
D1.3 State of the art report

Contract number: 957212

Project acronym: VeriDevOps

Project title: Automated Protection and Prevention to Meet Security Requirements in
DevOps Environments

Delivery Date: 31/03/2021

Coordinator: ABO

Partners contributed: All

Release Date: 31.3.2021

Version: 01

Revision: 01 (IKER, MI)

Abstract: This deliverable will update the state-of-the art wrt to new approaches and
technologies that appeared since the project proposal was submitted.

Status: • PU (Public)

D1.3 State of the art report

Table of Contents

Table of Contents 2

List of Acronyms 4

 Executive Abstract 7

 Introduction 7

Automated Generation of Formal Security Requirements 8

 Context and Motivation 8

Key NLP Methods 11

 NLP Models Evaluation Process 12

 NLP Methods and Models 12

Statistical and Classical Machine Learning Methods 13

Deep Learning and Transfer Learning Methods 15

Specification Analysis Approaches 17

 Datasets for Security Req 18

 PROMISE NFR Dataset 19

 SecReq Dataset 19

 PURE Dataset 19

 OSS projects: Apache Axis2/Java (Axis2), Drools, and GeoServer 20

 15 requirements specifications developed as term projects by MS students at DePaul University
20

 Customer requirements for an integrated engineering toolset (IET) under development at
Siemens Logistics and Automation plant 20

SRS Concordia corpus 20

Formal Patterns for Requirements Specification 20

Security requirements and verification patterns in literature 21

Analysis of findings 24

Ready-to-use catalogs of patterns 25

Integrating security requirement patterns into the SDLC 26

Gap Analysis 26

Reactive Protection at Operations 28

 Vulnerability scanning 30

 Signature-based intrusion detection 32

Snort 34

Suricata 34

Zeek 34

VeriDevOps Project nr: 957212 Page 2

D1.3 State of the art report

 Runtime monitoring and detection using Search-based testing 34

 ML/AI based anomaly detection 36

 Root-cause analysis 38

 Reaction – remediation 41

 Gap Analysis 42

Prevention at Development 44

 Formal analysis and verification for security 44

Security Testing 46

Security Testing Techniques 47

 Model-based Security Testing 48

 Penetration Testing 50

 Mutation and fuzz testing approaches 53

Functional Mutation 53

Fuzz testing 53

 Search-based Security Testing at Design and Development 56

Localization and debugging 58

Continuous integration and security 59

Gap Analysis 60

 Summary 62

References 64

VeriDevOps Project nr: 957212 Page 3

D1.3 State of the art report

List of Acronyms

A&T Analysis and testing

AIDS Anomaly-based Intrusion Detection Systems

BERT Bidirectional Encoder Representations from Transformers

CAPEC Common Attack Pattern Enumeration and Classification

CASE Computer-Aided Software Engineering

CERT Community Emergency Response Team

CI Continuous Integration

CICD Continuous Integration and Continuous Delivery

CID CVE ID Detector

CiRM Security Commits Regression Model

CMDB Configuration Management Database

CNN Convolutional Neural Networks

COTS Commercial Off-The-Shelf

CPE Common Platform Enumeration

CPN Customer Premises Network

CRM Comment Complexity Regression Model

CSP Communicating Sequential Processes

CVE Common Vulnerability and Exposure

CVSS Common Vulnerability Scoring System

DDoS Distributed Denial of Service

DevOps Software Development and IT Operations

DoS Denial of Service

DT Decision Tree

ECJ Java-based Evolutionary Computation

ePurse Common Electronic Purse

GA Genetic Algorithm

GP Genetic Programming

GPS Global Platform Specification

HIDS Host Intrusion Detections System

HLPSL High-Level Security Protocol Language

HMI Human Machine Interface

ICS Industrial Control Systems

VeriDevOps Project nr: 957212 Page 4

D1.3 State of the art report

ICT Information and Communication Technology

IDPS Intrusion Detection and Prevention Systems

IDS Intrusion Detection System

IHDS Intelligent Harvesting Decision System

IoT Internet-of-Things

IPC Information Processing Component

ISMS Information security Management System

IT Information Technology

LDA Linear Discriminant Analysis

LR Logistic Regression

MBST Model-based Security Testing

MBT Model-Based Testing

MIT Massachusetts Institute of Technology

ML Machine Learning

NBC Naive Bayes Classifier

NFR Non-Functional Requirements

NFR-C NFR classifier

NIDS Network Intrusion Detection System

NIST National Institute of Standards and Technology

NL Natural Language

NLP Natural Language Processing

NVD National Vulnerability Database

OISF Open Information Security Foundation

OSS Open Source Software

OT Operational Technology

OWASP Open Web Application Security Project

PenTest Penetration Testing

PLC Programmable Logic Controller

POS Part of Speech

PSO Particle Swarm Optimization

PUTs Parameterized Unit Tests

QoS Quality of Service

RBAC Role-Based Access Control

RCA Root Cause Analysis

RE Requirements Engineering

VeriDevOps Project nr: 957212 Page 5

D1.3 State of the art report

ROI Return On Investment

SAMM Software Assurance Maturity Model

SAT Boolean Satisfiability

SBSE Search-based Software Engineering

SBST Search-based Security Testing

SCADA Supervisory Control And Data Acquisition

SCAP Security Content Automation Protocol

SDL Security Development Lifecycle

SET Social Engineering Toolkit

SLA Service Level Agreement

SMT Satisfiability Modulo Theories

SOAP Simple Object Access Protocol

SOORs Seamless Object-Oriented Requirements

SRM Stakeholder Complexity Regression Model

SUT System Under Test

THOE The Threat Oracle Engine Tool

UML Unified Modelling Language

URM Security URLs Regression Model

V&V Verification and Validation

VAPT Vulnerability Assessment and Penetration Testing

VM Vulnerability Management

XSS Cross-Site Scripting

VeriDevOps Project nr: 957212 Page 6

D1.3 State of the art report

 Executive Abstract

This deliverable provides an overview of the state-of-the-art related to methods and tools for

automated generation of security requirements, prevention at development and reactive protection at

operations. The overview builds upon and extends the ambition described in the Full Project Proposal.

In addition, it identifies needs for improvement from the surveyed literature and highlights the

directions on which the innovation activities of the VeriDevOps project will focus on. For brevity, the

deliverable does not explicitly include the work performed in other similar European research projects,

but the results of such projects are discussed via their published research papers and datasets. This

deliverable will provide input for all the other technical work packages in the project and enhance the

innovation of the project’s exploitable key results.

1. Introduction

The VeriDevOps project assumes a DevOps development process, starting from the initial security

requirements of the system under test, ensuring preventive security at development and last but not

least providing reactive protection at operations. Therefore, the current deliverable D1.3 is divided in

three corresponding parts:

- the automated generation of formal security requirements section, in which we discuss the use

of natural-language processing for security requirements, datasets for security requirements

and formal patterns for security requirements specification.

- the reactive protection at operations section, in which we address overview techniques for

vulnerability scanning, signature-based intrusion detection, runtime monitoring and detection

using search-based testing, anomaly detection based on machine learning and root-cause

analysis. We complement the above with proposed methods for remediation.

- the prevention at development section, where we describe techniques used to enforce security

aspects at development. For instance, we overview techniques for formal analysis and

verification for security, security testing methods (model-based security testing, penetration

testing, mutation and fuzz testing approaches, and search-based security testing), localization

and debugging techniques, and the integration of security and software development life cycle.

Each of the above sections is concluded with an analysis of research gaps towards industrial needs and

suggestions on which of those needs will be addressed in the VeriDevOps project.

The works discussed in this deliverable do not include review of deliverables of other projects

related to VeriDevOps. Instead, we have attempted to identify academic publications in which the

results of such projects have been disseminated.

VeriDevOps Project nr: 957212 Page 7

D1.3 State of the art report

2. Automated Generation of Formal Security

Requirements

2.1. Context and Motivation

We would like to start this section by laying down the terminology and presenting the context of

Requirements Engineering.

Requirements Engineering (RE) is a crucial element in software development to meet customers’

expectations for a software product that should be delivered on time and within a budget. Practically,

RE enables capturing users’ needs for the system to be developed by transferring these needs into

precise and clear statements that will be the basis for design, development and validation [1].

An important part of developing any system is ensuring a required level of security. Security needs

are usually associated with some resources or assets involved in a system that stakeholders naturally

want to protect from any harm. In particular, assets are considered as all the information resources

that are stored or accessed by the system or physical resources such as computers. In some cases,

assets may consist of other assets, e.g. system backups are a good example. Despite that empirical

evidence is not fully convincing, it appears that appropriate security requirements would have a

positive impact on system security as sufficient general requirements would have on system

development success.

In order to integrate security within requirement engineering, we usually have to consider

separately security requirements [2]. Specialised research showed that early analysis of security

requirements can be beneficial in the context of software development as this may enable cost

reductions in the area of 12-21% [3]. Usually, security requirements are processed as functional

requirements that can considerably influence system architecture. In practice, this requires specific

security expertise. Nowadays, security requirements are handled by specially trained people,

independently from other requirements. This does not map well to the reality in which the systemic

concerns are tightly connected (e.g., we cannot discuss security in isolation from safety). With the

invention of DevSecOps, the situation is starting to change. In the same way as DevOps has unified the

two formerly distinct silos, development and operations, DevSecOps is supposed to break the security

silo and merge it into DevOps. The resulting process will guarantee security-by-design, but it calls for

advanced tool support that is only starting to emerge now. The whole process of manual identification

or extraction of security-related requirements from an entire requirements specification is very

complex and error-prone, causing the need for automatic analysis. This is associated with several

practical challenges.

Firstly, there is no exact definition for security requirements, since different people may interpret

security requirements in various ways. In practice, different industry subjects - organizations define

security requirements based on their own conventions and templates. Secondly, the intrinsic ambiguity

of natural language makes it even more complicated to identify security requirements. Primarily,

various people may use different syntax and terms to define or describe security requirements [4] [5].

VeriDevOps Project nr: 957212 Page 8

https://paperpile.com/c/bpkysA/X030
https://paperpile.com/c/bpkysA/a8En
https://paperpile.com/c/bpkysA/PGWa
https://paperpile.com/c/bpkysA/ec60
https://paperpile.com/c/bpkysA/reRh

D1.3 State of the art report

The main point is that security cannot be considered as just a quality requirement, as it is difficult

to answer whether a problem is security-related or not. Usually, stakeholders do not tolerate any kind

of risk. The main task of security requirement engineering is to identify, and document requirements

for developing secure software systems. The identification of security requirements heavily depends

upon the context of the system and the analyst’s assumptions. These assumptions can be explicit or

implicit and relate to expectations over the system or environment behavior with a significant impact

on the security of a system. Considering the framework of security, its goals and assumptions, one can

define security requirements as constraints on the functions of the system, where these constraints

define one or more security goals. In other words, security requirements ensure security goals by

constraining the system’s functional requirements. Security requirements, like functional requirements,

are prescriptive, providing a specification to achieve the desired effect [6].

Based on these goals we conclude that we want to minimize chances for any threat or potential

attack aimed at our assets. We consider assets as something that is valuable to an organization (e.g.

resources, data) and typically is the main concern of security requirements. Practically, a security

property determines a security characteristic (e.g. confidentiality, availability) that indicates a security

objective that a requirement intends to achieve. A threat is a risk that a swindler may potentially

exploit a vulnerability to attack the system, harming assets or their respective security properties. In

this context, a countermeasure is considered as a solution that should address security requirements. A

countermeasure fundamentally combines security constraints that must hold in the developed system,

and the particular security mechanisms that are supposed to guarantee these constraints. A constraint

may take the form of either a restriction on the system, assurance of some specific properties,

permission to do certain actions, or regulation to comply with the established norms of the society

where the system will be used. Thus, we can define security requirements as a substantial concept that

is connected through specific relations (Fig. 1). Each concept shows some perspective of the security

requirements and implies a possible way of defining the concept accordingly [4].

In order to follow this structure and achieve initial goals, we must somehow determine whether

those requirements have been satisfied. This is difficult for quality requirements in general while

security requirements present additional challenges [6]. An important element of requirements

engineering is associated with the role of natural language (NL). Despite that there is no proof that

natural language is the best option, multiple evidence shows that it is the most common way of

expressing requirements in industry practice. The dominance in describing and specifying software and

system requirements in natural language was also confirmed by recent research [7]. Therefore, based

on the past and current empirical evidence, we can safely assume that NL will continue to serve as the

common way of expression for requirements in the future as well [8]. Conceptually, that implies that

solutions should deal with problems like lexical, syntactic and pragmatic problems that natural

language poses for requirements engineering. It is stated that the biggest problem is ambiguous

semantics, which remains a common challenge for practitioners arguing that the source of trouble is

the information from which the requirements must be formulated [9]. Consequently, computer-aided

software engineering for processing natural language looks promising in the context of requirements

analysis [8].

VeriDevOps Project nr: 957212 Page 9

https://paperpile.com/c/bpkysA/SfMG
https://paperpile.com/c/bpkysA/ec60
https://paperpile.com/c/bpkysA/SfMG
https://paperpile.com/c/bpkysA/3ewW
https://paperpile.com/c/bpkysA/stCA
https://paperpile.com/c/bpkysA/LpJJ
https://paperpile.com/c/bpkysA/stCA

D1.3 State of the art report

Figure 1: A conceptual model for security requirements, adapted from [4]

Applying Natural Language Processing (NLP) techniques that are very well suited for

comprehensive linguistic analysis seems natural in the context of the engineering approach that

suggests using linguistic tools to narrate descriptions of user requirements. NLP is a field that addresses

various approaches in which computers can deal with natural, that is, human language. Usually, NLP

deals with techniques for analyzing, representing naturally-occurring texts for the purpose of achieving

human-like language processing for a range of tasks or applications [10] [11]. This has led to the

emergence of a separate field of applying NLP to support requirement engineering processes as well as

various tasks at different RE phases [12]. Dealing with the inputs to the RE process is a complicated

task, as it requires analyzing a wide variety of documents. Such documents might include different

artifacts like interview transcripts, codes of practice, standards, legislation, etc. In practice, the

methods for RE automation greatly differ depending on the stage of RE they are applied at. To illustrate

the difference, at later stages, such as requirements validation, the methods deal mainly with

VeriDevOps Project nr: 957212 Page 10

https://paperpile.com/c/bpkysA/ec60
https://paperpile.com/c/bpkysA/dAY1
https://paperpile.com/c/bpkysA/aT7b
https://paperpile.com/c/bpkysA/Nutl

D1.3 State of the art report

documents that are products of the RE process, whereas at early stages the methods typically process

raw information [9]. By applying those methods, the engineers intend to solve different kinds of tasks

like detecting language issues, identifying key domain concepts and establishing traceability links

among requirements, etc. However, when we split the developed NLP solutions by problem that they

solve, they are mainly focused on detection, classification, clustering, patterns extraction and modeling

[12]. Those instruments are intended to increase analysts’ productivity when working with

requirements.

Having requirements expressed in natural language is not enough to implement these

requirements and verify the implementation against them. Formalization of security requirements is

necessary to rigorously validate and verify candidate designs and implementations against

requirements.

2.1.1. Key NLP Methods

Let us outline the key method categories. Classification task in machine learning (ML) is usually

associated with predicting a categorical class [13]. As for the context of RE, this task aims at classifying

different categories of requirements. For example, we can classify requirements based on their

functional category or based on their quality category, to identify non-functional requirements that

may be hidden within functional ones. Another example is applying classification to users’ feedback in

order to identify new requirements referring to specific features of interest possibly including

sentiment analysis. Extraction generally tries to retrieve some specific single or multi-word terms from

requirement texts for domain or project glossaries, as requirements usually contain complex terms that

are not commonly used. Those extracted glossaries may be further applied for other problems

including consistency checking, classification, modeling or product comparison. Clustering or cluster

analysis, as its name suggests, is focused on organizing data, in our case, documents into some

cohesive subsets or clusters. Methods are focused on organizing the data into meaningful and useful

information. Detection typically deals with ambiguities in requirements to make them clearer and

unequivocal. The range of problems may include detection of different lexical issues from the

debatable usage of grammatical rules, to the occurrence of vague phrases (e.g., after some time), weak

verbs (e.g., may, might), and the appearance of syntactic ambiguities. In addition, some specific tasks

such as following predefined templates and recognizing equivalent requirements can also be included

in this task, as the main goal is still to maintain correctness to requirements texts. Modeling relates to

the extraction task, but with some additional usage of extracted data like generation of Unified

Modeling Language (UML) models to support analysis, design, feature synthesis in product-line

engineering, generation of models for early requirements and generation of software tests to maintain

a necessary security level [12].

In addition to the above-mentioned generic problems that NLP solves for requirement

engineering, one can outline several approaches that are entirely focused on the security context.

Despite the lack of studies in this area, we can highlight initial progress in developing and

implementing such systems. Security risks can be analyzed through different perspectives that will

define a practical context of the problem. Vulnerability detection is focused on identifying vulnerable

VeriDevOps Project nr: 957212 Page 11

https://paperpile.com/c/bpkysA/LpJJ
https://paperpile.com/c/bpkysA/Nutl
https://paperpile.com/c/bpkysA/Ah5Y
https://paperpile.com/c/bpkysA/Nutl

D1.3 State of the art report

software components prior to deployment, either by statically analyzing software code, or by

executing security testing tools on a running instance of the software. The approach concentrates on

applying NLP techniques to code to prevent or identify various vulnerabilities in the code. Vulnerability

repair tries to transform a vulnerable code into a non-vulnerable code by learning from a set of source

examples. Millions of lines of legacy code are analyzed to identify the ways to improve security. When a

new class of vulnerability is found, the training dataset for patches and fixes is quickly updated. This is

intended for creating an automated system that can clean code with certain types of vulnerabilities

that would allow it to efficiently treat large software repositories. Finally, specification analysis

assumes that we can deal with security risks in products before the code is even written. Recent

advances in NLP have provided expert methods to automatically process vulnerability descriptions or

product specifications to assess security risks. Instead of code, we can apply such methods to

requirement documents and textual vulnerability descriptions in this paradigm to ensure a required

security level for the developed software [14]. Our main interest is associated with this security

perspective.

2.1.2. NLP Models Evaluation Process

As it was shown previously, we deal with various methods for applying NLP to analysis of security

requirements. However, practically each method is focused on a specific aspect of processing security

requirements. The process of applying these methods includes several phases such as training phase,

validation phase and testing phase. On the first stage, methods based on ML principles require training

using input datasets to adjust parameters of a model. During this process training errors are measured

to know how well the model is fit to the data. Still, we want to know how well a model learns from the

data to predict unseen data and this is where the testing phase comes for [15]. Practically, we could

hold some part of the data as a testing set to use it for a performance calculation. However, sometimes

it is not possible due to scarcity of data. One way to address this problem is to apply K-fold

cross-validation, which uses part of available data to feed the model, and a different part to test it [13].

Consequently, we can use each part for training and then for testing phases to calculate an average for

a specific measure. The last principle is very common in the area of Natural Language Processing for

Requirements Engineering (NLP4RE). This research mainly consists of studies that are focused on the

classification problem. Classification performance itself is being measured by such metrics as accuracy,

precision, recall and F1-score. Accuracy is defined as a ratio between correctly classified samples to the

total number of data samples, precision shows the proportion of positive samples that were correctly

classified to the total number of positive samples, recall represents positive correctly classified samples

to the total number of positive samples. To summarize overall performance, F-measure (e.g. F1-score)

is applied, which represents the harmonic mean of precision and recall accordingly [15].

2.2. NLP Methods and Models

Each type of task for applying NLP to security requirements that were mentioned in the previous

section refers to certain models and methods that we will consider below. This outline covers a

discussion of methods for classification, extraction as well as advanced architectures for the methods

VeriDevOps Project nr: 957212 Page 12

https://paperpile.com/c/bpkysA/dmAC
https://paperpile.com/c/bpkysA/PywH
https://paperpile.com/c/bpkysA/Ah5Y
https://paperpile.com/c/bpkysA/PywH

D1.3 State of the art report

based on transfer learning. This section is divided into three parts that separately cover statistical and

basic ML approaches, deep learning and transfer learning, as well as methods for dealing with security

risks through specification analysis.

2.2.1. Statistical and Classical Machine Learning Methods

NLP addresses several practical problems in the area of Requirements Engineering. To start, let us

consider the problem of distinguishing functional requirements from non-functional ones. Abad et al.

[16] propose text preprocessing as the main tool of dealing with that task. To address the

generalization problem for the input requirements texts, they proposed to preprocess the texts and

replace all context-based names related to products and users with general keywords, such as

’PRODUCT’ and ’USER’, respectively. Then they apply the Part-Of-Speech (POS) tagger of the Stanford

Parser [17] to assign parts of speech to each word in each requirement. In the next step, they extract

some trivial features including number of adjectives, number of adverbs and number of cardinals, as

well as specific metrics, such as number of degree adjectives to adverbs. In addition, for each feature,

they define its rank based on the probability of its occurrence in the requirements. The final feature list

for the processed dataset consists of the following nine features: number of cardinals, adverbs,

adjectives, modal words, determiners, verbs, prepositions, singular nouns, and plural nouns. In [16] the

authors compare results of six different algorithms and use a simple decision classifier to achieve an

extra 4.5% accuracy of classifying functional and non-functional requirements. This effect becomes

even more visible for classifying groups of requirements. Abad et al. insist that Binarized Naive Bayes

works best for classifying non-functional requirements.

Another example of NLP application to Requirements Engineering is identifying critical features in

specifications. Boutkova et al. [18] propose a lexical analysis-based technique that could help automate

the identification of features in specifications. They propose to extract features in a semi-supervised

fashion by applying certain Part-of-Speech (POS) tagging approaches. The whole process is divided into

several steps. At the first step, the user chooses the specification in which the features must be found.

At the second step, requirements from the chosen specification get decomposed into individual words,

and only nouns are left; this step requires lemmatization of each word. At the final step, the user

should evaluate the candidate’s list and choose features for the feature model. The main problem is

that the experiments were conducted for German – a morphologically complex language. This

approach generates a lot of false positives that need further analysis.

It is possible to improve the performance by combining different NLP developments from different

disciplines. Malhotra et al. [19] proposed an approach combining NLP, ML, and graph analysis. This

approach identifies appropriate narrative structures that may underlie the security requirements of

industry standards and publicly available software documents. First, the authors of [19] apply text

processing that includes tokenization, sentence splitting, POS tagging, morphological analysis, noun

phrase chunking. Then they create an ontology to define connections between words, phrases, and

concepts. They construct features from key narrative structures - phrases, such as ’user must register’,

’user must contain a password’, ’password must have complexity’ using a special tool called Protégé

[20]. Subsequently, each of these processing structures is used to determine the relationships among

VeriDevOps Project nr: 957212 Page 13

https://paperpile.com/c/bpkysA/POOk
https://paperpile.com/c/bpkysA/rBYa
https://paperpile.com/c/bpkysA/POOk
https://paperpile.com/c/bpkysA/3h0X
https://paperpile.com/c/bpkysA/Xu8s
https://paperpile.com/c/bpkysA/Xu8s
https://paperpile.com/c/bpkysA/k4ih

D1.3 State of the art report

features such as “encryption” or “authentication”. After, it is checked whether the requirement

sentence is found among gold standard requirements. That way it is determined whether an

organization follows those standards.

The idea of checking whether security requirements conform to specific standards was also

presented in Hayrapetian et al. [21]. This study might be considered as an advancement of the previous

study, focusing on empirically evaluating the conformance of security requirements to specific

standards like ISO and OWASP. The main goal was to assess completeness and ambiguity by creating a

bridge between the requirement documents and their compliance with standards. For this purpose,

they proposed a unique two-stage architecture. Initially, every statement within a standard is evaluated

against every statement within a test document. To maintain the robustness of an entailment

assessment, they proposed nine different configurations and digested each pair through those

components. Each configuration consisted of the Linguistic Analysis Pipeline and Entailment Decision

Algorithms from Excitement Open Platform [22]. The entailment decision and confidence results from

each transaction were collected along with other data about the transaction, such as the statements

involved, entailment configuration used, processing type (e.g. parallel), and the time duration of the

comparison. These annotations were used as features during the neural network model training phase

to design a classifier to further determine whether the entailment results for a statement pair indicate

a “complete”, “ambiguous”, or “none” match, with respect to the corresponding semantic meaning.

This approach allowed us to achieve 0.79 in terms of F1 score (F1 = TP / (TP + 0.5 * (FP + FN)), where TP

stands for “true positives”, FP -- “false positives”, and FN -- for “false negatives”).

One of the main challenges on the way of making all-purpose NLP methods is the problem of

generalization of a model to be applied to several domains. Li et al. [4] present the idea of creating a

model that could generalize security requirements extraction for all domains. They stated that the main

source of good detection lies on a good theoretical basis and tried to construct ontology specifically for

security requirements. They defined a set of linguistic rules and security keywords that are normally

used to describe security requirements and used them to train classifiers applying classical ML

algorithms. They proposed a specific approach that involves a two-level preprocessing with a

conceptual layer and linguistic layer. The process of matching the linguistic features consists of three

steps: generate parse trees, keyword matching and linguistic rule matching. Each step is explained in

detail as a part of text processing to a feature vector. They decided to compare different algorithms like

Decision Tree (DT), Naive Bayes Classifier (NBC) and Logistic Regression (LR) using six different datasets.

Results showed that Precision/Recall differs among datasets. Only DT and LR showed promising

characteristics. In particular, the average F1 score of all classifiers trained with DT was approximately

0.77. For the case of classifying security requirements from different domains, when training data was

used from one document set and the test data from the other, this approach showed 0.75 in precision

and 0.58 in recall. The authors argued that their approach behaves significantly better than the existing

approach and potentially can give promising results. They also argued that the main challenge was that

different people, including security experts, can have various diverse definitions of security

requirements.

Another example of dealing with the generalization problem is the work by Wang et al. [23]. They

address aspects of generalization from a different perspective such as creating all-domain classifiers.

VeriDevOps Project nr: 957212 Page 14

https://paperpile.com/c/bpkysA/C3J2
https://paperpile.com/c/bpkysA/7ulo
https://paperpile.com/c/bpkysA/ec60
https://paperpile.com/c/bpkysA/0mGr

D1.3 State of the art report

The authors developed methods for extracting security requirements for open source projects (OSS).

They stated that previously proposed approaches were unsuitable for this kind of project due to their

specifics. Notably, requirement specifications in OSS projects are usually organized by functionality,

with non-functional (NFR) requirements scattered widely across multiple documents. Hereby there is

no exact boundary to distinguish between FRs and NFRs. Moreover, the requirements stored in issue

tracking systems are unstructured and seldom obey grammar and punctuation rules. The authors

proposed to rely not on the text, but on different external resources. To define features, they applied a

stack of several sources that then were used as an input for a linear classifier based on Linear

Discriminant Analysis (LDA). Initially, each requirement is processed by an Information Processing

Component (IPC) to obtain so-called metrics. Metrics are information about a requirement extracted

by IPC, which includes complexity and external resources. Complexity is extracted from comments of

the project assuming that higher intensity of discussion might be associated with vulnerabilities. In its

turn, external resources are the links and other references provided by stakeholders where they discuss

the rationale for refinements and explain their solutions. Subsequently, this information is digested

directly by four regression models: Comment Complexity Regression Model (CRM), Stakeholder

Complexity Regression Model (SRM), Security URLs Regression Model (URM), Security Commits

Regression Model (CiRM) In addition, the authors apply NFR classifier (NFR-C) and CVE ID Detector

(CID). Each regression model generates a weight between 0-1 for each requirement that signifies the

likelihood of whether this requirement is a security requirement. In order to summarize weights from

NFR-C, CID, and all RMs, the authors applied a linear discriminant function in a binary setting that

indicates whether a requirement is a security one or not. They were able to achieve F1 scores of 0.83,

0.88, 0.81 for Axis2, Drools, GeoServer projects respectively, which looks promising given the relative

simplicity of the proposed approach.

In 2017, the RE Data Challenge event was conducted in relation to the problem of requirements

extraction and classification. This event produced a set of NLP4RE studies. Kurtanovic et al. [24] used

the dataset from the challenge [25] to solve the problem of binary classification for functional (FR) and

nonfunctional (NFR) requirements. Simply, they transformed a multiclass dataset into a binary case.

Unlike previous papers, the authors did make a research of an effect from applying only word features

and automatically chosen features on binary and multiclass classification. The whole approach is based

in the Support Vector Machines. As a result, they achieved an F1-score of 0.92 for binary cases

classifying FR and NFR. As for classifying security requirements in a binary case, the effect was a bit

worse. If applying only words features, F1-score was about 0.88 and 0.74 with applying all kinds of

features. They found that POS tags are among the most informative features, with cardinal number

being the best single feature. As an additional aspect, authors argued that only word features provide

higher recall for classifying NFRs than employing additional syntax and meta-data features, but lower

precision accordingly.

2.2.2. Deep Learning and Transfer Learning Methods

Deep learning and transfer learning are the most recent areas in NLP. Deep Learning is assumed as a

sub-area of neural networks in ML and is popular for vision-based classification and NLP tasks. Deep

VeriDevOps Project nr: 957212 Page 15

https://paperpile.com/c/bpkysA/do39
https://paperpile.com/c/bpkysA/r7ZC

D1.3 State of the art report

Learning is based on the representation-learning methods obtained by applying non-linear modules

that transform a representation at one level into a higher, more abstract level [26]. Zhang and Wallace

[34] proposed a convolutional neural network [27] for the purpose of sentence classification. They

provided a simple method that is based on Word2Vec representations [28] of each word by applying a

set of consecutive convolution filters. Specifically, the process starts with tokenized sentences which

are converted to a sentence matrix, the rows of which are word representations. By this approach

authors achieved significant accuracy improvements compared with a baseline on all datasets. A

similar approach was applied to the context of requirements classification. Winkler et al. [29] applied

the same principle to the DOORS requirements database. Specifically, they applied it for the binary

classification task to differentiate requirements from information sentences. This approach was able to

classify requirements with a precision of 0.73 and a recall of 0.89 and information with a precision of

0.90 and a recall of 0.75 accordingly. The authors argued that performance could be improved by

increasing the amount of training data as well as by improving the quality of requirement

specifications. A similar approach was applied to the previously mentioned NFR dataset. Dekhtyar et al.

[29]presented an idea of combining two methods that are very popular at the moment, Word2Vec and

Convolutional Neural Networks (CNN). They used two datasets, SecReq dataset [5] and The Quality

Attributes (NFR) dataset [25], to compare results of applying Word2Vec with CNN with a baseline

approach. The goal was to observe the performance of CNNs on these datasets compared to the

baselines and measure the impact of pre-trained Word2Vec embeddings on the model. As a baseline

method they considered an already mentioned approach based on Naive Bayes Classifier [5] with

TF-IDF and Word Counts as feature vectors. For the SecReq dataset applying Word2Vec provided an

overall boost in scores. By applying 30 filters with 100 training epochs, they scored an F1-score of

91.34%. This configuration allowed to achieve an overall improvement up to 13.5% compared to the

baseline. For the NFR dataset, Word2Vec again contributed comparable improvement with 50 filters

and 100 epochs accordingly. The authors stated that CNN classifiers can be successfully applied on

relatively small collections of requirement documents to identify various requirements properties.

Recently the transfer learning method was applied as a new promising approach to deal with

generalization problems. Hey et al. [30] stated that the performance of existing automatic classification

methods decreases when applied to unseen projects because requirements usually vary in formulation

and style. This means that such systems are impractical to use, as they are either overfit for a specific

dataset, which is heavily relying on wording and sentence structure, or require a processing step

(usually manual) for new text samples. Moreover, usually, authors do not report whether their

approaches are able to generalize or do not generalize sufficiently to be practically applicable. One

reason is the lack of available training data in the requirements engineering community. The authors

stated that a possible solution can be found in transfer learning. Nowadays transfer learning

approaches are heavily used in NLP. They are trained on huge datasets to capture underlying concepts

and meanings of natural language texts. Afterward they can be adapted and fine-tuned to a specific

task. The authors stated that this helps to overcome the problem of generalization, as these

approaches promise both better performance and generalizability with less training data. That is

achieved by fine-tuning of Bidirectional Encoder Representations from Transformers (BERT) [31], a

language model based on deep learning. BERT, which is pre-trained on a large text corpus, can be

VeriDevOps Project nr: 957212 Page 16

https://paperpile.com/c/bpkysA/uNrr
https://paperpile.com/c/bpkysA/IpQT
https://paperpile.com/c/bpkysA/2W6E
https://paperpile.com/c/bpkysA/BFvr
https://paperpile.com/c/bpkysA/BFvr
https://paperpile.com/c/bpkysA/reRh
https://paperpile.com/c/bpkysA/r7ZC
https://paperpile.com/c/bpkysA/reRh
https://paperpile.com/c/bpkysA/MM2m
https://paperpile.com/c/bpkysA/nQId

D1.3 State of the art report

fine-tuned for specific tasks by providing only a small amount of input data such as requirements

classification in our case. For experiments, NFR dataset [25]was chosen as a gold standard coming from

RE Data Challenge’17. This whole process is common for BERT-based studies. Specifically, the BERT

model is applied with a single layer of NN for classification purposes. The resulting model is called

NoRBERT. The authors provided detailed information about experiments, which would help to replicate

their results in the future. For binary tasks, NoRBERT achieved comparable results with an F1-score of

90% for functional and 93% for non-functional requirements. As it was expected, the BERT-based

method outperformed all existing approaches at the moment. Specifically, NoRBERT outperforms all

approaches that do not preprocess the data and, at the same time, the problem with unweighted data

does not significantly impact performance. Thus, the transfer learning approach clearly increases the

performance for classifying requirements. As for Security Requirements, NoRBERT was able to achieve

about 0.91 in F1-score given multilabel classification, which might look promising for a further

application.

2.2.3. Specification Analysis Approaches

Analyzing the role of security requirements, one can argue that they define new features or additions

to existing features to solve a specific security problem or eliminate a potential vulnerability. This

perspective is usually focused on revealing potential vulnerabilities of the system based on a

specification even before coding starts. This is implemented by vulnerability detection, which enables

specification analysis – the latter is associated with document analysis relying on NLP techniques to be

applied to various textual sources. The section provides interesting examples of such an approach.

Bozorgi et al. [32] present the idea of applying ML to classify exploitable and non-exploitable

vulnerabilities. The authors argued that the main goal was to create a method that could help to

prioritize work on patches for new vulnerabilities. Their technique relies on an NLP technique known as

’bag-of-words’. For example, they record whether particular tokens like ”buffer”, ”heap”, or ”DNS”

appear in specific text fields like ”title”, ”solution”, or ”product name”. In addition, they used meta-data

extracted from each vulnerability description, which gave them about 90 000 different descriptors for

each vulnerability. Labels for each vulnerability were preliminary extracted from the corresponding

section of descriptions. To classify exploitable and non-exploitable vulnerabilities, they applied a linear

Support Vector Machines algorithm and achieved about 90% accuracy, which seems to be decent given

the simplicity of the applied approach.

Applications themselves may represent a security risk. Pandita et al. [33] focused on detecting

potential risks related to the usage of an application by analyzing the application description.

Specifically, the work concentrated on the analysis of permissions required for a given application. The

authors examined whether application descriptions provide any indication for why a given application

would need those permissions. The authors propose the Whyper tool that takes a description of the

application from the market, digests it to a semantic model and determines which sentence could

indicate the use of permission. Thus, the tool tries to catch a semantic model inside an application’s

description. The purpose is to raise awareness for security and privacy problems and lower the

sophistication required for concerned users to take control of their applications. This tool was tested

VeriDevOps Project nr: 957212 Page 17

https://paperpile.com/c/bpkysA/r7ZC
https://paperpile.com/c/bpkysA/kfFC
https://paperpile.com/c/bpkysA/4EeM

D1.3 State of the art report

with a dataset describing 581 popular applications. Authors argued that Whyper can effectively identify

the sentences that describe needs for permissions with an average precision of 82.8% and an average

recall of 81.5%.

2.3. Datasets for Security Req

In this section, we will present an explanation for each dataset that we have found during our literature

review process. Given that our interest is focused on designing systems for extraction of security

requirements, an important step is to collect as much data as possible to represent this domain in the

best way.

Name of the dataset Information on a domain and dataset structure

PROMISE NFR dataset1 The PROMISE NFR dataset is commonly used in the community
and addressed in the RE’17 Data Challenge. The 625 requirements
include 255 functional and 370 non-functional requirements.

PURE dataset2 Dataset of Public Requirements Documents comprising 79
available resources. The documents are labeled to the fields,
which provide the required information.

SecReq dataset3 A dataset containing 3 Requirements Documents, where each
requirement is labeled either as Security related or non-related. In
total 187 security and 323 non-security requirements.

OSS projects: Apache Axis2/Java

(Axis2), Drools, and GeoServe

The dataset originated from an effort to build a classifier to
distinguish security requirements from non-security ones in
open-source projects. Links: Axis2/Java , Drools , GeoServe

Healthcare set of documents

CCHIT (Certified 2011

Ambulatory EHR Criteria,

Emergency Department

Information Systems Functional

Document)4

Criteria for Healthcare products certification published by CCHIT.
283 functional and non-functional requirements, including security
class.

Slankas PROMISE-like5 11,876 requirements and 3568 of them are labeled with 14
classes, including security class, compiled from several

5 https://github.com/RealsearchGroup/NFRLocator

4 https://bit.ly/3lnPxOl

3 https://gist.github.com/iambackend/e8c68469c79204872ce475a64f663973

2 https://zenodo.org/record/1414117#.YEHkOi0Rq_s

1 https://zenodo.org/record/268542#.YEHj9i0Rq_s

VeriDevOps Project nr: 957212 Page 18

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6609732/bin/mmc2.xlsx
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6609732/bin/mmc4.xlsx
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6609732/bin/mmc6.xlsx
https://github.com/RealsearchGroup/NFRLocator
https://bit.ly/3lnPxOl
https://gist.github.com/iambackend/e8c68469c79204872ce475a64f663973
https://zenodo.org/record/1414117#.YEHkOi0Rq_s
https://zenodo.org/record/268542#.YEHj9i0Rq_s

D1.3 State of the art report

medicine-related documents, including PROMISE, CCHIT, and
others.

Slankas security6 10,963 & 5050 of them are security-relevant and labeled with 6
security objectives, compiled from several medicine-related
documents.

An ontology-based learning
approach for automatically
classifying security
requirements7

Keywords, phrases and tf-idf tables for security mechanisms and
threats from An ontology-based learning approach for
automatically classifying security requirements

SRS Concordia corpus8 9 NFR classes, 3064 manually labeled sentences from 6 sources

Table 2.1: Summary of security requirements datasets.

2.3.1. PROMISE NFR Dataset

NFR dataset [25] is widely used in different researches of applying NLP techniques for requirement

engineering and was part of the RE’17 Data Challenge. Overall, the dataset consists of 12 different

classes, including security, with 625 requirements. This dataset was applied in different settings as

multiclass and binary perspectives. Potentially, this data set can be considered as a typical benchmark

for classification and extraction tasks in NLP4RE.

2.3.2. SecReq Dataset

This dataset [5] was assembled by Knauss et al. to research automation of security requirements

detection as a collection of three industrial security requirements documents: Common Electronic

Purse (ePurse), Customer Premises Network (CPN), and Global Platform Specification (GPS). Each

document is divided into individual requirements, labeled either as security-related or not. The

composition of the SecReq dataset allows a straightforward binary classification task.

2.3.3. PURE Dataset

PURE (PUblic REquirements dataset) [34] is a dataset designed as a collection of 79 publicly available

natural language requirements documents from the Web. Overall, it includes about 34 000 sentences,

which might be applied for NLP tasks that are typical in requirements engineering like model synthesis,

document structure assessment, etc. Additionally, it can be adapted as a benchmark dataset to other

tasks, such as requirements categorization, ambiguity detection, etc.

8 https://www.semanticsoftware.info/system/files/NFRClassifier.tar.gz

7 https://www.dropbox.com/s/ruagh6bcxu8u8dh/jss.zip

6 https://github.com/iambackend/Riaz-Dataset

VeriDevOps Project nr: 957212 Page 19

https://paperpile.com/c/bpkysA/r7ZC
https://paperpile.com/c/bpkysA/reRh
https://paperpile.com/c/bpkysA/pmJn
https://www.semanticsoftware.info/system/files/NFRClassifier.tar.gz
https://www.dropbox.com/s/ruagh6bcxu8u8dh/jss.zip
https://github.com/iambackend/Riaz-Dataset

D1.3 State of the art report

2.3.4. OSS projects: Apache Axis2/Java (Axis2), Drools, and GeoServer

This dataset [23] originated from an effort to build a classifier to distinguish security requirements from

non-security ones in open-source projects. It was manually created by analysing three projects: Apache

Axis2/Java (Axis2), Drools, and GeoServer. It was stated that those projects were chosen because they

had existed and had been maintained for a long time, all resources including requirements and source

code are available and, finally, those projects are web-based meaning that security concerns are very

important.

2.3.5. 15 requirements specifications developed as term projects by MS

students at DePaul University

This collection of requirements [35] was used in a set of studies associated with requirements

classification. This dataset belongs to the PROMISE corpus, which consists of 15 documents, developed

as term projects by MSc students at DePaul University. Overall, these specifications contain 326

non-functional requirements and 358 functional requirements. One important challenge with this

dataset concerns statements that could be classified into more than one type of category.

2.3.6. Customer requirements for an integrated engineering toolset (IET)

under development at Siemens Logistics and Automation plant

This document consists [35] of free form text pages that were used for the proof-of-concept for

systems for identifying requirements. The IET document contained 137 pages, 2,250 paragraphs, and

30,374 words. In the practical example to classify the NFRs in the document, it was parsed and

preprocessed to obtain 2,064 sentences. Some sentences are not grammatically complete, but they

included bullet points and text extracted from tables. Some sentences correspond to actual

requirements in the text and others to a less structured narrative.

2.3.7. SRS Concordia corpus

During PROMISE dataset [36] examination, Rashwan et al. noticed that this dataset has several

problems. For example, it covers only a part of all requirements artifact types, while sentences may

have multiple or no labels. Thus, they created their own corpus from 6 document sources, resulting in

3064 manually labeled sentences.

2.4. Formal Patterns for Requirements Specification
The present work analyzes the state of the art in the reusable formalization of security requirements

with the focus on security verification. Verification always assumes the presence of some specification

against which the verification is performed.

We thus just say “security requirement patterns” when we actually mean both specification and

verification. By “verification” we mean both static and dynamic (testing, run time monitoring) methods.

Security requirement patterns are expected to contain reusable specification mechanisms for applying

VeriDevOps Project nr: 957212 Page 20

https://paperpile.com/c/bpkysA/0mGr
https://paperpile.com/c/bpkysA/1Emb
https://paperpile.com/c/bpkysA/1Emb
https://paperpile.com/c/bpkysA/Spo8

D1.3 State of the art report

them to arbitrary software systems. They are also expected to contain mechanisms for their own

verification against candidate designs and implementations of the specified system.

This section overviews pattern-based approaches to verifying the security of software systems.

Our ultimate goal is to create a data set that will map early software specifications, e.g. security

requirements, which are far from being formal, to the security verification patterns identified in the

literature. Having such a data set will let us develop advanced machine learning (ML) based tools to

automatically propose formal security verification patterns from early requirements in natural

language. The formal patterns will then be instantiated into actual security verification attempts. What

form these attempts will take is an open question that we will answer at a later stage of the

VeriDevOps project.

Our intention was not to perform an exhaustive literature search – it rather was to identify

conceptually different approaches to pattern-based security verification. In the future, it will be

possible to perform a deeper literature search in each of the identified conceptual clusters, but for

now, we just want to see the directions for further exploration. Basically, what we present here is a

breadth-first search with the intent to cast a wide net on the literature.

2.4.1. Security requirements and verification patterns in literature

We have identified the following publications that have to do with security requirement patterns.

Konrad et al. [37] formalize security patterns in the style of the “Gang of Four” [38] and then enrich

them with LTL constraints in the spirit of specification patterns by Dwyer et al. [39]. A candidate system

for verification is specified in class, sequence, and state UML diagrams. The practitioner of the

approach then chooses a pattern and instantiates it based on the candidate system’s model. The

resulting instantiation of the chosen pattern is then submitted to the SPIN model checker for verifying

its conformance to temporal properties. The full list of security patterns specified in this way may be

found in [40].

Several other works build on top of the results by Konrad [37] and Wasserman [40]. The work by

Yoshioka et al. [41] surveys approaches to security patterns. More specifically, it identifies key activities

in security patterns extraction and application processes, then assessing different approaches based on

how they contribute to the respective activities. The survey only mentions two approaches to security

patterns that enable precise checking of security properties: the already reviewed one by Konrad et al.

[37], and another one by Jurjens et al. [42]. The work in [42] proposes encoding security properties in

UMLsec [43], an extension of UML. The resulting UMLsec specification is then submitted to AutoFocus

– a CASE tool that is capable of generating test sequences. These test sequences need to be

instantiated in the context of a candidate system to actually test the said system.

Work [44] by Ouchani and Debbabi surveys approaches to specification, verification, and

quantification of security in model-based systems. Within the present document, we are mostly

interested in pattern-based approaches that support verification and have tool support. Among the

works assessed in [44], the following ones meet our criteria: [37] (discussed earlier), [40] (discussed

earlier), [45] [46] [47] [48] [49] [50] and [51]. All these works share common roots, in the sense that

they do model checking of UML models in one or another way. The work by Ouchani et al. [51],

VeriDevOps Project nr: 957212 Page 21

https://paperpile.com/c/bpkysA/XPqU
https://paperpile.com/c/bpkysA/IAhk
https://paperpile.com/c/bpkysA/6tnm
https://paperpile.com/c/bpkysA/ZX8L
https://paperpile.com/c/bpkysA/XPqU
https://paperpile.com/c/bpkysA/ZX8L
https://paperpile.com/c/bpkysA/jwLb
https://paperpile.com/c/bpkysA/XPqU
https://paperpile.com/c/bpkysA/90vl
https://paperpile.com/c/bpkysA/90vl
https://paperpile.com/c/bpkysA/2DHJ
https://paperpile.com/c/bpkysA/tlL8
https://paperpile.com/c/bpkysA/tlL8
https://paperpile.com/c/bpkysA/XPqU
https://paperpile.com/c/bpkysA/ZX8L
https://paperpile.com/c/bpkysA/RIIU
https://paperpile.com/c/bpkysA/88Hn
https://paperpile.com/c/bpkysA/gy0a
https://paperpile.com/c/bpkysA/6B1Y
https://paperpile.com/c/bpkysA/1Or6
https://paperpile.com/c/bpkysA/cLIR
https://paperpile.com/c/bpkysA/kWth
https://paperpile.com/c/bpkysA/kWth

D1.3 State of the art report

however, has brought to our attention CAPEC – Common Attack Pattern Enumeration and

Classification. The official CAPEC website9 gives the following introduction:

“The Common Attack Pattern Enumeration and Classification effort provides a publicly available

catalogue of common attack patterns that helps users understand how adversaries exploit weaknesses

in applications and other cyber-enabled capabilities. “Attack Patterns” are descriptions of the common

attributes and approaches employed by adversaries to exploit known weaknesses in cyber-enabled

capabilities. Attack patterns define the challenges that an adversary may face and how they go about

solving it. They derive from the concept of design patterns applied in a destructive rather than

constructive context and are generated from in-depth analysis of specific real-world exploit examples.

Each attack pattern captures knowledge about how specific parts of an attack are designed and

executed and gives guidance on ways to mitigate the attack’s effectiveness. Attack patterns help those

developing applications or administrating cyber-enabled capabilities to better understand the specific

elements of an attack and how to stop them from succeeding.”

Ouchani et al. model both the target systems and the CAPEC patterns as SysML activity diagrams.

They then compute the probabilities of a given system being vulnerable to each CAPEC pattern by

submitting the resulting activity diagrams to the PRISM [52] probabilistic model checker.

Many other results build on top of the CAPEC repository. Kotenko and Doynikova [53] present a

technique and an accompanying tool for generating random attack sequences and security events

based on CAPEC. The technique relies on network configurations as the main input. Kanakogi et al.

[54]propose a natural language processing-based method to automatically trace the related CAPEC

patterns from CVE entries. This work is especially relevant to our project because it formalizes natural

language too; our project is different in that it will formalize natural language that is even less formal

than CVE descriptions. Kanakogi et al. experimented with TF-IDF [54] and Doc2Vec [55] and concluded

that TF-IDF was more accurate for the task of tracing the related CAPEC patterns from CVE entries.

Yuan et al. [56] reported a then-ongoing effort of developing a tool that would take on input a STRIDE

[57] threat model and automatically [58] propose CAPEC attack patterns sorted by relevance to the

input threat model. Kaiya et al. [59] proposed a method using which a requirements analyst can

automatically acquire the candidates of attacks against a functional requirement. We found the said

method especially interesting because it was the first CAPEC-based method to work with requirements

as inputs. Also, based on our personal experience, real work on security requirements starts when

functional requirements already exist in some form. Sometimes only functional requirements are

specified, with security concerns being postponed till the later stages of the software process.

Williams [60] [61] builds his work on top of the results by Kaiya et al. [59]. He proposes an

ontology-based collaborative recommender system for security requirements elicitation. The proposed

system takes use cases on input and identifies relevant CAPEC patterns. It then connects the identified

CAPEC patterns with the system-specific vocabulary to construct abuse cases [62] for the system in

question.

9 https://capec.mitre.org/about/index.html

VeriDevOps Project nr: 957212 Page 22

https://paperpile.com/c/bpkysA/N8C5
https://paperpile.com/c/bpkysA/6ypW
https://paperpile.com/c/bpkysA/uwBb
https://paperpile.com/c/bpkysA/uwBb
https://paperpile.com/c/bpkysA/3SXP
https://paperpile.com/c/bpkysA/ehB2
https://paperpile.com/c/bpkysA/og7K
https://paperpile.com/c/bpkysA/BAvp
https://paperpile.com/c/bpkysA/sjnI
https://paperpile.com/c/bpkysA/2zq4
https://paperpile.com/c/bpkysA/CAo9
https://paperpile.com/c/bpkysA/sjnI
https://paperpile.com/c/bpkysA/PyRX
https://capec.mitre.org/about/index.html

D1.3 State of the art report

We had a discussion in the process of working on the present document, after which we decided

to give special attention to the security testing of APIs because of their widespread use. Sudhodanan et

al.[63] proposed a methodology in which security experts can create attack patterns from known

attacks. Then they describe a security testing framework that leverages attack patterns to

automatically generate test cases for security testing of multi-party web applications. The approach

relies on proxy-based web security scanners to record client-server interactions and automatically

detect the applicability of attack patterns to the recorded interactions. Sudhodanan et al. implemented

their approach on top of OWASP ZAP10 proxy-based web security scanner and uncovered twenty-one

previously unknown vulnerabilities in well-known multi-party web applications. Bozic et al. [64]

capture attack patterns as UML state diagrams. They use ACTS [65], a combinatorial testing tool for the

generation of test input strings based on the attack patterns and domain-specific parameters and

constraints. Bozic and Wotawa [64] encode security testing patterns as UML state diagrams and submit

them to a tool that automatically generates test cases from these diagrams. They implemented a

prototype tool on top of the WebScarab11 proxy-based web security scanning framework (one of the

most mature tools in the field). The two above works authored by Bozic originated from a project

called DIAMONDS (ITEA2 project on Development and Industrial Application of Multi-Domain Security

Testing Technologies). Several more works found in the literature happened to originate from that

project.

Smith and Williams [66] developed six black-box security test patterns – for (1) input validation

vulnerability tests, (2) force exposure tests, (3) malicious file tests, (4) malicious use of security

functions tests, (5) dangerous URL tests, (6) audit tests. They also developed a tool called Security Test

Pattern Instantiator (STPI; we could not find the tool online) to help software testers instantiate

security test patterns based on functional requirements. Finally, Smith and Williams conducted a user

case study in which 21 graduate and 26 undergraduate students used the STPI tool to develop a

black-box security test plan. The study revealed that the novices’ decisions were very close to the

“golden standard” developed by a committee of experts.

A comprehensive review of security testing techniques by Felderer et al. [67] let us identify

another conceptual cluster of pattern-based approaches – risk-based approaches. The risk-based

approaches use numerical evaluations of risks’ severity to define the required level of test coverage

when generating test cases for the associated risks. That is to say, the higher the risk’s severity is, the

more coverage will be required from the test cases generated from that risk. Großmann et al. [68]

described a tool-based iterative approach that combines the CORAS [69] approach to model-driven risk

analysis with automated security testing based on patterns such as CAPEC. In every iteration of the

approach, the risk analysis results are fed into the process of identifying relevant security test patterns

and then instantiating these patterns into actual test cases. The testing results are then fed back into

the risk analysis process, and so forth. Botella et al. [69] (originating from the DIAMONDS project)

propose an approach that starts with risk analysis that relies on an approach similar to CORAS [69] and

concludes with automated security testing of the target system. The test generation process relies on

11 https://github.com/OWASP/OWASP-WebScarab

10 https://www.zaproxy.org/

VeriDevOps Project nr: 957212 Page 23

https://paperpile.com/c/bpkysA/zgC6
https://paperpile.com/c/bpkysA/HuBW
https://paperpile.com/c/bpkysA/U01R
https://paperpile.com/c/bpkysA/HuBW
https://paperpile.com/c/bpkysA/nSdW
https://paperpile.com/c/bpkysA/GKjT
https://paperpile.com/c/bpkysA/bIlf
https://paperpile.com/c/bpkysA/3th6
https://paperpile.com/c/bpkysA/3th6
https://paperpile.com/c/bpkysA/3th6
https://github.com/OWASP/OWASP-WebScarab
https://www.zaproxy.org/

D1.3 State of the art report

CertifyIt [70], existing model-based testing (MBT) software. CertifyIt takes on input behavioral models

of the system expressed as UML statecharts and risk-based test purposes – formalizations of

vulnerability test patterns. The work in [71] relies on an existing catalog of security test patterns by

Vouffo Feudjio [72]. Each of these patterns consists of a test procedure template surrounded by other

parameters defining when and how to apply the pattern. Other contributions of Feudjio include test

automation design patterns for reactive software systems [73] and his PhD thesis [72].

The work of Feudjio was supported by the DIAMONDS project. Other results achieved within this

project include a work by Wotawa and Bozic [74]where they propose a planning-based approach to

security testing. The authors represent security testing as a planning problem with the goal of breaking

the application under test. Speaking of other pattern-based approaches, the survey only mentions one

approach called VERA [75]. The website12 by the survey, which was said to host a collection of patterns,

is not available. We then decided to find contributions that cite the work of Feudjio [73]. Herzner et al.

[76] present an approach for capturing best practices in integrating risk and safety analysis and testing

by means of analysis and testing (A&T) patterns. Each A&T pattern encompasses a dedicated workflow

starting from analysis down to test steps for achieving certain qualities of the system. The authors

mention a repository of 17 ready-to-use patterns13. The work by Herzner et al. is cited by a work by

Dghaym et al. [77] to originate from the same project. Dghaym et al. present a concept of verification

and validation (V&V) patterns. V&V patterns are a unified format for capturing common verification

and validation approaches, such as behavior-driven development, model checking, the Event-B

method, and others. When applicable, each pattern contains a formalization of the corresponding

verification and validation procedure. The language of the formalization depends on the approach

assumed by the said pattern. The work is accompanied by a repository of ready-to-use V&V patterns14.

Also, a whole PhD thesis focusing on pattern-driven and model-based vulnerability testing of web

applications [78] by Alexandre Vernotte.

2.4.2. Analysis of findings

In the present section, we do a retrospective analysis of the found literature to identify the dimensions

along which it would be possible to locate the different approaches to security requirement patterns.

Since we are expecting to use the identified patterns for automated formalization and verification of

security requirements, our analysis focuses on the verification aspect. Different approaches to

specifying requirement patterns lead to different approaches to verifying the resulting requirements

instantiated from the patterns.

In general, approaches to software security assurance can be mapped into the following

categories. Static approaches, which work at the implementation level, without running the system

under analysis and dynamic approaches (e.g., testing), which focus on generating and running security

tests with properly generated test inputs.

14 https://vvpatterns.ait.ac.at/the-vv-patterns/

13 https://vvpatterns.ait.ac.at/the-at-patterns/

12 http://www.spacios.eu/index.php/spacios-tool/

VeriDevOps Project nr: 957212 Page 24

https://paperpile.com/c/bpkysA/8Uoa
https://paperpile.com/c/bpkysA/czKF
https://paperpile.com/c/bpkysA/SfeT
https://paperpile.com/c/bpkysA/G1bs
https://paperpile.com/c/bpkysA/SfeT
https://paperpile.com/c/bpkysA/T5YM
https://paperpile.com/c/bpkysA/wn8H
https://paperpile.com/c/bpkysA/G1bs
https://paperpile.com/c/bpkysA/MIbu
https://paperpile.com/c/bpkysA/9ONF
https://paperpile.com/c/bpkysA/pfAB
https://vvpatterns.ait.ac.at/the-vv-patterns/
https://vvpatterns.ait.ac.at/the-at-patterns/
http://www.spacios.eu/index.php/spacios-tool/

D1.3 State of the art report

Static approaches include two categories. Model-checking based approaches, which take as input

a formal model of the system and model-check the desired properties against that model. These

approaches require an architectural model of the system on input and do not require that the

development phase has already started. Code analysis-based approaches, which work with candidate

program implementations of the system. Such approaches require that the development phase has

already started.

Dynamic approaches include model-based testing and vulnerability testing. Model-based testing

focuses on generating tests and their inputs based on design and architectural models of the system.

These approaches may facilitate test-driven development of the system if the development phase has

not started yet. Vulnerability testing performs attacks on running applications.

Vulnerability testing includes fuzzing-based testing and risk-based testing. Fuzzing-based testing

directly attacks the application trying to break it using known attack patterns and malicious inputs.

Risk-based testing, which attacks the application based on identified security risks that are specific to

the given problem domain and behavioural description.

Another way to divide the different approaches to identification of security patterns is direct and

indirect. Direct identification finds security patterns that are explicitly present in the input document in

some form. Indirect identification finds security patterns that are implied by the input document but

are not explicitly present in it.

2.4.3. Ready-to-use catalogs of patterns

We identified several publicly available collections of security verification patterns:

● Temporal patterns [40] in the style of Dwyer et al. [39] ; patterns are enumerated in the article

itself.

● CAPEC repository of attack patterns15.

● Analysis and testing patterns16 by Herzner et al. [76].

● Validation and verification patterns17 by Dghaym et al. [77].

We want to encode these patterns in the form of seamless object-oriented requirements (SOORs)

[79] that makes it possible to reuse them (in the object-oriented sense of “reuse”) across many

projects and components. SOORs are generic classes18 that contain parameterized unit tests (PUTs) [80]

whose arguments’ types are defined by the generic parameters of the enclosing class. They also

contain methods for automatically generating their natural language representations, with the

possibility to program automated generation of any other mark-up-based representation as necessary.

18 https://github.com/anaumchev/requirements templates

17 https://vvpatterns.ait.ac.at/the-vv-patterns/

16 https://vvpatterns.ait.ac.at/the-at-patterns/

15 https://capec.mitre.org/about/index.html

VeriDevOps Project nr: 957212 Page 25

https://paperpile.com/c/bpkysA/ZX8L
https://paperpile.com/c/bpkysA/6tnm
https://paperpile.com/c/bpkysA/MIbu
https://paperpile.com/c/bpkysA/9ONF
https://paperpile.com/c/bpkysA/Gja0
https://paperpile.com/c/bpkysA/PC1Z
https://github.com/anaumchev/requirements
https://vvpatterns.ait.ac.at/the-vv-patterns/
https://vvpatterns.ait.ac.at/the-at-patterns/
https://capec.mitre.org/about/index.html

D1.3 State of the art report

2.4.4. Integrating security requirement patterns into the SDLC

The current section gives an example of integrating the approaches from section 2 into the phases of

the software development life cycle. We do not consider testing as an isolated activity because in

practice it goes hand-in-hand with implementation due to the high incrementality of modern software

development.

At the analysis stage, we may practice identification of expressly security-related requirement

statements and inference of potentially relevant security risks based on functional descriptions of the

system [59] [66] [76].

During the design phase, when abstract models of the system become available, numerous

approaches apply to such models. The model checking approach verifies the models against

security-related temporal properties [37] [40]. Some approaches identify security risks potentially

applicable to the models [68] [81]. Other approaches propose attack vectors relevant to the identified

security risks; such attack vectors may come from a CAPEC-like repository [68] [81].

When compilable and runnable prototypes of the software start emerging, the more direct

security verification approaches that rely on testing become applicable. In particular, it becomes

possible to record and analyze actual interactions with the software to identify interaction patterns

that are known to be prone to certain security risks and CAPEC-like attack vectors [63] [82]. A more

straightforward approach consists of scanning the running software to find its entry points and submit

malicious payloads to the identified entry points (lots of scanners are available for this task). Combining

the two approaches is also possible.

Software maintenance is probably the most expensive and troublesome part of the software

development life cycle. When the software is deployed to a production environment, it is necessary to

detect attempts to break it. The only way to do so seems to be in identifying common attack patterns

in the log of the software. Repositories similar to CAPEC may be especially handy for this purpose. Also,

it is necessary to monitor user forums and handle external incident reports. This is where an NLP-based

approach, similar to [54], may help.

2.5. Gap Analysis
At the moment, a sphere of NLP4RE is presented by many approaches, models, and ideas of extracting

features from requirements in a textual form. Generally, each approach was designed to solve a specific

problem using a corresponding dataset depending on the type of the requirement context. Our main

focus is designing and adapting successful NLP practices for security requirements. As it was stated the

main problem of applying NLP methods for that type of requirement is that they are vulnerable to the

generalization - ability to apply the same NLP model to different datasets. This heterogeneity of

requirements is usually associated with different domains, contexts and an absence of a generally

accepted definition of security requirements as well. Proposed ideas usually involved widespread ML

models with various feature extractions and text representations. Still, for the context of security

requirements, there is a lack of studies and practices of thorough data engineering for constructing a

joint dataset that would generalize a context of security requirements. This might be achieved by a

wide collaboration of experts to design a general dataset for security requirements. Also, the

VeriDevOps Project nr: 957212 Page 26

https://paperpile.com/c/bpkysA/sjnI
https://paperpile.com/c/bpkysA/nSdW
https://paperpile.com/c/bpkysA/MIbu
https://paperpile.com/c/bpkysA/XPqU
https://paperpile.com/c/bpkysA/ZX8L
https://paperpile.com/c/bpkysA/bIlf
https://paperpile.com/c/bpkysA/PDEL
https://paperpile.com/c/bpkysA/bIlf
https://paperpile.com/c/bpkysA/PDEL
https://paperpile.com/c/bpkysA/zgC6
https://paperpile.com/c/bpkysA/Ule3
https://paperpile.com/c/bpkysA/uwBb

D1.3 State of the art report

perspective of transfer learning methods such as BERT and deep learning applied for security

requirements is still not completely investigated.

Our initial conclusion is that the future directions should be to progress by combining and analysis

of those specific datasets of security requirements while including those of the VeriDevOps partners. In

addition, it appears reasonable to thoroughly analyze transfer learning and deep learning methods

applied to those curated joint datasets.

Our ultimate goal is to seamlessly proceed from natural language requirements to their

verification. Among the pattern catalogues, only the temporal patterns [37] [40] are immediately

reusable for verification. Our most important task is then to take the remaining catalogues and convert

them into a form that is closer to verification. Seamless object-oriented requirements (SOORs) [79] may

become such a form. SOORs are reusable classes that already contain verification procedures in the

form of parameterized unit tests [80] and are applicable to arbitrary software components through

genericity and inheritance. The next task would be to train a model the world map natural language

statements to verifiable patterns from the resulting catalogue. For doing that, we will need a

not-yet-existing data set. Constructing such a data set is a Security Requirement Patterns 9 ambitious

task that will require considerable amounts of manual analysis of requirement documents and security

verification procedures resulting from these documents. Automatically instantiating the SOOR style

patterns into actual verification attempts is another big task. It represents a separate research direction

on its own. In our opinion, it makes much sense to perform this task in parallel with the task of

mapping natural language requirements to the patterns because the two tasks are loosely connected.

The task of instantiating the patterns into verification attempts requires, however, that the SOOR

representation of the patterns is already in place. On the other hand, the task of mapping natural

language requirements to requirement patterns does not depend on the actual form of these patterns

and can be started as soon as possible.

VeriDevOps Project nr: 957212 Page 27

https://paperpile.com/c/bpkysA/XPqU
https://paperpile.com/c/bpkysA/ZX8L
https://paperpile.com/c/bpkysA/Gja0
https://paperpile.com/c/bpkysA/PC1Z

D1.3 State of the art report

3. Reactive Protection at Operations

Managing security risk during operation is one of the main objectives of dynamic risk management that

targets evolving ICT systems and evolving risk landscape. In this sense, security at runtime has become

an important part of today’s software development projects where different pieces of code from

several providers can be used and integrated into evolving ICT environments [83]. In particular, in ICS

the cyber-physical infrastructures must guarantee the protection of the traditional (physical) elements,

such as sensors, controllers and actuators; as well as the novel (cyber) capabilities, in terms of

computing and communication protection[84]. The topic has been attracting increasing attention since

the Stuxnet incident when the successful cyber-physical sabotage of a uranium enrichment plant in Iran

took place [85]. More recently, a similar incident struck a steel mill in Germany [85], [86].

But procuring cybersecurity in ICS becomes more critical over time because of the imperfection of

the existing protection tools, and the increasing presence of vulnerabilities. For example, in 2018 the

number of vulnerabilities identified in different ICS components and published on the US ICS-CERT’s19

website were 415, 93 vulnerabilities more than in 2017. Even more, compared with the previous year’s

data, the proportion of vulnerabilities that have a high or critical severity score has grown. More than

half of the vulnerabilities identified in ICS systems (284, compared with 194 in the previous year) were

assigned CVSS v.3.020 base scores of 7 or higher, corresponding to a high or critical level of risk.

Improving software security requires that software administrators acquire relevant knowledge and

skills to secure software deployment and operation such that they can resist attacks and handle

security errors appropriately [87]. They also need to be supported by tools to ensure dynamic risk

management techniques [88], [89], for the automatic detection of vulnerabilities and their mitigation

at runtime. In the matter of standardization, a comprehensive overview of risk management

techniques is given in the ISO/IEC 31010 standard [90]. Furthermore, the ISA/IEC 62443 offers a system

risk-oriented approach to solving the tasks of providing the security of industrial control systems (ICS)

at all stages of the life cycle.

In the litterature, there are many different risk management techniques well adequate for the

development phase. Most of these techniques are applicable within a wide range of domains, including

cybersecurity of modern industrial systems which is addressed in VeriDevOps. Brainstorming is a

common risk management technique and is a means for collecting a broad set of ideas from different

experts and sources. Examples of such techniques are Delphi technique [91] and HAZOP (Hazard and

Operability) [92], SWOT [93] and FMEA/FMECA [94]. Other techniques are based on risk modelling - a

structured way of representing an incident with its causes and consequences by means of graphs, trees

or block diagrams [95]. Examples of well-known languages for modelling risks and their causes are

Markov models, Bayesian networks [96], Fault Tree Analysis (FTA), Event Tree Analysis (ETA),

Cause-consequence diagrams [97], and CORAS [98]. These techniques need to be adapted to the

operational phase and be used by SecOps teams to tackle security risks at runtime.

20 https://www.first.org/cvss/calculator/3.0

19 https://us-cert.cisa.gov/ics

VeriDevOps Project nr: 957212 Page 28

https://paperpile.com/c/bpkysA/DooF
https://paperpile.com/c/bpkysA/aqx0
https://paperpile.com/c/bpkysA/vd0n
https://paperpile.com/c/bpkysA/vd0n+b6q2
https://paperpile.com/c/bpkysA/FLuK
https://paperpile.com/c/bpkysA/CPAN+eCaD
https://paperpile.com/c/bpkysA/3PJt
https://paperpile.com/c/bpkysA/kIWg
https://paperpile.com/c/bpkysA/Kgua
https://paperpile.com/c/bpkysA/sLOG
https://paperpile.com/c/bpkysA/vfxc
https://paperpile.com/c/bpkysA/ChIB
https://paperpile.com/c/bpkysA/aYFg
https://paperpile.com/c/bpkysA/c3Pl
https://paperpile.com/c/bpkysA/5KoW
https://www.first.org/cvss/calculator/3.0
https://us-cert.cisa.gov/ics

D1.3 State of the art report

SecOps (Security + Operations)21 is a movement created to facilitate collaboration between IT

security and operations teams and integrate the technology and processes they use to keep systems

and data secure — all in an effort to reduce risk and improve business agility. As illustrated in Figure

3.1, the WP3 of the VeriDevOps project will incorporate security practices into operational

environments. Our objective is to integrate operation and security activities to perform dynamic risk

management in running environments. Typically, the problem of risk management is addressed in

several steps (NIST22): identification, protection, detection, response and recovery, that have been

approached from different perspectives in industry and academia. In the following sections of this

chapter, we present a summary of the recent innovations in each of the risk management stages.

First, in Section 3.1 we will present an overview of the recent methods that have been taken to

scan the vulnerabilities of the system. The following sections will address the detection phase, which is

commonly divided into Signature-based techniques, depicted in Section 3.2, and Anomaly-based

algorithms. In particular, Genetic algorithms are targeted in Section 3.3, and Machine Learning

network-based algorithms in Section 3.4. In Section 3.5 we introduce the Root-Cause Analysis

technique, which is not traditionally used in the risk management process but is essential in the

context of VeriDevOps. Finally, in Section 3.6, we will expose the reaction and remediation methods

currently used , followed by Section 3.7 where we depict our contribution to the subject .

Figure 3.1 Context of the dynamic risk management process done in the VeriDevOps WP3

22 Guide for Conducting Risk Assessments.
https://www.nist.gov/publications/guide-conducting-risk-assessments

21 https://saltproject.io/the-power-of-secops-redefining-core-security-capabilities/

VeriDevOps Project nr: 957212 Page 29

https://www.nist.gov/publications/guide-conducting-risk-assessments

D1.3 State of the art report

3.1. Vulnerability scanning

Several studies highlight that the number of cyberattacks on Operational Technology (OT) is increasing.

OT refers to the set of technologies, software and hardware that organizations use for managing

physical industrial equipment, assets, processes and events. Industrial Control Systems (ICS) are widely

used in these OT environments to monitor and control industrial processes, including manufacturing,

transport and pharmaceutical sectors, and critical infrastructures, such as electricity, water treatment

plants, and oil and gas refineries [99]

Historically, ICS ran on proprietary hardware and/or software that were physically isolated from

external connections; today the situation is totally different. ICSs have adopted Information

Technology (IT) solutions, such as commercial off-the-shelf (COTS) components, standard operating

systems, and remote connectivity as well as cloud solutions. This evolution , together with the use of

unsecure industrial protocols, such as, DNP3, OPC, MODBUS, increases the likelihood of security

vulnerabilities and incidents23 [100] [101]. As a result, ICSs are subjected to the same type of

vulnerabilities as any other system: including, buffer overflows, hardcoded credentials, authentication

bypass, cross-site scripting, missing authentication, and vulnerabilities in hardware chips [102], among

others.

According to Kaspersky [103], more than 150 industrial control systems-related vulnerabilities are

discovered every year since 2012. Moreover, they showed that the most vulnerable ICS components

were Human Machine Interface (HMI), electric devices, and SCADA systems. Vendors produced

patches and new firmware for 85% of the published vulnerabilities. Most of the unpatched

vulnerabilities, that is 74%, were considered being of high-level risk, but they were not addressed

properly by vendors exposing a significant risk to the owners of the systems. Security challenges are

emerging also in cloud environments, including a variety of issues such as misconfiguration issues and

vulnerabilities in hardware chips24.

Fast and effective detection and patching of known vulnerabilities are essential to effectively

preventing cyberattacks. This issue was widely recognized in 2017 when the WannaCry25 ransomware

exploited vulnerabilities for which Microsoft had published a patch two months before. Unfortunately,

some organizations had not installed it, while the patch was also not available for legacy Windows

versions (i.e. Windows XP or Windows Server 2003) when the attack was produced. This highlighted

the importance of monitoring vulnerabilities even though no attack cases are around.

Despite the efforts being made to improve security in products and services, the current

complexity of software makes it highly unlikely to be produced without vulnerabilities. Therefore, even

if there is meticulous attention in the software development process, there will always be a

vulnerability that is not discovered or not remediated along the timeline, which may eventually lead to

catastrophic losses. As stated by Bruce Scheiner, an internationally renowned security technologist,

25 https://es.wikipedia.org/wiki/WannaCry

24 https://docs.broadcom.com/doc/istr-24-2019-en

23 https://docs.broadcom.com/doc/istr-24-2019-en

VeriDevOps Project nr: 957212 Page 30

https://paperpile.com/c/bpkysA/eGoB
https://paperpile.com/c/bpkysA/bYQs
https://paperpile.com/c/bpkysA/JSuY
https://paperpile.com/c/bpkysA/XiOx
https://paperpile.com/c/bpkysA/862n
https://es.wikipedia.org/wiki/WannaCry
https://docs.broadcom.com/doc/istr-24-2019-en
https://docs.broadcom.com/doc/istr-24-2019-en

D1.3 State of the art report

“Security is a process, not a product”, and security countermeasures need to be applied until removing

a product or service from use [104].

A vulnerability is a behavior or set of conditions present in a system, product, component, or

service that violates an implicit or explicit security policy. Attackers exploit vulnerabilities to

compromise confidentiality, integrity, availability, operation, or some other security property [105]. A

vulnerability that has a Common Vulnerability and Exposure (CVE) number is a publicly known

vulnerability. The CVE list represents MITRE’s attempt to systematically name security vulnerabilities26.

This is recognized as the standard for naming vulnerabilities and many vulnerability databases support

CVE. The goal of Vulnerability Management (VM) is the iterative practice of identifying, classifying,

remediating, and mitigating vulnerabilities. This research work aims at identifying publicly known

vulnerabilities resulting from hardware, software, and configuration.

Vulnerability scanning or detection can be done manually, automatically, or by combining both

techniques. One can also differentiate active and passive scans. In active scanning, the aim is to search

for all existing vulnerabilities, those that are known and unknown. These scans are usually intrusive

because they try to exploit all services, and are performed, for example, using fuzzing techniques.

Some examples of vulnerability active analyzers are Achilles27 and Nessus28. Unlike active scans, passive

scans look for vulnerabilities without actively interfering with a system. This usually involves having a

piece of equipment on a network switch to listen to the network traffic. These scans are focused on

analyzing active hosts, ports and services used as well as connections. The advantage of active scanning

is that it provides more information about assets than does passive monitoring. This additional

information may include open ports, installed software, security configuration settings and known

malware.

Some active scanning is based on agents, which are pieces of software running in a product. These

services usually consume very little CPU resources and are used to monitor network configuration, and

the state of software, among others. Agents provide deeper visibility and system efficiency than

agentless scanning, while reducing overhead on the network. However very often agents cannot be

used in industrial systems because they may conflict with services running on the target, an agent may

not be available for the underlying operating system running in the industrial component, agents may

not have sufficient privileges in local security policy to audit every configuration item, or because

agents themselves can become a target of an attacker.

To overcome this problem, sometimes the solution may be to have an active scanning in a test

environment, typically simulating a real system. This approach is obviously very costly both

economically and logistically if every control system is replicated since every modification made to the

actual infrastructure must be also replicated in the test laboratory (i.e. applications, software versions,

existing communications).

Besides, web application security scanners are computer programs that assess web applications

with penetration testing techniques. The benefit of automated web application penetration testing is

28 https://www.tenable.com/products/nessus

27 https://invent.ge/39qIPlH

26 https://cve.mitre.org/

VeriDevOps Project nr: 957212 Page 31

https://paperpile.com/c/bpkysA/XKC8
https://paperpile.com/c/bpkysA/zJWw
https://www.tenable.com/products/nessus
https://invent.ge/39qIPlH
https://cve.mitre.org/

D1.3 State of the art report

significant. A web application security scanner not only reduces the time, cost, and resources required

for web application penetration testing but also eliminates reliance on test engineers or human

knowledge. Nevertheless, web application security scanners are generally possessing weaknesses of

low test coverage, and the scanners are generating inaccurate test results [106].

As a result, we can agree that existing tools for detecting vulnerabilities seem to be not suitable

for industrial systems for the reasons argued above and for the following reasons: 1) they do not

support industrial protocols to detect the presence of a target, 2) they need to have a vulnerability

scanner connected to the equipment under vulnerability searching, 3) scanning tools are for IT

environments and cannot be applied to OT environments, and 4) most of them are not able to discover

software and hardware composition of a target. In general, they detect available network services, scan

them for vulnerabilities and sometimes they can infer an operating system or programs used, but these

results are not very reliable.

We need to design, implement and validate automated means to overcome the mentioned

problems. The proposed Treat Oracle Engine (THOE) tool in VeriDevOps to be designed, implemented,

and validated in this project will overcome these problems. THOE will be based on defined Common

Platform Enumeration (CPE) identifiers for each hardware and software29. Unlike common vulnerability

scanners that address target identification with limited results related to software and hardware, THOE

will use a CPE-based asset inventory for hardware and software during system development to ensure

that not only the operating system and installed applications are considered, but also open-source

libraries, packages, use of cryptographic chips, and so on. This CPE-based asset inventory will be done

during software development to ensure all assets are considered, and this will be used by THOE for

automatic vulnerability searching. THOE will use the National Vulnerability Database (NVD) by the NIST

that is fed by the CVE list published by MITRE and it is recognized as a standard30. This detection will be

automated and identified vulnerabilities will be sorted based on their severity, so that later risk

management, issue fixing, and reporting can be performed. The SCAP31 standard will be used for the

purpose of automating security compliance, configuration, and vulnerabilities evaluation.

3.2. Signature-based intrusion detection

Signature-based intrusion detection systems (SIDS) monitor events in a system and compare them with

patterns and signatures of security policies to be respected, or attacks and vulnerabilities to be avoided

that exist in a database. Therefore, if one of these previously recorded behaviors is detected, an alert is

triggered. In general, this approach has the advantage of presenting a very low false-positive alarm rate

compared to others [107]. Nevertheless, as the attacks are previously defined in a specific manner, a

simple modification of the attack could make it undetectable by the engine. Furthermore, other

problems still remain such as a choice of techniques and algorithms to accurately and efficiently detect

malicious behaviors and intrusions [108], and how to identify attacks that span across several packets

[109].

31 https://csrc.nist.gov/projects/security-content-automation-protocol

30 https://nvd.nist.gov/

29 https://cpe.mitre.org/

VeriDevOps Project nr: 957212 Page 32

https://paperpile.com/c/bpkysA/B7vm
https://paperpile.com/c/bpkysA/zeRW
https://paperpile.com/c/bpkysA/zJKm
https://paperpile.com/c/bpkysA/rpAU
https://csrc.nist.gov/projects/security-content-automation-protocol
https://nvd.nist.gov/
https://cpe.mitre.org/

D1.3 State of the art report

Misuse detection is one of the main branches of the signature-based intrusion detection

paradigm. To manage the inherent uncertainty and ambiguity of the intrusion detection data, fuzzy

logic has been widely integrated into the misuse detection process and various fuzzy algorithms and

classifiers are included in the security literature for accurately recognizing the attacks. Masdari et

al.[108] provide a survey and taxonomy of the fuzzy misuse SIDS approaches designed to improve the

security of computer systems. They include the use of techniques such as fuzzy clustering methods,

fuzzy classifiers, fuzzy feature extraction, etc. to detect intrusions and malicious behaviors in presence

of uncertain data.

In the domain of distributed systems, most existing approaches are not suitable for distributed and

collaborative intrusion detection due to the geographical distribution. For this sake, Uddin et al. [107]

proposes an optimized pattern recognition algorithm and IDS architecture for distributed

heterogeneous IoT Environments. The authors propose an Intrusion Detection System (IDS)

methodology and design architecture for Internet of Things that makes the use of this search algorithm

to thwart various security breaches. Numerical results are presented from tests conducted with the aid

of NSL KDD cup dataset showing the efficacy of the IDS.

Wang et al.[110] propose a privacy-preserving framework for signature-based intrusion detection,

using Rabin fingerprint algorithm, in a network based on fog devices. The authors performed

experiments in both simulated and real network environments, and they demonstrated that the

proposed approach can help protect the privacy of data, greatly reduce the workload of the central

server on the cloud side, and achieve less detection delay as compared with similar approaches like

PPIDS.

Regarding industrial control systems, Richey’s thesis [111] aims to leverage the static topology of

ICS networks and those programs that define them to enhance the IDS’s knowledge of the environment

in which it is deployed. The author describes a method for automatically generating rules and

signatures to detect possible intrusions, by parsing PLC ladder logic to extract address register

information, data types and usage. Moreover, a Ladder Logic Parser program was created to test the

proposed method, showing that it is not only applicable to a controlled test environment, but can also

create a significant number of Snort rules that define abnormal behavior using real-world ladder files.

Using a smaller test case ladder file, the functionality of this method was proven accurate and a

sampling of the larger real-world files were found to be thorough and valid.

Currently, there are numerous SIDS the market, some examples include McAfee NSP32, Palo Alto

Networks33, SolarWinds SEM34, etc. In addition, there are several known open source solutions, some

of which we briefly overview in the following subsections.

34 https://www.solarwinds.com/security-event-manager

33 https://www.paloaltonetworks.com/

32 https://www.mcafee.com/

VeriDevOps Project nr: 957212 Page 33

https://paperpile.com/c/bpkysA/zJKm
https://paperpile.com/c/bpkysA/zeRW
https://paperpile.com/c/bpkysA/AKdf
https://paperpile.com/c/bpkysA/mbHt
https://www.solarwinds.com/security-event-manager
https://www.paloaltonetworks.com/
https://www.mcafee.com/

D1.3 State of the art report

3.2.1. Snort35

Due to its popularity, Snort rule formats have been adopted in many cases as a standard for many

other Intrusion Detection Systems (IDS), and also these are built to be compatible with it. Among its

advantages, we can mention that it has a large library of pre-built detection rules, it allows deep

visibility into network traffic, and it is usable on all operating systems.

3.2.2. Suricata

Suricata36 was engineered by the Open Information Security Foundation (OISF), financed by the US

Department of Homeland Security. It was designed as a competitor of Snort, and it is compatible with

its file formats, rules, etc. It includes features not available in Snort such as the use of multi-threading

to achieve a higher efficacy, the capability to perform network traffic analysis at the application level

(which enables detection of malicious content spread over multiple packets), or the detection of

common network protocols even though they are not operating over standard ports assigned to them.

3.2.3. Zeek

Zeek37 or Bro38 is a platform-independent framework that comprises multi-level modular architecture

underlying network layer in the ISO-OSI seven-layer model. Zeek conducts activities such as multi-layer

analysis, policy imposition, behavioral controlling, and policy-oriented detection. There are many

significant advantages of using Bro IDS: It is able to manage capturing data from Gbps networks and

can perform with great efficacy in high-speed environments, it allows the implementation of

sophisticated and complex signatures, and it is highly customizable, though difficult to deploy.

3.3. Runtime monitoring and detection using Search-based testing

Search-Based Security Testing (SBST) is an approach that applies a search-based algorithm such as

Genetic Algorithms to prevent systems from different attacks and provide security for the system. The

search-based approach uses a fitness function that measures the quality of an individual within a

population, guiding the evolution of individuals towards the desired solution. SBST is just not only an

effective technique but also extremely flexible, allowing different test approaches by simply changing

the fitness function. The technique also minimizes manual interactions and therefore reduces the

overall cost to scale the industrial testing problems. Below mentioned are papers covering various

search-based security testing.
Research at Queen’s University, Kingston, Canada by Gong et al. [112] demonstrated the

implementation of a genetic algorithm-based approach to detect network intrusions. This paper

covered the implementation of an architecture based on genetic algorithms to tackle attacks. The

technique used in this method excels others since it has the capacity to automatically cope with

38 http://www.bro-ids.org/

37 https://zeek.org

36 https://suricata-ids.org/

35 https://www.snort.org/

VeriDevOps Project nr: 957212 Page 34

https://paperpile.com/c/bpkysA/bIw2
http://www.bro-ids.org/
https://zeek.org
https://suricata-ids.org/
https://www.snort.org/

D1.3 State of the art report

real-world problems, such as the change in the type of intrusions. The designed system can update the

rules to the system as soon as new attacks are known. Genetic Algorithm (GA) is preferred rather than

Genetic Programming (GP) in the classification of the network data. A fitness function with high

efficiency and flexibility is used to detect the network intrusions or separate them based on their types.

The system is implemented using Java language and a third-party software called ECJ (i.e A Java-based

Evolutionary Computation Research System [113]). As for the purpose of evaluating the system, DARPA

[114] data from MIT Lincoln Laboratory is used for the training and testing data.

Improving network application security using a stress testing approach was reported by Grosso et

al. [115]. This paper covers the security problems in the network applications caused by Buffer

overflow, which leads to its exploitation and unauthorized access to the program. The technique used

is evolutionary testing which makes use of static analysis and program slicing to mitigate the buffer

overflow threats. It also used GA (Genetic Algorithm) and three fitness functions which cover

Vulnerable coverage fitness, Nesting fitness and Buffer boundary fitness. The fitness function was

assessed using Random search to generate random data to analyze the effectiveness of the function.

Grosso et al. [116] extended the previous approach to detect buffer overflow via automatic test

input data generation. The presented method is an upgrade to the previous approach of improving

security in the network application using stress testing. The main change in this new technique is that it

does not require manual intervention to initialize and tune GA and fitness function. The approach is

composed of genetic algorithms, linear programming, evolutionary testing, and static and dynamic

information to detect buffer overflows. The proposed technique helps to increase the efficiency in

large industrial systems.

Dozier et al. [117] presented a paper on vulnerability analysis of immunity-based Intrusion

Detection Systems(IDSs) using GENERTIA red teams (GRTs) [118] . The presented method compares 12

evolutionary hackers based on particle swarm optimization PSO) as vulnerability analyzers for IDSs. The

research concludes GA followed by PSOs: ccSW4 and SW0+ as the best performers as they are capable

of finding different types of vulnerabilities in entirely different IP addresses’ search space, help to

analyze the vulnerabilities before deploying and to heal themselves when leaks are discovered.

Campos et al. [119] investigated entropy-based test generation for improved fault localization. The

presented prototype is ENTBUG which is an extended search-based test generation of EVOSUITE [120]

to use fitness functions on its genetic algorithm and apply it to seven real faults. The presented method

optimizes the quality of the ranking reports by focusing on producing detailed diagnoses rather than

just finding faults.

Galeotti et al. [121] demonstrated a tool on how to improve search-based test suite generation

with Dynamic Symbolic Execution (DSE). The presented method also extends EVOSUITE’s [120] genetic

algorithm to integrate DSE to increase the coverage. An adaptive approach that combines GA and DSE,

and later classifying the suitability of the problem in hand using SBST (Search-based Software Testing) is

used.

A safety-critical system requires high security. Tracey et al. [122] briefed a paper to demonstrate a

search-based automated test-data generation framework for safety-critical systems. The technique is

based on genetic algorithms or directed search approaches. To be more precise, it uses a fitness

function that provides test-data suitability for specified criteria. Using a directed search approach, the

VeriDevOps Project nr: 957212 Page 35

https://paperpile.com/c/bpkysA/LKPg
https://paperpile.com/c/bpkysA/vSTN
https://paperpile.com/c/bpkysA/6eqg
https://paperpile.com/c/bpkysA/6PPB
https://paperpile.com/c/bpkysA/nNpa
https://paperpile.com/c/bpkysA/FBiu
https://paperpile.com/c/bpkysA/cgFm
https://paperpile.com/c/bpkysA/LIju
https://paperpile.com/c/bpkysA/3kib
https://paperpile.com/c/bpkysA/LIju
https://paperpile.com/c/bpkysA/97Xp

D1.3 State of the art report

fitness function has access to all of the information that is available at runtime which is how SUT

(Software Under Test) takes the input test-data at some test constraints and ultimately outputs the

values. This framework targets industrial testing problems by allowing complete automation of error

exploitation and reducing costs with traditional testing techniques.

In a paper by Afzal et al. [123] a systematic review of search-based testing for non-functional

system properties, a thorough examination of existing work into non-functional search-based software

testing (NFSBST) has been done. The review is based on a set of 35 articles published between

1996-2007, dealing with different fitness functions to guide the search engine for safety, usability,

quality of service and security.

3.4. ML/AI based anomaly detection

Anomaly-based intrusion detection systems (AIDS) work by comparing the actual comportment of the

system with a previously-established “normal” model of the behavior of the system. Any substantial

deviance between the observed behavior and the model is considered as an anomaly, which can be

translated as an intrusion or attack into the system. AIDS has drawn interest from a lot of scholars due

to its capacity to overcome the limitation of the Signature-based intrusion detection systems (SIDS)

[109].

Normally, in AIDS, the normal model of the behavior of a computer system is created using

machine learning, statistical-based or knowledge-based methods. For the purposes of the VeriDevOps

project, we will consider only the machine learning method.

The applications of machine learning techniques in the design of intrusion detection systems (IDS)

have remained a trend in the last few years [124]. Therefore, there have been numerous

anomaly-based IDS prototypes that implement these techniques.

In this section, we collect surveys that summarize the recent ML anomaly-based IDSs trends in

diverse contexts. In such a manner, we list works on industrial systems, the direct target of the

VeriDevOps project; in IoT environments, whose distributed nature can be expected also in industry

systems; and in SDN-based networks, an increasingly common approach on networks outside and

inside the industry. Moreover, we emphasize deep learning techniques as a prospective method for the

next generation of intrusion detection techniques due to their capability of automatically finding

correlations in data [124], [125]. Finally, we summarize and classify the mentioned surveys in Table 3.4.

Liu et al. [126] proposed an IDS taxonomy that takes data sources, i.e., logs, packets, flow, and

sessions, as the main benchmark to present the numerous machine learning techniques (especially

deep learning algorithms) used in the design of anomaly-based IDSs. Moreover, they listed the

capabilities of the studied data source as follows: (i) Logs include exhaustive semantic information,

which is appropriate for detecting SQL injection, R2L (Remote-to-Local) and U2R (User-to-Root)
attacks; (ii) Packets deliver communication contents, which are suitable to detect U2L and R2L attacks;

(iii) Flow characterizes the entire network setting, which can detect DOS and Probe attack; (iv)

Sessions reveal communication between clients and servers, can be used to detect U2L, R2L, tunnel

and Trojan attacks.

VeriDevOps Project nr: 957212 Page 36

https://paperpile.com/c/bpkysA/3q8Z
https://paperpile.com/c/bpkysA/rpAU
https://paperpile.com/c/bpkysA/2W1S
https://paperpile.com/c/bpkysA/2W1S+wB6L
https://paperpile.com/c/bpkysA/q4iD

D1.3 State of the art report

[127], [128] and Da Costa et al.[127], [128] summarized various intrusion detection mechanisms

using a combination of machine learning (ML) and deep learning (DL) approaches. [127], [128] address

software-defined networks (SDNs) and conclude that SDN-based intrusion detection systems using

ML/DL techniques have many advantages in terms of security enforcement, virtual management, and

Quality of Service (QoS) supervision.

Da Costa et al. [127] reviewed the literature on machine learning techniques applied in

Internet-of-Things and Intrusion Detection for computer network security, based on the purposes of

the reviewed papers, the communication protocols, the application protocols, the data format, the

implemented machine learning technique, and the obtained precision rate (PR). Additionally, the

authors listed the datasets used in the works considered in the paper.

ML/DL techniques Classification criteria Contex

SVM, OCSVM, NB, DT, R, DBN,
ANN, KNN, K-means

Type of their targeted
vulnerability: integrity,
availability, confidentiality,
authentication and
authorization

SCADA IIoT
systems

Liu et al. [[126] SVM, K-means, Fuzzy C-means,
CDNN, LSTM, GAN, decision tree,
Naïve Bayes, KNN, Autoencoder
and XGBoost, DNN, RNN,
DBSCAN, Isolate forest

Data sources: Packet, Flow,
Session, Log

Non-specific
environment

[127], [128] Unsupervised artificial neural
network, deep learning
algorithms, self-organizing map
and learning vector quantization

Detection target: anomaly,
intrusion, DDoS, Flooding

SDN based
networks

Da Costa et al.
[127]

K-means, SVM, MCLPDR, OS-ELM,
Random Forest, LS-SVM,
Optimum-path forest, Bat
algorithm, Firefly Algorithm,
Optimum-Path Forest Clustering,
SA-IDSs, Naive Bayes, J48, ADAM,
- CSF-KNN,OCSVM, NNs

Addressed communication
and application protocols
(e.g. TPC/IP and CoAP), and
precision rate

IoT
environment
s

VeriDevOps Project nr: 957212 Page 37

https://paperpile.com/c/bpkysA/DxmN+Da0Q
https://paperpile.com/c/bpkysA/DxmN+Da0Q
https://paperpile.com/c/bpkysA/DxmN+Da0Q
https://paperpile.com/c/bpkysA/DxmN
https://paperpile.com/c/bpkysA/q4iD
https://paperpile.com/c/bpkysA/DxmN+Da0Q
https://paperpile.com/c/bpkysA/DxmN

D1.3 State of the art report

Deep learning: AE, RBM, DBN,
RNN, CNN

Training datasets, Accuracy,
Processing component,
efficiency

Non-specific
environment

Neural network, Kalman Filter,
One Class SVM, One-Class
Classification SVDD

Type of data source (the
network flows
(Industrial-NIDS); the
memory of the equipment
(Industrial-HIDS); - or both
(Industrial-NHIDS))

Industrial
Control
Systems (ICS)

Table 3.4: Summarize of surveys of ML anomaly-based IDSs, classified according to their deployment

context

3.5. Root-cause analysis

Root-cause analysis (RCA) is a method used for identifying the root causes of observed incidents or

problems. It is based on the idea that effective management requires more than merely “putting out

fires” when problems are detected, but also finding ways to prevent them. RCA is applied in a wide

range of domains including IT systems, telecommunications, industry, transport accident analysis,

medical diagnosis, etc. Thanks to RCA results, remediation actions/ reactions could be wisely taken to

prevent or mitigate the damage of the recurrence of the problem.

Although there is a vast literature on RCA, we would restrict it to techniques that can be applied to

IT systems. This condensed state-of-the-art will provide a general understanding of RCA techniques, for

more in-detail explanations of each of the methods, other general surveys are available [129] [130]. For

specific areas, specific surveys exist for computer networks [131, pp. 3–25], software [132, pp.

165–205], industrial systems [133, pp. 859–872], smart buildings [134, pp. 13–23], (regular) buildings

[135, pp. 71–85], machinery [136, pp. 636–653], swarm systems [137], automatic control systems [138,

pp. 41–64] [139, pp. 127–136], automotive systems [140] [141, pp. 213–219] and aerospace systems

[142, pp. 11230–11243]. For the diagnostic, different machine learning approaches have been applied,

namely Artificial Neural Networks, Fuzzy Set Theory, Rule Based Systems and Bayesian Networks.

However, the actual analysis approaches remain a slow and manual (or partly manual) process often

carried out by the operators’ experts who are the main actors analyzing and correlating multiple data

sources, such as network traces, alerts, logs, key performance indicators. The diagnostic delay is

inevitable and the accuracy remains questionable because it depends hardly on the learning data set as

well as the selection of network indicators.

In summary, there are three key ingredients to be able to perform a successful RCA:

● Domain Knowledge, the laws that govern the system (e.g., the laws of mechanics for a
mechanical device). Except mathematical abstractions, anything would have to satisfy the laws
of physics, but it is understood that domain knowledge refers to the rules that govern the

VeriDevOps Project nr: 957212 Page 38

https://paperpile.com/c/bpkysA/czZC
https://paperpile.com/c/bpkysA/VQii
https://paperpile.com/c/bpkysA/gueS/?locator=3-25
https://paperpile.com/c/bpkysA/wvQD/?locator=165-205
https://paperpile.com/c/bpkysA/wvQD/?locator=165-205
https://paperpile.com/c/bpkysA/G5bi/?locator=859-872
https://paperpile.com/c/bpkysA/P5ST/?locator=13-23
https://paperpile.com/c/bpkysA/Z5sw/?locator=71-85
https://paperpile.com/c/bpkysA/oeGY/?locator=636-653
https://paperpile.com/c/bpkysA/Pj4S
https://paperpile.com/c/bpkysA/7pmM/?locator=41-64
https://paperpile.com/c/bpkysA/7pmM/?locator=41-64
https://paperpile.com/c/bpkysA/iahv/?locator=127-136
https://paperpile.com/c/bpkysA/GDyH
https://paperpile.com/c/bpkysA/rD2C/?locator=213-219
https://paperpile.com/c/bpkysA/MuZQ/?locator=11230-11243

D1.3 State of the art report

system at an abstraction level that makes these rules practically applicable (e.g., no one will
use quantum mechanics equations to troubleshoot a printer, even though the printer must
obey those rules, as an easier and more tractable set of rules is enough to model the device for
that particular purpose). Domain Knowledge can be given as an input to the method (this
encompasses model-based methods as they are sometimes called in the literature) or
automatically derived using Machine Learning (ML) techniques. The latter techniques are
sometimes called model-free, although automatically generated model methods would
describe more precisely what they actually do. Note that the application of ML can yield
models that include both the Domain Knowledge plus the System Knowledge. For instance, an
assumption that is sometimes done when diagnosing a black-box system (or a system that
people do not understand, i.e., they do not have a model for it), is that similar symptom
patterns are related to similar root-causes. In this case, a potential way to proceed is to use a
nearest neighbours classifier that maps the symptoms to an N-dimensional space and
compares them to previously seen symptoms for which we know the root causes. In this case,
the model consists of the labelled points, and the N-dimensional space both implicitly contains
the information about the domain knowledge and the system knowledge.

● System Knowledge, the elements that comprise the system and their relationships (e.g., the
different components of the printer and their relations, like relative position, elements in
contact, groups of elements related to the same function, etc.). System Knowledge can be
perfect or flawed. Assuming one or the other distinguishes between methods that can update
(or suggest fixes) to current system knowledge and others that might simply give wrong
answers in the presence of incorrect or missing facts. Methods that can handle inexact system
knowledge are necessarily more complex and not as popular in research as the ones assuming
perfect information, although in many fields this is a frequent source of problems. For instance,
in large IT industrial environments, it is frequently assumed by administrators that the
corresponding Configuration Management Database (CMDB) describing the infrastructure can
contain a large number of errors or omissions.

● Observations, observable data coming from the system (e.g., printed pages from the printer,
information from its internal monitoring sensors, history of previous failures, etc.).
Observations in IT come usually from monitoring tools specialised in gathering them and
providing unified access to the data. Collected data can be of a wide variety of types, from very
structured, like a specific known set of metrics, to almost unstructured such as logs. These
observations can be noisy for many factors, including low accuracy of sensors, bad conditions
for readings, or simply because of the own particularities of the monitoring system setup: for
instance, unsynchronized clocks, different granularities of collection, variable lags, etc., can
alter the temporal order of event observation. This is a relevant issue because the temporal
sequence is often used to restrict feasible casualties (i.e., a consequence cannot precede its
cause), and causality discovery is essential for an informed root cause analysis. As a result,
some techniques include the possibility to look for correlations between events both in the
future and in the past [143, pp. 36–43].

These three elements allow making inferences on what could be happening in the unobserved

parts of the system, predict future observations and potentially solve the RCA problem, among other

things.

VeriDevOps Project nr: 957212 Page 39

https://paperpile.com/c/bpkysA/GT5J/?locator=36-43

D1.3 State of the art report

In addressing three aforementioned elements, the current and future trend are related to the

following issues:

● Learning and diagnostic approaches: Machine learning approaches will be continuously
integrated to automate and speed up the process, especially the Deep learning algorithms.

● “Good” datasets for the learning phase: The redundancy in the datasets is desirable to test
different machine learning algorithms to determine a suitable or a combined one for a specific
use case.

● Selection of the most relevant network indicators: The release of new tools, applications and
even hardware devices are providing more relevant indicators which deserve to be taken into
account. In the case there are too many indicators and the decision of the experts might be
hardly difficult, PCA (Principal Component Analysis) or other feature selection approaches can
be taken into consideration.

As an example, Figure 3.5.1 demonstrates an existing high-level architecture of RCA relying on

machine learning algorithms to identify the most probable cause(s) of detected anomalies based on

the knowledge of similar observed ones.

Figure 3.5.1 RCA high-level architecture example.

The data collector allows gathering information from different sources (e.g., network, application,

system, hardware) by relying on dedicated monitoring agents. It has a plugin architecture that

enhances its extension to new formats of data. The parsing of such data allows extracting numerous

attributes values that can be relevant for the identification of the origin of detected incidents. The

selection of the most relevant attributes is performed based on several machine learning algorithms in

order to increase the accuracy of the analysis and reduce the data dimensions as well as the

computations needed.

VeriDevOps Project nr: 957212 Page 40

D1.3 State of the art report

Historical data is a set of information used for learning purposes. They are labelled events

collected over time to describe the origin cause of several incidents as well as the relative attributes

values. This data is constructed by two means:

● Active learning: By actively performing different tests including the injection of known failures
and attacks, the collected data can be easily labelled since we deal with a controlled system.

● Passive learning: Once an incident is detected without knowing its origin, thanks to the aid of
the system experts, classical RCA is performed by debugging different logs and correlating
various events to determine the corresponding root causes. The result of this task can be
stored in the database with its relevant attributes values.

Based on these two inputs (collected new data and historical data), the idea is to determine when

the system reaches a known undesirable state with a known cause. This involves using the concept of

Similarity Learning and, more specifically, “Ranking Similarity Learning” [144]. That means the tool

calculates the “similarity” of a new state with the known ones and then presents a list of the most

similar states with the relative order of similarity. The final goal is to recognise the root origin of an

incident and based on the set of known mitigation strategies based on the experience reflected in the

historical data. In this way, the tool can recommend to the operator to perform the relevant

countermeasures.

3.6. Reaction – remediation

As said before, a new generation of Industrial Control Systems (ICS) is providing advanced connectivity

features, enabling new automation applications, services, and business models in the Industry 4.0 era.

Nevertheless, due to the extended attack surface and an increasing number of cyber-attacks against

industrial equipment, security concerns arise. Hence, these systems should provide enough protection

and resilience against cyber-attacks throughout their entire lifespan, which, in the case of industrial

systems, may last several decades. To face these threats, firstly continuous monitoring is needed, and

secondly, the application of remediation and countermeasures effective at mitigating them.

Continuous monitoring techniques are already envisioned in VeriDevOps by means of vulnerability

scanning, intrusion detection, runtime monitoring, and anomaly detection, described from section 3.1

to section 3.4. Furthermore, a root cause analysis (section 3.5) is proposed to determine any

underlying causes of security weaknesses, vulnerabilities, or anomalies. The next natural step is the

application of remediation techniques effective at mitigating potential detected threats.

Organizations should identify, review, and assess potential security incidents [145]. This process is

of paramount importance so that an organization can determine which potential threat has a bigger

impact on the compromise or attempt to compromise. For example, once a vulnerability or security

flaw is discovered, for example, a buffer overflow in a software component, the developer should

evaluate whether the library is used in the system, and, for instance, which functions use them, are

they safety critical?, that is, the potential impact of the discovered vulnerability should be checked.,

also looking at possible remediation techniques.

Once this management process is performed, organizations should apply remediations. SP800-82

special publication published by NIST provides recommended security countermeasures to mitigate

associated risks in industrial control systems [146], [147]. This publication also provides

VeriDevOps Project nr: 957212 Page 41

https://paperpile.com/c/bpkysA/w9DS
https://paperpile.com/c/bpkysA/us0Q
https://paperpile.com/c/bpkysA/3yam
https://paperpile.com/c/bpkysA/FrRz

D1.3 State of the art report

recommendations, best practices, common security threats and vulnerabilities for industrial control

systems, including, for example, SCADA (Supervisory Control And Data Acquisition) systems, DCS

(Distributed Control System), and other control system configurations, such as PLCs (Programmable

Logic Controllers). Unfortunately, this publication represents guidance about security controls to be

implemented in industrial controls, such as account management, separation of duties, unsuccessful

login attempts, and so on, that is, controls to be applied or implemented during the development or

maintenance phases but not to be applied during operation.

Industrial standards IEC 63069 [148] and IEC 62443-4-1 [148], [149] address incidence response

and they set these actions as possible remediation measures:

● Software patching

● Controlled power off

● Deactivation of certain functions or parts of the system

● System concept, architecture or defence in depth strategy change

● Implementation of organisational procedures and/or measures

● Use of compensating mechanisms, such as new security functions/capabilities.

In general, there is a lack of risk mitigation and remediation plans in organizations that develop or

run industrial control systems. Companies are usually unprepared to respond accordingly in the event

of a potential incident in IT environments and even more in OT ones. Accurate and timely information

may help incident handlers reduce the number of infections, or address vulnerabilities before they are

exploited, but this information has not always improved the situation for incident response teams

[150].

Furthermore, current heterogeneous environments lack a body of knowledge for shared and

common mitigations to be applied in ICS. MITRE ATT&CK for Industrial Control Systems (ICS) is a

community-sourced framework for identifying malicious threat behaviors, including tactics and

techniques of adversaries, in ICSs, and for each technique, general mitigations are given, but these are

oriented again to network defense capabilities and configuration, mainly [151]. This MITRE ATT&CK

framework can be a reference for an incident response if it is possible to associate potential anomalies

or vulnerabilities with attack techniques. In VeriDevOps, needed actions for resilience will be analysed

so that they can bring decision-support.

3.7. Gap Analysis

VeriDevOps will innovate by fully investigating diversity, prevention and tolerance combined with

different risk management techniques that can be applied to industrial systems during their operation.

Most of these techniques are applicable within a wide range of domains within cybersecurity.

The project addresses updating the risk management at run-time based on data that is

continuously collected through monitoring, during the operation phase of systems. This is not

addressed, in particular, by traditional current risk management techniques and notations. Moreover,

in each stage of the risk management process, the project aims to propose new approaches beyond

the state-of-art, and to test them in actual industrial systems, in order to generate reliable new

techniques in this field.

VeriDevOps Project nr: 957212 Page 42

https://paperpile.com/c/bpkysA/vd77
https://paperpile.com/c/bpkysA/vd77+vyrw
https://paperpile.com/c/bpkysA/tDV8
https://paperpile.com/c/bpkysA/yyWO

D1.3 State of the art report

In addition to the IDS, another fundamental piece of the puzzle will be the publicly-known

vulnerability scanner that will use CPE-based asset inventory for hardware and software during system

development to ensure that not only the operating system and installed applications are considered,

but also open-source libraries, packages, use of cryptographic chips, and so on. This scanning will be

run on a daily basis, every minute or every few minutes depending on the choice, and depending on

the industrial component features with an agent or without.

VeriDevOps will also allow defining intelligent defense strategies by applying Root Cause Analysis

algorithms based on probabilistic decision trees to perform an accurate diagnostic of a detected

security incident and automatically deploy the relevant security mechanism (according to the ratio

impact over cost) according to the application running environment. Several challenges have been

described in this section. We can briefly summarize some of those here as follows:

● Continuous vulnerability scanning of known vulnerabilities in software and hardware industrial

systems

● Signature-based intrusion detection for industrial systems

● Runtime network monitoring and detection using Genetic algorithms and machine learning

based anomaly detection

● Root-cause analysis based on machine learning algorithms and big data sto identify most

probable causes of detected anomalies

● Listing remediation techniques to mitigate threats in industrial systems

The combination of these tools will lead to bridge the gap of security in industrial systems during

their operation. These tools will be validated in the two use cases in VeriDevOps to show effectiveness.

Moreover, the matching between WP3 innovations and each step of the risk management process is

depicted in Figure 3.7.1.

Figure 3.7.1 Summary of VeriDevOps WP3 contributions in each step of risk management process

VeriDevOps Project nr: 957212 Page 43

D1.3 State of the art report

4. Prevention at Development

Security is not a unique feature of software; it is an important aspect of the software that should be

implemented at every major phase of the software development life cycle [152]. It is reported that

there are more chances that a security issue would occur due to a bug in a typical part of the system

(e.g., the interface to the database) than a given security feature like Secure Sockets Layer (SSL) for

encrypting the communications [62]. There are several processes used to integrate the security at

various stages of SDLC. Microsoft has published a software security process, called Security

Development Lifecycle (SDL)39 that introduces security and privacy early and throughout all phases of

the development process. Another example is the Software Assurance Maturity Model (SAMM)40

framework from Open Web Application Security Project (OWASP), comprising five phases: governance,

design, implementation, verification, and operations as shown in Figure 4.1. We describe techniques

used to enforce security aspects at development relevant for this project. Section 4.1 overviews

techniques for formal analysis and verification for security requirements. In Section 4.2, we introduce

security testing and discuss security testing methods (model-based security testing, penetration

testing, mutation and fuzz testing approaches, and search-based security testing) in Section 4.3. We

investigate the localization and debugging approaches in Section 4.4. Section 4.5 discusses the

integration of security in the continuous delivery process.

Figure 4.1 OWASP SAMM model overview

4.1. Formal analysis and verification for security

Chong et al. [153] presented a report on the results of the NSF workshop on formal methods for

security held at the University of Maryland, College Park in November 2015. They discussed some

benefits of using formal methods in software systems. Formal methods allow one to rule out various

40 https://owaspsamm.org/model/

39 https://www.microsoft.com/en-us/securityengineering/sdl

VeriDevOps Project nr: 957212 Page 44

https://paperpile.com/c/bpkysA/kyc0
https://paperpile.com/c/bpkysA/PyRX
https://paperpile.com/c/bpkysA/5E45
https://owaspsamm.org/model/
https://www.microsoft.com/en-us/securityengineering/sdl

D1.3 State of the art report

security attacks. They not only provide precise specifications and models of the system but also include

approaches for reasoning about and mathematically proving certain properties of the system like e.g.,

liveliness. However, there is no single set of right security guarantees for software systems. The desired

security requirements can vary from one application to another and may depend on the specifics of the

application and system. They also highlighted several open research challenges in this area including (1)

how to provide security guarantees at the system level (as opposed to individual component-level

guarantees), (2) what abstractions to use to enable the use of formal methods for security guarantees,

(3) how to standardize existing and new tools to allow compatibility of specifications, tools, and proofs,

(4) how to support the use of formal methods through different stages of software development life

cycle, and (5) how to enable industrial-scale use of formal methods for providing security guarantees.

These challenges must be addressed to realize the benefits of formal methods for security.

Security issues can arise at the boundaries between components, even though individual

components may be “secure” e.g., [154]. Security issues at these boundaries can be exacerbated when

different individuals or organizations have responsibility for the various components. In addition to

ensuring security guarantees when individually-secure components are composed together,

“whole-system guarantees'' (also “cross-layer security” and sometimes “end-to-end guarantees”) refer

to security guarantees that hold across abstraction boundaries. The incompatibility of formal method

tools can hamper the integration of individually-secure components. Currently, there are a few

standards for low-level tools such as Boolean Satisfiability (SAT) or Satisfiability Modulo Theories (SMT)

solvers [155], [156], but there are no common standards for formal specifications and proofs, and

existing tools can vary greatly in their representation of specifications and proofs. Thus, if different

tools are used to formally validate the security of components, it may require significant effort to

combine these formalizations. There have been several promising success stories (and in-progress

stories) for whole-system security, including Ironclad [157], the HACMS DARPA program [157], and

verification of a radiation therapy system [158].

Subburaj and Urban [159] presented a security framework for formally specifying security

requirements of a multi-agent system in the Descartes - Agent formal specification language. The

framework can be used to model authentication and authorization requirements for software agents.

However, it lacks support for automated design, code, and test generation. Giorgini et al. [160]

presented a formal framework called Secure Tropos, which allows modeling and analyzing functional

and security requirements of agent-oriented software. They also presented a formal reasoning tool

based on Datalog (a declarative logic programming language), which allows verifying correctness and

consistency of functional and security requirements.

Rouland et al. [160], [161] presented a formal methods approach for specifying and verifying

security requirements using first-order logic as a technology-independent formalism and Alloy as a

tool-supported language for modeling and analysis of component-based systems. To validate their

approach, they formalized and verified Confidentiality, Integrity and Availability (CIA) security

properties of a component-based system by defining and verifying an appropriate security policy for

each security property. Zhioua et al. [162] [163] presented a framework for integrating formal

specification and verification of security guidelines by combining model checking analysis with

information flow analysis. Their framework is based on an extension of Labeled Transition Systems

VeriDevOps Project nr: 957212 Page 45

https://paperpile.com/c/bpkysA/sOpH
https://paperpile.com/c/bpkysA/0ksC
https://paperpile.com/c/bpkysA/xF1o
https://paperpile.com/c/bpkysA/n5KB
https://paperpile.com/c/bpkysA/n5KB
https://paperpile.com/c/bpkysA/xc8d
https://paperpile.com/c/bpkysA/XdU7
https://paperpile.com/c/bpkysA/sp3L
https://paperpile.com/c/bpkysA/sp3L+ToPE
https://paperpile.com/c/bpkysA/Rzuf
https://paperpile.com/c/bpkysA/8nrR

D1.3 State of the art report

(LTS). It allows to formalize security guidelines for a program written in a natural language and to verify

that the program adheres to the formalized security guidelines.

Yajima et al. [164] presented a support tool for formal verification of security specifications with

ISO/IEC 15408 called FORVEST. The tool helps and guides human verifiers by providing information on Z

notation, linear temporal logic, theorem proving, model checking, and ISO/IEC 15408. It can be used to

check whether the system specifications satisfy the security criteria given in the ISO/IEC 15408

standard. It also provides a web-based environment for using model checking and theorem proving

tools.

Vistbakka et al. [164], [165] presented a safety-security co-engineering approach for industrial

control systems. They demonstrated how formal modeling can help analyze the effects of certain

security solutions on the safety of the system and vice versa. Troubitsyna and Vistbakka [166] and

Vistbakka and Troubitsyna [166], [167] presented an approach for deriving, formalizing, and verifying

safety and security requirements for control systems using the Event-B framework on the Rodin

platform. They integrated safety and security analysis and proposed to derive safety and security

requirements by combining data flow analysis with a safety analysis technique called Hazard and

Operability Analysis (HAZOP). The approach can be used to identify deviations from normal system

behavior caused by accidental failures and security attacks and to reason about the impact of different

security threats on the safety of the system. It also allows us to specify and verify system behaviour in

the presence of accidental faults and security attacks and analyse interdependencies between safety

and security requirements.

Dwyer et al. [39] have identified patterns in formal specifications for finite-state verification, and

these patterns often take complex forms. The seamless object-oriented requirements approach [39],

[168] makes it possible to codify such patterns in the form of template classes encapsulating the

complicated verification logic. This approach makes the patterns reusable across systems and produces

immediately verifiable requirements. Applying the object-oriented approach to requirements not only

simplifies verification but also enables round-trip requirements engineering and traceability: the

template classes are capable of automatically producing structured natural language representations of

the source informal requirements.

Related to real-time systems, Kang et al. [169] and Farrell et al. [170] have specifically focused on

formal verification of safety and security-related constraints using stochastic timed automata,

PROMELA and Boogie. Wardell et al. [171] also proposed an approach for identifying security

vulnerabilities of industrial control systems using PROMELA models.

4.2. Security Testing

Software security testing is the process of validating software requirements related to security

properties such as confidentiality, integrity, availability, authentication, and authorization [172]. The

purpose of security testing is to find weaknesses in software implementation, configuration, or

deployment [173]. There are several literature reviews published on security testing; however, in this

section, we discuss those that are relevant for this project.

VeriDevOps Project nr: 957212 Page 46

https://paperpile.com/c/bpkysA/7yrv
https://paperpile.com/c/bpkysA/7yrv+6LxK
https://paperpile.com/c/bpkysA/RPTs
https://paperpile.com/c/bpkysA/RPTs+BBKE
https://paperpile.com/c/bpkysA/6tnm
https://paperpile.com/c/bpkysA/6tnm+QNTv
https://paperpile.com/c/bpkysA/6tnm+QNTv
https://paperpile.com/c/bpkysA/hOVR
https://paperpile.com/c/bpkysA/CeUw
https://paperpile.com/c/bpkysA/egVy
https://paperpile.com/c/bpkysA/NXfR
https://paperpile.com/c/bpkysA/13lJ

D1.3 State of the art report

Mahendra and Ahmad [174] presented a literature review on software security testing published

between 2000 and 2015. They classified the existing works on software security testing into four

categories namely frameworks, techniques, methodologies, and reviews. They studied 10 frameworks,

4 techniques, 5 methodologies, and 4 reviews. Their results show that the existing approaches for

software security testing are implemented at various phases of the software development lifecycle.

However, there is a lack of approaches that can be applied at the design phase.

Security testing has also been applied in the context of regression testing to evaluate that

updates to the system do not introduce new security bugs. In this context, Felderer and Fourneret

[172] presented a systematic classification of security regression testing approaches. They found and

classified 17 approaches. Their classification is based on several criteria including abstraction level,

security issue, regression testing techniques, tool support, and evaluation criteria (evaluated system,

the maturity of the system, and evaluation measures). They also identified several potential directions

for future research, such as the need for model-based techniques to increase abstraction and

scalability, and improved tool support for automated generation and execution of security tests.

There are two main types of security testing: security functional testing and security

vulnerability (or penetration) testing [175], [176]. In security functional testing we validate whether the

specified security requirements are implemented correctly. Typically such requirements are expressed

with a negative connotation, such as “something should not be allowed to happen” [177]. In security

vulnerability testing we apply penetration testing to uncover the potential system vulnerabilities as an

attacker. Vulnerability refers to the flaws in system design or implementation, for example, buffer

overflow or SQL injection. It can be used to attack or compromise the security of a system.

Several authors have mentioned the need to complement security testing with other testing

techniques. For instance, Zeng et al. [178] mention the importance of combining static code analysis

and dynamic testing for the security of a power system. For dynamic testing, the procedures for

operating the power system are simulated to generate test instructions and results. Tudela et al. [179]

also analyze the merits of combining static, dynamic, and interactive analysis security testing tools.

Ali [180] proposes a four-stage process to ensure security in distributed control systems. The four

stages are (1) risk management, (2) security management, (3) trust and reputation management, and

(4) testing and evaluation. In the last stage of testing and evaluation, the author proposes two types of

testing strategies: penetration testing and fuzzing.

4.3. Security Testing Techniques

In this section, we discuss different security testing techniques related to the project. Felderer et al.

[152] presented an overview of security testing techniques. They discussed basic concepts and recent

developments in different types of security testing techniques and classified the existing techniques

into four different types: (1) model-based security testing (based on requirements and design models

created during the analysis and design phase), (2) code-based testing and static analysis (based on

source and byte code created during development), (3) penetration testing and dynamic analysis

(based on running systems in a test or production environment), and (4) security regression testing

(performed during maintenance).

VeriDevOps Project nr: 957212 Page 47

https://paperpile.com/c/bpkysA/Wvyb
https://paperpile.com/c/bpkysA/NXfR
https://paperpile.com/c/bpkysA/oz3U+cxin
https://paperpile.com/c/bpkysA/iEgN
https://paperpile.com/c/bpkysA/y6Al
https://paperpile.com/c/bpkysA/IqZx
https://paperpile.com/c/bpkysA/7aD3
https://paperpile.com/c/bpkysA/kyc0

D1.3 State of the art report

4.3.1. Model-based Security Testing

Model-Based Testing (MBT) is a black-box testing technique that generates tests from abstract

behavioral models [181]. It allows one to automate or semi-automate the entire testing process.

Moreover, the testing activities can be left-shifted; and the SUT can be tested early in the software

development life cycle. In Model-based Security Testing (MBST), we test the security requirements of

the system under test using models [182]. MBST is a relatively new research field, where many

approaches were published in recent years. In this section, we provide a comprehensive overview of

the state of the art in MBST.

Lunkeit and Schieferdecker [183] described an approach that focuses on the use of the artefacts of

previous phases of security engineering for security testing. This work is proposing a model-based

definition of the security problem that supports finding an optimal test architecture and defining safety

and security-oriented tests that go far beyond functional testing.

Felderer et al. [182] classify MBST based on the two dimensions: automated test generation and

consideration of risk values. The automated test generation dimension describes how much of the

system and formal models capture the security requirements. The risk dimension specifies whether the

risk values are integrated into the model. Fully automated test generation is only possible with formal

and complete models, which are typically not available. The results show that only a few model-based

security testing approaches [184],[185] integrate complete or partial automated test generation and

risk values.

Schieferdecker et al. [176] surveyed the area of MBST from specification and documentation of

security test objectives to security test cases and test suites generation. They studied different types of

model-based security testing techniques including security functional testing, model-based fuzzing,

risk, and threat-oriented testing, and the usage of security test patterns. The authors classify MBST

approaches based on three types of input models for security test generation: (1) architectural and

functional models describe the system requirements regarding the general behaviour and setup of a

software-based system. (2) The threat, fault, and risk models present what can go wrong. These models

enable identifying multiple risk factors, describing their relationships, and relating them to occurrence

probabilities and potential impacts. (3) Weakness and vulnerability models identify the causes and

consequences of system failures, weaknesses, or vulnerabilities. The publicly available databases such

as the National Vulnerability Database (NVD) and the Common Vulnerabilities and Exposures (CVE),

which collect known vulnerabilities, are used to build these models. Felderer et al. [186] presented a

taxonomy and systematic classification of MBST approaches from 1996 to 2013. The taxonomy is based

on a comprehensive analysis of 119 systematically extracted publications on model-based security

testing. It complements existing classification schemes by defining filter and evidence criteria. The filter

criteria comprise the specification of the model of system security, the security model of the

environment, and explicit test selection criteria. The evidence criteria comprise the maturity of the

evaluated system, evidence measures (i.e., the qualitative or quantitative assessment criteria to

evaluate an MBST approach in a specific application), and the evidence level that specifies whether the

approach is evaluated on the level of non-executable abstract or executable concrete test cases. They

also discussed some promising research directions with regard to security properties, coverage criteria,

VeriDevOps Project nr: 957212 Page 48

https://paperpile.com/c/bpkysA/04x4
https://paperpile.com/c/bpkysA/2ZYL
https://paperpile.com/c/bpkysA/jaMj
https://paperpile.com/c/bpkysA/2ZYL
https://paperpile.com/c/bpkysA/4agW
https://paperpile.com/c/bpkysA/8rka
https://paperpile.com/c/bpkysA/cxin
https://paperpile.com/c/bpkysA/6jfx

D1.3 State of the art report

and the feasibility and return on investment of model-based security testing. Although the taxonomy

provides a starting point for further research on model-based security testing, the selected papers can

also be classified into more fine-grained criteria, for example with regard to the types of systems or the

types of vulnerabilities.

Yang et al. [187] proposed an adaptive MBT framework, called OAuthTester, to systematically

evaluate the implementations of the OAuth protocol. They combine the protocol specification and the

network trace observations, followed by iterative refinement of the model with implementation

specifics. The framework discovered three previously unknown vulnerabilities, all of which can result in

severe consequences, including large-scale resource theft and application account hijacking.

Peroli et al. [188] introduced MobSTer, a formal and flexible MBST Framework that supports a

security analyst in conducting security testing of web applications. The main idea underlying MobSTer

is a hybrid approach that takes advantage of model-checking techniques combined with the knowledge

provided by penetration testing guidelines and checklists. This combination enables MobSTer to exploit

the automatic search for possible vulnerable “entry points” without missing important checks.

Krichen et al. [189] proposed an MBST approach to check the security of Internet-of-Things (IoT)

applications in the context of smart cities. The approach consists of specifying the desired IoT

application in an abstract manner using an adequate formal specification language and then deriving

test-suites from this specification to find security vulnerabilities in the application under test in a

systematic manner. Additional work in the context IoT has been performed in the European project

ARMOUR41 - Large-scale Experiments of IoT security testing where test generation strategies for large

scale IoT security testing are discussed in [190]. The proposed approaches are model-based and target

security functional testing, vulnerability testing and security robustness testing using the CertifyIt tool

and TTCN3 [191].

Mahmood et al. [192] presented an MBST approach designed for cybersecurity evaluation of the

Over-The-Air update system for automobiles. The approach generates and executes test cases by using

attack trees as input. Integrating threat modeling in the testing provides several benefits, including

clear and systematic identification of different threats.

Regarding the use of formal models for security testing, Santos et al. [193] used Communicating

Sequential Processes (CSP) to create architectural models of the systems, as well as an initial set of

attacks against these systems. In another formal approach, Parizi et al. [194] used smart contracts to

carry out an experimental assessment of current static smart contracts security testing tools for

blockchain technologies. Jürjens [195] and Wimmel and Jürjens [196] address the problem of

generating test sequences from abstract system specifications in order to detect possible vulnerabilities

in security-critical systems. These approaches assume that the system specification, from which tests

are generated, is formally defined in the language. Their results show that the combination of security

modeling and test generation approaches is still a challenge in research and is of high interest for

industrial applications.

41 https://www.armour-project.eu/

VeriDevOps Project nr: 957212 Page 49

https://paperpile.com/c/bpkysA/vFDv
https://paperpile.com/c/bpkysA/RMKt
https://paperpile.com/c/bpkysA/ybGy
https://paperpile.com/c/bpkysA/px9J
https://paperpile.com/c/bpkysA/Fno1
https://paperpile.com/c/bpkysA/7gaU
https://paperpile.com/c/bpkysA/6uQC
https://paperpile.com/c/bpkysA/hYb7
https://paperpile.com/c/bpkysA/IsJ9
https://paperpile.com/c/bpkysA/ag25
https://www.armour-project.eu/

D1.3 State of the art report

4.3.2. Penetration Testing

Penetration Testing [197], also referred to as PenTest, is an efficient security testing technique used to

identify security vulnerabilities in software systems. In penetration testing, the system under test is

examined using multiple attacks to find vulnerabilities and security bugs in the implementation.

Penetration testing has been applied to many application domains and several commercial and

open-source tools are available, and several literature reviews have been performed.

For instance, Vats et al. [198] presented a literature review on penetration testing and its

applications. They presented a comparative review of 30 research papers. They also studied 13

penetration testing tools with respect to their purpose or utility, some technical specifications,

platform compatibility, and release date. An overview of vulnerability assessment and penetration

testing techniques is presented in [199]. The authors regard penetration testing as a complementary

phase to vulnerability assessment in which a real or simulated attacker attempts to exploit

vulnerabilities of the target system. In another review, Bacudio et al., [200] presented an overview of

penetration testing strategies, methodology and illustrated the penetration testing process on web

applications. The methodology of the test phase is described as a step-wise process comprising

information gathering, vulnerability analysis, and vulnerability exploits.

Denis et al. [201] investigated the attack methodologies, defense strategies, and the tools used for

penetration testing in their study. They discuss four types of penetration testing: external - attack

against externally-visible resources such as servers, firewalls, DNS; internal - an attack behind the

firewall by an authorized user; blind - external attacker with limited information and double-blind -

only a few persons in the organization are aware of the attack. The study discusses penetration testing

for attacks such as Man-in-the-Middle attack, hacking WPA-protected Wifi, phones Bluetooth, remote

PC via IP and open ports with advanced port scanner using Kali Linux, Metasploit, Ettercap, Aircrack,

and Wireshark42. The cause of systems’ vulnerabilities and mitigation techniques were presented to

improve the security of systems. Shebli et al. [202] presented a study about the process, factors,

components, and tools used for penetration testing. The methods of penetration testing, types of

penetration, the phases of conducting the penetration testing, tools used, and the role of Information

security Management System (ISMS), professional ethical and technical competency for performing the

test were discussed in the study.

Al-Ahmad et al. [203] presented a systematic literature review on penetration testing for mobile

cloud computing applications. They found 30 relevant papers and analyzed them to conclude that

there is a lack of studies on mobile cloud computing and web-based vulnerabilities and the existing

approaches do not consider the mobile cloud computing application penetration testing model. In

addition, the model must consider offloading parameters, multiple input types from mobile devices

and networks, and target APIs and apply random testing techniques.

In recent years, artificial intelligence methods have been also applied to penetration testing.

McKinnel et al. [204] presented a systematic literature review on artificial intelligence in penetration

testing and vulnerability assessment. They found 31 relevant papers and focused mainly on papers

based on empirical studies. They also identified several potential research challenges and opportunities

42 https://www.wireshark.org/

VeriDevOps Project nr: 957212 Page 50

https://paperpile.com/c/bpkysA/jhRP
https://paperpile.com/c/bpkysA/eAK3
https://paperpile.com/c/bpkysA/14Qy
https://paperpile.com/c/bpkysA/gGBF
https://paperpile.com/c/bpkysA/JZQp
https://paperpile.com/c/bpkysA/dTni
https://paperpile.com/c/bpkysA/wfRt
https://paperpile.com/c/bpkysA/NCYe
https://www.wireshark.org/

D1.3 State of the art report

for future research, such as scalability of the penetration testing approach, the need for real-time

identification of vulnerabilities, and the need for standardized systems that can be used to assess the

effectiveness of penetration testing approaches in different application domains.

Shah et al. [199] presented an overview of vulnerability assessment and penetration testing

methodologies, models, standards, and popular tools used for testing. The study classified vulnerability

assessment techniques as (i) Manual testing, (ii) Automated testing, (iii) Static analysis, and (iv) Fuzzing.

Penetration testing is described as a phase-wise process comprising (i) Planning and preparation, (ii)

Detection and Penetration, (iii) Post-Exploitation and Data Ex Filtration, (iv) Reporting and clean up.

They conducted a case study on a bank system to detect technical and logical vulnerabilities as a black

box testing followed by a gray box approach to simulate both external and internal attacker’s

viewpoints. The experiment used the open-source tools mentioned in the study and successfully

detected 4 vulnerabilities.

Stefinko et al. [205] presented a study on the benefits and drawbacks of manual and automated

penetration testing for security evaluation. The manual penetration using Metasploit Framework and

the testing effort and cost factors were compared with the automated penetration techniques such as

Social engineering toolkit (SET). The factors considered for comparison were the effort for the testing

process, vulnerability/attack database management, reporting, cleanup, and training. In the same line,

the research and study on automated penetration testing claimed automated testing to be more

efficient and low cost compared to a traditional manual approach. Xue Qiu et al. [206] presented an

automated method named AEPT (automatic executing penetration testing). Shah et al. [207]

introduced an automated vulnerability assessment and penetration testing tool Net-Nirikshak 1.0 to

detect vulnerabilities in the banking domain. Shah et al. [208] conducted a study on vulnerability

assessment and penetration testing (VAPT) techniques and the benefits of creating cybersecurity

awareness. Goel et al. [209] presented the use of VAPT as a cyber defence technology and the VAPT life

cycle, techniques, and widely used tools.

Antunes et al. [210] presented a penetration testing approach that uses attack signatures and

interface monitoring and implemented a prototype tool to detect SQL Injection vulnerabilities in SOAP.

The tool proved to provide higher detection coverage than commercial penetration testing tools.

Mainka et al. [211] introduced an automated penetration testing tool called WS-Attacker for

SOAP-based Web Services. The attack types used in the study were WS-Addressing spoofing and

SOAPAction Spoofing and the resistance to these vulnerabilities were evaluated proving the approach

to be beneficial in identifying vulnerabilities.

Stepien et al. [212] demonstrated an approach to use TTCN-3 as a modeling language for web

penetration testing. Using TTCN-3 provides the advantage of specifying and executing test suites at an

abstract level thereby reducing efforts of modeling and test results analysis.

Falkenberg et al. [213] presented an automated plugin-tool for penetration testing of web service

specific Denial of Service attacks. The Denial of service plugin has a DoS Attack class to provide

attack-specific implementation details and an MVC DoS Extension to provide the DoS attack-specific

functionality. The study was conducted on Web service frameworks Axis2 Java, Apache CXF, ASP.NET

and Metro, and the results showed that except ASP.NET latest versions of other frameworks are

vulnerable to DoS attacks.

VeriDevOps Project nr: 957212 Page 51

https://paperpile.com/c/bpkysA/14Qy
https://paperpile.com/c/bpkysA/Ee5y
https://paperpile.com/c/bpkysA/EPwH
https://paperpile.com/c/bpkysA/CtHs
https://paperpile.com/c/bpkysA/2yAv
https://paperpile.com/c/bpkysA/qezb
https://paperpile.com/c/bpkysA/XL3a
https://paperpile.com/c/bpkysA/5KOt
https://paperpile.com/c/bpkysA/aVX7
https://paperpile.com/c/bpkysA/0eG2

D1.3 State of the art report

Vibhandik et al. [214] presented an approach for vulnerability assessment of web applications by

using a combination of W3AF and Nikto tools. The results from the study proved that combination of

these tools identified vulnerabilities such as Cross-site request forgery, Sensitive information disclosure,

Cross-site tracing, potential risk of attack migration thru nodes, DDoS in shared hosting, Obsolete or

Insecure Software version, Security misconfiguration, Unauthorized access to sensitive information and

Information leakage.

Nagpure et al. [215] presented a comparative study and analysis of penetration testing methods

and tools for vulnerability assessment of web applications. The study showed that manual penetration

testing proved to be more accurate in detecting vulnerabilities such as Cross-site scripting, SQL

injection, Clickjacking, File upload, Browser cache weakness, Directory traversal, Authentication bypass,

and Cross-site request forgery and recommended a combination of manual and automated testing

approach for improved accuracy for vulnerability assessment.

Chu et al. [216] proposed the use of penetration testing to evaluate the security problems of IoT.

They analysed the security issues in IoT, discussed the automation of penetration testing based on the

belief-desire-intention (BDI) model and validated the work by a simulated experiment in Jason.

A systematic mapping study on penetration testing has been performed by Bertoglio and Zorzo

[217] overviewed among other things the challenges of penetration testing. They identified the efficacy

in the process of vulnerability assessment, creating generic models and tools that can be easily

deployed to specific target scenarios and automation of the PenTest activities.

Researchers have also investigated the use of black-box scanners for detecting unknown

vulnerabilities. For instance, Bau et al. [218] conducted a study on automated black-box scanners for

unknown vulnerabilities to find (i) type of vulnerabilities tested by scanners, (ii) effectiveness of the

scanners, (iii) to evaluate the relevance of the target vulnerabilities to vulnerabilities found in the wild.

The study found vulnerabilities such as Cross-site scripting, SQL Injection, Cross-Channel Scripting, and

Information Disclosure to be the most prevalent ones. Even though the vulnerability detection rate was

less than 50% as per the study results, black box scanners are suggested to be beneficial in security

auditing programs. In addition, Seng et al. [106] conducted a systematic review and analysis of

methodologies to assess the quality of web application security scanners, that is, computer programs

that assess web application security with penetration testing techniques. They studied 108 relevant

papers and published conference proceedings and quantified 93 web application security scanners. The

measurement parameters used for the survey were vulnerability detection rate and the number of

vulnerabilities detected under the same category. They concluded that the measurement metrics to

analyze a web application security scanner’s attack coverage, test coverage, vulnerability detection

rate, and scanning efficiency need to be elaborated based on further studies and research.

As a summary, it is generally agreed that penetration testing is a necessary part of the vulnerability

assessment process, but it currently requires custom solutions for different application domains and

individual systems. In change, we would like common methods and tools that can be easily customized

and deployed to specific applications. In addition, there is a lack of research for methods and tools in

rapidly advancing domains such as web, mobile, and cloud domains.

VeriDevOps Project nr: 957212 Page 52

https://paperpile.com/c/bpkysA/G2PA
https://paperpile.com/c/bpkysA/QAa8
https://paperpile.com/c/bpkysA/CcLO
https://paperpile.com/c/bpkysA/MVhF
https://paperpile.com/c/bpkysA/uk5a
https://paperpile.com/c/bpkysA/B7vm

D1.3 State of the art report

4.3.3. Mutation and fuzz testing approaches

One category of testing techniques that can be applied to security testing is to generate invalid inputs

to the SUT in order to detect possible faults. We can split them into largely two types: functional

mutation and fuzz testing.

4.3.3.1. Functional Mutation

Büchler et al. [219] and Dadeau et al. [220] presented mutation testing approaches for testing security

properties in network security protocols modeled in HLPSL (High-Level Security Protocol Language).

They defined and used security-specific mutation operators to generate model-level mutants. In these

approaches, the original model is modified in such a way that a certain security property is violated in

the implementation. The mutated models are analysed by the AVISPA tool, which produces

counter-examples leading to the security flaws and allows to produce attack traces for the detected

security flaws. Siavashi et al. [221] presented a model-based mutation testing approach for

vulnerability assessment of web services. They modeled the web service under test and its security

requirements in UPPAAL timed automata and evaluated the authentication and authorization of the

web service. They used a model-based mutation testing tool called μUTA and introduced several new

mutation operators to generate additional mutants. Papadakis et al. [222] presented a survey of

mutation testing techniques including mutation-based security testing techniques. They analyzed

several approaches for testing security protocols, regression testing of security policies, and

transforming functional tests into security tests. Dadeau et al. [220] and Buchler et al. [219] have

investigated the creation of security-relevant mutants at the model level and how to use these

mutations for security testing.

Buchler et al. [223] presented an approach for testing web applications from a secure model. They

used mutation operators generated from the set of known vulnerabilities and injected these to the

secure model. To generate the models they used ASLAN++ language used for security protocols and

used model checker CL-AtSe model-checker to generate attack traces. The evaluation was done on an

insecure web application WebGoat maintained by OWASP and diagnosis of attack traces revealed the

vulnerability attacks Role-Based Access Control (RBAC) and Cross-Site Scripting (XSS).

Henard et al. [224] presented the approach to test software product lines using mutation based on

feature models. The study investigated the application of mutation operators and mutation analysis on

feature models to demonstrate higher mutant detection ability of dissimilar test suites than similar

ones.

4.3.3.2. Fuzz testing

Fuzz testing or Fuzzing is a dynamic testing technique used for testing the robustness and security of

software systems. In this approach, the system under test is tested with invalid input data to find any

security vulnerabilities that can crash or give access to the system. Felderer et al. [152] presented a

survey on security testing where fuzz testing approaches are classified as random fuzzing and advanced

fuzzing techniques such as mutation-based fuzzing, generation-based fuzzing.

Liang et al. [225] presented a survey on fuzzing in the area of software testing and security by

reviewing 171 papers published between 1990 to 2017. They presented the fuzzing process,

VeriDevOps Project nr: 957212 Page 53

https://paperpile.com/c/bpkysA/Tv6B
https://paperpile.com/c/bpkysA/5aB8
https://paperpile.com/c/bpkysA/vVwp
https://paperpile.com/c/bpkysA/EDRe
https://paperpile.com/c/bpkysA/5aB8
https://paperpile.com/c/bpkysA/Tv6B
https://paperpile.com/c/bpkysA/FzMd
https://paperpile.com/c/bpkysA/88Zj
https://paperpile.com/c/bpkysA/kyc0
https://paperpile.com/c/bpkysA/mHKQ

D1.3 State of the art report

classifications, tools used, and the evolution of fuzzing techniques and the growing trend of fuzzing as a

popular research area.

In mutation-based fuzzing, the testing starts with a valid input which is then mutated in

subsequent valid and invalid inputs. Its advantages are that it is easy to start with, but the inputs may

diverge easily from the expected format and not be efficient in terms of input coverage. In

generation-based fuzzing, inputs are generated in a more systematic way from the specifications of the

input format such as grammars and XML schemas. Thus input coverage is easier to control and

improve, but it requires that the input format is known and its specification created.

Also, the fuzzing approaches can be classified based on the “visibility” they have into the source

code of the SUT. As such, black-box fuzzing generates input against the SUT without knowledge of the

internal structure of the code, whereas in white-box fuzzing the test generation can be guided for

instance to increase the level of coverage of the code.

Schieferdecker et al. [226] presented the model-based fuzz testing as a smarter approach for

determining the tests to reveal the security risks. Unlike the random fuzzing method where the input

data is totally invalid, model-based fuzzers have protocol knowledge based on the model of the system

under test. Based on the protocol knowledge, model-based fuzzers generate input data containing

invalid data among valid data. Model-based fuzzing outperforms the randomized approach in terms of

its ability to reveal complex bugs in the system. Behavioral fuzzing focus on finding design level flaws

and system vulnerabilities by submitting invalid message sequences to a system under test. Behavioral

fuzzing approach can be used for the generation of test cases from models specified as finite state

machines and UML sequence diagrams.

Schneider et al. [227] presented an approach to apply fuzzing operators to modify the existing

UML sequence diagrams to generate invalid message sequences to test the system. UML sequence

diagram provides an advantage of allowing the reuse of functional test cases for security testing using

behavioral fuzzing. The case study of a banknote processing system from the DIAMONDS research

project was investigated to identify the fuzzing operators and classify them for test case selection and

prioritization.

Schneider et al. [228] proposed an approach to reduce test execution time and make behavioral

fuzz testing more efficient by generating test cases at runtime, taking into account results from

previous test executions, and focusing on message subsequences from a risk analysis carried out

earlier. Online model-based behavioral fuzzing is applied to the case study of a banknote processing

system from the ITEA-2 research project DIAMONDS by generating a model of the functional test cases

using UML sequence diagrams. During the online test generation, fuzzing operators are applied to UML

sequence diagrams to determine the message sequences to be sent to the system under test.

Duchene et al. [229] presented a black box Cross-Site Scripting fuzzer for web applications named

KameleonFuzz. The fuzzer generates fuzzed inputs using an attack grammar and the control and taint

flow model. The study conducted proved KameleonFuzz detected most XSS vulnerabilities,

outperformed several other black box security scanners and had no false positives.

Zhang et al. [230] presented a survey on machine learning for software testing covering 138

papers on testing properties such as correctness, robustness, and security, etc. The study covered the

VeriDevOps Project nr: 957212 Page 54

https://paperpile.com/c/bpkysA/Rgf5
https://paperpile.com/c/bpkysA/ZEcu
https://paperpile.com/c/bpkysA/HGkX
https://paperpile.com/c/bpkysA/5SlT
https://paperpile.com/c/bpkysA/kViR

D1.3 State of the art report

research related to the application of machine learning techniques for fuzzing, eg. TensorFuzz [230],

[231], DLFuzz [232].

Godefroid et al. [233] demonstrated the automated generation of input grammar for fuzzing using

machine learning techniques. They used a learn&fuzz algorithm where learning captures the structure

of well-formed inputs and fuzzing tries to break the structure to find vulnerabilities.

Mutation-based fuzzing tools use random data mutations in the input. However, according to

Wang et al. [234] such random changes are not effective if the running program uses a checksum

mechanism to check the integrity of inputs. Thus the authors proposed TaintScope, a checksum-aware

directed fuzzing system. TaintScope uses the taint propagation information during program execution

to detect and overcome checksum-based integrity checks to generate test cases that have higher

chances of detecting vulnerabilities. TaintScope works on both Linux and Windows binary executables.

BuzzFuzz [235] is another taint-analysis based, white-box directed fuzzing tool that uses an

instrumented application to identify input data that influences the system calls. The instrumentation of

the application’s source code remains a limitation of this approach. According to Munea et al. [236]

most common fuzzing types are application, file format, and protocol fuzzing. In protocol fuzzing,

counterfeit packets are sent to the target system or sometimes a protocol fuzzer acts as a proxy server.

The authors classify network protocol fuzzing based on different factors such as intelligence level,

invalid input creation, and the manner of detecting vulnerabilities, among others. Tao et al. [237]

studies existing hybrid fuzzing techniques that combine symbolic execution to typical fuzz testing.

Symbolic execution represents a program’s inputs with symbols instead of values. The program input is

then generated based on program analysis, making sure that the input executes the program in the

desired location. However, symbolic execution is known to have path explosion problems, thus the

hybrid fuzzing techniques aim to use low-overhead fuzzing with symbolic execution to address

incomplete traversal. PANGOLIN is one example tool based on hybrid fuzzing proposed by Huang et al.

[238]. They identify the uncovered branches in fuzzing, construct a summary of these uncovered

branches to describe a search space of the feasible inputs with respect to the path constraints. This is

then used to guide the mutation of the seeds.

Another approach to deal with the path explosion problem of symbolic execution is to use concolic

execution (aka dynamic symbolic execution), i.e., some variables are kept as symbolic, but concrete

values of other variables are used at runtime. The tool by Godefroid et al. [239] [240], SAGE (Scalable

Automated Guided Execution) is the first tool to perform dynamic symbolic execution at the x86 binary

level. Ghimis et al. [241] present a different classification of fuzz testing: white-box random fuzzing,

black-box random fuzzing, and grammar-based fuzzing. In white-box random fuzzing, fuzz testing is

directed to interesting areas of the program, with the goal to improve code coverage. BuzzFuzz and

SAGE (discussed above) are example tools for white-box random fuzzing. In black-box random fuzzing

or fuzz testing in general, sample inputs are mutated by the fuzzer with the goal to exercise overlooked

corner cases.

One example black-box random fuzzing approach is proposed by Paduraru et al. [242] where a

parallel implementation of a genetic algorithm in Apache Spark guides the test generation towards the

uncovered area of the program. In grammar-based fuzzing, a grammar describing the input is given to

the program. An example tool based on such grammar is QuickFuzz [243] that uses a grammar-based

VeriDevOps Project nr: 957212 Page 55

https://paperpile.com/c/bpkysA/kViR+XVBw
https://paperpile.com/c/bpkysA/kViR+XVBw
https://paperpile.com/c/bpkysA/XeCr
https://paperpile.com/c/bpkysA/WzXT
https://paperpile.com/c/bpkysA/Mtan
https://paperpile.com/c/bpkysA/8EIs
https://paperpile.com/c/bpkysA/wdpx
https://paperpile.com/c/bpkysA/tL0P
https://paperpile.com/c/bpkysA/kuTv
https://paperpile.com/c/bpkysA/Q8zC
https://paperpile.com/c/bpkysA/uf1Z
https://paperpile.com/c/bpkysA/9iMe
https://paperpile.com/c/bpkysA/Piie
https://paperpile.com/c/bpkysA/KCyF

D1.3 State of the art report

and mutation-based fuzzing for more than a dozen common file formats. Further details on fuzz testing

are available in recent review studies on the subject [225] [244]. Recently, Microsoft released publicly a

REST API fuzzing tool called RESTler43 [245] for automatically testing and finding security and reliability

bugs in cloud/web services through their REST APIs. The tool generates HTTP requests based on the

interface specification and in addition, it infers dependencies between different requests.

4.3.4. Search-based Security Testing at Design and Development

The paper by McMinn [246] on metaheuristic search-based software test data generation surveyed

different areas of the test data generation like (1) the coverage of program structure, or white-box

approaches; (2) reject the grey-box properties in the software; (3) verify non-functional properties; and

(4) check the program features as per the specification.

McMinn et al. [247] research on search-based test input generation for string data types using the

results of web queries uses examples of string inputs from the Internet and formulated into web

queries, and the resulting URLs are splitted into tokens, which are used as seeds for search-based test

data generation. The paper also presents an empirical studying using 20 Java classes from 10 open

source projects.

Antoniol [248] showcased a paper on search-based software testing for software security. The

paper presents the promising aspects and challenges of search-based testing methods to detect

software vulnerabilities. The paper discusses recent achievements in SBSE like Buffer overflow, SQL

injection, Privilege Escalation Testing, Robustness, and Penetration Testing, and Intrusion Detection

Systems to mitigate the vulnerabilities. It also discusses challenges like: (1) What to break? (2) System

Wide Test (3) Data Types (4) Aborting at fixed time (5) Exception raising and Singularities search (6)

Good search Strategy (7) Best environment.

There are different approaches to provide security to web applications. Avancini et al. [249]

investigated on security testing of web applications: a search-based approach for Cross-Site Scripting

Vulnerabilities. The purpose of the paper is to implement a search-based approach to prevent

exploitation from hackers which may leak crucial information like credentials and credit card numbers.

The implemented technique uses Genetic Algorithm to search vulnerabilities in the input values, then

collect symbolic constraints at run time and pass it to a solver to fix the security issues. The method

does not automatically detect and eliminate the issues from the system but rather provides detailed

information by generating test cases for developers.

Similar to the approach mentioned above, Thome et al. [250] presented a paper on search-based

security testing of web applications. The paper presents BIOFUZZ, a security testing web application

that uses evolutionary black-box testing to detect vulnerabilities in SQL injections. The prototype uses

search-based testing to populate the inputs towards an expected target. The approach works in two

phases, firstly the application tracks web applications and creates inputs that affect the interaction

between the web server and database on the SQL interaction. Compared to white-box testing, BIOFUZZ

requires no code access, which makes it applicable for a wider range of situations. Secondly, BIOFUZZ

generates SQLI attacks to the identified inputs in the first phase.

43 https://github.com/microsoft/restler-fuzzer

VeriDevOps Project nr: 957212 Page 56

https://paperpile.com/c/bpkysA/mHKQ
https://paperpile.com/c/bpkysA/rK1T
https://paperpile.com/c/bpkysA/xgOq
https://paperpile.com/c/bpkysA/hM6J
https://paperpile.com/c/bpkysA/T6vn
https://paperpile.com/c/bpkysA/DmLu
https://paperpile.com/c/bpkysA/oX8D
https://paperpile.com/c/bpkysA/M4e3
https://github.com/microsoft/restler-fuzzer

D1.3 State of the art report

Alshahwan et al. [251] implemented an automated web application testing approach using Search

Based Software Engineering. The algorithm is based on Hill Climbing using Korel’s [252] Alternating

Variable Method (AVM) but with constant seeding and Dynamically Mined Values (DMV). In this

approach, a SWAT (Search-based Web Application Tester) tool is created in which the inputs that

reached the branch but failed are kept track of and used as seeds. The tool passes constantly gathered

seeds to the search space and measures the fitness for strings.

Liu et al. [253] used a different approach to that of BIOFUZZZ for detecting SQL Injection

Vulnerabilities using a search-based approach. They present a novel fitness function called Similarity

Matching Distance (SMD), which evaluates the similarities between the SQL statements produced by

providing inputs to the system under test and a known threat SQL statement. The experiment is

conducted in 19 diverse configurations of different SQL statements and attacks. It also capitalizes

Differential Evolution (DE), which serves as a search engine to detect SQL injection vulnerabilities.

XML Injection is similar to SQL injection but in a different environment. Out of a few, Jan et al.

[254] showcased a search-based testing approach for XML Injection Vulnerabilities in web applications.

The paper proposes a novel search based approach that uses Genetic Algorithm to generate the test

data to provide malicious XML messages to the web service and to detect the XML attacks. It uses

black-box approach to match the output from Software Under Test and Test Objectives. The method is

applied to an industrial web application with millions of users.

Apart from testing the core applications, it is also wise to implement a test case on the testing

itself. For that purpose, Souza et al. [255] proposed using automated search-based technique with Hill

Climbing for mutation testing. The paper proposes an efficient and cost-effective approach by removing

the manual effort to strongly kill mutants, focusing on the mutations’ propagation. The proposed tool is

an extended version of AUSTIN [256] tool integrated with Proteum [257]. The proposed approach uses

a novel fitness function that helps the process to generate test cases to reach, infect and kill the

discovered mutants.

Several papers investigated security related problems, but what about Service Level Agreement?

Penta et al. [258] focused on search-based testing on Service Level Agreements. The paper presents

methods to analyze if Service Level Agreement (SLA) negotiation between provider and consumer is

fulfilled and also to predict the Quality of Service (QoS) that can be guaranteed for the consumers. The

technique used is Genetic Algorithm to generate inputs for service-oriented systems which causes SLA

violations. The generated tool is applied to an audio processing workflow and a chart generation

service. More precisely, the tool uses black-box approach where violated constraints are captured by

the fitness and a white box approach which combines the obtained fitness with code coverage

provided by Wegener et al. [259], which considers a starting point for searching for QoS violations.

The increasing use of computerized systems and software applications in our society creates a high

demand for security and dependability. The traditional methods of testing involved greater human

interactions and instructions and slowly being replaced by AI and different automated techniques. A

huge number of software is made or modified on a daily basis, which requires a huge amount of testing

to maintain their efficiency and security. AI through SBST helps to expose and prevent such software

vulnerabilities and provides high security to the system. There are different algorithms inside SBST

itself that can be chosen depending upon the case in hand.

VeriDevOps Project nr: 957212 Page 57

https://paperpile.com/c/bpkysA/Zxp4
https://paperpile.com/c/bpkysA/HiKx
https://paperpile.com/c/bpkysA/mZYz
https://paperpile.com/c/bpkysA/sbqn
https://paperpile.com/c/bpkysA/cbv7
https://paperpile.com/c/bpkysA/aM4A
https://paperpile.com/c/bpkysA/ULMB
https://paperpile.com/c/bpkysA/MpBd
https://paperpile.com/c/bpkysA/SZTr

D1.3 State of the art report

4.4. Localization and debugging

Software fault localization, the act of identifying the locations of faults in a program, is widely

recognized as one of the most tedious, time-consuming, and expensive activities in program

debugging. Over the years, researchers have proposed a plethora of automated fault localization

techniques and tools to reduce time and effort [260]–[263].

Zou et al. [264] have classified fault localization techniques into the following types:

1. Spectrum-based fault localization (SBFL): utilizing test coverage information

2. Mutation-based fault localization (MBFL): utilizing test results collected from mutating the

program

3. (Dynamic) program slicing: utilizing the dynamic program dependency

4. Stack trace analysis: utilizing error messages

5. Predicate switching: utilizing test results from mutating the results of conditional expressions

6. Information retrieval-based fault localization (IR-based FL): utilizing bug report information

7. History-based fault localization: utilizing the development history

Spectrum-based fault localization techniques rank each program element (e.g., code statement)

with respect to a suspiciousness score, whereas other techniques, such as dynamic program slicing,

highlight a collection of elements as suspicious that cause or correlate with the failure in order to help

the developer in fixing the fault.

Despite the existence of many software fault localization techniques, we found only a few studies

directed to fault localization in security testing to the best of our knowledge. Concurrency-related bugs

have caused many web security issues in the past. Zhenyuan Jiang [265] presented a new automated

edge-labeled communication graph-based locating technique, called LUCON to identify concurrency

bugs. It can find buggy memory access pairs, present buggy patterns, and build bug triggering

scenarios. The buggy patterns give the essence of the bugs, and the bug triggering scenarios show how

the bugs happen, which can help programmers understand the bugs.

Simos et al. [266] proposed a security testing approach for Cross-Site Scripting (XSS). The authors

derive combinatorial XSS attack vectors with the help of grammar. Subsequently, the test cases are

executed against a web application. Afterward, a fault-localization approach, called BEN [267], checks

the structure of attack vectors that detected a vulnerability and tries to track its critical combination.

BEN is a spectrum-based fault localization technique. It utilizes the results of the combinatorial test set

and generates the ranking of statements in terms of their likelihood of being faulty. BEN consists of two

main steps: (1) It identifies a combination that is very likely to be a failure-inducing combination. (2) It

takes the failure-inducing combination identified in step 1 and then produces a ranking of statements

in the source code by analyzing the spectra of the small group of tests. In this work, the authors only

applied the first phase of BEN because they are not interested in the ranking of statements in the

source code since they are following a black-box security testing approach.

Ji et al. [268] formulated a program error propagation-based model (PEP) to find security bugs.

They proposed a spectrum-based fault-localization technique to locate faults at the code level. DeMott

et al. [269] developed a distributed fuzzing technique that identifies bugs and subsequently localizes

the bug's root cause. This work focuses on memory corruption errors, which usually have software

VeriDevOps Project nr: 957212 Page 58

https://paperpile.com/c/bpkysA/U6Cl+wsz8+UfMi+YfoR
https://paperpile.com/c/bpkysA/RBR2
https://paperpile.com/c/bpkysA/6hXJ
https://paperpile.com/c/bpkysA/GqsF
https://paperpile.com/c/bpkysA/phYv
https://paperpile.com/c/bpkysA/Oy3I
https://paperpile.com/c/bpkysA/luXm

D1.3 State of the art report

security implications. The authors localize faults using a code-based coverage algorithm, called

Tarantula [270] combined with input data tainting and tracking techniques.

Lu et al. [271] proposed a fault localization framework, CRAXfault, based on single-path concolic

execution, which exploits the execution path of one failed test case to automatically generate

numerous test cases. These test cases are used in a fault localization technique (e.g., Tarantula [270],

Ochiai [272], Crosstab [273], and DStar [274]) to rank program components, such as statements or

predicates, with top-ranked components more likely to be faulty.

Firewalls are the mainstay of enterprise security and the most widely adopted technology for

protecting private networks. A firewall highly depends on the quality of its firewall policy in terms of

packet filtering. Firewall errors are mostly caused by faults (i.e., misconfigurations) in rules of firewall

policies. Hwang et al. [275] proposed a fault localization approach to reduce the number of rules for

inspection based on information collected during evaluating failed tests. The approach ranks the

reduced rules to decide which rules should be inspected first.

4.5. Continuous integration and security

As we have discussed previously, there are many methods for secure software development such as

SAMM and SDL [152]. Some of them involve testing or analysis of various kinds using automated tools.

However, none of these approaches explicitly promote doing security testing continuously.

Nevertheless, researchers have proposed some methods for adopting security testing into CI systems

and DevOps workflows. Hilton et al. [276] outline the concept of a security tradeoff between increased

security measures, and the ability to access and modify the CI system as needed. They report that

developers encounter increased complexity, increased time costs, and new security concerns when

working with Continuous Integration (CI).

Mårtensson et al. [277] identified several factors that must be taken into account when applying

continuous integration to software-intensive embedded systems related to security. Security aspects

can be an impediment, such as when developers are hindered from communicating freely regarding

the exact content of the functions they have built. This further increases the difficulty of a common

understanding of the product, which also becomes an impediment related to testing the product

end-to-end.

Another problem identified in the literature is that in delivery features continuous releases,

traditional security methods are not suited. In recent years the new terms DevOpsSec or SecDevOps

[278] were formed which address exactly this problem. Regarding DevOpsSec, there is a lack of

methodologies for handling direct security requirements and how to extract these requirements. In

addition, the adoption of DevOps in industrial fields with high requirements for security, traceability

and safety, such as industrial embedded systems, is scarcely reported [279].

Automated security testing is an essential component of Continuous Integration and Continuous

Delivery (CICD), such as scheduling automated test sessions on overnight builds. That allows

stakeholders to execute entire test suites and achieve exhaustive test coverage. On the other hand,

developers also need test feedback from CI servers when pushing changes, even if not all test cases are

executed. As an example, Neto et al. [280] proposed similarity-based test case selection on

VeriDevOps Project nr: 957212 Page 59

https://paperpile.com/c/bpkysA/QyO2
https://paperpile.com/c/bpkysA/yvHe
https://paperpile.com/c/bpkysA/QyO2
https://paperpile.com/c/bpkysA/X2cP
https://paperpile.com/c/bpkysA/4TPQ
https://paperpile.com/c/bpkysA/ptwG
https://paperpile.com/c/bpkysA/AbU8
https://paperpile.com/c/bpkysA/kyc0
https://paperpile.com/c/bpkysA/6PUk
https://paperpile.com/c/bpkysA/nw0r
https://paperpile.com/c/bpkysA/jFpo
https://paperpile.com/c/bpkysA/5sM7
https://paperpile.com/c/bpkysA/mYho

D1.3 State of the art report

integration-level tests executed on continuous integration pipelines. Related to test generation and

selection, STAMP44 is a European research project on software testing amplification for DevOps teams

by reusing existing assets in order to generate more test cases and test configurations each time the

application is updated.

4.6. Gap Analysis

Mahendra and Ahmad [174] reported a lack of security testing approaches that can be applied at the

design phase. Felderer et al. [186] reviewed 119 publications on model-based security testing. They

identified several challenges related to the kind of security properties that are tested, the use of

coverage criteria, and the feasibility and return on investment (ROI) of security testing. Specifically,

there is room for research that explicitly addresses vulnerabilities and directly targets system-wide

security properties. In addition, there is a need to understand which variants of coverage criteria can

yield effective and efficient security tests in the specific context of security testing. Felderer and

Fourneret [172] highlighted the need for model-based techniques to increase abstraction and

scalability and improved tool support for automated generation and execution of security tests. Jürjens

[195] and Wimmel and Jürjens [196] reported that the combination of security modeling and test

generation approaches is still a challenge in research and is of high interest for industrial applications.

In VeriDevOps, we aim to develop model-based test generation and selection methods for security

testing using security models based on formal specifications. These models can be built that can be

reused in different contexts and stages of the software development life cycle, and to empirically

understand the return on investment. We will develop new approaches for model-based mutation

testing and fuzz testing by defining new model-level mutation operators suitable for testing security

aspects. We plan to validate the novel techniques on the systems provided by ABB. Building on

standards and practices such as IEC 62443 [281], VeriDevOps will develop a consolidated cybersecurity

methodology incorporating the roles played in cybersecurity by people, processes, and software

technologies.

McKinnel et al. [204] identified several potential research challenges and opportunities for future

research, such as scalability of the penetration testing approach using artificial intelligence, the need

for real-time identification of vulnerabilities, and the need for standardized systems that can be used to

assess the effectiveness of penetration testing approaches in different application domains.

Furthermore, Al-Ahmad et al. [203] found a lack of studies on mobile cloud computing domains such as

IoT and web-based vulnerabilities and the existing penetration testing approaches do not consider the

mobile cloud computing application. In VeriDevOps, we will collaborate with Fagor (one of the project's

industrial partners in the project) that offers a cloud-based IoT solution to develop new penetration

testing approaches to test their IoT solution for vulnerabilities using machine learning and heuristic

algorithms.

To avoid ripple effects from failures and to ensure that vulnerabilities are identified as fast as

possible, it is paramount for the industry to ensure that the systems satisfy their functional safety

44 https://www.stamp-project.eu/view/main/

VeriDevOps Project nr: 957212 Page 60

https://paperpile.com/c/bpkysA/Wvyb
https://paperpile.com/c/bpkysA/6jfx
https://paperpile.com/c/bpkysA/NXfR
https://paperpile.com/c/bpkysA/IsJ9
https://paperpile.com/c/bpkysA/ag25
https://paperpile.com/c/bpkysA/XPsd
https://paperpile.com/c/bpkysA/NCYe
https://paperpile.com/c/bpkysA/wfRt
https://www.stamp-project.eu/view/main/

D1.3 State of the art report

requirements throughout the development and operation process. We plan to improve upon the

current state of the art by developing an organizational and process model blueprint that is used to

create a domain-driven formal model of security to tackle the non-existing ability in many approaches

to define, model, execute and test security requirements from a system point-of-view. In addition,

VeriDevOps is focusing on overcoming the obstacles to the adoption of DevOps by examining its role in

specific standards, such as IEC/ISO standards and how to provide fast feedback on checking security

requirements. The main goal of the VeriDevops techniques is to reduce the number of exploitable

vulnerabilities and cost of security protection.

VeriDevOps Project nr: 957212 Page 61

D1.3 State of the art report

5. Summary

The objective of this document is to extend the literature review conducted in the project proposal by

collecting and classifying the new approaches and technologies related to automated generation of

security requirements, prevention at development and reactive protection at operations that appeared

since the project proposal was submitted.

Chapter 2 discussed security requirement engineering approaches using NLP. We identified that, in

most cases, an approach was designed to solve a specific problem using a corresponding dataset

depending on the type of requirement context. Furthermore, there is a need for a dataset to train an

NLP model in the context of security requirements. In VeriDevOps, we aim to proceed from natural

language requirements to their verification seamlessly. Also, we plan to construct a dataset for security

requirement patterns by manually analyzing the requirement documents and security verification

procedures resulting from these documents.

Chapter 3 investigated several studies related to risk analysis and vulnerability scanning of

industrial control systems employed in many domains such as energy, automotive, healthcare, avionics,

and telecommunications. In ICS, the cyber-physical infrastructures must protect the physical

components, such as sensors, controllers, actuators, and the cyber components such as computing

nodes and communication channels against security threats. We noticed that traditional current risk

assessment techniques do not update the risk assessment at run-time based on continuously collected

data through monitoring. In VeriDevOps, we aim to develop different risk-analysis and assessment

techniques that can be applied to industrial systems during their operation. In the chapter, we

reviewed several anomaly-based intrusion detection approaches. We found out that these approaches

are not mature enough to give a confident level of alerts or explain the source of the anomalies on the

system. In VeriDevOps, we plan to extend the Montimage Monitoring Tool (MMT) to identify, predict

and forecast attacks and anomalies in distributed environments using heuristic and machine learning

algorithms. Further, VeriDevOps will define intelligent defense strategies to accurately diagnose a

detected security incident and automatically deploy the relevant security mechanism.

Chapter 4 surveyed different techniques for formal analysis and verification for security and

different security testing methods such as model-based security testing and penetration testing. We

have highlighted several challenges and limitations concerning security properties for testing, coverage

criteria, test selection and generation, scalability of penetration and model-based testing techniques

for industrial applications. In VeriDevOps, we plan to develop specific test generation and selection

methods based on formal specifications that can be used for model-based security testing given

generic security models. These models can be built to be reused in different contexts and stages of the

software development life cycle. We will develop new approaches for model-based mutation testing

and fuzz testing by defining new model-level mutation operators suitable for testing security aspects.

In addition, we will develop new penetration testing approaches to test a cloud-based IoT solution of

Fagor (one of the project's industrial partners in the project) for vulnerabilities using machine learning

and heuristic algorithms. Lastly, we discuss methods for adopting security testing into Continuous

Integration (CI) systems and DevOps workflows. It indicated that traditional security methods are not

VeriDevOps Project nr: 957212 Page 62

D1.3 State of the art report

compatible with DevOps workflows. Further, generally, developers cannot get valuable test feedback

from CI systems (executing the security test cases) to debug the security issue. In VeriDevOps, we aim

to improve the current state of the art by developing an organizational and process model blueprint to

overcome the non-existing ability in many approaches to define, model, execute and test security

requirements from a system-point-of-view. Moreover, we plan to provide fast feedback to the

developers on testing the security requirements by adopting DevOps and its role in specific standards,

such as IEC/ISO standards.

VeriDevOps Project nr: 957212 Page 63

D1.3 State of the art report

6. References

[1] P. Loucopoulos and V. Karakostas, System Requirements Engineering. 1995, p. 160.
[2] C. Ma, H. Zheng, P. Xie, C. Li, L. Li, and L. Si, “DM_NLP at SemEval-2018 Task 8: neural sequence

labeling with linguistic features,” Proceedings of The 12th International Workshop on Semantic
Evaluation. 2018 [Online]. Available: http://dx.doi.org/10.18653/v1/s18-1114

[3] K. S. Hoo, “Tangible ROI through secure software engineering,” Security Business Quarterly, 2001.
[4] T. Li and Z. Chen, “An ontology-based learning approach for automatically classifying security

requirements,” J. Syst. Softw., p. 110566, 2020.
[5] E. Knauss, S. Houmb, K. Schneider, S. Islam, and J. Jürjens, “Supporting requirements engineers in

recognising security issues,” in International Working Conference on Requirements Engineering:
Foundation for Software Quality, 2011, pp. 4–18.

[6] C. B. Haley, R. Laney, J. D. Moffett, and B. Nuseibeh, “Security requirements engineering: A
framework for representation and analysis,” IEEE Trans. Software Eng., vol. 34, no. 1, pp. 133–153,
Jan. 2008, doi: 10.1109/tse.2007.70754. [Online]. Available:
http://ieeexplore.ieee.org/document/4359475/

[7] M. Kassab, C. Neill, and P. Laplante, “State of Practice in Requirements Engineering: Contemporary
Data,” Innovations in Systems and Software Engineering: A NASA Journal, Dec. 2014, doi:
10.1007/s11334-014-0232-4. [Online]. Available: http://dx.doi.org/10.1007/s11334-014-0232-4

[8] L. Mich, M. Franch, and P. L. Novi Inverardi, “Market Research for Requirements Analysis Using
Linguistic Tools,” Requirements Engineering, vol. 9, pp. 40–56, Jan. 2004, doi:
10.1007/s00766-003-0179-8. [Online]. Available: http://dx.doi.org/10.1007/s00766-003-0179-8

[9] P. Sawyer, P. Rayson, and K. Cosh, “Shallow knowledge as an aid to deep understanding in early
phase requirements engineering,” IEEE Trans. Software Eng., vol. 31, no. 11, pp. 969–981, Nov.
2005, doi: 10.1109/TSE.2005.129. [Online]. Available: http://dx.doi.org/10.1109/TSE.2005.129

[10] D. Jurafsky and C. Manning, “Natural language processing,” Instructor, vol. 212, no. 998, p. 3482,
2012.

[11] E. D. Liddy, “Natural language processing,” 2001 [Online]. Available:
http://surface.syr.edu/cgi/viewcontent.cgi?article=1019&context=cnlp

[12] L. Zhao et al., “Natural Language Processing for Requirements Engineering: A Systematic Mapping
Study,” Apr. 2020.

[13] T. Hastie, R. Tibshirani, and J. Friedman, The elements of statistical learning: data mining,
inference, and prediction. Springer Science & Business Media, 2009.

[14] S. Kommrusch, “Artificial Intelligence Techniques for Security Vulnerability Prevention,” arXiv
preprint arXiv:1912. 06796, 2019.

[15] A. Tharwat, “Classification assessment methods,” Applied Computing and Informatics, 2020.
[16] Z. S. H. Abad, O. Karras, P. Ghazi, M. Glinz, G. Ruhe, and K. Schneider, “What works better? A study

of classifying requirements,” in 2017 IEEE 25th International Requirements Engineering Conference
(RE), Lisbon, Portugal, 2017, doi: 10.1109/re.2017.36 [Online]. Available:
http://ieeexplore.ieee.org/document/8049172/

[17] C. D. Manning, M. Surdeanu, J. Bauer, J. R. Finkel, S. Bethard, and D. McClosky, “The Stanford
CoreNLP natural language processing toolkit,” in Proceedings of 52nd annual meeting of the
association for computational linguistics: system demonstrations, 2014, pp. 55–60.

[18] E. Boutkova and F. Houdek, “Semi-automatic identification of features in requirement
specifications,” in 2011 IEEE 19th International Requirements Engineering Conference, 2011, pp.
313–318.

VeriDevOps Project nr: 957212 Page 64

http://paperpile.com/b/bpkysA/X030
http://paperpile.com/b/bpkysA/a8En
http://paperpile.com/b/bpkysA/a8En
http://paperpile.com/b/bpkysA/a8En
http://dx.doi.org/10.18653/v1/s18-1114
http://paperpile.com/b/bpkysA/PGWa
http://paperpile.com/b/bpkysA/ec60
http://paperpile.com/b/bpkysA/ec60
http://paperpile.com/b/bpkysA/reRh
http://paperpile.com/b/bpkysA/reRh
http://paperpile.com/b/bpkysA/reRh
http://paperpile.com/b/bpkysA/SfMG
http://paperpile.com/b/bpkysA/SfMG
http://paperpile.com/b/bpkysA/SfMG
http://dx.doi.org/10.1109/tse.2007.70754
http://paperpile.com/b/bpkysA/SfMG
http://ieeexplore.ieee.org/document/4359475/
http://paperpile.com/b/bpkysA/3ewW
http://paperpile.com/b/bpkysA/3ewW
http://dx.doi.org/10.1007/s11334-014-0232-4
http://paperpile.com/b/bpkysA/3ewW
http://dx.doi.org/10.1007/s11334-014-0232-4
http://paperpile.com/b/bpkysA/stCA
http://paperpile.com/b/bpkysA/stCA
http://dx.doi.org/10.1007/s00766-003-0179-8
http://paperpile.com/b/bpkysA/stCA
http://dx.doi.org/10.1007/s00766-003-0179-8
http://paperpile.com/b/bpkysA/LpJJ
http://paperpile.com/b/bpkysA/LpJJ
http://paperpile.com/b/bpkysA/LpJJ
http://dx.doi.org/10.1109/TSE.2005.129
http://paperpile.com/b/bpkysA/LpJJ
http://dx.doi.org/10.1109/TSE.2005.129
http://paperpile.com/b/bpkysA/dAY1
http://paperpile.com/b/bpkysA/dAY1
http://paperpile.com/b/bpkysA/aT7b
http://surface.syr.edu/cgi/viewcontent.cgi?article=1019&context=cnlp
http://paperpile.com/b/bpkysA/Nutl
http://paperpile.com/b/bpkysA/Nutl
http://paperpile.com/b/bpkysA/Ah5Y
http://paperpile.com/b/bpkysA/Ah5Y
http://paperpile.com/b/bpkysA/dmAC
http://paperpile.com/b/bpkysA/dmAC
http://paperpile.com/b/bpkysA/PywH
http://paperpile.com/b/bpkysA/POOk
http://paperpile.com/b/bpkysA/POOk
http://paperpile.com/b/bpkysA/POOk
http://dx.doi.org/10.1109/re.2017.36
http://paperpile.com/b/bpkysA/POOk
http://ieeexplore.ieee.org/document/8049172/
http://paperpile.com/b/bpkysA/rBYa
http://paperpile.com/b/bpkysA/rBYa
http://paperpile.com/b/bpkysA/rBYa
http://paperpile.com/b/bpkysA/3h0X
http://paperpile.com/b/bpkysA/3h0X
http://paperpile.com/b/bpkysA/3h0X

D1.3 State of the art report

[19] R. Malhotra, A. Chug, A. Hayrapetian, and R. Raje, “Analyzing and evaluating security features in
software requirements,” in 2016 International Conference on Innovation and Challenges in Cyber
Security (ICICCS-INBUSH), 2016, pp. 26–30.

[20] N. F. Noy et al., “Protégé-2000: an open-source ontology-development and knowledge-acquisition
environment,” in AMIA... Annual Symposium proceedings. AMIA Symposium, 2003, pp. 953–953.

[21] A. Hayrapetian and R. Raje, “Empirically Analyzing and Evaluating Security Features in Software
Requirements,” in Proceedings of the 11th Innovations in Software Engineering Conference, 2018,
pp. 1–11.

[22] B. Magnini et al., “The excitement open platform for textual inferences,” in Proceedings of 52nd
annual meeting of the association for computational linguistics: system demonstrations, 2014, pp.
43–48.

[23] W. Wang, K. R. Mahakala, A. Gupta, N. Hussein, and Y. Wang, “A linear classifier based approach
for identifying security requirements in open source software development,” Journal of Industrial
Information Integration, vol. 14, pp. 34–40, 2019.

[24] Z. Kurtanović and W. Maalej, “Automatically classifying functional and non-functional
requirements using supervised machine learning,” in 2017 IEEE 25th International Requirements
Engineering Conference (RE), 2017, pp. 490–495.

[25] J. Cleland-Huang, S. Mazrouee, H. Liguo, and D. Port, “nfr,” Certification Commission for Health
Information Technology. Zenodo, Mar-2007 [Online]. Available:
https://doi.org/10.5281/zenodo.268542

[26] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp. 436–444, May
2015, doi: 10.1038/nature14539. [Online]. Available:
http://www.nature.com/articles/nature14539

[27] Y. LeCun et al., “Backpropagation applied to handwritten zip code recognition,” Neural Comput.,
vol. 1, no. 4, pp. 541–551, 1989.

[28] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word representations in
vector space,” arXiv preprint arXiv:1301. 3781, 2013.

[29] J. Winkler and A. Vogelsang, “Automatic classification of requirements based on convolutional
neural networks,” in 2016 IEEE 24th International Requirements Engineering Conference
Workshops (REW), 2016, pp. 39–45.

[30] T. Hey, J. Keim, A. Koziolek, and W. F. Tichy, “NoRBERT: Transfer learning for requirements
classification,” in 2020 IEEE 28th International Requirements Engineering Conference (RE), Zurich,
Switzerland, 2020, doi: 10.1109/re48521.2020.00028 [Online]. Available:
https://ieeexplore.ieee.org/document/9218141/

[31] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding,” arXiv [cs.CL], 11-Oct-2018 [Online]. Available:
http://arxiv.org/abs/1810.04805

[32] M. Bozorgi, L. K. Saul, S. Savage, and G. M. Voelker, “Beyond heuristics: learning to classify
vulnerabilities and predict exploits,” in Proceedings of the 16th ACM SIGKDD international
conference on Knowledge discovery and data mining, 2010, pp. 105–114.

[33] R. Pandita, X. Xiao, W. Yang, W. Enck, and T. Xie, “${WHYPER}$: Towards automating risk
assessment of mobile applications,” in 22nd ${USENIX} Security Symposium ({USENIX}$ Security
13), 2013, pp. 527–542.

[34] A. Ferrari, G. O. Spagnolo, and S. Gnesi, “PURE: A Dataset of Public Requirements Documents,” in
2017 IEEE 25th International Requirements Engineering Conference (RE), Lisbon, Portugal, 2017,
doi: 10.1109/re.2017.29 [Online]. Available: http://ieeexplore.ieee.org/document/8049173/

[35] J. Cleland-Huang, R. Settimi, X. Zou, and P. Solc, “Automated classification of non-functional

VeriDevOps Project nr: 957212 Page 65

http://paperpile.com/b/bpkysA/Xu8s
http://paperpile.com/b/bpkysA/Xu8s
http://paperpile.com/b/bpkysA/Xu8s
http://paperpile.com/b/bpkysA/k4ih
http://paperpile.com/b/bpkysA/k4ih
http://paperpile.com/b/bpkysA/C3J2
http://paperpile.com/b/bpkysA/C3J2
http://paperpile.com/b/bpkysA/C3J2
http://paperpile.com/b/bpkysA/7ulo
http://paperpile.com/b/bpkysA/7ulo
http://paperpile.com/b/bpkysA/7ulo
http://paperpile.com/b/bpkysA/0mGr
http://paperpile.com/b/bpkysA/0mGr
http://paperpile.com/b/bpkysA/0mGr
http://paperpile.com/b/bpkysA/do39
http://paperpile.com/b/bpkysA/do39
http://paperpile.com/b/bpkysA/do39
http://paperpile.com/b/bpkysA/r7ZC
http://paperpile.com/b/bpkysA/r7ZC
https://doi.org/10.5281/zenodo.268542
http://paperpile.com/b/bpkysA/uNrr
http://paperpile.com/b/bpkysA/uNrr
http://dx.doi.org/10.1038/nature14539
http://paperpile.com/b/bpkysA/uNrr
http://www.nature.com/articles/nature14539
http://paperpile.com/b/bpkysA/IpQT
http://paperpile.com/b/bpkysA/IpQT
http://paperpile.com/b/bpkysA/2W6E
http://paperpile.com/b/bpkysA/2W6E
http://paperpile.com/b/bpkysA/BFvr
http://paperpile.com/b/bpkysA/BFvr
http://paperpile.com/b/bpkysA/BFvr
http://paperpile.com/b/bpkysA/MM2m
http://paperpile.com/b/bpkysA/MM2m
http://paperpile.com/b/bpkysA/MM2m
http://dx.doi.org/10.1109/re48521.2020.00028
http://paperpile.com/b/bpkysA/MM2m
https://ieeexplore.ieee.org/document/9218141/
http://paperpile.com/b/bpkysA/nQId
http://paperpile.com/b/bpkysA/nQId
http://arxiv.org/abs/1810.04805
http://paperpile.com/b/bpkysA/kfFC
http://paperpile.com/b/bpkysA/kfFC
http://paperpile.com/b/bpkysA/kfFC
http://paperpile.com/b/bpkysA/4EeM
http://paperpile.com/b/bpkysA/4EeM
http://paperpile.com/b/bpkysA/4EeM
http://paperpile.com/b/bpkysA/pmJn
http://paperpile.com/b/bpkysA/pmJn
http://paperpile.com/b/bpkysA/pmJn
http://dx.doi.org/10.1109/re.2017.29
http://paperpile.com/b/bpkysA/pmJn
http://ieeexplore.ieee.org/document/8049173/
http://paperpile.com/b/bpkysA/1Emb

D1.3 State of the art report

requirements,” Requirements Engineering, vol. 12, no. 2, pp. 103–120, 2007.
[36] A. Rashwan, O. Ormandjieva, and R. Witte, “Ontology-Based Classification of Non-Functional

Requirements in Software Specifications: A new Corpus and SVM-Based Classifier,” in The 37th
Annual International Computer Software & Applications Conference (COMPSAC 2013), 2013, p.
381\textendash386, doi: 10.1109/COMPSAC.2013.64 [Online]. Available:
http://dx.doi.org/10.1109/COMPSAC.2013.64

[37] S. Konrad, B. H. C. Cheng, L. A. Campbell, and R. Wassermann, “Using security patterns to model
and analyze security requirements,” Requirements Engineering for High Assurance Systems
(RHAS’03), vol. 11, 2003 [Online]. Available:
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:df310295-34de-492a-b389-
5359146eed19

[38] E. Gamma, R. Helm, R. Johnson, J. Vlissides, and D. Patterns, “Elements of Reusable
Object-Oriented Software,” Design Patterns. massachusetts: Addison-Wesley Publishing Company,
1995.

[39] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett, “Patterns in property specifications for finite-state
verification,” Proceedings of the 21st international conference on Software engineering - ICSE ’99.
1999 [Online]. Available: http://dx.doi.org/10.1145/302405.302672

[40] R. Wassermann and B. H. C. Cheng, “Security patterns,” in Michigan State University, PLoP Conf.
Citeseer, 2003 [Online]. Available:
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:562417be-c44d-47d7-a9c5-
bc366f207ca9

[41] N. Yoshioka, H. Washizaki, and K. Maruyama, “A survey on security patterns,” Progress in
informatics, vol. 5, no. 5, pp. 35–47, 2008 [Online]. Available:
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:4c50be1b-1da2-40d6-812b-
ce345f334208

[42] J. Jürjens, G. Popp, and G. Wimmel, “Towards using security patterns in model-based system
development,” 2002.

[43] J. Jürjens, “UMLsec: Extending UML for secure systems development,” in International Conference
on The Unified Modeling Language, 2002, pp. 412–425.

[44] S. Ouchani and M. Debbabi, “Specification, verification, and quantification of security in
model-based systems,” Computing, vol. 97, no. 7, pp. 691–711, Jul. 2015, doi:
10.1007/s00607-015-0445-x. [Online]. Available:
http://link.springer.com/10.1007/s00607-015-0445-x

[45] I. Siveroni, A. Zisman, and G. Spanoudakis, “Property specification and static verification of UML
models,” in 2008 Third International Conference on Availability, Reliability and Security, 2008, doi:
10.1109/ares.2008.194 [Online]. Available: http://ieeexplore.ieee.org/document/4529326/

[46] I. Siveroni, A. Zisman, and G. Spanoudakis, “A UML-based static verification framework for
security,” Requirements engineering, vol. 15, no. 1, pp. 95–118, 2010 [Online]. Available:
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:fb5db61a-df01-4a99-beb1-a
5affd89def1

[47] A. Zisman, “A static verification framework for secure peer-to-peer applications,” in Second
International Conference on Internet and Web Applications and Services (ICIW’07), 2007, pp. 8–8
[Online]. Available:
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:c142f282-81ef-4185-afd6-72
eff2323f1e

[48] J. Dong, T. Peng, and Y. Zhao, “Automated verification of security pattern compositions,”
Information and Software Technology, vol. 52, no. 3, pp. 274–295, 2010 [Online]. Available:

VeriDevOps Project nr: 957212 Page 66

http://paperpile.com/b/bpkysA/1Emb
http://paperpile.com/b/bpkysA/Spo8
http://paperpile.com/b/bpkysA/Spo8
http://paperpile.com/b/bpkysA/Spo8
http://paperpile.com/b/bpkysA/Spo8
http://dx.doi.org/10.1109/COMPSAC.2013.64
http://paperpile.com/b/bpkysA/Spo8
http://dx.doi.org/10.1109/COMPSAC.2013.64
http://paperpile.com/b/bpkysA/XPqU
http://paperpile.com/b/bpkysA/XPqU
http://paperpile.com/b/bpkysA/XPqU
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:df310295-34de-492a-b389-5359146eed19
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:df310295-34de-492a-b389-5359146eed19
http://paperpile.com/b/bpkysA/IAhk
http://paperpile.com/b/bpkysA/IAhk
http://paperpile.com/b/bpkysA/IAhk
http://paperpile.com/b/bpkysA/6tnm
http://paperpile.com/b/bpkysA/6tnm
http://paperpile.com/b/bpkysA/6tnm
http://dx.doi.org/10.1145/302405.302672
http://paperpile.com/b/bpkysA/ZX8L
http://paperpile.com/b/bpkysA/ZX8L
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:562417be-c44d-47d7-a9c5-bc366f207ca9
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:562417be-c44d-47d7-a9c5-bc366f207ca9
http://paperpile.com/b/bpkysA/jwLb
http://paperpile.com/b/bpkysA/jwLb
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:4c50be1b-1da2-40d6-812b-ce345f334208
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:4c50be1b-1da2-40d6-812b-ce345f334208
http://paperpile.com/b/bpkysA/90vl
http://paperpile.com/b/bpkysA/90vl
http://paperpile.com/b/bpkysA/2DHJ
http://paperpile.com/b/bpkysA/2DHJ
http://paperpile.com/b/bpkysA/tlL8
http://paperpile.com/b/bpkysA/tlL8
http://dx.doi.org/10.1007/s00607-015-0445-x
http://paperpile.com/b/bpkysA/tlL8
http://link.springer.com/10.1007/s00607-015-0445-x
http://paperpile.com/b/bpkysA/RIIU
http://paperpile.com/b/bpkysA/RIIU
http://dx.doi.org/10.1109/ares.2008.194
http://paperpile.com/b/bpkysA/RIIU
http://ieeexplore.ieee.org/document/4529326/
http://paperpile.com/b/bpkysA/88Hn
http://paperpile.com/b/bpkysA/88Hn
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:fb5db61a-df01-4a99-beb1-a5affd89def1
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:fb5db61a-df01-4a99-beb1-a5affd89def1
http://paperpile.com/b/bpkysA/gy0a
http://paperpile.com/b/bpkysA/gy0a
http://paperpile.com/b/bpkysA/gy0a
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:c142f282-81ef-4185-afd6-72eff2323f1e
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:c142f282-81ef-4185-afd6-72eff2323f1e
http://paperpile.com/b/bpkysA/6B1Y
http://paperpile.com/b/bpkysA/6B1Y

D1.3 State of the art report

https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:9f79cd8f-663c-420c-936b-5
44e078857a3

[49] S. Ouchani, O. A. Mohamed, and M. Debbabi, “A security risk assessment framework for SysML
activity diagrams,” in 2013 IEEE 7th International Conference on Software Security and Reliability,
Gaithersburg, MD, USA, 2013, doi: 10.1109/sere.2013.11 [Online]. Available:
https://ieeexplore.ieee.org/document/6571713

[50] S. Ouchani, O. A. Mohamed, M. Debbabi, and M. Pourzandi, “Verification of the correctness in
composed UML behavioural diagrams,” in Software Engineering Research, Management and
Applications 2010, Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 163–177 [Online].
Available: http://link.springer.com/10.1007/978-3-642-13273-5_11

[51] S. Ouchani, Y. Jarraya, and O. A. Mohamed, “Model-based systems security quantification,” in
2011 Ninth Annual International Conference on Privacy, Security and Trust, 2011, pp. 142–149
[Online]. Available:
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:2f653129-e94b-46e0-a9e5-5
5614133ab3b

[52] M. Kwiatkowska, G. Norman, and D. Parker, “PRISM: Probabilistic symbolic model checker,” in
International Conference on Modelling Techniques and Tools for Computer Performance
Evaluation, 2002, pp. 200–204.

[53] I. Kotenko and E. Doynikova, “The CAPEC based generator of attack scenarios for network security
evaluation,” in 2015 IEEE 8th International Conference on Intelligent Data Acquisition and
Advanced Computing Systems: Technology and Applications (IDAACS), Warsaw, Poland, 2015, doi:
10.1109/idaacs.2015.7340774 [Online]. Available: http://ieeexplore.ieee.org/document/7340774/

[54] K. Kanakogi et al., “Tracing CAPEC Attack Patterns from CVE Vulnerability Information using
Natural Language Processing Technique,” in Proceedings of the 54th Hawaii International
Conference on System Sciences, 2021, p. 6996 [Online]. Available:
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:00a8e50d-b031-407b-bcd7-
964e32f5ec33

[55] Q. Le and T. Mikolov, “Distributed representations of sentences and documents,” in International
conference on machine learning, 2014, pp. 1188–1196.

[56] X. Yuan, E. B. Nuakoh, J. S. Beal, and H. Yu, “Retrieving relevant CAPEC attack patterns for secure
software development,” in Proceedings of the 9th Annual Cyber and Information Security Research
Conference, 2014, pp. 33–36 [Online]. Available:
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:717194d1-5823-4c79-a130-
3f4ad8537ab6

[57] A. Shostack, “Experiences Threat Modeling at Microsoft,” MODSEC@ MoDELS, vol. 2008, 2008.
[58] D. R. H. Miller, T. Leek, and R. M. Schwartz, “A hidden Markov model information retrieval system,”

in Proceedings of the 22nd annual international ACM SIGIR conference on Research and
development in information retrieval - SIGIR ’99, Berkeley, California, United States, 1999, doi:
10.1145/312624.312680 [Online]. Available:
http://portal.acm.org/citation.cfm?doid=312624.312680

[59] H. Kaiya et al., “Security requirements analysis using knowledge in CAPEC,” in International
conference on advanced information systems engineering, 2014, pp. 343–348 [Online]. Available:
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:081d63c7-ceaf-4c7a-8f59-bf
f759ded9cb

[60] I. Williams, “An ontology based collaborative recommender system for security requirements
elicitation,” in 2018 IEEE 26th International Requirements Engineering Conference (RE), Banff, AB,
2018, doi: 10.1109/re.2018.00060 [Online]. Available:

VeriDevOps Project nr: 957212 Page 67

https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:9f79cd8f-663c-420c-936b-544e078857a3
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:9f79cd8f-663c-420c-936b-544e078857a3
http://paperpile.com/b/bpkysA/1Or6
http://paperpile.com/b/bpkysA/1Or6
http://paperpile.com/b/bpkysA/1Or6
http://dx.doi.org/10.1109/sere.2013.11
http://paperpile.com/b/bpkysA/1Or6
https://ieeexplore.ieee.org/document/6571713
http://paperpile.com/b/bpkysA/cLIR
http://paperpile.com/b/bpkysA/cLIR
http://paperpile.com/b/bpkysA/cLIR
http://paperpile.com/b/bpkysA/cLIR
http://link.springer.com/10.1007/978-3-642-13273-5_11
http://paperpile.com/b/bpkysA/kWth
http://paperpile.com/b/bpkysA/kWth
http://paperpile.com/b/bpkysA/kWth
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:2f653129-e94b-46e0-a9e5-55614133ab3b
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:2f653129-e94b-46e0-a9e5-55614133ab3b
http://paperpile.com/b/bpkysA/N8C5
http://paperpile.com/b/bpkysA/N8C5
http://paperpile.com/b/bpkysA/N8C5
http://paperpile.com/b/bpkysA/6ypW
http://paperpile.com/b/bpkysA/6ypW
http://paperpile.com/b/bpkysA/6ypW
http://dx.doi.org/10.1109/idaacs.2015.7340774
http://paperpile.com/b/bpkysA/6ypW
http://ieeexplore.ieee.org/document/7340774/
http://paperpile.com/b/bpkysA/uwBb
http://paperpile.com/b/bpkysA/uwBb
http://paperpile.com/b/bpkysA/uwBb
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:00a8e50d-b031-407b-bcd7-964e32f5ec33
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:00a8e50d-b031-407b-bcd7-964e32f5ec33
http://paperpile.com/b/bpkysA/3SXP
http://paperpile.com/b/bpkysA/3SXP
http://paperpile.com/b/bpkysA/ehB2
http://paperpile.com/b/bpkysA/ehB2
http://paperpile.com/b/bpkysA/ehB2
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:717194d1-5823-4c79-a130-3f4ad8537ab6
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:717194d1-5823-4c79-a130-3f4ad8537ab6
http://paperpile.com/b/bpkysA/og7K
http://paperpile.com/b/bpkysA/BAvp
http://paperpile.com/b/bpkysA/BAvp
http://paperpile.com/b/bpkysA/BAvp
http://dx.doi.org/10.1145/312624.312680
http://paperpile.com/b/bpkysA/BAvp
http://portal.acm.org/citation.cfm?doid=312624.312680
http://paperpile.com/b/bpkysA/sjnI
http://paperpile.com/b/bpkysA/sjnI
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:081d63c7-ceaf-4c7a-8f59-bff759ded9cb
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:081d63c7-ceaf-4c7a-8f59-bff759ded9cb
http://paperpile.com/b/bpkysA/2zq4
http://paperpile.com/b/bpkysA/2zq4
http://paperpile.com/b/bpkysA/2zq4
http://dx.doi.org/10.1109/re.2018.00060
http://paperpile.com/b/bpkysA/2zq4

D1.3 State of the art report

https://ieeexplore.ieee.org/document/8491167/
[61] I. Williams and X. Yuan, “Creating abuse cases based on attack patterns: A user study,” in 2017

IEEE Cybersecurity Development (SecDev), Cambridge, MA, USA, 2017, doi:
10.1109/secdev.2017.27 [Online]. Available: http://ieeexplore.ieee.org/document/8077812/

[62] G. McGraw, “Software security,” IEEE Secur. Priv., vol. 2, no. 2, pp. 80–83, 2004.
[63] A. Sudhodanan, A. Armando, R. Carbone, L. Compagna, and Others, “Attack Patterns for Black-Box

Security Testing of Multi-Party Web Applications,” in NDSS, 2016 [Online]. Available:
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:6057a4db-921a-43f3-a273-0
1bc59670632

[64] J. Bozic, D. E. Simos, and F. Wotawa, “Attack pattern-based combinatorial testing,” in Proceedings
of the 9th International Workshop on Automation of Software Test - AST 2014, Hyderabad, India,
2014, doi: 10.1145/2593501.2593502 [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2593501.2593502

[65] L. Yu, Y. Lei, R. N. Kacker, and D. R. Kuhn, “ACTS: A Combinatorial Test Generation Tool,” in 2013
IEEE Sixth International Conference on Software Testing, Verification and Validation, Luxembourg,
Luxembourg, 2013, doi: 10.1109/icst.2013.52 [Online]. Available:
http://ieeexplore.ieee.org/document/6569749/

[66] B. Smith and L. Williams, “On the effective use of security test patterns,” in 2012 IEEE Sixth
International Conference on Software Security and Reliability, 2012, pp. 108–117 [Online].
Available:
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:4a205482-ab00-49c1-b729-
4e496738b369

[67] M. Felderer, M. Büchler, M. Johns, A. D. Brucker, R. Breu, and A. Pretschner, “Security testing: A
survey,” in Advances in Computers, vol. 101, Elsevier, 2016, pp. 1–51 [Online]. Available:
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:8493d713-4d8c-4b16-b380-
721e9a581325

[68] J. Großmann, M. Schneider, J. Viehmann, and M.-F. Wendland, “Combining risk analysis and
security testing,” in International Symposium On Leveraging Applications of Formal Methods,
Verification and Validation, 2014, pp. 322–336 [Online]. Available:
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:dc5262bc-68ec-46b2-9dfb-c
e441abb02ae

[69] M. S. Lund, B. Solhaug, and K. Stølen, Model-driven risk analysis: the CORAS approach. Springer
Science & Business Media, 2010.

[70] F. Bouquet, C. Grandpierre, B. Legeard, and F. Peureux, “A test generation solution to automate
software testing,” in Proceedings of the 3rd international workshop on Automation of software
test, 2008, pp. 45–48.

[71] J. Botella, B. Legeard, F. Peureux, and A. Vernotte, “Risk-Based Vulnerability Testing Using Security
Test Patterns,” Leveraging Applications of Formal Methods, Verification and Validation. Specialized
Techniques and Applications. pp. 337–352, 2014 [Online]. Available:
http://dx.doi.org/10.1007/978-3-662-45231-8_24

[72] A. G. Vouffo Feudjio, “Initial Security Test Pattern Catalog. Public Deliverable D3. WP4. T1,
Diamonds Project, Berlin, Germany (June 2012).” 2014 [Online]. Available:
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:1ea59932-35c4-4ed0-9094-
47d37db8e0b3

[73] A.-G. V. Feudjio, I. Schieferdecker, and A. Vouffo, “Test Automation Design Patterns for Reactive
Software Systems,” ceur-ws. org, vol. 566, p. E6_BlackBoxTesting, 2009 [Online]. Available:
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:89e33581-7576-432d-a3ad-

VeriDevOps Project nr: 957212 Page 68

https://ieeexplore.ieee.org/document/8491167/
http://paperpile.com/b/bpkysA/CAo9
http://paperpile.com/b/bpkysA/CAo9
http://dx.doi.org/10.1109/secdev.2017.27
http://paperpile.com/b/bpkysA/CAo9
http://ieeexplore.ieee.org/document/8077812/
http://paperpile.com/b/bpkysA/PyRX
http://paperpile.com/b/bpkysA/zgC6
http://paperpile.com/b/bpkysA/zgC6
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:6057a4db-921a-43f3-a273-01bc59670632
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:6057a4db-921a-43f3-a273-01bc59670632
http://paperpile.com/b/bpkysA/HuBW
http://paperpile.com/b/bpkysA/HuBW
http://paperpile.com/b/bpkysA/HuBW
http://dx.doi.org/10.1145/2593501.2593502
http://paperpile.com/b/bpkysA/HuBW
http://dl.acm.org/citation.cfm?doid=2593501.2593502
http://paperpile.com/b/bpkysA/U01R
http://paperpile.com/b/bpkysA/U01R
http://paperpile.com/b/bpkysA/U01R
http://dx.doi.org/10.1109/icst.2013.52
http://paperpile.com/b/bpkysA/U01R
http://ieeexplore.ieee.org/document/6569749/
http://paperpile.com/b/bpkysA/nSdW
http://paperpile.com/b/bpkysA/nSdW
http://paperpile.com/b/bpkysA/nSdW
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:4a205482-ab00-49c1-b729-4e496738b369
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:4a205482-ab00-49c1-b729-4e496738b369
http://paperpile.com/b/bpkysA/GKjT
http://paperpile.com/b/bpkysA/GKjT
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:8493d713-4d8c-4b16-b380-721e9a581325
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:8493d713-4d8c-4b16-b380-721e9a581325
http://paperpile.com/b/bpkysA/bIlf
http://paperpile.com/b/bpkysA/bIlf
http://paperpile.com/b/bpkysA/bIlf
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:dc5262bc-68ec-46b2-9dfb-ce441abb02ae
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:dc5262bc-68ec-46b2-9dfb-ce441abb02ae
http://paperpile.com/b/bpkysA/3th6
http://paperpile.com/b/bpkysA/3th6
http://paperpile.com/b/bpkysA/8Uoa
http://paperpile.com/b/bpkysA/8Uoa
http://paperpile.com/b/bpkysA/8Uoa
http://paperpile.com/b/bpkysA/czKF
http://paperpile.com/b/bpkysA/czKF
http://paperpile.com/b/bpkysA/czKF
http://dx.doi.org/10.1007/978-3-662-45231-8_24
http://paperpile.com/b/bpkysA/SfeT
http://paperpile.com/b/bpkysA/SfeT
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:1ea59932-35c4-4ed0-9094-47d37db8e0b3
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:1ea59932-35c4-4ed0-9094-47d37db8e0b3
http://paperpile.com/b/bpkysA/G1bs
http://paperpile.com/b/bpkysA/G1bs
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:89e33581-7576-432d-a3ad-29a46b8e79af

D1.3 State of the art report

29a46b8e79af
[74] F. Wotawa and J. Bozic, “Plan it! automated security testing based on planning,” in IFIP

International Conference on Testing Software and Systems, 2014, pp. 48–62 [Online]. Available:
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:a706f532-07d2-4a59-8a8c-8
80c4f8bd01a

[75] A. Blome, M. Ochoa, K. Li, M. Peroli, and M. T. Dashti, “Vera: A flexible model-based vulnerability
testing tool,” in 2013 IEEE Sixth International Conference on Software Testing, Verification and
Validation, 2013, pp. 471–478.

[76] W. Herzner, S. Sieverding, O. Kacimi, E. Bode, T. Bauer, and B. Nielsen, “Expressing best practices in
(risk) analysis and testing of safety-critical systems using patterns,” in 2014 IEEE International
Symposium on Software Reliability Engineering Workshops, Naples, Italy, 2014, doi:
10.1109/issrew.2014.24 [Online]. Available: https://ieeexplore.ieee.org/document/6983857

[77] D. Dghaym et al., “Systematic Verification and Testing,” in Validation and Verification of Automated
Systems, Springer, 2020, pp. 89–104 [Online]. Available:
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:fd5d01f8-9306-48c4-bd76-8
22702af0173

[78] A. Vernotte, “A pattern-driven and model-based vulnerability testing for Web applications,”
Université de Franche-Comté, 2015 [Online]. Available:
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:9331271b-d98c-4561-adc0-
7bbe94821210

[79] A. Naumchev, “Seamless Object-Oriented Requirements,” in 2019 International Multi-Conference
on Engineering, Computer and Information Sciences (SIBIRCON), 2019, pp. 0743–0748.

[80] N. Tillmann and W. Schulte, “Parameterized unit tests,” ACM SIGSOFT Software Engineering Notes,
vol. 30, no. 5, pp. 253–262, 2005.

[81] J. Botella, B. Legeard, F. Peureux, and A. Vernotte, “Risk-based vulnerability testing using security
test patterns,” in International Symposium On Leveraging Applications of Formal Methods,
Verification and Validation, 2014, pp. 337–352 [Online]. Available:
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:decdf192-2e7b-45cf-b6fe-0c
517eb8b764

[82] J. Bozic and F. Wotawa, “Security testing based on attack patterns,” in 2014 IEEE Seventh
International Conference on Software Testing, Verification and Validation Workshops, OH, USA,
2014, doi: 10.1109/icstw.2014.58 [Online]. Available:
http://ieeexplore.ieee.org/document/6825631/

[83] D. Prince, “Cybersecurity: The Security and Protection Challenges of Our Digital World,” Computer,
vol. 51, no. 4. pp. 16–19, 2018 [Online]. Available: http://dx.doi.org/10.1109/mc.2018.2141025

[84] P. Marwedel, Embedded System Design: Embedded Systems Foundations of Cyber-Physical
Systems, and the Internet of Things. Springer, 2017 [Online]. Available:
https://play.google.com/store/books/details?id=6JkuDwAAQBAJ

[85] R. Langner, “Stuxnet: Dissecting a Cyberwarfare Weapon,” IEEE Security Privacy, vol. 9, no. 3, pp.
49–51, May 2011, doi: 10.1109/MSP.2011.67. [Online]. Available:
http://dx.doi.org/10.1109/MSP.2011.67

[86] I. C. L. I. Toolkit, “Steel mill in Germany (2014) --- International cyber law: interactive toolkit,.”
2020 [Online]. Available:
https://cyberlaw.ccdcoe.org/w/index.php?title=Steel_mill_in_Germany_(2014)&oldid=2282

[87] C. Thompson and D. Wagner, “A Large-Scale Study of Modern Code Review and Security in Open
Source Projects,” Proceedings of the 13th International Conference on Predictive Models and Data
Analytics in Software Engineering - PROMISE. 2017 [Online]. Available:

VeriDevOps Project nr: 957212 Page 69

https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:89e33581-7576-432d-a3ad-29a46b8e79af
http://paperpile.com/b/bpkysA/T5YM
http://paperpile.com/b/bpkysA/T5YM
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:a706f532-07d2-4a59-8a8c-880c4f8bd01a
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:a706f532-07d2-4a59-8a8c-880c4f8bd01a
http://paperpile.com/b/bpkysA/wn8H
http://paperpile.com/b/bpkysA/wn8H
http://paperpile.com/b/bpkysA/wn8H
http://paperpile.com/b/bpkysA/MIbu
http://paperpile.com/b/bpkysA/MIbu
http://paperpile.com/b/bpkysA/MIbu
http://dx.doi.org/10.1109/issrew.2014.24
http://paperpile.com/b/bpkysA/MIbu
https://ieeexplore.ieee.org/document/6983857
http://paperpile.com/b/bpkysA/9ONF
http://paperpile.com/b/bpkysA/9ONF
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:fd5d01f8-9306-48c4-bd76-822702af0173
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:fd5d01f8-9306-48c4-bd76-822702af0173
http://paperpile.com/b/bpkysA/pfAB
http://paperpile.com/b/bpkysA/pfAB
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:9331271b-d98c-4561-adc0-7bbe94821210
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:9331271b-d98c-4561-adc0-7bbe94821210
http://paperpile.com/b/bpkysA/Gja0
http://paperpile.com/b/bpkysA/Gja0
http://paperpile.com/b/bpkysA/PC1Z
http://paperpile.com/b/bpkysA/PC1Z
http://paperpile.com/b/bpkysA/PDEL
http://paperpile.com/b/bpkysA/PDEL
http://paperpile.com/b/bpkysA/PDEL
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:decdf192-2e7b-45cf-b6fe-0c517eb8b764
https://documentcloud.adobe.com/link/review?uri=urn:aaid:scds:US:decdf192-2e7b-45cf-b6fe-0c517eb8b764
http://paperpile.com/b/bpkysA/Ule3
http://paperpile.com/b/bpkysA/Ule3
http://paperpile.com/b/bpkysA/Ule3
http://dx.doi.org/10.1109/icstw.2014.58
http://paperpile.com/b/bpkysA/Ule3
http://ieeexplore.ieee.org/document/6825631/
http://paperpile.com/b/bpkysA/DooF
http://paperpile.com/b/bpkysA/DooF
http://dx.doi.org/10.1109/mc.2018.2141025
http://paperpile.com/b/bpkysA/aqx0
http://paperpile.com/b/bpkysA/aqx0
https://play.google.com/store/books/details?id=6JkuDwAAQBAJ
http://paperpile.com/b/bpkysA/vd0n
http://paperpile.com/b/bpkysA/vd0n
http://dx.doi.org/10.1109/MSP.2011.67
http://paperpile.com/b/bpkysA/vd0n
http://dx.doi.org/10.1109/MSP.2011.67
http://paperpile.com/b/bpkysA/b6q2
http://paperpile.com/b/bpkysA/b6q2
https://cyberlaw.ccdcoe.org/w/index.php?title=Steel_mill_in_Germany_(2014)&oldid=2282
http://paperpile.com/b/bpkysA/FLuK
http://paperpile.com/b/bpkysA/FLuK
http://paperpile.com/b/bpkysA/FLuK

D1.3 State of the art report

http://dx.doi.org/10.1145/3127005.3127014
[88] X. Franch and A. Susi, “Risk assessment in open source systems,” Proceedings of the 38th

International Conference on Software Engineering Companion - ICSE ’16. 2016 [Online]. Available:
http://dx.doi.org/10.1145/2889160.2891052

[89] A. Salamai, O. Hussain, and M. Saberi, “Decision Support System for Risk Assessment Using Fuzzy
Inference in Supply Chain Big Data,” 2019 International Conference on High Performance Big Data
and Intelligent Systems (HPBD&IS). 2019 [Online]. Available:
http://dx.doi.org/10.1109/hpbdis.2019.8735465

[90] National Standards Authority of Ireland, Risk Management: Risk Assessment Techniques (IEC/ISO
31010:2009 (EQV). 2013 [Online]. Available:
https://books.google.com/books/about/Risk_Management.html?hl=&id=mqsXogEACAAJ

[91] V. Mahajan, H. A. Linstone, and M. Turoff, “The Delphi Method: Techniques and Applications,”
Journal of Marketing Research, vol. 13, no. 3. p. 317, 1976 [Online]. Available:
http://dx.doi.org/10.2307/3150755

[92] “Hazard and operability studies (HAZOP studies). Application guide.” [Online]. Available:
http://dx.doi.org/10.3403/02337615u

[93] J. Dalton, “SWOT Analysis (Strengths, Weaknesses, Opportunities, Threats),” Great Big Agile. pp.
249–252, 2019 [Online]. Available: http://dx.doi.org/10.1007/978-1-4842-4206-3_62

[94] A. Bouti and D. A. Kadi, “A STATE-OF-THE-ART REVIEW OF FMEA/FMECA,” International Journal of
Reliability, Quality and Safety Engineering, vol. 01, no. 04. pp. 515–543, 1994 [Online]. Available:
http://dx.doi.org/10.1142/s0218539394000362

[95] R. M. Robinson and G. Francis, Risk and Reliability: An Introductory Text. 2007 [Online]. Available:
https://books.google.com/books/about/Risk_and_Reliability.html?hl=&id=v2jIGAAACAAJ

[96] I. Ben-Gal, “Bayesian Networks,” Encyclopedia of Statistics in Quality and Reliability. 2008 [Online].
Available: http://dx.doi.org/10.1002/9780470061572.eqr089

[97] S. Mannan, Lees’ Loss Prevention in the Process Industries: Hazard Identification, Assessment and
Control. Butterworth-Heinemann, 2004 [Online]. Available:
https://books.google.com/books/about/Lees_Loss_Prevention_in_the_Process_Indu.html?hl=&id
=UDAwZQO8ZGUC

[98] M. S. Lund, B. Solhaug, and K. Stølen, “Model-Driven Risk Analysis.” 2011 [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-12323-8

[99] M. Kravchik and A. Shabtai, “Detecting Cyber Attacks in Industrial Control Systems Using
Convolutional Neural Networks,” Proceedings of the 2018 Workshop on Cyber-Physical Systems
Security and PrivaCy. 2018 [Online]. Available: http://dx.doi.org/10.1145/3264888.3264896

[100] K. Stouffer, J. Falco, and K. Scarfone, “Guide to Industrial Control Systems (ICS) Security -
Supervisory Control and Data Acquisition (SCADA) systems, Distributed Control Systems (DCS), and
other control system configurations such as Programmable Logic Controllers (PLC).” 2011 [Online].
Available: http://dx.doi.org/10.6028/nist.sp.800.82

[101] “Communication network dependencies for ICS/SCADA Systems,” 19-Dec-2016. [Online].
Available: https://www.enisa.europa.eu/publications/ics-scada-dependencies. [Accessed:
26-Jan-2021]

[102] S. Qayyum, S. Ashraf, M. Shafique, and S. Waheed, “Hardware devices security, their
vulnerabilities and solutions,” in 2018 15th International Bhurban Conference on Applied Sciences
and Technology (IBCAST), 2018, pp. 439–445, doi: 10.1109/IBCAST.2018.8312261 [Online].
Available: http://dx.doi.org/10.1109/IBCAST.2018.8312261

[103] O. Andreeva et al., “Industrial control systems vulnerabilities statistics,” Kaspersky Lab, Report,
2016 [Online]. Available:

VeriDevOps Project nr: 957212 Page 70

http://dx.doi.org/10.1145/3127005.3127014
http://paperpile.com/b/bpkysA/CPAN
http://paperpile.com/b/bpkysA/CPAN
http://dx.doi.org/10.1145/2889160.2891052
http://paperpile.com/b/bpkysA/eCaD
http://paperpile.com/b/bpkysA/eCaD
http://paperpile.com/b/bpkysA/eCaD
http://dx.doi.org/10.1109/hpbdis.2019.8735465
http://paperpile.com/b/bpkysA/3PJt
http://paperpile.com/b/bpkysA/3PJt
https://books.google.com/books/about/Risk_Management.html?hl=&id=mqsXogEACAAJ
http://paperpile.com/b/bpkysA/kIWg
http://paperpile.com/b/bpkysA/kIWg
http://dx.doi.org/10.2307/3150755
http://paperpile.com/b/bpkysA/Kgua
http://dx.doi.org/10.3403/02337615u
http://paperpile.com/b/bpkysA/sLOG
http://paperpile.com/b/bpkysA/sLOG
http://dx.doi.org/10.1007/978-1-4842-4206-3_62
http://paperpile.com/b/bpkysA/vfxc
http://paperpile.com/b/bpkysA/vfxc
http://dx.doi.org/10.1142/s0218539394000362
http://paperpile.com/b/bpkysA/ChIB
https://books.google.com/books/about/Risk_and_Reliability.html?hl=&id=v2jIGAAACAAJ
http://paperpile.com/b/bpkysA/aYFg
http://paperpile.com/b/bpkysA/aYFg
http://dx.doi.org/10.1002/9780470061572.eqr089
http://paperpile.com/b/bpkysA/c3Pl
http://paperpile.com/b/bpkysA/c3Pl
https://books.google.com/books/about/Lees_Loss_Prevention_in_the_Process_Indu.html?hl=&id=UDAwZQO8ZGUC
https://books.google.com/books/about/Lees_Loss_Prevention_in_the_Process_Indu.html?hl=&id=UDAwZQO8ZGUC
http://paperpile.com/b/bpkysA/5KoW
http://dx.doi.org/10.1007/978-3-642-12323-8
http://paperpile.com/b/bpkysA/eGoB
http://paperpile.com/b/bpkysA/eGoB
http://paperpile.com/b/bpkysA/eGoB
http://dx.doi.org/10.1145/3264888.3264896
http://paperpile.com/b/bpkysA/bYQs
http://paperpile.com/b/bpkysA/bYQs
http://paperpile.com/b/bpkysA/bYQs
http://paperpile.com/b/bpkysA/bYQs
http://dx.doi.org/10.6028/nist.sp.800.82
http://paperpile.com/b/bpkysA/JSuY
http://paperpile.com/b/bpkysA/JSuY
https://www.enisa.europa.eu/publications/ics-scada-dependencies
http://paperpile.com/b/bpkysA/JSuY
http://paperpile.com/b/bpkysA/JSuY
http://paperpile.com/b/bpkysA/XiOx
http://paperpile.com/b/bpkysA/XiOx
http://paperpile.com/b/bpkysA/XiOx
http://dx.doi.org/10.1109/IBCAST.2018.8312261
http://paperpile.com/b/bpkysA/XiOx
http://paperpile.com/b/bpkysA/XiOx
http://dx.doi.org/10.1109/IBCAST.2018.8312261
http://paperpile.com/b/bpkysA/862n
http://paperpile.com/b/bpkysA/862n

D1.3 State of the art report

https://www.researchgate.net/profile/Sergey_Gordeychik/publication/337732465_INDUSTRIAL_C
ONTROL_SYSTEMS_VULNERABILITIES_STATISTICS/links/5de7842e92851c8364600e7e/INDUSTRIAL
-CONTROL-SYSTEMS-VULNERABILITIES-STATISTICS.pdf

[104] B. Schneier and L. Secrets, “Digital security in a networked world,” John Wiley and Sons Inc, vol.
5, no. 3, pp. 300–315, 2000.

[105] P. Foreman, Vulnerability Management. CRC Press, 2019 [Online]. Available:
https://play.google.com/store/books/details?id=owadDwAAQBAJ

[106] L. K. Seng, N. Ithnin, and S. Z. M. Said, “The approaches to quantify web application security
scanners quality: a review,” International Journal of Advanced Computer Research, vol. 8, no. 38.
pp. 285–312, 2018 [Online]. Available: http://dx.doi.org/10.19101/ijacr.2018.838012

[107] N. Uddin Sheikh, H. Rahman, S. Vikram, and H. AlQahtani, “A Lightweight Signature-Based IDS
for IoT Environment,” arXiv e-prints, p. arXiv:1811.04582, Nov. 2018 [Online]. Available:
http://arxiv.org/abs/1811.04582

[108] M. Masdari and H. Khezri, “A survey and taxonomy of the fuzzy signature-based Intrusion
Detection Systems,” Appl. Soft Comput., vol. 92, p. 106301, 2020, doi:
10.1016/j.asoc.2020.106301. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1568494620302416

[109] A. Khraisat, I. Gondal, P. Vamplew, and J. Kamruzzaman, “Survey of intrusion detection systems:
techniques, datasets and challenges,” Cybersecurity, vol. 2, no. 1. 2019 [Online]. Available:
http://dx.doi.org/10.1186/s42400-019-0038-7

[110] Yu Wang, Weizhi Meng, Wenjuan Li, Jin Li, Wai-Xi Liu, Yang Xiang, “A fog-based
privacy-preserving approach for distributed signature-based intrusion detection,” J. Parallel
Distrib. Comput., vol. 122, pp. 26–35, 2018, doi: 10.1016/j.jpdc.2018.07.013. [Online]. Available:
https://doi.org/10.1016/j.jpdc.2018.07.013.

[111] D. J. Richey, Leveraging PLC Ladder Logic for Signature Based IDS Rule Generation. 2016
[Online]. Available:
https://books.google.com/books/about/Leveraging_PLC_Ladder_Logic_for_Signatur.html?hl=&id=
dM4vswEACAAJ

[112] R. H. Gong, M. Zulkernine, and P. Abolmaesumi, “A Software Implementation of a Genetic
Algorithm Based Approach to Network Intrusion Detection,” Sixth International Conference on
Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing and
First ACIS International Workshop on Self-Assembling Wireless Networks (SNPD/SAWN’05).
[Online]. Available: http://dx.doi.org/10.1109/snpd-sawn.2005.9

[113] ECLab: evolutionary Computation laboratory, “A Java-based Evolutionary Computation (ECJ)
and Genetic Programming Research System.” [Online]. Available:
https://cs.gmu.edu/~eclab/projects/ecj/. [Accessed: 15-Dec-2020]

[114] “1998 DARPA Intrusion Detection Evaluation Dataset,” Mar-1998. [Online]. Available:
https://www.ll.mit.edu/r-d/datasets/1998-darpa-intrusion-detection-evaluation-dataset.
[Accessed: 15-Dec-2020]

[115] C. D. Grosso, C. Del Grosso, G. Antoniol, M. Di Penta, P. Galinier, and E. Merlo, “Improving
network applications security,” Proceedings of the 2005 conference on Genetic and evolutionary
computation - GECCO ’05. 2005 [Online]. Available: http://dx.doi.org/10.1145/1068009.1068185

[116] C. D. Grosso, C. Del Grosso, G. Antoniol, E. Merlo, and P. Galinier, “Detecting buffer overflow via
automatic test input data generation,” Computers & Operations Research, vol. 35, no. 10. pp.
3125–3143, 2008 [Online]. Available: http://dx.doi.org/10.1016/j.cor.2007.01.013

[117] G. Dozier, D. Brown, H. Hou, and J. Hurley, “Vulnerability analysis of immunity-based intrusion
detection systems using genetic and evolutionary hackers,” Applied Soft Computing, vol. 7, no. 2.

VeriDevOps Project nr: 957212 Page 71

https://www.researchgate.net/profile/Sergey_Gordeychik/publication/337732465_INDUSTRIAL_CONTROL_SYSTEMS_VULNERABILITIES_STATISTICS/links/5de7842e92851c8364600e7e/INDUSTRIAL-CONTROL-SYSTEMS-VULNERABILITIES-STATISTICS.pdf
https://www.researchgate.net/profile/Sergey_Gordeychik/publication/337732465_INDUSTRIAL_CONTROL_SYSTEMS_VULNERABILITIES_STATISTICS/links/5de7842e92851c8364600e7e/INDUSTRIAL-CONTROL-SYSTEMS-VULNERABILITIES-STATISTICS.pdf
https://www.researchgate.net/profile/Sergey_Gordeychik/publication/337732465_INDUSTRIAL_CONTROL_SYSTEMS_VULNERABILITIES_STATISTICS/links/5de7842e92851c8364600e7e/INDUSTRIAL-CONTROL-SYSTEMS-VULNERABILITIES-STATISTICS.pdf
http://paperpile.com/b/bpkysA/XKC8
http://paperpile.com/b/bpkysA/XKC8
http://paperpile.com/b/bpkysA/zJWw
https://play.google.com/store/books/details?id=owadDwAAQBAJ
http://paperpile.com/b/bpkysA/B7vm
http://paperpile.com/b/bpkysA/B7vm
http://paperpile.com/b/bpkysA/B7vm
http://dx.doi.org/10.19101/ijacr.2018.838012
http://paperpile.com/b/bpkysA/zeRW
http://paperpile.com/b/bpkysA/zeRW
http://arxiv.org/abs/1811.04582
http://paperpile.com/b/bpkysA/zJKm
http://paperpile.com/b/bpkysA/zJKm
http://dx.doi.org/10.1016/j.asoc.2020.106301
http://paperpile.com/b/bpkysA/zJKm
https://www.sciencedirect.com/science/article/pii/S1568494620302416
http://paperpile.com/b/bpkysA/rpAU
http://paperpile.com/b/bpkysA/rpAU
http://dx.doi.org/10.1186/s42400-019-0038-7
http://paperpile.com/b/bpkysA/AKdf
http://paperpile.com/b/bpkysA/AKdf
http://paperpile.com/b/bpkysA/AKdf
http://dx.doi.org/10.1016/j.jpdc.2018.07.013
http://paperpile.com/b/bpkysA/AKdf
https://doi.org/10.1016/j.jpdc.2018.07.013.
http://paperpile.com/b/bpkysA/mbHt
http://paperpile.com/b/bpkysA/mbHt
https://books.google.com/books/about/Leveraging_PLC_Ladder_Logic_for_Signatur.html?hl=&id=dM4vswEACAAJ
https://books.google.com/books/about/Leveraging_PLC_Ladder_Logic_for_Signatur.html?hl=&id=dM4vswEACAAJ
http://paperpile.com/b/bpkysA/bIw2
http://paperpile.com/b/bpkysA/bIw2
http://paperpile.com/b/bpkysA/bIw2
http://paperpile.com/b/bpkysA/bIw2
http://paperpile.com/b/bpkysA/bIw2
http://dx.doi.org/10.1109/snpd-sawn.2005.9
http://paperpile.com/b/bpkysA/LKPg
http://paperpile.com/b/bpkysA/LKPg
https://cs.gmu.edu/~eclab/projects/ecj/
http://paperpile.com/b/bpkysA/LKPg
http://paperpile.com/b/bpkysA/vSTN
https://www.ll.mit.edu/r-d/datasets/1998-darpa-intrusion-detection-evaluation-dataset
http://paperpile.com/b/bpkysA/vSTN
http://paperpile.com/b/bpkysA/vSTN
http://paperpile.com/b/bpkysA/6eqg
http://paperpile.com/b/bpkysA/6eqg
http://paperpile.com/b/bpkysA/6eqg
http://dx.doi.org/10.1145/1068009.1068185
http://paperpile.com/b/bpkysA/6PPB
http://paperpile.com/b/bpkysA/6PPB
http://paperpile.com/b/bpkysA/6PPB
http://dx.doi.org/10.1016/j.cor.2007.01.013
http://paperpile.com/b/bpkysA/nNpa
http://paperpile.com/b/bpkysA/nNpa

D1.3 State of the art report

pp. 547–553, 2007 [Online]. Available: http://dx.doi.org/10.1016/j.asoc.2006.05.001
[118] H. Hou and G. Dozier, “Immunity-based intrusion detection system design, vulnerability

analysis, and GENERTIA’s genetic arms race,” Proceedings of the 2005 ACM symposium on Applied
computing - SAC ’05. 2005 [Online]. Available: http://dx.doi.org/10.1145/1066677.1066895

[119] J. Campos, R. Abreu, G. Fraser, and M. d’Amorim, “Entropy-based test generation for improved
fault localization,” 2013 28th IEEE/ACM International Conference on Automated Software
Engineering (ASE). 2013 [Online]. Available: http://dx.doi.org/10.1109/ase.2013.6693085

[120] G. Fraser and A. Arcuri, “EvoSuite,” Proceedings of the 19th ACM SIGSOFT symposium and the
13th European conference on Foundations of software engineering - SIGSOFT/FSE ’11. 2011
[Online]. Available: http://dx.doi.org/10.1145/2025113.2025179

[121] J. P. Galeotti, G. Fraser, and A. Arcuri, “Improving search-based test suite generation with
dynamic symbolic execution,” 2013 IEEE 24th International Symposium on Software Reliability
Engineering (ISSRE). 2013 [Online]. Available: http://dx.doi.org/10.1109/issre.2013.6698889

[122] N. Tracey, J. Clark, J. McDermid, and K. Mander, “A Search-Based Automated Test-Data
Generation Framework for Safety-Critical Systems,” Systems Engineering for Business Process
Change: New Directions. pp. 174–213, 2002 [Online]. Available:
http://dx.doi.org/10.1007/978-1-4471-0135-2_12

[123] W. Afzal, R. Torkar, and R. Feldt, “A systematic review of search-based testing for non-functional
system properties,” Information and Software Technology, vol. 51, no. 6. pp. 957–976, 2009
[Online]. Available: http://dx.doi.org/10.1016/j.infsof.2008.12.005

[124] D. Bhamare, M. Zolanvari, A. Erbad, R. Jain, K. Khan, and N. Meskin, “Cybersecurity for
Industrial Control Systems: A Survey,” arXiv [cs.CR]. 2020 [Online]. Available:
http://arxiv.org/abs/2002.04124

[125] E. Hodo, X. Bellekens, A. Hamilton, C. Tachtatzis, and R. Atkinson, “Shallow and Deep Networks
Intrusion Detection System: A Taxonomy and Survey,” arXiv [cs.CR]. 2017 [Online]. Available:
http://arxiv.org/abs/1701.02145

[126] H. Liu and B. Lang, “Machine Learning and Deep Learning Methods for Intrusion Detection
Systems: A Survey,” NATO Adv. Sci. Inst. Ser. E Appl. Sci., vol. 9, no. 20, p. 4396, Oct. 2019, doi:
10.3390/app9204396. [Online]. Available: https://www.mdpi.com/2076-3417/9/20/4396.
[Accessed: 11-Feb-2021]

[127] K. A. P. da Costa, J. P. Papa, C. O. Lisboa, R. Munoz, and V. H. C. de Albuquerque, “Internet of
Things: A survey on machine learning-based intrusion detection approaches,” Computer Networks,
vol. 151, pp. 147–157, Mar. 2019, doi: 10.1016/j.comnet.2019.01.023. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1389128618308739

[128] N. Sultana, N. Chilamkurti, W. Peng, and R. Alhadad, “Survey on SDN based network intrusion
detection system using machine learning approaches,” Peer-to-Peer Networking and Applications,
vol. 12, no. 2, pp. 493–501, Mar. 2019, doi: 10.1007/s12083-017-0630-0. [Online]. Available:
https://doi.org/10.1007/s12083-017-0630-0

[129] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection,” ACM Computing Surveys, vol. 41,
no. 3. pp. 1–58, 2009 [Online]. Available: http://dx.doi.org/10.1145/1541880.1541882

[130] S. Lazarova-Molnar, H. R. Shaker, N. Mohamed, and B. N. J⊘rgensen, “Fault detection and
diagnosis for smart buildings: State of the art, trends and challenges,” in 2016 3rd MEC
International Conference on Big Data and Smart City (ICBDSC), 2016, pp. 1–7, doi:
10.1109/ICBDSC.2016.7460392 [Online]. Available:
http://dx.doi.org/10.1109/ICBDSC.2016.7460392

[131] S. Katipamula and M. R. Brambley, “Review Article: Methods for Fault Detection, Diagnostics,
and Prognostics for Building Systems—A Review, Part I,” HVAC&R Research, vol. 11, no. 1, pp.

VeriDevOps Project nr: 957212 Page 72

http://paperpile.com/b/bpkysA/nNpa
http://dx.doi.org/10.1016/j.asoc.2006.05.001
http://paperpile.com/b/bpkysA/FBiu
http://paperpile.com/b/bpkysA/FBiu
http://paperpile.com/b/bpkysA/FBiu
http://dx.doi.org/10.1145/1066677.1066895
http://paperpile.com/b/bpkysA/cgFm
http://paperpile.com/b/bpkysA/cgFm
http://paperpile.com/b/bpkysA/cgFm
http://dx.doi.org/10.1109/ase.2013.6693085
http://paperpile.com/b/bpkysA/LIju
http://paperpile.com/b/bpkysA/LIju
http://paperpile.com/b/bpkysA/LIju
http://dx.doi.org/10.1145/2025113.2025179
http://paperpile.com/b/bpkysA/3kib
http://paperpile.com/b/bpkysA/3kib
http://paperpile.com/b/bpkysA/3kib
http://dx.doi.org/10.1109/issre.2013.6698889
http://paperpile.com/b/bpkysA/97Xp
http://paperpile.com/b/bpkysA/97Xp
http://paperpile.com/b/bpkysA/97Xp
http://dx.doi.org/10.1007/978-1-4471-0135-2_12
http://paperpile.com/b/bpkysA/3q8Z
http://paperpile.com/b/bpkysA/3q8Z
http://paperpile.com/b/bpkysA/3q8Z
http://dx.doi.org/10.1016/j.infsof.2008.12.005
http://paperpile.com/b/bpkysA/2W1S
http://paperpile.com/b/bpkysA/2W1S
http://arxiv.org/abs/2002.04124
http://paperpile.com/b/bpkysA/wB6L
http://paperpile.com/b/bpkysA/wB6L
http://arxiv.org/abs/1701.02145
http://paperpile.com/b/bpkysA/q4iD
http://paperpile.com/b/bpkysA/q4iD
http://dx.doi.org/10.3390/app9204396
http://paperpile.com/b/bpkysA/q4iD
https://www.mdpi.com/2076-3417/9/20/4396
http://paperpile.com/b/bpkysA/q4iD
http://paperpile.com/b/bpkysA/q4iD
http://paperpile.com/b/bpkysA/DxmN
http://paperpile.com/b/bpkysA/DxmN
http://paperpile.com/b/bpkysA/DxmN
http://dx.doi.org/10.1016/j.comnet.2019.01.023
http://paperpile.com/b/bpkysA/DxmN
https://www.sciencedirect.com/science/article/pii/S1389128618308739
http://paperpile.com/b/bpkysA/Da0Q
http://paperpile.com/b/bpkysA/Da0Q
http://paperpile.com/b/bpkysA/Da0Q
http://dx.doi.org/10.1007/s12083-017-0630-0
http://paperpile.com/b/bpkysA/Da0Q
https://doi.org/10.1007/s12083-017-0630-0
http://paperpile.com/b/bpkysA/czZC
http://paperpile.com/b/bpkysA/czZC
http://dx.doi.org/10.1145/1541880.1541882
http://paperpile.com/b/bpkysA/VQii
http://paperpile.com/b/bpkysA/VQii
http://paperpile.com/b/bpkysA/VQii
http://dx.doi.org/10.1109/ICBDSC.2016.7460392
http://paperpile.com/b/bpkysA/VQii
http://dx.doi.org/10.1109/ICBDSC.2016.7460392
http://paperpile.com/b/bpkysA/gueS
http://paperpile.com/b/bpkysA/gueS

D1.3 State of the art report

3–25, Jan. 2005, doi: 10.1080/10789669.2005.10391123. [Online]. Available:
https://www.tandfonline.com/doi/abs/10.1080/10789669.2005.10391123

[132] Z. Feng, M. Liang, and F. Chu, “Recent advances in time–frequency analysis methods for
machinery fault diagnosis: A review with application examples,” Mech. Syst. Signal Process., vol.
38, no. 1, pp. 165–205, Jul. 2013, doi: 10.1016/j.ymssp.2013.01.017. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S088832701300071X

[133] N. Delgado, A. Q. Gates, and S. Roach, “A taxonomy and catalog of runtime software-fault
monitoring tools,” IEEE Trans. Software Eng., vol. 30, no. 12, pp. 859–872, Dec. 2004, doi:
10.1109/TSE.2004.91. [Online]. Available: http://dx.doi.org/10.1109/TSE.2004.91

[134] L. Qin, X. He, and D. H. Zhou, “A survey of fault diagnosis for swarm systems,” Systems Science
& Control Engineering, vol. 2, no. 1, pp. 13–23, Dec. 2014, doi: 10.1080/21642583.2013.873745.
[Online]. Available: https://doi.org/10.1080/21642583.2013.873745

[135] R. Isermann, “Model-based fault-detection and diagnosis – status and applications,” Annual
Reviews in Control, vol. 29, no. 1. pp. 71–85, 2005 [Online]. Available:
http://dx.doi.org/10.1016/j.arcontrol.2004.12.002

[136] I. Hwang, S. Kim, Y. Kim, and C. E. Seah, “A Survey of Fault Detection, Isolation, and
Reconfiguration Methods,” IEEE Trans. Control Syst. Technol., vol. 18, no. 3, pp. 636–653, May
2010, doi: 10.1109/TCST.2009.2026285. [Online]. Available:
http://dx.doi.org/10.1109/TCST.2009.2026285

[137] P. E. Lanigan, S. Kavulya, P. Narasimhan, T. E. Fuhrman, and M. A. Salman, “Diagnosis in
automotive systems: A survey,” Last accessed Sept, vol. 10, p. 2011, 2011 [Online]. Available:
https://www.academia.edu/download/30795812/CMU-PDL-11-110.pdf

[138] J. Mohammadpour, M. Franchek, and K. Grigoriadis, “A survey on diagnostic methods for
automotive engines,” Int. J. Engine Res., vol. 13, no. 1, pp. 41–64, Feb. 2012, doi:
10.1177/1468087411422851. [Online]. Available: https://doi.org/10.1177/1468087411422851

[139] R. J. Patton, “Fault detection and diagnosis in aerospace systems using analytical redundancy,”
Computing & Control Engineering Journal, vol. 2, no. 3, pp. 127–136, May 1991, doi:
10.1049/cce:19910031. [Online]. Available:
https://digital-library.theiet.org/content/journals/10.1049/cce_19910031. [Accessed:
07-Feb-2021]

[140] Buchanan, G. Bruce, Shortliffe, and E. H. (editors), “Rule- Based Expert Systems : The MYCIN
Experiments of the Stanford Heuristic Programming Project,” 1984 [Online]. Available:
http://papers.cumincad.org/cgi-bin/works/paper/ec87. [Accessed: 07-Feb-2021]

[141] Silvianita, D. S. Mahandeka, and D. M. Rosyid, “Fault Tree Analysis for Investigation on the
Causes of Project Problems,” Procedia Earth and Planetary Science, vol. 14, pp. 213–219, Jan.
2015, doi: 10.1016/j.proeps.2015.07.104. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1878522015002556

[142] A. Alaeddini and I. Dogan, “Using Bayesian networks for root cause analysis in statistical
process control,” Expert Syst. Appl., vol. 38, no. 9, pp. 11230–11243, Sep. 2011, doi:
10.1016/j.eswa.2011.02.171. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0957417411003952

[143] M. Chen, A. X. Zheng, J. Lloyd, M. I. Jordan, and E. Brewer, “Failure diagnosis using decision
trees,” in International Conference on Autonomic Computing, 2004. Proceedings., 2004, pp. 36–43,
doi: 10.1109/ICAC.2004.1301345 [Online]. Available:
http://dx.doi.org/10.1109/ICAC.2004.1301345

[144] M. Pelillo, Ed., Similarity-Based Pattern Analysis and Recognition. Springer, London, 2013
[Online]. Available: https://link.springer.com/10.1007/978-1-4471-5628-4

VeriDevOps Project nr: 957212 Page 73

http://paperpile.com/b/bpkysA/gueS
http://dx.doi.org/10.1080/10789669.2005.10391123
http://paperpile.com/b/bpkysA/gueS
https://www.tandfonline.com/doi/abs/10.1080/10789669.2005.10391123
http://paperpile.com/b/bpkysA/wvQD
http://paperpile.com/b/bpkysA/wvQD
http://paperpile.com/b/bpkysA/wvQD
http://dx.doi.org/10.1016/j.ymssp.2013.01.017
http://paperpile.com/b/bpkysA/wvQD
https://www.sciencedirect.com/science/article/pii/S088832701300071X
http://paperpile.com/b/bpkysA/G5bi
http://paperpile.com/b/bpkysA/G5bi
http://dx.doi.org/10.1109/TSE.2004.91
http://paperpile.com/b/bpkysA/G5bi
http://dx.doi.org/10.1109/TSE.2004.91
http://paperpile.com/b/bpkysA/P5ST
http://paperpile.com/b/bpkysA/P5ST
http://dx.doi.org/10.1080/21642583.2013.873745
http://paperpile.com/b/bpkysA/P5ST
http://paperpile.com/b/bpkysA/P5ST
https://doi.org/10.1080/21642583.2013.873745
http://paperpile.com/b/bpkysA/Z5sw
http://paperpile.com/b/bpkysA/Z5sw
http://dx.doi.org/10.1016/j.arcontrol.2004.12.002
http://paperpile.com/b/bpkysA/oeGY
http://paperpile.com/b/bpkysA/oeGY
http://paperpile.com/b/bpkysA/oeGY
http://dx.doi.org/10.1109/TCST.2009.2026285
http://paperpile.com/b/bpkysA/oeGY
http://dx.doi.org/10.1109/TCST.2009.2026285
http://paperpile.com/b/bpkysA/Pj4S
http://paperpile.com/b/bpkysA/Pj4S
https://www.academia.edu/download/30795812/CMU-PDL-11-110.pdf
http://paperpile.com/b/bpkysA/7pmM
http://paperpile.com/b/bpkysA/7pmM
http://dx.doi.org/10.1177/1468087411422851
http://paperpile.com/b/bpkysA/7pmM
https://doi.org/10.1177/1468087411422851
http://paperpile.com/b/bpkysA/iahv
http://paperpile.com/b/bpkysA/iahv
http://dx.doi.org/10.1049/cce:19910031
http://paperpile.com/b/bpkysA/iahv
https://digital-library.theiet.org/content/journals/10.1049/cce_19910031
http://paperpile.com/b/bpkysA/iahv
http://paperpile.com/b/bpkysA/iahv
http://paperpile.com/b/bpkysA/GDyH
http://paperpile.com/b/bpkysA/GDyH
http://papers.cumincad.org/cgi-bin/works/paper/ec87
http://paperpile.com/b/bpkysA/GDyH
http://paperpile.com/b/bpkysA/rD2C
http://paperpile.com/b/bpkysA/rD2C
http://paperpile.com/b/bpkysA/rD2C
http://dx.doi.org/10.1016/j.proeps.2015.07.104
http://paperpile.com/b/bpkysA/rD2C
https://www.sciencedirect.com/science/article/pii/S1878522015002556
http://paperpile.com/b/bpkysA/MuZQ
http://paperpile.com/b/bpkysA/MuZQ
http://dx.doi.org/10.1016/j.eswa.2011.02.171
http://paperpile.com/b/bpkysA/MuZQ
https://www.sciencedirect.com/science/article/pii/S0957417411003952
http://paperpile.com/b/bpkysA/GT5J
http://paperpile.com/b/bpkysA/GT5J
http://paperpile.com/b/bpkysA/GT5J
http://dx.doi.org/10.1109/ICAC.2004.1301345
http://paperpile.com/b/bpkysA/GT5J
http://dx.doi.org/10.1109/ICAC.2004.1301345
http://paperpile.com/b/bpkysA/w9DS
http://paperpile.com/b/bpkysA/w9DS
https://link.springer.com/10.1007/978-1-4471-5628-4

D1.3 State of the art report

[145] I. Mugarza, J. L. Flores, and J. L. Montero, “Security Issues and Software Updates Management
in the Industrial Internet of Things (IIoT) Era,” Sensors , vol. 20, no. 24, Dec. 2020, doi:
10.3390/s20247160. [Online]. Available: http://dx.doi.org/10.3390/s20247160

[146] Keith Stouffer, Suzanne Lightman, Victoria Pillitteri, Marshall Abrams, Adam Hahn, “Guide to
Industrial Control Systems (ICS) Security,” NIST Special Publication, 800-82, May 2015.

[147] A. A. Jillepalli, F. T. Sheldon, D. C. de Leon, M. Haney, and R. K. Abercrombie, “Security
management of cyber physical control systems using NIST SP 800-82r2,” 2017 13th International
Wireless Communications and Mobile Computing Conference (IWCMC). 2017 [Online]. Available:
http://dx.doi.org/10.1109/iwcmc.2017.7986568

[148] International Electrotechnical Commission, “IEC TR 63069: Industrial-Process Measurement,
Control and Automation—Framework for Functional Safety and Security,” IEC Central Office,
Geneva, Switzerland, 2019.

[149] International Electrotechnical Commission, “IEC 62443: Security for Industrial Automation and
Control Systems—Part 4-1: Secure Product Development Lifecycle Requirements,” IEC Central
Office, Geneva, Switzerland, 2018.

[150] ENISA, “Actionable Information for Security Incident Response,” European Union Agency for
Network and Information Security, Nov. 2014 [Online]. Available:
https://www.enisa.europa.eu/publications/actionable-information-for-security

[151] MITRE, “ATT&CK® for Industrial Control Systems.” [Online]. Available:
https://collaborate.mitre.org/attackics/index.php/Main_Page. [Accessed: 03-Apr-2021]

[152] M. Felderer, M. Büchler, M. Johns, A. D. Brucker, R. Breu, and A. Pretschner, “Security Testing,”
Advances in Computers. pp. 1–51, 2016 [Online]. Available:
http://dx.doi.org/10.1016/bs.adcom.2015.11.003

[153] S. Chong et al., “Report on the NSF Workshop on Formal Methods for Security,” arXiv [cs.CR],
02-Aug-2016 [Online]. Available: http://arxiv.org/abs/1608.00678

[154] A. Datta, J. Franklin, D. Garg, L. Jia, and D. Kaynar, “On Adversary Models and Compositional
Security,” IEEE Security & Privacy Magazine, vol. 9, no. 3. pp. 26–32, 2011 [Online]. Available:
http://dx.doi.org/10.1109/msp.2010.203

[155] Clark Barrett, Pascal Fontaine, and Cesare Tinelli, “The SMT-LIB Standard: Version 2.5,”
Department of Computer Science, The University of Iowa, Technical report, 2015 [Online].
Available: www.SMT-LIB.org. [Accessed: 11-Mar-2021]

[156] A. Stump, G. Sutcliffe, and C. Tinelli, “StarExec: A Cross-Community Infrastructure for Logic
Solving,” Automated Reasoning. pp. 367–373, 2014 [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-08587-6_28

[157] C. Hawblitzel et al., “IronFleet,” Proceedings of the 25th Symposium on Operating Systems
Principles. 2015 [Online]. Available: http://dx.doi.org/10.1145/2815400.2815428

[158] S. Pernsteiner et al., “Investigating Safety of a Radiotherapy Machine Using System Models
with Pluggable Checkers,” Computer Aided Verification. pp. 23–41, 2016 [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-41540-6_2

[159] V. H. Subburaj and J. E. Urban, “Applying Formal Methods to Specify Security Requirements in
Multi–Agent Systems,” Proceedings of the 2018 Federated Conference on Computer Science and
Information Systems. 2018 [Online]. Available: http://dx.doi.org/10.15439/2018f262

[160] P. Giorgini, F. Massacci, J. Mylopoulos, and N. Zannone, “Modeling security requirements
through ownership, permission and delegation,” 13th IEEE International Conference on
Requirements Engineering (RE’05). 2005 [Online]. Available: http://dx.doi.org/10.1109/re.2005.43

[161] Q. Rouland, B. Hamid, J.-P. Bodeveix, and M. Filali, “A Formal Methods Approach to Security
Requirements Specification and Verification,” 2019 24th International Conference on Engineering

VeriDevOps Project nr: 957212 Page 74

http://paperpile.com/b/bpkysA/us0Q
http://paperpile.com/b/bpkysA/us0Q
http://dx.doi.org/10.3390/s20247160
http://paperpile.com/b/bpkysA/us0Q
http://dx.doi.org/10.3390/s20247160
http://paperpile.com/b/bpkysA/3yam
http://paperpile.com/b/bpkysA/3yam
http://paperpile.com/b/bpkysA/FrRz
http://paperpile.com/b/bpkysA/FrRz
http://paperpile.com/b/bpkysA/FrRz
http://dx.doi.org/10.1109/iwcmc.2017.7986568
http://paperpile.com/b/bpkysA/vd77
http://paperpile.com/b/bpkysA/vd77
http://paperpile.com/b/bpkysA/vd77
http://paperpile.com/b/bpkysA/vyrw
http://paperpile.com/b/bpkysA/vyrw
http://paperpile.com/b/bpkysA/vyrw
http://paperpile.com/b/bpkysA/tDV8
http://paperpile.com/b/bpkysA/tDV8
https://www.enisa.europa.eu/publications/actionable-information-for-security
http://paperpile.com/b/bpkysA/yyWO
https://collaborate.mitre.org/attackics/index.php/Main_Page
http://paperpile.com/b/bpkysA/yyWO
http://paperpile.com/b/bpkysA/kyc0
http://paperpile.com/b/bpkysA/kyc0
http://dx.doi.org/10.1016/bs.adcom.2015.11.003
http://paperpile.com/b/bpkysA/5E45
http://paperpile.com/b/bpkysA/5E45
http://arxiv.org/abs/1608.00678
http://paperpile.com/b/bpkysA/sOpH
http://paperpile.com/b/bpkysA/sOpH
http://dx.doi.org/10.1109/msp.2010.203
http://paperpile.com/b/bpkysA/0ksC
http://paperpile.com/b/bpkysA/0ksC
http://paperpile.com/b/bpkysA/0ksC
http://www.smt-lib.org.
http://paperpile.com/b/bpkysA/0ksC
http://paperpile.com/b/bpkysA/xF1o
http://paperpile.com/b/bpkysA/xF1o
http://dx.doi.org/10.1007/978-3-319-08587-6_28
http://paperpile.com/b/bpkysA/n5KB
http://paperpile.com/b/bpkysA/n5KB
http://dx.doi.org/10.1145/2815400.2815428
http://paperpile.com/b/bpkysA/xc8d
http://paperpile.com/b/bpkysA/xc8d
http://dx.doi.org/10.1007/978-3-319-41540-6_2
http://paperpile.com/b/bpkysA/XdU7
http://paperpile.com/b/bpkysA/XdU7
http://paperpile.com/b/bpkysA/XdU7
http://dx.doi.org/10.15439/2018f262
http://paperpile.com/b/bpkysA/sp3L
http://paperpile.com/b/bpkysA/sp3L
http://paperpile.com/b/bpkysA/sp3L
http://dx.doi.org/10.1109/re.2005.43
http://paperpile.com/b/bpkysA/ToPE
http://paperpile.com/b/bpkysA/ToPE

D1.3 State of the art report

of Complex Computer Systems (ICECCS). 2019 [Online]. Available:
http://dx.doi.org/10.1109/iceccs.2019.00033

[162] Z. Zhioua, Y. Roudier, and R. B. Ameur, “Formal Specification and Verification of Security
Guidelines,” 2017 IEEE 22nd Pacific Rim International Symposium on Dependable Computing
(PRDC). 2017 [Online]. Available: http://dx.doi.org/10.1109/prdc.2017.51

[163] Z. Zhioua, R. Ameur-Boulifa, and Y. Roudier, “Framework for the Formal Specification and
Verification of Security Guidelines,” Advances in Science, Technology and Engineering Systems
Journal, vol. 3, no. 1. pp. 38–48, 2018 [Online]. Available: http://dx.doi.org/10.25046/aj030106

[164] K. Yajima, S. Morimoto, D. Horie, N. S. Azreen, Y. Goto, and J. Cheng, “FORVEST: A Support Tool
for Formal Verification of Security Specifications with ISO/IEC 15408,” 2009 International
Conference on Availability, Reliability and Security. 2009 [Online]. Available:
http://dx.doi.org/10.1109/ares.2009.74

[165] I. Vistbakka, E. Troubitsyna, T. Kuismin, and T. Latvala, “Co-engineering Safety and Security in
Industrial Control Systems: A Formal Outlook,” Lecture Notes in Computer Science. pp. 96–114,
2017 [Online]. Available: http://dx.doi.org/10.1007/978-3-319-65948-0_7

[166] E. Troubitsyna and I. Vistbakka, “Deriving and Formalising Safety and Security Requirements for
Control Systems,” Developments in Language Theory. pp. 107–122, 2018 [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-99130-6_8

[167] I. Vistbakka and E. Troubitsyna, “Towards a Formal Approach to Analysing Security of
Safety-Critical Systems,” 2018 14th European Dependable Computing Conference (EDCC). 2018
[Online]. Available: http://dx.doi.org/10.1109/edcc.2018.00040

[168] A. Naumchev, “Object-Oriented Requirements: Reusable, Understandable, Verifiable,” Software
Technology: Methods and Tools. pp. 150–162, 2019 [Online]. Available:
http://dx.doi.org/10.1007/978-3-030-29852-4_12

[169] L. Huang and E.-Y. Kang, “Formal Verification of Safety & Security Related Timing Constraints for
a Cooperative Automotive System,” Fundamental Approaches to Software Engineering. pp.
210–227, 2019 [Online]. Available: http://dx.doi.org/10.1007/978-3-030-16722-6_12

[170] M. Farrell et al., “Using Threat Analysis Techniques to Guide Formal Verification: A Case Study
of Cooperative Awareness Messages,” Software Engineering and Formal Methods. pp. 471–490,
2019 [Online]. Available: http://dx.doi.org/10.1007/978-3-030-30446-1_25

[171] D. C. Wardell, R. F. Mills, G. L. Peterson, and M. E. Oxley, “A Method for Revealing and
Addressing Security Vulnerabilities in Cyber-physical Systems by Modeling Malicious Agent
Interactions with Formal Verification,” Procedia Computer Science, vol. 95. pp. 24–31, 2016
[Online]. Available: http://dx.doi.org/10.1016/j.procs.2016.09.289

[172] M. Felderer and E. Fourneret, “A systematic classification of security regression testing
approaches,” International Journal on Software Tools for Technology Transfer, vol. 17, no. 3. pp.
305–319, 2015 [Online]. Available: http://dx.doi.org/10.1007/s10009-015-0365-2

[173] “Methods for Testing and Specification (MTS); Security Testing; Basic Terminology,” ETSI, TR 101
583 - V1.1.1, Mar. 2015.

[174] N. Mahendra and S. Ahmad, “A Categorized Review on Software Security Testing,” International
Journal of Computer Applications, vol. 154, no. 1. pp. 21–25, 2016 [Online]. Available:
http://dx.doi.org/10.5120/ijca2016912023

[175] G. Tian-yang, S. Yin-Sheng, and F. You-yuan, “Research on software security testing,” Proc.
World Acad. of Sci. Eng. Technol., vol. 70, pp. 647–651, 2010 [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.190.4771&rep=rep1&type=pdf

[176] I. Schieferdecker, J. Grossmann, and M. Schneider, “Model-Based Security Testing,” Electronic
Proceedings in Theoretical Computer Science, vol. 80. pp. 1–12, 2012 [Online]. Available:

VeriDevOps Project nr: 957212 Page 75

http://paperpile.com/b/bpkysA/ToPE
http://dx.doi.org/10.1109/iceccs.2019.00033
http://paperpile.com/b/bpkysA/Rzuf
http://paperpile.com/b/bpkysA/Rzuf
http://paperpile.com/b/bpkysA/Rzuf
http://dx.doi.org/10.1109/prdc.2017.51
http://paperpile.com/b/bpkysA/8nrR
http://paperpile.com/b/bpkysA/8nrR
http://paperpile.com/b/bpkysA/8nrR
http://dx.doi.org/10.25046/aj030106
http://paperpile.com/b/bpkysA/7yrv
http://paperpile.com/b/bpkysA/7yrv
http://paperpile.com/b/bpkysA/7yrv
http://dx.doi.org/10.1109/ares.2009.74
http://paperpile.com/b/bpkysA/6LxK
http://paperpile.com/b/bpkysA/6LxK
http://paperpile.com/b/bpkysA/6LxK
http://dx.doi.org/10.1007/978-3-319-65948-0_7
http://paperpile.com/b/bpkysA/RPTs
http://paperpile.com/b/bpkysA/RPTs
http://dx.doi.org/10.1007/978-3-319-99130-6_8
http://paperpile.com/b/bpkysA/BBKE
http://paperpile.com/b/bpkysA/BBKE
http://paperpile.com/b/bpkysA/BBKE
http://dx.doi.org/10.1109/edcc.2018.00040
http://paperpile.com/b/bpkysA/QNTv
http://paperpile.com/b/bpkysA/QNTv
http://dx.doi.org/10.1007/978-3-030-29852-4_12
http://paperpile.com/b/bpkysA/hOVR
http://paperpile.com/b/bpkysA/hOVR
http://paperpile.com/b/bpkysA/hOVR
http://dx.doi.org/10.1007/978-3-030-16722-6_12
http://paperpile.com/b/bpkysA/CeUw
http://paperpile.com/b/bpkysA/CeUw
http://paperpile.com/b/bpkysA/CeUw
http://dx.doi.org/10.1007/978-3-030-30446-1_25
http://paperpile.com/b/bpkysA/egVy
http://paperpile.com/b/bpkysA/egVy
http://paperpile.com/b/bpkysA/egVy
http://paperpile.com/b/bpkysA/egVy
http://dx.doi.org/10.1016/j.procs.2016.09.289
http://paperpile.com/b/bpkysA/NXfR
http://paperpile.com/b/bpkysA/NXfR
http://paperpile.com/b/bpkysA/NXfR
http://dx.doi.org/10.1007/s10009-015-0365-2
http://paperpile.com/b/bpkysA/13lJ
http://paperpile.com/b/bpkysA/13lJ
http://paperpile.com/b/bpkysA/Wvyb
http://paperpile.com/b/bpkysA/Wvyb
http://dx.doi.org/10.5120/ijca2016912023
http://paperpile.com/b/bpkysA/oz3U
http://paperpile.com/b/bpkysA/oz3U
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.190.4771&rep=rep1&type=pdf
http://paperpile.com/b/bpkysA/cxin
http://paperpile.com/b/bpkysA/cxin

D1.3 State of the art report

http://dx.doi.org/10.4204/eptcs.80.1
[177] G. Fink and M. Bishop, “Property-based testing: a new approach to testing for assurance,”

SIGSOFT Softw. Eng. Notes, vol. 22, no. 4, pp. 74–80, Jul. 1997, doi: 10.1145/263244.263267.
[Online]. Available: https://doi.org/10.1145/263244.263267

[178] J. Zeng, C. Yang, W. Shen, and J. Zhang, “Application of Software Testing Technology in Security
and Protection of Power System,” Advances in Intelligent Systems and Computing. pp. 1132–1137,
2021 [Online]. Available: http://dx.doi.org/10.1007/978-981-33-4572-0_162

[179] F. Mateo Tudela, J.-R. Bermejo Higuera, J. Bermejo Higuera, J.-A. Sicilia Montalvo, and M. I.
Argyros, “On Combining Static, Dynamic and Interactive Analysis Security Testing Tools to Improve
OWASP Top Ten Security Vulnerability Detection in Web Applications,” NATO Adv. Sci. Inst. Ser. E
Appl. Sci., vol. 10, no. 24, p. 9119, Dec. 2020, doi: 10.3390/app10249119. [Online]. Available:
https://www.mdpi.com/2076-3417/10/24/9119. [Accessed: 12-Feb-2021]

[180] S. Ali, “Cybersecurity management for distributed control system: systematic approach,”
Journal of Ambient Intelligence and Humanized Computing. 2021 [Online]. Available:
http://dx.doi.org/10.1007/s12652-020-02775-5

[181] M. Utting, A. Pretschner, and B. Legeard, “A taxonomy of model-based testing approaches,”
Software Testing, Verification and Reliability, vol. 22, no. 5. pp. 297–312, 2012 [Online]. Available:
http://dx.doi.org/10.1002/stvr.456

[182] M. Felderer, B. Agreiter, P. Zech, and R. Breu, “A classification for model-based security testing,”
Advances in System Testing and Validation Lifecycle (VALID 2011), pp. 109–114, 2011 [Online].
Available:
https://www.researchgate.net/profile/Michael_Felderer/publication/267561985_A_Classification
_for_Model-Based_Security_Testing/links/5453b1a40cf2cf51647c20d0.pdf

[183] A. Lunkeit and I. Schieferdecker, “Model-Based Security Testing - Deriving Test Models from
Artefacts of Security Engineering,” 2018 IEEE International Conference on Software Testing,
Verification and Validation Workshops (ICSTW). 2018 [Online]. Available:
http://dx.doi.org/10.1109/icstw.2018.00056

[184] H. Stallbaum, A. Metzger, and K. Pohl, “An automated technique for risk-based test case
generation and prioritization,” Proceedings of the 3rd international workshop on Automation of
software test - AST ’08. 2008 [Online]. Available: http://dx.doi.org/10.1145/1370042.1370057

[185] P. Zech, “Risk-Based Security Testing in Cloud Computing Environments,” 2011 Fourth IEEE
International Conference on Software Testing, Verification and Validation. 2011 [Online]. Available:
http://dx.doi.org/10.1109/icst.2011.23

[186] M. Felderer, P. Zech, R. Breu, M. Büchler, and A. Pretschner, “Model-based security testing: a
taxonomy and systematic classification,” Software Testing, Verification and Reliability, vol. 26, no.
2. pp. 119–148, 2016 [Online]. Available: http://dx.doi.org/10.1002/stvr.1580

[187] R. Yang, G. Li, W. C. Lau, K. Zhang, and P. Hu, “Model-based Security Testing: An Empirical Study
on OAuth 2.0 Implementations,” in Proceedings of the 11th ACM on Asia Conference on Computer
and Communications Security, Xi’an, China, 2016, pp. 651–662, doi: 10.1145/2897845.2897874
[Online]. Available: https://doi.org/10.1145/2897845.2897874. [Accessed: 25-Jan-2021]

[188] M. Peroli, F. De Meo, L. Viganò, and D. Guardini, “MobSTer: A model-based security testing
framework for web applications,” Software Testing, Verification and Reliability, vol. 28, no. 8. p.
e1685, 2018 [Online]. Available: http://dx.doi.org/10.1002/stvr.1685

[189] M. Krichen, O. Cheikhrouhou, M. Lahami, R. Alroobaea, and A. J. Maâlej, “Towards a
Model-Based Testing Framework for the Security of Internet of Things for Smart City Applications,”
Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications
Engineering. pp. 360–365, 2018 [Online]. Available:

VeriDevOps Project nr: 957212 Page 76

http://dx.doi.org/10.4204/eptcs.80.1
http://paperpile.com/b/bpkysA/iEgN
http://paperpile.com/b/bpkysA/iEgN
http://dx.doi.org/10.1145/263244.263267
http://paperpile.com/b/bpkysA/iEgN
http://paperpile.com/b/bpkysA/iEgN
https://doi.org/10.1145/263244.263267
http://paperpile.com/b/bpkysA/y6Al
http://paperpile.com/b/bpkysA/y6Al
http://paperpile.com/b/bpkysA/y6Al
http://dx.doi.org/10.1007/978-981-33-4572-0_162
http://paperpile.com/b/bpkysA/IqZx
http://paperpile.com/b/bpkysA/IqZx
http://paperpile.com/b/bpkysA/IqZx
http://paperpile.com/b/bpkysA/IqZx
http://dx.doi.org/10.3390/app10249119
http://paperpile.com/b/bpkysA/IqZx
https://www.mdpi.com/2076-3417/10/24/9119
http://paperpile.com/b/bpkysA/IqZx
http://paperpile.com/b/bpkysA/7aD3
http://paperpile.com/b/bpkysA/7aD3
http://dx.doi.org/10.1007/s12652-020-02775-5
http://paperpile.com/b/bpkysA/04x4
http://paperpile.com/b/bpkysA/04x4
http://dx.doi.org/10.1002/stvr.456
http://paperpile.com/b/bpkysA/2ZYL
http://paperpile.com/b/bpkysA/2ZYL
http://paperpile.com/b/bpkysA/2ZYL
https://www.researchgate.net/profile/Michael_Felderer/publication/267561985_A_Classification_for_Model-Based_Security_Testing/links/5453b1a40cf2cf51647c20d0.pdf
https://www.researchgate.net/profile/Michael_Felderer/publication/267561985_A_Classification_for_Model-Based_Security_Testing/links/5453b1a40cf2cf51647c20d0.pdf
http://paperpile.com/b/bpkysA/jaMj
http://paperpile.com/b/bpkysA/jaMj
http://paperpile.com/b/bpkysA/jaMj
http://dx.doi.org/10.1109/icstw.2018.00056
http://paperpile.com/b/bpkysA/4agW
http://paperpile.com/b/bpkysA/4agW
http://paperpile.com/b/bpkysA/4agW
http://dx.doi.org/10.1145/1370042.1370057
http://paperpile.com/b/bpkysA/8rka
http://paperpile.com/b/bpkysA/8rka
http://dx.doi.org/10.1109/icst.2011.23
http://paperpile.com/b/bpkysA/6jfx
http://paperpile.com/b/bpkysA/6jfx
http://paperpile.com/b/bpkysA/6jfx
http://dx.doi.org/10.1002/stvr.1580
http://paperpile.com/b/bpkysA/vFDv
http://paperpile.com/b/bpkysA/vFDv
http://paperpile.com/b/bpkysA/vFDv
http://dx.doi.org/10.1145/2897845.2897874
http://paperpile.com/b/bpkysA/vFDv
http://paperpile.com/b/bpkysA/vFDv
https://doi.org/10.1145/2897845.2897874
http://paperpile.com/b/bpkysA/vFDv
http://paperpile.com/b/bpkysA/RMKt
http://paperpile.com/b/bpkysA/RMKt
http://paperpile.com/b/bpkysA/RMKt
http://dx.doi.org/10.1002/stvr.1685
http://paperpile.com/b/bpkysA/ybGy
http://paperpile.com/b/bpkysA/ybGy
http://paperpile.com/b/bpkysA/ybGy
http://paperpile.com/b/bpkysA/ybGy

D1.3 State of the art report

http://dx.doi.org/10.1007/978-3-319-94180-6_34
[190] ARMOUR project, “Deliverable D2.2 Test generation strategies for large-scale IoT security

testing - v1,” Aug. 2016.
[191] C. Willcock, T. Deiß, S. Tobies, S. Keil, F. Engler, and S. Schulz, An Introduction to TTCN-3. John

Wiley & Sons, 2005 [Online]. Available:
https://play.google.com/store/books/details?id=cT9dqyhcQ0QC

[192] S. Mahmood, A. Fouillade, H. N. Nguyen, and S. A. Shaikh, “A Model-Based Security Testing
Approach for Automotive Over-The-Air Updates,” in 2020 IEEE International Conference on
Software Testing, Verification and Validation Workshops (ICSTW), 2020, pp. 6–13, doi:
10.1109/ICSTW50294.2020.00019 [Online]. Available:
http://dx.doi.org/10.1109/ICSTW50294.2020.00019

[193] E. dos Santos, E. dos Santos, A. Simpson, and D. Schoop, “A Formal Model to Facilitate Security
Testing in Modern Automotive Systems,” Electronic Proceedings in Theoretical Computer Science,
vol. 271. pp. 95–104, 2018 [Online]. Available: http://dx.doi.org/10.4204/eptcs.271.7

[194] R. M. Parizi, A. Dehghantanha, K.-K. R. Choo, and A. Singh, “Empirical Vulnerability Analysis of
Automated Smart Contracts Security Testing on Blockchains,” arXiv [cs.CR], 07-Sep-2018 [Online].
Available: http://arxiv.org/abs/1809.02702

[195] J. Jürjens, “UMLsec: Extending UML for Secure Systems Development,”≪UML≫ 2002 — The
Unified Modeling Language. pp. 412–425, 2002 [Online]. Available:
http://dx.doi.org/10.1007/3-540-45800-x_32

[196] G. Wimmel and J. Jürjens, “Specification-Based Test Generation for Security-Critical Systems
Using Mutations,” Formal Methods and Software Engineering. pp. 471–482, 2002 [Online].
Available: http://dx.doi.org/10.1007/3-540-36103-0_48

[197] B. Arkin, S. Stender, and G. McGraw, “Software penetration testing,” IEEE Security Privacy, vol.
3, no. 1, pp. 84–87, Jan. 2005, doi: 10.1109/MSP.2005.23. [Online]. Available:
http://dx.doi.org/10.1109/MSP.2005.23

[198] P. Vats, M. Mandot, and A. Gosain, “A Comprehensive Literature Review of Penetration Testing
& Its Applications,” in 8th International Conference on Reliability, Infocom Technologies and
Optimization (Trends and Future Directions) (ICRITO), 2020, pp. 674–680, doi:
10.2139/ssrn.3470687 [Online]. Available: http://dx.doi.org/10.2139/ssrn.3470687

[199] S. Shah and B. M. Mehtre, “An overview of vulnerability assessment and penetration testing
techniques,” Journal of Computer Virology and Hacking Techniques, vol. 11, no. 1, pp. 27–49, Feb.
2015, doi: 10.1007/s11416-014-0231-x. [Online]. Available:
https://doi.org/10.1007/s11416-014-0231-x

[200] A. G. Bacudio, X. Yuan, B.-T. B. Chu, and M. Jones, “An overview of penetration testing,”
International Journal of Network Security & Its Applications, vol. 3, no. 6, p. 19, 2011 [Online].
Available:
https://search.proquest.com/openview/911a51c6546eb7400e083f17edca89c9/1.pdf?pq-origsite=
gscholar&cbl=646392

[201] M. Denis, C. Zena, and T. Hayajneh, “Penetration testing: Concepts, attack methods, and
defense strategies,” in 2016 IEEE Long Island Systems, Applications and Technology Conference
(LISAT), 2016, pp. 1–6, doi: 10.1109/LISAT.2016.7494156 [Online]. Available:
http://dx.doi.org/10.1109/LISAT.2016.7494156

[202] H. M. Z. A. Shebli and B. D. Beheshti, “A study on penetration testing process and tools,” in
2018 IEEE Long Island Systems, Applications and Technology Conference (LISAT), 2018, pp. 1–7,
doi: 10.1109/LISAT.2018.8378035 [Online]. Available:
http://dx.doi.org/10.1109/LISAT.2018.8378035

VeriDevOps Project nr: 957212 Page 77

http://dx.doi.org/10.1007/978-3-319-94180-6_34
http://paperpile.com/b/bpkysA/px9J
http://paperpile.com/b/bpkysA/px9J
http://paperpile.com/b/bpkysA/Fno1
http://paperpile.com/b/bpkysA/Fno1
https://play.google.com/store/books/details?id=cT9dqyhcQ0QC
http://paperpile.com/b/bpkysA/7gaU
http://paperpile.com/b/bpkysA/7gaU
http://paperpile.com/b/bpkysA/7gaU
http://dx.doi.org/10.1109/ICSTW50294.2020.00019
http://paperpile.com/b/bpkysA/7gaU
http://dx.doi.org/10.1109/ICSTW50294.2020.00019
http://paperpile.com/b/bpkysA/6uQC
http://paperpile.com/b/bpkysA/6uQC
http://paperpile.com/b/bpkysA/6uQC
http://dx.doi.org/10.4204/eptcs.271.7
http://paperpile.com/b/bpkysA/hYb7
http://paperpile.com/b/bpkysA/hYb7
http://paperpile.com/b/bpkysA/hYb7
http://arxiv.org/abs/1809.02702
http://paperpile.com/b/bpkysA/IsJ9
http://paperpile.com/b/bpkysA/IsJ9
http://dx.doi.org/10.1007/3-540-45800-x_32
http://paperpile.com/b/bpkysA/ag25
http://paperpile.com/b/bpkysA/ag25
http://paperpile.com/b/bpkysA/ag25
http://dx.doi.org/10.1007/3-540-36103-0_48
http://paperpile.com/b/bpkysA/jhRP
http://paperpile.com/b/bpkysA/jhRP
http://dx.doi.org/10.1109/MSP.2005.23
http://paperpile.com/b/bpkysA/jhRP
http://dx.doi.org/10.1109/MSP.2005.23
http://paperpile.com/b/bpkysA/eAK3
http://paperpile.com/b/bpkysA/eAK3
http://paperpile.com/b/bpkysA/eAK3
http://dx.doi.org/10.2139/ssrn.3470687
http://paperpile.com/b/bpkysA/eAK3
http://dx.doi.org/10.2139/ssrn.3470687
http://paperpile.com/b/bpkysA/14Qy
http://paperpile.com/b/bpkysA/14Qy
http://paperpile.com/b/bpkysA/14Qy
http://dx.doi.org/10.1007/s11416-014-0231-x
http://paperpile.com/b/bpkysA/14Qy
https://doi.org/10.1007/s11416-014-0231-x
http://paperpile.com/b/bpkysA/gGBF
http://paperpile.com/b/bpkysA/gGBF
http://paperpile.com/b/bpkysA/gGBF
https://search.proquest.com/openview/911a51c6546eb7400e083f17edca89c9/1.pdf?pq-origsite=gscholar&cbl=646392
https://search.proquest.com/openview/911a51c6546eb7400e083f17edca89c9/1.pdf?pq-origsite=gscholar&cbl=646392
http://paperpile.com/b/bpkysA/JZQp
http://paperpile.com/b/bpkysA/JZQp
http://paperpile.com/b/bpkysA/JZQp
http://dx.doi.org/10.1109/LISAT.2016.7494156
http://paperpile.com/b/bpkysA/JZQp
http://dx.doi.org/10.1109/LISAT.2016.7494156
http://paperpile.com/b/bpkysA/dTni
http://paperpile.com/b/bpkysA/dTni
http://paperpile.com/b/bpkysA/dTni
http://dx.doi.org/10.1109/LISAT.2018.8378035
http://paperpile.com/b/bpkysA/dTni
http://dx.doi.org/10.1109/LISAT.2018.8378035

D1.3 State of the art report

[203] A. S. Al-Ahmad, H. Kahtan, F. Hujainah, and H. A. Jalab, “Systematic Literature Review on
Penetration Testing for Mobile Cloud Computing Applications,” IEEE Access, vol. 7. pp.
173524–173540, 2019 [Online]. Available: http://dx.doi.org/10.1109/access.2019.2956770

[204] D. R. McKinnel, T. Dargahi, A. Dehghantanha, and K.-K. R. Choo, “A systematic literature review
and meta-analysis on artificial intelligence in penetration testing and vulnerability assessment,”
Computers & Electrical Engineering, vol. 75. pp. 175–188, 2019 [Online]. Available:
http://dx.doi.org/10.1016/j.compeleceng.2019.02.022

[205] Y. Stefinko, A. Piskozub, and R. Banakh, “Manual and automated penetration testing. Benefits
and drawbacks. Modern tendency,” in 2016 13th International Conference on Modern Problems of
Radio Engineering, Telecommunications and Computer Science (TCSET), 2016, pp. 488–491, doi:
10.1109/TCSET.2016.7452095 [Online]. Available: http://dx.doi.org/10.1109/TCSET.2016.7452095

[206] Xue Qiu, Shuguang Wang, Qiong Jia, Chunhe Xia, and Qingxin Xia, “An automated method of
penetration testing,” in 2014 IEEE Computers, Communications and IT Applications Conference,
2014, pp. 211–216, doi: 10.1109/ComComAp.2014.7017198 [Online]. Available:
http://dx.doi.org/10.1109/ComComAp.2014.7017198

[207] S. Shah and B. M. Mehtre, “An automated approach to Vulnerability Assessment and
Penetration Testing using Net-Nirikshak 1.0,” in 2014 IEEE International Conference on Advanced
Communications, Control and Computing Technologies, 2014, pp. 707–712, doi:
10.1109/ICACCCT.2014.7019182 [Online]. Available:
http://dx.doi.org/10.1109/ICACCCT.2014.7019182

[208] S. Shah and B. M. Mehtre, “A modern approach to cyber security analysis using vulnerability
assessment and penetration testing,” Int J Electron Commun Comput Eng, vol. 4, no. 6, pp. 47–52,
2013 [Online]. Available:
https://www.ijecce.org/Download/conference/NCRTCST-2/11NCRTCST-13018.pdf

[209] J. N. Goel and B. M. Mehtre, “Vulnerability Assessment & Penetration Testing as a Cyber
Defence Technology,” Procedia Comput. Sci., vol. 57, pp. 710–715, Jan. 2015, doi:
10.1016/j.procs.2015.07.458. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1877050915019870

[210] N. Antunes and M. Vieira, “Enhancing Penetration Testing with Attack Signatures and Interface
Monitoring for the Detection of Injection Vulnerabilities in Web Services,” in 2011 IEEE
International Conference on Services Computing, 2011, pp. 104–111, doi: 10.1109/SCC.2011.67
[Online]. Available: http://dx.doi.org/10.1109/SCC.2011.67

[211] C. Mainka, J. Somorovsky, and J. Schwenk, “Penetration Testing Tool for Web Services Security,”
in 2012 IEEE Eighth World Congress on Services, 2012, pp. 163–170, doi: 10.1109/SERVICES.2012.7
[Online]. Available: http://dx.doi.org/10.1109/SERVICES.2012.7

[212] B. Stepien, L. Peyton, and P. Xiong, “Using TTCN-3 as a modeling language for web penetration
testing,” in 2012 IEEE International Conference on Industrial Technology, 2012, pp. 674–681, doi:
10.1109/ICIT.2012.6210016 [Online]. Available: http://dx.doi.org/10.1109/ICIT.2012.6210016

[213] A. Falkenberg, C. Mainka, J. Somorovsky, and J. Schwenk, “A New Approach towards DoS
Penetration Testing on Web Services,” in 2013 IEEE 20th International Conference on Web Services,
2013, pp. 491–498, doi: 10.1109/ICWS.2013.72 [Online]. Available:
http://dx.doi.org/10.1109/ICWS.2013.72

[214] R. Vibhandik and A. K. Bose, “Vulnerability assessment of web applications - a testing
approach,” 2015 Forth International Conference on e-Technologies and Networks for Development
(ICeND). 2015 [Online]. Available: http://dx.doi.org/10.1109/icend.2015.7328531

[215] S. Nagpure and S. Kurkure, “Vulnerability Assessment and Penetration Testing of Web
Application,” in 2017 International Conference on Computing, Communication, Control and

VeriDevOps Project nr: 957212 Page 78

http://paperpile.com/b/bpkysA/wfRt
http://paperpile.com/b/bpkysA/wfRt
http://paperpile.com/b/bpkysA/wfRt
http://dx.doi.org/10.1109/access.2019.2956770
http://paperpile.com/b/bpkysA/NCYe
http://paperpile.com/b/bpkysA/NCYe
http://paperpile.com/b/bpkysA/NCYe
http://dx.doi.org/10.1016/j.compeleceng.2019.02.022
http://paperpile.com/b/bpkysA/Ee5y
http://paperpile.com/b/bpkysA/Ee5y
http://paperpile.com/b/bpkysA/Ee5y
http://dx.doi.org/10.1109/TCSET.2016.7452095
http://paperpile.com/b/bpkysA/Ee5y
http://dx.doi.org/10.1109/TCSET.2016.7452095
http://paperpile.com/b/bpkysA/EPwH
http://paperpile.com/b/bpkysA/EPwH
http://paperpile.com/b/bpkysA/EPwH
http://dx.doi.org/10.1109/ComComAp.2014.7017198
http://paperpile.com/b/bpkysA/EPwH
http://dx.doi.org/10.1109/ComComAp.2014.7017198
http://paperpile.com/b/bpkysA/CtHs
http://paperpile.com/b/bpkysA/CtHs
http://paperpile.com/b/bpkysA/CtHs
http://dx.doi.org/10.1109/ICACCCT.2014.7019182
http://paperpile.com/b/bpkysA/CtHs
http://dx.doi.org/10.1109/ICACCCT.2014.7019182
http://paperpile.com/b/bpkysA/2yAv
http://paperpile.com/b/bpkysA/2yAv
http://paperpile.com/b/bpkysA/2yAv
https://www.ijecce.org/Download/conference/NCRTCST-2/11NCRTCST-13018.pdf
http://paperpile.com/b/bpkysA/qezb
http://paperpile.com/b/bpkysA/qezb
http://dx.doi.org/10.1016/j.procs.2015.07.458
http://paperpile.com/b/bpkysA/qezb
http://www.sciencedirect.com/science/article/pii/S1877050915019870
http://paperpile.com/b/bpkysA/XL3a
http://paperpile.com/b/bpkysA/XL3a
http://paperpile.com/b/bpkysA/XL3a
http://dx.doi.org/10.1109/SCC.2011.67
http://paperpile.com/b/bpkysA/XL3a
http://paperpile.com/b/bpkysA/XL3a
http://dx.doi.org/10.1109/SCC.2011.67
http://paperpile.com/b/bpkysA/5KOt
http://paperpile.com/b/bpkysA/5KOt
http://dx.doi.org/10.1109/SERVICES.2012.7
http://paperpile.com/b/bpkysA/5KOt
http://paperpile.com/b/bpkysA/5KOt
http://dx.doi.org/10.1109/SERVICES.2012.7
http://paperpile.com/b/bpkysA/aVX7
http://paperpile.com/b/bpkysA/aVX7
http://dx.doi.org/10.1109/ICIT.2012.6210016
http://paperpile.com/b/bpkysA/aVX7
http://dx.doi.org/10.1109/ICIT.2012.6210016
http://paperpile.com/b/bpkysA/0eG2
http://paperpile.com/b/bpkysA/0eG2
http://paperpile.com/b/bpkysA/0eG2
http://dx.doi.org/10.1109/ICWS.2013.72
http://paperpile.com/b/bpkysA/0eG2
http://dx.doi.org/10.1109/ICWS.2013.72
http://paperpile.com/b/bpkysA/G2PA
http://paperpile.com/b/bpkysA/G2PA
http://paperpile.com/b/bpkysA/G2PA
http://dx.doi.org/10.1109/icend.2015.7328531
http://paperpile.com/b/bpkysA/QAa8
http://paperpile.com/b/bpkysA/QAa8

D1.3 State of the art report

Automation (ICCUBEA), 2017, pp. 1–6, doi: 10.1109/ICCUBEA.2017.8463920 [Online]. Available:
http://dx.doi.org/10.1109/ICCUBEA.2017.8463920

[216] G. Chu and A. Lisitsa, “Penetration Testing for Internet of Things and Its Automation,” in 2018
IEEE 20th International Conference on High Performance Computing and Communications; IEEE
16th International Conference on Smart City; IEEE 4th International Conference on Data Science
and Systems (HPCC/SmartCity/DSS), 2018, pp. 1479–1484, doi:
10.1109/HPCC/SmartCity/DSS.2018.00244 [Online]. Available:
http://dx.doi.org/10.1109/HPCC/SmartCity/DSS.2018.00244

[217] D. Dalalana Bertoglio and A. F. Zorzo, “Overview and open issues on penetration test,” J. Braz.
Comput. Soc., vol. 23, no. 1, p. 2, Feb. 2017, doi: 10.1186/s13173-017-0051-1. [Online]. Available:
https://doi.org/10.1186/s13173-017-0051-1

[218] J. Bau, E. Bursztein, D. Gupta, and J. Mitchell, “State of the Art: Automated Black-Box Web
Application Vulnerability Testing,” 2010 IEEE Symposium on Security and Privacy. 2010 [Online].
Available: http://dx.doi.org/10.1109/sp.2010.27

[219] M. Büchler, J. Oudinet, and A. Pretschner, “Security Mutants for Property-Based Testing,” Tests
and Proofs. pp. 69–77, 2011 [Online]. Available: http://dx.doi.org/10.1007/978-3-642-21768-5_6

[220] F. Dadeau, P.-C. Héam, and R. Kheddam, “Mutation-Based Test Generation from Security
Protocols in HLPSL,” 2011 Fourth IEEE International Conference on Software Testing, Verification
and Validation. 2011 [Online]. Available: http://dx.doi.org/10.1109/icst.2011.42

[221] F. Siavashi, D. Truscan, and J. Vain, “Vulnerability Assessment of Web Services with
Model-Based Mutation Testing,” 2018 IEEE International Conference on Software Quality,
Reliability and Security (QRS). 2018 [Online]. Available: http://dx.doi.org/10.1109/qrs.2018.00043

[222] M. Papadakis, M. Kintis, J. Zhang, Y. Jia, Y. Le Traon, and M. Harman, “Mutation Testing
Advances: An Analysis and Survey,” Advances in Computers. pp. 275–378, 2019 [Online]. Available:
http://dx.doi.org/10.1016/bs.adcom.2018.03.015

[223] M. Büchler, J. Oudinet, and A. Pretschner, “Semi-Automatic Security Testing of Web
Applications from a Secure Model,” in 2012 IEEE Sixth International Conference on Software
Security and Reliability, 2012, pp. 253–262, doi: 10.1109/SERE.2012.38 [Online]. Available:
http://dx.doi.org/10.1109/SERE.2012.38

[224] C. Henard, M. Papadakis, G. Perrouin, J. Klein, and Y. Le Traon, “Assessing Software Product Line
Testing Via Model-Based Mutation: An Application to Similarity Testing,” 2013 IEEE Sixth
International Conference on Software Testing, Verification and Validation Workshops. 2013
[Online]. Available: http://dx.doi.org/10.1109/icstw.2013.30

[225] H. Liang, X. Pei, X. Jia, W. Shen, and J. Zhang, “Fuzzing: State of the Art,” IEEE Trans. Reliab., vol.
67, no. 3, pp. 1199–1218, Sep. 2018, doi: 10.1109/TR.2018.2834476. [Online]. Available:
http://dx.doi.org/10.1109/TR.2018.2834476

[226] I. Schieferdecker, “Model-Based Fuzz Testing,” in 2012 IEEE Fifth International Conference on
Software Testing, Verification and Validation, 2012, pp. 814–814, doi: 10.1109/ICST.2012.180
[Online]. Available: http://dx.doi.org/10.1109/ICST.2012.180

[227] M. Schneider, J. Großmann, N. Tcholtchev, I. Schieferdecker, and A. Pietschker, “Behavioral
Fuzzing Operators for UML Sequence Diagrams,” in System Analysis and Modeling: Theory and
Practice, 2013, pp. 88–104, doi: 10.1007/978-3-642-36757-1_6 [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-36757-1_6

[228] M. Schneider, J. Großmann, I. Schieferdecker, and A. Pietschker, “Online Model-Based
Behavioral Fuzzing,” in 2013 IEEE Sixth International Conference on Software Testing, Verification
and Validation Workshops, 2013, pp. 469–475, doi: 10.1109/ICSTW.2013.61 [Online]. Available:
http://dx.doi.org/10.1109/ICSTW.2013.61

VeriDevOps Project nr: 957212 Page 79

http://paperpile.com/b/bpkysA/QAa8
http://dx.doi.org/10.1109/ICCUBEA.2017.8463920
http://paperpile.com/b/bpkysA/QAa8
http://dx.doi.org/10.1109/ICCUBEA.2017.8463920
http://paperpile.com/b/bpkysA/CcLO
http://paperpile.com/b/bpkysA/CcLO
http://paperpile.com/b/bpkysA/CcLO
http://paperpile.com/b/bpkysA/CcLO
http://dx.doi.org/10.1109/HPCC/SmartCity/DSS.2018.00244
http://paperpile.com/b/bpkysA/CcLO
http://dx.doi.org/10.1109/HPCC/SmartCity/DSS.2018.00244
http://paperpile.com/b/bpkysA/MVhF
http://paperpile.com/b/bpkysA/MVhF
http://dx.doi.org/10.1186/s13173-017-0051-1
http://paperpile.com/b/bpkysA/MVhF
https://doi.org/10.1186/s13173-017-0051-1
http://paperpile.com/b/bpkysA/uk5a
http://paperpile.com/b/bpkysA/uk5a
http://paperpile.com/b/bpkysA/uk5a
http://dx.doi.org/10.1109/sp.2010.27
http://paperpile.com/b/bpkysA/Tv6B
http://paperpile.com/b/bpkysA/Tv6B
http://dx.doi.org/10.1007/978-3-642-21768-5_6
http://paperpile.com/b/bpkysA/5aB8
http://paperpile.com/b/bpkysA/5aB8
http://paperpile.com/b/bpkysA/5aB8
http://dx.doi.org/10.1109/icst.2011.42
http://paperpile.com/b/bpkysA/vVwp
http://paperpile.com/b/bpkysA/vVwp
http://paperpile.com/b/bpkysA/vVwp
http://dx.doi.org/10.1109/qrs.2018.00043
http://paperpile.com/b/bpkysA/EDRe
http://paperpile.com/b/bpkysA/EDRe
http://dx.doi.org/10.1016/bs.adcom.2018.03.015
http://paperpile.com/b/bpkysA/FzMd
http://paperpile.com/b/bpkysA/FzMd
http://paperpile.com/b/bpkysA/FzMd
http://dx.doi.org/10.1109/SERE.2012.38
http://paperpile.com/b/bpkysA/FzMd
http://dx.doi.org/10.1109/SERE.2012.38
http://paperpile.com/b/bpkysA/88Zj
http://paperpile.com/b/bpkysA/88Zj
http://paperpile.com/b/bpkysA/88Zj
http://paperpile.com/b/bpkysA/88Zj
http://dx.doi.org/10.1109/icstw.2013.30
http://paperpile.com/b/bpkysA/mHKQ
http://paperpile.com/b/bpkysA/mHKQ
http://dx.doi.org/10.1109/TR.2018.2834476
http://paperpile.com/b/bpkysA/mHKQ
http://dx.doi.org/10.1109/TR.2018.2834476
http://paperpile.com/b/bpkysA/Rgf5
http://paperpile.com/b/bpkysA/Rgf5
http://dx.doi.org/10.1109/ICST.2012.180
http://paperpile.com/b/bpkysA/Rgf5
http://paperpile.com/b/bpkysA/Rgf5
http://dx.doi.org/10.1109/ICST.2012.180
http://paperpile.com/b/bpkysA/ZEcu
http://paperpile.com/b/bpkysA/ZEcu
http://paperpile.com/b/bpkysA/ZEcu
http://dx.doi.org/10.1007/978-3-642-36757-1_6
http://paperpile.com/b/bpkysA/ZEcu
http://dx.doi.org/10.1007/978-3-642-36757-1_6
http://paperpile.com/b/bpkysA/HGkX
http://paperpile.com/b/bpkysA/HGkX
http://paperpile.com/b/bpkysA/HGkX
http://dx.doi.org/10.1109/ICSTW.2013.61
http://paperpile.com/b/bpkysA/HGkX
http://dx.doi.org/10.1109/ICSTW.2013.61

D1.3 State of the art report

[229] F. Duchene, S. Rawat, J.-L. Richier, and R. Groz, “KameleonFuzz: evolutionary fuzzing for
black-box XSS detection,” in Proceedings of the 4th ACM conference on Data and application
security and privacy, San Antonio, Texas, USA, 2014, pp. 37–48, doi: 10.1145/2557547.2557550
[Online]. Available: https://doi.org/10.1145/2557547.2557550. [Accessed: 02-Feb-2021]

[230] J. M. Zhang, M. Harman, L. Ma, and Y. Liu, “Machine Learning Testing: Survey, Landscapes and
Horizons,” IEEE Trans. Software Eng., pp. 1–1, 2020, doi: 10.1109/TSE.2019.2962027. [Online].
Available: http://dx.doi.org/10.1109/TSE.2019.2962027

[231] A. Odena, C. Olsson, D. Andersen, and I. Goodfellow, “Tensorfuzz: Debugging neural networks
with coverage-guided fuzzing,” in International Conference on Machine Learning, 2019, pp.
4901–4911 [Online]. Available: http://proceedings.mlr.press/v97/odena19a.html

[232] J. Guo, Y. Jiang, Y. Zhao, Q. Chen, and J. Sun, “DLFuzz: differential fuzzing testing of deep
learning systems,” in Proceedings of the 2018 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering, Lake Buena
Vista, FL, USA, 2018, pp. 739–743, doi: 10.1145/3236024.3264835 [Online]. Available:
https://doi.org/10.1145/3236024.3264835. [Accessed: 03-Feb-2021]

[233] P. Godefroid, H. Peleg, and R. Singh, “Learn&fuzz: Machine learning for input fuzzing,” in 2017
32nd IEEE/ACM International Conference on Automated Software Engineering (ASE), 2017, pp.
50–59 [Online]. Available: https://ieeexplore.ieee.org/abstract/document/8115618/

[234] T. Wang, T. Wei, G. Gu, and W. Zou, “TaintScope: A checksum-aware directed fuzzing tool for
automatic software vulnerability detection,” in 2010 IEEE Symposium on Security and Privacy,
Oakland, CA, USA, 2010, doi: 10.1109/sp.2010.37 [Online]. Available:
http://ieeexplore.ieee.org/document/5504701/

[235] V. Ganesh, T. Leek, and M. Rinard, “Taint-based directed whitebox fuzzing,” in 2009 IEEE 31st
International Conference on Software Engineering, 2009, pp. 474–484, doi:
10.1109/ICSE.2009.5070546 [Online]. Available: http://dx.doi.org/10.1109/ICSE.2009.5070546

[236] T. L. Munea, H. Lim, and T. Shon, “Network protocol fuzz testing for information systems and
applications: a survey and taxonomy,” Multimedia Tools and Applications, vol. 75, no. 22. pp.
14745–14757, 2016 [Online]. Available: http://dx.doi.org/10.1007/s11042-015-2763-6

[237] T. Zhang, Y. Jiang, R. Guo, X. Zheng, and H. Lu, “A Survey of Hybrid Fuzzing based on Symbolic
Execution,” Proceedings of the 2020 International Conference on Cyberspace Innovation of
Advanced Technologies. 2020 [Online]. Available: http://dx.doi.org/10.1145/3444370.3444570

[238] H. Huang, P. Yao, R. Wu, Q. Shi, and C. Zhang, “Pangolin: Incremental Hybrid Fuzzing with
Polyhedral Path Abstraction,” in 2020 IEEE Symposium on Security and Privacy (SP), 2020, pp.
1613–1627, doi: 10.1109/SP40000.2020.00063 [Online]. Available:
http://dx.doi.org/10.1109/SP40000.2020.00063

[239] P. Godefroid, M. Y. Levin, and D. Molnar, “AASAGE: whitebox fuzzing for security testing,”
Commun. ACM, vol. 55, no. 3, pp. 40–44, 2012.

[240] P. Godefroid, M. Y. Levin, and D. Molnar, “SAGE: Whitebox Fuzzing for Security Testing,” Queue,
vol. 10, no. 1. pp. 20–27, 2012 [Online]. Available: http://dx.doi.org/10.1145/2090147.2094081

[241] B. Ghimis, M. Paduraru, and A. Stefanescu, “RIVER 2.0: an open-source testing framework
using AI techniques,” in Proceedings of the 1st ACM SIGSOFT International Workshop on
Languages and Tools for Next-Generation Testing, Virtual, USA, 2020, pp. 13–18, doi:
10.1145/3416504.3424335 [Online]. Available: https://doi.org/10.1145/3416504.3424335.
[Accessed: 05-Feb-2021]

[242] C. Paduraru, M.-C. Melemciuc, and A. Stefanescu, “A distributed implementation using apache
spark of a genetic algorithm applied to test data generation,” Proceedings of the Genetic and
Evolutionary Computation Conference Companion. 2017 [Online]. Available:

VeriDevOps Project nr: 957212 Page 80

http://paperpile.com/b/bpkysA/5SlT
http://paperpile.com/b/bpkysA/5SlT
http://paperpile.com/b/bpkysA/5SlT
http://dx.doi.org/10.1145/2557547.2557550
http://paperpile.com/b/bpkysA/5SlT
http://paperpile.com/b/bpkysA/5SlT
https://doi.org/10.1145/2557547.2557550
http://paperpile.com/b/bpkysA/5SlT
http://paperpile.com/b/bpkysA/kViR
http://paperpile.com/b/bpkysA/kViR
http://dx.doi.org/10.1109/TSE.2019.2962027
http://paperpile.com/b/bpkysA/kViR
http://paperpile.com/b/bpkysA/kViR
http://dx.doi.org/10.1109/TSE.2019.2962027
http://paperpile.com/b/bpkysA/XVBw
http://paperpile.com/b/bpkysA/XVBw
http://paperpile.com/b/bpkysA/XVBw
http://proceedings.mlr.press/v97/odena19a.html
http://paperpile.com/b/bpkysA/XeCr
http://paperpile.com/b/bpkysA/XeCr
http://paperpile.com/b/bpkysA/XeCr
http://paperpile.com/b/bpkysA/XeCr
http://dx.doi.org/10.1145/3236024.3264835
http://paperpile.com/b/bpkysA/XeCr
https://doi.org/10.1145/3236024.3264835
http://paperpile.com/b/bpkysA/XeCr
http://paperpile.com/b/bpkysA/WzXT
http://paperpile.com/b/bpkysA/WzXT
http://paperpile.com/b/bpkysA/WzXT
https://ieeexplore.ieee.org/abstract/document/8115618/
http://paperpile.com/b/bpkysA/Mtan
http://paperpile.com/b/bpkysA/Mtan
http://paperpile.com/b/bpkysA/Mtan
http://dx.doi.org/10.1109/sp.2010.37
http://paperpile.com/b/bpkysA/Mtan
http://ieeexplore.ieee.org/document/5504701/
http://paperpile.com/b/bpkysA/8EIs
http://paperpile.com/b/bpkysA/8EIs
http://dx.doi.org/10.1109/ICSE.2009.5070546
http://paperpile.com/b/bpkysA/8EIs
http://dx.doi.org/10.1109/ICSE.2009.5070546
http://paperpile.com/b/bpkysA/wdpx
http://paperpile.com/b/bpkysA/wdpx
http://paperpile.com/b/bpkysA/wdpx
http://dx.doi.org/10.1007/s11042-015-2763-6
http://paperpile.com/b/bpkysA/tL0P
http://paperpile.com/b/bpkysA/tL0P
http://paperpile.com/b/bpkysA/tL0P
http://dx.doi.org/10.1145/3444370.3444570
http://paperpile.com/b/bpkysA/kuTv
http://paperpile.com/b/bpkysA/kuTv
http://paperpile.com/b/bpkysA/kuTv
http://dx.doi.org/10.1109/SP40000.2020.00063
http://paperpile.com/b/bpkysA/kuTv
http://dx.doi.org/10.1109/SP40000.2020.00063
http://paperpile.com/b/bpkysA/Q8zC
http://paperpile.com/b/bpkysA/Q8zC
http://paperpile.com/b/bpkysA/uf1Z
http://paperpile.com/b/bpkysA/uf1Z
http://dx.doi.org/10.1145/2090147.2094081
http://paperpile.com/b/bpkysA/9iMe
http://paperpile.com/b/bpkysA/9iMe
http://paperpile.com/b/bpkysA/9iMe
http://dx.doi.org/10.1145/3416504.3424335
http://paperpile.com/b/bpkysA/9iMe
https://doi.org/10.1145/3416504.3424335
http://paperpile.com/b/bpkysA/9iMe
http://paperpile.com/b/bpkysA/9iMe
http://paperpile.com/b/bpkysA/Piie
http://paperpile.com/b/bpkysA/Piie
http://paperpile.com/b/bpkysA/Piie

D1.3 State of the art report

http://dx.doi.org/10.1145/3067695.3084219
[243] G. Grieco, M. Ceresa, and P. Buiras, “QuickFuzz: an automatic random fuzzer for common file

formats,” Proceedings of the 9th International Symposium on Haskell. 2016 [Online]. Available:
http://dx.doi.org/10.1145/2976002.2976017

[244] V. J. M. Manes et al., “The Art, Science, and Engineering of Fuzzing: A Survey,” IEEE
Transactions on Software Engineering. pp. 1–1, 2019 [Online]. Available:
http://dx.doi.org/10.1109/tse.2019.2946563

[245] V. Atlidakis, P. Godefroid, and M. Polishchuk, “RESTler: Stateful REST API Fuzzing,” 2019
IEEE/ACM 41st International Conference on Software Engineering (ICSE). 2019 [Online]. Available:
http://dx.doi.org/10.1109/icse.2019.00083

[246] P. McMinn, “Search-based software test data generation: a survey,” Software Testing,
Verification and Reliability, vol. 14, no. 2. pp. 105–156, 2004 [Online]. Available:
http://dx.doi.org/10.1002/stvr.294

[247] P. McMinn, M. Shahbaz, and M. Stevenson, “Search-Based Test Input Generation for String
Data Types Using the Results of Web Queries,” 2012 IEEE Fifth International Conference on
Software Testing, Verification and Validation. 2012 [Online]. Available:
http://dx.doi.org/10.1109/icst.2012.94

[248] G. Antoniol, “Keynote Paper: Search Based Software Testing for Software Security: Breaking
Code to Make it Safer,” 2009 International Conference on Software Testing, Verification, and
Validation Workshops. 2009 [Online]. Available: http://dx.doi.org/10.1109/icstw.2009.12

[249] A. Avancini and M. Ceccato, “Security Testing of Web Applications: A Search-Based Approach
for Cross-Site Scripting Vulnerabilities,” 2011 IEEE 11th International Working Conference on
Source Code Analysis and Manipulation. 2011 [Online]. Available:
http://dx.doi.org/10.1109/scam.2011.7

[250] J. Thomé, A. Gorla, and A. Zeller, “Search-based security testing of web applications,”
Proceedings of the 7th International Workshop on Search-Based Software Testing - SBST 2014.
2014 [Online]. Available: http://dx.doi.org/10.1145/2593833.2593835

[251] N. Alshahwan and M. Harman, “Automated web application testing using search based
software engineering,” 2011 26th IEEE/ACM International Conference on Automated Software
Engineering (ASE 2011). 2011 [Online]. Available: http://dx.doi.org/10.1109/ase.2011.6100082

[252] B. Korel, “Automated software test data generation,” IEEE Transactions on Software
Engineering, vol. 16, no. 8. pp. 870–879, 1990 [Online]. Available:
http://dx.doi.org/10.1109/32.57624

[253] M. Liu, K. Li, and T. Chen, “Security testing of web applications,” Proceedings of the Genetic and
Evolutionary Computation Conference Companion. 2019 [Online]. Available:
http://dx.doi.org/10.1145/3319619.3322026

[254] S. Jan, C. D. Nguyen, A. Arcuri, and L. Briand, “A Search-Based Testing Approach for XML
Injection Vulnerabilities in Web Applications,” 2017 IEEE International Conference on Software
Testing, Verification and Validation (ICST). 2017 [Online]. Available:
http://dx.doi.org/10.1109/icst.2017.39

[255] F. C. M. Souza, M. Papadakis, Y. Le Traon, and M. E. Delamaro, “Strong mutation-based test
data generation using hill climbing,” Proceedings of the 9th International Workshop on
Search-Based Software Testing - SBST ’16. 2016 [Online]. Available:
http://dx.doi.org/10.1145/2897010.2897012

[256] K. Lakhotia, M. Harman, and H. Gross, “AUSTIN: A Tool for Search Based Software Testing for
the C Language and Its Evaluation on Deployed Automotive Systems,” 2nd International
Symposium on Search Based Software Engineering. 2010 [Online]. Available:

VeriDevOps Project nr: 957212 Page 81

http://dx.doi.org/10.1145/3067695.3084219
http://paperpile.com/b/bpkysA/KCyF
http://paperpile.com/b/bpkysA/KCyF
http://dx.doi.org/10.1145/2976002.2976017
http://paperpile.com/b/bpkysA/rK1T
http://paperpile.com/b/bpkysA/rK1T
http://dx.doi.org/10.1109/tse.2019.2946563
http://paperpile.com/b/bpkysA/xgOq
http://paperpile.com/b/bpkysA/xgOq
http://dx.doi.org/10.1109/icse.2019.00083
http://paperpile.com/b/bpkysA/hM6J
http://paperpile.com/b/bpkysA/hM6J
http://dx.doi.org/10.1002/stvr.294
http://paperpile.com/b/bpkysA/T6vn
http://paperpile.com/b/bpkysA/T6vn
http://paperpile.com/b/bpkysA/T6vn
http://dx.doi.org/10.1109/icst.2012.94
http://paperpile.com/b/bpkysA/DmLu
http://paperpile.com/b/bpkysA/DmLu
http://paperpile.com/b/bpkysA/DmLu
http://dx.doi.org/10.1109/icstw.2009.12
http://paperpile.com/b/bpkysA/oX8D
http://paperpile.com/b/bpkysA/oX8D
http://paperpile.com/b/bpkysA/oX8D
http://dx.doi.org/10.1109/scam.2011.7
http://paperpile.com/b/bpkysA/M4e3
http://paperpile.com/b/bpkysA/M4e3
http://paperpile.com/b/bpkysA/M4e3
http://dx.doi.org/10.1145/2593833.2593835
http://paperpile.com/b/bpkysA/Zxp4
http://paperpile.com/b/bpkysA/Zxp4
http://paperpile.com/b/bpkysA/Zxp4
http://dx.doi.org/10.1109/ase.2011.6100082
http://paperpile.com/b/bpkysA/HiKx
http://paperpile.com/b/bpkysA/HiKx
http://dx.doi.org/10.1109/32.57624
http://paperpile.com/b/bpkysA/mZYz
http://paperpile.com/b/bpkysA/mZYz
http://dx.doi.org/10.1145/3319619.3322026
http://paperpile.com/b/bpkysA/sbqn
http://paperpile.com/b/bpkysA/sbqn
http://paperpile.com/b/bpkysA/sbqn
http://dx.doi.org/10.1109/icst.2017.39
http://paperpile.com/b/bpkysA/cbv7
http://paperpile.com/b/bpkysA/cbv7
http://paperpile.com/b/bpkysA/cbv7
http://dx.doi.org/10.1145/2897010.2897012
http://paperpile.com/b/bpkysA/aM4A
http://paperpile.com/b/bpkysA/aM4A
http://paperpile.com/b/bpkysA/aM4A

D1.3 State of the art report

http://dx.doi.org/10.1109/ssbse.2010.21
[257] M. E. Delamaro, J. C. Maldonado, and A. M. R. Vincenzi, “Proteum/IM 2.0: An Integrated

Mutation Testing Environment,” Mutation Testing for the New Century. pp. 91–101, 2001 [Online].
Available: http://dx.doi.org/10.1007/978-1-4757-5939-6_17

[258] M. D. Penta, M. Di Penta, G. Canfora, G. Esposito, V. Mazza, and M. Bruno, “Search-based
testing of service level agreements,” Proceedings of the 9th annual conference on Genetic and
evolutionary computation - GECCO ’07. 2007 [Online]. Available:
http://dx.doi.org/10.1145/1276958.1277174

[259] J. Wegener, A. Baresel, and H. Sthamer, “Evolutionary test environment for automatic
structural testing,” Information and Software Technology, vol. 43, no. 14. pp. 841–854, 2001
[Online]. Available: http://dx.doi.org/10.1016/s0950-5849(01)00190-2

[260] W. E. Wong, W. Eric Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa, “A Survey on Software Fault
Localization,” IEEE Transactions on Software Engineering, vol. 42, no. 8. pp. 707–740, 2016
[Online]. Available: http://dx.doi.org/10.1109/tse.2016.2521368

[261] P. Agarwal and A. P. Agrawal, “Fault-localization techniques for software systems,” ACM
SIGSOFT Software Engineering Notes, vol. 39, no. 5. pp. 1–8, 2014 [Online]. Available:
http://dx.doi.org/10.1145/2659118.2659125

[262] A. Zakari, S. P. Lee, R. Abreu, B. H. Ahmed, and R. A. Rasheed, “Multiple fault localization of
software programs: A systematic literature review,” Information and Software Technology, vol.
124. p. 106312, 2020 [Online]. Available: http://dx.doi.org/10.1016/j.infsof.2020.106312

[263] W. Masri, “Automated Fault Localization,” Advances in Computers. pp. 103–156, 2015 [Online].
Available: http://dx.doi.org/10.1016/bs.adcom.2015.05.001

[264] D. Zou, J. Liang, Y. Xiong, M. D. Ernst, and L. Zhang, “An Empirical Study of Fault Localization
Families and Their Combinations,” IEEE Transactions on Software Engineering. pp. 1–1, 2019
[Online]. Available: http://dx.doi.org/10.1109/tse.2019.2892102

[265] Z. Jiang, “Fault Localization of Concurrency Bugs and Its Application in Web Security,” 2014, pp.
618–630, doi: 10.1007/978-3-319-11194-0_55 [Online]. Available:
https://link.springer.com/chapter/10.1007%2F978-3-319-11194-0_55

[266] D. E. Simos, K. Kleine, L. S. G. Ghandehari, B. Garn, and Y. Lei, “A Combinatorial Approach to
Analyzing Cross-Site Scripting (XSS) Vulnerabilities in Web Application Security Testing,” Testing
Software and Systems. pp. 70–85, 2016 [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-47443-4_5

[267] L. S. Ghandehari, J. Chandrasekaran, Y. Lei, R. Kacker, and D. R. Kuhn, “BEN: A combinatorial
testing-based fault localization tool,” in 2015 IEEE Eighth International Conference on Software
Testing, Verification and Validation Workshops (ICSTW), 2015, pp. 1–4, doi:
10.1109/ICSTW.2015.7107446 [Online]. Available:
http://dx.doi.org/10.1109/ICSTW.2015.7107446

[268] M. Ji, S. Huang, and Z. Hui, “Spectrum-based Security Bug Localization by Analyzing Error
Propagation,” International Journal of Performability Engineering, vol. 16, no. 8, 2020 [Online].
Available:
https://qrs20.techconf.org/download/QRS-IJPE/11_Spectrum-based%20Security%20Bug%20Locali
zation%20by%20Analyzing%20Error%20Propagation.pdf

[269] J. D. DeMott, R. J. Enbody, and W. F. Punch, “Systematic bug finding and fault localization
enhanced with input data tracking,” Comput. Secur., vol. 32, pp. 130–157, Feb. 2013, doi:
10.1016/j.cose.2012.09.015. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S016740481200168X

[270] J. A. Jones and M. J. Harrold, “Empirical evaluation of the tarantula automatic fault-localization

VeriDevOps Project nr: 957212 Page 82

http://dx.doi.org/10.1109/ssbse.2010.21
http://paperpile.com/b/bpkysA/ULMB
http://paperpile.com/b/bpkysA/ULMB
http://paperpile.com/b/bpkysA/ULMB
http://dx.doi.org/10.1007/978-1-4757-5939-6_17
http://paperpile.com/b/bpkysA/MpBd
http://paperpile.com/b/bpkysA/MpBd
http://paperpile.com/b/bpkysA/MpBd
http://dx.doi.org/10.1145/1276958.1277174
http://paperpile.com/b/bpkysA/SZTr
http://paperpile.com/b/bpkysA/SZTr
http://paperpile.com/b/bpkysA/SZTr
http://dx.doi.org/10.1016/s0950-5849(01)00190-2
http://paperpile.com/b/bpkysA/U6Cl
http://paperpile.com/b/bpkysA/U6Cl
http://paperpile.com/b/bpkysA/U6Cl
http://dx.doi.org/10.1109/tse.2016.2521368
http://paperpile.com/b/bpkysA/wsz8
http://paperpile.com/b/bpkysA/wsz8
http://dx.doi.org/10.1145/2659118.2659125
http://paperpile.com/b/bpkysA/UfMi
http://paperpile.com/b/bpkysA/UfMi
http://paperpile.com/b/bpkysA/UfMi
http://dx.doi.org/10.1016/j.infsof.2020.106312
http://paperpile.com/b/bpkysA/YfoR
http://paperpile.com/b/bpkysA/YfoR
http://dx.doi.org/10.1016/bs.adcom.2015.05.001
http://paperpile.com/b/bpkysA/RBR2
http://paperpile.com/b/bpkysA/RBR2
http://paperpile.com/b/bpkysA/RBR2
http://dx.doi.org/10.1109/tse.2019.2892102
http://paperpile.com/b/bpkysA/6hXJ
http://paperpile.com/b/bpkysA/6hXJ
http://dx.doi.org/10.1007/978-3-319-11194-0_55
http://paperpile.com/b/bpkysA/6hXJ
https://link.springer.com/chapter/10.1007%2F978-3-319-11194-0_55
http://paperpile.com/b/bpkysA/GqsF
http://paperpile.com/b/bpkysA/GqsF
http://paperpile.com/b/bpkysA/GqsF
http://dx.doi.org/10.1007/978-3-319-47443-4_5
http://paperpile.com/b/bpkysA/phYv
http://paperpile.com/b/bpkysA/phYv
http://paperpile.com/b/bpkysA/phYv
http://dx.doi.org/10.1109/ICSTW.2015.7107446
http://paperpile.com/b/bpkysA/phYv
http://dx.doi.org/10.1109/ICSTW.2015.7107446
http://paperpile.com/b/bpkysA/Oy3I
http://paperpile.com/b/bpkysA/Oy3I
http://paperpile.com/b/bpkysA/Oy3I
https://qrs20.techconf.org/download/QRS-IJPE/11_Spectrum-based%20Security%20Bug%20Localization%20by%20Analyzing%20Error%20Propagation.pdf
https://qrs20.techconf.org/download/QRS-IJPE/11_Spectrum-based%20Security%20Bug%20Localization%20by%20Analyzing%20Error%20Propagation.pdf
http://paperpile.com/b/bpkysA/luXm
http://paperpile.com/b/bpkysA/luXm
http://dx.doi.org/10.1016/j.cose.2012.09.015
http://paperpile.com/b/bpkysA/luXm
http://www.sciencedirect.com/science/article/pii/S016740481200168X
http://paperpile.com/b/bpkysA/QyO2

D1.3 State of the art report

technique,” Proceedings of the 20th IEEE/ACM international Conference on Automated software
engineering - ASE ’05. 2005 [Online]. Available: http://dx.doi.org/10.1145/1101908.1101949

[271] H. Lu, R. Gao, S. Huang, and W. E. Wong, “Spectrum-Base Fault Localization by Exploiting the
Failure Path,” in 2016 International Computer Symposium (ICS), 2016, pp. 252–257, doi:
10.1109/ICS.2016.0058 [Online]. Available: http://dx.doi.org/10.1109/ICS.2016.0058

[272] R. Abreu, P. Zoeteweij, R. Golsteijn, and A. J. C. van Gemund, “A practical evaluation of
spectrum-based fault localization,” Journal of Systems and Software, vol. 82, no. 11. pp.
1780–1792, 2009 [Online]. Available: http://dx.doi.org/10.1016/j.jss.2009.06.035

[273] W. E. Wong, V. Debroy, and D. Xu, “Towards Better Fault Localization: A Crosstab-Based
Statistical Approach,” IEEE Trans. Syst. Man Cybern. C Appl. Rev., vol. 42, no. 3, pp. 378–396, May
2012, doi: 10.1109/TSMCC.2011.2118751. [Online]. Available:
http://dx.doi.org/10.1109/TSMCC.2011.2118751

[274] W. E. Wong, V. Debroy, R. Gao, and Y. Li, “The DStar Method for Effective Software Fault
Localization,” IEEE Trans. Reliab., vol. 63, no. 1, pp. 290–308, Mar. 2014, doi:
10.1109/TR.2013.2285319. [Online]. Available: http://dx.doi.org/10.1109/TR.2013.2285319

[275] J. Hwang, T. Xie, F. Chen, and A. X. Liu, “Fault Localization for Firewall Policies,” 2009 28th IEEE
International Symposium on Reliable Distributed Systems. 2009 [Online]. Available:
http://dx.doi.org/10.1109/srds.2009.38

[276] M. Hilton, N. Nelson, T. Tunnell, D. Marinov, and D. Dig, “Trade-offs in continuous integration:
assurance, security, and flexibility,” Proceedings of the 2017 11th Joint Meeting on Foundations of
Software Engineering - ESEC/FSE 2017. 2017 [Online]. Available:
http://dx.doi.org/10.1145/3106237.3106270

[277] T. Mårtensson, D. Ståhl, and J. Bosch, “Continuous Integration Applied to Software-Intensive
Embedded Systems – Problems and Experiences,” Product-Focused Software Process
Improvement. pp. 448–457, 2016 [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-49094-6_30

[278] J. Bird, DevOpsSec: Securing Software Through Continuous Delivery. 2016 [Online]. Available:
https://books.google.com/books/about/DevOpsSec.html?hl=&id=5v25AQAACAAJ

[279] T. Laukkarinen, K. Kuusinen, and T. Mikkonen, “DevOps in Regulated Software Development:
Case Medical Devices,” 2017 IEEE/ACM 39th International Conference on Software Engineering:
New Ideas and Emerging Technologies Results Track (ICSE-NIER). 2017 [Online]. Available:
http://dx.doi.org/10.1109/icse-nier.2017.20

[280] F. G. de O. Neto, F. G. de Oliveira Neto, A. Ahmad, O. Leifler, K. Sandahl, and E. Enoiu,
“Improving continuous integration with similarity-based test case selection,” Proceedings of the
13th International Workshop on Automation of Software Test - AST ’18. 2018 [Online]. Available:
http://dx.doi.org/10.1145/3194733.3194744

[281] International Electrotechnical Commission, “IEC 62443 Security for Industrial Automation and
Control Systems,” Geneva, CH, IEC 62443, 2018.

VeriDevOps Project nr: 957212 Page 83

http://paperpile.com/b/bpkysA/QyO2
http://paperpile.com/b/bpkysA/QyO2
http://dx.doi.org/10.1145/1101908.1101949
http://paperpile.com/b/bpkysA/yvHe
http://paperpile.com/b/bpkysA/yvHe
http://dx.doi.org/10.1109/ICS.2016.0058
http://paperpile.com/b/bpkysA/yvHe
http://dx.doi.org/10.1109/ICS.2016.0058
http://paperpile.com/b/bpkysA/X2cP
http://paperpile.com/b/bpkysA/X2cP
http://paperpile.com/b/bpkysA/X2cP
http://dx.doi.org/10.1016/j.jss.2009.06.035
http://paperpile.com/b/bpkysA/4TPQ
http://paperpile.com/b/bpkysA/4TPQ
http://paperpile.com/b/bpkysA/4TPQ
http://dx.doi.org/10.1109/TSMCC.2011.2118751
http://paperpile.com/b/bpkysA/4TPQ
http://dx.doi.org/10.1109/TSMCC.2011.2118751
http://paperpile.com/b/bpkysA/ptwG
http://paperpile.com/b/bpkysA/ptwG
http://dx.doi.org/10.1109/TR.2013.2285319
http://paperpile.com/b/bpkysA/ptwG
http://dx.doi.org/10.1109/TR.2013.2285319
http://paperpile.com/b/bpkysA/AbU8
http://paperpile.com/b/bpkysA/AbU8
http://dx.doi.org/10.1109/srds.2009.38
http://paperpile.com/b/bpkysA/6PUk
http://paperpile.com/b/bpkysA/6PUk
http://paperpile.com/b/bpkysA/6PUk
http://dx.doi.org/10.1145/3106237.3106270
http://paperpile.com/b/bpkysA/nw0r
http://paperpile.com/b/bpkysA/nw0r
http://paperpile.com/b/bpkysA/nw0r
http://dx.doi.org/10.1007/978-3-319-49094-6_30
http://paperpile.com/b/bpkysA/jFpo
https://books.google.com/books/about/DevOpsSec.html?hl=&id=5v25AQAACAAJ
http://paperpile.com/b/bpkysA/5sM7
http://paperpile.com/b/bpkysA/5sM7
http://paperpile.com/b/bpkysA/5sM7
http://dx.doi.org/10.1109/icse-nier.2017.20
http://paperpile.com/b/bpkysA/mYho
http://paperpile.com/b/bpkysA/mYho
http://paperpile.com/b/bpkysA/mYho
http://dx.doi.org/10.1145/3194733.3194744
http://paperpile.com/b/bpkysA/XPsd
http://paperpile.com/b/bpkysA/XPsd

