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Abstract

Software systems are complicated, and the scientific and engineering methodologies
for software development are relatively young. Cyber-physical systems are now in
every corner of our lives, and we need robust methods for handling the ever-increasing
complexity of their software systems. Model-Driven Development is a promising
approach to tackle the complexity of systems through the concept of abstraction,
enabling analysis at earlier phases of development. In this paper, we propose a
model-driven approach with a focus on guaranteeing safety using formal verification.
Cyber-physical systems are distributed, concurrent, asynchronous and event-based
reactive systems with timing constraints. The actor-based textual modeling language,
Rebeca, with model checking support is used for formal verification. Starting from
structured requirements and system architecture design the behavioral models,
including Rebeca models, are built. Properties of interest are also derived from the
structured requirements, and then model checking is used to formally verify the
properties. This process can be performed in iterations until satisfaction of desired
properties are ensured, and possible ambiguities and inconsistencies in requirements
are resolved. The formally verified models can then be used to develop the executable
code. The Rebeca models include the details of the signals and messages that are
passed at the network level including the timing, and this facilitates the generation of
executable code. The natural mappings among the models for requirements, the
formal models, and the executable code improve the effectiveness and efficiency of
the approach.

Keywords: Model checking, Verification & validation, Safety-critical systems, Model
driven development, Requirements, Cyber-physical systems

1 Introduction
Cyber-physical systems (CPSs) are taking over in our everyday life. In cyber-physical
systems, we have embedded computers and networks monitoring and controlling the
physical processes. Due to the high interplay between software components and physi-
cal processes, in developing software components of such systems we need more robust
and rigorous approaches comparing to what is the common practice in software indus-
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try today. Moreover, CPSs are commonly safety-critical systems and their failure can have
catastrophic consequences on people, environment and facilities.
Verification of safety requirements in cyber-physical systems is a big challenge and

of great importance, requiring rigorous solutions. In such systems, due to the existing
interactions between the cyber and physical parts over a communication network, con-
currency bugs and timing violations may be present. Moreover, in a CPS we deal with
asynchrony intrinsic to distributed software systems, and also the alignment of the time-
line in the software system and the physical parts. So, we need a modeling framework
that supports a proper logical timeline, and is more effective than testing and simulation
in discovering timing issues that may impact the safety of the CPS. Indeed, the ability
to model time is crucial for CPS [1] and there are well-known problems with different
concurrency models [2].
Several modeling languages and verification techniques exist and are used for similar

purposes and applications. However, actor-based models with timing constraints are sug-
gested as the prime candidates for modeling CPS [3, 4] because the model of computation
has less semantic gap with the nature of CPS. Selecting a modeling language that has the
least semantic gap with the system being modeled is crucial [5]. Faithfulness (less seman-
tic gap) to the system being modeled and usability for the modeler can be as important as
the expressive power of our modeling language.
Formal verification and model checking can be more effective in dealing with concur-

rency problems comparing to testing and simulation. There is a variety of model checking
tools supporting different modeling languages. As an example, the modeling language of
Spin [6] is Promela which is a textual process-oriented language. The modeling language
supported by NuSMV [7] is a textual form of automata, and UPPAAL [8] is designed to
model check timed automata. However, none of these languages are actor-based.
In this paper, we propose an iterative verification-driven development approach for

building safety-critical cyber-physical systems using Timed Rebeca. Our approach aims
to formally verify time properties for safety requirements in CPS. Timed Rebeca [9–11] is
designed formodeling and formal verification of distributed, concurrent and event-driven
asynchronous systems with timing constraints. Timed Rebeca is proposed for verification
of cyber-physical systems in [12] and is used for modeling and analysing different CPS
examples like medical devices [13] and PLCs [14]. Moreover, Rebeca has a textual syn-
tax closer to the target languages for implementation, like C, C++, or Java, which makes
Rebeca usable by engineers used to those programming languages without any additional
effort[15–17]. So, Rebeca is an optimal choice for our work since it is designed with the
purpose of being usable and at the same time analyzable [18].
The novelty of the work is in proposing a light-weight and agile process that covers

the life cycle from safety requirements to a formally verifiable abstract code for develop-
ing cyber-physical systems. The proposed process helps in identifying ambiguities and
inconsistencies in requirements of such systems, which contributes to improve the safety
requirements in order to achieve consistency, completeness and correctness.
Our process encompasses different methods, such as the syntax to specify safety

requirements and the UML behavioural models, that are common practices in industry.
Indeed, our aim is to provide a process that can be usable and used in real industrial set-
tings. From this perspective, this paper describes a proof of concept that our approach can
work and the transformations among different models can be done smoothly.
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The paper is an extension of the conference paper by Sirjani et al [19].We keep the same
prototypical industrial example, i.e., “Passenger Door Control”, from a train control system
as the core of our running example to explain the approach. This example is a simple but
prototypical example of a time-critical safety function from a real context. This example
represents very well the concurrency and timing issues of a critical safety function that
are the main targets of our approach. Here we present the iterative nature of the approach
by showing how the requirements, the models and the Rebeca code are improved and
extended; and explain the cycles we navigate through the process to debug the code and
disambiguate or correct the requirements. We present the mappings in a more structured
way, and we go deeper in the model checking exercise.
Structure of the paper. The paper is structured as follows: motivations and back-

ground for this work are given in Sections 2 and 3 respectively; in Section 4, the Iterative
Verification-Driven Process (VDD-CPS), which is the main contribution of this paper, is
introduced; the case study on which our process is applied is presented in Section 5; two
additional iterations of the application of our process are provided in Section 6. Related
work are discussed in Section 7. Section 8 concludes the paper with some discussions and
future work.

2 Motivations
The main motivation behind this work is that timing is an important issue in CPS that
may invalidate the safety requirements and, as a result, the safety of the whole system, as
explained in Section 1. Moreover, there is a need in industry to be able to verify the safety
requirements to guarantee their completeness and correctness before they are imple-
mented, since it is very much costly to fix a safety-critical system built on erroneous
safety requirements. This is particularly true for safety-critical CPS where the huge num-
ber of components and interactions along with the different disciplines involved make the
requirements complex to understand and validate. From this perspective, formal verifica-
tion represents a valuable candidate to verify safety requirements at an early stage of the
development process.
To this aim, the iterative and incremental process for Verification-Driven Develop-

ment of Cyber-Physical Systems (VDD-CPS), that we discuss in this paper, presents the
following characteristics:

• the Rebeca models are built based on the safety requirements specified for the
system, and the system architecture. This contributes to build a model that is faithful
to the system being modeled. This also implies that the model can be used as the
basis for generating the executable code for the system.

• the safety requirements are specified through the GIVEN-WHEN-THEN syntax.
This syntax for requirements specification is used in industry to specify requirements
at all level of abstraction (i.e. system, sub-system, component requirements), and can
be translated into UML models. An advantage of this choice is that this syntax for
safety requirements includes some of the core concepts of Rebeca models (refer to
Section 5.3), such as actors (i.e. the subject of the condition/s in GIVEN, WHEN,
THEN), states (i.e. condition/s in GIVEN), and trigger conditions (i.e. condition/s in
WHEN). This makes the mapping of the safety requirements to Rebeca models easy
and intuitive, and results in reducing or limiting the errors that may be introduced by
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a modeler when creating the Rebeca models, especially when the modeler is not a
safety or domain expert. Moreover, this syntax can be easily translated into UML
behavioural diagrams, specifically state diagrams and sequence diagrams, which
facilitate the transformation of the safety requirements into Rebeca code, as
explained in Section 5.3. Another advantage of this choice is that we can build Rebeca
models based on real requirements and/or on requirements that are written in the
same format as the ones written in real industrial settings. This means providing an
approach that can be used in industry to gain formally verified real safety
requirements without any additional effort by the engineers.

• the Rebeca models are checked against the safety properties that are also derived
from the requirements (refer to Section 5.3), to make sure that the behavioral and
implementation details that are added to build the models are not introducing errors.

• the approach is highly iterative to enable not only to build the models but also to refine
the requirements on which they are based. Indeed, for building formal models based
on requirements, the requirements must be consistent and unambiguous. Otherwise,
the models are not correct. The iterative approach goes back and forth to correct and
complete the models, and disambiguate, correct and complete the requirements.

• the process is incremental to allow building the Rebeca models by considering only
those details of the system that are relevant for the specific iteration. This enables
limiting the complexity of the models at each iteration and, as a consequence,
avoiding the state space explosion.

It is important to note that the safety requirements in input to our process are elicited
through the Safety Requirements Elicitation (SARE) approach [20] (refer to Section 3.1).
The main reason why we include this elicitation technique as the starting point of our
process, is to ensure that the safety requirements come from the hazards discovered for
the system. Often, safety requirements are not correct with respect to the hazards they
mitigate due to the fact that the knowledge about the hazards, owned by the safety team,
is not always integrated in the requirements. This results in the difficulty to build the
right safety architecture [21]. SARE, therefore, gives us the opportunity to obtain the
right safety requirements and to iterate also the elicitation, in case errors or omissions in
the safety requirements are discovered during the application of our process. However,
one can alternatively use the safety requirements from a real system as input to this pro-
cess. In this case, the SARE approach can be used to complement the safety requirements
provided as input or to discover new safety requirements.

3 Background
Here we present an overview of the SARE approach as well as the GIVEN-WHEN-THEN
syntax that are used to discover and describe the safety requirements. Also, we introduce
Rebeca language that is used to model and verify the code.

3.1 SARE Approach and Structured Requirements

The Safety Requirements Elicitation (SARE) approach proposed in Provenzano et al. [20]
is the method we use to elicit the safety requirements that will form the input require-
ments for the proposed process. The SARE approach exploits the knowledge about
hazards acquired during safety analyses as a basis to discover the safety requirements.
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This knowledge is stored in the Hazard Ontology, as explained in [22] and [23], and
used by the SARE approach to create a list of questions that guide the elicitation of the
safety requirements. The resulting requirements are thus “correct with respect to the haz-
ards they are supposed to mitigate” [20] since they are elicited based on the knowledge
of how hazards occur. Note that the SARE approach can be applied to discover safety
requirements at different level of abstractions (e.g. system level, sub-system level, compo-
nent level), for different types of systems (e.g. individual systems, cyber-physical systems,
System of Systems), and for discovering both functional and non-functional requirements
(i.e. quality attributes).
To specify the safety requirements elicited by SARE, we use the GIVEN-WHEN-THEN

syntax in order to obtain well-structured requirements that can be easily used for mod-
eling in Rebeca, The reasons for this choice are explained in Section 2. Specifically,
the GIVEN-WHEN-THEN is “a style of specifying a system’s behavior using Specification
by Example” [24] developed within the Behavior-Driven Development [25] approach.
According to this style, a requirement is decomposed in three parts, the GIVEN part
states the pre-condition(s) of the action described by the requirement ; the WHEN part
describes the input event(s) which trigger the action(s); the THEN part defines the
action(s) the system shall perform as a consequence of the trigger and the expected
changes in the system.
Pre-conditions, triggers and actions can be expressed in a language whose vocabu-

lary, syntax and semantics are defined more or less formally. The choice of the language
depends on different factors, such as whether the requirements are automatically pro-
cessed or not, whether the requirements are formally checked or not, whether the
requirements are for customers (in this case, a less formal language is more suitable) or
technical requirements. This implies that this syntax is suitable to specify requirements
at different levels of abstraction (e.g. system level, sub-system level, component level) and
at different level of details. Independently of the language chosen, the requirements are
structured and all have the three components of pre-conditions, triggers and actions. This
makes it easier to write the requirements and facilitates the identification and creation
of the appropriate test cases. In this paper, the syntax chosen to express pre-conditions,
triggers and action in the GIVEN-WHEN-THEN format is a structured natural language.
Specifically, the pre-conditions in GIVEN are statements described according to the for-
mat “who is in which state”, where “who” can be the system, a sub-system, a component,
and so on. For example, in the pre-condition “the train is ready to run” of SafeReq1 in
Table 1, “who” is “the train” and “in which state” is “is ready to run”.
The triggers in WHEN are statements described according to the format “who does

what”, where “who” can be another system, a component, an external system, and so on,
and “does” is the verb that describes what occurs. For example, in the trigger “the driver
requests to lock all external doors” of SafeReq1 in Table 1, “who” is “the driver”,
“does” is “requests to lock”, and “what” is “all external doors”.
Finally, the action in THEN is a statement described according to the format “who

shall do/be what”, where “who” can be the system, a sub-system, a component in charge
of doing something or being in a new state, and “shall do” describes what shall happen.
For example, in the action “the door controller shall close and lock all the external doors”
of SafeReq1 in Table 1, “who” is “the door controller”, “shall do” is “shall
close and lock”, and “what” is “all external doors.
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Table 1 System safety requirements in GIVEN-WHEN-THEN syntax for the door controller to mitigate
the hazard “Passengers fall out of the train” connected to the train function “Open external passenger
doors”. These requirements describe the behavior of the external train doors equipped with the lock
mechanism that makes the door opening function safer. A slightly revised version of the table in [19]

Name Safety Requirement

SafeReq1 GIVEN the train is ready to run
WHEN the driver requests to lock all external doors
THEN the door controller shall close and lock all the external doors

SafeReq2 GIVEN an external door is locked
WHEN the passenger requests to open the external door
THEN the door controller shall keep the external door closed and locked

SafeReq3 GIVEN an external door is unlocked AND the train is at station
WHEN the passenger requests to open an external door
THEN the door controller shall open the external door

SafeReq4 GIVEN all external doors on the side of the train close to the platform are unlocked
WHEN the driver requests to open all external doors
THEN the door controller shall open all external doors on the side of the train close to the platform

SafeReq5 GIVEN the train approaches a station
WHEN the driver requests to unlock all external doors that are on the train side close to the platform
THEN the door controller shall unlock all external doors on the side of the train close to the platform

SafeReq6 GIVEN the train is running
WHEN an external door is open
THEN the door controller shall provide an alert

3.2 Timed Rebeca and Verification of Cyber-Physical Systems

The Reactive Object Language, Rebeca [15–17], is an actor-based [26, 27] modeling
language supported by theories and tools for formal verification. Rebeca is the first
actor-based language withmodel checking support [18], and is used formodeling and ver-
ification of distributed and concurrent systems [5]. The model of computation in Rebeca
is event-driven and the communication is asynchronous. The syntax of Rebeca is Java-
like. Actors in Rebeca have message queues, each actor takes the message on the top
of the queue, execute the method related to that message (called message server) in an
atomic and non-preemptive way. While executing a method, messages can be sent to
other actors (or itself ), and the values of the state variables can change. Sending messages
are non-blocking and there is no explicit receive statement.
In Timed Rebeca [10, 11] three keywords are added to model logical time: delay,

after and deadline. Time tags are attached to events and states of each actor. Using
the keyword delay, one can model progress of time while executing a method. If a send
statement is augmented by after(t), the time tag of the message when it is put in the
queue of the receiver is t units more than the time tag of the message when it is sent. The
time tag of the message when it is sent is the current logical time of the sender. By using
after, one can model the network delay; periodic events can be modeled using send
messages to itself augmented by after. The deadline keyword models the timeout, if
the current time of the receiver actor at the time of triggering the event (taking the mes-
sage to handle it) is more than the expressed deadline then the model checking tool will
complain and raise the deadline-miss warning.
Rebeca is used in different applications, for example in schedulability analysis of wire-

less sensor network applications [28], protocol verification [29], design exploration and
comparing routing algorithms [30].
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Fig. 1 The iterative and incremental process for Verification-Driven Development of Cyber-Physical Systems
(VDD-CPS) from structured requirements to verified Timed Rebeca codes. Formal verification is provided with
the model checking tool suite Afra

4 The Iterative Verification-Driven Process: VDD-CPS
The whole process from safety requirements to Rebeca code is depicted in Fig. 1. Specif-
ically, to be able to create the Rebeca code, two inputs are necessary, i.e. the safety
requirements and the system architecture. Safety requirements are written in theGIVEN-
THEN-WHEN syntax [25], as explained in Section 5.11. We distinguish the actors by
studying the structured requirements, together with the architecture of the system. Actors
are the building blocks of the system and communicate through asynchronous messages
or signals. Thenwe derive the state diagrams from the structured requirements represent-
ing the behavior of each actor. We also build a sequence diagram to show the interaction
of the actors. Finally, using the state and sequence diagrams we build Rebeca codes. In
the process we may discover ambiguities and inconsistencies in any of the artefacts used
in the process.
The process of building the Rebeca code from the requirements is an iterative and incre-

mental process, as highlighted by the cycles shown in Fig. 1. The models and the Rebeca
code presented in the conference paper by Sirjani et al. [19] can be seen as the first iter-
ation of this process. The current paper addresses the subsequent iterations that aim at
improving, by working per increments, both the requirements and the Rebeca code in
order to obtain a more complete, unambiguous, and correct set of requirements and a
model that best fits them. Nevertheless, the paper is written in a self-contained way and
there is no need to first read the conference paper to understand it.
In each iteration, we consider a set of safety requirements and generate the models and

the Rebeca code, and then formally verify the safety and progress properties. During each
iteration we may find incorrect or ambiguous requirements that show up in the process
of building more mathematically-based models. These requirements are updated before a
new iteration starts. In each iteration we may consider adding new requirements or pro-

1We use this format based on the experience of the second author of the paper who worked for seven years as
requirements manager in industry.
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perties to check, or changing the Rebeca code to cover more of the existing requirements
that are already specified but not yet modelled into Rebeca.
As for now, the Rebeca codes are the final output of our proposed process from safety

requirements towards verifiable codes. We can go one step further in the software life
cycle and consider producing executable code based on Rebeca. Theatre [31] is an execu-
tion platform for Rebeca code. Lingua Franca [32] and its programming model Reactors
[33] is another option which targets cyber-physical systems.
In summary in our approach we work on the following artifacts related to the compo-

nents in Fig. 1:
• System architecture as input to the process (yellow arrow)
• Abstract system architecture built from the system architecture, mapping the

architecture components to actors (yellow arrow)
• Safety Requirements (green arrow)
• Structured Requirements (green arrow)
• Behavioral models including UML state diagrams and sequence diagrams (pink

arrow)
• Rebeca model (blue arrow)
• Properties of the system based on the requirements represented as logical formula

(blue arrow)
The process shown in Fig. 1 includes the transformation of different artifacts and

feedbacks in different iterations as follows:
• The mapping from the abstract system architecture and the structured requirements

(in Given-When-Then format) as inputs, to behavioral models (UML state diagrams
and sequence diagrams) and properties (logical formula) as outputs

• The mapping from the behavioral models to the Rebeca code
• Formal verification of Rebeca code using the model checking tool Afra
• Use the output of the model checking (possible counter examples) to debug the

Rebeca model or find further design problems that goes back to the behavioral
models or the requirements

• Shorter feedback loops, like finding problems in the requirements while building the
behavioral models

In this paper, we focus on the iterative and incremental aspects of our process and
present three iterations. In these iterations we incrementally improve and extend both
the safety requirements and the Rebeca code. In the first iteration, presented throughout
the following sections, the train may be in three different states of leaving, approaching
and running. Compared to the version in paper [19], we extended the models to include
the running state. This way the models are more faithful to the requirements. In the sec-
ond iteration (Section 6.1) we describe how to manage changes in the Rebeca code to add
more details mentioned in the requirements, and in the third iteration (Section 6.2) we
show how the process is used to include new safety requirements. Onemay consider what
is presented in paper [19] as iteration zero.

5 The Door Controller Case Study
The case study presented in this paper to exemplify the proposed approach is based on a
real industrial case from the railway domain and is chosen based on the experience of the
second author in this domain.
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We use the function “Open external passengers doors” that controls opening of the
external doors of a train to let passengers get on and off safely. This function is connected
to the hazard ‘Passengers fall out of the train”, which is a real hazard for trains and is used to
elicit the safety requirements. Specifically, the external doors of a train can be opened by
the driver, through a dedicated button installed in the driver’s cabin, and by the passenger,
through a button placed on each external door. This is done to let passengers get off the
train at their destination, and it should be only enabled when the train reaches a station
and stops at it. Moreover, the external passenger doors are equipped with a lock mech-
anism to prevent opening a door when the train leaves the station and is running. This
implies that to open a door, the door must be unlocked. This is an interesting function to
be modeled and verified for two main reasons:

• The function is safety-related. Indeed, an external door which is accidentally opened
when the train is running may cause a passenger to fall out of the train, thus causing
an accident.

• The external door can be considered as a shared resource between the driver and the
passenger. The door can receive simultaneous commands from the driver (to open,
close or lock) and the passenger (to open). This may cause the door to be in an
erroneous or unexpected state.

Our aim is therefore to formally check by using the Rebeca modeling language whether
there is any possibility that a passenger get off from a running train. In iteration 2
(Section 6.1), we include the information regarding the platforms in the models. In this
case, the doors that are on the side of the train opposite to the platform shall be kept
locked even when the train is at the station. So, the property to be checked is not only
about “getting off from a running train”.
It is worth noting that we define “running” as the train state which corresponds to the

situation where the train is moving between two stations. This means that the train has
left the station and is not yet approaching the next one. All external doors are closed
and locked. There are multiple properties that can be checked using the Rebeca model
checking tool Afra [34], in particular, some of the interesting safety properties that can be
checked are the following:

• Is it possible to open a locked door when the train is running?
• Is it possible to open a locked door on the opposite platform when the train is

stopping at station?
• Is it possible to open a closed door when the train is ready to leave the station?

Throughout the process we also noticed another interesting scenario that may happen,
and the property that has to be checked using model checking:

• Is it possible that a passenger causes a delay in the departure of a train or block it
from moving by opening a closed door when the train is ready to leave the station?

Although the safety requirements used in this paper can appear obvious, they are indeed
representative of a safety-critical function, i.e. the passenger doors opening while the train
is running, whose safety integrity can be violated by timing issues. The safety require-
ments used in this example is chosen to describe a safety-critical aspect of a train with
timing constraints that are difficult to be discovered through testing and simulation and
require rigorous verification to guarantee the absence of errors and bugs.
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5.1 Safety Requirements of the Example - Initial Input

For the first iteration presented here, we consider the safety requirements elicited by
answering the questions in SARE that have been built based on the hazard “Passengers
fall out of the train”. The elicited requirements are then specified in the GIVEN-WHEN-
THEN syntax, as foreseen by the process (refer to Fig. 1), and according to the syntax
described in Section 3.1. The set of safety requirements obtained by performing these two
steps is presented in Table 1.
Based on these requirements, we iterate our process in order to remove some ambigu-

ities and remedy the incompleteness. For example, the safety requirement SafeReq3 in
Table 1 is about the passenger being able to open an unlocked door. This requirement is
an improved version of an initial version. Model checking reveals that the property of “a
door must not be open when train is running” fails. A new pre-condition, i.e. “the train is
at station” is added to prevent the undesirable behaviour. This pre-condition prevents the
passenger from opening an unlocked external door when the train is moving. The process
of refining the requirements for this specific example is explained in [19].
Another observationmade in paper [19] is that most of the concurrency problems in the

code are caused because “close and lock” (and “unlock and open”) are not atomic actions.
The mechanisms in place to manage the external doors on trains do not guarantee that
these actions take place in an atomic way. So, this is a problem that needs to be addressed
when writing the software code.
Note that the safety requirements in Table 1 as well as all the safety requirements pre-

sented in this work are system safety requirements. We choose to deal with this kind of
requirements to start the application of our process from the safety functions that con-
cern the whole system.We think that this helps to grasp a better overview of our approach
and of the problem we address in the example. Moreover, being these high-level system
requirements less focus on technical details, we think that the example proposed can be
easily understood also by readers that are not experienced in the railway domain.

5.2 The System Architecture: Input to the Process

Figure 2 depicts an overview of a typical system architecture realizing the functionali-
ties in our industrial case. The intended system is an example of a cyber-physical system
consisting of hardware components like programmable control units, actuators, differ-
ent communication channels, and different control applications running on the hardware
units. The main components in the architecture are Input-Output (I/O) units, central
Train Control Unit (TCU), Door Control Unit (DCU). I/O units act as interfaces to the
system and are intended to receive/send the input/output signals. The I/O unit on the
passenger side are in charge of reading the door push buttons to receive the open request
from the passenger. When a passenger pushes the “open” button, the I/O unit receives the
open request and sends it to the DCU. The commands for open, close, lock and unlock
coming from the driver pass through TCU and go to the DCU. The DCU is responsible
for actuating the proper commands for changing the state of the door.
TCU plays the role of the central control management. It might be distributed and run

on separate physical devices. For example, one physical control device for running non
safety-related functions and one device for the execution of safety-critical functions. DCU
may represent a programmable unit which receives the command signal from TCU and
applies the signal to the corresponding converters actuating the door. Data communica-
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Fig. 2 The system architecture for the door controller system related to the door controller case study from
[19]. The dotted circles show the actors in the Rebeca code

tion between the physical devices is usually conducted through a system-wide bus and a
safe communication protocol.
Later in our behavioral models, we model both DCU and the associated I/O on the

passenger side as Door actor and also the combination of TCU and the driver as
Controller actor. The actor Trainmodels a set of I/O units receiving the status from
the sensors, and other means, that are used to inform the TCU and the driver that the
train is in a state which is significant for our case study, i.e., approached at the station, and
ready to leave. These are the states in which the TCU has to change the state of the doors.
Figure 2 also shows abstracting the architecture diagram to extract main Rebeca actors.
Generally, in safety critical systems, in order to satisfy the integrity and availability, dif-

ferent types of redundancy structures are applied to different units including I/O units.
For example, redundant I/O units are in place and extra supervision mechanisms for the
validity check of the resulted values from these redundant I/O units are used. In our exam-
ple, we abstract these details away. We can create other models focusing on such details
and verify the correct functionality of these parts of the system. In general, we need to use
compositional and modular approaches to cover large and complicated systems.

5.3 The Transformation Process: Deriving the Behavioral Models and the Rebeca Code

Here we explain how we build the behavioral models based on the requirements. This
process is not automated yet and the automation is an ongoing project, as pointed out
in the conclusions (refer to Section 8). First we distinguish the actors (or components)
in the model that are the building blocks of the system and communicate through asyn-
chronous messages or signals. Then we build the state diagrams for each actor. The state
diagram describes the behavior of each actor and how different events change the state of
the actors. We also build a sequence diagram to show the interaction of the actors more
clearly, and represent the messages and signals passed among the actors. Finally, using the
state and sequence diagrams we build Rebeca codes. The final step of this process is map-
ping Rebeca codes to executable code; in [12] one possible mapping which is building the
executable code in Lingua Franca is explained.
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Deriving actors.We study the structured requirements, together with the architecture
of the system, to distinguish the actors as the building blocks of the model. We build
an abstract version of the architecture as a basis for building the behavioral model and
subsequently writing the Rebeca code. The abstract architecture includes the actors that
will be the reactive classes in the code.
When the system architecture is already in place, our behavioral models, despite of

being abstract, are showing the software components that are or will be deployed in the
hardware system connected via network. Actors are representing the system components
that create events, and react to events. In a pure software system, the architecture can
be built based on the requirements and design decisions that may give us more cohe-
sive and decoupled software modules. Here, the components and hence our actors are
predetermined based on the system architecture. In an alternative situation, where the
system architecture is not already in place, then the approach can be designing the sys-
tem including the software and hardware from scratch. In that case, we can follow the
rules of architecture design in software engineering, or cyber-physical systems engineer-
ing, and then we are not restricted to the existing system architecture (hardware and the
network). But the outcome should be the same, the actors in the model must represent
the components in the system architecture.
Note that only this type of mapping will enable us to check the possible concurrency and

timing issues. The model must faithfully capture the components that run concurrently,
send signals and messages, and react to events.
Deriving the actors for the train door example. In the context of our door controller

example, from the structured requirements (Table 1), we can see that the players are: the
train, the driver, the passenger, and the door. Note that we do not see the controller in the
requirements but it is a central player in the architecture. From the architecture (Fig. 2),
we have the I/O units for the passenger door buttons (passing the input to the door to
request open) and the door control actuator (passing the output from the door controller
to the door, commanding for open, close, lock and unlock (release)). Instead of having an
actor representing the passenger button on the door, and another actor representing the
door control unit and the actuator, for the sake of simplicity, we model all as one actor
door.
Another I/O unit is the driver input interface (passing the input to the controller to

request open, close, lock and unlock (release)). For simplifying the model, we decided not
to model the driver as a standalone actor, the behavior of the driver is merged with the
controller. We may consider this as an autonomous controller that decides based on the
conditions of the doors and the train.Wemodel train as an actor to be able to show differ-
ent states of the train and check the required properties mentioned in the requirements.
Passenger is an external entity to the system, but we need to model the inputs from the
passenger to check the main safety properties, and hence passenger is also an actor. Thus,
we need actors to represent the train, the controller, the passenger and the door in the
model.
Deriving the states diagrams.We derive the state diagram of each actor based on the

explanation in the requirement. From the requirements we see the different states that
each actor may be in, and we notice the events that cause the change of states. For the
actor that plays the role of a controller the mapping is different. The controller receives
the data that indicate changes in the state of other actors, it also receives triggers from
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environment (sensing).When the controller is notified of certain changes it sends relevant
commands to the actors under its control (actuating).
Deriving the state diagrams for the train door example. For the actor train, we con-

sider the states when a train is ready to leave the station, when it is running, and when
it approaches the station. When boarding is complete and the train is ready to leave, the
driver sends a request to close and then lock the doors and then starts to run. When the
train approaches the station, the driver sends a request to unlock and then open the doors.
The requests are received by the controller, and the controller makes the decision based
on the status of the train and the doors. The logic within the code of the controller is sup-
posedly written in a way that the safety requirements are guaranteed. There is no exact
physical realization as signals or hardware devices for the train in the model, the train is in
themodel to represent the states where the driver knows she/he has to send the command
for closing and locking the doors, or unlocking and opening them.
The passenger represents an entity outside the system, and can always request to open

the doors. The state diagram of the passenger shows this behavior.
Deriving the sequence diagrams. The process of building the sequence diagrams is

similar to building the state diagram, but here the focus is on the messages and signals
being passed among the actors. In actors any observable change in the state is caused by
an event, so the state diagrams and the sequence diagrams can be checked against each
other.
Deriving the states variables. The structured requirements lead to deriving the state

variables, and their values, specially the pre- and post-conditions in the GIVEN and
THEN parts. The conditions in the requirements show the states that an actor can be in,
we introduce state variables to represent those states. Also, actions explain the changes
in the states that need to be captured by state variables. For example, consider the condi-
tion “the train is ready to run” written in the GIVEN part of the requirement SafeReq1
in Table 1. It shows that we need a variable representing the train status (the variable
trainStatus of the Controller actor in Fig. 5); and one possible value of this
variable shows that the train is “ready to run”. From these requirements, we can also
infer that we need two state variables to capture the status of the doors being locked or
unlocked, and being opened or closed (the variables isLocked and isClosed of the
Controller actor in Fig. 5).
Deriving the events. The events defined in the WHEN parts are mapped to the mes-

sages that are sent to the actors and upon which the actors react. They can be used to
obtain the sequence of messages exchanged among the actors, and to build the sequence
diagram.
Deriving the properties. The pre- and post- conditions in the requirements are used

to form the assertions that represent the properties to be verified. These conditions show
the relation among the derived state variables and we use these specified relations to form
the assertions. For instance, consider the requirement SafeReq2: “GIVEN an external
door is locked, WHEN the passenger requests to open the external door, THEN the door
controller shall keep the external door closed and locked”. This requirement helps us to
derive the main safety property of the function “open external passenger door”. The asser-
tion that shall be checked is: “It is not possible to open a locked door by passengers”. A
stronger assertion that covers this one is discussed in Section 5.5, the assertion is checked
by Afra, and we show how the model is modified such that this assertion holds.
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Fig. 3 The state diagrams for the door controller case study. The name of the variables are chosen in a way to
make the diagrams self-explanatory as much as possible

There are other interesting requirements, like the requirement SafeReq4 which is a
progress (or liveness) property and shows that progress has to be made. The SafeReq4
requirement states: “GIVEN all external doors on the side of the train close to the plat-
form are unlocked, WHEN the driver requests to open all external doors, THEN the door
controller shall open all external doors on the side of the train close to the platform”. Safety
properties are about showing that nothing bad will happen, while progress properties are
about showing that good things will finally happen. The detailed explanation about this
requirement and the related property are illustrated in Sections 6.1 and 6.2.
For checking some requirements, we cannot use simple assertions and we need to

use the TCTL model checking tool for Timed Rebeca [35]2. The timing features can be
included in TCTL properties, for example for the requirement SafeReq4, we can check
that “if the doors are unlocked and an open request is sent by the driver then the doors
will be opened within x units of time”. We did not use TCTL model checking in the work
presented in this paper.

5.4 The Artifacts: Behavioral Models and the Rebeca Code of the Example

Here we explain the state diagrams, sequence diagrams and the Rebeca code that are
derived from the requirements. We also explain the timing properties.
State diagrams. Using the mapping explained in Section 5.3, we can derive the state

diagrams for the door controller case study. In Section 5.3, we concluded that we need
actors to represent the controller, the door, the driver, the passenger, and the train in the
model. Note that we only have one actor that represents all the doors, for the sake of sim-
plicity. The model can be refined, and details can be added in an iterative and incremental
way in order to check different properties and different parts of the system.
As shown in the state diagram in Fig. 3a, the train can be in three states: (1) a state

when the train has approached the station and stopped (not running), and the passengers
leave the train and come on board (!trainStatus & !isRunning); (2) a state when the train is
ready to leave, i.e. boarding is completed (trainStatus & !isRunning); (3) a state when the
train is running and after some time ready to approach (trainStatus & isRunning). Note
that two of the states of the train are important for us in our example because our focus

2The TCTL model checking tool for Timed Rebeca is not yet integrated in the Eclipse tool suite of Afra.
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is on changing the states of the doors, and we need to change the status of the doors only
in these states of the train. For example, when the train is running and door receives an
event to open the door the status of the doors should stay unchanged (and that is what
the controller in Fig. 3c guarantees by not accepting any wrong event in the wrong states).
The third status is added to show the “running” state explicitly to make the behavioral
models more faithful to the requirements.
Figure 3b illustrates the states of the doors. A locked and closed door can only be

unlocked, and then opened; and an unlocked and open door can only be closed and then
locked. The state diagram is consistent with the Rebeca code in Fig. 5. We prevent the
door from going to a state where it is locked and open, an unsafe state that should be
avoided. The if-statement in Line 103 guarantees this.
Figure 3c presents the state diagram for the controller. The controller receives the status

of the doors and the train, also the requests for running the train, and opening, closing,
locking and unlocking the doors. The controller coordinates the commands that are sent
to the doors based on the status of the door itself, and the train.
Figure 3d is the state diagram of the passenger. This actor models the requests coming

from the passengers in a non-deterministic way, and the Rebeca code is model checked
to make sure this behavior cannot jeopardize the safety.
Sequence diagrams. The sequence diagrams derived from the requirements and the

architecture are shown in Figure 4. These diagrams are made in a similar way as described
for the state diagram. Indeed, the actors controller, door, passenger and train become
the objects in the sequence diagrams among which messages are exchanged in a tempo-
ral order to perform the door functions. In the sequence diagrams the flow of messages
between actors, and also their order and causality are clearer.
Note that the sequence diagrams are consistent with the Rebeca code. In Fig. 4, it is

shown that when the status of the train or the door is changed the controller receives a
message to update the status of these two actors in the controller. Any change in the status
of the train or the doors triggers the execution of driveControllermessage server in
which the controller decides which command to send to the train or doors.
The sequence diagram presented in Fig. 4 also shows a Passenger sends the open com-

mand directly to the door, and the door sends a message to the controller to update the
status in the controller. This is where different errors may occur if the Rebeca code is not
written carefully considering the concurrency issues. More explanation is in Section 5.5.
Rebeca code. Based on the state and the sequence diagrams, we wrote a Timed

Rebeca code with four reactive classes: Controller, Train, Door, and Passenger.
The Rebeca code is presented in Fig. 5. The rebecs (i.e. reactive objects, or actors)
controller, train, door, and passenger are instantiated from these reactive
classes.
The main message server of the reactive class Controller is driveController,

where we check the state of the train and the doors, and send proper commands.
If the train is in the state that the boarding is completed and the train is ready to
run (trainStatus is true - lines 35-44), then if the doors are not yet closed, the
Controller sends a command to close them (by sending the closeDoor message
to the rebec door). If the doors are already closed the controller sends a command to
lock them (by sending the lockDoor message to the rebec door). The message server
DriveController also checks if the doors are closed and locked then it sends a
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Fig. 4 Sequence diagrams of the door controller case study showing the message passing between the
actors Controller, Train, Passenger, and Door

command to run the train ((by sending the runningmessage to the rebec train- lines
42 and 43). If the train is in the approaching state (trainStatus is false - lines 45-51),
then if the doors are not yet unlocked, the controller sends a command to unlock the
doors (by sending the unlockDoormessage to the rebec door). If the doors are already
unlocked the controller sends a command to open them (by sending the openDoor

message to the rebec door).
The reactive class Controller also has two othermessage servers: setDoorStatus

and setTrainStatus. The setDoorStatus (lines 24-28) is called by the Door after
updating the status of the doors. The setTrainStatus (lines 29-33) is called by the
Train after updating the status of the train. The reactive class Train has three mes-
sage servers that model the train behavior when the train is ready to leave the station
(leaveStation), the train is running (running) and the train is approaching the sta-
tion (approachStation). Themessage servers in this actor inform the controller when
the train status changes.
The reactive class Door models the behavior of the doors and has four mes-

sage servers: closeDoor(), lockDoor(), unlockDoor() and openDoor(). The
closeDoor() (lines 97-100) is called by Controller actor (line 38) to close the door
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Fig. 5 The Rebeca code for the door controller case study. This is revised version of the Rebeca code in [19]
where the code is adjusted to include the running state of the train

by changing the status of the door (line 98). The lockDoor() (lines 101-106) is called by
the controller (line 40) to lock the door. If the current status of the door is closed, then the
status of the door is changed to locked (line 103). The unlockDoor() (lines 107-110)
is called by the Controller actor (line 48) to unlock the door by changing the status of
the lock (line 108). The openDoor() (lines 111-116) is called by the Controller actor
(line 50) and the Passenger actor (line 126) to open the door. If the current status of
the door is unlocked, then the status of the door can change to open (line 113). The status
value is sent to the Controller actor after any updates in all these message servers.
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The Passenger actor is implemented to model the behavior of a passenger. We
assume that the passenger can constantly send a request to the Door actor to open
the door. This actor has only one message server (passengerOpenDoor). The
passengerOpenDoor is designed to send a request (open the door) to the Door actor
every 5 units of time (lines 125 and 128).
Timing properties. The Rebeca code in Fig. 5 contains the environment variables

(denoted by env at the top of the code). These variables are used to set the timing
parameters. The variable networkDelayDoor represents the amount of time that takes
for a signal to get to the door from the controller (and vice versa), and the variable net-
workDelayTrain shows the amount of time that takes for a signal to get from the train to
the controller (and vice versa). The other timing feature is for modeling a reaction delay
of the controller when it reacts to the events (reactionDelay). We have passengerPeriod
environment variable to show that the passenger can send the open command periodi-
cally (it can be modeled differently but this is the simplest way and serves our purpose
to find possible errors). We also model passage of time between a train leaving and then
again approaching the station (runningTime), and the time that train stays at the station
(atStationTime).
The environment variables can be used as parameters to set different cycle times and

communication channel features. The value for the parameters can be changed to check
different configurations. For example, we can see varying depths in getting into the error
state by changing the period of the passenger pressing the open door button.

5.5 Formal Verification of the Rebeca Code

The Rebeca code in Fig. 5 is a version of the code that runs without violating any of the
properties of interest. We run the Rebeca model checking tool, Afra, on a MacBook Pro
laptop with 2,9 GHz Intel Core i5 processor and 8GB memory.
We check the assertion: “It is not possible to open a locked door (not by the driver nor

the passengers);” and we show that the door cannot be opened when it is locked. This
assertion covers multiple other weaker assertions, like: “It is not possible to open a locked
door (by driver or passengers) when the train is leaving the station;”, “It is not possible
to open a locked door (by driver or passengers) when the train is running;” and “It is not
possible to open a locked door (by driver or passengers) when the train is arriving at the
station”. A subset of the assertions that are checked in Afra are shown in Table 2. These
assertions are written based on the state variables in the Rebeca code shown in Fig. 5, and
are related to the properties explained above.
In the Rebeca code, the passenger sends a request directly to the door, the request does

not pass through the controller. This is what makes the model vulnerable to errors. The
door is receiving commands from both the passenger and the controller, and variant inter-
leaving of these commands (i.e. events in the queue) may cause the execution of themodel

Table 2 The properties checked by Afra in the first iteration. These assertions are satisfied for the
Rebeca code shown in Fig. 5

Property

Assertion 1: ( ! (!door.isDoorClosed && door.isDoorLocked))

Assertion 2: ( ! (train.isRun && !door.isDoorLocked))

Assertion 3: ( ! (train.isRun && !door.isDoorClosed))
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Fig. 6 The screenshot of Afra, coming back with a counterexample for checking the assertion “It is not
possible to open a locked door” for a revised version of the Rebeca code in Fig. 5 where the if-statemenst in
lines 102 and 112 are removed

to end in a state that violates the safety property3. The two “if-statements” in lines
102 and 112 of the reactive class Door are there to avoid this problem. If we remove the
passenger from the model, the model is correct even without these if-statements.
Consider the Rebeca code in Fig. 5 where we do not have a passenger (we can just

remove the statement in the main part instantiating the passenger). The number of
reached states for this model is 55, and the number of reached transitions is 68 (consumed
memory is 660, and the total spent time is below one second). If we have a passenger
and the passenger sends a request to open the door every 5 units of time then the num-
ber of reached states will be 402079, the number of transitions is 1286068 and the total
time spent for model checking is 115 seconds. If we remove the if-statements in
lines 102 and 112, then the model violates the assertion and the model checking tool Afra
comes back with a counterexample. The depth of the trace in the state space to reach the
counterexample depends highly on the setting of the timing parameters.
A screenshot of the Afra tool where the counterexample is found is shown in Fig. 6. The

assertion is checking the value of variables isDoorClosed and isDoorLocked from
the rebec door. The screenshot shows that isDoorClosed is true (the door is closed),
and isDoorLocked is also true (the door is locked). The only message in the queue
of the rebec door is openDoor coming from passenger. This will cause the execution
of the message server openDoor in the rebec door which will create the state in which

3A different design for the model, derived from a different allocation of functions in the architecture, can be modeled
and model checked. More explanation will be in Section 8.
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isDoorLocked stays true (the door is locked), and isDoorClosed changes to false
(the door is opened). This state fails the assertion and the model checking tool comes
back with the counterexample shown in Fig. 6. The counterexample states are presented
on the right hand side of the figure, and the trace is in the left hand side of the figure.
Note that changing the timing parameters can change the state space significantly. The

timing parameter includes the period of sending the requests, network delay, and the
computation/process delay (a detailed example is described in Section 6.2).

6 The Iterative Process and Incremental Extensions: Updating and Fixing
Throughout the paper we explained one iteration of the VDD-CPS process from the
requirements to Rebeca code for the door control case study. In this section we explain
two more iterations. In Section 6.1 we update the Rebeca code by adding a feature that
is in the requirements but not modeled, this shows how more complete increments are
built based on the requirements. Section 6.2 shows how by using the VDD-CPS process
we can discover a new requirement that is added to the set of requirements since it con-
cerns concurrency issues, that is our main focus. Note that the Rebeca model in Fig. 5 is
already the next increment of what is explained in the conference paper [19] where we
added the “running” state to the code to make the code more faithful to the requirements.

6.1 Second Iteration in the VDD-CPS Process

In the second iteration, we add the concept of “platform” defined in the safety require-
ments SafeReq4 and SafeReq5 in Table 1 to the code. In the railway domain, a
platform can be defined as “an area alongside a railway track providing convenient access
to trains” [36]. This implies that passengers get on and off the train through the doors that
are on the side of the train close to the platform. This is also done for safety reasons. The
safety requirements SafeReq4 and SafeReq5 highlight that only the external doors
that are on the side close to the platform shall be opened to prevent passengers from
falling down out of the platform. By modelling the concept of “platform”, it is possible
to formally verify that the scenario in which a passenger opens an external door on the
wrong side of the train does not happen.
The state diagrams and sequence diagrams given in Figs. 3 and 4 stay valid for this

iteration. In order to add the functionality related to the platforms, we apply the following
changes to the Rebeca code presented in Fig. 5. Instead of only one door, we have door1
and door2 instantiated from the Door reactive class. Each door has an id representing
the platform close to it.
While executing the approachStation method, the train actor sets the platform

id using a nondeterminitic assignment. The nondeterminitic assignment platformId
= ?(1,2) models possible different behaviors. The platform id is sent to the
controller actor by the train actor together with other state variables after any
updates.
The Passenger actor can constantly send a request to the Door actor to open

door1 or door2. The passengerOpenDoor is designed to send a request (open
the door) to the Door actor every 5 units of time. Figure 7a shows the updated
passengerOpenDoormessage server.
As explained in Section 5.4, the setDoorStatus in controller actor is called by

the Door after updating the status of the doors. Figure 7b shows the updated message
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Fig. 7 The updated two message servers of the Rebeca code presented in Fig. 5

server in this iteration. We consider the isClosed and isLocked variables to show the
status of both door1 and door2. If both doors are closed then the value of isClosed is
true. Similarly, if both doors are locked then the value of isLocked is true otherwise
they are false.
For the Rebeca code in Fig. 5, when we have a passenger and the passenger sends a

request to open the door every 5 units of time, the number of reached states is 917 and the
number of reached transitions is 1235 (the total spent time is two seconds and consumed
memory is 18340).
The updated code assures that a locked door on both platforms cannot be opened not

only when the train is running but also when the train is at station. In particular, the
doors that are on the side of the train opposite to the platform shall be kept locked.
Thus, we check whether the behavioral model that is updated based on the requirements
(SafeReq4 and SafeReq5) violates a safety property of the train.
This also means to show that the requirements may be incorrect, inconsistent, or

ambiguous.
We check the assertion: “It is not possible to open a locked door on the opposite side of

the platform;” and we show that the door cannot be opened on the opposite side of the
platform when it is locked. This assertion covers multiple other weaker assertions, i.e., “It
is not possible to open a locked door on the opposite side of the platform when the train
is leaving the station;”, “It is not possible to open a locked door on the opposite side of the
platform when the train is running;” and “It is not possible to open a locked door on the
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Table 3 The properties checked by Afra in the second iteration. These assertions are satisfied

Property

Assertion 1: (! ((!door1.isDoorClosed && door1.isDoorLocked) || (!door2.isDoorClosed && door2.isDoorLocked)))

Assertion 2: (! ((!door1.isDoorClosed || !door2.isDoorClosed) && (door1.isDoorLocked && door2.isDoorLocked)))

Assertion 3: (! (train.isRun && (!door1.isDoorClosed || !door2.isDoorClosed)))
Assertion 4: (! (train.isRun && (!door1.isDoorLocked || !door2.isDoorLocked)))
Assertion 5: (! (platform == 1 && !door2.isDoorClosed))

Assertion 6: (! (platform == 2 && !door1.isDoorClosed))

Assertion 7: (! (platform == 1 && !door2.isDoorLocked))

Assertion 8: (! (platform == 2 && !door1.isDoorLocked))

opposite side of the platform when the train is arriving to the station”. For what concerns
model checking, in our experiments these properties are satisfied, confirming that the
models with the given configurations did not violate the requirements. Table 3 shows
some of the assertions that are checked using Afra in this iteration, these assertions are
written based on the state variables in the Rebeca code, and are related to the properties
explained above.

6.2 Third Iteration in the VDD-CPS Process

In the third iteration, we focus on the concurrency and timing problems to highlight
the benefits of using a verification-driven approach based on Rebeca. Specifically, we are
interested to verify that a shared resource, such as the external train doors in our use
case, can never behave in an undesirable way due to inconsistent requests that may arrive
simultaneously.
So, we iterate the SARE approach to search for new safety requirements that may be

necessary to mitigate a possible failure of the lock mechanism and, consequently, avoid or
reduce the probability of the hazard “Passengers fall out of the train”.
This results in a new safety requirement, i.e. SafeReq7 in Table 4, that aims at avoid-

ing that a passenger can open a closed door when the train is leaving the station. The
lock mechanism can fail because it is “susceptible to malfunctions”. Malfunctions can be
erroneous and/or delayed inputs, inconsistent inputs, computational errors, and so on. In
particular, the requirement SafeReq7 concerns the safety behavior of the system in case
a closed door receives simultaneously two or more inconsistent requests, i.e. the open
request from a passenger and the lock request from the driver. The pre-condition “the
train is leaving the station” guarantees therefore that the request to open a closed door is
not performed when the train is departing, which is a safety behavior.
In this iteration, we aim at formally verifying the consequences of the interference

between the two events of open triggered by the passenger and lock triggered by the con-
troller after the doors are closed and the train is ready to leave. As explained earlier, at
the beginning of the Rebeca code, we can define environment variables as parameters to

Table 4 The new safety requirement SafeReq7 to prevent from opening an external door when
the train is leaving the station

Name Safety Requirement

SafeReq7 GIVEN the train is leaving the station AND an external door is closed

WHEN a passenger requests to open an external door

THEN the door controller shall keep the external door closed
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set different cycle times and communication channel features. The values of these vari-
ables can be changed to check different configurations. We show that the verified Rebeca
code can get into an error state by changing the settings. We set the time duration that
takes for a signal to get from the door to the controller to 4 (networkDelayDoor = 4) and
set the time duration that takes for a signal to get from the train to the controller to 0
(networkDelayTrain = 0). Figure 8 shows the simplified state diagram for a livelock bug
when the train wants to leave the station (door should close and then lock) and a passen-
ger wants to open the door by pressing the open button every 5 units of time. The train
never reaches the running state. This scenario shows that the door can be closed by the
controller, and opened by the passenger iteratively, resulting in blocking the train from
moving. So, model checking shows that the door behaves in an undesirable and unex-
pected way in case of simultaneous inconsistent requests. This result corroborates the
fact that a new requirement is needed to avoid this situation, such as the requirement
SafeReq7. We also came up with other settings for the timing parameters in which the
train was delayed but eventually could move and go into the running state.

Fig. 8 The simplified state diagram of a livelock bug in the door controller case study that happens with a
specific setting for timing parameters
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This iteration shows how the Rebeca code can be used to check different settings for
the timing parameters. This feature can be used in investigating and setting the timing
parameters for the network and computation delays, and the cycle of the periodic events.

7 RelatedWork
Model-Driven Development (MDD) is intended to reduce complexity in the classical
development approaches. Using MDD, different objectives with regard to design, verifi-
cation, simulation, and code generation can be reached at different stages of development
[37, 38].
MDD based on co-modelling of hardware and software is a main approach for devel-

oping cyber physical systems (CPS) that involves a combination of different computation
models and communication patterns along with physical dynamics [1, 3, 39]. With the
growing size and complexity of CPS, there is a need for (semi-) formal approaches to
design and model the system at different stages of the development process. Currently,
modelling language standards like SysML [40], MARTE [41] and MATLAB/Simulink are
used by engineers in practice in some areas for modelling CPS.
After behavioral modelling of the system, reasoning on the correctness of the system

behavior is the essential next phase during the development process. In general, a big
part of resources during the CPS development phases are allocated to ensure that the
system fulfills the requirements [42]. Verification and validation can be done using testing,
simulation, and formal verification. However, with the growing complexity of CPS there
are many challenges in verification and validation phases [43].
Testing approaches are often intended to generate test cases based on the internal struc-

ture of the model to evaluate different paths of execution [44–46] or act in a black-box
fashion such as falsification-based techniques [47] and differential testing techniques [48]
to generate the test cases resulting in violation of system requirements. However, testing is
not effective enough when dealing with concurrent systems due to the non-deterministic
interleaving between the processes running on distributed components. Also, testing may
not be optimal and comprehensive for checking timed behavior particularly in cyber-
physical systems. This issue becomes more serious for safety-critical CPS where any
failure, bug or undesired situation might cause catastrophic consequences. Therefore,
using formal verification for reasoning about the behavior of the system, finding bugs and
undesired situations becomes more critical.
Simulation approaches, specifically the ones targeting the co-modelling of hardware

and software are another underlying part of MDD chain for visualizing and also behav-
ior verification and validation step. The maturity is growing in this domain and there
are several commercial and academic tools for co-modelling and simulation of hardware
and software. Ptolemy II [3] and Stateflow [49] are popular examples of this category.
However, they do not support formal verification.
Formal verification and more specifically model checking is one of the main techniques

for verifying different types of safety and liveness properties in safety-critical systems.
Timing properties are an intrinsic aspect of CPSs. There are model checking tools which
are able to capture timing features such as RMC (Rebeca Model checker) [50], UPPAAL
[8], and PRISM [51]. They support different types of models such as timed automata, and
timed actors.
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The main challenge in using model checking tools is the state space explosion prob-
lem, another certain challenge in using formal methods within MDD chain is the
mapping high-level requirements onto the formal specifications. There are several dif-
ferent approaches as transformation engines for addressing this challenge. In particular,
there is a considerable amount of literature on transforming SysML/UML specifica-
tion to inputs for different formal verification tools [52–54]. The FTG+PM framework
[55, 56] is an example of such frameworks which presents formalism transformation
between models within model-driven development. The framework consists of two
sub languages: the Formalism Transformation Graph (FTG) and Process Model (PM)
languages. The former (FTG) presents a set of available modeling languages within a
given domain and the latter (PM) describes the control flow between the model trans-
formation activities during the development life cycle. It supports automatic model
transformation between different phases of design, verification, simulation, deployment
and code generation. It also presumes manual transformation of textual requirements to
a SysML requirement diagram in the process. Gamma [57] is another modeling frame-
work which integrates heterogeneous statechart components to make a hierarchical
composition, supports formal verification using UPPAAL for the composite model and
provides automatic code generation on top of the existing source code of the compo-
nents. Gamma focuses on building hierarchical statechart network based on the existing
statechart components, and as the most existing tools and approaches does not sup-
port mapping of requirements onto behavioral models. In [58] an MDD framework is
proposed for dataflow applications on multi-processor platforms. The framework uses
Synchronous Dataflow (SDF) graphs to model application and besides the SDF, a plat-
form application model (PAM) showing hardware platform and an allocation model are
also created. The SDF model and hardware models are then transformed to priced time
automata which are used as inputs to UPPAAL for verification of requirements and
also to compute the energy-optimal schedule for given requirements. However, some of
these solutions are ’heavy-weight’, as discussed in [59, 60], and thus not suitable as part
of an iterative development approach as is one of the important aspects of our work
here.
Placing our approach among others.
In modeling and analysis, the faithfulness of the model to the target system is of

importance and could effectively facilitate the process [5]. The Rebeca language helps in
assuring the faithfulness of the model by decreasing the semantic gap between the model
and the system. Actor model is a reference model for modeling the behavior of distributed
reactive systems, and also suggested for co-modeling of hardware and software of cyber-
physical systems [1]. The actors in the design step are corresponding to the components in
the requirements and architecture. This feature makes the transformation step less costly.
Using Rebeca for modeling and verification we bridge the gap between the design models
and formal verification. In this work, we use GIVEN-WHEN-THEN syntax to specify the
safety requirements, and to fill the gap between the actor model and the requirements we
use common behavioral models, i.e., UML state diagrams or sequence diagrams that are
closer to the requirement specification and quite common in the industrial application
domains.
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8 Discussion and FutureWork
In summary, our proposed process is a light-weight verification-driven iterative pro-
cess for model-driven development of safety-critical cyber-physical systems. Using
formal verification within the proposed MDD process makes it well suited for safety-
critical domains where a solid verification of all properties is required. It involves
actor-based modelling and formal verification using Timed Rebeca and the associ-
ated model checking tool Afra. Actor-based style of modelling, mitigates the issue
of transformation from high-level specification to the inputs of a formal verifica-
tion tool on one hand, and to an executable code in CPS domain on the other
hand. Moreover, to bridge the remaining gap between high-level requirements and
actor model, we leverage a structuring method based on GIVEN-WHEN-THEN
syntax to alleviate the ambiguity and facilitate the transition from requirements
to the formal model. The structured requirements also help in one of the most
challenging tasks in model checking which is deriving the required properties to
check.
Discussion. To reach the Rebeca code from the requirements, we use an iterative

approach. There may be ambiguity in the informally stated requirements that need to be
clarified. To come up with the right state variables and right transitions among states, we
may need to go back and forth several times and ask the experts for the right information
to avoid misunderstandings and incorrect outcome. As stated in many classical papers on
formal methods, one of the main advantages of formal methods is to make the require-
ments clear, unambiguous, and consistent. Some examples of this kind of clarifications
within our work are explained throughout the paper.
Rebeca codes can be useful for checking safety and timing properties only if the topol-

ogy of the actor model matches (or is consistent with) the architecture of the system. As
we plan for a straightforward mapping of Rebeca code to executable code, we need this
consistency. This can be another challenge in the process, to know the architecture and
the allocation of tasks to different components. One example is the decision that wemade
for the Door Control Unit, modeled within the actor door, to send the open command to
the door upon receiving the request from the passenger. Alternatively, we could have a
model in which all the decisions for sending the open command to the door are handled
centrally in the Train Control Unit. This would change the design and verification results
in a significant way.
In the current Rebeca code, the status of the units are sent to the control unit upon

any change. Another design is updating the status of different units periodically. This will
result in a complicated design where verification can help in finding the timing problems
and tuning the timing features. Again, the decision has to be based on the architecture
and execution model of the system.
Future work. This work serves as a foundation towards several other interesting direc-

tions. One direction to go is to make the mappings automatic or semi-automatic. The
transformations among state diagrams together with sequence diagrams to Rebeca code,
and generating Lingua Franca code from Timed Rebeca can be automated.
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