAC). IEEE, 2019.

Paper D: J. Danielsson, M. Jägemar, T. Seceleanu, M. Behnam and M.
Sjödin. Run-time Cache-Partition Controller for Multi-core Systems
In 45th Annual Conference of the IEEE Industrial Electronics Society
(IECON) IEEE, 2019.

1A licentiate degree is a Swedish graduate degree halfway between M.Sc and Ph.D.
2The included papers have been reformatted to comply with the thesis layout, appendices

have been moved to the end of the thesis, and some appendices added with respect to the papers
as they were published.

xi

Papers not included in thesis

Paper X: Jakob Danielsson, Mohammad Ashjaei, Moris Behnam, Thomas
Sörensen, Mikael Sjödin, Thomas Nolte Performance Evaluation of
Network Convergence Time Measurement Techniques. 22nd Emerging
Technologies and Factory Automation (ETFA), IEEE, 2017 [8].

Paper Y: J. Danielsson, N. Tsog and A. Kunnappilly A Systematic Mapping
Study on Real-time Cloud Services 1st workshop Quality Assurance in
the Context of Cloud Computing (QA3C), IEEE, 2018 [9].

xii

Contents

I Thesis 1

1 Introduction 3
1.1 Scope of the thesis . 5
1.2 Thesis outline . 6

2 Background 7
2.1 Internal memory subsystem of a computer 7

2.1.1 Address management 9
2.1.2 Translation lookaside buffer 10
2.1.3 Registers . 10
2.1.4 Cache memories . 12

2.2 Parallel Computation . 15
2.3 Resource sharing . 17

2.3.1 CPU sharing . 17
2.3.2 I/O sharing . 18
2.3.3 Memory sharing . 18

2.4 Performance monitoring unit 20
2.5 Resource isolation . 21

2.5.1 Cache coloring - an example of an isolation technique 22
2.5.2 Feature detection algorithms 22

3 Research Overview 27
3.1 Problem formulation . 27
3.2 Research problem . 28
3.3 Research methodology . 28
3.4 Research approach . 30

4 Related work 33
4.1 Resource monitoring . 33
4.2 Software isolation techniques 34

xiii

4.3 Evaluating performance . 34

5 Thesis contributions 37
5.1 Thesis contributions . 37

5.1.1 Contribution 1 - Identification of shared resource con-
tention . 37

5.1.2 Contribution 2 - Apply isolation techniques and under-
stand the performance trade-off 39

5.1.3 Contribution 3 - Setup and adjustment of isolation
techniques . 40

5.2 Summary of papers . 42
5.3 Overview of included papers 43

5.3.1 Paper A - Investigating Execution-Characteristics of
Feature-Detection Algorithms 43

5.3.2 Paper B - Measurement-based evaluation of
data-parallelism for OpenCV feature-detection
algorithms . 43

5.3.3 Paper C - Testing Performance-Isolation in Multi-Core
Systems . 44

5.3.4 Paper D - Run-Time Cache-Partition Controller for
Multi-Core Systems 45

6 Conclusions & future work 47

xiv

II Included Papers 55

7 Paper A: Investigating execution-characteristics. . . 57
7.1 Introduction . 60

7.1.1 The FAST algorithm 61
7.1.2 Hardware Resource Monitoring 62

7.2 Related work . 62
7.3 Method . 63

7.3.1 Opportunities for Parallelism 63
7.3.2 Resource Utilization 65

7.4 Resource usage challenges 66
7.5 Conclusion . 67

8 Paper B: Evaluation of parallel OpenCV. . . 71
8.1 Introduction . 74
8.2 Background . 75

8.2.1 Feature detection . 76
8.2.2 Parallel programming 78
8.2.3 Shared memory . 78

8.3 Approach . 79
8.3.1 OpenCV feature detection 80
8.3.2 Performance Monitoring 81

8.4 Experiment . 82
8.4.1 Data partitioned measurements 83
8.4.2 Keypoints detected 87
8.4.3 Execution time differences 89
8.4.4 Execution Characteristics 92

8.5 Conclusions . 95
8.5.1 Future work . 96

9 Paper C: Testing performance isolation. . . 101
9.1 Introduction . 104
9.2 Background . 106

9.2.1 Jailhouse hypervisor 106
9.3 Shared resource contention 107

9.3.1 CPU utilization . 108
9.3.2 Internal Memory Contention 109
9.3.3 Memory bus contention 109

9.4 Performance isolation . 110
9.4.1 CPU isolation test 110

xv

9.4.2 L2-cache isolation test 112
9.4.3 Memory bus isolation test 114

9.5 Conclusion . 117

10 Paper D: Controlling cache partitions. . . 121
10.1 Introduction . 124
10.2 Background . 125

10.2.1 Partitioning to avoid LLC contention 125
10.2.2 Cache partitioning effect 126

10.3 Cache partition decision . 128
10.3.1 Controller implementation 130

10.4 Experiments . 133
10.4.1 Point of saturation - Correlation threshold 133
10.4.2 Summary of experiments 136
10.4.3 LLC-PC evaluation 137

10.5 Related Work . 140
10.6 Conclusion . 141

xvi

Part I

Thesis

1

Chapter 1

Introduction

The last few decades, chip manufacturers has established multi-core as the
de-facto standard for CPU-chips. The major drivers for this trend is manly
practical limitations in clock-frequency that favors architectures that allow
parallel execution over singe-core and single-threaded execution, and the fact
that mult-cores can performs more computations given a limited energy sup-
ply compared to single-cores. However, for timing critical and dependable
systems, the use of multi-cores is not without problems due to shared re-
source contention - a state where multiple cores are requesting usage of one
shared resource simultaneously. In this thesis, we specifically study bottle-
necks and sources of unpredictable execution-times that occur in multi-cores
due to shared resource contention. Figure 1.1 exemplifies a typical Commer-
cial off the Shelf (CoTS) multi-core processor and contains several shared re-
sources such as L3-cache, I/O’s, Memory bus and DRAM.

Figure 1.1: Example of a typical Intel® 4-core system

3

Intel® has, since the release of the first CoreTM processors (CoreTM solo
and CoreTM duo), followed the trend to add more cores to a chip. The latest
Intel® coffee-lake releases have increased the number of cores to eight in total
in the most powerful 9th generation i9 machines. The trend is similar for the
powerful Intel® Xeon processors, which show an increase of available cores
by a factor of three in just 6 years, see Figure 1.2.

Figure 1.2: Intel® Xeon core development between 2010 and 2016

The increased number of cores in a processor means it is possible to utilize
more parallelism but also present more problems due to simultaneous usage of
shared hardware resources. Computers often follow a similar memory and I/O
structure regardless of the number of cores. A processor has at least one core
that is responsible for performing calculations. The core connects to a level
one data cache (L1D-cache) and a level one instruction cache (L1I-cache). The
caches are small but they connect directly to the core, which makes them very
fast. The L1D-cache and L1I-cache are most commonly local and not shared
across different cores. There is a special case when the local caches are still
shared, due to the hyperthreading technique. The hyperthreading technique
exists on high performance Intel®-processors such as the Intel® CoreTM i7 and
i9 versions where two threads to use the same physical resources simultane-
ously. This means one core can run two threads simultaneously, which in turn
also share the local caches [23]. Modern Intel® processors use a second local
cache, the level two cache (L2-cache), which is a unified cache for both instruc-
tions and data, to increase the performance of a system. The L2-cache is more
sizeable than the L1D-cache but is located further away from the processor,
which results in higher access latencies. Recent Intel® CoreTM processors also

4

add a third cache level (L3-cache). The L3-cache is commonly shared across
all cores on the processor and is also known as the Last Level Cache (LLC).
The LLC finally connects to the memory bus and is the last stop to fetch data
from before the DRAM memory.

We aim to improve the knowledge of the resource contention in multi-core
systems by investigating methods to verify the existence of resource contention
in a shared resource. We also examine isolation techniques which can be ap-
plied to reduce the effects of resource contention.

1.1 Scope of the thesis

LLC is an encompassing term for all caches that are located last in the cache
memory hierarchy and connects directly to the memory bus. The LLC does not
necessarily have to be implemented as L3-cache but can also be implemented
as L2-cache - which is common in ARM architectures, or even implemented
as a L4-cache (which implies a 4-level cache hiearchy) - which is common in
powerful server processors.

Our research mainly targets shared resource contention, which happens as
a consequence due to the simultaneous use of multiple cores. We focus mainly
on resource contention in the LLC, exemplified by an L3-cache in Figure 1.1,
but we also touch the topic of CPU contention.

5

1.2 Thesis outline

This thesis is composed of two parts. The first part describes the shared re-
source contention problems and research results in the isolation of shared re-
sources topic. The second part contains the included papers in the thesis, from
Chapters 7 to 10.

Part 1 is organized as follows: Chapter 2 gives background information on
multi-core computing and explains the origins of shared resource contention.
We also explain the memory subsystem of a computer and exemplify how to
avoid shared resource contention through isolation of shared resources. Chap-
ter 3 lists the research challenges, formalizes the challenges into research ques-
tions, and describe the methodology we have used to solve these challenges.
Chapter 3 describes the research contributions made in this thesis, pairs the
research contributions with the research questions, and explains how the dif-
ferent papers are related to the research contributions. Chapter 4 provides rel-
evant related work and Chapter 5 provides a summary of the papers included
in this thesis. Chapter 6 finalizes the first part of the thesis with discussions,
conclusions and directions for future work.

6

Chapter 2

Background

2.1 Internal memory subsystem of a computer

To understand the topic of internal memory contention, it is essential to un-
derstand how data requests travel through the memory hierarchy. A data re-
quest is always implemented with a load instruction in the CPU and must (if
“unlucky") travel through the entire internal memory hierarchy, ending at the
DRAM memory in search for the data. The internal memory subsystem of a
processor is very complex and usually consists of several layers of caches and
translation lookaside buffers (TLB’s). The different memory units can be vi-
sualized using a pyramid, where the smallest memory (the register memory)
is placed at the top and the largest memory (the hard drive) is placed at the
bottom.

Figure 2.1: Model on the memory hierarchy

The chain of a computation always starts in the processor, where an op-
eration is computed using one or more registers. The CPU holds a relatively
reduced set of general-purpose registers - modern 64-bit Intel® processors, for
example, host a total of 16 different general-purpose registers named R1-R16.

7

The processor uses these registers to perform various operations such as load,
store, addition, subtraction, jump and comparison. Our thesis focuses mainly
on the internal memory subsystem and we therefore use memory load and store
operations for exemplifying the data pathing through the memory hierarchy of
a computer. Figure 2.2 exemplifies the memory hierarchy at a high level. The
hard drive is most spacious, the DRAM the second most spacious, caches are
second least spacious and the register memory is least spacious.

Figure 2.2: The entire memory call chain

Each memory operation contains a lookup procedure which checks if the
requested data segment is available in the respective memory. These memory
lookups start in the caches/TLBs where caches store data and TLBs store ad-
dress translation data. Data lookup failures in caches are called cache misses
and require re-writes into the cache. Address translation lookup failures in
TLBs are called TLB misses and require the requested address translation to be
read from the page table in the physical memory. Lookups failed from the page
table in the physical memory are called page faults and require the requested
address to be read from disk. The following sections provide background in-
formation on address management and data management.

8

2.1.1 Address management

The Dynamic Random Access Memory (DRAM), is divided into words, which
is a unit of data that can be addressed. Each word is addressed by a 32-bit or
64-bit address depending on the computer architecture. The program address
space of modern computers is often significantly larger than the actual DRAM
address space. Modern computers implement virtual memory, which is a tech-
nique that uses the harddisk as a secondary memory address storing space.
Using virtual memory thus reduces the possibility of system crashes due to
insufficient physical memory. The virtual address space is significantly larger
than the physical address space - a 64-bit system has a total of 263 available
virtual memory, while most physical memories in regular computers only host
234 to 235 available physical memory. Since the virtual address space is signif-
icantly larger than the physical memory, there is no possibility to fit all virtual
addresses in the physical address space. The virtual address of a word is there-
fore translated into a physical address. The translation information for a word
is called a page and is stored in a list called the page table, see Figure 2.3.
Entries in the page table are called page table entries.

Figure 2.3: Illustration on page table mapping

The memory is divided into pages, typically 4 KB for most architectures,
but the size may be configurable depending on the system requirement. It is
also possible to use huge pages which typically resides in the megabyte or
gigabyte range. Virtual address requests trigger a lookup in the page table. If
the requested virtual address is present in the physical memory, a page hit has
occurred. If the requested virtual address is not present within the physical
memory, but instead is located on the disk, a page miss has occurred, and
the address has to be brought from disk. Page misses require new page table
entries to be made for the requested address and causes substantial latency.

9

2.1.2 Translation lookaside buffer

The page table is relatively large, which means it is also relatively slow. Here
is the point where the Translation Lookaside buffer (TLB) comes into play.
The TLB is a small hardware-integrated buffer for storing page table entries.
The TLB often contains entries within the double-digit range such as 32 or
64 entries. The TLB is thus significantly smaller than the page table, which
contains millions to billions of entries.

Since the TLB is significantly smaller than the page table, it provides sig-
nificantly faster page accesses. The TLB is essentially another cache used for
address translations instead of data. It TLB is often further divided into in-
struction and data - ITLB and DTLB which determines the page address space
for instructions and data. Figure 2.4 depicts the lookup procedure and presents
the respective penalties for each stage.

Figure 2.4: Virtual memory lookup procedure

2.1.3 Registers

The register memory is the closest memory to the processor and it is very small
- usually, it consists of only a few registers. Registers split into different sub-
sets such as general-purpose registers, branch history registers, special-purpose
registers, and clock registers. The special-purpose registers are pre-defined and
are mainly used to interact with the hardware of the chip. The general-purpose
registers are, on the other hand, used to perform operations, also called instruc-
tions. Instructions include arithmetic-, logical-, comparison-, and memory op-
erations. When executed, an instruction splits into smaller parts and sent to the

10

instruction pipeline. The smaller instruction parts are called stages and can be
executed simultaneously in the pipeline. Figure 2.5 exemplifies a classic RISC
pipeline.

Figure 2.5: Classic 5-stage RISC pipeline [7]

Instructions in the RISC pipeline splits into 5 different stages.

1. Instruction fetch (IF) - fetches instructions from the instruction cache
memory.

2. Instruction decode (ID) - fetches the registers which are about to be used.

3. Execute (EX) executes the instruction

4. Memory access (MEM) - data accesses are made, where data is accessed
from the cache.

5. Write Back (WB) is the last stage writes back the result to a single reg-
ister.

11

The classic RISC pipeline is very simple compared to modern piplines.
Modern pipelines typically split an instruction into even more stages, includ-
ing, e.g., predecode and instruction queues. For example, ARM Cortex-A53
uses a dual-issue, 8-stage pipeline [1] and Intel® CoreTM Ivy-Bridge uses a
pipeline length of 14-18 stages [17].

2.1.4 Cache memories

We focus on the management of data of parallel processes in this thesis. We
therefore only discuss uniform data caches and not instruction caches. In this
section, we discuss the cache hierarchy from a three layer cache layer perspec-
tive. This type of hierarchy is the most commonly occurring structure in Intel®

desktop computers. Figure 2.6 depicts the cache hierarchy and cache size of
an Intel® CoreTM i5-3570k processor.

Figure 2.6: Intel® CoreTM i5-3570k cache hierarchy

The cache is the second closest memory to the processor and can be used
to increase the performance of applications significantly [10]. Modern Intel®

chips often use several cache layers with different sizes. One of the most com-
mon designs includes one L1-cache, one L2-cache and one L3-cache, where the
L1-cache is closest to the processor and therefore fastest, but also the least spa-
cious. The L2-cache is further away from the processor and therefore slower
than the L1-cache, but more spacious. The L3-cache is furthest away from the
processor and therefore slowest, but is also most spacious. Data requests from
the processor start a lookup procedure in the cache, exemplified in a three-level
cache system by Figure 2.7.

12

Figure 2.7: Three-level cache lookup procedure

The cache lookup procedure searches for the requested data within the
sections of the cache memory, known as cache lines or cache blocks. Data
found in the cache lines of the L1-cache causes an L1-cache hit and returns the
data immediately to the processor for use. Data not found in the cache lines of
the L1-cache causes an L1-cache miss and forces a second lookup in the upper
levels of the cache hierarchy to continue the search for the data. An L1-cache
hit causes no performance penalty and is, therefore, preferable to an L1-cache
miss, which causes extra latency, called cache miss penalty. The cache lookup
procedure is common for all the cache levels, however, the latency caused
by a cache miss depends on which cache level caused the miss. L3-cache
misses require data from the DRAM and therefore causes the highest latency.
L3-cache misses also require insertion of the DRAM data in to the lower level
L2-cache and L1D-cache. Misses in the L1D-cache cause the lowest latency
while the miss penalty of the L2-cache falls in between. The L3-cache has
the highest hit chance since it is the most spacious cache while the L1D-cache
has the lowest hit chance. The last level cache is also often shared between
multiple cores, which presents interesting problems, described in section 2.3.3.

13

All cache memories are however relatively small (usually ranging in the
KB to single-digit MB sizes) compared to the DRAM. The small space of
cache memories means that the likelihood of only cache hits during execution
is small. The memory footprint of most applications is usually significantly
more sizeable than the LLC. Since caches have only a limited memory space,
there are memory replacement strategies such as least recently used (LRU)
and first in first out (FIFO). These replacement strategies are used to deter-
mine which memory is evicted from the cache to make room for new incoming
data. These strategies are called cache eviction policies. Eviction policies are,
however, one of the prime forces behind cache contention - a hazardous situa-
tion where different applications continuously steal cache memory from each
other. Cache contention is further described in detail in section 2.3.3 while
cache mechanisms for dealing with incoming data are described in section
2.1.4.1. Misses in the L3-cache lead to another trip in the hierarchy, forcing
data fetches from the DRAM.

2.1.4.1 Cache data mechanisms

Cache lines are inserted into rows of the cache matrix, also called sets. The
memory location placement for insertion of new cache lines into the cache de-
pends on the cache placement policy. Caches are divided into three categories;
direct-mapped, fully associative, and set associative:

• Direct-mapped caches - the cache is organized into multiple sets, one set
for each individual cache line, and can be represented as an n∗1 matrix.

• Fully associative caches - the cache is organized as one set, which con-
tains all different cache lines, and can be represented by an 1∗mmatrix.

• Set associative - a tradeoff between fully associative and direct mapped.
The set-associative cache contains multiple sets, each set contains mul-
tiple cache lines and can be represented as an n ∗m matrix.

These three policies have their respective advantages and disadvantages,
and choosing one cache placement policy needs to be carefully thought out
before committing to one policy. This section will only discuss set-associative
caches since they are the most relevant to this thesis and also most commonly
used in modern computers. The structure of a set-associative cache can be
represented as an n ∗ m matrix, which means the entire set of cache lines
is split between different partitions of the cache. The smaller partitions are
called ways. Figure 2.8 exemplifies the lookup procedure using a 2-way set
associative cache.

14

Figure 2.8: 2-way set-associative cache lookup example

The set-associativity of a cache creates a clear border between two ways.
Incoming data will end up in either the first or second way of the cache. The
placement decision is made using the offset bits of each cache line. If the
offset bit is 0, the choice will fall on the first cache way; if the offset bit is 1,
the decision will fall on the second cache way. The index bits of the cache line
are used to address to which row within the way the data should be placed.
The final tag bits are used during cache lookups, to match existing cache lines
with new incoming data. If the tag bit of a newly incoming data is equal to
the tag bit of a cache line currently in the cache, a cache hit has occurred. The
last valid bit is a final check to see if the cache line has been loaded with valid
data yet. The set-associativity comes with the great benefit of flexibility when
choosing cache replacement strategies such as LRU or FIFO. Set-associativity
makes it possible to choose which cache line gets evicted in case the cache
gets full. It furthermore enables isolation of tasks, further discussed in section
2.12, which can be accomplished by techniques such as page coloring.

2.2 Parallel Computation

Parallelization of systems, to fully utilize multi-core capabilities, can signif-
icantly improve the execution time of entire systems. We consider parallel
computation to be split into two subsets, application-level parallelism, and
system-level parallelism. Application-level parallelism further splits a pro-
gram into multiple smaller parts which can be run independently of each other.
Application-level parallelism can achieved using the fork-join model [26], de-
picted in Figure 2.9 where array operations are assigned to individual cores,
c0, . . . c3, based on the array index.

15

Figure 2.9: Fork join model applied on on finding max value in an array

The fork-join model is a parallelization method built on a simple concept,
listed as follows:

1. Initialize - Identify parallelizeable parts of the program

2. Fork - Split the parallelizeable parts to individual threads

3. Execute - Execute the individual threads

4. Join - Synchronize thread execution and go back to the original core

It is also possible to parallelize entire systems, where applications are seen
as runnables and are assigned to different cores. System-level parallelism is the
most common approach to parallelize software and is enforced by the general
Linux scheduler per default.

16

2.3 Resource sharing

Resource sharing splits into three categories: CPU-, memory-, and
I/O-sharing [40], all of which are potentially hazardous in time-critical
systems if left unhandled. We shortly describe the known main problems for
these categories in the following subsections.

2.3.1 CPU sharing

The CPU is an essential part of a computer since it is responsible for executing
the instructions a program is built upon. The problem with CPU contention
arises with the multi-thread technology, where multiple tasks are allowed to
execute within one execution environment. Thread execution is controlled by
a process scheduler, which consists of several queues controlling the execution
order of tasks. Linux runs applications in kernel-space or user-space. Kernel-
space is most commonly reserved for kernel service tasks, while user-space is
used for executing applications.

The most commonly used general Linux scheduler, also the scheduler used
in this thesis, is called the Completely Fair Scheduler (CFS) [28]. There also
exist more time-predictable, real-time oriented schedulers such as Rate Mono-
tonic (RM) [21] and Earliest Deadline First (EDF) [13], most process threads
are, however, executed using the CFS scheduler. Experiments presented in
this thesis were created using a general Linux environment, the remainder of
this thesis therefore discusses CPU contention under the regular Linux CFS
scheduler.

Linux operates using several scheduling classes within the scheduler com-
plex, a kernel-level scheduler, responsible for handling I/O’s and kernel tasks,
and a process scheduler - the CFS. The kernel-level scheduler runs at a higher
priority than the process scheduler, which means kernel tasks will always get
execution priority. CFS aims at maximizing CPU utilization and also supports
process priority scheduling, which means a process with the highest priority
will always run first. Maximizing the CPU utilization in multi-core systems
can, however, become problematic since the scheduler now gets the opportu-
nity to choose a core which potentially is executing time-critical loads. Con-
sider the system depicted in Figure 2.10. There are 4 different applications
with equal priority, App0, App1, App2 and App3, in the system (realistically,
a default Linux system has hundreds of active processes), with different CPU
utilizations executing on the cores C0, C1, C2 and C3 respectively.

Once App4 with equal priority to the other applications is started, the
scheduler has to choose which core App4 should execute on. Since the goal

17

Figure 2.10: Example of thrashing

of the scheduler is always to maximize the CPU utilization, C1 will be the
chosen execution environment. App1 will now share execution environment
with App4, and there is a high probably that App4 preempts App1 and there-
fore may stop the execution of App1. The preemption can be problematic if
App1 is doing important time-critical activities, and is expecting not to be pre-
empted. The problem, therefore, lies in App1 being unexpectedly preempted
by another application due to the scheduler choosing the wrong core.

2.3.2 I/O sharing

Sharing I/O’s can be problematic since I/O often control the decision making in
many systems. Problems with I/O sharing arises when I/O requests on different
cores are served on a first in first out (FIFO) basis. A race condition appears
when the I/O controller consumes the data. Consider the following scenario,
where one application instantiates two processes, p1 and p2, for performance
reasons. The processes execute on different cores and use the same I/O. There
is a high risk that p1 reads the I/O and thus consumes it, just about before p2
was going to read it. Naturally, this can cause memory contention behavior
since the value read by p2 now has a different value than before p1 read it.
This can, therefore, cause severe miscalculations in a system.

2.3.3 Memory sharing

Memory sharing is present in all modern multi-core systems, due to the lim-
ited memory space of the internal memory units such as caches and TLB’s.
The shared L3-cache is an excellent example of unpredictable performance in

18

multi-core systems due to the cache replacement mechanisms. Figure 2.11 ex-
emplifies a system suffering from cache contention due to usage of multiple
cores.

Figure 2.11: Example of thrashing

The figure shows the memory requests of two applications app0 and app1,
executing on core 0 and core 1, during the period 0-5. The applications are
completely synchronized, which means app0 is running just about before app1.
In the case of completely synchronized applications, the shared cache memory
starts storing the memory requests from each application in a sequential way.
The cache memory requests starts with request A from core 0, stored in the first
cache line, continues with request x from Core 1 and so on. Sharing the cache
starts to become a problem once the maximum cache capacity is reached. The
maximum cache capacity in the example is eight cache lines, and the maximum
capacity is reached once app0 writes F to the cache. The next memory request,
xy, from app1 now will evict one of the existing cache lines to make room for
the new xy request.

In the example, we have used LRU as eviction policy, which means A will
be the evicted cache line. The next memory request from app0 is A, and was
recently replaced by the xy memory request from app1. The A memory request
will thus result in a cache miss and suffer from cache miss penalty. This occur-
rence would not have happened if the xy memory request from app1 did not
evict that cache line - it would instead have resulted in a cache hit. The chain of
replacements continues where app0 and app1 continuously replaces the cache
lines of each other, resulting in a behavior known as thrashing. Thrashing can

19

be very hard to predict since it often occurs due to two workloads executing
independently. Thrashing is not limited to only the cache, but can also occur
in the TLB or the page table.

2.4 Performance monitoring unit

It is possible to monitor system behavior using special-purpose registers. The
performance monitoring unit (PMU) is responsible for sampling the hardware
performance counters, which is a set of special-purpose registers built into pro-
cessors. The performance counters are used for monitoring certain hardware
events within the processor and do not cause any extra overhead when used.
Modern PMUs support a vast set of events which are used for different pur-
poses such as profiling for system optimization. To give a brief idea of what
the PMU measures, Table 2.1 exemplifies a set of some internal PMU events.

Table 2.1: Example of PMU events provided in the ARM cortex A-53 architecture

PMU event Description
L1D_CACHE_REFILL Counts L1D-cache line replacements
L2D_CACHE_REFILL Counts L2-cache line replacements

BUS_ACCESS Counts memory bus accesses
L1D_TLB_REFILL Counts TLB replacements

These performance counters are originally per-core bound, which means
that each performance counter only measures the events of its own designated
core. It is, however, possible to insert trace functionalities to the PMU which
enables measurement of process ID (PID) specific events rather than core-
specific events. Tools such as perf [38], create PMU mappings for the Linux
operating system and provide a more accessible interface for the usage of per-
formance counters - compared to using assembly instructions to setup the PMU
events. Other tools such as the Performance API (PAPI) [25] re-use the PMU
mappings created by perf and enable an even easier way for initialization and
tagging tracking the counters of PIDs. We have used the PAPI framework to
measure the PMUs on Intel® hardware and assembly instructions for measur-
ing PMU events on ARM hardware.

20

2.5 Resource isolation

Isolation is a concept based on removing the natural resource sharing of a
multi-core system without having to alter the hardware architecture, thus cre-
ating an isolated environment. Therefore, executing applications within an
isolated environment will not affect applications in another environment.

Full isolation of entire systems can, however, become immensely complex
due to a large number of hardware units within a computer, see Figure 2.12
(a system with two partitions). The figure shows a complex environment with
many shared hardware units such as the DRAM, the caches, memory bus, I/O
and TLB’s. These units need to be put in different containers in order to pro-
vide full isolation including different techniques such as TLB coloring [29],
DRAM bank partitioning [44], memory bus bandwidth scheduling [45], I/O
virtualization [36].

Figure 2.12: Example of a completely partitioned system

Section 2.1.1, 2.1.3 and 2.1.4 explain that the memory hierarchy call chain
has different dependencies. The cache memory can only be utilized at maxi-
mum efficiency if there are minimal misses in the TLB, because all data needs
an address. The TLB can only be utilized at maximum efficiency if there are
minimal misses in the Page Table. The resource contention in one certain
hardware unit can happen as a consequence of resource contention in one of
the higher memory hierarchies. Therefore, there is a risk that indications of re-
source contention in a certain hardware unit can be falsely reported. Our main
challenges do not lay in how to isolate specific hardware resources, but instead
in identifying contention and using isolation techniques in an appropriate way.

21

2.5.1 Cache coloring - an example of an isolation technique

We exemplify cache isolation in Figure 2.13, through cache coloring [30] suf-
fering from previously mentioned cache thrashing problem.

Figure 2.13: Thrashing avoided by cache coloring

The idea behind cache coloring is to remove the "shared" aspects of the
cache through software techniques which alter the way on how memory is
mapped from the DRAM to the cache. Memory requests from different ap-
plications are assigned specific colors, which correspond to specific memory
regions within the cache. Enforcing the cache coloring methodology disables
processes from different cores from using each other’s cache lines. The only
cache evictions which occur now will happen due the application itself, as can
be seen on core 1, where xy replaces the y cache line. Since the cache coloring
methodology disables applications from using each other’s memory, the cache
is now isolated. The cache is however not the only shared resource, and other
approaches exist for isolating other units.

2.5.2 Feature detection algorithms

Feature detection algorithms are mathematical and logical expressions for
defining objects and other image characteristics to computers. Autonomous
systems such as self-driving cars [6] and assisted aircraft landings [14],
therefore, often use such algorithms to detect obstacles and mission relevant
key-points. We describe the basic feature detection mechanic as a three-step
process:

1. Decode the input image - There exists a variety of different image for-
mats, such as bmp, jpg, img, png and many more. The purpose of this

22

stage is to decode the image and move the data from the hard disk into a
matrix in the RAM memory. Data points in the image are called pixels
and are represented by 3 values; red, green and blue (RGB).

2. Process image data - Once the image data is moved to the DRAM, it is
possible to process the data using mathematical equations. Simpler algo-
rithms such as FAST [32] only compare the luminosity of adjacent pixels
to a center pixel, while more complex algorithms such as SIFT involve
Difference of Gaussian, nearest neighbour and hough transform [11] cal-
culations.

3. Decision making - The image processing step will generate a set of key-
points which the computer can use to make decisions. Feature detection
algorithms are not 100% accurate, and, it may not be feasible to make
decisions purely on processing output. Therefore, additional processing
steps such as machine learning may become relevant to investigate con-
nections between key-points and thus creating better feature selection.

We have selected feature detection algorithms as workload to many papers
of this thesis since they provide an excellent example of industrial workloads
and typically involve large-scale data-sets. Figure 2.14 exemplifies what to
expect from a corner detection algorithm.

Figure 2.14: Example of the Harris algorithm executed on a stone picture

Feature detection algorithms are very interesting from a shared resource
contention point of view due to the data size. The subsequent text will discuss
the data usage of the Harris corner detection algorithm assuming a 6 MB large
LLC.

Figure 2.14 exemplifies a Harris algorithm executed on an 841x271 im-
age, which in the vision detection library OpenCV [27] corresponds to an

23

841x271x3 large matrix in program code, due to the RGB nature of images.
Each RGB value is represented by a 8-bit character, which means the total
size of the image once in RAM is 841 ∗ 271 ∗ 3 ∗ 8/4 = 1.3 MB, which is a
substantial part of the cache memory.

If we dissect the Harris algorithm processing stages into smaller parts, the
cache contention scenario becomes more evident. We split the Harris algo-
rithm into three data intensive stages:

1. Grayscale conversion of image.

2. Apply Sobel operator [34] to the all pixels within the grayscale image
and calculate the Harris Response.

3. Perform a non-maxima suppression, which filters out local maxima
points within a radius.

The first step converts all pixels of the RGB matrix into a grayscale, using
luminosity calculations according to: Lumxy = Rxy∗0.2126+Gxy∗0.7152+
Bxy ∗ 0.0722. The end result of the grayscale conversion is a new matrix
841x271 sized matrix, consisting of unsigned characters and has a total size of
841 ∗ 271 ∗ 8/4 = 445 KB, thus using almost one third of the available cache
space.

The second step takes the converted grayscale image as input parameter
and applies a Sobel filter to each individual pixel of the matrix. A Sobel fil-
ter is a 3x3 matrix which brings forth the edges in an image in both y- and
x-directions. The Sobel filter results in an x-value and a y-value of each pixel
of the grayscale matrix, and is used to calculate the Harris response for the in-
dividual pixel. Each Harris response is stored in another 841x271 matrix. The
Harris response matrix is then sorted, the highest Harris response is inserted
first in the list and the lowest is inserted last. Once the sorting is done, a non-
maxima suppression calculation is made, which creates a radius and compares
all pixel within that radius to each other in order to detect the maximum Har-
ris response pixel among all pixels with a response above a Harris threshold
value. Once the non-maxima suppression has been made, the Harris corner
points have been determined. Figure 2.15 summarizes the Harris data usage.

In our scenario with an 841x271 image, each iteration of the Harris algo-
rithm would use 2.2 MB of cache data. Most of this data can be re-used one
time due to the relatively small image size, which significantly improves the
execution time of the Harris algorithm, since the same data does not have to be
written to the cache twice and assuming that the Harris algorithm is running
as the only application in the system. It is, however, not realistic to assume

24

that the Harris algorithm would run as the single task in a system since an op-
erating system typically hosts multiple kernel tasks. Furthermore, the actual
point of using multi-core systems is to able to run multiple tasks in parallel,
and therefore, a scenario with a Harris algorithm running as single task in the
system is also not relevant.

Figure 2.15: Illustration of the Harris algorithm data-usage

We have established that the Harris algorithm will use 2.2 MB of cache
memory, which is 36% of the total available cache memory. The Harris algo-
rithm execution time will become jittery due to cache contention if other appli-
cations on other cores utilizes a similar amount of cache memory. There also
exists several other feature detection algorithms such as SURF [2] and SIFT
[22] which are more complex and require an increased amount of memory.
An increased amount of memory usage in turn increases the risk of memory
contention.

25

Chapter 3

Research Overview

3.1 Problem formulation

We categorize the problems of this thesis into three areas: identification of
shared resource contention, performance impacts of the proposed isolation
techniques and finally reasonable setup and dynamic adjustment of isolation
techniques.

• Identification - Identifying resource contention can be difficult due to
the complexity of computer systems. Identifying the source of con-
tention and assessing the impact on a specific resource is essential, since
it is the only way of knowing which resource should be isolated.

• Performance impacts - Enforcing isolation techniques hinders
processes from using the entirety of a shared resource. Partially
removing the usage of the shared resource can mean performance
penalties for a particular process. Isolation techniques are also often
complex, which means run-time overhead may raise other issues.

• Reasonable setup & dynamic adjustment - Once a certain resource
has been identified as the source of contention, it is possible to isolate
this resource.

For example, resources such as the internal memory cannot be fully iso-
lated and discarded from usage by another core, since they are integral
parts of the memory hierarchy. Instead, they can be partitioned, which
means, assigning one part of internal memory to one application and
another part of memory to another application.

27

Partition size may have an important performance impact on executing
processes (see above). We see as a solution here, the dynamic adjust-
ment of partition parameters during process run-time.

3.2 Research problem

The overall goal of the work leading up to this thesis was to investigate bot-
tlenecks to execution time-predictability in multi-core systems. More specif-
ically, what are the limiting factors in achieving full time-predictability of
multi-core systems? Our initial research pointed us towards two areas of in-
terest - identifying resource contention and efficiently solve the resource con-
tention using isolation techniques. Our research goals are listed as follows:

RG1 - Finding methods to determine the resource contention caused by
multiple users of a single resource.

RG2 - Using isolation techniques to partition shared resources for processes
and using them efficiently such that the system maintains the performance
of critical tasks.

3.3 Research methodology

This thesis addresses the mentioned research goals using empirical studies.
The empirical studies are concentrated on executing industrial workloads. We
have used a set of feature detection algorithms which are common in obstacle
localization and avoidance domains such as avionics and autonomous vehi-
cles. We also used matrix multiplications which are an integral part of feature
detection algorithms.

• Our methodology towards addressing RG1 uses performance counters
to monitor individual applications and characterize memory contention,
see papers A and B.

• To reach our second research goal, we studied partitioning to find ap-
plicable techniques, see papers C and D. The partition techniques stud-
ied includes static virtualization using the Jailhouse hypervisor [36] and
page coloring using PALLOC [44].

Table 3.1 shows how the publications contribute to the goals of the thesis.

28

Papers RG1 RG2
Paper A X
Paper B X X
Paper C X
Paper D X

Table 3.1: The contribution of the individual papers to the research sub-goals

Our main research focus is investigating the effects on adapting single-core
programs to multi-core systems. All our papers use a baseline versus paral-
lel style. We first implement application tests which are run independently
on one core, without any parallelization technique or deliberately disturbing
loads on other cores. The independent execution of an application is our ref-
erence point for comparison when moving towards a parallel environment and
we call this baseline execution. Once we have established a baseline execu-
tion of an application, we make measurements of the application running in a
parallel environment. The parallel implementations we use in this thesis have
two variations; fork-join adaptation (called forked execution, see paper A and
B) and contention implementation (called loaded execution, see paper C and
D). Our goal of the forked-join adaptation is implementing parallel versions of
feature detection algorithms, while investigating limiting factors such as cache
contention. Our goal of the contention implementation is simulating real sys-
tems where many processes run on different cores and, thus, causing resource
contention through over-commitment of resources such as the cache.

We continue with our baseline execution versus parallel execution
approach in our tests of partitioned systems - see paper C and D. Here, we use
two baseline measurements; BL, which is our baseline measurement value
for a regular Linux system running without extensions and BP , which is our
baseline measurement value for a regular Linux system running with isolation
extensions. Equation 3.1 shows the usage baseline metric values BL and BP

used to calculate the overhead (O) of an isolation technique. We compare
the baseline measurements to two parallel measurements which run with
leeches (intentionally memory heavy and CPU heavy applications) on either
the same core (CPU and cache leech) or other cores (LLC and memory bus
leech) in the system in order to force shared resource contention. CL denotes
a leech loaded regular Linux system and CP denotes a leech loaded Linux
system running with partition extensions. We use CL and CP to calculate the
isolation coefficient (I), a metric which quantifies the isolation achieved from
a partition solution, see Equation 3.2.

O = BL −BP (3.1)

29

I =
CL −O
CP

(3.2)

We compare the parallel execution to the independent execution of an ap-
plication using two metrics - execution time and performance counter. Execu-
tion time measurement remains the same for all tests. We place a timestamp di-
rectly before application start and directly at end of application start to measure
execution time. We also measure performance counters, which are hardware
triggered events that count events such as cache misses. We have used two ap-
proaches of performance counter measurement. The first approach measures
the total performance counter amount during the entire application execution.
This measurement is done in a similar style as the execution time measure-
ment, where the performance counters are initialized and started right before
application execution and collected at application end. The second approach
measures the run-time characteristics of an application, where the performance
counters are monitored at a fixed time interval. We present all papers as empir-
ical studies and execute each test at least ten times for increased validity. The
test results of each paper are presented as either average or median values of
the entire data collection.

3.4 Research approach

We use a methodology based on empirical case studies on memory-intensive
applications combined with theoretical reasoning. Figure 3.1 provides an
overview of our research process. The research steps are listed as follows:

1. Identification of the research problem and establishing an overall re-
search goal of the thesis. This step also includes state of the art research.

2. Dividing the research problem into smaller and more manageable re-
search goals.

3. Categorize the research problems into thesis contributions which more
clearly defines what problem is solved.

4. Define hypothesis for an application in a multi-core setting.

5. Monitor application run-time characteristics in that setting.

6. Use deductive reasoning on application behavior in the current setting.

7. Evaluate possible isolation options for application.

30

Figure 3.1: Research methodology

The first step is to establish an overall goal of the thesis. We define two
research goals based on the output of the related work.

Step 1 provides an overall goal for the thesis while step 2 and 3 dissects
the overall goal into smaller problems. Our iterative investigation process starts
from step 3, where a new application hypothesis is presented for each thesis
contribution. We create tests and monitor the application behavior to verify
the hypothesis and finally use deductive reasoning to formulate why the appli-
cation behaves a certain way. The output from the deductive reasoning results
in an evaluation on what isolation options there are for an application given
a certain behavior. Once completed, we refine our research contribution and
continue the iterative process.

31

Chapter 4

Related work

Many different studies exist, which tries to isolate shared hardware resources
that affect the execution time predictability of applications. We divide a multi-
core system into three critical parts which are in risk of resource contention,
including the CPU, the internal memory components, and the I/O units. In this
thesis we have put our focus mostly on investigating internal memory. The
following subsections discuss related work which are in line with our research
goals.

4.1 Resource monitoring

Performance counters are very handy tools for profiling system performance.
Works such as Cache Pirating [12] introduce methods which steal cache to
determine the application cache demand. Jägemar et al. [18] show how it
is possible to correlate the hardware resource counters with application per-
formance using a Pearson coefficient and furthermore deny a process from
over-committing to hardware resources such as the shared cache. Application
execution often splits into different execution phases [33], bound to differ-
ent resources. Such phases include cache dominant, bandwidth dominant and
GPU dominant phases which is also important to realize when applying parti-
tioning techniques. The previously mentioned phases can also be re-occurring,
e.g., the characteristics of the application may shift from memory dominant to
computing dominant and then go back to memory dominant again [35]. The
previously mentioned papers show how it is possible to build an understanding
of application behavior using the internal performance counters of the com-
puter. Our methodology continues the work on using performance counters,
however we take a different approach on what we can do with the knowledge of

33

application behavior. We use performance counters to derive shared resource
contention and give suggestions on which isolation methods are appropriate.

4.2 Software isolation techniques

Isolating the internal memory hierarchy includes cache partitioning
(also called cache coloring and page coloring). The cache partitioning
technique prevents certain processes from using certain cache lines (also
known as colors). Cache partitioning can be enforced to increase energy
efficiency [41], [15], execution time of processes [30], improving deadline
miss rates [16] and also determinism of hypervisor partitions [20]. Another
interesting approach is the "partition-sharing" concept [4], which allows
for multiple processes to share the same partition. The introduction of the
Linux perf tools [38] has made it significantly easier to read the performance
counters of Linux based computer systems. Tools such as Coloris [43] use the
performance counters to create cache partitions according to the cache usage
of SPEC2006 benchmarks.

Resource isolation can be difficult to verify due to the large amount of
hardware resources in a computer. Application performance isolation [24]
is used as a term for when the performance of an application remain un-
changed when running in a resource contentious environment [19, 37, 45, 31].
Matthews et al. [24] performed a study on how to quantify the performance iso-
lation given by a hypervisor using six different tests including memory, disk,
scheduling, CPU, network send and network receive.

The previous works can be seen grouped on two branches. The first branch
is isolating hardware from simultaneous use of other processes. The sec-
ond branch is verifying that isolation has actually been achieved. The main
differences between our works and the previous works are the combination
between performance counters, execution time and isolation. We use perfor-
mance counters combined with execution time as means for verifying isolation.
The isolation measurements are used for implementing solutions to increase
performance and predictability of system where it is needed.

4.3 Evaluating performance

Measuring performance degradation’s and performance isolation is important
to our thesis, since it enables us to quantify the amount of isolation given
by an isolation technique and also measure the effectiveness of the isolation
technique. The perhaps most common approach is measuring the slowdown

34

ratio given between a baseline environment system and its extended counter-
part [39, 24, 42, 5]. The baseline measurement value is often represented by
the performance of an application running in a native operating system envi-
ronment, which in most cases is Linux. The extended counterpart measure-
ment value is often represented by the performance of an application running
running in a Linux system with isolation extensions, such as virtual machines
or cache partitioning algorithms.

Our opinion is that the application performance metric is highly dependent
on the purpose of the application. Therefore, the methodology of measur-
ing the performance of an application will differ depending on the application
purpose. It is not sufficient to use execution time as a performance metric of a
TCP/IP stack algorithm, since the throughput will be partly dependent on wait-
ing for data from other units. For this reason, we argue that it is important to
derive the root cause of performance degradation’s in applications, rather than
looking at the execution as the prime measurement for performance. There are
countless studies evaluating how to increase the performance through paral-
lelisms, measuring system performance effects from to a newly implemented
algorithm, measuring performance degradation’s of virtual machines and many
more. In facts, the entire field of computer science is imbued with performance
measurements, whenever a new application is implemented, the programmer
will want to know the performance of the application and how it plays with
the system. We try to add a methodology for measuring performance, while
maintaining an understanding on why the performance behaves like it does.

35

Chapter 5

Thesis contributions

5.1 Thesis contributions

We present three contributions of this thesis, which are tied to our two research
goals, see Figure 5.1. The first contribution targets identification of shared re-
source contention. The second contribution targets testing of available isola-
tion techniques. The third and final contribution targets dynamic adjustment
and efficient usage of isolation techniques. The research contributions are dis-
tributed in three conference papers and one work in progress paper. Section
5.1.1 describes the research challenges and pairs them with the relevant re-
search question, and Section 5.3 provides a short overview of the papers.

Figure 5.1: Mapping between thesis contributions and research goals

5.1.1 Contribution 1 - Identification of shared resource contention

The first thesis contribution focuses on the identification of shared resource
contention, mainly in the LLC, but it also touches on memory bus contention
and on CPU contention. The main idea behind this contribution is to develop
a method for the identification of shared resource contention using the per-
formance counters of a CPU. The associated papers discuss about the hard-
ware performance counters of the LLC to create a model for describing shared

37

resource contention. We use the terminology of baseline performance and
loaded performance to describe resource contention, defined as follows.

If an application is executing as the single application on one core, without
any deliberately disturbing loads on the same core or other cores, it runs at
baseline performance. The execution of an application further produces two
relevant, measurable metrics: the execution time and the PMU events which we
use to identify resource contention. If we deliberately place disturbing loads
on either the same core or on other cores, the application executes at loaded
performance.

In paper A, we investigate the parallelization of the Features from Ac-
celerated Segment Test (FAST) feature detection algorithm using a fork-join
approach. Paper B extends the study of paper A, presenting an investigation
on forked versions of all available OpenCV algorithms. In paper C, we in-
sert leeches - small memory-intensive workload programs which are intended
to disturb the execution of App0 on the other cores. The resource contended
environment is called loaded execution. Figure 5.2 depicts the program core
setup from paper B and paper C, respectively.

Figure 5.2: Identification of resource contention

We assume that the baseline performance will always be better than the
loaded performance, if the application is a subject of resource contention. We
can, therefore, draw the assumption that resource contention is present if the
two following statements are true:

1. The loaded performance of an application is worse than the baseline
performance of the application.

38

2. The loaded performance counter of an application is significantly higher
(which means higher cache usage), than the baseline performance
counter of the application.

This contribution is partially presented in Paper A, using a PowerPC ar-
chitecture. The contribution is further investigated in Paper B, using an Intel
architecture, and finalized in Paper C, based on an ARM-64 architecture. All
these partially answer RG1. Our main goal of this contribution was to create
a generalizeable method for verifying resource contention which spans over
different instruction set architectures.

5.1.2 Contribution 2 - Apply isolation techniques and understand
the performance trade-off

This contribution enforces available isolation techniques and investigates the
performance impact caused by the isolation technique. Isolation techniques are
often complex, since they, in some way, have to override mechanisms of the
operating system. Adding extra isolation mechanisms to an operating system
can thus decrease the overall performance of tasks. Application of isolation
techniques, therefore, presents two important questions. Firstly, does the pro-
posed technique provide the promised isolation? Secondly, how much impact
does the isolation technique have on the performance of applications executing
in the system? To answer these questions, we created a methodology to verify
the isolation gained, that is, increase I (Equation 3.2), employing the proposed
methodology, using the setup depicted in Figure 5.3.

Figure 5.3: Verification of isolation

39

We divide our methodology into two steps: the first one identifies the base-
line execution time of an application; the second one measures the loaded
execution time of the same application. We execute these two steps using a
non-isolated environment and an isolated environment. We then compare the
executions in these environments and calculate the isolation coefficient see,
Equation 5.1.

I =
CL −O
CP

(5.1)

As previously stated (Section 5.1.1), we expect that a loaded non-isolated
environment suffers significant performance degradation due to shared
resources contention. However, an isolated environment is expected have an
execution time close to the baseline execution time, with variations given by
overhead (see Equation 3.1) of the isolation technique. We have tested two
isolation techniques, the static Jailhouse partitioning hypervisor [36] and the
combined LLC and DRAM partitioning kernel module PALLOC [44]. We
measured the degree of isolation obtained using the Jailhouse hypervisor,
and also performed similar experiments on the PALLOC kernel module.
Both isolation techniques show isolation improvements in their respective
domains, PALLOC as an LLC isolating tool and Jailhouse as a CPU/Local
cache isolation tool. Paper C mainly addresses this contribution and paper D
also touches the topic. This contribution partially answers RG1 and RG2.

5.1.3 Contribution 3 - Setup and adjustment of isolation
techniques

This contribution explores isolation techniques and investigates ways to effi-
ciently allocate an adequate amount of resources to a specific core. We present
a generic method for allocating hardware resources during run-time, using the
combined DRAM/Cache partitioning tool PALLOC [44], as proof of concept.
The Jailhouse hypervisor is currently a static approach, which that means that
once deployed, the parameters of the isolation will remain the same until the
reboot of the environment. PALLOC, is, on the other hand, dynamic, which
means that it is possible to change the parameters of the isolation during run-
time and adapt the parameters to the current needs of an application. Allocat-
ing too few resources to an application may cause the application to run slower
than expected. Allocating too many resources to an application may steal re-
sources from other applications which also needs them. Figure 5.4 exemplifies
the resource allocation problem, where a 512x512 matrix multiplication, run
for 100 times, is granted different amounts of cache partitions. The y-axis

40

shows the execution time of the matrix multiplication versus the sample num-
ber of the matrix multiplication on the x-axis.

Figure 5.4: Matrix multiplication using different cache partition sizes

It is clear that allocating a very small cache partition space to the matrix
multiplication severely downgrades the execution time, compared to the more
sizeable cache partition allocations. One may also notice, that the the increase
of execution time levels out at 12 partitions assigned to the matrix multiplica-
tion. This plateau is a consequence of cache re-usage being completely sat-
urated, where the data access patterns of an algorithm has reached the point
where all cache lines that can be re-used - are being re-used. We call this
occurrence point of saturation. Adding more cache partitions to the matrix
multiplication beyond the 12 partitions mark will not improve the execution
time any further, it would occupy an unnecessarily big amount of cache space.
Therefore, it is essential to understand how much cache space an application
actually needs.

We propose a correlation-based methodology for finding a feasible cache
memory allocations for executing applications. We use the Pearson correlation
coefficient [3] to localize trends in execution time when increasing the amount
of cache given to a process. The basic idea is to slowly increase the cache par-
tition size for applications until the point of saturation has been found. We use
the Pearson correlation coefficient to determine when the point of saturation
has been reached, through correlating the number of instructions retired and
the history of cache sizes. Figure 5.5 depicts an example of a correlation run
on the Scale Invariant Feature Transformation (SIFT) [22] algorithm. The red
line shows the correlation between the instructions retired and the increased

41

Figure 5.5: 4 MB SIFT execution

cache space. The blue line shows the instructions retired, i.e., the performance
of the SIFT application.

We monitor the performance of an application during run-time using the
instructions retired as performance metric. It is beneficial to use instructions
retired over of the execution time of an application since the performance coun-
ters can be monitored ad-hoc and therefore does not require complex com-
munication schemes between a controller and an application. We continu-
ously measure the performance counters and store cache partition history-data
throughout the execution of an application. Once we reach the correlation
threshold, we have found an adequate cache partition size for the application.
This contribution partially answers RG2.

5.2 Summary of papers

Table 5.1 summarizes how each paper covers each contribution and how each
contribution links to the research questions. We denote thesis contributions as
TC.

Table 5.1: The contribution of the individual papers to the research sub-goals

Papers TC1 TC2 TC3 RG1 RG2
Paper A X X
Paper B X X
Paper C X X X X
Paper D X X X

42

5.3 Overview of included papers

5.3.1 Paper A - Investigating Execution-Characteristics of
Feature-Detection Algorithms

Jakob Danielsson, Marcus Jägemar, Moris Behnam, Mikael Sjödin
Summary We evaluate a fork-join model applicable to feature detection

algorithms and present a method for measuring how well the algorithm perfor-
mance correlates with hardware resource usage. We have applied our method
to the Featured from Accelerated Segment Test (FAST) algorithm. Our charac-
terization of FAST reveals that it is an algorithm with excellent parallelism op-
portunities, resulting in an almost linear speed-up per core. Our measurements
also show that the performance of FAST correlates very little with the number
number of misses in the L1 data cache. Further measurements also show low
correlation with L1 instruction cache, data translation lookaside buffer, and L2
cache. Thus, the FAST algorithm will not harm the execution time when the
input data fits in the L2 cache.

Thesis contribution TC1
Research goal RG1
Author’s contribution I am the initiator, main driver and author to all parts

in this paper. All other co-authors have contributed with valuable discussion
and reviews.

Status Published in proceedings of 22nd Emerging Technologies and Fac-
tory Automation (ETFA), 2017, IEEE

5.3.2 Paper B - Measurement-based evaluation of data-
parallelism for OpenCV feature-detection algorithms

Jakob Danielsson, Marcus Jägemar, Tiberiu Seceleanu, Moris Behnam, Mikael
Sjödin

Summary We investigate the effects on the execution time, shared cache
usage, and speed-up gains when using data-partitioned parallelism for the fea-
ture detection algorithms available in the OpenCV library. The purpose of
this paper is to investigate how to cache contention affects the performance of
parallelized workloads and also to give an insight into how performance coun-
ters can be used to localize cache contention. The measurements are used to
conclude which algorithms are suitable for parallelization on hardware with
shared resources.

Thesis contribution TC1
Research goal RG1

43

Author’s contribution I am the initiator, main driver and author to all parts
in this paper. All other co-authors have contributed with valuable discussion
and reviews.

Status Published in proceedings of 42nd Computer Society Signature Con-
ference on Computers, Software and Applications (COMPSAC), 2018, IEEE

5.3.3 Paper C - Testing Performance-Isolation in Multi-Core Sys-
tems

Jakob Danielsson, Marcus Jägemar, Tiberiu Seceleanu, Moris Behnam, Mikael
Sjödin

Summary In this paper, we increase the isolation scope, where we previ-
ously only looked at the LLC, to also investigate contention in the CPU, LLC,
and also the memory bus. We use this test to determine the level of isolation
gained by the isolation hypervisor called Jailhouse in comparison with a reg-
ular Linux system. Our paper concludes that the Jailhouse hypervisor does
not require any noticeable overhead when executing multiple shared-resource
intensive tasks on multiple cores, which implies that running Jailhouse in a
memory saturated system will not be harmful.

Thesis contribution TC1 and TC2
Research goal RG1 and RG2
Author’s contribution I am the initiator, main driver and author to all parts

in this paper. All other co-authors have contributed with valuable discussion
and reviews.

Status Published in proceedings of 43rd Computer Society Signature Con-
ference on Computers, Software and Applications (COMPSAC), 2019, IEEE

44

5.3.4 Paper D - Run-Time Cache-Partition Controller for Multi-
Core Systems

Jakob Danielsson, Marcus Jägemar, Tiberiu Seceleanu, Moris Behnam, Mikael
Sjödin

Summary We propose a cache partition controller called LLC-PC that
uses the PALLOC page coloring framework to decrease the cache partition
sizes for applications during run-time. LLC-PC creates cache partitioning di-
rectives for the PALLOC tool by evaluating the performance gained from in-
creasing the cache partition size. We have evaluated LLC-PC using three dif-
ferent applications, including the SIFT image processing algorithm, a matrix
multiplication, and a random number generator. We show that LLC-PC can
reduce the amount of cache size allocated to applications compared to intu-
itively chosen cache partitions while maintaining their performance. LLC-PC
thus allows for more cache space to be allocated for other applications.

Thesis contribution TC2 and TC3
Research goal RG2
Author’s contribution I am the initiator, main driver and author to all parts

in this paper. All other co-authors have contributed with valuable discussion
and reviews.

Status Published in proceedings 45th Annual Conference of IEEE Indus-
trial Electronics Society (IECON), 2019, IEEE

45

Chapter 6

Conclusions & future work

The main goal of this thesis work is to understand the origins of shared re-
source contention, investigate the reasons for it, propose means to solve the re-
source contention, and finally evaluate the suitability of the solutions. We have
investigated the optimization of computationally heavy tasks such as feature
detection algorithms using a fork-join method to form a resource-contentious
environment. The feature detection algorithms shows a variety of speedups us-
ing a fork-join model. Some algorithms such SIFT and FAST show a substan-
tial execution time improvement. Other algorithms such as SURF and ORB
show almost very small execution time improvements on on higher resolution
frames. Our methodology in paper B uses performance counters and execution
time to investigate the reasons for the low performing algorithms. We conclude
that the low performance improvements of the feature detection algorithms ex-
ecuting on high resolution frames are a consequence of LLC contention.

We expand our methodology to investigate resource-contention on other
shared resources including memory bus, CPU, L1 cache and also the LLC us-
ing additional programs - the so-called leeches. The purpose of a leech is to
create resource contention within one targeted resource, such as the LLC or
the memory bus. We test the Jailhouse hypervisor with two kinds of leeches;
memory leeches and CPU leeches. We use memory leeches to create con-
tention in the caches and on the memory bus, through intensive memory reads
and writes into different buffers. We use CPU leeches to create contention in
the CPU, through forced execution swaps. Jailhouse showed to be effective
when isolating local resources such as CPU and local caches, causing almost
no overhead. PALLOC, on the other hand, also provides excellent resource
partitioning but leads to a substantial slowdown of the task executions.

The main problem of using partitioning techniques - apart from potential
overhead - are their difficult setups. Partitioning techniques reserve a specified

47

amount of resources to its partitioned environment, and it can be hard to deter-
mine precisely how much resources a partitioned environment needs. It is es-
pecially hard to know the resource requirements of an application. Allocating
too few resources will risk that the execution suffers performance degradation
as a consequence. Allocating too many resources will risk that the allocated
resources bottleneck other partitioned environments. We show, in our final
contribution, how to use our correlation-based controller - called LLC-PC - is
used to find the saturation point of cache partitioned systems.

Future work includes extending the resource partition controller to cover
more isolation techniques other than PALLOC. Techniques such as bandwidth
partitioning and I/O partitioning exists and they are needed to enforce full iso-
lation of a system. Employing such techniques will, however, cause a large
system complexity since it means re-routing the data pathing of every single
instruction. Therefore it is also very important to study the performance con-
sequences of enforcing full isolation. It may become necessary to implement
a decision-making solution which only partitions the most time-critical tasks
and leaves the non-critical un-isolated. Such a solution can also implement a
requirement specification for tasks, where user-defined, which inserts inputs
such as minimum acceptable performance.

Another future work comes from the inspiration of Paper A and paper B,
where the FAST algorithm is as a non-cache bound algorithm. Applications
often tie to several different resources, such as caches, TLBs, CPU, and the
memory bus. There is a chance that an application has a performance tightly
bound with the CPU and FPU, such as the FAST algorithm. The FAST algo-
rithm is however not bound to the caches, memory bus or I/O’s. Inserting the
FAST application to LLC-PC will only increase the overhead and not the per-
formance since FAST is not cache-bound. It is, therefore, necessary to extend
LLC-PC to include more resources such as TLB and CPU.

Extending LLC-PC to include more resources, however, requires careful
planning - to what resources does an application bind? An in-depth Classifi-
cation of applications will, therefore, become very important when extending
the cache partition controller to span over other shared resources. Such a clas-
sification scheme enables us to determine which partition type could be useful
for an application, and thus, control the partition size.

48

Bibliography

[1] ARM. Cortex-a53. https://developer.arm.com/
ip-products/processors/cortex-a/cortex-a53. Ac-
cessed: 2019-11-04.

[2] H. Bay, T. Tuytelaars, and L. Van Gool. Surf: Speeded up robust features.
Computer vision–ECCV 2006, pages 404–417, 2006.

[3] J. Benesty, J. Chen, Y. Huang, and I. Cohen. Pearson correlation coef-
ficient. In Noise reduction in speech processing, pages 1–4. Springer,
2009.

[4] J. Brock, C. Ye, C. Ding, Y. Li, X. Wang, and Y. Luo. Optimal cache
partition-sharing. In 2015 44th International Conference on Parallel Pro-
cessing, pages 749–758. IEEE, 2015.

[5] J. Che, Q. He, Q. Gao, and D. Huang. Performance measuring and com-
paring of virtual machine monitors. In 2008 IEEE/IFIP International
Conference on Embedded and Ubiquitous Computing, volume 2, pages
381–386. IEEE, 2008.

[6] A. Cherubini, F. Spindler, and F. Chaumette. Autonomous visual naviga-
tion and laser-based moving obstacle avoidance. IEEE Transactions on
Intelligent Transportation Systems, 15(5):2101–2110, 2014.

[7] W. commons. Risc architecture. accessed: 2019-11-04.

[8] J. Danielsson, M. Ashjaei, M. Behnam, T. Sorensen, M. Sjodin, and
T. Nolte. Performance evaluation of network convergence time measure-
ment techniques. In 2017 22nd IEEE International Conference on Emerg-
ing Technologies and Factory Automation (ETFA), pages 1–7. IEEE,
2017.

[9] J. Danielsson, N. Tsog, and A. Kunnappilly. A systematic mapping study
on real-time cloud services. In 2018 IEEE/ACM International Confer-
ence on Utility and Cloud Computing Companion (UCC Companion),
pages 245–251. IEEE, 2018.

[10] S. Di Carlo, G. Gambardella, M. Indaco, D. Rolfo, and P. Prinetto. Marci-
atesta: an automatic generator of test programs for microprocessors’ data
caches. In 2011 Asian Test Symposium, pages 401–406. IEEE, 2011.

49

https://developer.arm.com/ip-products/processors/cortex-a/cortex-a53
https://developer.arm.com/ip-products/processors/cortex-a/cortex-a53

[11] R. O. Duda and P. E. Hart. Use of the hough transformation to detect
lines and curves in pictures. Technical report, Sri International Menlo
Park Ca Artificial Intelligence Center, 1971.

[12] D. Eklov, N. Nikoleris, D. Black-Schaffer, and E. Hagersten. Cache pi-
rating: Measuring the curse of the shared cache. In 2011 International
Conference on Parallel Processing, pages 165–175. IEEE, 2011.

[13] D. Faggioli, F. Checconi, M. Trimarchi, and C. Scordino. An edf schedul-
ing class for the linux kernel. In Proceedings of the 11th Real-Time Linux
Workshop, pages 1–8. Citeseer, 2009.

[14] Z. Fleischman and C. Sullivan. Optically assisted landing of autonomous
unmanned aircraft, May 5 2016. US Patent App. 14/631,520.

[15] X. Fu, K. Kabir, and X. Wang. Cache-aware utilization control for en-
ergy efficiency in multi-core real-time systems. In 2011 23rd Euromicro
Conference on Real-Time Systems, pages 102–111. IEEE, 2011.

[16] G. Gracioli and A. A. Fröhlich. An experimental evaluation of the cache
partitioning impact on multicore real-time schedulers. In 2013 IEEE 19th

International Conference on Embedded and Real-Time Computing Sys-
tems and Applications, pages 72–81. IEEE, 2013.

[17] Intel®. Intel® 64 and ia-32 architectures optimization reference man-
ual. https://software.intel.com/en-us/download/. Ac-
cessed: 2019-11-04.

[18] M. Jägemar, A. Ermedahl, S. Eldh, and M. Behnam. A scheduling archi-
tecture for enforcing quality of service in multi-process systems. In 2017
22nd IEEE International Conference on Emerging Technologies and Fac-
tory Automation (ETFA), pages 1–8. IEEE, 2017.

[19] K. Jian, Z. X. Dong, N. Wen-wu, Z. Jun-wei, H. Xiao-ming, Z. Jian-gang,
and X. Lu. A performance isolation algorithm for shared virtualization
storage system. In 2009 IEEE International Conference on Networking,
Architecture, and Storage, pages 35–42. IEEE, 2009.

[20] T. Kloda, M. Solieri, R. Mancuso, N. Capodieci, P. Valente, and
M. Bertogna. Deterministic memory hierarchy and virtualization for
modern multi-core embedded systems. In 2019 IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS), pages 1–14.
IEEE, 2019.

50

https://software.intel.com/en-us/download/

[21] J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic scheduling algo-
rithm: Exact characterization and average case behavior. In [1989] Pro-
ceedings. Real-Time Systems Symposium, pages 166–171. IEEE, 1989.

[22] D. G. Lowe. Distinctive image features from scale-invariant keypoints.
International journal of computer vision, 60(2):91–110, 2004.

[23] D. T. Marr, F. Binns, D. L. Hill, G. Hinton, D. A. Koufaty, J. A. Miller,
and M. Upton. Hyper-threading technology architecture and microarchi-
tecture. Intel Technology Journal, 6(1), 2002.

[24] J. N. Matthews, W. Hu, M. Hapuarachchi, T. Deshane, D. Dimatos,
G. Hamilton, M. McCabe, and J. Owens. Quantifying the performance
isolation properties of virtualization systems. In Proceedings of the 2007
workshop on Experimental computer science, page 6. ACM, 2007.

[25] P. J. Mucci, S. Browne, C. Deane, and G. Ho. Papi: A portable interface
to hardware performance counters. In Proceedings of the department of
defense HPCMP users group conference, volume 710, 1999.

[26] L. Nyman and M. Laakso. Notes on the history of fork and join. IEEE
Annals of the History of Computing, 38(3):84–87, 2016.

[27] Open Computer Vision. Common interfaces of Feature detectors.

[28] C. S. Pabla. Completely fair scheduler. Linux Journal, 2009(184):4,
2009.

[29] S. A. Panchamukhi and F. Mueller. Providing task isolation via tlb color-
ing. In Real-Time and Embedded Technology and Applications Sympo-
sium (RTAS), 2015 IEEE, pages 3–13. IEEE, 2015.

[30] S. Perarnau, M. Tchiboukdjian, and G. Huard. Controlling cache utiliza-
tion of hpc applications. In Proceedings of the international conference
on Supercomputing, pages 295–304. ACM, 2011.

[31] H. Raj, R. Nathuji, A. Singh, and P. England. Resource management
for isolation enhanced cloud services. In Proceedings of the 2009 ACM
workshop on Cloud computing security, pages 77–84. ACM, 2009.

[32] E. Rosten and T. Drummond. Machine learning for high-speed corner
detection. Computer Vision–ECCV 2006, pages 430–443, 2006.

51

[33] A. Sandberg, A. Sembrant, E. Hagersten, and D. Black-Schaffer. Mod-
eling performance variation due to cache sharing. In High Performance
Computer Architecture (HPCA2013), 2013 IEEE 19th International Sym-
posium on, pages 155–166. IEEE, 2013.

[34] V. Sanduja and R. Patial. Sobel edge detection using parallel architecture
based on fpga. International Journal of Applied Information Systems,
3(4):20–24, 2012.

[35] A. Sembrant, D. Black-Schaffer, and E. Hagersten. Phase behavior in
serial and parallel applications. In 2012 IEEE International Symposium
on Workload Characterization (IISWC), pages 47–58. IEEE, 2012.

[36] A. Siemens. Jailhouse partitioning hypervisor. Retrieved March, 2016.

[37] G. Somani and S. Chaudhary. Application performance isolation in virtu-
alization. In 2009 IEEE International Conference on Cloud Computing,
pages 41–48. IEEE, 2009.

[38] L. Torvalds. Perf tools. accessed: 2019-11-04.

[39] S. Toumassian, R. Werner, and A. Sikora. Performance measurements
for hypervisors on embedded arm processors. In Advances in Computing,
Communications and Informatics (ICACCI), 2016 International Confer-
ence on, pages 851–855. IEEE, 2016.

[40] S. H. VanderLeest. Arinc 653 hypervisor. In Digital Avionics Systems
Conference (DASC), 2010 IEEE/AIAA 29th, pages 5–E. IEEE, 2010.

[41] W. Wang, P. Mishra, and S. Ranka. Dynamic cache reconfiguration
and partitioning for energy optimization in real-time multi-core systems.
In 2011 48th ACM/EDAC/IEEE Design Automation Conference (DAC),
pages 948–953. IEEE, 2011.

[42] X. Xu, F. Zhou, J. Wan, and Y. Jiang. Quantifying performance properties
of virtual machine. In 2008 International Symposium on Information
Science and Engineering, volume 1, pages 24–28. IEEE, 2008.

[43] Y. Ye, R. West, Z. Cheng, and Y. Li. Coloris: a dynamic cache partition-
ing system using page coloring. In Parallel Architecture and Compilation
Techniques (PACT), 2014 23rd International Conference on, pages 381–
392. IEEE, 2014.

52

[44] H. Yun, R. Mancuso, Z.-P. Wu, and R. Pellizzoni. Palloc: Dram bank-
aware memory allocator for performance isolation on multicore plat-
forms. In Real-Time and Embedded Technology and Applications Sym-
posium (RTAS), 2014 IEEE 20th, pages 155–166. IEEE, 2014.

[45] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. Memguard:
Memory bandwidth reservation system for efficient performance isola-
tion in multi-core platforms. In Real-Time and Embedded Technology
and Applications Symposium (RTAS), 2013 IEEE 19th, pages 55–64.
IEEE, 2013.

53

Part II

Included Papers

55

Chapter 7

Paper A
Investigating
Execution-Characteristics of
Feature-Detection Algorithms

J. Danielsson, M. Jägemar, M. Behnam, and M. Sjödin. Investigating
Execution-Characteristics of Feature-Detection Algorithms. In 22nd

Emerging Technologies and Factory Automation (ETFA), IEEE, 2017.

57

Abstract

We discuss how to obtain information of execution characteristics, such as
parallelizability and memory utilization, with the final aim to improve the per-
formance and predictability of feature and corner detection algorithms for use
in e.g. robotics and autonomous machines. Our aim is to obtain a better un-
derstanding of how computer vision algorithms use hardware resources and
how to improve the time predictability and execution time of such algorithms
when executing on multi-core CPUs. We evaluate a fork-join model applicable
to feature detection algorithms and present a method for measuring how well
the algorithm performance correlates with hardware resource usage. We have
applied our method to the Featured from Accelerated Segment Test (FAST)
algorithm. Our characterization of FAST reveals that it is an algorithm with
excellent parallelism opportunities, resulting in an almost linear speed-up per
core. Our measurements also reveal that the performance of FAST correlates
very little with the number number of misses in the L1 data cache, L1 instruc-
tion cache, data translation lookaside buffer and L2 cache. Thus, the FAST
algorithm will not have a negative effect on the execution time when the input
data fits in the L2 cache.

59

7.1 Introduction

Robots are becoming more autonomous which means they are getting more
dependent upon perception algorithms for object detection. Object recogni-
tion algorithms often use preprocessing algorithms to extract changes in color
or features in an image, called feature detection algorithms. Since the robot
is getting a continuous video stream, it is important that the response of the
feature detection algorithm is fast enough so that the robot can maintain unin-
terrupted perception of the environment.

Many different feature detection algorithms exist, which use many dif-
ferent execution patterns. Some algorithms, themselves, are depending upon
other feature detection algorithms to do preprocessing before doing the actual
work, while others execute directly on the raw image data. Different feature
detection algorithms also work in finding different targets in an image such as
lines, corners and edges. Perception often make use of many different, and
well established, feature and corner detection algorithms such as FAST, SIFT,
SURF, and Harris. Often they are combined to achieve better object recogni-
tion. However, the algorithms which are combined have very different execu-
tion patterns which put stress on how to use the computer hardware efficiency
to meet the timing. Multi-core architectures offer great opportunities for ex-
ecuting multiple algorithms on different cores and also enables the workload
of a single algorithm to be spread out across multiple cores. However, since
feature detection algorithms use different execution patterns, they exhibit very
different memory-access patterns which impact on both the predictability and
execution time of the algorithms. Characteristics which affect the predictabil-
ity and execution time of an algorithm can be, but are not limited to, resource
utilization, execution time, possibility to distribute the workload to different
cores as well as how to schedule different algorithms together to achieve max-
imum quality of service. To investigate how these characteristics affect the
system performance, a firm understanding of the algorithms properties and
how it use hardware resources is needed. In this paper, we discuss aspects
which are important to consider when using a feature detection algorithm as
a real-time application executing on a parallel platform. As a case study, we
have evaluated the Features from Accelerated Segment Test (FAST) [12] al-
gorithm with respect to these above mentioned categories by investigating the
algorithm behavior.

60

The rest of the paper is organized as follows. Section 7.2 presents a brief
study of related work. Section 7.3 presents the requirement to build the testing
tool. Section 7.4 show our methodology and measurements on the charac-
teristics parallelism and memory utilization, Section 7.4 presents challenges
occurring when executing FAST on multiple cores, while Finally, Section 7.5
concludes the paper and directs to future work.

7.1.1 The FAST algorithm

The FAST algorithm is used for detecting features and corners in images. The
main mechanism of FAST is based upon using a Bresenham circle of radius 3
(depicted in figure 7.1) which is compared to all pixels in an image matrix. The
execution of FAST is divided into two steps: determining if a selected pixel is
an Interest Point and determining if the interest point is a Corner.

Figure 7.1: FAST algorithm corner example where p is the currently selected pixel
for analysis

Two threshold values are used for making this decision. The first threshold
is the intensity threshold (It) which is a percentage value that is applied to
the pixel intensity (I) of all pixels within the Bresenham circle. If a pixel in
the Bresenham circle is (It)% darker or brighter than the currently selected
pixel, it is considered as a feature. The second threshold value N is used for
deciding how many pixels in the Bresenham circle should be features in order
for the currently selected pixel to be considered as a corner. To determine if
the selected pixel is an interest point, FAST compares the pixel intensity value
of the four utmost pixels - marked in Figure 7.1 as pixel 1, 5, 9 and 13 with
the intensity of the currently selected pixel. If at least 3 of the utmost pixels
are considered features, the current pixel is marked as an interest point and
the algorithm continues to execute, else break. In the second step, the FAST
algorithm compare the currently selected pixel to the rest of the pixels in the
Bresenham circle. If at least N contiguous pixels are considered as features,

61

the current pixel is considered as a corner [12]. Since different thresholds will
affect execution time, we have executed the tests using 10%, 20%, 30% and
40% as threshold values for It and a threshold value of 12 for N .

7.1.2 Hardware Resource Monitoring

The computational performance of the CPU is not the only limiting factor
when evaluating the performance of an algorithm. Often, an algorithm process
data that read from main memory putting a severe strain on memory buses and
various cache levels. An algorithm may also suffer from other congestion-
related side-effects; For example, if the branch prediction unit fails to predict
the execution flow of the program. One of our goals is to monitor and evalu-
ate the hardware resource usage of several edge detection algorithms. Having
a thorough understanding of the system-level performance together with the
low-level shared resource utilization makes it possible to understand better
how to implement and deploy different algorithms [2] efficiently. Understand-
ing the hardware usage of the algorithms will also make it easier to select
the optimal hardware without expensive resources overprovisioning providing
a greater throughput [3]. We estimate that it is possible to substantially im-
prove the overall system performance of co-located algorithms by optimizing
the core allocation of algorithms [4]. We will use a performance monitoring
application that utilize the Performance Monitor Unit (PMU) to continuously
monitor the performance of selected processes. Our application utilizes the
Perf API for convenient PMU configuration.

7.2 Related work

Different works for comparing Edge detection techniques have been done,
whereas the comparisons often include correctness of the algorithms
[7] [15] [14] [6] and FPS comparison [11]. Furthermore, many works
try to optimize feature detection algorithms using specialized hardware
environments such as FPGA [8] [13] [10]. Other studies also compare image
processing algorithms using different hardware units such as CPU, GPU
and FPGA [1]. Furthermore, Johny et al. [9] presented a method which
investigates the resource usage in the Harris Corner detection algorithm.

In this study, we instead try to focus on a broad scope by identifying char-
acteristics which are important to investigate when using feature detection al-
gorithms on limited hardware. Furthermore the ultimate goal of this work is
to be able to determine how the quality of service can be affected of feature

62

algorithm using a system with specific characteristics. In this paper we inves-
tigate the mechanics of the FAST algorithm by evaluating the code as well as
analyzing the algorithms effects on the memory of the system in which it is
running.

7.3 Method

In this work, we evaluate three characteristics including memory resources,
opportunities for parallelism and resource usage with respect to the FAST al-
gorithm. For a richer proof of concept, we used the 8-core Freescale P4080
with a 2017-03 NXP fsl-core linux distribution for evaluating the parallel is-
sues due to the high multi-core capabilities while we used an Intel Core i-
3570k using Ubuntu 16.04, kernel version 4.4 for investigating PMU related
topics. We used a 512x512 bitmap version of the Lena image as test data, due
to its frequent usage in other corner detection research papers. We executed all
FAST tests on a 512x512 pixel bitmap, depicted in figure 7.21.

Figure 7.2: Input data for FAST

7.3.1 Opportunities for Parallelism

A traditional way of executing algorithms in parallel is using the fork-join
model, which partitions a workload into smaller workloads and executes these
smaller workloads on different cores. When working with image processing,
this is a simple and intuitive way of increasing the performance, since a pixel
matrix often can be divided into sub-matrices by the amount of cores used.
There is no need for synchronization within the algorithm steps because the
FAST algorithm does not use global shared variables. The FAST algorithm
with a fork-join using an 8 core machine is depicted in Figure 7.3. The optimal
performance of an algorithm running in parallel is defined by Execution time

1The figure was selected because it is one of the standard test images in the image processing
community

63

Figure 7.3: FAST 8 core execution model

using one core divided by amount of cores being used. The execution model in
Figure 7.3 depicts a straight-forward fork-join execution model which is pos-
sible for the fast algorithm. This leads to a near-optimal execution speed-up
when using multiple cores. For proof of concept, we took measurements of
FAST running on 1 to 7 cores using an 8 core Freescale P4080 machine and
executing a test 100 times on the same picture. Table 7.1 shows the percent-
age deviation from the optimal performance when executing on multiple cores
using It thresholds of 10%, 20%, 30% and 40%.

Cores It = 10% It = 20% It = 30% It = 40%
2 cores 4,41% 3,05% 1,98% 1,26%
3 cores 4,69% 3,21% 1,79% 0,98%
4 cores 5,10% 3,61% 2,21% 1,06%
5 cores 5,09% 2,93% 1,59% 0,92%
6 cores 5,86% 4,34% 2,80% 1,69%
7 cores 4,51% 2,79% 2,58% 1,95%

Table 7.1: Fork-join measurements of FAST

As shown in Table 7.1, we see only a small percentage deviation to the
optimal execution time even when the threshold is set to 10% which can be
considered a very sensitive threshold. Thus we can conclude that FAST is
an algorithm very well suited for parallelism. Executing tests using 5 cores
managed to decrease the deviation percentage compared, even though the trend
was an increasing percentage. This can be an indication of uneven workload
between the different cores.

64

7.3.2 Resource Utilization

In our investigation, we have focused on two memory-related issues. The first
issue relates to the code size of the algorithm itself. A long and complex ex-
ecution flow causes several performance-related side-effects, such as instruc-
tion cache misses and branch mispredictions. The second memory-related is-
sue relates to the data processed by the algorithm. A memory-bound algo-
rithm has a large working set and triggers a high degree of data cache misses,
Data-TLB reloads and memory bus contention which can cause a decrease in
performance. If two algorithms are memory-bound, it may not be sufficient
to distribute them on different CPU cores because they often share HW re-
sources. We have used a system-level metric (SLM) as performance indicator
that describes the number of pixels traversed per time unit. Simultaneously, we
monitor Low-Level Metrics (LLM) describing the memory subsystem usage.
We use the Pearson coefficient [5] to denote how well SLM correlates with
each LLM whereas 0 mean no correlation at all and 1 full correlation. We
tested the correlation by executing a test-suite that fetches SLM and LLM at
100Hz. We ran this test using a fork-join model with four cores, where core 0
was set up as a synchronization core and core 1-3 as workload cores.

Core : I threshold L1D miss L1I miss L2 miss DTLB miss
Core 1 : It=10% 0.195 0.114 0.191 0.233
Core 2 : It=10% 0.103 0.067 0.084 0.21
Core 3 : It=10% 0.056 0.395 0.029 0.133
Core 1 : It=20% 0.004 0.365 0.145 0.024
Core 2 : It=20% 0.206 0.172 0.197 0.24
Core 3 : It=20% 0.076 0.395 0.427 0.4
Core 1 : It=30% 0.073 0.013 0.07 0.234
Core 2 : It=30% 0.198 0.187 0.078 0.169
Core 3 : It=30% 0.208 0.083 0.204 0.131
Core 1 : It=40% 0.012 0.035 0.119 0.083
Core 2 : It=40% 0.21 0.187 0.246 0.172
Core 3 : It=40% 0.431 0.395 0.427 0.4

Table 7.2: Fork-join measurements of FAST

Table 7.2 show Pearson coefficient obtained from the workload cores dur-
ing the tests of correlation between SLM and the LLM. Our measurements
indicate that the performance correlates very little with the memories mea-
sured in this test. This occurrence may be due to the fact that FAST has few
memory operations and instead uses many branch operations. The current pat-
tern however suggest that core 3 correlates best with the LLM we chose. The

65

correlation may be an effect of how the picture is divided. With the current
division of the picture, core 3 would detect the least corners, and would use
the least branches and would therefore correlate better with the memory.

7.4 Resource usage challenges

Many resources affect the performance of an algorithm apart from the earlier
mentioned ones. Different parallel paradigms are useful depending on the al-
gorithm, for example, the fork-join model. Due to the many if statements of
FAST, it is very unlikely that a forked algorithm will execute with at the same
speed on different cores. If one core is overwhelmed with corner detections
it can lead to one core executing the algorithm slower than the other cores,
leaving the other cores underutilized, Figure 7.4 illustrates such behavior.

Figure 7.4: Core idle issue due to synchronization

Altering the threshold values of FAST can dramatically change the result
of found corners in an image. To test the resource utilization of FAST, we
executed 1000 tests on a single picture, measuring the execution time of each
individual core, whereas core 1-7 were used as work-set cores and core 0 as
housekeeping/synchronization thread. Figure 7.5 depicts the mean execution
time of the 1000 tests for each individual work-set core using It values of 10%,
20%, 30% and 40%. Each core also had different amount of corner detection,
Table 7.3 shows the amount of corner points detected in each individual core.

Core 10% 20 % 30 % 40 %
1 2018 761 373 206
2 2460 873 432 232
3 2301 842 377 203
4 2391 796 390 178
5 1938 588 432 102
6 1284 253 99 39
7 546 99 42 11

Table 7.3: Corners detected per core

66

Figure 7.5: Execution time per core with different It values using FAST

From the measurements conducted in this section, we can conclude that the
inter-core synchronization time correlates with the amount of corners detected.
This mean executing FAST on images which does not have corners evenly
distributed, may lead to a utilization loss when executing FAST on multiple
cores.

7.5 Conclusion

In this study, we have evaluated an implementation of the FAST algorithm re-
garding aspects of resource utilization, opportunities for parallelism and mem-
ory consumption using different thresholds. Our results show that FAST is a
relatively simple algorithm with strong opportunities for parallelism. We see a
challenge with choosing threshold values which has to be investigated further.
If choosing a high threshold, there is a risk of not detecting important cor-
ners. If however choosing a low threshold, there is a possibility of loading the
system inefficiently. It could however be possible to schedule FAST more ef-
ficiently by programming already finished cores to help the non finished cores
finish. This approach could reduce the synchronization performance loss. By
monitoring the PMU counters, we also conclude that FAST does not suffer
much from misses in the memory.

67

Future work includes conducting a deeper study of the execution charac-
teristics, investigating both execution behavior as well as memory behavior
of more well-known feature and corner detection algorithms such as Harris,
SURF and SIFT. By carrying out such a study, it is possible to understand how
different feature detection algorithms should be partitioned and scheduled to-
gether. Ultimately, this knowledge can lead to a more time-predictable and
dependable corner detection suite.

68

Bibliography

[1] S. Asano, T. Maruyama, and Y. Yamaguchi. Performance comparison of
fpga, gpu and cpu in image processing. In Field Programmable Logic
and Applications, 2009. FPL 2009. International Conference on, pages
126–131. IEEE, 2009.

[2] S. Eyerman and L. Eeckhout. System-level performance metrics for mul-
tiprogram workloads. IEEE Micro, 28(3):42–53, 2008.

[3] S. Eyerman and P. Michaud. Defining metrics for multicore throughput
on multiprogrammed workloads. Technical report, Ghent University -
Team ALF, 2013.

[4] M. Jägemar, A. Ermedahl, and S. Eldh. Decision support for OS process
scheduling based on HW-, OS- and system-level performance counters,
2016.

[5] M. Jägemar, A. Ermedahl, S. Eldh, and M. Behnam. A Scheduling Ar-
chitecture for Enforcing Quality of Service in Multi-Process Systems. In
Proceedings of Emerging Technologies and Factory Automation. Analy-
sis, ETFA 2017.

[6] L. Juan and O. Gwun. A comparison of sift, pca-sift and surf. Interna-
tional Journal of Image Processing (IJIP), 3(4):143–152, 2009.

[7] R. Maini and H. Aggarwal. Study and comparison of various image edge
detection techniques. International journal of image processing (IJIP),
3(1):1–11, 2009.

[8] R. Mehra and R. Verma. Area efficient fpga implementation of sobel
edge detector for image processing applications. International Journal
of Computer Applications, 56(16), 2012.

[9] J. Paul, W. Stechele, M. Kröhnert, T. Asfour, B. Oechslein, C. Erhardt,
J. Schedel, D. Lohmann, and W. Schröder-Preikschat. Resource-aware
harris corner detection based on adaptive pruning. In International Con-
ference on Architecture of Computing Systems, pages 1–12. Springer,
2014.

[10] P. R. Possa, S. A. Mahmoudi, N. Harb, C. Valderrama, and P. Manneback.
A multi-resolution fpga-based architecture for real-time edge and corner
detection. IEEE Transactions on Computers, 63(10):2376–2388, 2014.

69

[11] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look once:
Unified, real-time object detection. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, pages 779–788, 2016.

[12] E. Rosten and T. Drummond. Fusing points and lines for high perfor-
mance tracking. In Computer Vision, 2005. ICCV 2005. Tenth IEEE In-
ternational Conference on, volume 2, pages 1508–1515. IEEE, 2005.

[13] V. Sanduja and R. Patial. Sobel edge detection using parallel architecture
based on fpga. International Journal of Applied Information Systems,
3(4):20–24, 2012.

[14] G. Shrivakshan, C. Chandrasekar, et al. A comparison of various edge de-
tection techniques used in image processing. IJCSI International Journal
of Computer Science Issues, 9(5):272–276, 2012.

[15] K. Zeng, N. Wu, L. Wang, and K. K. Yen. Local visual feature detection
and description for non-rigid 3d objects. Advances in Image and Video
Processing, 4(2):01, 2016.

70

Chapter 8

Paper B
Measurement-based evaluation
of data-parallelism for OpenCV
feature-detection algorithms

J. Danielsson, M. Jägemar, M. Behnam, M. Sjödin, and T. Seceleanu. In 42nd

Computer Society Signature Conference on Computers, Software and Applica-
tions (COMPSAC). IEEE, 2018

71

Abstract

We investigate the effects on the execution time, shared cache usage and speed-
up gains when using data-partitioned parallelism for the feature detection al-
gorithms available in the OpenCV library. We use a data set of three different
images which are scaled to six different sizes to exercise the different cache
memories of our test architectures. Our measurements reveal that the algo-
rithms using the default settings of OpenCV behave very differently when us-
ing data-partitioned parallelism. Our investigation shows that the executions
of the algorithms SURF, Dense and MSER correlate to L3-cache usage and
they are therefore not suitable for data-partitioned parallelism on multi-core
CPUs. Other algorithms: BRISK, FAST, ORB, HARRIS, GFTT, SimpleBlob
and SIFT, do not correlate to L3-cache in the same extent, and they are there-
fore more suitable for data-partitioned parallelism. Furthermore, the SIFT al-
gorithm provides the most stable speed-up, resulting in an execution between
3 and 3.5 times faster than the original execution time for all image sizes. We
also have evaluated the hardware resource usage by measuring the algorithm
execution time simultaneously with the L3-cache usage. We have used our
measurements to conclude which algorithms are suitable for parallelization on
hardware with shared resources.

73

8.1 Introduction

Many industrial systems often use feature detection algorithms in various ap-
plications ranging from face recognition to autonomous vehicular systems.
Detecting features in a frame is a time-consuming process [5] because of the
high number of traversed pixels. The number of traversed pixels depends
highly on the feature detection algorithm goal, e.g., detecting objects, corners,
edges, blobs or key points. The number of traversed pixels affects the appli-
cation execution time, which is often a limitation for time-sensitive real-time
systems.

The process of feature detection stipulates that different calculation se-
quences search for specific conjunctions between pixels in a frame. The length
of the feature detection sequence varies significantly among the used algo-
rithm. The number of traversed pixels per frame grows if the feature detection
sequence is long leading to a further increased execution time.

One way of decrease the execution time of these calculations is to paral-
lelize the execution and use multiple CPU-cores at the same time. The com-
putations for a frame are often suitable for execution on parallel architectures,
where each CPU can operate on a sub-frame (i.e. a partition of the original
frame). Luckily, almost all processors available today are, so called, multi-
core processors which have at least 2 CPU cores.

However, in a multi-core architecture, the computing units compete for ac-
cess to common hardware resources, such as caches, memory banks and mem-
ory buses. This competition lead to challenges in designing parallel software
to avoid bottlenecks in the data-flow and to prevent computing units from inter-
fering with each other. Examples of performance problems related to parallel
execution include cache trashing (one core evicts data from the cache that is
needed by another core), cache-line ping-pong (a false-sharing problem when
cores that are seemingly unrelated manipulate data-elements that are allocated
close in memory), and DRAM starvation (the DRAM controller may choose to
serve only memory requests from one controller for a while, since that brings
up the throughput of the memory system - at the expense of long delays for
some cores).

The ideal execution environment for a feature detection algorithm running
on a multi-core architecture is identified by several properties. Minimizing the
shared-memory congestion side effects and interprocess synchronization time
are the most important ones. One possible solution to reduce the harmful ef-
fects of shared resource congestion is to monitor and understand the algorithm
resource usage before-hand [15]. It is possible to obtain such knowledge by,
for instance, using Performance Measurement Counters (PMC) [7].

74

The knowledge of how feature detection algorithms such as FAST, HAR-
RIS or SURF affect the shared resources is an important part when incor-
porating them into a multi-core system, since it can give an indication on
how well the algorithm scales with parallelism opportunities offered by multi-
cores. Since the input data to such algorithms can be relatively large, there is
a possibility that the algorithms may suffer from shared memory congestion
and therefore obtain an insignificant speed-up when utilizing multiple cores.
Therefore, it is possible that a feature detection algorithm has such character-
istics that it is better suited for running on a single core, together with other
general workloads instead of reserving the several computational units of the
computer while achieving little execution time gains. However, the success of
applying a parallel paradigm to a feature detection algorithm can however be
an efficient tool to decrease the execution time of such heavy workloads.

In this paper we study how the feature-detection algorithms using the Open
Computer Vision (OpenCV) library [4] behaves with respect to data-level par-
allelization in terms of L3 cache usage on multi-core processors. OpenCV is
one of the most widespread libraries for image processing and hence these re-
sults should be valuable for a large community. The main contributions in this
paper include:

• We have evaluated how the feature detection algorithms in the OpenCV
features2d module [19] perform from data partitioned parallelism with
respect to speed-up.

• We have measured the performance of the feature detection algorithms
in the OpenCV features2d module together with each algorithm hard-
ware resource usage. From these measurements, we deduced that the
L3-cache has the highest effect on the algorithm performance.

Outline: Section 8.2 give background information related to feature de-
tection algorithms and their resource usage. Detailed information on our im-
plementation is given in Section 8.3 and the experiments in Section 8.4. We
conclude the paper by summarizing our conclusions in Section 8.5.

8.2 Background

It is possible to run image processing on multi-core systems with the purpose
of decreasing the execution time by using coarse-grained data parallelized al-
gorithms [27]. Relevant work include investigating how to parallelize feature
detection algorithms such as SIFT [10], [29], SURF [28], and Harris [12] for

75

performance increase. Applying these parallelization techniques however re-
quire an in-depth investigation of the algorithm functionality and also how to
adapt the functionality parameters to the hardware in use. In this paper, we
have instead executed a generalized coarse-grained parallelism model which
can be applicable for speed-up gains without studying the workload in de-
tail. Since our approach does not require in-depth knowledge of neither the
hardware or the software, it is also easy to migrate between different hard-
ware setups. In this paper, we have executed a generalized coarse-grained
parallelism model which can be applicable even though the work-load is not
studies in detail. To the best of our knowledge, our paper is the first that in-
vestigates the effects data-level parallelism has on the shared memory using
OpenCV feature-detection algorithms. The algorithms investigated in this pa-
per are well established feature detection algorithms, available in the free and
non-free branches of features2d in the OpenCV library. We have used the de-
fault algorithm tuning values which come with the OpenCV library in order to
have a reference for the comparison.

8.2.1 Feature detection

Feature detection is a way of distinguishing anomalies in an image. Feature de-
tection can be divided into 4 sub-sets, edge detection, corner detection, object
detection and blob detection. In this work, we have used the common inter-
faces class [19] of the OpenCV library which implements 11 different feature
detection algorithms listed in Table 8.1.

Table 8.1: Our investigated feature detection algorithms.

Algorithm License Description
Harris [11] BSD Corner detector
FAST [23] BSD Corner detector
SIFT [16] Proprietary Object detector
SURF [3] Proprietary Object detector
ORB [24] BSD Object detector
BRISK [14] BSD Corner detector
MSER [17] BSD Blob detector
GFTT [26] BSD Corner detector
STAR [1] BSD Corner detector
DENSE [4] BSD Feature extractor
Simple blob [4] BSD Blob detector

A feature detection algorithm is typically built upon a set of mathemati-
cal rules which defines a corner. These mathematical rules control not only

76

how a corner is defined, but also how the pixels in a frame are accessed. The
main mechanism of every corner detection algorithm is to traverse each pixel
within a frame. Detecting a corner in an image can become a costly process in
terms of hardware resources since frames become larger as a consequence of
higher resolution, which lead to an increased amount of pixels which have to
be traversed. Larger frames can also potentially contain more corners, which
furthermore increases the processing time of an image.

Feature detection algorithms use different mechanisms for detecting in-
terest points in an image. There are although some common stages for all
algorithms. The first step is always to read the input image file and translate it
into a matrix filled with RGB (Red, Green, Blue) data points, where each data
point represents a pixel. The second common step is to convert the image in-to
grayscale, which is translates the RGB values to a matrix of pixel intensities,
which represent values of the brightness of the pixels. After this step, the al-
gorithms begin to execute their respective interest point detection mechanism.
The actual detection mechanisms differs a lot depending on the algorithm. To
exemplify a diversity, we have depicted the mechanisms of two feature detec-
tion algorithms in Fig. 8.1. The figure illustrates a Sobel filter (marked 1 with
purple boxes) which serves as one of the primary mechanisms for the Harris
algorithm and a Bresenham Circle (marked 2 with blue boxes) which is the
main mechanism of the FAST algorithm.

Figure 8.1: Example of FAST and Harris.

The second property all algorithms have in common is that the entire im-
age matrix gets traversed at least once. Algorithms such as SURF and SIFT
create new matrices that contain results from the initial image matrix. The
algorithm repeatedly traverses the original image matrix until it has processed

77

the complete image. There can also be co-dependence between the algorithms,
meaning that one algorithm uses the results given by another algorithm. For
example, ORB uses the result of Harris or FAST to detect objects. The last
step of a feature detection algorithm is to return the pixels considered to be
featured. OpenCV calls these features keypoints.

8.2.2 Parallel programming

There are various approaches reduce the execution time through parallelism
[21]. Designing a feature detection program with a fork-join is one way of
utilizing the core-level parallelism, which is efficient due to the mechanics
of these algorithms. A fork-join model has two parts controlled by the main
thread. First, the fork section where one or several tasks, feasible for paral-
lelization, are allocated over the available CPU cores. The main thread re-
sumes its execution when all spawned tasks have finished and entered the join
section. Fig. 8.2 illustrates an example of the fork-join model utilizing 4 cores.

Figure 8.2: The fork-join model for parallelization of algorithms.

The fork-join model is a trivial way when trying to increase the
performance of feature detection algorithms since there are no global variables
shared. This means the algorithms can be split up to work on sub-parts of an
image without interfering with another sub-part of the image.

8.2.3 Shared memory

Shared resource congestion is one of the major limiting performance factor
when running applications, such that the application performance is correlated
to the shared resource usage [13]. The resource usage of an application is
usually measured by the Performance Monitoring Unit (PMU) [20], such as
Intel [15], and deduce resource bottlenecks [7]. The application performance
is typically [8, 9] measured in an application-specific metric [2]. In this paper
we are mostly concerned with L3-cache usage because it is the first system-

78

wide shared resource, which makes it the first resource that is eligible to suffer
from multi-core memory contention.

It is difficult to correlate the cache usage to execution time [6] when run-
ning applications on a HW with shared caches. Sanberg et al [25] focus on
understanding and modeling the execution behavior caused by a congested
shared cache. It is also possible to quantize how cache misses affect the sys-
tem performance by profiling the resource usage of a system [22].

Most non-dedicated computer systems utilize caches to be able to access
data quickly. However, the cache is often a costly part of a processor, which
limits the amount of available to the CPU. The limited cache size force most
CPU to implement cache eviction policies to remove less-used data from the
cache and replace it with new data. One of the most commonly known al-
gorithms for replacing data inside a cache is the Least Recently Used (LRU)
policy. The LRU tracks data usage, and the least recently used data is removed
from the cache and replaced with the new data when the cache is congested.
Multi-core systems often make use of a shared cache when communicating
between threads and processes. Shared caches of a multi-core processor can,
however, lead to negative behavior when using policies such as the LRU pol-
icy. When multiple threads access the same memory, the risk is that one thread
requests a block of data from the DRAM that replaces the data which was
about to be read by another thread. Such congestion scenarios can lead to
cache thrashing, where several threads continuously replace each other’s data,
which in turn can lead to a significant system performance decrease. Comput-
ers which execute corner detection algorithms and use a fork-join model will,
at some point, have to use the shared resources, such as caches and memory.
Shared caches may not be a problem if the image fits into the local cache.
Such favorable scenario happens, for example, when the feature detection al-
gorithm can process the whole image in a single iteration, i.e., before other
processes replace the cache content. However, the processed memory depends
highly on the used algorithm. We have focused to investigate the effects that
shared cache congestion causes on the speed-up gains when using the OpenCV
feature detection algorithms utilizing a data-partitioned fork-join model.

8.3 Approach

Our study consists of two parts. The first part is a program that implements the
OpenCV algorithms and samples the desired performance counters simultane-
ously as the test execution time. The second part analyzes the measurements.

79

8.3.1 OpenCV feature detection

OpenCV provides an overlying feature detection class that contains 11 differ-
ent feature detection algorithms. We have used a data-partitioned fork-join
model for evaluating the OpenCV library on multi-core systems. We depict
the execution model in Fig. 8.3.

Figure 8.3: The image data is partitioned to support the fork-join model.

Fig. 8.3 shows how the workload is distributed to the different cores of our
system. At the fork stage, each thread has its affinity set to a core which is
not in use by the algorithm, which means thread 0 gets affinity 0 and there-
fore executes on core 0 and so on. The thread affinity is furthermore used for
partitioning the Image. For partitioning the image, we have chosen to divide
each image on a height basis. The threads work horizontally on the indexes
calculated according to equation (8.1) where Workx is the work indexes and
ImageSizex is the horizontal size of the image. The vertical workload is cal-
culated according to equation 8.3 and 8.4, where UpperBound is upper vertical
index bound, LowerBound is the lower vertical index bound, ImageSizey is
the size of the entire image and aff is the core affinity of the current thread,
which is indexed between 0 and n-1, where 0 is the first core and n-1 is the last
core.

Workx = ImageSizex (8.1)

if(aff) = 0, UpperBound = 0 (8.2)

if(aff) > 0, UpperBound =
ImageSizey
aff + 1

(8.3)

LowerBound =
ImageSizey
aff + 2

(8.4)

80

8.3.2 Performance Monitoring

We have implemented a system function that simultaneously monitor the re-
source usage and performance of an application. The following subsections
describe our test up for measuring application performance and application
resource usage.

8.3.2.1 Application Performance

We measure the execution time of each algorithm using the high resolution
clock chronox (c++11 library) for measuring the algorithm execution time.
The placement of the timestamps are depicted in Fig. 8.4.

Figure 8.4: The algorithm performance measurement sequence.

8.3.2.2 Resource Usage

We monitor the number of shared cache misses by using the Performance API
library (PAPI) [18] which provide an interface towards the PMU [20]. We
insert PAPI start before the algorithm start and PAPI read when the algorithm
is finished, as depicted in Fig. 8.4.

81

8.4 Experiment

We have run our experiments on a quad-core Intel® CoreTM i5-3570 processor
running at 3.40GHz using g++ version 5.4 with -pthread, -std=c++11 and -
O3 as compiler arguments. The HW specifications are listed in Table 8.2.
Streaming SIMD Extensions (SSE) instructions are enabled by OpenCV as
default configuration.

Feature Hardware Component
Core 4xIntel® CoreTM i5-3570 CPU (Ivy Bridge)

3.4GHz
L1-cache 32 KB 8-way set assoc. instruction caches/core

+ 32 KB 8-way set assoc. data cache/core
L2-cache 256 KB 8-way set assoc. cache/core
LLC 6 MB 12-way set assoc. shared platform cache
MMU 64 Byte line size,

64 Byte Prefetching,
DTLB: 32 entries 2 MB/4 MB 4-way set assoc.
+
64 entries 4 KB 4-way set assoc.,
ITLB: 128 entries 4 KB 4-way set assoc.,
L2Unified-TLB: 1 MB 4-way set assoc.,
L2Unified-TLB: 512 entries 4 KB/2 MB 4-way
assoc.

Table 8.2: Hardware specifications Intel® CoreTM i5-3570.

We measure two different parameters in our test suite, utilizing different
amount of cores. The first parameter is Application performance which mea-
sures the total execution time of the feature detection algorithms utilizing 1, 2,
3 and 4 cores. We then use the execution time to calculate the speed-up gained
from using multiple cores compared to single core. The second parameter is
the execution-time measured per image partition, which means we execute the
same image partitions but on single core and compare them to our per-core
multi-core respective values. At the same time, we also measure the L3-cache
misses which describes the shared resource usage during the test execution.
We have also measured the amount of keypoints detected using single-core on
a full image, to be able to see what effects the amount of detected keypoints
has on the speed-ups gained. In our tests we have used images designed to
fit different parts of the Cache memory of our test system Intel® CoreTM i5-
3570k. The specification for our test images are listed in table. We present the
test image size variations in Table 8.3.

82

Table 8.3: Image size variations and their cache boundess.

Figure nr. Image Size Mem. Req. Cache boundness
1 103x103 32 KB L1-cache
2 209x209 131 KB 4 × L1-cache
3 295 x295 262 KB L2-cache
4 591x591 1 MB 4 × L2-cache
5 1431x1431 6.1 MB L3-cache
6 2862x2862 24.6 MB 4 × L3-cache

We have executed tests using different images, within a similar environ-
ment. The images are presented in Fig. 8.5 and follow the specifications pre-
sented listed in Table 8.3.

Figure 8.5: Test images.

The purpose of each test is to reveal the feasibility of our data-partitioned
program model when using the standard OpenCV feature detection algorithms.
The default parameters of the STAR algorithm in the OpenCV feature detec-
tion suite uses a specific set of image scales when executing the Laplacian
operator. Some of these image scales are so large that they are not feasible
for our smaller image variations, which results in a non-proportional speed-
up when partitioning small images to even smaller image partitions. We have
therefore exempted these inaccurate STAR detector results.

8.4.1 Data partitioned measurements

An important behavior to observe when using data partitioned parallelism is
the speed-up given by executing the algorithm on multiple cores. This mea-
surement gives us an absolute value on how well the algorithm responded to
our proposed parallel data partitioned model. In this section, we present and
discuss the speed-up gained by utilizing 2, 3 and 4 cores compared to 1 core.

83

Each test on each core was repeated 500 times to provide a median of the exe-
cution times. The median execution time is then used to calculate the speed-up
according to Equation (8.5), where S is the speed-up gained, t0 is the single-
core execution time, ti is the execution time of core i and n is the number of
cores used.

S =
t0

{max(ti) : 0 ≤ i < n}
(8.5)

Fig. 8.6 shows the speed-up of each feature detection algorithm. The y-
axis denotes the gained speed-up, and the x-axis represents 3 test images, each
one with 6 image size variations. The first cluster of 6 image sizes belongs
to the image shown in Fig. 8.5 a, the second set to Fig. 8.5 b, and the third
set to Fig. 8.5 c. We categorize speed-ups into three categories: The first is
linear speed-up, where the resulting execution time is equal to the single core
execution divided by the number of cores used. The second is sub-optimal
speed-up, which provides a smaller speed-up than the linear one. The third
and final is super-linear speed-up which provides a more significant speed-up
than a linear one.

To increase readability, we will refer to specific test cases as
Img_#figure_size where # is the figure number.

The numbers for the BRISK detector show a sub-optimal speed-up us-
ing 4 cores. The achieved speed-up is small when using the smallest image
but increases with the image size. However, the speed-up is at its peak at
Img_1262KB , Img_21MB and Img_3262KB . When further increasing the im-
age sizes, the speed-up decreases again. We call this behavior a pyramid-like
behavior.

84

Fi
gu

re
8.

6:
Fe

at
ur

e
de

te
ct

io
n

al
go

ri
th

m
sp

ee
d-

up
fa

ct
or

s
fo

rv
ar

io
us

te
st

-c
as

es
w

he
n

ru
nn

in
g

a
m

ul
ti-

co
re

te
st

sy
st

em
.

85

The Dense Feature detector shows a small speed-up using any of our multi-
core tests, the peak speed-up is at roughly 70% faster than the original 1 core
version. Furthermore, there is no gain at all from using multi-core until in-
creasing the image size to 1 MB. The Smaller sizes of 32 KB, 128 KB, and
256 KB actually decrease the execution time compared to the single core
version. The Dense detector also shows a pyramid-like behavior and has
peak performance at Img_26.1MB and peak speed-up at Img_124.6MB and
Img_324.6MB , however, the differences between the speed-ups are roughly
15%, meaning it is small and could just be a coincidence.

The FAST feature detector has a low speed-up using the smaller image
sizes and the speed-up increases with the image size. However, FAST reaches
a sub-optimal performance at each speed-up peak which is between 2 to 3
times speed-up when using multi-core. The insignificant speed-up gained on
the smaller images can be explained as an effect of the overhead gained by
the data-partitioned parallelism. If the overhead of an algorithm is dominant,
initializing the algorithm multiple times will make the algorithms parallelism
less efficient, or even worse (as seen in the Dense algorithm) when using im-
ages so small that the work-load execution time does not match the overhead
execution time.

The GFTT feature detector has a similar speed-up result for all three test
suites. The smallest image has a speed-up of roughly 50%, which is similar
to the speed-up of the largest image. Furthermore, the GFTT feature detector
achieves a close to optimal speed-up using the 1 MB image. Due to the major
speed-up differences, GFTT presents an even stronger pyramid behavior than
the Dense and BRISK feature detector.

The speed-up obtained by using 2,3 and 4 cores on Harris are similar to
the speed-ups of the GFTT feature detector which is reasonable since it is
based upon the same fundamentals as GFTT. The 1 MB image provides the
best speed-up, however, in the Harris case a speed-up of almost 4 instead of
3. Furthermore Test suite 1 and 2 of the Harris test are similar in the matter
of speed-up behavior, but the 3rd test suite has a lesser peak speed-up at the
1 MB image.

The speed-up obtained utilizing four cores using the MSER feature detec-
tor show a different behavior from the other feature detectors. The speed-ups
illustrate a reverse pyramid behavior, whereas the 32 KB image obtains a small
super linear speed-up and the other images show a lesser speed-up. The trend is
a speed-up to the 6 MB version of the images, and then a stall of the speed-up.

The speed-up of ORB illustrate a small pyramidic behavior with a peak at
the 3rd size variation of each image. The speed-up the progressively decreases
as the image size increases.

86

The Simpleblob speed-up illustrates a small speed-up as the image sizes
increases. This is an on-going process as the speed-up is lowest at the smallest
image variation and highest at the largest image variation. The exception is the
test results from Img_21MB , which provides a slightly higher speed-up than
the other 1 MB sizes.

The SIFT speed-up is the only algorithm which presents a close to consis-
tent speed-up on all of the frames. Although the speed-up obtained from all
frames is sub-optimal, the speed-up gained from SIFT is close to the same on
the 32 KB version as the speed-up gained on the 24.6 MB version. This result
suggest that SIFT is a scalable solution for every image size.

The SURF detector illustrates a behavior which originally expected for all
algorithms, since the smaller images fit entirely in the L1 cache and potentially
could be processed directly. SURF executes the 32 KB images at a super-linear
which gradually decreases when the image size is increased.

8.4.2 Keypoints detected

OpenCV denotes features detected as keypoints. Due to the varying sizes of
the images, there will be a variance in detected keypoints even though the al-
gorithm in scale-invariant, simply because there are less pixels available. Table
8.4 presents the keypoints detected in each image variation for each algorithm.
Since we are using the default settings of OpenCV, some algorithms use a
threshold value of how many keypoints can be detected at max, this occur-
rence can be seen in the HARRIS, GFTT and ORB detectors.

As the number of detected keypoints increases with the image size, except
for the algorithms which have a threshold value, we can conclude that the
keypoint detection does not have a negative impact on the speed-up gained by
an algorithm. This occurrence is especially clear in the FAST detector, which
has a larger speed-up at the largest frame with 21253 (image 1), 71934 (image
2) and 142727 (image 3) keypoints detected than the smallest frame which
only finds 330 (image 1), 280 (image 2) and 318 (image 3).

87

Im
age

Size
H

A
R

R
IS

Sim
pleB

lob
SIFT

SU
R

F
O

R
B

M
SE

R
G

FT
T

FA
ST

D
ense

B
R

ISK
1

32K
B

90
0

55
61

50
24

276
330

324
13

1
128K

B
110

0
281

285
358

29
737

1184
1225

72
1

256K
B

217
0

450
644

453
59

1000
2211

2500
173

1
1M

B
613

3
1502

2341
500

187
1000

7264
9801

565
1

6M
B

1000
9

5632
10945

500
743

1000
23828

57121
2214

1
24M

B
1000

38
16652

33346
500

1989
1000

51253
227529

5898
2

32K
B

81
0

56
65

56
33

200
280

324
12

2
128K

B
137

0
185

321
339

66
489

868
1225

51
2

256K
B

203
0

433
545

428
97

720
1355

2500
108

2
1M

B
593

7
1459

1769
500

198
1000

4443
9801

363
2

6M
B

1000
9

3645
7856

500
614

1000
22833

57121
853

2
24M

B
389

15
4824

28929
500

1021
1000

71934
227529

1154
3

32K
B

100
0

80
93

59
35

199
318

324
18

3
128K

B
347

0
245

385
370

63
763

1151
1225

86
3

256K
B

497
0

455
710

461
97

1000
1824

2500
154

3
1M

B
1000

12
1581

2399
500

276
1000

6212
9801

537
3

6M
B

1000
70

6015
8288

500
1043

1000
10831

57121
1447

3
24M

B
1000

133
27472

41037
500

3084
1000

142727
227529

6782

Table
8.4:

D
etected

key
points.

88

8.4.3 Execution time differences

We have measured the execution time of the program when it is run in parallel
and compared it to a Sequential execution of the program to monitor any even-
tual losses in the execution time of the parallel program due to shared memory
contention and overhead execution times. We executed this test using 4 dif-
ferent cores, introducing synchronization points between each core execution.
The sequential version of our program is depicted in Fig. 8.7. Our sequential
version of the program thus executes one image partition, running on one core
before executing the next image partition on another core. The maximum ex-
ecution time of the executing cores represent the execution time of the entire
program, since a program is never faster than the slowest core. Each test was
conducted 500 times to provide a median value.

Figure 8.7: Sequential version of the test program.

89

We call the difference between our sequential execution and our parallel
execution ∆T , which is calculated according to equation (8.6) where i is the
core used, which are indexed starting from 0 and n is the number of cores used.
tp is the median execution time using a parallel approach and ts is the median
execution time using a sequential approach.

∆T ={max(tpi) : 0 ≤ i < n}−{max(tsi) : 0 ≤ i < n} (8.6)

∆T allows us to quantify how much of the program execution time is af-
fected by utilizing a multi-core architecture. Fig. 8.8 illustrates the ∆T per
core per image.

Fig. 8.8 depicts the ∆T on the y-axis using a logarithmic scale w the x-axis
represents 3 test images, each one with 6 different image variations, separated
with a gray field. The SURF algorithm performed worst in this test, with a ∆T
of roughly 900000 microseconds compared to the sequential version using the
largest image size.

FAST and Dense are the best overall algorithms according to the ∆T calcu-
lations, where the majority of the values are placed within the 80 microseconds
range. There few outliers ranging 2300 microseconds using our largest image
sizes which are small compared to the other algorithms.

90

Fi
gu

re
8.

8:
D

iff
er

en
ce

s
in

ex
ec

ut
io

n
tim

e
us

in
g

pa
ra

lle
la

nd
se

qu
en

tia
la

pp
ro

ac
h.

91

8.4.4 Execution Characteristics

Given the different speed-up behaviors, there are certain events occurring
within the hardware, which limits the size of the possible speed-up. We
measured 16 different low-level metrics to investigate possible bottlenecks.
However, the most important metric to measure is the first system-wide shared
resource, which in this case is the L3-cache, since it is the first shared resource
with least amount of memory which makes it most likely to suffer from
thrashing by other threads. We have chosen to visualize only the L3-cache
misses metric due to space limitations. Fig. 8.9 depicts the total amount of
L3-cache misses for both the sequential and parallel versions plotted on the
left Y-axis, and the percentage deviation, denoted as ∆C plotted on the right
Y-axis. The L3-cache misses are the measured median values from 500
executions, while ∆C is calculated according to the total cache misses of all
used cores when run in parallel divided by the total cache misses of all cores
when run sequentially, denoted as ParallelMisses and SequentialMisses in
equation (8.7).

∆C =
ParallelMisses(C1..4)

SequentialMisses(C1..4)
(8.7)

The ideal value of ∆C is 0% L3-cache difference which indicates that no
thrashing has occurred. If thrashing occurs in the cache, the ∆C will increase.
If the difference is negative, it means the memory is efficiently re-used by other
threads and produces less L3-cache misses than the sequential version.

92

Fi
gu

re
8.

9:
L

3
m

is
se

s
us

in
g

pa
ra

lle
la

nd
se

qu
en

tia
lv

er
si

on
.

93

Compared to the other algorithms, FAST has a low L3-cache usage, see
Fig. 8.9, which is proportional to the amount of corners detected. We can also
observe that FAST suffers a comparatively low amount of additional cache
misses due to memory contention. The largest ∆C are in the smaller frames,
but the difference in total is almost negligible. Since the speed-up of FAST
is independent on how many cache misses are produced in L3-cache, we can
conclude that FAST is non-cache bound and therefore suitable for parallel ex-
ecutions.

Similarly to FAST, SIFT has a relatively low ∆C at the 6 MB image, which
implies that SIFT re-use a lot of the data of the 6 MB variation of the image.
The speed-up of SIFT remains unaffected by the ∆C indicating that SIFT is
computationally heavy but is not memory bound.

The SURF algorithm has a relatively high ∆C, especially with larger im-
age sizes. L3-cache misses reveal an increase of 800000 misses in total using
the parallel version compared to the sequential one. Concluding that SURF is
cache bound is further strengthened by Fig. 8.5, which depicts an insignificant
speed-up when executing on the largest image. It is debatable how much the
increased amount of corners affect the speed-up; however, Fig. 8.8 reveals a
∆T of almost 1 Second for the largest images, suggesting that the amount of
corners detected have small to possibly no effect on the speed-up.

The ORB algorithm has a fairly low ∆C for the larger images and also
shows a low ∆T version compared to the other Object detectors. However,
the ORB speed-up does not correlate at all with these facts, wherefore we can
conclude that ORB is not L3-cache bound.

The Harris and GFTT algorithms are similar in regards of Speed-up behav-
ior, ∆C and ∆T . However, neither Harris nor GFTT receive a speed-up boost
despite the fact that the L3-cache misses difference is considerably lower for
the larger image sizes which indicates that neither Harris nor GFTT are L3-
cache bound.

Dense has a high ∆C for all image variations. Although the total number
of cache misses are low, we must also consider the execution time of Dense,
which is also low. Since the Dense algorithm presents a ∆T of roughly 3000,
it loses 2/3 of its potential execution time when using parallel version. Com-
bining this with the fact that Dense has a high ∆C it is an indication that the
Dense algorithm is L3-cache bound.

BRISK shows a low ∆C as well as a low ∆T even though BRISK has a
fairly bad speed-up at the larger images. Due to this fact, we can conclude that
BRISK is not L3-cache bound.

The MSER algorithm can be considered L3-cache bound due to the
correlation between speed-ups gained in the larger images and the ∆C. In

94

Fig. 8.6, we see a stall in speed-ups from Img_16.1MB to Img_124.6MB and
Img_36.1MB to Img_324.6MB . However, the figure shows a speed-up from
Img_26.1MB to Img_224.6MB .

A similar pattern can be detected in Fig. 8.9 whereas the ∆C differs by
40% in Img_16.1MB , Img_124.6MB , Img_36.1MB and Img_324.6MB , but
only differs 20% for Img_224.6MB ..

SimpleBlob has an irregular behavior according to ∆C. The differences
for each test-case are common, but it is hard to find any correlation between the
∆C and the speed-ups gained. Simpleblob, however, has a high total amount
of L3-cache misses, and when adding the fact that SimpleBlob has relatively
small ∆T compared to its extensive execution time (830000 microseconds), it
indicates that SimpleBlob is not observably bound to the L3-cache.

8.5 Conclusions

We have evaluated how default configured OpenCV feature-detection algo-
rithms perform when using a data-partitioned parallel programming model for
2,3 and 4 cores. The algorithms performed differently using our data-set. The
Harris algorithm obtained the highest speed-up at almost 4 times faster than
the original single-core performance. However, this result depends heavily on
the image size. SIFT was by far the most stable algorithm showing a speed-up
of roughly 3 times the single core performance for all image sizes. SURF, on
the other hand, received the worst speed-up, basically insignificant for larger
images, which are the most computationally heavy. We have concluded that
the parallelizing speed-ups of SURF, Dense, and MSER, are correlated to
L3-cache usage. Our measurements suggest that a system designer should not
co-locate these algorithms with other L3-cache bound tasks. We have also con-
cluded that FAST, ORB, BRISK, HARRIS, GFTT, SIFT and SimpleBlob are
not L3-cache bound indicating that they can be efficiently utilized on multi-
core systems, even though other tasks heavily load the L3-cache. We further
conclude that FAST, Dense, Harris, ORB, GFTT and BRISK all suffer from
various degrees of overhead penalties when processing smaller frames.

95

8.5.1 Future work

We have used the default OpenCV parameters in this study, which mean that
results from the feature-detection may differ due to different tuning. There-
fore, further studies should try to find an optimal tuning for each frame and
execute the the parallel feasibility tests described in our study. It is also pos-
sible to investigate the feasibility of co-executing feature detection algorithms
on different cores. Running SURF which we concluded to be L3-cache bound
on one core and running FAST which is not L3-cache bound on the three re-
maining cores could potentially be an efficient approach when the objective of
a system is to detect both blobs and corners.

96

Bibliography

[1] M. Agrawal, K. Konolige, and M. R. Blas. Censure: Center surround
extremas for realtime feature detection and matching. In European Con-
ference on Computer Vision, pages 102–115. Springer, 2008.

[2] A. R. Alameldeen and D. A. Wood. IPC considered harmful for multi-
processor workloads. IEEE Micro, pages 8–17, 2006.

[3] H. Bay, T. Tuytelaars, and L. Van Gool. Surf: Speeded up robust features.
Computer vision–ECCV 2006, pages 404–417, 2006.

[4] G. Bradski. The opencv library. Dr. Dobb’s Journal: Software Tools for
the Professional Programmer, 25(11):120–123, 2000.

[5] T. P. Chen, D. Budnikov, C. J. Hughes, and Y. Chen. Computer vision
on multi-core processors: Articulated body tracking. In Multimedia and
Expo, 2007 IEEE International Conference on, pages 1862–1865. IEEE,
2007.

[6] C. Ding, X. Xiang, B. Bao, H. Luo, Y. Luo, and X. Wang. Performance
metrics and models for shared cache. Journal of Computer Science and
Technology, 29(4):692–712, 2014.

[7] S. Eranian. What can performance counters do for memory subsystem
analysis? In Proceedings of the 2008 ACM SIGPLAN workshop on Mem-
ory systems performance and correctness: held in conjunction with the
Thirteenth International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS’08), pages 26–
30. ACM, 2008.

[8] S. Eyerman and L. Eeckhout. System-level performance metrics for mul-
tiprogram workloads. IEEE Micro, 28(3):42–53, 2008.

[9] S. Eyerman, K. Hoste, and L. Eeckhout. Mechanistic-empirical processor
performance modeling for constructing CPI stacks on real hardware. In
International Symposium on Performance Analysis of Systems and Soft-
ware (ISPASS), pages 216–226, 2011.

[10] H. Feng, E. Li, Y. Chen, and Y. Zhang. Parallelization and characteriza-
tion of sift on multi-core systems. In Workload Characterization, 2008.
IISWC 2008. IEEE International Symposium on, pages 14–23. IEEE,
2008.

97

[11] C. Harris and M. Stephens. A combined corner and edge detector. In
Alvey vision conference, volume 15, pages 10–5244. Citeseer, 1988.

[12] F. Hosseini, A. Fijany, and J. Fontaine. Highly parallel implementation of
harris corner detector on csx simd architecture. In European Conference
on Parallel Processing, pages 137–144. Springer, 2010.

[13] M. Jägemar, A. Ermedahl, S. Eldh, and M. Behnam. A Scheduling Ar-
chitecture for Enforcing Quality of Service in Multi-Process Systems. In
Proceedings of Emerging Technologies and Factory Automation. Analy-
sis, ETFA 2017.

[14] S. Leutenegger, M. Chli, and R. Y. Siegwart. Brisk: Binary robust invari-
ant scalable keypoints. In Computer Vision (ICCV), 2011 IEEE Interna-
tional Conference on, pages 2548–2555. IEEE, 2011.

[15] D. Levinthal. Performance Analysis Guide for Intel ® Core ™ i7 Pro-
cessor and Intel ® Xeon ™ 5500 processors. Intel Cooperation, pages
1–72, 2009.

[16] D. G. Lowe. Distinctive image features from scale-invariant keypoints.
International journal of computer vision, 60(2):91–110, 2004.

[17] J. Matas, O. Chum, M. Urban, and T. Pajdla. Robust wide-baseline stereo
from maximally stable extremal regions. Image and vision computing,
22(10):761–767, 2004.

[18] P. J. Mucci, S. Browne, C. Deane, and G. Ho. Papi: A portable interface
to hardware performance counters. In Proceedings of the department of
defense HPCMP users group conference, volume 710, 1999.

[19] Open Computer Vision. Common interfaces of Feature detectors.

[20] D. Patil, P. Kharat, and A. K. Gupta. Study of performance counters and
profiling tools. In Proceedings of 21st IRF International Conference.,
pages 45–49, 2015.

[21] M. J. Quinn. Parallel programming. TMH CSE, 526, 2003.

[22] N. Rameshan, R. Birke, L. Navarro, V. Vlassov, B. Urgaonkar, G. Ke-
sidis, M. Schmatz, and L. Y. Chen. Profiling memory vulnerability of
big-data applications. In Dependable Systems and Networks Workshop,
2016 46th Annual IEEE/IFIP International Conference on, pages 258–
261. IEEE, 2016.

98

[23] E. Rosten and T. Drummond. Machine learning for high-speed corner
detection. Computer Vision–ECCV 2006, pages 430–443, 2006.

[24] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. Orb: An efficient
alternative to sift or surf. In Computer Vision (ICCV), 2011 IEEE inter-
national conference on, pages 2564–2571. IEEE, 2011.

[25] A. Sandberg, A. Sembrant, E. Hagersten, and D. Black-Schaffer. Mod-
eling performance variation due to cache sharing. In High Performance
Computer Architecture (HPCA2013), 2013 IEEE 19th International Sym-
posium on, pages 155–166. IEEE, 2013.

[26] J. Shi et al. Good features to track. In Computer Vision and Pattern
Recognition, 1994. Proceedings CVPR’94., 1994 IEEE Computer Soci-
ety Conference on, pages 593–600. IEEE, 1994.

[27] H. Sugano and R. Miyamoto. Parallel implementation of good feature ex-
traction for tracking on the cell processor with opencv interface. In Intel-
ligent Information Hiding and Multimedia Signal Processing, 2009. IIH-
MSP’09. Fifth International Conference on, pages 1326–1329. IEEE,
2009.

[28] N. Zhang. Computing optimised parallel speeded-up robust features (p-
surf) on multi-core processors. International journal of parallel program-
ming, 38(2):138–158, 2010.

[29] Q. Zhang, Y. Chen, Y. Zhang, and Y. Xu. Sift implementation and opti-
mization for multi-core systems. In Parallel and Distributed Processing,
2008. IPDPS 2008. IEEE International Symposium on, pages 1–8. IEEE,
2008.

99

Chapter 9

Paper C
Testing Performance-Isolation
in Multi-Core Systems

J. Danielsson, T. Seceleanu, M. Jägemar, M. Behnam and M. Sjödin. In 43rd

Computer Society Signature Conference on Computers, Software and Applica-
tions (COMPSAC). IEEE, 2019.

101

Abstract

In this paper we present a methodology to be used for quantifying the level of
performance isolation for a multi-core system. We have devised a test that can
be applied to breaches of isolation in different computing resources that may
be shared between different cores. We use this test to determine the level of
isolation gained by using the Jailhouse hypervisor compared to a regular Linux
system in terms of CPU isolation, cache isolation and memory bus isolation.
Our measurements show that the Jailhouse hypervisor provides performance
isolation of local computing resources such as CPU. We have also evaluated if
any isolation could be gained for shared computing resources such as the sys-
tem wide cache and the memory bus controller. Our tests show no measurable
difference in partitioning between a regular Linux system and a Jailhouse par-
titioned system for shared resources. Using the Jailhouse hypervisor provides
only a small noticeable overhead when executing multiple shared-resource in-
tensive tasks on multiple cores, which implies that running Jailhouse in a mem-
ory saturated system will not be harmful. However, contention still exist in the
memory bus and in the system-wide cache.

103

9.1 Introduction

While great advancements in virtualization and partitioning techniques nowa-
days allow logical and functional partitioning of a system into a set of indepen-
dently executing subsystems (referred to as partitions) [2], there exists no prac-
tical and efficient methods to guarantee that different partitions have no neg-
ative impact on each other’s performance. That is, contemporary techniques
give logical isolation but not performance isolation. In this paper we pro-
pose a method for testing the performance isolation between different subsys-
tems running on different cores in a multi-core architecture. Furthermore, the
method tests isolation of different computing resources such as CPUs, caches
and memory-system. Thus, it allows to pinpoint any sources of breached iso-
lation and it enables mitigation of such breaches by introduction of specific
isolation techniques for specific resources. With the introduction of multi-core
architectures as the standard platforms for performance-critical application-
domains like embedded systems and real-time systems, the issues of perfor-
mance guarantees on these architectures becomes paramount. In multi-cores,
isolation is hampered since a wealth of computing resources are shared be-
tween cores, such as caches, TLBs (Translation Lookaside Buffers), memory
controllers and memory banks.

Our work is a step towards allowing empirical evaluation of performance
isolation in complex multi-core architectures. We demonstrate the use of our
model by evaluating performance isolation obtained by the Jailhouse hypervi-
sor [15] and comparing it with running a non-partitioned Linux system.

Isolation is a complex topic and a clear terminology needs to be defined,
for example: what is shared resource isolation?

The performance isolation is defined here by the slowdown in execution
of an application while running in a context where access to resources is con-
tended by other applications, too. An application that runs with a specific
performance without any disturbing processes (in isolation) runs at a baseline
performance. An application running with deliberately disturbing processes
is running at a loaded performance. If the loaded version runs with the same
performance as the baseline version, the application is performance isolated.
Performance isolation of applications targeting specific hardware can be ac-
complished by using methods such as page coloring [10], hypervisors [6], bus-
scheduling [19]. Many different techniques are available for isolating hardware
from disturbances generated by other processes, but most techniques cover
only one or two parts of the hardware resources. The resource partitioning
hypervisor Jailhouse developed by Siemens can become one significant step
towards achieving full isolation in multi-core systems. Due to its small code

104

size, it is now much easier to understand the hypervisor and therefore imple-
ment new partitioning strategies into it.

The main contributions of this paper are:

• We present a methodology for measuring performance isolation of a sys-
tem.

• A study on the performance isolation gained using the Jailhouse hyper-
visor.

Related work. We here identify previous studies that analyze shared resource
contention caused by multiple cores, or address performance measurements
on the Jailhouse hypervisor on ARM processors. Bansal et al. [1] investi-
gated resource contention of the memory subsystem of the Xilinx ZCU 102
and proposes a Jailhouse based architecture to solve the contention. The au-
thors effectively show a latency performance degradation of their benchmark
when using multiple cores and propose mitigation techniques. In our work,
we employ a different methodology, using the performance counting unit as a
tool for identifying the sources of the performance degradation. Toumassian et
al. [16] investigate the overhead of the Xen and Jailhouse hypervisors, where
overhead is defined as Hypervisor performance/Linux performance. We com-
plement this work, by deliberately adding the disturbing loads for estimating
resource contention effects, while looking for application performance isola-
tion. As listed by Deshane et al. [3], there exist a large body of reporting the
impact of hypervisors on performance. However, since the Jailhouse hypervi-
sor is relatively new, there is not so much research done on this subject. Up
to our knowledge, there is no reporting of work investigating cache contention
and memory bus contention in a Jailhouse environment, such effects being de-
scribed as "yet to be measured" in a Linux Journal article [15]. Furthermore,
there is no reported work trying to verify what Jailhouse can accomplish in the
area of task isolation, wherefore we research here the performance degradation
on a Linux system caused by CPU sharing.

105

9.2 Background

Shared resource contention has become an increasingly important topic due
to the phasing out of single-core systems and the adoption of multi-core sys-
tems. Important shared resources can be divided into three categories: CPU,
memory, and I/O [17] which may all be subject to contention. The CPU shar-
ing takes place in the scheduling level, where two or more processes share the
execution capacity of the same CPU. If one process executes and a higher pri-
ority task interrupts, the swapped out process will not get to execute anymore,
and may, therefore, expose an increased latency. The second level of resource
contention occurs in the memory layer of a computer and can come in the form
of thrashing - a state where much of the processing time is spent on handling
cache misses or page faults due to several processes/threads continuously re-
placing each other. The third level of resource contention occurs in the I/O
layer and can be illustrated very well by the ARM v8 case where a generic in-
terrupt controller (GIC) handles all general purpose interrupts (such as general
purpose I/O interrupts).

Partition-based virtualization is one of the solutions that addresses the shar-
ing of resources across multiple processes [17], [5], [12]. Hypervisors such as
Xen [2] and KVM [6] can effectively partition the cores of a system such that
the resource is protected from usage of processes which do not belong to the
specific partition. These hypervisors come with an overhead [8] and a signifi-
cant code size. New virtualization techniques such as the Jailhouse hypervisor
give promise of better task isolation through statically disallowing inter parti-
tion sharing of resources and also come with a relatively small code size.

9.2.1 Jailhouse hypervisor

The Jailhouse hypervisor (version 0.1 released in august 2014) partitions hard-
ware resources through virtualization, and enables asymmetric multiprocess-
ing on top of the Linux system [14]. It also enables the insertion of cells
through a kernel module. A cell is a virtual machine that is created in a parti-
tioned environment. Once created, the host operating system loses knowledge
of the core where the cell is created. In a similar fashion, programs running
within the Jailhouse cell do not know that they run within a virtual machine,
nor have they any knowledge of cores outside of the cell.

Fig. 9.1 shows a regular Linux system - a) and a Jailhouse partitioned sys-
tem which runs one Linux partition (core 0, 1, 2) and one real-time (RT) parti-
tion (core 3) - b).

106

Figure 9.1: a) Usual Linux deployment. b) Linux with Jailhouse configuration [15]

9.3 Shared resource contention

We describe the performance degradation of a process in Equation 9.1, where
performance is equal to the execution time of an application.

I =
P

C
− 1 (9.1)

We denote I as the isolation coefficient, representing the resulting slow-
down of the execution of a task in the presence of other tasks. P denotes the
loaded performance of an application, andC is the baseline performance. Both
C and P values are measured in time units; moreover, it is expected that the
P will always be higher than C, that is, the execution time of an application
will always be longer in the presence of additional load as compared to the
“ideal" case when the application executes alone on the computing platform.
It is also important to note that the measured values of both C and P are
platform dependent. Measurements are relying on processor specifics such as
cache memory mechanisms, clock frequency and bus bandwidth, but also on
the operating system. Therefore, C should not be seen as an absolute value
of the best achievable performance (that is, cross-platform), but instead, the
highest performance achievable using the respective setup. We refer to C as
baseline in subsequent sections of the paper.

As an example, consider an application running on one core of a multi-core
processor, exposing a baseline of 100ms. To perform tests on cache memory
isolation, we apply a heavy cache intensive load, which runs on a different

107

core than the application, and re-execute the application in these conditions.
Both cores have a shared LLC. In case the loaded performance is observed to
be 100ms, the isolation coefficient I = 100ms/100ms − 1 = 0. Hence, and
the application is isolated from LLC disturbances. Alternatively, if the loaded
performance is 110ms (for exemplification purposes), the isolation coefficient
becomes I = 110ms/100ms− 1 = 0.1 = 10% which means that the applica-
tion has suffered a 10ms performance penalty due to cache contention.

In the following subsections, we will discuss resource contention on shared
resources, including CPU, cache, memory bus. We will discuss each shared
resource in the context of a Xilinx Zynq UltraScale+ MPSoC ZCU102 Evalu-
ation Kit using 4 Cortex A-53 cores, specified in Table 9.1.

Feature Hardware Component
Core 4xArm Cortex A-53 @ 1.5GHz

2xArm Cortex-R5 @ 1.4GHz
L1I-cache 32 KB 2-way set assoc cache/core
L1D-cache 32 KB 4-way set assoc cache/core
L2-cache 1 MB 16-way set assoc. shared platform cache
MMU L1ITLB: 10 entries

L1DTLB: 10 entries
L2TLB 512 entries, 4-way set assoc.

Table 9.1: Hardware specifications Xilinx Zynq UltraScale+ MPSoC

9.3.1 CPU utilization

Two applications sharing the same CPU can have dramatic effects on either
applications response time. When sharing the CPU, one task may get to exe-
cute up to 50% of compared to the non-shared situation. Thus, the response
time of the application could increase to at least the double of the baseline.
We can avoid the CPU sharing effect by not scheduling other applications to
the same core. However, if all cores are currently loaded, it is not possible to
enforce such a policy, since the newly created application needs an execution
environment. Consider our ARM system with 4 cores, running App1..App4 on
core 0..3 respectively. In case a 5th application, App5, enters the scheduling
queue, there is no un-occupied core, which means App5 has to share one of the
cores with one of the other applications. This will increase the response time
of both applications. This situation may not become a problem in real-time
systems since tasks with high importance often are given a higher priority and
will therefore not share execution time with other tasks during their respective

108

time quanta. Thus, scheduling applications properly is usually a solution to this
problem. Another solution can be static partitioning of the system, where the
cores of one partitioned sub-system are hidden from another partitioned sub-
system [11], disallowing partitions from using each other’s designated cores.

9.3.2 Internal Memory Contention

The internal memory is often a source of execution time unpredictability - the
so-called jitter - in multi-threaded systems [4]. Whenever the data requested
by applications is not in the L1D-cache or the L2-cache, we need to fetch the
data from the main memory. If the L2-cache is already full, a cache-line is
evicted from the cache to make space for the incoming data. Since the L2-
cache is shared between multiple cores, processes scheduled on different cores
can evict the cache-lines of each other whenever the shared cache becomes
full.

Within our ARM system, with a 1 MB L2-cache, cache contention is ex-
emplified as follows: App1 and App2 with a memory footprint of 1 MB each
are executing on core 0 and 1 respectively. The applications are each using
1 MB of data, which, combined, is above the limit of L2-cache - 1 MB. If the
tasks are continuously running on different cores, App1 will continuously try
to write 1 MB of data into the shared cache. Since the cache is not large enough
to contain the total amount of 2 MB data requested by both tasks, 1 MB of data
will continuously have to be replaced according to the cache replacement pol-
icy. Cache coloring can be applied here, to restrict cache access of different
applications to assigned cache lines only. Thus, one may mitigate problems
such as performance losses [10], jitter [18], and even energy efficiency [9]. In
our example though, this limits the amount of L2-cache available to either of
the applications.

9.3.3 Memory bus contention

The memory bus that interconnects the cache memory with the main memory
is also a subject for contention. It is used for serving read and write requests
from each core, which can become problematic when multiple memory in-
tensive tasks are running on several cores. The bus can become a significant
bottleneck concerning throughput, and a source of jitter.

Once again, consider the ARM system which has a measured bandwidth
capacity of roughly 4.7 GB/s. The system hosts four applications (App1, ...,
App4 running on core 1..4 respectively) which executes write operations at
2 GB/s individually. If the data is not present in the cache, it has to be fetched

109

from the main memory via the memory bus. The bus, however, can only han-
dle a certain amount of writes per second, as specified. Since we use multiple
cores executing writes at 2GB/s, the bus bandwidth will be fully saturated. If
any of the applications were the only one executing memory transactions, it
could operate at the intended 2MB/s capacity. However, since multiple ap-
plications are executing, the bus has to distribute the capacity over the set of
cores, which can dramatically decrease the individual memory throughput and
increase the jitter of each application. It is possible to limit the effects of bus
contention by restricting processes to execute under a certain memory band-
width budget [19] [20] - with potential important overhead for each budgeted
application.

9.4 Performance isolation

We have used a matrix multiplication of various sizes as the application to
benchmark the isolation that can be achieved using the Jailhouse hypervisor.
The execution time of the application is measured by inserting wall-clock time-
stamps at the start and at the end of the multiplication. Further, the matrix
multiplication is co-executed with additional load programs denoted leeches to
enforce shared resource contention. We use the previously defined Xilinx Zynq
ZCU 102 platform (Table 9.1) running a Petalinux 4.9 kernel and reserving
2 GB of RAM for the Jailhouse hypervisor using the mem kernel argument.

In the following subsections we show isolation measurements for the CPU,
L2-cache and memory bus resources with the matrix multiplication running in
unfavourable (leech-disturbed) execution environments and compare them to
the baseline executions.

9.4.1 CPU isolation test

We devised a test including a kernel module to serve as a CPU stealing leech
and a matrix multiplication to show the contention problems in a CPU. We ex-
emplify the problems using the following scenario, assuming equal application
priority.

1. Applications P0, P1, P2 and P3 are ready to execute.

2. The applications are pinned as followingP0 → C0, P1 → C1, P2 → C2,
P3 → C3.

3. Kernel application KP5 becomes ready to execute, all cores are cur-
rently occupied.

110

4. The kernel has to chose one available core for KP5, in this case, C3 is
chosen.

5. P4 and P5 now share the same core and execute

To instantiate the above contention scenario, we co-run a 256x256 matrix
multiplication as workload together, with a calculation-heavy program called
a CPU leech, implemented as a kernel module. Kernel modules often are exe-
cuted at seemingly random times and also at a higher priority than user-space
modules. The CPU-stealing leech performs 100000 random number calcula-
tions, searches for the highest value read and then goes to sleep for a specified
amount of time. This process takes between 79-80 milliseconds to execute.
Since the time measurement of the matrix multiplication is dependent on con-
text switches from another workload, we will call the time measurement re-
sponse time in this test case. We statically set the core affinity of the matrix
multiplication and the CPU leech to the same core C3.

We also execute the same tests using the Jailhouse hypervisor, where the
matrix multiplication is run within a Jailhouse Linux cell executing on C3.
The results of the CPU isolation tests are depicted in Fig. 9.2 where the y-axis
shows the response time of the matrix multiplication run under Linux (blue
dash) compared to a matrix multiplication run within a Jailhouse Linux cell
(orange dash). Each data point is the median response time of 50 executions.
The y-axis is a logarithmic scale of the response time measured in millisec-
onds, and the x-axis shows the sleep timer of the kernel module - the period
between executions. A low value on the Y-axis - meaning a low response time
- would be better than a high value. The calculated isolation coefficient of the
matrix multiplication is listed in Table 9.2.

Sleep ILinux IJhouse Sleep ILinux IJhouse
200 41,22% 0,62% 100 81,99% 0,79%
175 38,25% 0,15% 75 124,00% 0,50%
150 40,76% 0,57% 50 166,47% 0,86%
125 59,88% 0,57% 25 250,79% -0.15%

Table 9.2: I coefficient in CPU contention test (percentage)

Fig. 9.2 shows a Linux matrix multiplication which suffers heavily from
the CPU stealing caused by the leech, even at the relatively large sleep peri-
ods of 200 ms. In these conditions, according to Table 9.2 and using Equation
9.1, Linux alone offers an isolation coefficient of 0.40, which is an indicator of
significant resource contention. The CPU leech will always get a high priority
when ready to execute, running with kernel priority. Hence, when the asso-

111

Figure 9.2: CPU isolation test

ciated sleep period goes under a certain value, the isolation coefficient even
surpasses 0.50. When running the matrix multiplication within a jailhouse
partition, however, the response time is almost constant, with an isolation co-
efficient of 0.0086, which is in the range of an error margin.

Concluding, the Jailhouse hypervisor performs as promised regarding the
CPU isolation, while the Linux system shows a significant downgrade in the
performance of the matrix multiplication, as expected, too.

9.4.2 L2-cache isolation test

Here, we intend to provide a measurement of the isolation coefficient for the
matrix multiplication, verifying to what extent it suffers of L2-cache cache
contention.

We use a 512x512 matrix multiplication for benchmarking workload, and
a tweaked version of a maximum bandwidth benchmark called Tinymembench
[13] as a leech, for loading the L2-cache. The Tinymembench load continu-
ously reads 32-bit integers from a N-sized buffer and writes them into another
N-sized buffer. The isolation test was conducted as follows.

1. Run baseline execution of the matrix multiplication

2. Initialize cache load process with size N (initially 64 KB)

3. Assign cache load process to C0

4. Start matrix multiplication on C3

112

5. Re-iterate from step 1 and multiply size N by 2

The results of the matrix multiplication running within a regular Linux
environment are depicted in Fig. 9.3, and the results of running it within a
Jailhouse Linux cell are shown in Fig. 9.4. The graphs point the execution
time (blue dash) on the left-hand side y-axis and the L2-cache misses (orange
dash) on the right-hand side y-axis. The x-axis marks the leech buffer size.
The graphs also include error bars where the upper dash shows the maximum
value, and the lower dash shows the minimum value of 50 measurements. As
previously, low values are better than high values of the execution times. Also,
a large error bar is worse than a small one, since small variability in both L2-
cache misses and execution time is preferable. Table 9.3 lists the calculated
isolation for the matrix multiplication when co-run with the Tinymembench
load.

Figure 9.3: Linux L2-cache isolation test

Size ILinux IJhouse
128 KB 7,17% 7,74%
256 KB 15,27% 15,84%
512 KB 22,78% 22,33%
1 MB 26,62% 26,69%
2 MB 26,92% 26,87%
4 MB 25,14% 25,51%

Table 9.3: I coefficient in L2-cache contention test (percentage)

113

Figure 9.4: Jailhouse L2-cache isolation test

We observe a typical "knee" effect, i.e., the performance degradation of
the matrix multiplication halts at a certain point. This halt occurs when the
matrix multiplication co-run with a L2-cache leech cannot produce more cache
misses, as every cache line request will be a miss. This comes to a full effect
when N is 1 MB, which is aligned with the 1 MB-sized L2-cache. From the
isolation coefficient values- Table 9.3, we see almost no difference between the
Jailhouse measurement and the Linux measurement. This is motivated by the
fact that the Jailhouse hypervisor (in the reported version) does not mitigate
this problem. Also, there is almost no difference in execution time, nor cache
misses. This suggests that it is potentially is possible to migrate tasks from
regular Linux system to a Jailhouse partition without having to re-calculate the
execution characteristics of the algorithm.

9.4.3 Memory bus isolation test

In this section, we describe memory bus contention which occurs due to mul-
tiple processes on different cores requesting non-cached memory. In the pre-
vious test, we discovered the knee effect occurring at a buffer size of 1 MB,
which means all data requested by a process will be a cache miss and it has to
be fetched from the main memory through the bus. If multiple processes from
different cores request data from the main memory, the bus has to arbitrarily
chose which process gets the access. This may lead to further performance
degradation. To investigate memory bus contention, we run a test as follows,

114

where we employ the same kind of leech as previously, with a buffer size of
8 MB (or any size larger than the 1 MB limit described above).

1. Start a 512x512 matrix multiplication on C3

2. Insert one memory bus leech on a non-occupied core

3. Repeat step 3 until all cores are occupied

To ensure that full cache contention occurs during the entire execution of the
test, we measure the L2-cache misses of the system. Their number should re-
main constant - any change reflecting the fact that there were also some cache-
hits, which is to be avoided.

Fig. 9.5 depicts the results of the regular Linux matrix multiplication ex-
ecution, and Fig. 9.6 depicts the results of the execution under Jailhouse pro-
tection. The left-hand side y-axis plots the calculated median execution time
of 50 measurements, the x-axis shows the number of leeches inserted into the
system and the right-hand side y-axis shows the L2-cache misses of the system.
The graphs also include error bars where the upper dash shows the maximum
value and the lower dash shows the minimum value of the 50 measurements.
We list the calculated isolation coefficient for the matrix multiplication using
regular Linux and Jailhouse in Table 9.4.

Figure 9.5: Linux memory bus isolation test

The graphs show a significant performance degradation of the matrix mul-
tiplication due to memory bus contention running in Linux as well as in Jail-
house.

115

Figure 9.6: Jailhouse memory bus isolation test

The baseline execution time remains the same as in the matrix L2-cache
isolation case, since we used the same matrix size. Furthermore, the observed
effects when using one leech are also similar to the L2-cache isolation test, as
the cache is fully loaded. However, the interesting effects on execution times
occur when inserting two or more leeches. Firstly, we can read an isolation
coefficient of 0,3168 and 0,326 for the Linux and Jailhouse matrix multipli-
cations, respectively. The values mean that the Jailhouse hypervisor does not
provide any sorts of bus isolation, as expected. In addition, the execution time
of the matrix multiplication will be increased with any added leech. Once
again, the performance impact of using the Jailhouse hypervisor is within a
measurement error margin, suggesting that using the Jailhouse hypervisor does
not come with any overhead penalties.

Table 9.4: I coefficient in Memory bus contention test, (Percentage)

Size ILinux IJhouse
1 Leech 28,91% 25,96%
2 Leeches 31,75% 34,12%
3 Leeches 41,30% 43,50%

116

9.5 Conclusion

We have measured the effects of contention on computing resources such as
CPUs, L2-cache and memory bus. As an example of an application with high
need for both CPU and memory, we used a matrix multiplication. We executed
the application in a standard Linux context and compared it with the execution
in a Jailhouse hypervisor cell context. In order to test the isolation, we dis-
turbed the application by executing leeches designed to consume particular
computing resources.

Our measurements focusing on the CPU resource show that the Jailhouse
hypervisor provides isolation between different partitions, enabling the appli-
cation to exhibit a performance very close to the baseline even in the presence
of leeches. Jailhouse does not, however, provide any memory bus or L2-cache
isolation. These said, there is a very small difference in performance degra-
dation for the application execution between the Jailhouse hypervisor and a
standard Linux system during heavy shared resource congestion. This further
suggests that using Jailhouse in a heavily loaded shared resource environment
provides an at least as performant execution context as Linux.

We leave investigating TLB, DRAM bank and I/O contentions for future
work. There also exists a newly published patch [7] for Jailhouse which pro-
vides a cache coloring configuration for Jailhouse cells. Investigating the page
coloring mechanisms using our methodology is also relevant future work in
the Jailhouse case.

117

Bibliography

[1] A. Bansal, R. Tabish, G. Gracioli, R. Mancuso, R. Pellizzoni, and
M. Caccamo. Evaluating the memory subsystem of a configurable het-
erogeneous mpsoc. OSPERT 2018, page 55, 2018.

[2] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield. Xen and the art of virtualization. In ACM
SIGOPS operating systems review, volume 37, pages 164–177. ACM,
2003.

[3] T. Deshane, Z. Shepherd, J. Matthews, M. Ben-Yehuda, A. Shah, and
B. Rao. Quantitative comparison of xen and kvm. Xen Summit, Boston,
MA, USA, pages 1–2, 2008.

[4] FAA. Addressing cache in airborne systems and equipment. accessed:
2019-11-04.

[5] S. Han and H.-W. Jin. Full virtualization based arinc 653 partitioning.
In Digital Avionics Systems Conference (DASC), 2011 IEEE/AIAA 30th,
pages 7E1–1. IEEE, 2011.

[6] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori. kvm: the
linux virtual machine monitor. In Proceedings of the Linux symposium,
volume 1, pages 225–230. Dttawa, Dntorio, Canada, 2007.

[7] J. Kizka. Jailhouse google groups. accessed: 2019-11-04.

[8] J. Li, Q. Wang, D. Jayasinghe, J. Park, T. Zhu, and C. Pu. Performance
overhead among three hypervisors: An experimental study using hadoop
benchmarks. In Big Data (BigData Congress), 2013 IEEE International
Congress on, pages 9–16. IEEE, 2013.

[9] S. Mittal, Z. Zhang, and Y. Cao. Cashier: A cache energy saving tech-
nique for qos systems. In VLSI Design and 2013 12th International Con-
ference on Embedded Systems (VLSID), 2013 26th International Confer-
ence on, pages 43–48. IEEE, 2013.

[10] S. Perarnau, M. Tchiboukdjian, and G. Huard. Controlling cache utiliza-
tion of hpc applications. In Proceedings of the international conference
on Supercomputing, pages 295–304. ACM, 2011.

[11] R. Ramsauer, J. Kiszka, D. Lohmann, and W. Mauerer. Look mum, no
vm exits!(almost). arXiv preprint arXiv:1705.06932, 2017.

118

[12] S. Santos, J. Rufino, T. Schoofs, C. Tatibana, and J. Windsor. A portable
arinc 653 standard interface. In Digital Avionics Systems Conference,
2008. DASC 2008. IEEE/AIAA 27th, pages 1–E. IEEE, 2008.

[13] S. Siamashka. https://github.com/ssvb/tinymembench. Retrieved Jan-
uary, 2019.

[14] V. Sinitsyn. Understanding the jailhouse hypervisor, part 1.
https://lwn.net/Articles/578295/, 2014.

[15] V. Sinitsyn. Get to know jailhouse.
https://www.linuxjournal.com/content/jailhouse, 2015.

[16] S. Toumassian, R. Werner, and A. Sikora. Performance measurements
for hypervisors on embedded arm processors. In Advances in Computing,
Communications and Informatics (ICACCI), 2016 International Confer-
ence on, pages 851–855. IEEE, 2016.

[17] S. H. VanderLeest. Arinc 653 hypervisor. In Digital Avionics Systems
Conference (DASC), 2010 IEEE/AIAA 29th, pages 5–E. IEEE, 2010.

[18] Y. Ye, R. West, Z. Cheng, and Y. Li. Coloris: a dynamic cache partition-
ing system using page coloring. In Parallel Architecture and Compilation
Techniques (PACT), 2014 23rd International Conference on, pages 381–
392. IEEE, 2014.

[19] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. Memguard:
Memory bandwidth reservation system for efficient performance isola-
tion in multi-core platforms. In Real-Time and Embedded Technology
and Applications Symposium (RTAS), 2013 IEEE 19th, pages 55–64.
IEEE, 2013.

[20] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. Memory band-
width management for efficient performance isolation in multi-core plat-
forms. IEEE Transactions on Computers, 65(2):562–576, 2016.

119

Chapter 10

Paper D
Run-Time Cache-Partition
Controller for Multi-Core
Systems

J. Danielsson, M. Jägemar, M. Behnam, T. Seceleanu and M. Sjödin. In 45th

Annual Conference of the IEEE Industrial Electronics Society (IECON) IEEE,
2019.

121

Abstract

The current trend in automotive systems is to integrate more software appli-
cations into fewer ECU’s to decrease the cost and increase efficiency. This
means more applications share the same resources which in turn can cause
congestion on resources such as such as caches. Shared resource congestion
may cause problems for time critical applications due to unpredictable interfer-
ence among applications. It is possible to reduce the effects of shared resource
congestion using cache partitioning techniques, which assign dedicated cache
lines to different applications. We propose a cache partition controller called
LLC-PC that uses the Palloc page coloring framework to decrease the cache
partition sizes for applications during run-time. LLC-PC creates cache par-
titioning directives for the Palloc tool by evaluating the performance gained
from increasing the cache partition size. We have evaluated LLC-PC using 3
different applications, including the SIFT image processing algorithm which
is commonly used for feature detection in vision systems. We show that LLC-
PC is able to decrease the amount of cache size allocated to applications while
maintaining their performance allowing more cache space to be allocated for
other applications.

123

10.1 Introduction

Recent trends in the automotive industry show an increasing interest in high-
performance computational machines. A common way to address the in-
creased demand for computational capacity is the use of multi-core CPUs,
which is a significant benefit to the autonomous industry due to the reduced
size, weight, and power (SWaP) area [3]. Increasing the number of cores adds
additional computational capacity, however, it also increases the system com-
plexity. Multi-core systems are infamous for performance variations, which
can become problematic in time-sensitive systems [8]. These variations of-
ten occur due to inter-core resource sharing, such as shared caches, shared
memory bus, Translation Lookaside Buffers (TLB), shared DRAM-banks and
others. These resources can be shared between cores, which means an appli-
cation (e.g. app0), executing on one core, does not have exclusive ownership
of a single resource, instead it shares the resource with another application,
(e.g. app1), executing on an adjacent core. Such scenario can lead to shared
resource contention where app0 unexpectedly stalls, since app1 has access to
the resource.

The shared last level cache (LLC) has been a performance bottleneck in
multi-core systems for a long time because of simultaneous accesses from
multiple cores. In recent years, several studies have proposed methods aim-
ing to mitigate LLC contention through isolation. Some examples are cache
partitioning which partition the LLC so that accesses from one application do
not affect the performance of another [11]. An additional technique is cache
locking [12], that forces applications to use only certain cache lines. Another
example is cache scheduling [6] that schedules applications to minimize con-
flicts in the cache memory. Isolating the cache memory can however be a
costly process in terms of lost memory space and increased overhead.

We have devised a new way to optimize LLC partition allocation, during
run-time. We implement a controller that continuously reads the instructions
retired event from the Performance Monitoring Unit (PMU) [5] to estimate the
application’s performance. This paper focuses on the LLC, but the PMU sup-
ports a broad set of events [15], and our method can be applied to other shared
resources as well - to be investigated in the future. The controller correlates the
performance metrics and the cache partition size, and decides if an application
needs more cache memory to achieve the desired performance or Quality of
service (QoS). Our main contribution is:

• Propose a method to automatically select the minimum cache-size to be
allocated to an application for achieving a desired QoS.

124

The rest of the paper is structured as follows. We give background in-
formation in Section 10.2 and describe the LLC partition controller we have
implemented in Section 10.3. An empirical study of the correlation coefficient
and also a comparison study of our LLC partition controller versus statically
assigned LLC partitions is described in Section 10.4. Section 10.5 describe
work related to ours and we conclude the paper in Section 10.6.

10.2 Background

In the following, we discuss cache partitioning and it’s relations to application
performance.

10.2.1 Partitioning to avoid LLC contention

LLC contention occurs when multiple applications compete for the same cache
lines. This can drastically degrade the execution time. Page-coloring, a.k.a
cache coloring [13] or cache partitioning, is a way of disqualifying applica-
tions from using certain cache lines. LLC partitioning in Linux can be done
by replacing the standard Buddy allocator [14], forcing applications to take
a subset of the total number of cache lines. Forming LLC partitions is often
done by assigning colors to an application. The colors are then used to control
where data requests from the physical memory should be put in the cache, see
Fig 10.1.

Figure 10.1: Cache coloring

The Figure shows three applications which split the cache memory equally.
The applications are assigned three different colors in the physical memory
which are then used to map memory rows to cache line locations. Cache colors
are referenced using the set-associative bits of the LLC, calculated according

125

to Equation 10.1 [13].

Nr. of Colors =
Cache_size

Cache_ways ∗ page_size
(10.1)

We have used the combined DRAM-bank partitioning and LLC coloring tool
called Palloc [14] to create LLC partitions. Palloc is a kernel module which
runs partitions at the granularity of a page and replaces the regular Linux
Buddy allocator with a colored page approach.

10.2.2 Cache partitioning effect

Page coloring can be very efficient for reducing the execution time oscilla-
tions of applications executing in a memory contentious environment [13]. We
have illustrated such environment in Fig. 10.2 where one 512x512 matrix mul-
tiplication application runs iteratively 100 times on core 0. The blue pluses
show 100 iterations of the matrix multiplication without page coloring. The
red crosses show 100 iterations of the matrix multiplication using palloc page
coloring with a cache partition size of 60. Another matrix multiplication starts
at iteration 20, running on core 1. The purpose of the newly inserted matrix
multiplication is to cause LLC contention, which happens as a consequence of
sharing the same LLC.

Figure 10.2: Matrix multiplication - isolation example

Fig. 10.2 depicts a typical LLC contention scenario, where the execution
time of the no-page-colored matrix multiplication starts to oscillate, after in-
serting the leech. The page-colored matrix multiplication is, on the other hand,
undisturbed by the leech. It is, however, apparent that page coloring comes
with an increased overhead due to extra latency in page allocations. Such

126

trade-off can be worthwhile in time-critical systems when application time-
predictability is essential. Overhead evaluations and Real-time performance
impacts of the Palloc tool using bank partitions is extensively discussed in the
Palloc paper.

Dimensioning the LLC partition sizes is one of the critical aspects when
running multiple applications simultaneously. Assigning too small LLC parti-
tions can significantly decrease the application performance. Fig. 10.3 shows
the performance difference of the same matrix multiplication using various
amount of LLC partition size.

Figure 10.3: Matrix multiplication using different cache partition sizes

Assigning only 1 LLC partition to the matrix multiplication significantly
reduces the performance, compared to the execution in Fig. 10.2, which uses
60 LLC partitions. Increasing the LLC partition size to 2, significantly in-
creases the performance compared to the 1 LLC partition assignment and so
on. Fig. 10.3 also illustrates an "above LLC saturation point" scenario - when
an application does not gain performance from being assigned more cache
memory, which is a consequence of fully saturating the temporal locality of
the matrix multiplication. For this dataset size, the number of cache misses
cannot be reduced anymore and all data which can be re-used is being re-used.
Thus, there is no increase in performance from increasing the LLC partition
size further. In this case, the saturation point occurs at the 12 LLC partitions
assignment. Further increasing the available LLC partitions, does not produce
a significant performance impact on the application. Increasing the LLC size
for this application will only allocate unnecessary resources. As a comparison,

127

we could adopt a static partitioning strategy: for instance, assigning a 4th of
all cache partitions to each core in a 4 core system. In many cases, this may be
a waste of valuable resources. Thus, we argue that it is beneficial to find the
LLC saturation point at run-time, rather than statically assigning partitions.

10.3 Cache partition decision

There are many ways to create efficient LLC partitions. One possibility is
to use exhaustive offline profiling for tasks, distributing the available cache
partitions optimally to different tasks [2]. Offline profiling, however, needs
complete knowledge of the applications running in the system. Changing the
application set requires a complete re-profiling procedure before deploying
new cache partitions. These limitations make offline cache partitioning not
feasible for most dynamic systems. In addition, some applications may also
change their respective workload during execution, which can be very difficult
to foresee at design-time.

This paper focuses on LLC-bound workloads, meaning that the respective
performance is bound tightly with the amount of LLC misses, where more
LLC misses equals less performance. It is possible to assume that an LLC-
bound workload will benefit from receiving more LLC partitions and opens up
ways for constructing re-partition methodologies.

For an app0, the performance is denoted by the number of retired (reached
the final step in the instruction pipeline) instructions. In the context of the used
example, our theory is that:

• The performance of an LLC-bound process is strongly correlated to the
number of LLC misses.

• Enlarging the corresponding partition size available for app0 increases
the performance and decrease the LLC misses.

• The correlation between performance and increased LLC partition size
decreases as the number of LLC partitions increase, until a LLC satura-
tion point, where other resources (may) become the bottleneck

128

Based on our theory, we propose a correlation-based cache partition con-
troller, LLC-PC, that tries to find the LLC saturation point - Fig. 10.4.

Figure 10.4: LLC-PC

The cache controller is a correlation based control loop which regulates the
cache partition size according to the correlation between a performance metric
and the increase in cache size for a specific application. The controller will
continuously increase the cache size for as long as the correlation between
the increase in amount of cache partition size and the performance metric is
high. Once the correlation starts to decline and reaches a certain threshold,
an LLC saturation point has been found and the controller will stop assigning
additional cache partitions to the specific application.

The correlation scheme to find the LLC partition saturation point is based
on the Pearson correlation coefficient [1] - a statistics methodology to quan-
tify the relationship between two datasets. The pearson correlation coefficient
is calculated according to Equation 10.2, where r is the pearson correlation
coefficient estimate, n is the number of samples, x is the first sample vector, x
is the mean of the first sample vector, y is the second sample vector, y is the
mean of the second sample vector and i is the iterator.

r =

∑n
i=1(xi − x)(yi − y)√∑n
i=1(xi − x)2(yi − y)2

(10.2)

The correlation coefficient ranges from values between -1 and 1. The ab-
solute value of the correlation coefficient represents how strong the correlation
is, where a higher value represents a stronger correlation. Correlation coeffi-
cients between 0.1 to 0.3 generally show a weak correlation, 0.4-0.5 show a
medium correlation and greater than 0.5 show a strong correlation [4]. The
correlation significance may, however, vary depending on the data set.

129

10.3.1 Controller implementation

We have implemented the LLC partition controller - LLC-PC - as a user-space
application in the Linux operating system. LLC-PC employs the Palloc page-
coloring interface, described in Fig. 10.5.

Figure 10.5: System connections

LLC-PC handles application connections through message queues and as-
signs LLC partitions to the connected applications using the cgroup inter-
face. The cgroup interface has an implemented file-system called palloc,
which uses the LLC set associative bits for configuring LLC boundaries. The
palloc kernel implementation creates the cache colors based on the infor-
mation provided by the cgroup file-system. LLC-PC has also a connection
to the palloc kernel space user interface to enable palloc.

The controller, see Fig. 10.4, consists of three parts. The monitor part, the
correlation part and the partition computation part. The controller implemen-
tation is described in Algorithm 1.

130

Initialize_palloc();
Initialize_PAPI();
while forever do

/* Handle application connections */
forall messages in message_queue do

if message == new_application then
initialize_application();
tasks_in_system++;

end
if message == task_iteration_ended then

calculate_avg_instructions_retired();
avg_samples++;
done = 1;

end
end
/* Control loop segment */
forall applications in tasks_in_system do

/* Monitor application characteristics */
instr_retired = read_pmu(pid);
if avg_samples <= 3 then

/* Calculate correlation */
correlation = pearson(avg_instructions_retired[i..end],
cache_partition_size[i..end]);
/* Make partition decision */
if correlation > 0.8 then

partition_size++;
end

else
/* Insufficient amount of data to

calculate correlation */
partition_size++;
done = 0;

end
resize_cache_partition();

end
sleep();

end
Algorithm 1: LLC-PC pseduocode

131

The first forall block of the algorithm shows the connectivity part of LLC-
PC, i.e., how the program deals with connected applications through message
queues. Applications connect to LLC-PC by sending the application pid to a
message queue. Applications furthermore notify LLC-PC of execution iter-
ation ends by sending a "done" message to the same message queue. If the
system does not currently recognize the pid posted by an application, the cre-
ate_application function is triggered. This function initializes an application
variable and stores the newly created application to an array. If an "end" mes-
sage is received, an average value of instructions retired for the application is
calculated, and the amount of average samples for the application is increased
by 1.

The second forall block shows the actual LLC-PC controller part and starts
with an application monitor part. The monitor continuously reads the instruc-
tions retired PMU event for all application pids which exists within the appli-
cations array. The instructions retired event is stored within another array, used
for calculating the average instructions. If the amount of average samples for
an application is less than 3, a correlation calculation will not be performed,
since it is not possible to detect trends with so few values. Thus, if there are
less than three available average samples, LLC-PC will increase the partition
size by 1. If on the other hand, the amount of average samples is at least
3, LLC-PC will start to perform the correlation calculation. The correlation
calculation uses the average instructions retired and partition history for one
application as input data and provides a Pearson correlation coefficient as out-
put data. The application input data to the Pearson calculation is provided as
a sliding window filter ranging from i to the end of the vector. This window
is implemented to ensure that only the most recent values are accounted for
in the Pearson calculation, to provide a faster response of LLC-PC. Once the
correlation calculation is complete, a partition decision can be made. If the
correlation is over 0.8, the partition size of the application is increased by one.
If not, the saturation point of the application has been found, and LLC-PC will
not increase the partition size further.

The third step is to actuate the resize cache partition method, which goes
through all currently active applications in LLC-PC and calls cgroup/palloc to
create partitions accordingly. Finally, the sleep variable dictates the periodicity
of the monitor loop and therefore controls the number of values given as input
to the average performance calculations — the average overhead of the LLC-
PC monitor- and control loop averages at 73 µs. Decreasing the sleep timer
will increase the amount of control-loop iterations per application samples and
will thus increase the overhead while expanding the sleep timer will reduce
overhead.

132

10.4 Experiments

We here describe the experiment on the identification of a feasible correlation
threshold, to be used to determine the LLC saturation point. We evaluate how
well LLC-PC perform compared to a static LLC partitioning.

Our experiment platform is a desktop Intel® CoreTM i5 computer, with
specification details as in Table 10.1.

Feature Hardware Component
Processor 4xIntel® CoreTM i5-8850H CPU (Skylake)

2.6GHz
L1-cache 32 KB 8-way set assoc. instruction caches/core

+ 32 KB 8-way set assoc. data cache/core
L2-cache 256 KB 4-way set assoc. cache/core
LLC 9 MB 12-way set assoc. shared cache
MMU 64 Byte line size,

64 Byte Prefetching,
DTLB: 32 entries 2 MB/4 MB 4-way set assoc.
+
64 entries 4 KB 4-way set assoc.,
ITLB: 128 entries 4 KB 4-way set assoc.,
L2Unified-TLB: 1 MB 4-way set assoc.,
L2Unified-TLB: 512 entries 4 KB/2 MB 4-way
assoc.

Table 10.1: Hardware specifications Intel® CoreTM i578850H

10.4.1 Point of saturation - Correlation threshold

Finding the right correlation threshold value is essential to LLC-PC, since a
too low threshold value can cause the LLC-PC to act too slowly and there-
fore assign too many LLC partitions to an application. A too high threshold
value may, on the other hand, force LLC-PC to act too quickly, and to assign
not-enough LLC partitions to an application. The following experiments de-
scribe how the correlation coefficient between performance and LLC partition
size changes over time, using different workloads while increasing the LLC
partition size.

The correlation-based approach is able to identify which resource has the
dominant effect on the performance of the applications, and this might change
after allocating a certain amount of that particular resource, such as the LLC.
Due to the space limitation, we will leave the management of multiple re-
sources as future work and focus on a single resource which is the LLC.

133

Matrix multiplication. This experiment exemplifies what happens when a
cache intensive workload runs on different partition sizes. We chose a 512x512
matrix multiplication, which is a well-known cache optimization problem [7]
to run, using an increasing amount of LLC. Fig. 10.6 depicts the matrix mul-
tiplication instructions retired on the left-hand side y-axis and the correlation
relationship between the instructions retired and the cache partition size on the
right-hand side y-axis.

Figure 10.6: 512x512 matrix multiplication execution

The figure shows a gradually decreasing correlation curve and also a clear
relationship between increased LLC partition size and instructions retired. The
matrix multiplication reaches saturation at a partition size of 10.

134

SIFT. We test the SIFT algorithm, a commonly used feature detection al-
gorithm to illustrate that our correlation theory works for not only synthetic
workloads. Fig. 10.7 show as an execution of the SIFT algorithm run on a
4MB image with different cache partition sizes from 1 to 40.

Figure 10.7: 4 MB SIFT execution

The figure shows an upwards going performance curve, with an absolute
peak when assigned 37 cache colors. This peak is however very minor and
can be explained as local deviation due to "lucky" executions. The majority of
the peak values are, however, within the 405 million - 425 million instructions
retired interval, which is reached at a correlation coefficient of roughly 0.9 and
continues to scale down.

Random Calculation. The purpose of this experiment is to exemplify what
happens when a load is not LLC-bound. The random calculation program
executes a set of random number requests and stores the random value into a
variable. The variable is compared with another variable to find the highest
value gained from the random number requests. We set the random number
requests to 108 random number requests with a modulo of 5∗105 and increase
the number of cache partitions assigned to this application by one each time the
application is finished executing. Fig. 10.8 depicts the correlation coefficients
from the random calculation test.

135

Figure 10.8: Random calculation execution

The figure shows an entirely different result from the matrix multiplica-
tion correlation graph. Instead of a continuously decreasing correlation, the
correlation values are irregular at first but then saturates on iteration 13 to a
correlation coefficient of 0.

10.4.2 Summary of experiments

There are two common nominators for the LLC-bound applications in these
experiments. Firstly, the number of instructions retired increase when increas-
ing the LLC partition size. The increase in instructions retired is reasonable
since the application gets significantly more LLC. Secondly, there is a point
where the instructions retired curve levels off to a stable state. The curve lev-
els out when the application is assigned a certain number of LLC partitions.
Thus, we have found the LLC saturation point for this given application. We
can conclude that in our experiments, the LLC saturation point of the curve
is a certainty at a correlation coefficient of 0.8. Using this conclusion, we set
the correlation threshold to 0.8 in the subsequent LLC-PC experiments, which
is the point from which LLC-PC will not assign more cache partitions to an
application. Using a correlation over the entire dataset at all time, however,
makes LLC-PC slow to saturate. The saturation of the system can, however,
be hastened through introducing a sliding window, which only tracks the most
recent cache partition and instructions retired measurements. Using a sliding
window means the system will only react to current execution trends, not con-
sidering the earliest stages of the system execution.

136

10.4.3 LLC-PC evaluation

One static way of assigning LLC partitions is to split all available LLC par-
titions equally between the cores. Our test environment has 4 cores and 128
available cache partitions, thus each core gets 128/4 = 32 static LLC parti-
tions as a first reference value. We also use 16 partitions per core as a second
reference value. Below, we show an evaluation of static partitioning vs. LLC-
PC, using different sizes of the previously introduced LLC-bound workloads.
We ran each test a total of 5 times. LLC-PC runs the experiment setup listed
in Table 10.2.

Property Value
Available LLC partitions 128
Correlation window size 5
Correlation threshold 0.8
Control loop sleep 50ms

Table 10.2: LLC-PC specifics

For the sake of test simplicity, re-partition regulations are made once each
application iteration, however, in theory a re-partition decision could be made
each time a memory manager call is made. We execute each test sequentially
for a more straightforward interpretation of the results. The control loop ad-
dress each task individually, which means that it is possible for the controller
to handle multiple tasks concurrently at the same time. It can also be argued
that the control loop sleep time would be a coefficient of the execution time
such that the sampling occurs only a certain amount of times every iteration,
however since the execution time can be very hard to predict, we chose to go
for a statically set sleep timer. Such a solution, however, requires accurate
execution time prediction of an application, which becomes very troublesome
since the execution time of each application can change dramatically due to
cache re partitioning and would possibly mean more overhead to LLC-PC. We
chose 50 ms as control loop sleep in order to get at least 100 measurement
values for the average calculation for all application variations.

137

Matmult and SIFT running under LLC-PC. We evaluate LLC-PC versus
a static partition based solution which uses a LLC partition size of 16 and
32. Fig. 10.9 and Fig. 10.10 depicts the execution flow of a 756x756 matrix
multiplication and a 8MB sift execution respectively, using LLC-PC. The left-
hand side y-axis of the graphs plots the median instructions retired (i.e., perfor-
mance) per 50 milliseconds of the application using LLC-PC (blue squares),
16 statically assigned cache partitions (orange cross) and 32 statically assigned
cache partitions (yellow plus). The right hand-side axis show the correlation
over time using LLC-PC. A higher value on the left-hand side axis means more
instructions executed per 50 milliseconds and is, therefore, better than a low
value. The x-axis shows the number of partitions used, where a lower value is
preferred since more cache partitions can be given to other applications.

Figure 10.9: Comparison of 756x756 matrix multiplication executions

Figure 10.10: Comparison of 8MB SIFT executions.

138

Fig. 10.9 shows a full LLC-PC run of a 756x756 matrix multiplication,
where the system saturates at 16 partitions, with comparable performance to
that of the static partitions. For this particular matrix multiplication size, the
static partition size was equal to the correlated size. Statically increasing the
LLC sizes to 32 does not improve the matrix multiplication performance sig-
nificantly. Furthermore, Fig. 10.10 show SIFT operating within the LLC-PC,
with a final assignment of 13 LLC partitions at which point the correlation
value has dropped from 0.89 to 0.72. The correlation-based methodology al-
most reaches the same performance achieved by the static LLC partition allo-
cations.

Table 10.3 and Table 10.4 further compares LLC-PC with a static parti-
tioning strategy using different sizes of the workloads. Wsize is the workload
size and Csize is the LLC partition size assigned to the application, Cinstr, S16
and S32 show the median million instructions retired per 50 milliseconds of
the matrix multiplication using LLC-PC, 16 statically allocated LLC partitions
and 32 statically allocated LLC partitions respectively.

Wsize Csize Cinstr S16 S32

256x256 7 432.73 428.17 419.49
512x512 13 420.11 432.78 428.54
756x756 16 414.36 424.63 428.39

Table 10.3: Matrix multiplication tests

Wsize Csize Cinstr S16 S32

1MB 6 395.38 406.56 408.79
2MB 7 384.96 413.01 405.85
4MB 9 387.80 410.61 405.87
8MB 13 385.53 406.31 402.58

Table 10.4: SIFT tests

Table 10.3 shows the benefit of LLC-PC, especially using the smallest ma-
trix multiplication size of 256x256, which saturates at a partition size of 7.
Increasing LLC partition size to 16 and 32 does not increase the performance,
and would thus be a wasteful LLC assignment since other applications could
have used the LLC partitions. The larger 512x512 matrix multiplication size
saturates at an LLC partition of 13, which is 3 LLC partitions less than the
static 16 allocation, which does not notably change performance. Table 10.4
further compares LLC-PC with the static partitioned strategy using different
image sizes, where Wsize is the image size used by the SIFT application and

139

Csize is the LLC partitions assigned to SIFT by LLC-PC. Cinstr, S16 and
S32 show the median million instructions retired per 50 milliseconds for us-
ing LLC-PC, 16 statically allocated LLC partitions and 32 statically allocated
LLC partitions respectively. The table shows a close-to static performance for
all different image sizes using less LLC partitions. The 8MB image receives
13 LLC partitions from LLC-PC and is which is relatively close to the S16
allocated partitions, which saves 3 LLC partitions from waste. Increasing the
image size further could potentially trespass the S16 allocation using the cor-
relation controller.

10.5 Related Work

Our work is based on the PALLOC [14] page coloring framework, which can
be used for partitioning both the cache and DRAM banks. While the authors
show that Palloc efficiently can be used to counter resource contention where
all cores gain the same amount of cache partitions, they do not consider to opti-
mize the cache assignments for each application. We aim to further extend this
approach by using correlation-based partitioning decisions and therefore gain
more efficient cache partitions. Ye et al. [13] presented the Coloris cache col-
oring engine which uses a threshold scheme, based on performance counters.
The Coloris approach forms cache partitions based on how many cache misses
one process contributes to the total amount of cache misses of all processes.
Our approach differs from Coloris, as we look at how the performance of a
process correlates to the cache misses of the same process. Perarnau et al. [10]
presents another cache coloring scheme and argues that creating feasible cache
memory partitions is best left to the user, since they have most knowledge of
the application. We argue that it is difficult to know beforehand how much
cache an application needs, in order to achieve a certain performance level. It
is therefore beneficial to use a method that makes the cache partition decision
automatically at run-time.

140

10.6 Conclusion

We have created a correlation based LLC partition controller, called LLC-PC,
which can be used to find LLC partition sizes for workloads with unknown
cache usage. We evaluate LLC-PC using two LLC heavy loads, a Matrix mul-
tiplication, and a SIFT feature detection algorithm. The results show that LLC-
PC can be used for this set of workloads to reduce the amount of cache size
given to an algorithm compared to a static 32 cache LLC partition assignment,
and also in most cases a 16 LLC partition assignment - while still maintain-
ing similar performance. We can probably find better cache partitions through
thorough offline measurements and code analysis; however, our aim is not to
find the absolute optimal cache partitions but rather find sufficient cache parti-
tion sizes during runtime of an algorithm.

Our prime focus has been to create a generalizable correlation model. We
can apply the correlation model on any shared resource that has a performance
counter event and a partitioning strategy which affect the shared resource, e.g.,
TLB partitioning [9]. Our future work includes introducing new partitioning
strategies. We would also like to create a methodology for solving the multi-
objective control problem when balancing multiple shared resources usage.

141

Bibliography

[1] J. Benesty, J. Chen, Y. Huang, and I. Cohen. Pearson correlation coef-
ficient. In Noise reduction in speech processing, pages 1–4. Springer,
2009.

[2] J. Brock, C. Ye, C. Ding, Y. Li, X. Wang, and Y. Luo. Optimal cache
partition-sharing. In 2015 44th International Conference on Parallel Pro-
cessing, pages 749–758. IEEE, 2015.

[3] A. Bucaioni, S. Mubeen, F. Ciccozzi, A. Cicchetti, and M. Sjödin.
Technology-preserving transition from single-core to multi-core in mod-
elling vehicular systems. In European Conference on Modelling Founda-
tions and Applications, pages 285–299. Springer, 2017.

[4] J. Cohen. Statistical power analysis for the behavioral sciences. Rout-
ledge, 2013.

[5] T. Gleixner. Linux Performance Counter announcement, 2008.

[6] N. Guan, M. Stigge, W. Yi, and G. Yu. Cache-aware scheduling and
analysis for multicores. In Proceedings of the seventh ACM international
conference on Embedded software, pages 245–254. ACM, 2009.

[7] M. D. Lam, E. E. Rothberg, and M. E. Wolf. The cache performance
and optimizations of blocked algorithms. In ACM SIGARCH Computer
Architecture News, volume 19, pages 63–74. ACM, 1991.

[8] A. Mazouz, D. Barthou, et al. Study of variations of native program
execution times on multi-core architectures. In 2010 International Con-
ference on Complex, Intelligent and Software Intensive Systems, pages
919–924. IEEE, 2010.

[9] S. A. Panchamukhi and F. Mueller. Providing task isolation via tlb color-
ing. In Real-Time and Embedded Technology and Applications Sympo-
sium (RTAS), 2015 IEEE, pages 3–13. IEEE, 2015.

[10] S. Perarnau, M. Tchiboukdjian, and G. Huard. Controlling cache utiliza-
tion of hpc applications. In Proceedings of the international conference
on Supercomputing, pages 295–304. ACM, 2011.

[11] G. E. Suh, L. Rudolph, and S. Devadas. Dynamic partitioning of shared
cache memory. The Journal of Supercomputing, 28(1):7–26, 2004.

142

[12] X. Vera, B. Lisper, and J. Xue. Data cache locking for higher program
predictability. In ACM SIGMETRICS Performance Evaluation Review,
volume 31, pages 272–282. ACM, 2003.

[13] Y. Ye, R. West, Z. Cheng, and Y. Li. Coloris: a dynamic cache partition-
ing system using page coloring. In Parallel Architecture and Compilation
Techniques (PACT), 2014 23rd International Conference on, pages 381–
392. IEEE, 2014.

[14] H. Yun, R. Mancuso, Z.-P. Wu, and R. Pellizzoni. Palloc: Dram bank-
aware memory allocator for performance isolation on multicore plat-
forms. In Real-Time and Embedded Technology and Applications Sym-
posium (RTAS), 2014 IEEE 20th, pages 155–166. IEEE, 2014.

[15] G. Zellweger, D. Lin, and T. Roscoe. So many performance events , so
little time. APSys ’16, 2016.

143

Bibliography

[1] M. Agrawal, K. Konolige, and M. R. Blas. Censure: Center surround
extremas for realtime feature detection and matching. In European Con-
ference on Computer Vision, pages 102–115. Springer, 2008.

[2] A. R. Alameldeen and D. A. Wood. IPC considered harmful for multi-
processor workloads. IEEE Micro, pages 8–17, 2006.

[3] ARM. Cortex-a53. https://developer.arm.com/
ip-products/processors/cortex-a/cortex-a53.
Accessed: 2019-11-04.

[4] S. Asano, T. Maruyama, and Y. Yamaguchi. Performance comparison
of fpga, gpu and cpu in image processing. In Field Programmable Logic
and Applications, 2009. FPL 2009. International Conference on, pages
126–131. IEEE, 2009.

[5] A. Bansal, R. Tabish, G. Gracioli, R. Mancuso, R. Pellizzoni, and
M. Caccamo. Evaluating the memory subsystem of a configurable het-
erogeneous mpsoc. OSPERT 2018, page 55, 2018.

[6] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield. Xen and the art of virtualization. In
ACM SIGOPS operating systems review, volume 37, pages 164–177.
ACM, 2003.

[7] H. Bay, T. Tuytelaars, and L. Van Gool. Surf: Speeded up robust fea-
tures. Computer vision–ECCV 2006, pages 404–417, 2006.

[8] J. Benesty, J. Chen, Y. Huang, and I. Cohen. Pearson correlation coef-
ficient. In Noise reduction in speech processing, pages 1–4. Springer,
2009.

[9] G. Bradski. The opencv library. Dr. Dobb’s Journal: Software Tools for
the Professional Programmer, 25(11):120–123, 2000.

[10] J. Brock, C. Ye, C. Ding, Y. Li, X. Wang, and Y. Luo. Optimal cache
partition-sharing. In 2015 44th International Conference on Parallel
Processing, pages 749–758. IEEE, 2015.

[11] A. Bucaioni, S. Mubeen, F. Ciccozzi, A. Cicchetti, and M. Sjödin.
Technology-preserving transition from single-core to multi-core in
modelling vehicular systems. In European Conference on Modelling
Foundations and Applications, pages 285–299. Springer, 2017.

145

https://developer.arm.com/ip-products/processors/cortex-a/cortex-a53
https://developer.arm.com/ip-products/processors/cortex-a/cortex-a53

[12] J. Che, Q. He, Q. Gao, and D. Huang. Performance measuring and
comparing of virtual machine monitors. In 2008 IEEE/IFIP Interna-
tional Conference on Embedded and Ubiquitous Computing, volume 2,
pages 381–386. IEEE, 2008.

[13] T. P. Chen, D. Budnikov, C. J. Hughes, and Y. Chen. Computer vision
on multi-core processors: Articulated body tracking. In Multimedia
and Expo, 2007 IEEE International Conference on, pages 1862–1865.
IEEE, 2007.

[14] A. Cherubini, F. Spindler, and F. Chaumette. Autonomous visual navi-
gation and laser-based moving obstacle avoidance. IEEE Transactions
on Intelligent Transportation Systems, 15(5):2101–2110, 2014.

[15] J. Cohen. Statistical power analysis for the behavioral sciences. Rout-
ledge, 2013.

[16] W. commons. Risc architecture. accessed: 2019-11-04.

[17] J. Danielsson, M. Ashjaei, M. Behnam, T. Sorensen, M. Sjodin, and
T. Nolte. Performance evaluation of network convergence time mea-
surement techniques. In 2017 22nd IEEE International Conference on
Emerging Technologies and Factory Automation (ETFA), pages 1–7.
IEEE, 2017.

[18] J. Danielsson, N. Tsog, and A. Kunnappilly. A systematic mapping
study on real-time cloud services. In 2018 IEEE/ACM International
Conference on Utility and Cloud Computing Companion (UCC Com-
panion), pages 245–251. IEEE, 2018.

[19] T. Deshane, Z. Shepherd, J. Matthews, M. Ben-Yehuda, A. Shah, and
B. Rao. Quantitative comparison of xen and kvm. Xen Summit, Boston,
MA, USA, pages 1–2, 2008.

[20] S. Di Carlo, G. Gambardella, M. Indaco, D. Rolfo, and P. Prinetto. Mar-
ciatesta: an automatic generator of test programs for microprocessors’
data caches. In 2011 Asian Test Symposium, pages 401–406. IEEE,
2011.

[21] C. Ding, X. Xiang, B. Bao, H. Luo, Y. Luo, and X. Wang. Performance
metrics and models for shared cache. Journal of Computer Science and
Technology, 29(4):692–712, 2014.

146

[22] R. O. Duda and P. E. Hart. Use of the hough transformation to detect
lines and curves in pictures. Technical report, Sri International Menlo
Park Ca Artificial Intelligence Center, 1971.

[23] D. Eklov, N. Nikoleris, D. Black-Schaffer, and E. Hagersten. Cache
pirating: Measuring the curse of the shared cache. In 2011 International
Conference on Parallel Processing, pages 165–175. IEEE, 2011.

[24] S. Eranian. What can performance counters do for memory subsystem
analysis? In Proceedings of the 2008 ACM SIGPLAN workshop on
Memory systems performance and correctness: held in conjunction with
the Thirteenth International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS’08), pages
26–30. ACM, 2008.

[25] S. Eyerman and L. Eeckhout. System-level performance metrics for
multiprogram workloads. IEEE Micro, 28(3):42–53, 2008.

[26] S. Eyerman, K. Hoste, and L. Eeckhout. Mechanistic-empirical proces-
sor performance modeling for constructing CPI stacks on real hardware.
In International Symposium on Performance Analysis of Systems and
Software (ISPASS), pages 216–226, 2011.

[27] S. Eyerman and P. Michaud. Defining metrics for multicore throughput
on multiprogrammed workloads. Technical report, Ghent University -
Team ALF, 2013.

[28] FAA. Addressing cache in airborne systems and equipment. accessed:
2019-11-04.

[29] D. Faggioli, F. Checconi, M. Trimarchi, and C. Scordino. An edf
scheduling class for the linux kernel. In Proceedings of the 11th Real-
Time Linux Workshop, pages 1–8. Citeseer, 2009.

[30] H. Feng, E. Li, Y. Chen, and Y. Zhang. Parallelization and characteriza-
tion of sift on multi-core systems. In Workload Characterization, 2008.
IISWC 2008. IEEE International Symposium on, pages 14–23. IEEE,
2008.

[31] Z. Fleischman and C. Sullivan. Optically assisted landing of au-
tonomous unmanned aircraft, May 5 2016. US Patent App. 14/631,520.

[32] X. Fu, K. Kabir, and X. Wang. Cache-aware utilization control for en-
ergy efficiency in multi-core real-time systems. In 2011 23rd Euromicro
Conference on Real-Time Systems, pages 102–111. IEEE, 2011.

147

[33] T. Gleixner. Linux Performance Counter announcement, 2008.

[34] G. Gracioli and A. A. Fröhlich. An experimental evaluation of the cache
partitioning impact on multicore real-time schedulers. In 2013 IEEE
19th International Conference on Embedded and Real-Time Computing
Systems and Applications, pages 72–81. IEEE, 2013.

[35] N. Guan, M. Stigge, W. Yi, and G. Yu. Cache-aware scheduling and
analysis for multicores. In Proceedings of the seventh ACM interna-
tional conference on Embedded software, pages 245–254. ACM, 2009.

[36] S. Han and H.-W. Jin. Full virtualization based arinc 653 partitioning.
In Digital Avionics Systems Conference (DASC), 2011 IEEE/AIAA 30th,
pages 7E1–1. IEEE, 2011.

[37] C. Harris and M. Stephens. A combined corner and edge detector. In
Alvey vision conference, volume 15, pages 10–5244. Citeseer, 1988.

[38] F. Hosseini, A. Fijany, and J. Fontaine. Highly parallel implementation
of harris corner detector on csx simd architecture. In European Confer-
ence on Parallel Processing, pages 137–144. Springer, 2010.

[39] Intel®. Intel® 64 and ia-32 architectures optimization reference man-
ual. https://software.intel.com/en-us/download/.
Accessed: 2019-11-04.

[40] M. Jägemar, A. Ermedahl, and S. Eldh. Decision support for OS process
scheduling based on HW-, OS- and system-level performance counters,
2016.

[41] M. Jägemar, A. Ermedahl, S. Eldh, and M. Behnam. A scheduling
architecture for enforcing quality of service in multi-process systems.
In 2017 22nd IEEE International Conference on Emerging Technologies
and Factory Automation (ETFA), pages 1–8. IEEE, 2017.

[42] M. Jägemar, A. Ermedahl, S. Eldh, and M. Behnam. A Scheduling Ar-
chitecture for Enforcing Quality of Service in Multi-Process Systems. In
Proceedings of Emerging Technologies and Factory Automation. Anal-
ysis, ETFA 2017.

[43] K. Jian, Z. X. Dong, N. Wen-wu, Z. Jun-wei, H. Xiao-ming, Z. Jian-
gang, and X. Lu. A performance isolation algorithm for shared virtu-
alization storage system. In 2009 IEEE International Conference on
Networking, Architecture, and Storage, pages 35–42. IEEE, 2009.

148

https://software.intel.com/en-us/download/

[44] L. Juan and O. Gwun. A comparison of sift, pca-sift and surf. Interna-
tional Journal of Image Processing (IJIP), 3(4):143–152, 2009.

[45] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori. kvm: the
linux virtual machine monitor. In Proceedings of the Linux symposium,
volume 1, pages 225–230. Dttawa, Dntorio, Canada, 2007.

[46] J. Kizka. Jailhouse google groups. accessed: 2019-11-04.

[47] T. Kloda, M. Solieri, R. Mancuso, N. Capodieci, P. Valente, and
M. Bertogna. Deterministic memory hierarchy and virtualization for
modern multi-core embedded systems. In 2019 IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS), pages 1–
14. IEEE, 2019.

[48] M. D. Lam, E. E. Rothberg, and M. E. Wolf. The cache performance
and optimizations of blocked algorithms. In ACM SIGARCH Computer
Architecture News, volume 19, pages 63–74. ACM, 1991.

[49] J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic scheduling algo-
rithm: Exact characterization and average case behavior. In [1989] Pro-
ceedings. Real-Time Systems Symposium, pages 166–171. IEEE, 1989.

[50] S. Leutenegger, M. Chli, and R. Y. Siegwart. Brisk: Binary robust in-
variant scalable keypoints. In Computer Vision (ICCV), 2011 IEEE In-
ternational Conference on, pages 2548–2555. IEEE, 2011.

[51] D. Levinthal. Performance Analysis Guide for Intel ® Core ™ i7 Pro-
cessor and Intel ® Xeon ™ 5500 processors. Intel Cooperation, pages
1–72, 2009.

[52] J. Li, Q. Wang, D. Jayasinghe, J. Park, T. Zhu, and C. Pu. Perfor-
mance overhead among three hypervisors: An experimental study using
hadoop benchmarks. In Big Data (BigData Congress), 2013 IEEE In-
ternational Congress on, pages 9–16. IEEE, 2013.

[53] D. G. Lowe. Distinctive image features from scale-invariant keypoints.
International journal of computer vision, 60(2):91–110, 2004.

[54] R. Maini and H. Aggarwal. Study and comparison of various image
edge detection techniques. International journal of image processing
(IJIP), 3(1):1–11, 2009.

149

[55] D. T. Marr, F. Binns, D. L. Hill, G. Hinton, D. A. Koufaty, J. A. Miller,
and M. Upton. Hyper-threading technology architecture and microar-
chitecture. Intel Technology Journal, 6(1), 2002.

[56] J. Matas, O. Chum, M. Urban, and T. Pajdla. Robust wide-baseline
stereo from maximally stable extremal regions. Image and vision com-
puting, 22(10):761–767, 2004.

[57] J. N. Matthews, W. Hu, M. Hapuarachchi, T. Deshane, D. Dimatos,
G. Hamilton, M. McCabe, and J. Owens. Quantifying the performance
isolation properties of virtualization systems. In Proceedings of the
2007 workshop on Experimental computer science, page 6. ACM, 2007.

[58] A. Mazouz, D. Barthou, et al. Study of variations of native program
execution times on multi-core architectures. In 2010 International Con-
ference on Complex, Intelligent and Software Intensive Systems, pages
919–924. IEEE, 2010.

[59] R. Mehra and R. Verma. Area efficient fpga implementation of sobel
edge detector for image processing applications. International Journal
of Computer Applications, 56(16), 2012.

[60] S. Mittal, Z. Zhang, and Y. Cao. Cashier: A cache energy saving tech-
nique for qos systems. In VLSI Design and 2013 12th International
Conference on Embedded Systems (VLSID), 2013 26th International
Conference on, pages 43–48. IEEE, 2013.

[61] P. J. Mucci, S. Browne, C. Deane, and G. Ho. Papi: A portable interface
to hardware performance counters. In Proceedings of the department of
defense HPCMP users group conference, volume 710, 1999.

[62] L. Nyman and M. Laakso. Notes on the history of fork and join. IEEE
Annals of the History of Computing, 38(3):84–87, 2016.

[63] Open Computer Vision. Common interfaces of Feature detectors.

[64] C. S. Pabla. Completely fair scheduler. Linux Journal, 2009(184):4,
2009.

[65] S. A. Panchamukhi and F. Mueller. Providing task isolation via tlb col-
oring. In Real-Time and Embedded Technology and Applications Sym-
posium (RTAS), 2015 IEEE, pages 3–13. IEEE, 2015.

150

[66] D. Patil, P. Kharat, and A. K. Gupta. Study of performance counters and
profiling tools. In Proceedings of 21st IRF International Conference.,
pages 45–49, 2015.

[67] J. Paul, W. Stechele, M. Kröhnert, T. Asfour, B. Oechslein, C. Erhardt,
J. Schedel, D. Lohmann, and W. Schröder-Preikschat. Resource-aware
harris corner detection based on adaptive pruning. In International Con-
ference on Architecture of Computing Systems, pages 1–12. Springer,
2014.

[68] S. Perarnau, M. Tchiboukdjian, and G. Huard. Controlling cache utiliza-
tion of hpc applications. In Proceedings of the international conference
on Supercomputing, pages 295–304. ACM, 2011.

[69] P. R. Possa, S. A. Mahmoudi, N. Harb, C. Valderrama, and P. Man-
neback. A multi-resolution fpga-based architecture for real-time edge
and corner detection. IEEE Transactions on Computers, 63(10):2376–
2388, 2014.

[70] M. J. Quinn. Parallel programming. TMH CSE, 526, 2003.

[71] H. Raj, R. Nathuji, A. Singh, and P. England. Resource management
for isolation enhanced cloud services. In Proceedings of the 2009 ACM
workshop on Cloud computing security, pages 77–84. ACM, 2009.

[72] N. Rameshan, R. Birke, L. Navarro, V. Vlassov, B. Urgaonkar, G. Ke-
sidis, M. Schmatz, and L. Y. Chen. Profiling memory vulnerability of
big-data applications. In Dependable Systems and Networks Workshop,
2016 46th Annual IEEE/IFIP International Conference on, pages 258–
261. IEEE, 2016.

[73] R. Ramsauer, J. Kiszka, D. Lohmann, and W. Mauerer. Look mum, no
vm exits!(almost). arXiv preprint arXiv:1705.06932, 2017.

[74] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look
once: Unified, real-time object detection. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 779–
788, 2016.

[75] E. Rosten and T. Drummond. Fusing points and lines for high perfor-
mance tracking. In Computer Vision, 2005. ICCV 2005. Tenth IEEE
International Conference on, volume 2, pages 1508–1515. IEEE, 2005.

151

[76] E. Rosten and T. Drummond. Machine learning for high-speed corner
detection. Computer Vision–ECCV 2006, pages 430–443, 2006.

[77] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. Orb: An efficient
alternative to sift or surf. In Computer Vision (ICCV), 2011 IEEE inter-
national conference on, pages 2564–2571. IEEE, 2011.

[78] A. Sandberg, A. Sembrant, E. Hagersten, and D. Black-Schaffer. Mod-
eling performance variation due to cache sharing. In High Perfor-
mance Computer Architecture (HPCA2013), 2013 IEEE 19th Interna-
tional Symposium on, pages 155–166. IEEE, 2013.

[79] V. Sanduja and R. Patial. Sobel edge detection using parallel archi-
tecture based on fpga. International Journal of Applied Information
Systems, 3(4):20–24, 2012.

[80] S. Santos, J. Rufino, T. Schoofs, C. Tatibana, and J. Windsor. A portable
arinc 653 standard interface. In Digital Avionics Systems Conference,
2008. DASC 2008. IEEE/AIAA 27th, pages 1–E. IEEE, 2008.

[81] A. Sembrant, D. Black-Schaffer, and E. Hagersten. Phase behavior in
serial and parallel applications. In 2012 IEEE International Symposium
on Workload Characterization (IISWC), pages 47–58. IEEE, 2012.

[82] J. Shi et al. Good features to track. In Computer Vision and Pattern
Recognition, 1994. Proceedings CVPR’94., 1994 IEEE Computer Soci-
ety Conference on, pages 593–600. IEEE, 1994.

[83] G. Shrivakshan, C. Chandrasekar, et al. A comparison of various edge
detection techniques used in image processing. IJCSI International
Journal of Computer Science Issues, 9(5):272–276, 2012.

[84] S. Siamashka. https://github.com/ssvb/tinymembench. Retrieved Jan-
uary, 2019.

[85] A. Siemens. Jailhouse partitioning hypervisor. Retrieved March, 2016.

[86] V. Sinitsyn. Understanding the jailhouse hypervisor, part 1.
https://lwn.net/Articles/578295/, 2014.

[87] V. Sinitsyn. Get to know jailhouse.
https://www.linuxjournal.com/content/jailhouse, 2015.

152

[88] G. Somani and S. Chaudhary. Application performance isolation in vir-
tualization. In 2009 IEEE International Conference on Cloud Comput-
ing, pages 41–48. IEEE, 2009.

[89] H. Sugano and R. Miyamoto. Parallel implementation of good fea-
ture extraction for tracking on the cell processor with opencv inter-
face. In Intelligent Information Hiding and Multimedia Signal Pro-
cessing, 2009. IIH-MSP’09. Fifth International Conference on, pages
1326–1329. IEEE, 2009.

[90] G. E. Suh, L. Rudolph, and S. Devadas. Dynamic partitioning of shared
cache memory. The Journal of Supercomputing, 28(1):7–26, 2004.

[91] L. Torvalds. Perf tools. accessed: 2019-11-04.

[92] S. Toumassian, R. Werner, and A. Sikora. Performance measurements
for hypervisors on embedded arm processors. In Advances in Com-
puting, Communications and Informatics (ICACCI), 2016 International
Conference on, pages 851–855. IEEE, 2016.

[93] S. H. VanderLeest. Arinc 653 hypervisor. In Digital Avionics Systems
Conference (DASC), 2010 IEEE/AIAA 29th, pages 5–E. IEEE, 2010.

[94] X. Vera, B. Lisper, and J. Xue. Data cache locking for higher program
predictability. In ACM SIGMETRICS Performance Evaluation Review,
volume 31, pages 272–282. ACM, 2003.

[95] W. Wang, P. Mishra, and S. Ranka. Dynamic cache reconfiguration
and partitioning for energy optimization in real-time multi-core sys-
tems. In 2011 48th ACM/EDAC/IEEE Design Automation Conference
(DAC), pages 948–953. IEEE, 2011.

[96] X. Xu, F. Zhou, J. Wan, and Y. Jiang. Quantifying performance proper-
ties of virtual machine. In 2008 International Symposium on Informa-
tion Science and Engineering, volume 1, pages 24–28. IEEE, 2008.

[97] Y. Ye, R. West, Z. Cheng, and Y. Li. Coloris: a dynamic cache partition-
ing system using page coloring. In Parallel Architecture and Compila-
tion Techniques (PACT), 2014 23rd International Conference on, pages
381–392. IEEE, 2014.

[98] H. Yun, R. Mancuso, Z.-P. Wu, and R. Pellizzoni. Palloc: Dram bank-
aware memory allocator for performance isolation on multicore plat-
forms. In Real-Time and Embedded Technology and Applications Sym-
posium (RTAS), 2014 IEEE 20th, pages 155–166. IEEE, 2014.

153

[99] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. Memguard:
Memory bandwidth reservation system for efficient performance isola-
tion in multi-core platforms. In Real-Time and Embedded Technology
and Applications Symposium (RTAS), 2013 IEEE 19th, pages 55–64.
IEEE, 2013.

[100] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. Memory band-
width management for efficient performance isolation in multi-core
platforms. IEEE Transactions on Computers, 65(2):562–576, 2016.

[101] G. Zellweger, D. Lin, and T. Roscoe. So many performance events , so
little time. APSys ’16, 2016.

[102] K. Zeng, N. Wu, L. Wang, and K. K. Yen. Local visual feature detection
and description for non-rigid 3d objects. Advances in Image and Video
Processing, 4(2):01, 2016.

[103] N. Zhang. Computing optimised parallel speeded-up robust features
(p-surf) on multi-core processors. International journal of parallel pro-
gramming, 38(2):138–158, 2010.

[104] Q. Zhang, Y. Chen, Y. Zhang, and Y. Xu. Sift implementation and op-
timization for multi-core systems. In Parallel and Distributed Process-
ing, 2008. IPDPS 2008. IEEE International Symposium on, pages 1–8.
IEEE, 2008.

154

	I Thesis
	Introduction
	Scope of the thesis
	Thesis outline

	Background
	Internal memory subsystem of a computer
	Address management
	Translation lookaside buffer
	Registers
	Cache memories

	Parallel Computation
	Resource sharing
	CPU sharing
	I/O sharing
	Memory sharing

	Performance monitoring unit
	Resource isolation
	Cache coloring - an example of an isolation technique
	Feature detection algorithms

	Research Overview
	Problem formulation
	Research problem
	Research methodology
	Research approach

	Related work
	Resource monitoring
	Software isolation techniques
	Evaluating performance

	Thesis contributions
	Thesis contributions
	Contribution 1 - Identification of shared resource contention
	Contribution 2 - Apply isolation techniques and understand the performance trade-off
	Contribution 3 - Setup and adjustment of isolation techniques

	Summary of papers
	Overview of included papers
	Paper A - Investigating Execution-Characteristics of Feature-Detection Algorithms
	Paper B - Measurement-based evaluation of data-parallelism for OpenCV feature-detection algorithms
	Paper C - Testing Performance-Isolation in Multi-Core Systems
	Paper D - Run-Time Cache-Partition Controller for Multi-Core Systems

	Conclusions & future work

	II Included Papers
	Paper A: Investigating execution-characteristics…
	Introduction
	The FAST algorithm
	Hardware Resource Monitoring

	Related work
	Method
	Opportunities for Parallelism
	Resource Utilization

	Resource usage challenges
	Conclusion

	Paper B: Evaluation of parallel OpenCV…
	Introduction
	Background
	Feature detection
	Parallel programming
	Shared memory

	Approach
	OpenCV feature detection
	Performance Monitoring

	Experiment
	Data partitioned measurements
	Keypoints detected
	Execution time differences
	Execution Characteristics

	Conclusions
	Future work

	Paper C: Testing performance isolation…
	Introduction
	Background
	Jailhouse hypervisor

	Shared resource contention
	utilization
	Internal Memory Contention
	Memory bus contention

	Performance isolation
	CPU isolation test
	[2] isolation test
	Memory bus isolation test

	Conclusion

	Paper D: Controlling cache partitions…
	Introduction
	Background
	Partitioning to avoid LLC contention
	Cache partitioning effect

	Cache partition decision
	Controller implementation

	Experiments
	Point of saturation - Correlation threshold
	Summary of experiments
	LLC-PC evaluation

	Related Work
	Conclusion

