
Towards Automatic Application Fingerprinting Using
Performance Monitoring Counters

Shamoona Imtiaz, Jakob Danielsson, Moris
Behnam, Gabriele Capannini, Jan Carlson

first.last@mdh.se
Mälardalen University
Västerås, Sweden

Marcus Jägemar
marcus.jagemar@ericsson.com

Ericsson AB
Stockholm, Sweden

ABSTRACT
In this paper, we discuss a method for application fingerprinting
using conventional hardware and software performance counters.
Modern applications are complex and often utilizes a broad spectra
of the available hardware resources, where multiple performance
counters can be of significant interest. The number of performance
counters that can be captured simultaneously is, however, small due
to hardware limitations in most modern computers. We propose
to mitigate the hardware limitations using an intelligent mecha-
nism that pinpoints the most relevant performance counters for an
application’s performance. In our proposal, we utilize the Pearson
correlation coefficient to rank the most relevant PMU events and
filter out events of less relevance to an application’s execution. Our
ultimate goal is to establish a comparable application fingerprint
model using performance counters, that we can use to classify appli-
cations. The classification procedure can then be used to determine
the type of application’s fingerprint, such as malicious software.

ACM Reference Format:
Shamoona Imtiaz, Jakob Danielsson, Moris Behnam, Gabriele Capannini,
Jan Carlson and Marcus Jägemar. 2021. Towards Automatic Application
Fingerprinting Using Performance Monitoring Counters. In 7th Conference
on the Engineering of Computer Based Systems (ECBS 2021), May 26–27, 2021,
Novi Sad, Serbia. ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/
3459960.3461557

1 INTRODUCTION
An application execution is complex and requires many hardware
resources. The way program utilizes hardware resources reflects
a distinct fingerprint that describes the execution-time behavior
of an application. Many system architectures are deployed as off-
the-shelf solutions so such fingerprint can provide an additional
layer of understanding for engineers, enabling them to fine-tune
the resource allocation, scheduling processes, identifying threats
and protect their IT infrastructures.

Modern computers often implement a performance monitoring
unit (PMU) that can measure the system hardware resource usage.
The PMU implements a large set of events, measuring for example
resources in the CPU pipeline, various internal memory events such

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ECBS 2021, May 26–27, 2021, Novi Sad, Serbia
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9057-6/21/05.
https://doi.org/10.1145/3459960.3461557

as cache events, and also off-core events including system-level
caches, and main memory accesses. The PMU utilizes hardware-
implemented performance monitoring counters (PMC) that count
the number of occurrences of a certain event during a time inter-
val. Modern computers typically implement a few PMCs to enable
simultaneous measurement of multiple events.

Several interfaces in Linux provide access to the PMU, such as
PAPI [4], and perf [2]. Such tools are triggered by manual config-
uration at the command-line and for a very limited set of events
at a time. Some tools try to expand the number of simultaneously
measured events through time-based multiplexing but this could
cause a significant overhead limitation when the measurement fre-
quency is small. There is also a possibility to measure performance
counters at only certain time points of an application’s execution.
For instance, we can measure one set of hardware events for the
first half of an application’s execution and then swap with another
set of hardware events for the other half. Splitting the hardware
events measurements over the timespan of an applications, how-
ever, may not reflect the true start-to-end behavior and resource
dependence of an application.

Moreover, a big challenge is to envelop all platforms because
a substantial number of hardware events are native to a specific
platform. It is possible that fingerprintingmight provide a successful
on one hardware that contains the specific performance counters
events, while on other hardware it is not possible since it does not
contain the required events.

Other researchers have employed performance counters for vari-
ous purposes such asmonitoring hardware capacity, application per-
formance, system health-check, and for detection purposes. Many
of these studies are limited to a pre-selected set of hardware events.
Jägemar et al. [3] proposed a service associated with CPU scheduler
for an improved QoS through performance monitoring counter
measurements. Danielsson et al. [1] used performance monitoring
counters to identify resource dependence of an application in multi-
core system and to see if the application needs last-level cache
partition slices. In our opinion, a fingerprinting service should be
able to automatically the most relevant hardware events for the
application under observation because it is not always possible to
have such knowledge beforehand. Inspired by these studies [1, 3],
our goal here is an automatic framework to:

• Monitor process hardware resource usage by utilizing the
Performance Monitor Unit (PMU) for a large set of events.

• Find the hardware resources which have the highest impact
on process performance among a large set of PMU events.

• Automatically create a hardware usage fingerprint (model)
that represents the process’ hardware usage.

In 7th Conference on the Engineering of Computer Based Systems (ECBS 2021),
May 26–27, 2021, Novi Sad, Serbia. ACM, New York

https://doi.org/10.1145/3459960.3461557
https://doi.org/10.1145/3459960.3461557
https://doi.org/10.1145/3459960.3461557

ECBS 2021, May 26–27, 2021, Novi Sad, Serbia Imtiaz, et al.

2 CHALLENGES
Our prime challenge is to combat the shortage of physical counters
in contrast to monitoring the hundreds of performance counter
events. The general capacity of modern computers can vary, a
typical Intel Core processor can for instance host around 3 fixed-
function and 4 general-purpose counters per PMU. However to
justly profile an application, significantly more events than four
are required.

Secondly, to target numerous platforms with an identical set of
events is irrational due to the fact that hardware events depend on
the underlying architecture and hence differ from platform to plat-
form. However, there are many events which are common across
various platforms. An approach able to confront the differences in
performance counter events and between different hardware would
render a flexible and cross-platform service to users.

Thirdly, profiling the programs with short execution time is
itself challenging. Approaches like event multiplexing, can aid in
capturing more events for a time slice but may not be a viable
solution for the programs with very short execution time. Even
so, short execution time have advantages such as the possibility
to frequently re-running the application and capturing different
sets of events iteratively with less profiling time and performance
degradation.

Moving forward towards characterization of requirements of the
programs with busy-wait loop is another challenge. In principle,
this is a typical case for embedded systems where functionality is
periodically polled within a busy-wait loop. Therefore, to reveal
the start-to-end hardware requirements of a never ending program
is somewhat that can only be addressed by finding an optimal
breaking point of measurements.

3 DISCUSSION
We suggest a mechanism that automatically samples 𝑛 PMU events
corresponding to some hardware resources monitored for the pro-
cess 𝑝 . Each sampled PMU event originates a time-ordered series,
𝑚𝑖 . All series are collected in the set𝑀(𝑝) = {𝑚𝑖 : 0 ≤ 𝑖 ≤ 𝑛} and,
for each one of them, we calculate Pearson’s correlation coefficient,
𝑟𝑖 , between 𝑚𝑖 and the measured performance of 𝑝 . Finally, we
define the fingerprint of 𝑝 , 𝐹 (𝑝) ⊆ 𝑀(𝑝) , by selecting a subset of
the𝑚𝑖 series among those with highest 𝑟𝑖 values. In this way, 𝐹 (𝑝)
denotes the set of events that are more correlated to the perfor-
mance of 𝑝 , where |𝐹 (𝑝) | depends on fingerprint storage capacity
and desired quality.

The rational behind automatic sampling of 𝑛 events is to en-
sure that the fingerprinting process is optimal for anonymous or
previously unknown applications. We sample all native events pro-
vided by the underlying platform at 5ms granularity. Since the total
execution time of application may vary between different runs,
we sample the events with reference to Retired-Instructions which
does not get affected by the computing environment for different
instances. The captured statistics are then pruned with Pearson
Correlation to determine strength and direction of each event in
terms of start-to-end behavior of an application. Since the most
relevant events in 𝑀(𝑝) are to be determined automatically, the
acquired measurements and ranking can be used for a sustainable
model which is flexible enough to serve multiple purposes such

as to maintain sufficient QoS, and for Matching profiles, as shown
in Fig.1. There could be many Matching profiles but the idea is to
enhance the mechanism into aDetection service which can uniquely
identify the processes.

Figure 1: Proposed solution for application fingerprinting

We measure PMU events of applications and initially without
complete understanding on how the events correlates to an appli-
cation’s functional behavior. However, through careful analysis of
the PMU along with the application’s metadata, we can also build
and refine a security profile to recognize potential security threats
by comparing the current execution profile to previously created
execution fingerprints.

In short, by automatically monitoring𝑀(𝑝) possible events, we
propose an application fingerprint as a model that describes the
execution profile of a process. Finally, the main purpose of the
fingerprint in the context of this paper is to ensure that the hard-
ware resource usage is correctly modeled and that the quality is
sufficiently good to ensure that it is possible to detect such an
application running at a later stage.

4 FUTUREWORK
A flexible and intelligent mechanism to make the fingerprinting
process automatic and reliable requires an in-depth study. One of
the future work directions can be to optimize the jittery measure-
ments for more accuracy. Accuracy could also be influenced by
malfunctioning of any hardware resource.

We are also investigating to come upwith a single strategy which
can work for programs with short execution time as well as long
execution time. Because currently on one hand multiplexing is
not possible for short programs and re-running is costly for long
execution time programs.

An ideal solution would be to monitor more and more events
regardless of platform dependence so that the detection service will
be flexible enough to discern the emerging pattern. This feature
can also make the fingerprinting service capable of revealing the
disguised motives besides the expected behaviour.

REFERENCES
[1] Jakob Danielsson, Tiberiu Seceleanu, Marcus Jägemar, Moris Behnam, and Mikael

Sjödin. 2020. Resource Depedency Analysis in Multi-Core Systems. In 44th Annual
Computers, Software, and Applications Conference (COMPSAC). IEEE, 87–94.

[2] Brendan Gregg. 2014. Systems Performance : Enterprise and the Cloud. Upper
Saddle River, NJ : Prentice Hall.

[3] Marcus Jägemar, Andreas Ermedahl, Sigrid Eldh, and Moris Behnam. 2017. A
Scheduling Architecture for Enforcing Quality of Service in Multi-Process Sys-
tems. 22nd IEEE International Conference on Emerging Technologies and Factory
Automation (ETFA) (2017), 1–8.

[4] Dan Terpstra, Heike Jagode, Haihang You, and Jack Dongarra. 2010. Collecting
Performance Data with PAPI-C. In Tools for High Performance Computing 2009.
Springer, Berlin, Heidelberg, 157–173.

	Abstract
	1 Introduction
	2 Challenges
	3 Discussion
	4 Future Work
	References

