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Abstract— Clinical Electroencephalogram (EEG) Brain-
Computer-Interface (BCI) rehabilitation largely depend on 
reliable information extraction from steadily evolving brain 
features. Non-stationary EEG feature behavior is considered a 
major challenge and a lot of effort has been devoted to 
developing adaptive methods to accommodate for this non-
stationarity. However, learning- and plasticity-related 
mechanisms throughout a BCI intervention are additional 
sources of non-stationarity, that even though expected, we know 
very little about. In this work, we explore the evolution of Motor 
Imagery (MI) information extraction across multiple sessions, in 
two stroke patients, using a fixed and an adaptive Support 
Vector Machine (SVM) model. We show different behavior of 
the fixed SVM model for the two patients, indicating that for one 
patient, relevant MI-related EEG features shifted throughout 
the intervention. This observation calls for further investigations 
to better understand the evolution and shift of features across 
sessions, as well as the impact of using adaptive methods from a 
clinical outcome perspective.  

I. INTRODUCTION 

Session-to-session non-stationarity of EEG signals is a 
well-known phenomenon that can have detrimental 
consequences for BCI applications. To overcome this 
challenge, a lot of effort has been devoted to developing 
machine learning methods that can be automatically adapted 
online to new incoming EEG data, either in a supervised e.g. 
[1]–[3] or in an unsupervised manner e.g. [4]–[6]. Also, so 
called co-adaption has been proposed that, in addition to 
adapting the parameters of the classification algorithm also 
tracks and adaptively reselects input features [7]–[9]. These 
methods have demonstrated successful BCI control for both 
healthy [7], [8] and severely motor-impaired subjects [9]. For 
non-clinical BCI applications, the ultimate goal is to maximize 
real-time BCI control and is, to a large extent, independent of 
the underlying brain features. However, for clinical BCI 
applications, the features driving the feedback need to promote 
clinically meaningful effects. Specifically, in a clinical BCI 
intervention ranging over several sessions, both desired 
changes in the EEG activity, related to learning and plasticity-
related mechanisms [10], [11], and undesired changes, related 
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to for example variations in the daily mental state of the user 
(e.g. attention [12]), recording quality [13], or small changes 
in electrode locations, are expected. To ensure that brain 
features remain meaningful, (co-) adaptive methods must be 
used carefully in clinical BCI interventions. As of yet, research 
on individual variability of session-to-session EEG non-
stationarities is scarce.  

In this work, we explore individual session-to-session 
changes of accuracy and probability score distributions of a 
Support Vector Machine (SVM), trained to classify Motor 
Imagery (MI) of hand movements versus idle in two stroke 
patients during an ongoing MI-BCI intervention.  We 
specifically focus on collected data without any feedback to 
analyze non-stationarities without adding the complexity of 
feedback-induced changes in the EEG activity [14].      

II. EXPERIMENTAL PROCEDURES 

A. Participants 
Two subjects with left-side chronic ischemic stroke 

participated in the study (1 male and 1 female, age 34 and 71 
years). Both had a poststroke duration of >6 months, and 
moderate arm and hand sensorimotor impairment (Fugl-Meyer 
Assessment for the Upper Extremity [15] = 39 and 41 points, 
reflex items excluded) and difficulty opening and closing the 
hand. None of the subjects suffered from neglect. The trial was 
registered at clinicaltrials.gov (NCT03994042) and complied 
with local rules and regulations according to the Swedish 
Ethics Review Committee (dnr. 2019-01577). 

B. Study design 
Both subjects performed a total of 16 sessions each, 

consisting of 3 baseline sessions followed by 12 
NeuroFeedback (NF) sessions of MI NF training and one post-
intervention session identical to the baseline session. During 
baseline sessions, EEG was simultaneously recorded while 
subjects performed a Motor Execution and Imagery (MEI) 
task without any feedback. The NF sessions consisted of two 
phases. First, while simultaneously recording EEG, subjects 
performed a short version of the MEI task without any 
feedback. Second, subjects performed a NF MI task with real-
time continual EEG-driven feedback. The study design is 
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depicted in figure 1A. For the scope of this study, only MEI 
task data from baseline and NF sessions are analyzed here (i.e. 
MEI without feedback), and in particular only MI is of interest 
in this study.  

C. The MEI task 
Seated comfortably in front of a computer screen, subjects 

were instructed to perform both ME and MI of their right hand 
(affected by the stroke) according to a task protocol displayed 
on the screen (detailed in figure 1B). Specifically, we asked 
subjects to open and close their right hand and trials of ME and 
MI were randomly interleaved with idling trials (in which the 
subjects were asked to rest their mind and not think of anything 
in particular). We specifically instructed the subjects to 
perform kinesthetic MI from a 1st person’s perspective.  
Subjects performed a total of 120 trials (60 MI + 60 Idle), 
respectively, during each baseline session. During the NF 
sessions, subjects performed a total of 32 trials (16 MI + 16 
Idle) of the MEI task.  

D. EEG data acquisition 
EEG recordings were carried out using 48 Ag/AgCl active 

electrodes (actiCHamp, Brain Products) positioned according 
to the international 10/10 standard (figure 1C). All impedances 
were kept below 30 kOhm during all sessions. The sampling 
rate was kept at 1 kHz. The reference was placed on the left 
nose wing.  

E. Signal processing and feature extraction 
Signal processing was performed in MATLAB (version 

2019b). Raw EEG signals were first segmented into time 
windows of length 250 ms, and the DC component was 
removed from each segment. A surface Laplacian filter was 
further applied to reveal more localized activity (in-house 
scripts adapted from [16]). Time-frequency power spectral 
features (hereafter referred to as EEG features) were calculated 
using the short-time Fourier transform (windows of 250 ms), 
with linearly spaced frequencies from 2 Hz to 60 Hz. For 
further analyses, each EEG feature was averaged in a time 

window from 500 ms to 3000 ms after task onset. The total 
number of EEG features were 2832 (48 channels ×59 
frequencies). 

F. Classification procedure 
A classification methodology was adopted to study and 

probe EEG features related to MI. Specifically, a Support 
Vector Machine (SVM) using a linear kernel [17] (MATLAB 
Statistics and Machine Learning toolbox) was used to 
discriminate EEG features related to MI (open and close hand 
MI trials were pooled) and idling.  

Two different classification procedures were used to create 
and compare two SVM models; a fixed and an adaptive model. 
The fixed model was created by training an SVM on 131 
randomly selected trials from the baseline sessions. It was then 
tested on data from the MEI task during each NF session 
(N=32). This procedure was run 100 times. The adaptive 
model was created by training an SVM on 100 randomly 
selected trials from the baseline sessions and 31 trials (N-1) 
from the MEI task during one NF session. The model was then 
tested using a Leave-One-Out (LOO) procedure on the MEI 
trials from the same NF session that was included in the 
training (N=32 trials were tested, each trial was tested using a 

 

 
 
Figure 1. Experimental design. (A) The complete intervention consisted of a total of 16 sessions; 3 baseline sessions, 12 NeuroFeedback (NF) sessions and 
one final evaluation session identical to a baseline session. (B) Each session included a Motor Execution and Imagery (MEI) task, opening and closing hand 
movements, without feedback. The MEI task followed a block structure consisting of paired ME and MI tasks. An instruction (visual and auditory) to perform 
either open hand or close hand initiated a block. After 2.5s, the instructions were replaced by a hand in a neutral position, same for all trials. An auditory and 
visual cue marked the onset of a task which lasted for 4-6s. An ME task was always followed by an MI task of the same hand movement. Blocks were 
randomly interleaved with instructions to not do anything (idle) which followed the same trial structure as the ME trials. (C) The EEG electrodes were 
positioned according to the 10/10 standard electrode layout (n=48 channels). 

 
Figure 2. SVM probability score distribution (A) overlap, calculated as 
the difference of the mean score distributions of the two classes (MI and 
idle) and (B) drift, calculated as the mean of both distributions. 
 



  

model trained on data that did not include the test-trial). This 
procedure was run 100 times. For both classification 
procedures, the SVM probability score distributions were 
analyzed in terms of overlap and drift. To calculate the 
overlap, we fitted the score distribution for each class (MI and 
Idle) with Gaussians and calculated the distance between their 
peaks (average(scoreMI)-average(scoreIdle)). The shorter the 
distance, the larger the overlap. To calculate the drift, we fitted 
the score distributions for both classes with one Gaussian and 
calculated the distance from its peak to zero 
(average(scoreMI+Idle)). These measures are illustrated in figure 
2. 

III. RESULTS 

We analyzed SVM accuracy and probability scores using 
two different calibration procedures. First, a fixed SVM 
model, trained on data from the MEI task during the baseline 
sessions, and second, an adaptive model, trained on data from 
the MEI tasks during both the baseline sessions and the current 
NF session.  

A.  Fixed model: overlap and drift of SVM score 
distributions 
First, we wanted to investigate how the fixed model 

managed to generalize to data recorded at different sessions. 
To do this, the SVM accuracy of each NF session was first 
analyzed using the fixed SVM model (figure 3, grey boxes). 
When compared to the SVM accuracy of the baseline sessions 
(figure 3, blue boxes), the variability of the SVM accuracy for 
each NF session increased, for both subjects. This might 
however be a reflection of the larger test-set employed for the 
baseline sessions (229 and 238 vs. 32 test trials). Furthermore, 
we can observe that the two subjects display different accuracy 
behavior. First, subject 1 displays accuracies with some inter-
session variability, mainly varying around 68.2% (st.d. 3.3 %) 
with no long-term trend of either decreasing or increasing as 
the sessions are progressing. On the other hand, subject 2 
displays increasing accuracy during the initial 3 NF sessions 
(BL: 72.4%+/-6.5%, NF session 3: 84.6%+/-12.6%, p<0.01, 
Wilcoxon unpaired test), followed by a gradual session-to-
session decrease in accuracy to 62.8% (+/- 12.5%) on session 
7. A slight increase of classification accuracy can be observed 
for the remaining sessions. Overall, subject 1 show an average 
decrease of classification accuracy across all NF sessions as 
compared to the BL session, while subject 2 shows an average 
increase (subject 1: BL: 75.8% vs. all NF sessions: 68.2%; 
subject 2: BL: 72.4% vs. all NF sessions: 74.3%)    

By analyzing the SVM score probabilities, we can observe 
that a decrease in SVM accuracy could be caused by either an 
overlap in SVM probability score distributions (i.e. score 
difference around zero), a drift of the distributions or a 
combination of both (figure 4). Both subjects displayed score 
differences above zero for all sessions, although for subject 1, 
the score difference co-varied with the classification accuracy 
to a larger extent than for subject 2 (figure 5A; subject 1: 
r=0.70, p=0.01; subject 2: r=0.52, p=0.08, Pearson’s 
correlation).   

 
 
Figure 3. SVM classification accuracy during the MEI task plotted for 
each NF session using either a fixed model (grey) or an adaptive model 
(green). The accuracy during the baseline sessions is depicted by the blue 
box. The lines within boxes show median accuracy across 100 runs and 
the box edges correspond to the 25th and 75th percentiles. Outliers are 
indicated with crosses.     
 

 
Figure 4. SVM probability score distribution (A) difference (i.e. overlap) 
and (B) drift during the MEI task plotted for each NF session using either a 
fixed model (grey) or an adaptive model (green).  The lines within boxes 
show the median value across 100 runs and the box edges correspond to the 
25th and 75th percentiles. Outliers are indicated with crosses.     
 



  

Analyzing the score distribution drift reveals a small 
positive drift for the majority of the sessions of subject 1 while 
rather large negative drift for a limited number of sessions can 
be observed for subject 2 (figure 4B; subject 1: avg. all 
sessions: 0.24 +/- 0.21; subject 2: avg. sessions 5-9: -0.61 +/- 
0.20). In contrast to the score difference, a drift of the score 
distribution correlated with classification accuracy to a higher 
extent for subject 2 as compared to subject 1 (figure 5B; 
subject 1: p=0.07; subject 2: p=0.009, Wilcoxon non-paired 
test). 

B.  Adaptive model to accommodate for both overlap and 
drift of score distributions 
The adaptive model yielded significantly higher SVM 

accuracy across all sessions as compared to the fixed model 
only for subject 2 (figure 3, green boxes; subject 1: 68.2%+/-
3.3.2 vs. 70.5+/-5.4%, p=0.002; subject 2: 74.3%+/-6.3% vs. 
81.4%+/-4.5%, p=0.0005; Wilcoxon paired test).  

By analyzing the score distribution difference and drift, we 
observe a significantly increased difference only for subject 2 
(figure 4A; subject 1: 0.67 +/- 0.15 vs. 0.73 +/- 0.24, p=0.27; 
subject 2: 1.01 +/- 0.18 vs. 1.16 +/- 0.18, p=0.001, Wilcoxon 
paired test). Furthermore, the variability of score difference for 
each session across the 100 runs increased for both subjects 
when applying the adaptive model as compared to the fixed 
model (figure 4A; subject 1: st.d. 0.09 vs. 0.19, p=0.0005; 
subject 2: st.d. 0.11 vs. 0.18, p=0.0005, Wilcoxon paired test). 
Interestingly, the adaptive model reliably produced score 
distribution drifts close to zero (figure 4B; subject 1: 0.04 +/- 
0.06; subject 2: -0.04 +/- 0.06). 

IV. DISCUSSION 

Probing the MI-related EEG features during the baseline 
sessions, by using a fixed SVM model, we observe different 
behavior of the SVM classification for the two stroke patients. 
Specifically, subject 2 displayed large inter-session variability 
of the classification accuracy, having sessions with both 

increased and decreased accuracy as compared to the baseline 
session. In contrast, the SVM accuracy of subject 1 decreased 
during the majority of the NF sessions as compared to the 
baseline session. However, it still appears to oscillate around a 
common mean accuracy. This behavior of subject 1 suggests 
that there are relatively small day-to-day changes in the EEG 
activity, possibly attention-related [12], but that the overall 
contribution of the features was not changing. From previous 
literature, this behavior is what one would expect from using a 
fixed model. In a recent report from an MI-BCI rehabilitation 
clinical trial with stroke patients, using a fixed Machine 
Learning (ML) model to control robotic online feedback, the 
ML accuracy varied around approximately 70% as the 
sessions progressed [18]. However, accuracy behavior as a 
function of sessions for individual subjects were not reported. 
We show that the SVM accuracy of subject 2 dropped steadily 
through NF sessions 5 to 7 and remained low for sessions 8 
and 9. These results suggest that there might have been 
changes in the MI-related features, or alternatively subject 2 
failed to perform MI. By investigating the class-wise 
probability score distributions, we can gain insight into the 
cause of the misclassifications. Specifically, NF sessions 5-9 
of subject 2 show major drift in the distributions, forcing the 
SVM to select only one class. For some of these NF sessions 
the score difference was rather low, suggesting that the EEG 
features relevant for the fixed model could not be 
distinguished efficiently between MI and idle.  

By analyzing the results from using the adaptive SVM, 
trained on data from the baseline and the current NF session, 
we show substantially increased SVM accuracy, for a majority 
of the sessions of subject 2, but not for subject 1. It has been 
previously shown that even simple adaptive methods can 
outperform static ones [2], [18], [19], and especially, adding 
data from the current session to update a ML model has been 
shown superior to adding all available data [2]. Judging from 
the score distribution drift, we show that the adaptive model 
efficiently removed any drift of the score distribution for each 
session. However, since subject 1 displayed less drift overall, 
this suggests that the impact of the adaptive model might have 
been reduced leading to less improvement in classification 
accuracy. 

The interpretation that we make in terms of why the SVM 
accuracy dropped for some of the sessions of subject 2, is that 
the MI-relevant EEG features must have predominantly 
shifted towards other features, since the adaptive model was 
able to extract MI information (both by reducing score drift 
and increasing score difference) even when the fixed model 
performed poorly. We thus describe two fundamentally 
different non-stationarities in the EEG data, displayed by the 
two subjects. It has been previously described that even within 
a single session of training with MI feedback, controlled by 
using a co-adaptive approach, task-relevant features change 
both in space and frequency throughout the session [7], [8]. 
However, employing adaptive methods online in clinical MI-
BCI training may have different impact for different subjects. 
From the observations in this work with stroke patients, 
subject 1 will likely train more similar EEG features 
throughout the intervention, while subject 2 is more likely to 
train different EEG features throughout the intervention. Even 
though the analyses in this work were performed on data 
collected during a MEI task without feedback, it was collected 

 
Figure 5. (A) The linear correlation between SVM accuracy and score 
distribution difference (i.e. overlap) across sessions for subject 1 (left) and 
subject 2 (right). r corresponds to the Pearson correlation coefficient and 
p to its corresponding significance value. (B) SVM accuracy plotted for 
small (≤0.2) and large (>0.2) score distribution drifts. Significance values 
(p) are calculated using the Wilcoxon ranksum test. 
 



  

during an ongoing MI BCI-based intervention. As such, a 
successful intervention would be expected to, in some way 
alter the MI-related feature activity, the question is to what 
extent? To answer this question, we need to understand the 
neurological underpinnings and behavioral impact of feature 
shift during BCI training. 

V. CONCLUSION 

For both subjects, the adaptive SVM clearly demonstrated 
its ability to account for non-stationarities by substantially 
reducing any drift of the SVM score distributions. However, 
the adaptive model only improved the classification accuracy 
of subject 2. As this subject displayed large inter-session 
variability of the fixed model classification accuracy, enabling 
the adaptive model to additionally increase score differences, 
we believe this led to an enhanced ability to discriminate EEG 
data related to MI versus idle. Due to these individual 
differences in EEG non-stationarities across sessions, simply 
applying the adaptive approach in clinical BCI training after 
stroke to increase classification accuracy might not be optimal 
from a rehabilitation perspective. Future research must be 
devoted to developing adaptive methods to deal with undesired 
non-stationarity while identifying and taking advantage of 
desired changes in the EEG signals related to learning.   
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