
1

A Comprehensive Exploration of Languages for Parallel
Computing

FEDERICO CICCOZZI, LORENZO ADDAZI, SARA ABBASPOUR ASADOLLAH, BJÖRN
LISPER, ABU NASER MASUD, and SAAD MUBEEN,Mälardalen University

Software-intensive systems in most domains, from autonomous vehicles to health, are becoming predominantly
parallel to efficiently manage large amount of data in short (even real-) time. There is an incredibly rich
literature on languages for parallel computing, thus it is difficult for researchers and practitioners, even
experienced in this very field, to get a grasp on them. With this work we provide a comprehensive, structured
and detailed snapshot of documented research on those languages to identify trends, technical characteristics,
open challenges and research directions. In this article we report on planning, execution and results of our
systematic peer-reviewed as well as grey literature review, which aimed at providing such a snapshot by
analysing 225 studies.

CCS Concepts: • Software and its engineering → Parallel programming languages; Concurrent pro-
gramming languages.

Additional Key Words and Phrases: parallel computing, programming, modelling, languages, frameworks,
systematic literature review

ACM Reference Format:
Federico Ciccozzi, Lorenzo Addazi, Sara Abbaspour Asadollah, Björn Lisper, Abu Naser Masud, and Saad
Mubeen. 2020. A Comprehensive Exploration of Languages for Parallel Computing. J. ACM 1, 1, Article 1
(January 2020), 44 pages. https://doi.org/1/1

1 INTRODUCTION
There is an ever increasing demand for computational power, which has enabled us to do things
that were once considered science fiction: an example is self-driving cars, which require large
amounts of computing to do the necessary real-time processing of streaming data from sensors,
cameras etc., and make decisions in real-time based on these data.

Software parallelism, where multiple computations are carried out at the same time, has become
the most common way to provide higher levels of computational power leveraging massively
parallel hardware computational units. Parallel hardware was first introduced in supercomputers,
e.g. in the ILLIAC-IV [22]. As of the time of writing (July 2020), the supercomputer with the highest
peak performance is the Japanese Fugaku [233], with 7.3 million cores, giving it a maximal speed
of 514 petaFLOPS. Besides increment of performance, parallelism can be used to reduce energy
consumption too; this role is becoming more and more important, as shown by several secondary
studies on energy awareness [221], how to best achieve energy efficiency [122], and which energy
predictive models are available [181], in HPC.

Authors’ address: Federico Ciccozzi; Lorenzo Addazi; Sara Abbaspour Asadollah; Björn Lisper; Abu Naser Masud; Saad
Mubeen, [name.surname]@mdh.se, Mälardalen University, Box 883, Västerås, Sweden, 72123.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2020 Association for Computing Machinery.
0004-5411/2020/1-ART1 $15.00
https://doi.org/1/1

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2020.

https://doi.org/1/1
https://doi.org/1/1

1:2 Ciccozzi et al.

We are facing a situation where software-intensive systems have become predominantly parallel.
Parallelism appears in many forms, at multiple levels, and it is supported by a variety of hardware
architectures. This raises the issue how to program these systems. Parallel programming was known
to be hard already 30 years ago [126] and it has hardly become easier since then. The programming
language is an important link in the software production chain. Many parallel programming
languages have been invented over the years, and there is an incredibly rich literature. Due to the
importance of the topic and its breadth, we believe that the time is ripe to create a structured and
detailed snapshot of this research area, to identify trends, technical characteristics, and potentially
open challenges.

In this article we report on the planning, execution and results of our systematic literature review,
which aims at providing such a snapshot. From an initial set of 3476 papers and 72 languages, we
identified 225 primary studies, which we analysed in detail following a precise data extraction,
analysis and synthesis process. A summary of the resulting highlights of our study is as follows:

• Since 1988, effort in this research area has been steadily growing;
• Most languages are high-level and general-purpose;
• Most languages are defined in terms of extensions of existing languages; C/C++ and Java are
the most popular programming languages and UML the most popular modelling language;

• Imperative and object-oriented programming are the most popular paradigms, in that order;
• Explicit parallelism is the most commonly supported;
• Task- and data-parallelism are the most common problem decomposition approaches, possibly
supported by lower-level forms of parallelism, e.g. pipeline;

• The majority of languages are compiled and the target is usually a high-level language;
• CPUs (multi- and many-core) represent by large the most commonly targeted architectures;
interestingly, over 30% of the languages are not tailored to any specific target architecture;

• Support for data-parallelism and multiple hardware platforms (also heterogeneously mixed)
are the most longed for features for existing languages;

• Languages and related tooling are in most cases at a prototypical level.
The remainder of the article is organised as follows. We describe our research method in Section 2.

The results of our study are unwound in Sections 3 and 4. In Section 5 we provide a further discussion
of the results focusing on projecting open challenges into what we believe, supported by our results,
to be the most urgent matters to solve in the area. An analysis of the potential threats to the validity
of our study, and how we handled them, is reported in Section 6. Works related to our study are
described in Section 7, and the article is concluded with Section 8.

2 RESEARCH METHOD
This study was designed and carried out by following guidelines for systematic literature re-
views [133]. To carry out this study, we followed the process depicted in Fig. 1, which can be divided
into the three common phases of planning, conducting, and documenting.

Planning. The objective of this phase was to:
• establish the need for a review of languages for parallel computing,
• identify research goal and more importantly questions, and
• define the protocol to be followed by the research team for carrying out the work in a
systematic and pinpoint manner.

The output of the planning phase is a detailed review protocol.

Conducting. The objective of this phase was to perform the SLR by carrying out all the steps
defined in the review protocol, as follows:

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2020.

A Comprehensive Exploration of Languages for Parallel Computing 1:3

Fig. 1. Overview of the SLR process

• Search and selection: we performed an automatic search in the peer-reviewed literature on
a set of four databases and a manual search in the so called grey literature (e.g., web-pages,
forums, etc) on the Google search engine. Then, identified candidate entries were filtered
in order to obtain the final list of primary studies1 to be considered in later activities of the
review. After selection, we carried out an exhaustive backward and forward snowballing as
integration to the search and selection process.

• Data extraction form definition and classification framework: we defined the set of parameters
to compare and classify the primary studies based on the research questions. This was done
systematically by applying a standard keywording process [186]. The set of parameters
constitutes a classification framework, which was used for data extraction in our study and
can be used for the classification of languages for parallel computing.

• Data extraction: we went into the details of each primary study, thus filling the correspond-
ing data extraction form. Filled forms were collected and aggregated to be analyzed and
synthesised.

• Data analysis and synthesis: we provided a comprehensive summary and analysis of the data
extracted in the previous activity. The main goal of this activity was to elaborate on the
extracted data in order to address each research question of the SLR. This activity involved
both quantitative and qualitative analysis of the extracted data, achieved via vertical and
orthogonal analysis.

Documenting. In this phase we thoroughly analysed and synthesised the extracted data as well
as carried out a detailed analysis of possible threats to validity. Eventually, we wrote this article,
which describes the performed study. We also provided a complete and public replication package2

for independent replication and verification of our study. In the package we provide the raw data
of search and selection, the complete list of primary studies, as well as the raw data from data
extraction.

1For the sake of simplicity, in the remainder of this document we will refer to included studies and languages from either
source as primary studies, and will use different terms only when strictly needed to differentiate between papers and
languages.
2The replication package is available at: https://github.com/federicoCiccozzi/CSUR_parallel_languages_replicationPackage.

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2020.

https://github.com/federicoCiccozzi/CSUR_parallel_languages_replicationPackage

1:4 Ciccozzi et al.

2.1 Research goal and questions
When carrying out a systematic literature review, clearly defining the research goal and questions
is a pivotal task [41]. The goal of this study was to:

identify, classify, and evaluate trends, focus, and open challenges in existing research on
(modelling and programming) languages for parallel computing in the scope of software
engineering.

The goal was defined by using the Goal-Question-Metric perspectives [24] (see Table 1). Since our

Purpose Identify, classify, and evaluate
Issue the publication trends, technical characteristics, provided evidence, and limitations
Object of existing languages for describing parallel software
Viewpoint from researcher’s and practitioner’s points of view.

Table 1. Goal of this study

aim is to classify languages for the direct use of software engineers, we discard intermediate and
lower languages, which are usually employed for automatic transformations such as compilation
and optimisation, or as pivot languages, as well as languages for analysis and V&V purposes only.
Instead, we focus on high-level languages, that is to say third-generation programming languages
and above, intended to be used by engineers to describe parallel software. We will call them parallel
languages in the remainder of this article.

Our focus is on general-purpose and external domain-specific languages (defined as standalone
languages extending or based on an existing language) [127]. These could be also be defined in
terms of standalone libraries, which we consider in this study. On the other hand, we do not
consider embedded/internal domain-specific languages since the focus would have become too
broad and loose (embedded/internal domain-specific languages have several other interesting
aspects in relation to their design/implementation and relation to the host language that would
need attention).
Our goal can be refined into the following research questions (RQ), for each of which we also

provide primary objective of investigation:
RQ1: What are the publication trends of research on parallel languages?

Objective: to classify primary studies in order to assess interests, relevant venues, and
contribution types; depending on the number of primary studies, trends are assessed over
time.

RQ2: What are the technical characteristics of parallel languages?
Objective: to identify and classify existing languages in terms of their technical characteristics.

RQ2.1: What are the properties of parallel languages?
Objective: to classify languages in terms of their core properties (e.g., programming
paradigm).

RQ2.2: What are the characteristics concerning the programming model of parallel lan-
guages?
Objective: to classify languages according to the characteristics of the programming
model that they implement (e.g. memory model).

RQ2.3: What are the characteristics concerning the execution, run-time layer and imple-
mentation of parallel languages?

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2020.

A Comprehensive Exploration of Languages for Parallel Computing 1:5

Objective: to classify languages in terms of how they are executed (e.g., interpre-
tation), their run-time characteristics (e.g., target architecture), and how they are
implemented (e.g., standalone)

RQ3: What are the limitations of parallel languages?
Objective: to identify current gaps and limitations with respect to the state of the art in
languages for parallel computing.

Answering RQ1 gives us a detailed snapshot of publication trends, venues and types. Based
on the classification results obtained by answering research question RQ2, we provide a solid
foundation for a thorough comparison of existing and future solutions for languages for parallel
computing. Finally, answering RQ3 helps the community in understanding whether there is space
for improvement in this research area.
This contribution is useful for both (i) researchers to further contribute to this research area

by defining new approaches or refining existing ones, and (ii) practitioners to better understand
existing methods and techniques and thereby to be able to adopt the one that better suites their
business goals.

2.2 Search and Selection Strategy
In this phase, we gathered the set of research studies and languages that are relevant and represen-
tative for our purposes. Figure 2 shows our search and selection process.

Fig. 2. Search and selection process

Before performing the actual search and selection of relevant studies, we manually selected a set
of seven pilot studies. They were selected based on the authors’ knowledge of the targeted research
domain (i.e., languages and frameworks for parallel programming) and on an informal preliminary
screening that we performed on the available literature on the topic. Selected pilot studies fulfil our
selection criteria (see below) and were selected to cover a fairly long time-span, they are presented
in Table 2. Pilot studies were used to validate our search and selection strategy; more specifically,
we used them to have quick feedback about the goodness of our search string to be used for the
automatic search and for guiding the refinement of the selection criteria.

Two parallel activities were carried out: the review of the peer-reviewed literature, and the review
of the grey literature. These activities yielded in a set of (i) papers describing languages and (ii)
languages of interest.

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:6 Ciccozzi et al.

ID Title Year Ref.

P01 ParaSail: A Pointer-Free Pervasively-Parallel Language for Irregular Computations 2019 [223]
P02 Futhark: Purely Functional GPU-Programming with Nested Parallelism and In-Place Array

Updates
2017 [116]

P03 Pencil: A platform-neutral compute intermediate language for accelerator programming 2015 [20]
P04 Halide: a language and compiler for optimizing parallelism, locality, and recomputation in

image processing pipelines
2013 [190]

P05 A Model-Driven Design Framework for Massively Parallel Embedded Systems 2011 [91]
P07 HPJava: a data parallel programming alternative 2003 [49]
P08 Parallel programming in Split-C 1993 [70]

Table 2. Pilot research studies

We followed the same overall process when reviewing the peer-reviewed and grey literature.
For the sake of simplicity, in the remainder of this document we will refer to included studies and
languages from either source as primary studies, and will use different terms only when strictly
needed to differentiate between papers and languages.

2.2.1 Automatic search. In this stage we performed automatic searches on the electronic databases
and indexing systems [133] listed in Table 3. As suggested in [133], in order to cover as much
relevant literature as possible, we chose four of the largest and most complete scientific databases
and indexing systems in software engineering, that are: IEEE Xplore Digital Library, ACM Digital
Library, SCOPUS, and Web of Science. The selection of these electronic databases and indexing
systems was guided by (i) their high accessibility, (ii) their ability to export search results to well-
defined, computation-amenable formats, and (iii) the fact that they have been recognised as being
an effective means to conduct systematic literature reviews in software engineering [41]. To create

Name Type URL

IEEE Xplore Digital Library Electronic database http://ieeexplore.ieee.org
ACM Digital Library Electronic database http://dl.acm.org
SCOPUS Indexing system http://www.scopus.com
Web of Science Indexing system http://webofknowledge.com

Table 3. Electronic databases and indexing systems considered in this research

the search string, we considered (i) the research questions and (ii) the set of pilot studies. Then we
extracted a list of relevant concepts, their synonyms, abbreviations, and alternative spellings, and
we combined them into the final search string by using logical ANDs and ORs. The search string,
shown in Listing 2.2.1 was tested by executing pilot searches on the four sources, and checked
against all the pilot studies, which had to be part of the obtained results. The actual search strings
used for each database were obtained by syntactically adapting them to the characteristics of the
specific database; the four specific strings can be found in the replication package. We sought the
search string on title, abstract and keywords of papers; the automatic searches gave us a total of
3469 potential primary studies.
(" da ta p a r a l l e l " OR " t a s k p a r a l l e l " OR " p r o c e s s p a r a l l e l " OR " c o n t r o l p a r a l l e l " OR

" c o l l e c t i o n o r i e n t e d " OR " mu l t i t h r e a d ∗ " OR " p a r a l l e l programming ")
AND
(" model ∗ l anguage " OR " model ∗ f ramework " OR " programming l anguage " OR " programming

framework ")

Listing 1. Search string used for automatic searches

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2020.

http://ieeexplore.ieee.org
http://dl.acm.org
http://www.scopus.com
http://webofknowledge.com

A Comprehensive Exploration of Languages for Parallel Computing 1:7

2.2.2 Impurity and duplicates removal. Due to the nature of the electronic databases and indexing
systems, search results may include also elements that are clearly not research papers, such as
conference and workshop proceedings, international standards, textbooks, book series, etc, and
duplicates. In this stage we manually removed impurities and merged duplicates, reaching 2121
potential primary studies.

2.2.3 Grey literature search. To harvest the grey literature, we targeted the Google Search Engine,
in accordance to the guidelines for including grey literature in software engineering multi-vocal
reviews [93]. We started with an automatic search using the same search string as for the peer-
reviewed literature and completing by manual searches based on our knowledge in the field. The
combination of automatic and manual searches helped us identifying relevant lists (e.g., Wikipedia’s
“List of concurrent and parallel programming languages” and language-specific pages (e.g., language-
specific web-pages or blog posts about how specific languages are used). We selected the relevant
languages using a mixture of expert knowledge, browsing the web-pages of well-known languages
from the primary studies, and using lists such as Wikipedia’s page on “Concurrent and parallel
programming languages”. The grey literature gave us 72 potential parallel languages to be included.

2.2.4 Application of selection criteria. Once removed impurities and duplicates, we applied our
inclusion and exclusion criteria on all remaining studies to decide on their potential inclusion in
the set of primary studies. Each study was analysed in two steps: first by considering its title,
keywords, and abstract; second, if the analysis did not result in a clear decision, by introduction,
and conclusion sections. The selection criteria were the following:
Inclusion Criteria for Peer-reviewed literature
ICP1) Studies proposing a modelling/programming language/framework for parallel programming.
ICP2) Studies proposing a formalisation and/or implementation of the proposed language.
ICP3) Studies subject to peer review [254].
ICP4) Studies written in English.
ICP5) Studies available as full-text.

Inclusion Criteria for Grey literature
ICG1) Web-pages reporting on a modelling/programming language/framework for parallel pro-

gramming.
ICG2) Web-pages reporting on a formalisation and/or implementation of the proposed language.
ICG3) Web-pages in English.
ICG4) Web-pages freely accessible.

Exclusion Criteria for Peer-reviewed literature
ECP1) Secondary and tertiary studies (e.g., systematic literature reviews, surveys, etc.).
ECP2) Studies in the form of tutorial papers, short papers (≤3 pages), poster papers, editorials,

manuals, because they do not provide enough information.
Even if secondary/tertiary and other studies were excluded from the set of primary studies (see the
ECP1/ECP2 exclusion criteria), we considered them as follows:

• for checking the completeness of our set of primary studies (i.e., if any relevant paper was
missing from our study);

• for providing a summary of what is already known about languages for parallel programming;
• for identifying any important issues to be considered in our study;
• for defining what the contribution of our study to the literature could be;
• for identifying potential new ideas and preliminary results related to our topic.

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:8 Ciccozzi et al.

Exclusion Criteria for Grey literature
ECG1) Web-pages reporting exclusively on the basic principles of the language.
ECG2) Web-pages reporting exclusively on the application of the language.
ECG3) Peer-reviewed literature, since this type of studies is considered in a different search activity.
ECG4) Videos, webinars, books, etc. since they are too time-consuming to be considered for this

study.
To select studies objectively, four researchers – the selection team – actively participated in this

phase. More specifically, by following the method proposed in [9], each potentially relevant study
was classified by the four researchers as relevant, uncertain, or irrelevant according to the selection
criteria above. Studies classified as irrelevant were immediately excluded, while those marked as
relevant were preliminary included. For the uncertain cases, the selection team discussed with
the mediation of a fifth researcher, the mediator. The selection team members classified a certain
number of common studies (∼15%) in order to check agreement, achieving a Cohen’s kappa [28] of
0.873. Out of the gathered 2122 peer-reviewed studies and 72 languages, we eventually selected
529 potential primary studies.

2.2.5 Snowballing. To minimise potential bias with respect to construct validity of our study, we
complemented the automatic search with a snowballing activity [103]. We performed a closed
recursive backward and forward snowballing activity [253]. We found 19 relevant studies, which
led to a total of 548 preliminary primary studies.

2.3 Data extraction
At the beginning of this phase we created a data extraction form, or classification form, to be used
to collect data extracted from each preliminary primary study. The data extraction form, provided
in Tables 5 and 6, was composed of four facets, one for each research question. Specifically, for
answering RQ1, we considered standard information such as title, authors and publication details
of each study. For RQ2, RQ3, and RQ4, we followed a systematic process based on keywording for:
(i) defining the parameters of each facet of the data extraction form, and (ii) extracting data from
the primary studies accordingly.

The goal of the keywording was to effectively develop an extraction form that could fit existing
studies and took their characteristics into account [186]. More precisely, we collected keywords and
concepts by reading the full text of the pilot studies. Then, we performed a clustering operation on
collected keywords and concepts in order to organise them according to the identified categories.
The clustering operation is very similar to the sorting phase of the grounded theory methodol-
ogy [57]. During the actual extraction phase, we collected any kind of additional information
that was deemed relevant but that did not fit within the data extraction form. We reviewed the
collected additional information and, when needed, we refined the data extraction form to better
fit the collected information; previously analysed primary studies were re-analysed according to
the refined data extraction form. This process was complete only when all primary studies were
analysed. The final total number of included and analysed primary studies was 225 (see Table 4).

2.4 Data analysis and synthesis
In this phase we gathered, analysed and synthesised the extracted data to understand and classify
the current state of the art in the area of languages for parallel programming [134, § 6.5]. We
designed and carried our data analysis and synthesis by following the guidelines presented by
3Cohen suggested the Kappa result be interpreted as follows: values ≤ as indicating no agreement and 0.01–0.20 as none to
slight, 0.21–0.40 as fair, 0.41– 0.60 as moderate, 0.61–0.80 as substantial, and 0.81–1.00, which represents our case with 0.87,
as almost perfect agreement.

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2020.

A Comprehensive Exploration of Languages for Parallel Computing 1:9

ID Name (() = active) Ref. ID Name (() = active) Ref. ID Name (() = active) Ref.

P01 ParaSail () [223] P02 Futhark () [116] P03 Pencil [20]
P04 Halide () [190] P05 Gaspard () [91] — — —
P07 HPJava [49] P08 Split-C () [70] P993 — [184]
P1002 APARAPI-FPGA [206] P1011 Logtalk () [171] P1012 PACXX [111]
P1034 XPFortran-OpenMP [261] P1039 HyperPascal () [31] P1041 IAL [66]
P105 CARPET [211] P1097 AJWS () [139] P1101 ClassiC [175]
P1103 X-KLAIM () [30] P1105 SuperPascal [113] P1113 Tetra () [84]
P1116 Seymour [168] P1118 IPC++ [216] P1131 JavaNOW [229]
P1136 Java4P [178] P114 JUMP () [115] P116 ECP-C [23]
P1172 Lemonade () [76] P1175 Linda () [205] P1200 NestStep [130]
P1233 — [189] P1254 Modula-P () [244] P1260 Molecule () [258]
P1285 MULTILISP [112] P1288 XcalableMP () [236] P1291 Musket () [197]
P1293 NANO-2 [16] P1304 Node.Scala [37] P1312 — [208]
P1313 OP++ [220] P1317 C++-with-Ease [158] P132 AMPLE () [137]
P134 LSP [213] P1351 — [260] P1371 OpenRCL [149]
P138 P3L [71] P1388 Orgel [180] P1389 Vector Pascal () [63]
P1395 Force [5] P140 — [21] P1412 Parallel C [109]
P1425 — [177] P143 ASTOR () [238] P1433 — [59]
P1437 Encore () [40] P1442 PPM [43] P1452 Chapel () [52]
P1464 Ensemble () [114] P1467 Morpho () [4] P147 — [73]
P998 OIL () [97] P1480 Delirium [157] P1495 — [219]
P1511 ParCel-1 [242] P1514 ParoC++ [176] P155 Fortran M [54]
P1550 PGASUS () [110] P1565 Pooma [179] P1572 Prelude () [64]
P1586 Qlisp [100] P1620 Modula-2* [187] P1632 Arvo () [247]
P1636 PyCOMPSs () [226] P1641 Quasar () [101] P1649 Real-time Mentat [106]
P1669 RELACS () [191] P168 — [72] P1681 NCX [10]
P1691 C𝑛 [154] P1695 River Trail () [117] P1700 — [90]
P1705 SAC () [104] P171 — [78] P1710 — [36]
P1711 — () [224] P1717 OmpSs-OpenCL [77] P1736 Scootr () [140]
P1738 Scout () [165] P1752 Glasgow paral. Haskell [153] P1764 SHMEM+ () [3]
P1771 Sigma C () [102] P1804 Spar () [241] P1844 Swift/T [255]
P1849 SyncCharts [245] P1867 FastFlow () [7] P1894 Atomos () [48]
P1906 ZPL () [209] P1910 Jade () [198] P1912 CGIS [156]
P1916 DSPL [169] P1923 ForeC () [259] P1924 Fork95 [131]
P1928 II [74] P1930 JavaSymphony [8] P1931 JStar () [240]
P1940 OpenTM [19] P1941 parallel C () [47] P1944 ParCel-2 () [46]
P1970 LM () [67] P1976 — [192] P198 Polymorphic Parallel C [162]
P1988 GridNestStep [164] P1991 TCF++ () [159] P2023 TPascal [45]
P2036 Trellis [222] P2055 UTC () [150] P2072 iOberon [135]
P208 SVM-Fortran [96] P2094 VersaPipe () [263] P2113 Wysteria () [194]
P2120 Yada [95] P215 — [203] P232 Orca [26]
P240 MANIFOLD [17] P252 A-NETL [18] P268 Accelerator [225]
P281 mpC [145] P284 VPR [65] P292 Qu-Prolog () [60]
P296 AL1 [161] P297 ALBA [118] P334 EL* [193]
P344 [138] P347 XMP () [147] P36 — [34]
P360 Gaspard2 () [201] P363 DAPL [250] P364 Promoter [29]
P367 PObC++ () [188] P380 ALWAN [88] P392 Agora () [33]
P408 Augur () [235] P415 CCMs [107] P443 Balinda C++ [249]
P444 Bamboo () [264] P446 Beehive () [234] P457 Booster [182]
P460 Braid () [252] P465 BSGP () [121] P472 C** [144]
P476 CaKernel [35] P479 CAOPLE () [257] P48 DPML [86]
P480 CAPP () [62] P498 Chestnut [215] P51 — [108]
P52 V [141] P545 SEPCom () [251] P581 Delta Prolog [185]
P586 Rolez () [80] P605 COOL [53] P608 Copperhead () [50]
P619 CuPit-2 [120] P62 Visper [212] P633 Firebird () [232]
P636 Dataparallel C [173] P650 Declarative Ada [231] P651 CLM () [68]
P656 Aida [155] P658 CL/1 [42] P665 812 [167]
P669 OpenMPD [146] P692 TACT [214] P72 STING () [124]
P726 DPX10 () [248] P728 DryadLINQ () [83] P734 ICE () [98]
P735 Mentat [105] P736 EastFJP () [163] P748 Skil [39]
P764 Flat X10 () [32] P768 ELMO () [196] P786 MFL () () [210]
P787 eskimo [6] P800 Eve [85] P805 KL [136]
P824 StreamMDE () [217] P825 HPF [27] P840 Aspen [239]
P846 — [148] P852 — [12] P866 FastPara [160]
P87 — () [92] P886 FSPPL () [142] P891 ForkLight [132]
P90 Ellie () [13] P907 FPMR () [207] P910 HOE2 () [152]
P930 Gemma in April [256] P931 GEMS () [38] P949 Go! [61]
P954 Gossamer [199] P964 GraphGrind () [218] P968 GraphIt () [262]
P972 Habanero Java () [51] P980 Ly () [237] G1 Open MPI () [228]
G2 Joule [128] G3 LabVIEW () [172] G5 Sisal [94]
G6 Bloom () [195] G7 Julia () [227] G8 Limbo [243]
G9 Sequoia++ [25] G10 Clojure () [119] G11 Erlang () [79]
G12 Rust () [202] G13 Charm++ () [56] G14 Join Java() [246]
G15 Chapel () [55] G16 Coarray Fortran () [123] G17 Ateji PX () [183]
G18 Scala() [204] G19 Go () [99] G20 JoCaml [125]

Table 4. List of primary studies, with language name (if avail.), reference, and activity status of the language

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:10 Ciccozzi et al.

Facet Cluster Category Description

RQ1 Publication Authors identifies the list of authors
details Venue name identifies the title of the study

Venue type identifies the type of venue
Year identifies the year of publication

RQ2 Language Language name reports the name of the language that is defined in the study
properties Language abstraction identifies the level of abstraction at which the language is defined

Purpose identifies whether the language is generic or domain-specific
Parallel primitives identifies whether the language provides implicit or explicit parallelism
Abstract syntax identifies how the abstract syntax is defined
Concrete syntax identifies how the concrete syntax is defined
Program. paradigm identifies the specific programming paradigm
Communication type identifies whether communication is synchronous or not
Synchronisation type if synchronous, identifies the sync. type

Programming Parallel architecture identifies the class of parallel architecture targeted in the study
model Problem decom-

position inspired
by Thoman et al.’s
taxonomy [230]

identifies the type of parallelism. Task parallelism: a form of parallelism
where the work at hand is broken down into smaller work units, called
tasks, which are scheduled to run in parallel. Pipeline parallelism: form
of parallelism where the computation of each task is divided into a fixed
sequence of stages, the same for all tasks, and the tasks are computed
in a partially parallel fashion where a task can start executing initial
stages before the preceding task has finished executing its final stage.
Data parallelism: a form of parallelism where operations over whole
data structures are performed in parallel over the individual elements
of the structures. Nested parallelism: a form of parallelism where the
parallelism is exploited at several levels. An example is a cluster of
powerful nodes where some parallelism appears between the nodes
and some internally in the nodes, e.g., in a GPU internal to the node.

Communication
model inspired by
Thoman et al.’s
taxonomy [230]

identifies the the communication model. Shared memory: a form of
communication where processes, or threads, communicate through
writing and reading a shared memory area. Message passing: a form of
communication where processes communicate, and often synchronise,
by sending and receiving messages. Data flow: a computing paradigm
where the nodes in a so-called Data Flow Graph communicate by pass-
ing data tokens over the edges in the graph. Shared events: a form
of communication where processes/threads communicate via shared
events. FIFO buffer: a form of communication via data buffering in FIFO
manner.

Memory model in-
spired by Thoman et
al.’s taxonomy [230]

identifies the memory model. Distributed: a memory model where each
processor has its own private memory, and has exclusive access to this
memory. Shared: memory model where several processors share the
same address space, and can read and write to the same memory area.
Stack-based: way to handle memory for function calls in a structured
fashion by allocating and deallocating local data and actual function ar-
guments. Region-based: an alternative to stack-based memory handling
where memory is allocated and deallocated in larger memory areas,
so-called regions.

Execution, Execution mode identifies how programs conforming to the language can be executed
run-time and
implementa-
tion

Target language (if
compiled)

if compiled, identifies the compilation target language(s)

Target architecture identifies the hardware processor(s) targeted for execution
Implementation type identifies how the language is implemented
Extended language identifies the name of base language extended (or tailored) to define

the language presented in the study
RQ3 Limitations identifies gaps and open challenges as reported in the studies

Table 5. Data extraction form facets, clusters and categories
J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2020.

A Comprehensive Exploration of Languages for Parallel Computing 1:11

Category Values Mult.

Authors string 1
Venue name string 1
Venue type Workshop, Conference, Journal, Book chapter 1
Year numeric value (e.g., 2010) 1
Language name string 0..1
Language abstraction Modelling language, High-level programming language 1
Purpose General-purpose, Domain-Specific 1
Parallel primitives Explicit, Implicit 0..*
Abstract syntax Metamodel, Formal specification, Context-free grammar, Informal specification 1
Concrete syntax Textual, Diagrammatic, Graph-based, Tree-based 0..*
Programming paradigm Object-oriented, Imperative, Declarative, Event-driven, Multi-paradigm (repre-

senting a language featuring several paradigms)
0..*

Communication type Synchronous, Asynchronous 0..*
Synchronisation type Rendezvous, Monitor, Lock-free data structure, Lock, Dynamic interfaces, De-

pendency graph, Channel, Barrier
0..*

Parallel architecture Single instruction single data (SISD), Single instruction multiple data (SIMD),
Multiple instruction single data (MISD), Multiple instruction multiple data
(MIMD), Single program multiple data (SPMD), Architecture independent

0..*

Problem decomposition Task parallelism, Data parallelism, Nested parallelism, Pipeline parallelism 0..*
Communication model Shared memory, Message passing, Data-flow, User-defined, Shared events, FIFO

buffer
0..*

Memory model Stack-based, Distributed, Shared, Region-based 0..*
Execution mode Compiled, Interpreted, Hybrid 0..*
Target language type (if com-
piled)

High-level, low-level 0..1

Target architecture Multi-core CPU,Many-core CPU, GPU, GPGPU, FPGA, DSA, Target-independent 0..*
Implementation type Standalone, Extension 0..1
Extended language (if exten-
sion)

string 0..1

Table 6. Category values and multiplicity

Cruzes et al. in [69]. More specifically, we focused on vertical and orthogonal (or horizontal)
analysis.

Vertical analysis aims at finding trends and collect information about each category of the data
extraction form. We applied the line of argument synthesis [254], meaning that we first analysed
each primary study individually to classify its main features according to each specific parameter
of the data extraction form. Then, we analysed the set of studies as a whole, in order to reason
about potential patterns, trends and potential gaps.

Orthogonal analysis aims at identifying possible relations across different categories of the data
extraction form. We cross-tabulated and grouped extracted data as well as we made comparisons
between pairs of categories of the data extraction form. Through contingency tables, we extracted
and evaluated relevant pair-wise relations in terms of patterns, trends and potential gaps.

In both cases, we performed a combination of content analysis [89] (for categorising and coding
approaches under broad thematic categories) and narrative synthesis [200] (for detailed explanation
and interpretation of the findings coming from the content analysis).

3 RESULTS: VERTICAL ANALYSIS
In this section we report on the results of the vertical analysis. More specifically, we analysed each
primary study individually to classify its main features according to each specific parameter of the
data extraction form. Then, we analysed the set of studies as a whole and here we reason and report

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:12 Ciccozzi et al.

on potential patterns, trends and potential gaps. Note that in some cases no value or multiple values
could be extracted from the studies for specific categories. This means that the total number of
occurrences in the related plots may not sum up to or be greater than the total number of primary
studies (225). Note that we also provide summary tables (Tables 8-23) in supplementary material
where each analysed paper is connected to each specific category and its characterising value(s).

3.1 Publication trends (RQ1)
To answer RQ1, we analysed the extracted data to identify publication trends in terms of (i) trend
over time and (ii) venue types. The first, shown in terms of the number of primary studies published
over the years, is depicted in Fig. 3. It is interesting to note that the first study included in our
investigation was published back in 1981. After that, the research area did not receive much
attention for six years, which is indicated by a maximum of one primary study per year until 1987,
as shown in Fig. 3. Since 1988, effort in this research area started to steadily grow. This is evident
from the 10-, 12- and 13-fold increase in the number of primary studies in 1993, 2011 and 2015
with respect to 1981. The growing interest of the community seems to have peaked in 2011 with 13
primary studies. Furthermore, based on the extracted data, we observe that the average number of
primary studies is approximately six per year from 1981 to 2019, and approximately nine per year
in the last decade (2009–2019). Given the steady increment in the last decade, we expect this trend
to continue in the future. We also noted drops in the number of primary studies in 2001 and 2005;
however, we could not find any clear reason for that.

1 1 1 1 1
0

1

3

6

2

6
7

10

7 7

4

7 7

5 5

1

3

5

2
1

9
8

7

5

9

12

8
9

8

13

7

9

6

2

● ● ● ● ●
●

●

●

●

●

●
●

●

● ●

●

● ●

● ●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

0

5

10

19
81

19
82

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

Year

of

 p
rim

ar
y

st
ud

ie
s

Fig. 3. Trend of publications over time

We also classified the number of primary studies with respect to the type of publication venue,
namely Journal, Conference, Workshop, and Book chapter. We notice that Conference is the most
common venue type, with 54% of primary studies belonging to it. The second most common venue
type is Journal, which holds almost 36% of the primary studies. Workshop and Book chapter stand
for 9.5% and 0.5% of the primary studies, respectively.

The top 10 venues in terms of number (≥4) of primary studies are listed in Table 7. It is interesting
to note that these venues only stand for 22.8% of the 225 primary studies, whereas the remaining
ones are published in 134 other venues. The International Conference on Parallel Processing (ICPP)
has published the highest portion (3.65%) of the primary studies. The second ranked venue, with
3.2% is the International European Conference on Parallel and Distributed Computing (Euro-Par).
The ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPOPP) and
the International Conference on Functional Programming (ICFP) published 2.74% of primary studies
each. The International Parallel and Distributed Processing Symposium (IPDPS), the Conference

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2020.

A Comprehensive Exploration of Languages for Parallel Computing 1:13

on Object-Oriented Programming Systems, Languages, and Applications (OOPSLA), and ACM
Transactions on Programming Languages and Systems (TOPLAS) published 2.28% of studies each.
Finally, the ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI), the Hawaii International Conference on System Sciences (HICSS) and the International
Workshop on High-Level Parallel Programming Models and Supportive Environments (HIPS)
published 1.82% of studies each.
These results could be helpful in guiding new researchers in this area to identify the most

relevant publication venues for searching the related work as well as publishing their research
results. However, it should be noted that apart from the top nine venues (which also display a rather
low concentration of published primary studies), the widely dispersed distribution of relevant
publications over other venues (134) shows that the research community does not strongly favour
any specific venue.

Venue name Acronym Type #papers

International Conference on Parallel Processing ICPP C 8
International European Conference on Parallel and Distributed Computing Euro-Par C 7
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming PPOPP C 6
International Conference on Functional Programming ICFP C 6
International Parallel and Distributed Processing Symposium IPDPS C 5
Conference on Object-Oriented Programming Systems, Languages, and Applications OOPSLA C 5
ACM Transactions on Programming Languages and Systems TOPLAS J 5
ACM SIGPLAN Conference on Programming Language Design and Implementation PLDI C 4
Hawaii International Conference on System Sciences HICSS C 4
Workshop on High-Level Parallel Programming Models and Supportive Env. HIPS W 4

Table 7. Venues featuring ≥4 primary studies

Highlights – RQ1 Publication trends
▶ Since 1988, effort in this research area has been steadily growing; a steady increment in the last decade suggests

a continuation of this trend in the near future;
▶ The widely dispersed distribution of relevant publications across venues suggests that the research community

does not strongly favour any specific one;
▶ The HIPS workshop has been continuously running for 25 years, showing an interesting continuity in the

community’s effort towards high-level parallel programming and related tools.

3.2 Technical characteristics (RQ2)
This research question focuses on a set of technical aspects of the languages proposed in the
analysed primary studies. The technical aspects were either mentioned explicitly in the papers or
could be easily inferred from the specification of the languages discussed in the papers.

3.2.1 Language properties (RQ2.1). From the primary studies, we extracted and analysed some
high-level features such as level of language abstraction, its purpose, and the kinds of abstract and
concrete syntax of the languages. As it can be seen in Fig. 4a, most languages (208/225) are defined
as high-level programming languages. This has to do with the syntactic abstractions provided by
the language, the different kinds of data and control flow abstraction and the level of dependency
on the underlying platform, such as hardware and operating systems. These languages range from
third generation to fifth generation programming languages. A small number of languages (17/225)
are defined as canonical modelling languages, in order to provide an even more abstract, and often
diagrammatic, representation (i.e., model) of a program. The purpose of these modelling languages

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:14 Ciccozzi et al.

include providing efficient platform for data analytics, supporting multilevel modelling on various
parallel platforms and accelerators. Interestingly, we found one concurrent constraint programming
language (P633) targeting massively parallel SIMD computers. As shown in Fig. 4b, except for a
few domain-specific or special-purpose languages (36/225), the majority of the studies (188/225)
proposed general-purpose languages.

Modelling lang

High level prog lang

0 50 100 150 200

17

208

(a) Language abstraction

Domain specific

General purpose

0 50 100 150 200

36

188

(b) Purpose

Fig. 4. Language properties: language abstraction and purpose

As expected, and shown in Fig. 5b, the concrete syntax of most languages (215/225) is specified
in terms of textual notations. For modelling languages in particular, diagrammatic, tree-based, or
graph-based concrete syntax is provided in most cases too (14/17). The abstract syntax of most
languages (approximately 73%) is provided only informally, as shown in Fig. 5a. In several studies,
proposed languages are built on top of existing languages without providing the complete abstract
syntax of the extended languages. The abstract syntax of modelling languages is described by
means of canonical metamodel specifications only in four cases out of 17.

Metamodel

Context free grammar

Formal spec

Informal spec

0 50 100 150 200

4

17

39

167

(a) Abstract syntax

Tree based

Graph

Diagrammatic

Textual

0 50 100 150 200

1

2

11

215

(b) Concrete syntax

Fig. 5. Language properties: abstract and concrete syntax

With regards to languages’ programming paradigm, as it can be seen in Fig. 6a, it is evident that
the procedural imperative paradigm is the most studied and used 123/225, whereas object-oriented
and declarative paradigms rank second and third with 92 and 42 occurrences, respectively. Among
those, a fair number of languages (30/225). support multiple programming paradigms; out of them,
eighteen support imperative and object-oriented, seven support declarative and imperative, nine
support declarative and object-oriented, two support combined imperative, declarative, and object-
oriented, and one supports event-driven and object-oriented. The figure and table4 in Fig. 7 depicts
4The table exclude languages that was not given a name in the study

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2020.

A Comprehensive Exploration of Languages for Parallel Computing 1:15

the combination of the major programming paradigms and the associated programming languages.
One event-driven programming language, called Eve (P800), is proposed to support the event-loop
and task-based parallelism in achieving high concurrency. An interesting case is represented by
Node.Scala, which is a dynamic multi-paradigm language and framework for enhancing the Java
Virtual Machine by introducing safe stateful event-driven programming (P1304). Quite surprisingly,
given the suitability of the paradigm for describing parallelism, only 3 object-oriented languages
are actor-based (P1991, P296, P1916).

Regarding the supported type of parallel primitives (Fig. 6b), most languages (157/225) support
explicit primitives for describing parallelism. Nevertheless, a noteworthy number of languages
(71/225) focus on implicit primitives. Not so surprisingly, support for explicit or implicit primitives
is in most cases mutually exclusive; only three languages (P01, P1970, P1550) provide support
for both. An interesting case is represented by Glasgow parallel Haskell (P1752), which exploits
so-called semi-explicit parallelism, meaning that potential parallelism is explicitly annotated in the
program, while all aspects of coordination are delegated to the runtime environment.

Actor based

Event driven

Multi paradigm

Declarative

Object oriented

Imperative

0 50 100 150 200

1

2

30

42

92

123

(a) Programming paradigm

Implicit

Explicit

0 50 100 150 200

71

157

(b) Parallel primitives

Fig. 6. Language properties: programming paradigm and parallel primitives

Paradigms Languages
ID PyCOMPSs, Scootr, DryadLINQ,

Skil, FastPara, OIL, Julia
IO PACXX, AJWS, C++-with-Ease,

OpenRCL, Morpho, Pooma, Bamboo,
CAPP, DryadLINQ, Mentat, GraphGrind,
HPJava, Open MPI, Julia,
Join Java, Chapel, Ateji PX

DO Logtalk, Qu-Prolog, DryadLINQ, Go!,
Habanero Java, Julia, Scala, JoCaml

IDO DryadLINQ, Julia
Fig. 7. Multi-paradigm parallel languages. ID - Imperative and Declarative, IO - Imperative and Object-
oriented, DO - Declarative and Object-oriented, IDO - Imperative, Declarative and Object-oriented

Regarding the types of communication among parallel activities offered by the languages (Fig. 8a),
we found that 42/225 studies offer both synchronous and asynchronous communication; the
rest support either synchronous (157/225) or asynchronous communication (111/225). Among
those supporting synchronous communication (Fig. 8b), we found that lock- and barrier-based

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:16 Ciccozzi et al.

synchronisations are the most popular choices to synchronise parallel activities, with 76 and 73
occurrences each. A few languages 10/157) use rendezvous-based synchronisation instead. However,
there exist some languages that use specialised synchronisation mechanisms, such as: channel-
based (4/157), monitor-based (3/157), lock-free data structures (3/157), dependency graphs (2/157),
and dynamic interfaces (1/157). Note that some languages exploit multiple types of synchronisation.

Asynchronous

Synchronous

0 50 100 150 200

111

157

(a) Communication type

Dynamic interfaces

Dependency graph

Lock free data struct

Monitor

Channel

Rendezvous

Lock

Barrier

0 50 100 150 200

1

2

3

3

4

10

73

76

(b) Synchronisation type

Fig. 8. Language properties: communication and synchronisation types

Highlights – RQ2.1 Language properties
▶ Most languages are high-level and general-purpose, their formal abstract syntax is often not explicitly given,

and their concrete syntax is in most cases textual;
▶ Imperative and object-oriented programming are the most popular paradigms, in that order;
▶ Explicit parallelism is the most commonly supported;
▶ Distribution of synchronous and asynchronous communication is rather even, with lock- and barrier-based

are the most common synchronisation means.

3.2.2 Programming model (RQ2.2). The analysis of RQ2.2 covers four aspects of parallel program-
ming models: target hardware architecture, problem decomposition, communication model and
memory model. As expected, most studies target single instruction multiple data (SIMD) or multiple
instruction multiple data (MIMD) architectures, with 79/225 and 62/225 occurrences respectively.
Very few studies target single instruction single data (SISD) or multiple instruction single data
(MISD) architectures, with 6/225 and 9/225 occurrences respectively. Furthermore, five languages
(P02, P03, P05, P1906, P1118, P1136) provide architecture-independent solutions, meaning that their
programming model is not tailored nor dependent on any specific target machine. One language
(P1988) supports single program multiple data (SPMD) architecture.

The results concerning the supported problem decomposition types confirm the historical pre-
dominance of task- and data-parallelism (Fig. 9b), with 152/225 and 122/225 entries respectively.
Task-parallelism is compatible with applications for various domains, e.g. from web applications to
system programming, and often used to implement implicit (data) parallelism. In contrast, data-
parallelism is generally preferred for high-performance computing applications. Lower-level forms
of parallelism, nested (10/225), and pipeline parallelism (8/225) appear too, often as secondary
form of parallelism. Fig. 10 depicts the number of studies proposing languages supporting various
composition of problem decomposition categories. In 64/225 primary studies, languages provide
support for both task- and data-parallelism. Other problem decomposition combinations are pro-
posed in relatively small number of studies: (7/225) for task and nested parallelism, (4/225) for
pipeline and data parallelism, (6/225) for nested and data parallelism, (3/225) for task, nested, and

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2020.

A Comprehensive Exploration of Languages for Parallel Computing 1:17

data parallelism, and (1/225) for each of the combination of task and pipeline parallelism, and task,
pipeline, and data parallelism.

SPMD

Architecture indep

SISD

MISD

MIMD

SIMD

0 50 100 150 200

1

5

6

9

62

79

(a) Parallel architecture

Pipeline parallelism

Nested parallelism

Data parallelism

Task parallelism

0 50 100 150 200

8

10

122

152

(b) Problem decomposition

Fig. 9. Programming model: parallel architecture and problem decomposition

Fig. 10. Number of Languages supporting multiple problem decomposition strategies. T - Task parallelism, P -
Pipeline parallelism, N- Nested parallelism, D - Data parallelism

Regarding the communication model (Fig. 11a), message-passing is the most popular choice
of communication (111/225). The use of shared memory, i.e., more or less implicitly regulated
accesses to common regions of memory, is the second most popular medium of communication
(107/225). Another, less common, communication means is data-flow-based (23/225), employed by
so-called data-flow languages. Communication via shared events (P1976) and via FIFO buffers (P998)
occurs in one study each. As illustrated in Fig. 12a, 36/225 studies proposed languages providing
parallel communication mechanism via shared memory and message passing mechanism, (3/225)
proposed shared memory and data flow communication, 5/225 proposed message passing and
data flow, and one study proposed the split-C language offering shared memory, message passing,

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:18 Ciccozzi et al.

and data flow based communication. Concerning the memory model (Fig. 11b), the majority of
languages target shared memory architectures (131/225). It is worth noticing that, in contrast with
its virtual abstraction role in communication models, memory here is meant as “physical” memory.
To exemplify, languages featuring shared memory in their communication model do not necessarily
target architectures with shared physical memory. Distributed memory architectures, such as
clusters, are also commonly targeted (96/225). Finally, these models might be enhanced by advanced
variations, as in stack-based (22/225) and region-based (9/225) approaches. As with the previous
categories, a given language might target more than one memory model, especially in those cases
where memory access is abstracted through language constructs, i.e. implicit communication and
data allocation. As depicted in Fig. 12b, in 42 primary studies, languages target both shared and
distributed memory. Other combination of memory models include 3/225, 4/225, and 2/225 studies
that proposed languages having stack-based and shared, stack-based and distributed, and shared and
region-based memory models. There exists one study for each of the combinations of region-based
and distributed, stack-based, shared, and distributed, and shared, region-based, and distributed
memory models.

FIFO buffer

Shared events

Data flow

Shared memory

Message passing

0 50 100 150 200

1

1

23

107

111

(a) Communication model

Region based

Stack based

Distributed

Shared

0 50 100 150 200

9

22

96

131

(b) Memory model

Fig. 11. Programming model: communication and memory models

(a) Combination of communication models. S - Shared
memory, M - Message passing, D - Data flow

(b) Combination of memory models. St - Stack based,
Sh - Shared, R - Region based, D - Distributed

Fig. 12. Programming model combinations: communication and memory models

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2020.

A Comprehensive Exploration of Languages for Parallel Computing 1:19

Highlights – RQ2.2 Programming model
▶ Most languages target SIMD and MIMD architectures, while very few provide architecture-independent solu-

tions;
▶ Task- and data-parallelism are the most common problem decomposition approaches, possibly supported by

lower-level forms of parallelism, e.g. pipeline;
▶ Shared-memory, message-passing and data-flow are the most common communication models, in that order;
▶ The majority of languages target shared or distributed memory architectures, possibly enhanced into more

advanced models, e.g. region-based approaches.

3.2.3 Execution, run-time and implementation (RQ2.3). Research question RQ2.3 concerns languages
with respect to their run-time characteristics, more specifically how languages are implemented
and executed. First, we classified the languages according to how they are executed, namely
via interpretation, compilation or hybrid approaches. If compiled, we investigated whether the
language(s) targeted by the compiler are low- or high-level languages. Eventually, we analysed
which architectures are specifically targeted by the languages and how the language is implemented.

With regards to the execution mode (Fig. 13a), it is evident that the community has heavily
focused on developing compilation strategies (200/225); interpretation strategies were provided
in 13 studies, while in four cases execution was achieved via hybrid approaches (e.g., mix of
interpretation and JIT compilation). Looking at Fig. 13b, we can see how, in most cases (118/200),
work on compilers focuses on generating programs in high-level languages (including compiler
internal/intermediate languages). This shows that the bulk of the community’s effort is devoted
to so called front- and middle-ends, while back-ends tend to be reused. Nevertheless, there is a
fair amount of compilation works (60/200) targeting low-level languages, thus focusing more on
back-ends.
Regarding target architectures (Fig. 14a), many approaches (97/225) focus on multi-core CPUs.

Interestingly, the second biggest share of studies (67/225) focus on target-independent languages,
followed by those focusing on many-core CPUs (46/225). GPUs are targeted by 34 studies, while
GPGPUs by 16; DSAs and FPGAs are mentioned as target architectures in nine and eight studies,
respectively. Note that a number of studies (62/225) propose languages that are meant to support
multiple target architectures. Concerning how languages are implemented (Fig. 14b), the majority
of the primary studies (142/225) present languages as extension of existing languages. In Table 8
we list the base languages extended to implement the languages reported in the primary studies.
The most leveraged family of programming languages is C-based (49/142) followed by Java-based
(20/142). On the modelling languages side, the UML family of languages is exploited in eight studies.

Hybrid

Interpreted

Compiled

0 50 100 150 200

4

13

200

(a) Execution mode

Low level lang

High level lang

0 50 100 150 200

60

118

(b) Target language (if compiled)

Fig. 13. Execution: mode and target language

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:20 Ciccozzi et al.

FPGA

DSA

GPGPU

GPU

Many CPU

Target indep

Multi CPU

0 50 100 150 200

8

9

16

34

46

67

97

(a) Target architecture

Standalone

Extension

0 50 100 150 200

80

142

(b) Implementation type

Fig. 14. Target architecture and implementation type

occ. Languages

25 C
21 C++
15 Java
5 Pascal
5 UML, Fortran
4 OpenMP
3 MARTE
2 Prolog, Ada, Modula-2, Haskell, Lisp, OpenCL, LM, X10
1 APARAPI, XPFortran, IA, C*, PAL, Euclid, Scala, CUDA, PL/1, C#, Insense, XSLT, Python, Mentat, JavaScript,

Deterministic Parallel Java, OmpSs-OpenCL, R, SHMEM, JavaSymphony, ParCel-1, NestStep, OpenACC,
TNC, Active Oberon, Orca, mpC, ReactoGraph, Qu-Prolog, PLASMA, XMP, MPL, BSP, Cactus, Rolez, CuPit,
Habanero Java, occam2, Scheme, LINQ, MFL, HPF, Node.js, April, Cilk, MPI, Caml

Table 8. Extended languages

Highlights – RQ2.3 Execution, run-time and implementation
▶ The large majority of parallel languages are compiled and the target is usually a high-level language, indicating

a consolidated trend towards implementing front- and middle-ends rather than back-ends for new languages;
▶ CPUs (multi- and many-core) represent by large the most commonly targeted architectures; interestingly, over

30% of languages is not tailored to any specific target architecture;
▶ Most languages are defined in terms of extensions of existing languages; C/C++ and Java are the most leveraged

programming languages, and UML the most used modelling language, for extension purposes.

3.3 Limitations (RQ3)
The analysis and synthesis of limitations presented in the primary studies were carried out by:
(i) extracting text portions from the studies concerning limitations and planned future works, as
described by the authors, and (ii) clustering them, if represented by ≥ 3 primary studies, in the
comprehensive groups described next in descending order.
The most represented gaps were related to supported data-parallelism and expressed by the
following needs:

• Support for describing data-parallelism, by providing annotations (P1097), by modelling
(P140), or by programming (P268, P852, P2023);

• Support for structured (P479), complex (P545), or user-defined (P498) data-types;
• Support for a broader set of data-parallel primitives (P608);
• Support for multi-dimensional arrays (P608);

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2020.

A Comprehensive Exploration of Languages for Parallel Computing 1:21

• Support for irregular data structures (P07, P364);
• Support for data-parallelism at compilation level (P460);
• Support for data-parallel garbage collection (P633).

The second cluster of gaps was related to supported target hardware platforms and expressed
as follows:

• Support for targeting multiple hardware platforms (P1288, P1351, P608, P268, P968, P1752);
• Support for multi-GPU execution (P408, P2055, P1291, P1700);
• Support for heterogeneous target platforms (P1717);
• Support for clusters of multi-cores (P1412).

The third cluster was related to improvement of language and related tooling and expressed
as follows:

• Improvement of the specification and implementation of the language (P1632, P1804, P415,
P2055, P480, P768);

• Improvement of the provided compiler (P90, P1944, P360);
• Extension of the language to implement full-blown OS running on bare hardware (P72);
• Support for external parallel libraries (P2120);
• Support for runtime execution (P444).

The fourth cluster was related to provided analyses and optimisations and expressed as follows:
• Enlargement of the set of provided program analyses, both static and dynamic, and optimisa-
tions (P05, P07, P1912, P1940, P968, P1944);

• Support for advanced memory optimisations (such as usage of fast local memory on GPUs
from high-level API in P1700, low-level memory access patterns in P02);

• Support for timing efficiency, through analysis and optimisation (P1923);
• Improvement of currently provided analyses (P846);
• Support for analysing howwork-stealing affects energy consumption in power-critical mobile
devices (P1097);

• Data-sharing optimisation to minimise overheads (P993).
The fifth cluster regarded the evaluation of the language and related tooling and was expressed
as follows:

• Need of real-world evaluation (P1695, P805, P846, P980, P1511);
• Need of scalability proof (P1738, P930, P1511, P116);
• Need of performance proof (P498);

The sixth cluster concerned schedulability issues and was expressed as the need for improvement
of scheduling policies (P1940, P446, P1752, P443), also with support for priority schedulers (P1752).
Improvement of performance in general (P1442, P2055, P1291) and communication performance
in particular (P114) as well as improvement of portability (P930, P116, P1304) constitute the last
two clusters.
Besides the clustered ones, there are a number of other gaps that are worth mentioning, as follows:

• Support for automatic generation of target configuration (P140, P1041), also exploit machine
learning for predicting, for a given combination of application and hardware, the best way to
execute the application (P1700);

• Enlargement of communication model (P52, P736);
• Trade-off between compatibility with existing compilers and performance gains (P1011,
P1636);

• Improvement of usability (P2055);
• Support for interactive handling of exceptions (P1172);

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:22 Ciccozzi et al.

• Support for both dynamic and static (at compile-time) concurrency (P1910).

Highlights – RQ3 Limitations
▶ Support for data-parallelism seems to be the most wished feature of existing parallel languages;
▶ Support for multiple hardware platforms (also heterogeneously mixed) is a longed feature too;
▶ In general, languages and related tooling are in most cases at a prototypical level;
▶ More support, especially automated, for analysis and optimisation is a common envisioned enhancement;
▶ There is an evident need of evaluation in real-world settings, especially to assess scalability and performance

of languages for large-scale applications.

4 RESULTS: ORTHOGONAL ANALYSIS
In this section we discuss interesting relations across categories of the extraction data. To do so,
we cross-tabulated and grouped extracted data as well as we made comparisons between pairs of
categories of the data extraction form. Through contingency tables (not included in the text for
space reasons), we extracted and evaluated relevant pair-wise relations.

4.1 Problem decomposition Vs. Parallel primitives
Most languages offering explicit parallel primitives focus on task-parallelism (115/147). Such a
high number of languages supporting explicit task-parallelism is motivated by the great expressive
power offered to programmers, i.e. complete control over the parallel choreography; this comes
with potential risks related to explicitly describing how tasks shall be synchronised though. In
addition, introducing support for task-parallelism using explicit primitives represents a relatively
simple solution for extending existing sequential languages. Explicit primitives and data-parallelism
represent the second most common combination, although with much fewer occurrences (73/147).
Despite being expectedly less frequent than explicit primitives, as seen in the vertical analysis
(Fig. 6b), implicit primitives in combination problem decomposition produces an interesting result.
Indeed, the tendency to prefer task-parallelism (61%) rather than data-parallelism (39%) for explicit
primitives is inverted when it comes to implicit primitives, where data-parallelism (55%) is slightly
more common than task-parallelism (45%). Few languages support pipeline parallelism and code
parallelism. Among these, the majority provides explicit primitives. It is interesting to notice that
no language supporting nested parallelism provides implicit primitives.

4.2 Communication model Vs. Memory model
As seen in the vertical analysis (Figure 11a), shared-memory represents the most common communi-
cation model; the majority of languages combine this model with the shared memory model (89/105).
However, it is interesting to notice that a fair number of languages also combine shared-memory
communication model with distributed memory (31/105). Message-passing is the second most
common communication model, but its combination with memory models provides inverted results.
Most languages featuring message-passing target indeed the distributed memory model (66/99),
with shared memory coming right after (41/99). Stack-based memory model is also moderately
diffused in combination with shared memory (8/21) and message passing (13/21) communication
models. Finally, languages adopting data flow communication tend to prefer the distributed (16/31)
and shared memory (10/31) models, with a slight preference for the first.

4.3 Communication and memory models Vs. Target architecture
Shared memory and message passing communication models are the most popular choices among
languages targeting multi-core CPU (52/98 and 41/98, respectively). These two communication

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2020.

A Comprehensive Exploration of Languages for Parallel Computing 1:23

models are used a lot with many-core CPU architectures too (32/52 and 30/52 respectively). This
applies even to target-independent languages (29/70 and 37/70 entries). Shared memory appears to
be the most convenient medium of communication for various accelerator architectures such as
DSA, GPU, GPGPU, and FPGA than message passing or data flow. Nevertheless, the presence of
data flow communication in all target architectures (including target-independent), even though
with a lower number of occurrences than shared memory or message passing communication
model, shows its importance as communication model.
The relation between memory model and target architecture is rather symmetric to the one

between communication model and target architecture. More specifically, shared and distributed
memory models are the most popular choices in languages targeting multi-core CPU (59/98 and
48/98 respectively). A similar distribution applies to languages targeting many-core CPU (31/52
and 30/52 respectively) and target-independent languages (34/70 and 29/70 respectively). As for the
shared memory communication model, the shared memory model is the most common choice for
accelerator architectures such as DSA, GPU, GPGPU, and FPGA.

5 OPEN CHALLENGES AND PROSPECTS
From our vertical analysis (RQ2), it appeared that languages for parallel computing are in most
cases high-level and general-purpose. This is understandable since the first ensures an acceptable
abstraction level for the programmer to be able to express his functions without the need to
handle machine-specific details. The second makes those languages usable in multiple application
domains and for multiple purposes. Nevertheless, since parallel and heterogeneous hardware
is getting evermore common in fields where experts do not necessarily have a background in
parallel programming (e.g., health, biology), we believe that research should direct more attention
towards the definition of languages at higher-levels of abstraction (i.e., modelling languages).
Moreover, mechanisms for specialising (and thereby shrinking) general-purpose languages to
domain-specific variants of it would be helpful too, since they would allow domain-specific
analyses and optimisations as well as require a less steep learning/training curve.
Most parallel languages provide explicit means to describe parallel computations. On the one

hand, this allows experienced programmers to make fine-grained optimisations and provide very
efficient parallel algorithms; on the other hand, this makes parallel languages hard to use for the
less experienced users. To make parallel programming more accessible to those without parallel
programming skills, it would be useful to carry out more research in the provision of implicit
parallelism, not necessarily as a mutually exclusive alternative to explicit parallel primitives but
also in combination. Efficient ways to provide data parallelism is regarded as the most wished
feature for existing languages (RQ4); there is definitely space for contributing to the body of
knowledge and state of the practice by focusing on implicit data parallelism.

Through our analysis (RQ2), we got a confirmation that multi- and many-core CPUs represent the
most commonly targeted architectures. Although already growing in number of related publications,
there is still space for significant contributions and advances in languages for other architectures,
especially FPGAs and GPUs, and even more for languages targeting multiple architectures,
even in combination. The latter is in fact one of the most commonly mentioned longed feature in
the analysed studies (RQ4).

In the definition of new languages, we tend to believe that a balanced mix of concepts from
object-oriented and functional programming could provide a fruitful combination of ingredi-
ents for achieving both explicit and implicit parallelism. Moreover, it would allow to push up the
level of abstraction, thus making those languages more accessible and less dependent on the target
architectures; multiple levels of refinement (e.g., through modelling), could permit to separate
functional aspects from allocation, configuration and deployment ones [2]. In addition, we believe

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:24 Ciccozzi et al.

that blending notations [58] for stakeholders to interact with high-level (modelling) languages
in a flexible and personalised manner has the potential to boost the usage and productivity of these
languages [1], thus making a broader set of stakeholders keen on using them, even for multiple
purposes – not only programming, but also design and communication across design and develop-
ing teams. For instance, while textual notations could be used for algorithmic parts, graphical ones
could be employed to model the target architecture and possibly the allocation of functional items
to it; this would be particularly useful in case of complex heterogeneous architectures.
As expected, languages and supporting tools are in most cases at a prototypical level. This is a

typical issue of academic research where industrial actors are not involved enough to give a hand
in taking results a step (or in most cases several steps) further and to reach industrial grade. We
believe that, together with classic networks of researchers and practitioners (e.g., HIPEAC5), the
growing industrial consortia (e.g., Capella6 and INCOSE7 in systems engineering), which in the
last few years have increasingly focused on open-source solutions, should be leveraged more by
academics in this area as a precious vehicle for pushing research results to new heights and to
reach a broader audience.

6 THREATS TO VALIDITY
There are two aspects that make us confident on the quality of our study. The first one is that we
defined and meticulously followed a detailed research protocol document, which was subject to
external reviews by independent researchers. The second one is that we conducted our study by
following well-established guidelines for systematic studies. In any case, it is important to discuss
the potential threats to the validity of our work and its outcomes, as well as the means undertaken
to mitigate them.

6.1 External Validity
External validity refers to the generalisability of causal findings with respect to the desired popula-
tion and settings [254]. In a systematic review, one of the most severe threats is that the selected set
of primary studies is not representative of the state of the art on languages for parallel computing.
This potential threat to validity is mitigated by targeting multiple data sources, i.e., ACM Digital
Library, IEEE Xplore, Scopus, and Web of Science. The used data sources cover the area of software
engineering well [41] and are five of the largest and most complete scientific databases and indexing
systems in software engineering. Moreover, we further complement the results of the automatic
searches by performing closed recursive backward and forward snowballing.
Only studies published in the English language were included. Although, this decision could

result in a possible threat to validity due to potentially missing primary studies published in other
languages, English is the de-facto standard language for scientific papers, so the threat can be
reasonably considered negligible.

6.2 Internal Validity
Internal validity refers to extraneous variables and inaccurate settings that may have had a negative
impact on the design of the study [254]. We mitigated this potential threat by defining meticu-
lously the process to follow and the data extraction form according to well-established guidelines.
Concerning the validity of the data analysis and synthesis, threats were minimal since we used
descriptive statistics. Moreover, we cross-analysed the different categories of the data extraction
form to make a sanity check of the extracted data. This task made us identify and solve potential
5https://www.hipeac.net/
6https://www.eclipse.org/capella/
7https://www.incose.org/

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2020.

https://www.hipeac.net/
https://www.eclipse.org/capella/
https://www.incose.org/

A Comprehensive Exploration of Languages for Parallel Computing 1:25

issues on the consistency of the extracted data and make us confident of the internal validity of our
study.

6.3 Construct Validity
Construct validity refers to the extent to which an identified causal relationship can be generalised
from the particular methods and operations of a specific study to the theoretical constructs and
processes they were meant to represent [254]. As already argued for external validity, the initial
automated search has been performed on four different data sources and complemented with
snowballing. One remaining potential threat to validity may be caused by a malformed search
string. We mitigated this potential threat by (i) following a rigorous process for defining it and
(ii) piloting the search string in preliminary queries using all four data sources. Once we gathered
all relevant studies from the automatic search, we rigorously screened them in a collaborative
fashion and according to well-documented inclusion and exclusion criteria. Moreover, the selection
team members classified a certain number of common studies (∼15%) in order to check agreement,
achieving a Cohen’s kappa [28] of 0.87 (almost perfect agreement according to Cohen’s suggested
interpretation).

6.4 Conclusion Validity
This refers to the relationship between extracted data and obtained findings [254]. We mitigated
potential threats by systematically applying and documenting well-defined processes; we also
provide a publicly accessible replication package8, which allows to replicate each step of our study.
The data extraction form definition can be a notable threat to conclusion validity if based on own
experience or other informal sources. We mitigated this by (i) letting the categories and their values
emerge from the pilot studies and refining them throughout the entire data extraction activity,
and (ii) making five researchers be actively involved in the definition of the form as well as the
extraction and analysis/synthesis of data.

7 RELATEDWORK
In the past few years, systematic literature reviews have gained considerable popularity in many
research areas, in particular software engineering [133]. In this paper, we conduct a systematic
literature review of programming and modelling languages for parallel computing platforms. This
topic overlaps with the research areas of software engineering, computer science and computer
engineering. The research area targeted in this paper is quite dispersed as there is a large body
of research on programming and modelling languages for parallel computing platforms. This is
indicated by 219 identified publications as shown in Fig. 2 and discussed in Section 3.
There are very few systematic literature reviews, systematic mapping studies and surveys of

the state of the art that discuss some aspects of parallel computing platforms. The most recent
one is a survey on parallel programming models by Fang et al. [81]. Brodtkorb et al. [44] conduct
an investigation of the state of the art in the area of heterogeneous computing. In this study,
they limit the scope of their investigation by focusing on only three heterogeneous platforms,
namely the Cell Broadband Engine Architecture, GPU and FPGA. Similar to the work in [44],
Mittal and Vetter [170] present a survey of heterogeneous computing techniques, where they
only consider CPU-GPU computing platform. Fernando et al. [82] perform a systematic mapping
study to create a structured map of the existing research with respect to parallel computing in
various execution platforms such as multi-core, cluster and GPU. Similarly, Liu et al. [151] conduct

8The replication package is attached as extra files archive to this manuscript for review purposes and will be made public
once the manuscript is in press.

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:26 Ciccozzi et al.

a survey of software and hardware aspects of heterogeneous computing platforms. In this work,
the authors focus only on a specific architecture, namely the Heterogeneous System Architecture
(HSA). However, these works do not investigate programming and modelling languages for the
considered parallel computing platforms. In comparison to the above mentioned works, we conduct
a systematic literature review of programming and modelling languages for generally a broad range
of parallel computing platforms.
Andrade and Crnkovic [14] conduct a systematic mapping study of software architectures for

heterogeneous computing platforms. The authors identify 28 publications of interest and using these
they present various trends and identify gaps in the research area. Similarly, Andrade et al. [15]
conduct a systematic mapping study that focuses on the deployment of software on heterogeneous
computing platforms. In this study, the authors provide an overview of the research area with
the aim of identifying and categorising the published research results according to a defined
classification. Although the studies in [14, 15] focus on heterogeneous computing platforms, they
do not consider programming and modelling languages. In comparison, this paper presents a
systematic literature review of programming and modelling languages for parallel computing while
considering homogeneous as well as heterogeneous computing platforms.

There are a few works that study and survey the existing programming languages and program-
ming models for multi-core and many-core computing platforms. For instance, Diaz et al. [75]
present a survey of parallel and distributed programming models for multi-core and many-core
processors. Soares et al. [143] present a systematic mapping study of parallel programming on
multi-core platforms. However, their core focus is on the programming languages that are used in
undergraduate education. Frank et al. [87] conduct a systematic literature review on parallelisation,
modelling and performance prediction of applications that are run on multi-core and many-core
processors. In this work, the authors identify and analyse 34 relevant publications that mainly
focus on providing support for performance prediction of parallel applications on these parallel
computing platforms. However, both these works focus only on homogeneous multi-core and
many-core computing platforms. In comparison to these works, the systematic literature review
conducted in our paper identifies and analyses parallel programming and modelling languages for
homogeneous as well as heterogeneous parallel computing platforms.
Kessler and Keller [129] review and analyse a few parallel computing models with respect to

execution styles, type of parallelism (data and task parallelism), memory and communicationmodels.
Memeti et al. [166] perform a comparative evaluation of four parallel programming frameworks,
namely OpenMP, OpenCL, OpenACC and CUDA. The evaluation parameters considered in this
study include programming productivity, performance, and energy. In comparison with these
works, our study is comprehensive in the sense that it considers a wide range of programming
and modelling languages, programming models, target hardware architectures (SISD, SIMD, MISD,
MIMD), communication and memory models, and parallel execution models.

Nestmann [174] performs a systematic literature review with the aim of identifying a taxonomy
for parallel programming models. The authors identify five different taxonomies in the existing
literature. Based on the identified taxonomies, the authors build a consolidated and consistent
taxonomy for parallel programming models. Amaral et al. [11] conduct a systematic mapping study
of programming languages for High-performance Computing (HPC) platforms. In this study, the
authors identify 26 programming languages for the HPC platforms that are presented in 33 relevant
publications. Although this work is closely related to the work presented in our paper, there are a
number of key differences between the two works. That is, Amaral et al. [11] present a systematic
mapping study focusing on a large-scale cluster of computing nodes that are connected by networks.
Furthermore, the heterogeneity in the parallel computing platforms is not explicitly addressed.
On the other hand, we present a systematic literature review that considers programming and

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2020.

A Comprehensive Exploration of Languages for Parallel Computing 1:27

modelling languages for a broad range of homogeneous and heterogeneous parallel computing
platforms ranging from on-chip and on-board to large-scale cluster platforms.
To the best of our knowledge, the state of the art is lacking a systematic literature review

on programming and modelling languages for parallel computing platforms. There is an urgent
need for constructing a structured map of the research area, analysing the existing works, and
identifying various trends and gaps in the area. The work presented in this paper takes a major
step in addressing these needs.

8 CONCLUSIONS AND FUTURE DIRECTIONS
In this article we reported on the planning, execution, and results of a systematic literature review
on languages for describing parallel software. From an initial set of 3476 papers (3469 from auto-
matic searches plus seven pilot studies) and 72 languages, after a set of refinements, we selected
225 primary studies to represent the treated topic. We extracted data from them according to a
thoroughly defined data extraction process; then, we analysed and synthesised the data. The result
of this work was a comprehensive, structured and detailed snapshot of the current landscape on
languages for parallel computing, useful for both the more and the less experienced researcher or
practitioner. Additionally, based on the study results and our own interpretation of the current and
forthcoming trends in relevant application domains, we provided hints on challenges that remain
open as well as on what we believe being some of the ‘hot’ research directions to pursue in this
research area. An interesting extension to this study could be a separate review of embedded/inter-
nal domain-specific languages for parallel computing, where the focus would be on aspects related
to their design/implementation and the relation to the host languages. A retrospective on the host
languages and the additional features brought by hosted languages could be then synthesised too.
Moreover, another direction for extending this study could be represented by an in-depth analysis
of the new challenges in HPC systems in terms of programming, such as those related to persistent
memory.

ACKNOWLEDGMENTS
This work was supported by the Knowledge Foundation through the projects HERO (rn. 20180039),
DPAC, SACSys, and the Swedish Foundation for Strategic Research through the Serendipity project.

REFERENCES
[1] Lorenzo Addazi, Federico Ciccozzi, Philip Langer, and Ernesto Posse. 2017. Towards Seamless Hybrid Graphical-

Textual Modelling for UML and Profiles. In 13th European Conference on Modelling Foundations and Applications.
http://www.es.mdh.se/publications/4751-

[2] Lorenzo Addazi, Federico Ciccozzi, and Björn Lisper. 2019. Executable Modelling for Highly Parallel Accelerators. In
Workshop on Modelling Language Engineering and Execution at MoDELS.

[3] Vikas Aggarwal, Alan D George, Changil Yoon, Kishore Yalamanchili, and Herman Lam. 2011. SHMEM+ A multilevel-
PGAS programming model for reconfigurable supercomputing. ACM Transactions on Reconfigurable Technology and
Systems (TRETS) 4, 3 (2011), 1–24.

[4] Snorri Agnarsson. 2010. Parallel programming in morpho. In International Workshop on Applied Parallel Computing.
Springer, 97–107.

[5] Gita Alaghband and Harry F Jordan. 1994. Overview of the Force scientific parallel language. Scientific Programming
3, 1 (1994), 33–47.

[6] Marco Aldinucci et al. 2003. eskimo: experimenting Skeletons on the Shared AddressModel. In Proc. of 2nd International
Workshop on, Vol. 16. Computer Science Department, University of Pisa, Italy, 44–58.

[7] Marco Aldinucci, Sonia Campa, Marco Danelutto, Peter Kilpatrick, and Massimo Torquati. 2012. Targeting distributed
systems in fastflow. In European Conference on Parallel Processing. Springer, 47–56.

[8] Muhammad Aleem, Radu Prodan, and Thomas Fahringer. 2012. The javasymphony extensions for parallel gpu
computing. In 2012 41st International Conference on Parallel Processing. IEEE, 30–39.

[9] Nauman Bin Ali and Kai Petersen. 2014. Evaluating strategies for study selection in systematic literature studies. In
International Symposium on Empirical Software Engineering and Measurement. ACM.

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2020.

http://www.es.mdh.se/publications/4751-

1:28 Ciccozzi et al.

[10] Makoto Amamiya, Masahiko Satoh, Akifumi Makinouchi, Ken-ichi Hagiwara, Taiichi Yuasa, Hitoshi Aida, Kazunori
Ueda, Keijiro Araki, Tetsuo Ida, and Takanobu Baba. 1994. Research on programming languages for massively parallel
processing. In Proceedings of the International Symposium on Parallel Architectures, Algorithms and Networks (ISPAN).
IEEE, 443–450.

[11] Vasco Amaral et al. 2020. Programming languages for data-Intensive HPC applications: A systematic mapping study.
Parallel Comput. 91 (2020), 102584. https://doi.org/10.1016/j.parco.2019.102584

[12] Manel Ammar, Mouna Baklouti, and Mohamed Abid. 2012. Extending MARTE to support the specification and the
generation of data intensive applications for massively parallel SoC. In 2012 15th Euromicro Conference on Digital
System Design. IEEE, 715–722.

[13] Birger Andersen. 1994. A general, fine-grained, machine independent, object-oriented language. ACM SIGPLAN
Notices 29, 5 (1994), 17–26.

[14] Hugo Andrade and Ivica Crnkovic. 2018. A Review on Software Architectures for Heterogeneous Platforms. In 25th
Asia-Pacific Software Engineering Conference (APSEC). 209–218.

[15] Hugo Andrade, Jan Schroeder, and Ivica Crnkovic. 2019. Software Deployment on Heterogeneous Platforms: A
Systematic Mapping Study. IEEE Transactions on Software Engineering (2019), 1–1.

[16] Keijiro Araki, Itsujiro Arita, and Masaki Hirabaru. 1984. NANO-2: HIGH-LEVEL PARALLEL PROGRAMMING LAN-
GUAGE FOR MULTIPROCESSOR SYSTEM HYPHEN.. In Proceedings-IEEE Computer Society International Conference.
IEEE, 449–456.

[17] F Arbab, JW De Bakker, MM Bonsangue, JJMM Rutten, A Scutella, and G Zavattaro. 2000. A transition system
semantics for the control-driven coordination language MANIFOLD. Theoretical Computer Science 240, 1 (2000), 3–47.

[18] Takanobu Baba and Tsutomu Yoshinaga. 1995. A-NETL: a language for massively parallel object-oriented computing.
In Programming Models for Massively Parallel Computers. IEEE, 98–105.

[19] Woongki Baek, Chi Cao Minh, Martin Trautmann, Christos Kozyrakis, and Kunle Olukotun. 2007. The OpenTM trans-
actional application programming interface. In 16th International Conference on Parallel Architecture and Compilation
Techniques (PACT 2007). IEEE, 376–387.

[20] Riyadh Baghdadi, Ulysse Beaugnon, Albert Cohen, Tobias Grosser, Michael Kruse, Chandan Reddy, Sven Verdoolaege,
Adam Betts, Alastair F Donaldson, Jeroen Ketema, et al. 2015. Pencil: A platform-neutral compute intermediate
language for accelerator programming. In 2015 International Conference on Parallel Architecture and Compilation
(PACT). IEEE, 138–149.

[21] Mouna Baklouti, Manel Ammar, Philippe Marquet, Mohamed Abid, and Jean-Luc Dekeyser. 2011. A model-driven
based framework for rapid parallel SoC FPGA prototyping. In 2011 22nd IEEE International Symposium on Rapid
System Prototyping. IEEE, 149–155.

[22] G. H. Barnes, R. M. Brown, M. Kato, D. J. Kuck, D. L. Slotnick, and R. A. Stokes. 1968. The ILLIAC IV Computer. IEEE
Trans. Comput. C-17 (1968), 746–757.

[23] Pablo Basanta-Val and Marisol García-Valls. 2015. A library for developing real-time and embedded applications in C.
Journal of Systems Architecture 61, 5-6 (2015), 239–255.

[24] Victor R. Basili, Gianluigi Caldiera, and H. Dieter Rombach. 1994. The Goal Question Metric Approach. In Encyclopedia
of Software Engineering. Vol. 2. Wiley, 528–532.

[25] Michael Bauer, John Clark, Eric Schkufza, and Alex Aiken. 2010. Sequoia++ User Manual, University of Chicago.
https://www.classes.cs.uchicago.edu/archive/2011/winter/32102-1/reading/sequoia-manual.pdf. Accessed: 2021-06-
15.

[26] Saniya Ben Hassen, Henri E Bal, and Ceriel JH Jacobs. 1998. A task-and data-parallel programming language based
on shared objects. ACM Transactions on Programming Languages and Systems (TOPLAS) 20, 6 (1998), 1131–1170.

[27] Siegfried Benkner and Viera Sipkova. 2003. Exploiting distributed-memory and shared-memory parallelism on
clusters of smps with data parallel programs. International Journal of Parallel Programming 31, 1 (2003), 3–19.

[28] Kenneth J Berry and Paul W Mielke Jr. 1988. A generalization of Cohen’s kappa agreement measure to interval
measurement and multiple raters. Educational and Psychological Measurement 48, 4 (1988), 921–933.

[29] Matthias Besch, Hua Bi, Gerd Heber, Matthias Kessler, and Matthias Wilhelmi. 1997. An object-oriented approach to
the implementation of a high-level data parallel language. In International Conference on Computing in Object-Oriented
Parallel Environments. Springer, 97–104.

[30] Lorenzo Bettini, Rocco De Nicola, Rosario Pugliese, and Gian Luigi Ferrari. 1998. Interactive mobile agents in X-Klaim.
In Proceedings Seventh IEEE International Workshop on Enabling Technologies: Infrastucture for Collaborative Enterprises
(WET ICE’98)(Cat. No. 98TB100253). IEEE, 110–115.

[31] Suchendra M Bhandarkar and Bonnie M Edwards. 1995. HyperPascal-an architecture independent Pascal interface
for parallel programming. In Proceedings IEEE Southeastcon’95. Visualize the Future. IEEE, 78–84.

[32] Ganesh Bikshandi, Jose G Castanos, Sreedhar B Kodali, V Krishna Nandivada, Igor Peshansky, Vijay A Saraswat,
Sayantan Sur, Pradeep Varma, and Tong Wen. 2009. Efficient, portable implementation of asynchronous multi-place
programs. ACM Sigplan Notices 44, 4 (2009), 271–282.

[33] Roberto Bisiani and Alessandro Forin. 1987. Architectural support for multilanguage parallel programming on
heterogeneous systems. ACM SIGPLAN Notices 22, 10 (1987), 21–30.

[34] Luc Bläser. 2006. A component language for structured parallel programming. In Joint Modular Languages Conference.
Springer, 230–250.

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2020.

https://doi.org/10.1016/j.parco.2019.102584
https://www.classes.cs.uchicago.edu/archive/2011/winter/32102-1/reading/sequoia-manual.pdf

A Comprehensive Exploration of Languages for Parallel Computing 1:29

[35] Marek Blazewicz, Steven R Brandt, Michal Kierzynka, Krzysztof Kurowski, Bogdan Ludwiczak, Jian Tao, and Jan
Weglarz. 2011. CaKernel–a parallel application programming framework for heterogenous computing architectures.
Scientific Programming 19, 4 (2011), 185–197.

[36] Robert L Bocchino Jr, Stephen Heumann, Nima Honarmand, Sarita V Adve, Vikram S Adve, Adam Welc, and Tatiana
Shpeisman. 2011. Safe nondeterminism in a deterministic-by-default parallel language. ACM SIGPLAN Notices 46, 1
(2011), 535–548.

[37] Daniele Bonetta, Danilo Ansaloni, Achille Peternier, Cesare Pautasso, and Walter Binder. 2012. Node.scala: Implicit
parallel programming for high-performance web services. In European Conference on Parallel Processing. Springer,
626–637.

[38] Daniele Bonetta, Luca Salucci, Stefan Marr, and Walter Binder. 2016. Gems: shared-memory parallel programming
for node. js. ACM SIGPLAN Notices 51, 10 (2016), 531–547.

[39] George Horaţiu Botorog and Herbert Kuchen. 1998. Efficient high-level parallel programming. Theoretical Computer
Science 196, 1-2 (1998), 71–107.

[40] Stephan Brandauer, Elias Castegren, Dave Clarke, Kiko Fernandez-Reyes, Einar Broch Johnsen, Ka I Pun, S Lizeth Tapia
Tarifa, Tobias Wrigstad, and Albert Mingkun Yang. 2015. Parallel objects for multicores: A glimpse at the parallel
language encore. In International School on Formal Methods for the Design of Computer, Communication and Software
Systems. Springer, 1–56.

[41] Pearl Brereton, Barbara A. Kitchenham, David Budgen, Mark Turner, and Mohamed Khalil. 2007. Lessons from
applying the systematic literature review process within the software engineering domain. Journal of Systems and
Software 80, 4 (2007), 571–583.

[42] Peter Brezány. 1983. Denotational semantics of parallel programming languages. Kybernetika 19, 3 (1983), 248–262.
[43] Ron Brightwell, Mike Heroux, Zhaofang Wen, and Junfeng Wu. 2009. Parallel phase model: A programming model

for high-end parallel machines with manycores. In 2009 International Conference on Parallel Processing. IEEE, 92–99.
[44] Andre R. Brodtkorb, Christopher Dyken, Trond R. Hagen, Jon M. Hjelmervik, and Olaf O. Storaasli. 2010. State-of-

the-Art in Heterogeneous Computing. Sci. Program. 18, 1 (Jan. 2010), 1–33. https://doi.org/10.1155/2010/540159
[45] Ansgar Brüll and Herbert Kuchen. 1996. TPascal—A language for task parallel programming. In European Conference

on Parallel Processing. Springer, 654–659.
[46] Paul-Jean Cagnard. 2000. The ParCeL-2 programming language. In European Conference on Parallel Processing.

Springer, 767–770.
[47] Ran Canetti, L Paul Fertig, Saul A Kravitz, Dalia Malki, Ron Y Pinter, Sara Porat, and Avi Teperman. 1991. The parallel

C (pC) programming language. IBM Journal of Research and Development 35, 5.6 (1991), 727–741.
[48] Brian D Carlstrom, Austen McDonald, Hassan Chafi, JaeWoong Chung, Chi Cao Minh, Christos Kozyrakis, and

Kunle Olukotun. 2006. The Atomos transactional programming language. In Proceedings of the 27th ACM SIGPLAN
Conference on Programming Language Design and Implementation. 1–13.

[49] Bryan Carpenter and Geoffrey Fox. 2003. HPJava: A data parallel programming alternative. Computing in Science &
Engineering 5, 3 (2003), 60–64.

[50] Bryan Catanzaro, Michael Garland, and Kurt Keutzer. 2011. Copperhead: compiling an embedded data parallel
language. In Proceedings of the 16th ACM symposium on Principles and practice of parallel programming. 47–56.

[51] Vincent Cavé, Jisheng Zhao, Jun Shirako, and Vivek Sarkar. 2011. Habanero-Java: the new adventures of old X10. In
Proceedings of the 9th International Conference on Principles and Practice of Programming in Java. 51–61.

[52] Bradford L Chamberlain, David Callahan, and Hans P Zima. 2007. Parallel programmability and the chapel language.
The International Journal of High Performance Computing Applications 21, 3 (2007), 291–312.

[53] Rohit Chandra, Anoop Gupta, and John L Hennessy. 1994. COOL: An object-based language for parallel programming.
Computer 27, 8 (1994), 13–26.

[54] K Mani Chandy and Ian Foster. 1995. A notation for deterministic cooperating processes. IEEE transactions on parallel
and distributed systems 6, 8 (1995), 863–871.

[55] Chapel, Version 1.24.1. 2021. The Chapel Parallel Programming Language. https://chapel-lang.org/. Accessed:
2021-06-15.

[56] Charm++ Programming Language, Release 6.10.2. 2020. http://charmplusplus.org/. Accessed: 2021-06-15.
[57] Kathy Charmaz and Linda Liska Belgrave. 2007. Grounded theory. The Blackwell encyclopedia of sociology (2007).
[58] Federico Ciccozzi, Matthias Tichy, Hans Vangheluwe, and Danny Weyns. 2019. Blended Modelling – What, Why and

How. In MPM4CPS workshop. http://www.es.mdh.se/publications/5642-
[59] RM Clapp and TN Mudge. 1992. Parallel language constructs for efficient parallel processing. In Proceedings of the

Twenty-Fifth Hawaii International Conference on System Sciences, Vol. 2. IEEE, 230–241.
[60] Keith Clark and Peter J Robinson. 2002. Agents as multi-threaded logical objects. In Computational Logic: Logic

Programming and Beyond. Springer, 33–65.
[61] Keith L Clark and Francis G McCabe. 2004. Go!—a multi-paradigm programming language for implementing

multi-threaded agents. Annals of Mathematics and Artificial Intelligence 41, 2-4 (2004), 171–206.
[62] Robert Clucas and Stephen Levitt. 2015. CAPP: A C++ aspect-oriented based framework for parallel programming

with OpenCL. In Proceedings of the 2015 Annual Research Conference on South African Institute of Computer Scientists
and Information Technologists. 1–10.

[63] Paul Cockshott and Greg Michaelson. 2006. Orthogonal parallel processing in vector Pascal. Computer Languages,
Systems & Structures 32, 1 (2006), 2–41.

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2020.

https://doi.org/10.1155/2010/540159
https://chapel-lang.org/
http://charmplusplus.org/
http://www.es.mdh.se/publications/5642-

1:30 Ciccozzi et al.

[64] Adrian Colbrook, William E Weihl, Eric A Brewer, Chrysanthos N Dellarocas, Wilson C Hsieh, Anthony D Joseph,
Carl A Waldspurger, and Paul Wang. 1992. Portable software for multiprocessor systems. Computing & Control
Engineering Journal 3, 6 (1992), 275–281.

[65] Philip Cox, Simon Gauvin, and Andrew Rau-Chaplin. 2005. Adding parallelism to visual data flow programs. In
Proceedings of the 2005 ACM symposium on Software visualization. 135–144.

[66] D Crookes, PJ Morrow, and PJ McParland. 1990. IAL: a parallel image processing programming language. IEE
Proceedings I (Communications, Speech and Vision) 137, 3 (1990), 176–182.

[67] Flavio Cruz, Ricardo Rocha, and Seth Copen Goldstein. 2015. Thread-aware logic programming for data-driven
parallel programs. (2015).

[68] Flavio Cruz, Ricardo Rocha, and Seth Copen Goldstein. 2016. Declarative coordination of graph-based parallel
programs. In Proceedings of the 21st ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming.
1–12.

[69] Daniela S Cruzes and Tore Dyba. 2011. Recommended steps for thematic synthesis in software engineering. In 2011
International Symposium on Empirical Software Engineering and Measurement. IEEE, 275–284.

[70] David E Culler, Andrea Dusseau, Seth Copen Goldstein, Arvind Krishnamurthy, Steven Lumetta, Thorsten Von Eicken,
and Katherine Yelick. 1993. Parallel programming in Split-C. In Supercomputing’93: Proceedings of the 1993 ACM/IEEE
conference on Supercomputing. IEEE, 262–273.

[71] MarcoDanelutto, Roberto DiMeglio, Salvatore Orlando, Susanna Pelagatti, andMarco Vanneschi. 1992. Amethodology
for the development and the support of massively parallel programs. Future Generation Computer Systems 8, 1-3
(1992), 205–220.

[72] Tiago José Barreiros Martins de Almeida and Nuno Filipe Valentim Roma. 2010. A parallel programming framework
for multi-core DNA sequence alignment. In 2010 International Conference on Complex, Intelligent and Software Intensive
Systems. IEEE, 907–912.

[73] Pablo de Oliveira Castro, Stéphane Louise, and Denis Barthou. 2010. A multidimensional array slicing dsl for stream
programming. In 2010 International Conference on Complex, Intelligent and Software Intensive Systems. IEEE, 913–918.

[74] Francisco de Sande, Felix Garcia, Coromoto Leon, and Casiano Rodriguez. 1996. The II parallel programming system.
IEEE Transactions on Education 39, 4 (1996), 457–464.

[75] J. Diaz, C. Muñoz-Caro, and A. Niño. 2012. A Survey of Parallel Programming Models and Tools in the Multi and
Many-Core Era. IEEE Transactions on Parallel and Distributed Systems 23, 8 (2012), 1369–1386.

[76] Walter dos Santos, Luiz FM Carvalho, Gustavo de P Avelar, Átila Silva, Lucas M Ponce, Dorgival Guedes, and Wagner
Meira. 2017. Lemonade: A scalable and efficient Spark-based platform for Data Analytics. In 2017 17th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (CCGRID). IEEE, 745–748.

[77] Vinoth Krishnan Elangovan, Rosa M Badia, and Eduard Ayguadé. 2014. Scalability and parallel execution of ompss-
opencl tasks on heterogeneous cpu-gpu environment. In International Supercomputing Conference. Springer, 141–155.

[78] Hajime Enomoto, Naoki Yonezaki, Isao Miyamura, and Masayuki Sunuma. 1980. A parallel programming language
and description of scheduler. In IBM Germany Scientific Symposium Series. Springer, 23–41.

[79] Erlang Programming Language, OTP Release 24.0. 2021. Build massively scalable soft real-time systems. https:
//www.erlang.org/. Accessed: 2021-06-15.

[80] Michael Faes and Thomas R Gross. 2018. Concurrency-aware object-oriented programming with roles. Proceedings of
the ACM on Programming Languages 2, OOPSLA (2018), 1–30.

[81] Jianbin Fang, Chun Huang, Tao Tang, and Zheng Wang. 2020. Parallel programming models for heterogeneous
many-cores: a comprehensive survey. CCF Transactions on High Performance Computing 2, 4 (2020), 382–400.

[82] E. Fernando, D. F. Murad, and B. D. Wijanarko. 2018. Classification and Advantages Parallel Computing in Process
Computation: A Systematic Literature Review. In International Conference on Computing, Engineering, and Design
(ICCED). 143–147.

[83] Yuan Yu Michael Isard Dennis Fetterly, Mihai Budiu, Úlfar Erlingsson, and Pradeep Kumar Gunda Jon Currey. 2009.
DryadLINQ: A system for general-purpose distributed data-parallel computing using a high-level language. Proc.
LSDS-IR 8 (2009).

[84] Ian Finlayson, Jerome Mueller, Shehan Rajapakse, and Daniel Easterling. 2015. Introducing tetra: an educational
parallel programming system. In 2015 IEEE International Parallel and Distributed Processing Symposium Workshop.
IEEE, 746–751.

[85] Alcides Fonseca, João Rafael, and Bruno Cabral. [n.d.].
[86] Rhys S Francis, Ian D Mathieson, Paul G Whiting, Martin R Dix, Harvey L Davies, and Leon D Rotstayn. 1994. A data

parallel scientific modeling language. J. Parallel and Distrib. Comput. 21, 1 (1994), 46–60.
[87] M. Frank, M. Hilbrich, S. Lehrig, and S. Becker. 2017. Parallelization, Modeling, and Performance Prediction in the

Multi-/Many Core Area: A Systematic Literature Review. In 7th IEEE International Symposium on Cloud and Service
Computing (SC2). 48–55.

[88] Robert Frank and Helmar Burkhart. 1997. Application support by software reuse: The ALWAN approach. In
International Conference on High-Performance Computing and Networking. Springer, 636–643.

[89] Roberto Franzosi. 2010. Quantitative narrative analysis. Number 162. Sage.
[90] Juan José Fumero, Toomas Remmelg, Michel Steuwer, and Christophe Dubach. 2015. Runtime code generation and

data management for heterogeneous computing in java. In Proceedings of the principles and practices of programming
on the java platform. 16–26.

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2020.

https://www.erlang.org/
https://www.erlang.org/

A Comprehensive Exploration of Languages for Parallel Computing 1:31

[91] Abdoulaye Gamatié, Sébastien Le Beux, Éric Piel, Rabie Ben Atitallah, Anne Etien, Philippe Marquet, and Jean-Luc
Dekeyser. 2011. A model-driven design framework for massively parallel embedded systems. ACM Transactions on
Embedded Computing Systems (TECS) 10, 4 (2011), 1–36.

[92] Sofien Gannouni. 2015. AGamma-calculus GPU-based parallel programming framework. In 2015 2ndWorld Symposium
on Web Applications and Networking (WSWAN). IEEE, 1–4.

[93] Vahid Garousi, Michael Felderer, and Mika V Mäntylä. 2019. Guidelines for including grey literature and conducting
multivocal literature reviews in software engineering. Information and Software Technology 106 (2019), 101–121.

[94] Jean-Luc Gaudiot, Tom DeBoni, John Feo, Wim Böhm, Walid Najjar, and Patrick Miller. 2001. The Sisal Project: Real
World Functional Programming. Springer Berlin Heidelberg, Berlin, Heidelberg, 45–72. https://doi.org/10.1007/3-540-
45403-9_2

[95] David Gay, Joel Galenson, Mayur Naik, and Kathy Yelick. 2011. Yada: Straightforward parallel programming. Parallel
Comput. 37, 9 (2011), 592–609.

[96] Michael Gerndt and Andreas Krumme. 1997. A rule-based approach for automatic bottleneck detection in programs
on shared virtual memory systems. In Proceedings Second International Workshop on High-Level Parallel Programming
Models and Supportive Environments. IEEE, 93–101.

[97] Stefan J Geuns, Joost PHM Hausmans, and Marco JG Bekooij. 2014. Hierarchical programming language for modal
multi-rate real-time stream processing applications. In 2014 43rd International Conference on Parallel Processing
Workshops. IEEE, 453–460.

[98] Fady Ghanim, Uzi Vishkin, and Rajeev Barua. 2017. Easy PRAM-based high-performance parallel programming with
ICE. IEEE Transactions on Parallel and Distributed Systems 29, 2 (2017), 377–390.

[99] Go Programming Language. 2021. https://golang.org/. Accessed: 2021-06-15.
[100] Ron Goldman and Richard Gabriel. 1988. Preliminary results with the initial implementation of Qlisp. In Proceedings

of the 1988 ACM conference on LISP and functional programming. 143–152.
[101] Bart Goossens, Hiep Luong, Jan Aelterman, and Wilfried Philips. 2018. Quasar, a high-level programming language

and development environment for designing smart vision systems on embedded platforms. In 2018 Design, Automation
& Test in Europe Conference & Exhibition (DATE). IEEE, 1310–1315.

[102] Thierry Goubier, Renaud Sirdey, Stéphane Louise, and Vincent David. 2011. ΣC: A programming model and language
for embedded manycores. In International Conference on Algorithms and Architectures for Parallel Processing. Springer,
385–394.

[103] Trisha Greenhalgh and Richard Peacock. 2005. Effectiveness and efficiency of search methods in systematic reviews
of complex evidence: audit of primary sources. BMJ 331, 7524 (2005), 1064–1065.

[104] Clemens Grelck and Sven-Bodo Scholz. 2006. SAC—a functional array language for efficient multi-threaded execution.
International Journal of Parallel Programming 34, 4 (2006), 383–427.

[105] Andrew S. Grimshaw. 1993. Easy-to-use object-oriented parallel processing with Mentat. Computer 26, 5 (1993),
39–51.

[106] Andrew S Grimshaw, Ami Silberman, and Jane WS Liu. 1989. Real-time Mentat programming language and architec-
ture. In 1989 IEEE Global Telecommunications Conference and Exhibition’Communications Technology for the 1990s and
Beyond’. IEEE, 141–147.

[107] Radu Grosu, Yanhong A Liu, Scott Smolka, Scott D Stoller, and Jingyu Yan. 2001. Automated software engineering using
concurrent class machines. In Proceedings 16th Annual International Conference on Automated Software Engineering
(ASE 2001). IEEE, 297–304.

[108] Steven A Guccione and Mario J Gonzalez. 1993. A data-parallel programming model for reconfigurable architectures.
In [1993] Proceedings IEEE Workshop on FPGAs for Custom Computing Machines. IEEE, 79–87.

[109] Vadim Guzev. 2008. Parallel C#: The Usage of Chords and Higher-order Functions in the Design of Parallel Program-
ming Languages.. In PDPTA. 833–837.

[110] Wieland Hagen, Max Plauth, Felix Eberhardt, Frank Feinbube, and Andreas Polze. 2016. PGASUS: a framework for
C++ application development on NUMA architectures. In 2016 Fourth International Symposium on Computing and
Networking (CANDAR). IEEE, 368–374.

[111] Michael Haidl and Sergei Gorlatch. 2018. High-level programming for many-cores using C++ 14 and the STL.
International Journal of Parallel Programming 46, 1 (2018), 23–41.

[112] Robert H Halstead Jr. 1985. Multilisp: A language for concurrent symbolic computation. ACM Transactions on
Programming Languages and Systems (TOPLAS) 7, 4 (1985), 501–538.

[113] Per Brinch Hansen. 1994. Interference control in SuperPascal—a block-structured parallel language. Comput. J. 37, 5
(1994), 399–406.

[114] Paul Harvey, Kristian Hentschel, and Joseph Sventek. 2015. Parallel programming in actor-based applications via
OpenCL. In Proceedings of the 16th Annual Middleware Conference. 162–172.

[115] Kenneth AHawick andHeath A James. 2000. A java-based parallel programming support environment. In International
Conference on High-Performance Computing and Networking. Springer, 363–372.

[116] Troels Henriksen, Niels GW Serup, Martin Elsman, Fritz Henglein, and Cosmin E Oancea. 2017. Futhark: purely
functional GPU-programming with nested parallelism and in-place array updates. In Proceedings of the 38th ACM
SIGPLAN Conference on Programming Language Design and Implementation. 556–571.

[117] Stephan Herhut, Richard L Hudson, Tatiana Shpeisman, and Jaswanth Sreeram. 2013. River trail: a path to parallelism
in JavaScript. ACM SIGPLAN Notices 48, 10 (2013), 729–744.

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2020.

https://doi.org/10.1007/3-540-45403-9_2
https://doi.org/10.1007/3-540-45403-9_2
https://golang.org/

1:32 Ciccozzi et al.

[118] J Hernandez, Pedro de Miguel, M Barrena, Juan Miguel Martinez, A Polo, and M Nieto. 1993. ALBA: a parallel
language based on actors. ACM SIGPLAN Notices 28, 4 (1993), 11–20.

[119] Rich Hickey. 2020. A History of Clojure. Proc. ACM Program. Lang. 4, HOPL, Article 71 (June 2020), 46 pages.
https://doi.org/10.1145/3386321

[120] Holger Hopp and Lutz Prechelt. 1999. CuPit-2: portable and efficient high-level parallel programming of neural
networks. Systems Analysis Modelling Simulation 35, 4 (1999), 379–398.

[121] Qiming Hou, Kun Zhou, and Baining Guo. 2008. BSGP: bulk-synchronous GPU programming. ACM Transactions on
Graphics (TOG) 27, 3 (2008), 1–12.

[122] Eduardo Camilo Inacio and Mario AR Dantas. 2014. A survey into performance and energy efficiency in HPC, cloud
and big data environments. International Journal of Networking and Virtual Organisations 14, 4 (2014), 299–318.

[123] Intel’s Coaarray Fortran. 2021. Tutorial: Using Coarray Fortran. https://software.intel.com/content/www/us/en/
develop/documentation/fortran-compiler-coarray-tutorial/top.html. Accessed: 2021-06-15.

[124] Suresh Jagannathan and Jim Philbin. 1992. A foundation for an efficient multi-threaded scheme system. In Proceedings
of the 1992 ACM conference on LISP and functional programming. 345–357.

[125] JoCaml Programming Language, Version 4.00.1.A. 2014. http://jocaml.inria.fr/. Accessed: 2021-06-15.
[126] Alan H. Karp. 1987. Programming for Parallelism. Computer 20, 5 (May 1987), 43–57.
[127] Ryan D Kelker. 2013. Clojure for domain-specific languages. Packt Publishing Ltd.
[128] C. Kessler and J. Keller. 1995. Joule: Distributed Application Foundations. Technical Report. Agorics Technical Report

ADd003.4P, http://www.laputan.org/pub/papers/Joule.pdf. Accessed: 2021-06-15.
[129] C. Kessler and J. Keller. 2007. Models for Parallel Computing: Review and Perspective. Technical Report. Linköping

University, Sweden. ISSN: 0177-0454, https://www.ida.liu.se/~chrke55/papers/modelsurvey.pdf.
[130] Christoph W Kessler. 2004. Managing distributed shared arrays in a bulk-synchronous parallel programming

environment. Concurrency and Computation: Practice and Experience 16, 2-3 (2004), 133–153.
[131] Christoph W Keßler and Helmut Seidl. 1997. The Fork95 parallel programming language: Design, implementation,

application. International journal of parallel programming 25, 1 (1997), 17–50.
[132] Christoph W Keßler and Helmut Seidl. 1999. ForkLight: A control-synchronous parallel programming language. In

International Conference on High-Performance Computing and Networking. Springer, 525–534.
[133] Barbara Kitchenham and Pearl Brereton. 2013. A systematic review of systematic review process research in software

engineering. Information and software technology 55, 12 (2013), 2049–2075.
[134] Barbara A Kitchenham and Stuart Charters. 2007. Guidelines for performing systematic literature reviews in software

engineering. Technical Report EBSE-2007-01. Keele University and University of Durham.
[135] Svend E Knudsen. 2011. Using independence to enable parallelism on multicore computers. Software: Practice and

Experience 41, 4 (2011), 393–402.
[136] Krzysztof Kochut. 1989. Execution kernel for parallel logic programming. In Proceedings. IEEE Energy and Information

Technologies in the Southeast’. IEEE, 491–495.
[137] Aaron H Konstam. 1981. A method for controlling parallelism in programming languages. ACM SIGPLAN Notices 16,

9 (1981), 60–65.
[138] Sriram Krishnamoorthy, Umit Catalyurek, Jarek Nieplocha, Atanas Rountev, and P Sadayappan. 2006. An extensible

global address space framework with decoupled task and data abstractions. In Proceedings 20th IEEE International
Parallel & Distributed Processing Symposium. IEEE, 7–pp.

[139] Vivek Kumar, Julian Dolby, and Stephen M Blackburn. 2016. Integrating asynchronous task parallelism and data-
centric atomicity. In Proceedings of the 13th International Conference on Principles and Practices of Programming on the
Java Platform: Virtual Machines, Languages, and Tools. 1–10.

[140] Andreas Kunft, Lukas Stadler, Daniele Bonetta, Cosmin Basca, Jens Meiners, Sebastian Breß, Tilmann Rabl, Juan
Fumero, and Volker Markl. 2018. Scootr: Scaling r dataframes on dataflow systems. In Proceedings of the ACM
Symposium on Cloud Computing. 288–300.

[141] Shigeru Kusakabe, Taku Nagai, Yoshihiro Yamashita, Rin-ichiro Taniguchi, and Makoto Amamiya. 1995. A dataflow
language with object-based extension and its implementation on a commercially available parallel machine. In
Proceedings of the 9th international conference on Supercomputing. 308–317.

[142] VP Kutepov, VN Malanin, and NA Pankov. 2012. Flowgraph stream parallel programming: Language, process model,
and computer implementation. Journal of Computer and Systems Sciences International 51, 1 (2012), 65–79.

[143] F. A. Lara Soares, C. Neri Nobre, and H. Cota de Freitas. 2019. Parallel Programming in Computing Undergraduate
Courses: a Systematic Mapping of the Literature. IEEE Latin America Transactions 17, 08 (2019), 1371–1381.

[144] James Larus. 1992. C**: A large-grain, object-oriented, data-parallel programming language. In International Workshop
on Languages and Compilers for Parallel Computing. Springer, 326–341.

[145] Alexey Lastovetsky. 2002. Adaptive parallel computing on heterogeneous networks with mpC. Parallel computing 28,
10 (2002), 1369–1407.

[146] Jinpil Lee, Mitsuhisa Sato, and Taisuke Boku. 2007. Design and implementation of OpenMPD: An OpenMP-like
programming language for distributed memory systems. In International Workshop on OpenMP. Springer, 143–147.

[147] Jinpil Lee, Minh Tuan Tran, Tetsuya Odajima, Taisuke Boku, and Mitsuhisa Sato. 2011. An extension of XcalableMP
PGAS lanaguage for multi-node GPU clusters. In European Conference on Parallel Processing. Springer, 429–439.

[148] Sunwoo Lee, Byung Kwan Jung, Minsoo Ryu, and Seungwon Lee. 2009. Extending Component-Based Ap-
proaches for Multithreaded Design of Multiprocessor Embedded Software. In 2009 IEEE International Symposium on

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2020.

https://doi.org/10.1145/3386321
https://software.intel.com/content/www/us/en/develop/documentation/fortran-compiler-coarray-tutorial/top.html
https://software.intel.com/content/www/us/en/develop/documentation/fortran-compiler-coarray-tutorial/top.html
http://jocaml.inria.fr/
http://www.laputan.org/pub/papers/Joule.pdf
https://www.ida.liu.se/~chrke55/papers/modelsurvey.pdf

A Comprehensive Exploration of Languages for Parallel Computing 1:33

Object/Component/Service-Oriented Real-Time Distributed Computing. IEEE, 267–274.
[149] Mingjie Lin, Ilia Lebedev, and John Wawrzynek. 2010. OpenRCL: low-power high-performance computing with

reconfigurable devices. In 2010 international conference on field programmable logic and applications. IEEE, 458–463.
[150] Chao Liu and Miriam Leeser. 2016. Unified and lightweight tasks and conduits: A high level parallel programming

framework. In 2016 IEEE High Performance Extreme Computing Conference (HPEC). IEEE, 1–7.
[151] Fei Liu, Yi Yang, and Ling-ze Wang. 2016. A Survey of the Heterogeneous Computing Platform and Related

Technologies. In International Conference on Informatics, Management Engineering and Industrial Application (IMEIA)
(Thailand). 6–12. https://doi.org/10.12783/dtetr/imeia2016/9229

[152] Ivan Llopard, Christian Fabre, and Albert Cohen. 2017. From a formalized parallel action language to its efficient
code generation. ACM Transactions on Embedded Computing Systems (TECS) 16, 2 (2017), 1–28.

[153] Hans-Wolfgang Loidl, Philip W Trinder, Kevin Hammond, Abdallah Al Zain, Clement A Baker-Finch, et al. 2008.
Semi-Explicit Parallel Programming in a Purely Functional Style: GpH. Process Algebra for Parallel and Distributed
Processing: Algebraic Languages in Specification-Based Software Development (2008), 47–76.

[154] Anton Lokhmotov, Benedict R Gaster, Alan Mycroft, Neil Hickey, and David Stuttard. 2007. Revisiting SIMD
programming. In International Workshop on Languages and Compilers for Parallel Computing. Springer, 32–46.

[155] Roberto Lublinerman, Jisheng Zhao, Zoran Budimlić, Swarat Chaudhuri, and Vivek Sarkar. 2011. Delegated isolation.
ACM SIGPLAN Notices 46, 10 (2011), 885–902.

[156] Philipp Lucas, Nicolas Fritz, and Reinhard Wilhelm. 2006. The development of the data-parallel GPU programming
language CGiS. In International Conference on Computational Science. Springer, 200–203.

[157] Steven Lucco and Oliver Sharp. 1991. Parallel programming with coordination structures. In Proceedings of the 18th
ACM SIGPLAN-SIGACT symposium on Principles of programming languages. 197–208.

[158] Tim H MacKenzie and Trevor I Dix. 1998. Object-oriented Ease-based parallel primitives in C++. In Proceedings 1998
International Conference on Parallel and Distributed Systems (Cat. No. 98TB100250). IEEE, 623–630.

[159] Jari-Matti Makela, Martti Forsell, and Ville Leppanen. 2017. Towards a language framework for thick control flows.
In 2017 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW). IEEE, 814–823.

[160] Yong Mao, Yunhong Gu, Jia Chen, and Robert L Grossman. 2006. FastPara: a High-level Declarative Data-Parallel
Programming Framework on Clusters. Proceedings of Parallel and Distributed Computing and Systems (PDCS 2006),
November (2006), 13–15.

[161] A. Marcoux, C. Maurel, and P. Salle. 1988. AL 1: a language for distributed applications. In [1988] Proceedings. Workshop
on the Future Trends of Distributed Computing Systems in the 1990s. 270–276.

[162] Massimo Maresca and Pierpaolo Baglietto. 1993. A programming model for reconfigurable mesh based parallel
computers. In Proceedings of Workshop on Programming Models for Massively Parallel Computers. IEEE, 124–133.

[163] Cristian Mateos, Alejandro Zunino, Mat Hirsch, et al. 2013. EasyFJP: Providing hybrid parallelism as a concern for
divide and conquer Java applications. Computer Science and Information Systems 10, 3 (2013), 1129–1163.

[164] Håkan Mattsson and Christoph Kessler. 2004. Towards a bulk-synchronous distributed shared memory programming
environment for grids. In International Workshop on Applied Parallel Computing. Springer, 519–526.

[165] Patrick McCormick, Jeff Inman, James Ahrens, Jamaludin Mohd-Yusof, Greg Roth, and Sharen Cummins. 2007. Scout:
a data-parallel programming language for graphics processors. Parallel Comput. 33, 10-11 (2007), 648–662.

[166] Suejb Memeti, Lu Li, Sabri Pllana, Joanna Kołodziej, and Christoph Kessler. 2017. Benchmarking OpenCL, OpenACC,
OpenMP, and CUDA: Programming Productivity, Performance, and Energy Consumption. In Procs of ARMS-CC. 1–6.

[167] Olivier Michel. 1996. Design and implementation of 812: A declarative data-parallel language. Computer Languages
22, 2-3 (1996), 165–179.

[168] Russ Miller and Quentin F Stout. 1989. An introduction to the portable parallel programming language Seymour. In
[1989] Proceedings of the Thirteenth Annual International Computer Software & Applications Conference. IEEE, 94–101.

[169] Andreas Mitschele-Thiel. 1993. The DSPL programming environment. In Proceedings of Workshop on Programming
Models for Massively Parallel Computers. IEEE, 35–42.

[170] Sparsh Mittal and Jeffrey S. Vetter. 2015. A Survey of CPU-GPU Heterogeneous Computing Techniques. ACM Comput.
Surv. 47, 4, Article 69 (July 2015), 35 pages. https://doi.org/10.1145/2788396

[171] PauloMoura, Paul Crocker, and Paulo Nunes. 2008. High-level multi-threading programming in logtalk. In International
Symposium on Practical Aspects of Declarative Languages. Springer, 265–281.

[172] National Instruments. 2005. LabVIEW Fundamentals. Technical Report. LabVIEW Manual, 374029A-01, https:
//www.ni.com/pdf/manuals/374029a.pdf. Accessed: 2021-06-15.

[173] Nenad Nedeljkovlc and Michael J Quinn. 1993. Data-parallel programming on a network of heterogeneous worksta-
tions. Concurrency: Practice and Experience 5, 4 (1993), 257–268.

[174] Markus Nestmann. 2017. Building a Consistent Taxonomy for Parallel Programming Models. In GI-Jahrestagung.
[175] Bob Newman and Martin Payne. 1994. Integration of object oriented and concurrent programming. In Proceedings of

Twentieth Euromicro Conference. System Architecture and Integration. IEEE, 258–264.
[176] T-A Nguyen and Pierre Kuonen. 2003. ParoC++: A requirement-driven parallel object-oriented programming language.

In Proceedings International Parallel and Distributed Processing Symposium. IEEE, 9–pp.
[177] Susumu Nishimura and Atsushi Ohori. 1999. Parallel functional programming on recursively defined data via

data-parallel recursion. Journal of Functional Programming 9, 4 (1999), 427–462.
[178] Lukito Edi Nugroho and ASM Sajeev. 1999. Java4P: Java with high-level concurrency constructs. In Proceedings Fourth

International Symposium on Parallel Architectures, Algorithms, and Networks (I-SPAN’99). IEEE, 328–333.

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2020.

https://doi.org/10.12783/dtetr/imeia2016/9229
https://doi.org/10.1145/2788396
https://www.ni.com/pdf/manuals/374029a.pdf
https://www.ni.com/pdf/manuals/374029a.pdf

1:34 Ciccozzi et al.

[179] Eddy AM Odijk. 1990. POOMA, POOL and parallel symbolic computing: An assessment. In CONPAR 90—VAPP IV.
Springer, 26–38.

[180] Kazuhiko Ohno, Shigehiro Yamamoto, Takanori Okano, and Hiroshi Nakashima. 2000. Orgel: An parallel programming
language with declarative communication streams. In International Symposium on High Performance Computing.
Springer, 344–354.

[181] Kenneth O’brien, Ilia Pietri, Ravi Reddy, Alexey Lastovetsky, and Rizos Sakellariou. 2017. A survey of power and
energy predictive models in HPC systems and applications. ACM Computing Surveys (CSUR) 50, 3 (2017), 1–38.

[182] Edwin M Paalvast, Henk J Sips, and Leo C Breebaart. 1991. Booster: a high-level language for portable parallel
algorithms. Applied Numerical Mathematics 8, 2 (1991), 177–192.

[183] Patrick Viry. 2017. Ateji PX for Java: Parallel Programmingmade Simple. https://www.slideshare.net/PatrickViry/ateji-
px-for-java. Accessed: 2021-06-15.

[184] Hervé Paulino and Eduardo Marques. 2015. Heterogeneous programming with single operation multiple data. J.
Comput. System Sci. 81, 1 (2015), 16–37.

[185] L Moniz Pereira, LF Monteiro, Jose C Cunha, and Joaquim N Aparicio. 1988. Concurrency and communication in
Delta Prolog. In 1988 International Specialist Seminar on the Design and Application of Parallel Digital Processors. IET,
94–104.

[186] Kai Petersen, Robert Feldt, Shahid Mujtaba, and Michael Mattsson. 2008. Systematic Mapping Studies in Software
Engineering. In Proceedings of the 12th International Conference on Evaluation and Assessment in Software Engineering
(Italy) (EASE’08). British Computer Society, Swinton, UK, UK, 68–77. http://dl.acm.org/citation.cfm?id=2227115.
2227123

[187] Michael Philippsen, Thomas M Warschko, Walter F Tichy, and Christian G Herter. 1993. Project Triton: Towards
improved programmability of parallel machines. In [1993] Proceedings of the Twenty-sixth Hawaii International
Conference on System Sciences, Vol. 1. IEEE, 192–201.

[188] Eduardo Gurgel Pinho and Francisco Heron de Carvalho Junior. 2014. An object-oriented parallel programming
language for distributed-memory parallel computing platforms. Science of Computer Programming 80 (2014), 65–90.

[189] Katalin Popovici, Xavier Guerin, Lisane Brisolara, and Ahmed Jerraya. 2007. Mixed hardware software multilevel
modeling and simulation for multithreaded heterogeneous MPSoC. In 2007 International Symposium on VLSI Design,
Automation and Test (VLSI-DAT). IEEE, 1–4.

[190] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo Durand, and Saman Amarasinghe.
2013. Halide: a language and compiler for optimizing parallelism, locality, and recomputation in image processing
pipelines. Acm Sigplan Notices 48, 6 (2013), 519–530.

[191] Frédéric Raimbault and Dominique Lavenier. 1993. Relacs for systolic programming. In Proceedings of International
Conference on Application Specific Array Processors (ASAP’93). IEEE, 132–135.

[192] Rafael Ramirez. 1998. Time, communication and synchronisation in an agent-based programming language. In
Proceedings. Fifth International Workshop on Temporal Representation and Reasoning (Cat. No. 98EX157). IEEE, 169–176.

[193] Pushpa Rao and Clifford Walinsky. 1993. An equational language for data-parallelism. ACM SIGPLAN Notices 28, 7
(1993), 112–118.

[194] Aseem Rastogi, Matthew A Hammer, and Michael Hicks. 2014. Wysteria: A programming language for generic,
mixed-mode multiparty computations. In 2014 IEEE Symposium on Security and Privacy. IEEE, 655–670.

[195] Regents of the University of California. 2013. Bloom Programming Language, Release 0.9.7. http://bloom-lang.net/.
Accessed: 2021-06-15.

[196] RJ Richards, Balkrishna Ramkumar, and Sukumar G Rathnam. 1997. ELMO: extending (sequential) languages with
migratable objects-compiler support. In Proceedings Fourth International Conference on High-Performance Computing.
IEEE, 180–185.

[197] Christoph Rieger, Fabian Wrede, and Herbert Kuchen. 2019. Musket: a domain-specific language for high-level
parallel programming with algorithmic skeletons. In Proceedings of the 34th ACM/SIGAPP Symposium on Applied
Computing. 1534–1543.

[198] Martin C Rinard and Monica S Lam. 1998. The design, implementation, and evaluation of Jade. ACM Transactions on
Programming Languages and Systems (TOPLAS) 20, 3 (1998), 483–545.

[199] Joseph A Roback and Gregory R Andrews. 2010. Gossamer: A lightweight approach to using multicore machines. In
2010 39th International Conference on Parallel Processing. IEEE, 30–39.

[200] Mark Rodgers, Amanda Sowden, Mark Petticrew, Lisa Arai, Helen Roberts, Nicky Britten, and Jennie Popay. 2009.
Testing methodological guidance on the conduct of narrative synthesis in systematic reviews: effectiveness of
interventions to promote smoke alarm ownership and function. Evaluation 15, 1 (2009), 49–73.

[201] A Wendell O Rodrigues, Frederic Guyomarc’h, and Jean-Luc Dekeyser. 2012. An MDE approach for automatic code
generation from UML/MARTE to OpenCL. Computing in Science & Engineering 15, 1 (2012), 46–55.

[202] RUST, Version 1.52.1. 2021. A language empowering everyone to build reliable and efficient software. https://www.rust-
lang.org/. Accessed: 2021-06-15.

[203] Shigeyuki Sato and Hideya Iwasaki. 2009. A skeletal parallel framework with fusion optimizer for GPGPU program-
ming. In Asian Symposium on Programming Languages and Systems. Springer, 79–94.

[204] Scala, Version 2.12.14. 2017. The Scala Programming Language. https://www.scala-lang.org/. Accessed: 2021-06-15.
[205] M Schollmeyer. 1991. Linda and parallel computing-running efficiently on parallel time. IEEE Potentials 10, 3 (1991),

43–45.

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2020.

https://www.slideshare.net/PatrickViry/ateji-px-for-java
https://www.slideshare.net/PatrickViry/ateji-px-for-java
http://dl.acm.org/citation.cfm?id=2227115.2227123
http://dl.acm.org/citation.cfm?id=2227115.2227123
http://bloom-lang.net/
https://www.rust-lang.org/
https://www.rust-lang.org/
https://www.scala-lang.org/

A Comprehensive Exploration of Languages for Parallel Computing 1:35

[206] Oren Segal, Martin Margala, Sai Rahul Chalamalasetti, and Mitch Wright. 2014. High level programming framework
for FPGAs in the data center. In 2014 24th International Conference on Field Programmable Logic and Applications (FPL).
IEEE, 1–4.

[207] Yi Shan, Bo Wang, Jing Yan, Yu Wang, Ningyi Xu, and Huazhong Yang. 2010. FPMR: MapReduce framework on FPGA.
In Proceedings of the 18th annual ACM/SIGDA international symposium on Field programmable gate arrays. 93–102.

[208] Pritam Prakash Shete, PPK Venkat, DineshM Sarode, Mohini Laghate, SK Bose, and RSMundada. 2012. Object oriented
framework for CUDA based image processing. In 2012 International Conference on Communication, Information &
Computing Technology (ICCICT). IEEE, 1–6.

[209] Lawrence Snyder. 2007. The design and development of ZPL. In Proceedings of the third ACM SIGPLAN conference on
History of programming languages. 8–1.

[210] Jon A Solworth. 1992. Epochs. ACM Transactions on Programming Languages and Systems (TOPLAS) 14, 1 (1992),
28–53.

[211] Giandomenico Spezzano and Domenico Talia. 1997. A high-level cellular programming model for massively parallel
processing. In Proceedings Second International Workshop on High-Level Parallel Programming Models and Supportive
Environments. IEEE, 55–63.

[212] Nenad Stankovic and Kang Zhang. 2002. A distributed parallel programming framework. IEEE Transactions on
Software Engineering 28, 5 (2002), 478–493.

[213] Ketil Stølen. 1991. A method for the development of totally correct shared-state parallel programs. In International
Conference on Concurrency Theory. Springer, 510–525.

[214] RF Stone and HSM Zedan. 1989. Designing time critical systems with TACT. In [1989] Proceedings. EUROMICRO
Workshop on Real Time. IEEE, 74–82.

[215] Andrew Stromme, Ryan Carlson, and Tia Newhall. 2012. Chestnut: A Gpu programming language for non-experts. In
Proceedings of the 2012 International Workshop on Programming Models and Applications for Multicores and Manycores.
156–167.

[216] Shelly S Stubbs and Doris L Carver. 1995. IPCC++: a C++ extension for interprocess communication with objects. In
Procs of COMPSAC. IEEE, 205–210.

[217] Yan Su, Feng Shi, Shahnawaz Talpur, Jin Wei, and Hai Tan. 2014. Exploiting controlled-grained parallelism in
message-driven stream programs. The Journal of Supercomputing 70, 1 (2014), 488–509.

[218] Jiawen Sun, Hans Vandierendonck, and Dimitrios S Nikolopoulos. 2017. GraphGrind: addressing load imbalance of
graph partitioning. In Proceedings of the International Conference on Supercomputing. 1–10.

[219] Yuanhao Sun, Tianyou Li, Qi Zhang, Jia Yang, and Shih-wei Liao. 2007. Parallel xml transformations on multi-core
processors. In IEEE International Conference on e-Business Engineering (ICEBE’07). IEEE, 701–708.

[220] B Suresh and R Nadarajan. 2003. Object oriented parallel programming model on a network of workstations. In
International Conference on Computational Science. Springer, 1000–1010.

[221] AR Surve, AR Khomane, and S Cheke. 2013. Energy awareness in HPC: a survey. International Journal of Computer
Science and Mobile Computing 2, 3 (2013), 46–51.

[222] Lukasz G Szafaryn, Todd Gamblin, Bronis R De Supinski, and Kevin Skadron. 2013. Trellis: Portability across
architectures with a high-level framework. J. Parallel and Distrib. Comput. 73, 10 (2013), 1400–1413.

[223] S. Tucker Taft. 2019. ParaSail: A Pointer-Free Pervasively-Parallel Language for Irregular Computations. Art Sci. Eng.
Program. 3, 3 (2019), 7. https://doi.org/10.22152/programming-journal.org/2019/3/7

[224] S Tucker Taft, Brad Moore, Luís Miguel Pinho, and Stephen Michell. 2014. Safe parallel programming in Ada with
language extensions. In Procs of HILT. 87–96.

[225] David Tarditi, Sidd Puri, and Jose Oglesby. 2006. Accelerator: using data parallelism to program GPUs for general-
purpose uses. ACM SIGPLAN Notices 41, 11 (2006), 325–335.

[226] Enric Tejedor, Yolanda Becerra, Guillem Alomar, Anna Queralt, Rosa M Badia, Jordi Torres, Toni Cortes, and Jesús
Labarta. 2017. PyCOMPSs: Parallel computational workflows in Python. The International Journal of High Performance
Computing Applications 31, 1 (2017), 66–82.

[227] The Julia Programming Language. 2021. Julia in a Netshell, Version 1.6.1. https://julialang.org/. Accessed: 2021-06-15.
[228] The Open MPI Project. 2021. Open MPI: Open Source High Performance Computing. https://www.open-mpi.org/.

Accessed: 2021-06-15.
[229] George K Thiruvathukal, Phillip M Dickens, and Shahzad Bhatti. 2000. Java on networks of workstations (JavaNOW):

a parallel computing framework inspired by Linda and the Message Passing Interface (MPI). Concurrency: Practice
and Experience 12, 11 (2000), 1093–1116.

[230] Peter Thoman, Kiril Dichev, ThomasHeller, Roman Iakymchuk, Xavier Aguilar, Khalid Hasanov, Philipp Gschwandtner,
Pierre Lemarinier, Stefano Markidis, Herbert Jordan, et al. 2018. A taxonomy of task-based parallel programming
technologies for high-performance computing. The Journal of Supercomputing 74, 4 (2018), 1422–1434.

[231] John Thornley. 1995. Declarative Ada: parallel dataflow programming in a familiar context. In Proceedings of the 1995
ACM 23rd annual conference on Computer science. 73–80.

[232] Bo-Ming Tong and Ho-Fung Leung. 1998. Data-parallel concurrent constraint programming. The Journal of Logic
Programming 35, 2 (1998), 103–150.

[233] TOP500.org. [n.d.]. TOP500 – The List. https://www.top500.org/lists/top500/2020/06/. Accessed: 2020-07-03.
[234] Anand Tripathi, Vinit Padhye, and Tara Sasank Sunkara. 2014. Beehive: A Framework for Graph Data Analytics on

Cloud Computing Platforms. In 2014 43rd International Conference on Parallel Processing Workshops. IEEE, 331–338.

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2020.

https://doi.org/10.22152/programming-journal.org/2019/3/7
https://julialang.org/
https://www.open-mpi.org/
https://www.top500.org/lists/top500/2020/06/

1:36 Ciccozzi et al.

[235] Jean-Baptiste Tristan, Daniel Huang, Joseph Tassarotti, Adam C Pocock, Stephen Green, and Guy L Steele. 2014.
Augur: Data-parallel probabilistic modeling. In Advances in Neural Information Processing Systems. 2600–2608.

[236] Miwako Tsuji, Mitsuhisa Sato, Maxime Hugues, and Serge Petiton. [n.d.]. Multiple-SPMD Programming Environment
Based on PGAS and Workflow toward Post-petascale Computing. https://doi.org/10.1109/ICPP.2013.58

[237] David Ungar and Sam S Adams. 2010. Harnessing emergence for manycore programming: early experience integrating
ensembles, adverbs, and object-based inheritance. In Procs of SPLASH. 19–26.

[238] Theo Ungerer and Eberhard Zehendner. 1991. A multi-level parallelism architecture. ACM SIGARCH Computer
Architecture News 19, 4 (1991), 86–93.

[239] Gautam Upadhyaya, Vijay S Pai, and Samuel P Midkiff. 2007. Expressing and exploiting concurrency in networked
applications with aspen. In Procs of PPoPP. 13–23.

[240] Mark Utting, Min-Hsien Weng, and John G Cleary. 2013. The JStar language philosophy. In Proceedings of the 2013
International Workshop on Programming Models and Applications for Multicores and Manycores. 31–41.

[241] Kees van Reeuwijk, Arjan JC van Gemund, and Henk J Sips. 1997. Spar: A programming language for semi-automatic
compilation of parallel programs. Concurrency: Practice and Experience 9, 11 (1997), 1193–1205.

[242] Stéphane Vialle, Thierry Cornu, and Yannick Lallement. 1996. ParCeL-1: a parallel programming language based on
autonomous and synchronous actors. ACM SIGPLAN Notices 31, 8 (1996), 43–51.

[243] Vita Nuova. 1995. Limbo programming language. http://www.vitanuova.com/inferno/licence.html. Accessed:
2021-06-15.

[244] Jürgen Vollmer and Ralf Hoffart. 1992. Modula-Pa language for parallel programming definition and implementation
on a transputer network. In Proceedings of the 1992 International Conference on Computer Languages. IEEE, 54–64.

[245] Reinhard Von Hanxleden. 2009. SyncCharts in C: a proposal for light-weight, deterministic concurrency. In Proceedings
of the seventh ACM international conference on Embedded software. 225–234.

[246] Stewart von Itzstein and David Kearney. 2002. Applications of Join Java. In Proceedings of the Seventh Asia-Pacific
Computer Systems Architectures Conference. 37–46.

[247] Benjamin JL Wang and Uwe R Zimmer. 2017. Pure Concurrent Programming. In 2017 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW). IEEE, 824–831.

[248] Chen Wang, Ce Yu, Jizhou Sun, and Xiangfei Meng. 2015. DPX10: An Efficient X10 Framework for Dynamic
Programming Applications. In 2015 44th International Conference on Parallel Processing. IEEE, 869–878.

[249] HC Wang, CK Yuen, and MD Feng. 1999. BaLinda c++: run-time support for concurrent object-oriented language. In
Procs of I-SPAN’99. IEEE, 36–41.

[250] PY Wang, SB Seidman, MD Rice, and TE Gerasch. 1989. An object-method programming language for data parallel
computation. In Procs of HICSS, Vol. 2. IEEE, 745–750.

[251] YMRD Wepathana, G Anthonys, and LSK Udugama. 2015. Compiler for a simplified programming language aiming
on Multi Core Students’ Experimental Processor. In Procs of ICIIS. IEEE, 284–289.

[252] Emily A West and Andrew S Grimshaw. 1995. Braid: Integrating task and data parallelism. In Proceedings Frontiers’
95. The Fifth Symposium on the Frontiers of Massively Parallel Computation. IEEE, 211–219.

[253] Claes Wohlin. 2014. Guidelines for Snowballing in Systematic Literature Studies and a Replication in Software
Engineering. In Procs of EASE. ACM, Article 38, 38:1–38:10 pages.

[254] C. Wohlin, P. Runeson, M. Höst, M.C. Ohlsson, B. Regnell, and A. Wesslén. 2012. Experimentation in Software
Engineering. Springer.

[255] Justin M Wozniak, Timothy G Armstrong, Michael Wilde, Daniel S Katz, Ewing Lusk, and Ian T Foster. 2013. Swift/t:
Large-scale application composition via distributed-memory dataflow processing. In Procs of CCGRID. IEEE, 95–102.

[256] Tianji Wu, Di Wu, Yu Wang, Xiaorui Zhang, Hong Luo, Ningyi Xu, and Huazhong Yang. 2011. Gemma in April: A
matrix-like parallel programming architecture on OpenCL. In 2011 Design, Automation & Test in Europe. IEEE, 1–6.

[257] Chengzhi Xu, Hong Zhu, Ian Bayley, David Lightfoot, Mark Green, and Peter Marshall. 2016. Caople: A programming
language for microservices saas. In 2016 IEEE Symposium on Service-Oriented System Engineering (SOSE). IEEE, 34–43.

[258] Zhiwei Xu and Kai Hwang. 1989. Molecule: A language construct for layered development of parallel programs. IEEE
transactions on software engineering 15, 5 (1989), 587–599.

[259] Eugene Yip, Alain Girault, Partha S Roop, and Morteza Biglari-Abhari. 2016. The ForeC synchronous deterministic
parallel programming language for multicores. In Procs of MCSOC. IEEE, 297–304.

[260] Mohamed Youssfi, Omar Bouattane, Mohamed O Bensalah, ENSET Bd Hassan II BP, and Mohammedia Morocco. 2010.
On the object modelling of the Massively parallel architecture Computers. In Proceedings of the IASTED Inter. Conf.
Software engineering. 71–78.

[261] Yuanyuan Zhang, Hidetoshi Iwashita, Kuninori Ishii, Masanori Kaneko, Tomotake Nakamura, and Kohichiro Hotta.
2010. Hybrid parallel programming on SMP clusters using XPFortran and OpenMP. In International Workshop on
OpenMP. Springer, 133–148.

[262] Yunming Zhang, Mengjiao Yang, Riyadh Baghdadi, Shoaib Kamil, Julian Shun, and Saman Amarasinghe. 2018. Graphit:
A high-performance graph dsl. Proceedings of the ACM on Programming Languages 2, OOPSLA (2018), 1–30.

[263] Zhen Zheng, Chanyoung Oh, Jidong Zhai, Xipeng Shen, Youngmin Yi, and Wenguang Chen. 2017. Versapipe: a
versatile programming framework for pipelined computing on GPU. In Procs of MICRO. IEEE, 587–599.

[264] Jin Zhou and Brian Demsky. 2010. Bamboo: a data-centric, object-oriented approach to many-core software. In
Proceedings of the 31st ACM SIGPLAN Conference on Programming Language Design and Implementation. 388–399.

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2020.

https://doi.org/10.1109/ICPP.2013.58
http://www.vitanuova.com/inferno/licence.html

A Comprehensive Exploration of Languages for Parallel Computing 1:37

A SUPPLEMENTARY MATERIAL
Tables 9- 24 below depict our categorisation of the analysed primary studies.

SIMD MIMD MISD SISD Arch
ind

SPMD

P01, P04, P08, P07, P1002, P1012, P1041,
P1116, P1131, P1172, P1175, P1260,
P1291, P1313, P1351, P1371, P1389,
P140, P1412, P1433, P1452, P1480, P1514,
P1620, P1669, P168, P1681, P1691, P1695,
P1700, P1736, P1738, P1752, P1771,
P1894, P1912, P1923, P1924, P1930,
P1931, P2036, P208, P2094, P2120, P215,
P284, P347, P360, P363, P380, P408, P444,
P457, P48, P480, P51, P52, P545, P586,
P608, P62, P633, P636, P650, P658, P665,
P669, P728, P736, P768, P786, P846, P852,
P87, P907, P930, P972, P993

P07, P1011, P1039, P105, P1101, P1105,
P1116, P1131, P1200, P1233, P1254,
P1288, P1312, P1313, P1317, P134,
P138, P1395, P143, P1467, P1511,
P1565, P1572, P1586, P1620, P1636,
P1649, P1681, P1711, P1717, P1867,
P1906, P1910, P1916, P1924, P1928,
P1941, P1944, P1970, P198, P1991,
P2023, P2072, P232, P252, P296, P367,
P443, P460, P472, P48, P51, P545, P581,
P665, P735, P786, P805, P825, P891,
P90, P954

P1097,
P297,
P36,
P52,
P586,
P768,
P846

P1116,
P1412,
P1433,
P545,
P805

P02,
P03,
P05,
P1118,
P1136

P1988

Table 9. Parallel architecture

High-level Lang. Modeling Lang.

P1002, P1011, P1012, P1034, P1039, P1041, P105, P1097, P1101, P1103, P1105, P1113, P1116,
P1118, P1131, P1136, P114, P116, P1175, P1200, P1254, P1260, P1285, P1288, P1291, P1293,
P1304, P1312, P1313, P1317, P132, P134, P1351, P1371, P138, P1388, P1389, P1395, P1412,
P1425, P143, P1433, P1437, P1442, P1452, P1467, P147, P1480, P1495, P1511, P1514, P155,
P1550, P1565, P1572, P1586, P1620, P1632, P1636, P1641, P1649, P1669, P168, P1681, P1691,
P1695, P1700, P1705, P171, P1710, P1711, P1717, P1736, P1738, P1752, P1764, P1771, P1804,
P1844, P1849, P1867, P1894, P1906, P1910, P1912, P1923, P1924, P1928, P1930, P1931, P1940,
P1941, P1944, P1970, P198, P1988, P1991, P2023, P2036, P2055, P2072, P208, P2094, P2113,
P2120, P215, P232, P240, P252, P268, P281, P292, P296, P297, P334, P344, P347, P36, P360,
P363, P364, P367, P380, P392, P443, P444, P446, P457, P460, P465, P472, P479, P480, P498,
P52, P545, P581, P586, P605, P608, P619, P633, P636, P650, P651, P656, P658, P665, P669,
P692, P72, P726, P728, P734, P735, P736, P748, P764, P768, P786, P787, P805, P824, P825,
P840, P866, P87, P886, P891, P90, P907, P910, P930, P931, P949, P954, P964, P968, P972,
P980, P993, P998, P08, P07, P01, P02, P03, P04, G1, G2, G3, G5, G6, G7, G8, G9, G10, G11,
G12, G13, G14, G15, G16, G17, G18, G19, G20

P1172, P1233, P140,
P1464, P1916, P1976,
P284, P408, P415, P476,
P48, P51, P62, P800,
P846, P852, P05

Table 10. Language abstraction

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:38 Ciccozzi et al.

General Purpose Domain Specific

P1002, P1011, P1012, P1034, P1039, P1097, P1101, P1103, P1105, P1113, P1116, P1118,
P1131, P1136, P114, P1175, P1200, P1254, P1260, P1285, P1288, P1293, P1313, P1317,
P132, P134, P1351, P1371, P138, P1388, P1389, P1395, P1412, P1425, P143, P1433, P1437,
P1442, P1452, P1464, P1467, P1480, P1511, P1514, P155, P1550, P1565, P1572, P1586,
P1620, P1632, P1636, P1649, P1669, P1681, P1691, P1700, P1705, P171, P1710, P1711,
P1717, P1736, P1738, P1752, P1764, P1804, P1844, P1849, P1867, P1894, P1906, P1910,
P1912, P1916, P1923, P1924, P1928, P1930, P1931, P1940, P1941, P1944, P1970, P1976,
P198, P1991, P2023, P2036, P2055, P2072, P208, P2094, P2120, P215, P232, P240, P252,
P268, P281, P284, P292, P296, P297, P334, P344, P347, P36, P360, P363, P367, P380, P392,
P415, P443, P444, P457, P460, P465, P472, P476, P48, P480, P51, P52, P581, P586, P605,
P608, P62, P633, P636, P650, P651, P656, P658, P665, P669, P728, P734, P735, P736, P748,
P764, P768, P786, P787, P800, P805, P824, P825, P840, P846, P866, P87, P886, P891, P90,
P907, P910, P930, P931, P954, P964, P972, P980, P993, P998, P08, P07, P01, G1, G3, G5,
G7, G8, G9, G10, G11, G12, G13, G14, G15, G16, G17, G18, G19, G20

P1041, P105, P116, P1172,
P1233, P1291, P1304,
P1312, P140, P147, P1495,
P1641, P168, P1695, P1771,
P1988, P2113, P364, P408,
P446, P479, P498, P545,
P619, P692, P72, P726,
P852, P949, P968, P02,
P05, P03, P04, G6

Table 11. Language purpose

Formal Spec Context
Free
Grammar

Informal Spec Metamodel

P1041, P116,
P1260, P1425,
P1437, P147,
P1710, P1752,
P1849, P1923,
P1928, P1976,
P198, P2113,
P2120, P240,
P334, P444,
P460, P545,
P586, P658,
P665, P748,
P786, P891,
P910, P949,
P964, P998, P02,
G1, G7, G8,
G10, G11, G12,
G15, G18

P1175,
P1254,
P134,
P1480,
P1988,
P479, P52,
P608, P633,
P656, P692,
P734, P805,
G18, G19,
G20

P1002, P1011, P1012, P1034, P1039, P105, P1097, P1101, P1103, P1105,
P1113, P1116, P1118, P1131, P1136, P114, P1172, P1200, P1233, P1285,
P1288, P1291, P1293, P1304, P1312, P1313, P1317, P132, P1351, P138,
P1388, P1389, P1395, P140, P1412, P143, P1433, P1442, P1452, P1464,
P1467, P1495, P1511, P1514, P155, P1550, P1565, P1572, P1586, P1620,
P1632, P1636, P1641, P1649, P1669, P168, P1681, P1691, P1695, P1700,
P1705, P171, P1711, P1717, P1736, P1738, P1764, P1771, P1804, P1844,
P1867, P1894, P1906, P1910, P1912, P1924, P1930, P1931, P1940,
P1941, P1944, P1970, P1991, P2023, P2036, P2055, P2072, P208, P2094,
P215, P232, P252, P268, P281, P284, P292, P296, P297, P344, P347,
P36, P363, P364, P367, P380, P392, P408, P415, P443, P446, P457,
P465, P472, P476, P48, P480, P498, P581, P605, P619, P62, P636, P650,
P651, P669, P72, P726, P728, P735, P736, P764, P768, P787, P800,
P824, P825, P840, P846, P852, P866, P87, P886, P90, P907, P930, P931,
P954, P968, P972, P980, P993, P08, P07, P01, P03, P04, G2, G3, G5,
G6, G9, G11, G13, G14, G16, G17

P1916,
P360, P51,
P05

Table 12. Abstract syntax

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2020.

A Comprehensive Exploration of Languages for Parallel Computing 1:39

Textual Diagramm-
atic

Graph-
based

Tree-
based

P1002, P1011, P1012, P1034, P1039, P1041, P105, P1097, P1101, P1103,
P1105, P1113, P1116, P1118, P1131, P1136, P114, P116, P1175, P1200,
P1254, P1260, P1285, P1288, P1291, P1293, P1304, P1312, P1313, P1317,
P132, P134, P1351, P1371, P138, P1388, P1389, P1395, P140, P1412,
P1425, P143, P1433, P1437, P1442, P1452, P1464, P1467, P147, P1480,
P1495, P1511, P1514, P155, P1550, P1565, P1572, P1586, P1620, P1632,
P1636, P1641, P1649, P1669, P168, P1681, P1691, P1695, P1700, P1705,
P171, P1710, P1711, P1717, P1736, P1738, P1752, P1764, P1771, P1804,
P1844, P1849, P1867, P1894, P1906, P1910, P1912, P1916, P1923, P1924,
P1928, P1930, P1931, P1940, P1941, P1944, P1970, P1976, P198, P1988,
P1991, P2023, P2036, P2055, P2072, P208, P2094, P2113, P2120, P215,
P232, P240, P252, P268, P281, P292, P296, P297, P334, P344, P347, P36,
P360, P363, P364, P367, P380, P392, P408, P415, P443, P444, P446, P457,
P460, P465, P472, P476, P479, P48, P480, P498, P52, P545, P581, P586,
P605, P608, P619, P62, P633, P636, P650, P656, P658, P665, P669, P692,
P72, P726, P728, P734, P735, P736, P748, P764, P768, P786, P787, P800,
P805, P824, P825, P840, P866, P87, P886, P891, P90, P907, P910, P930,
P931, P949, P954, P968, P972, P980, P993, P998, P08, P07, P01, P02, P03,
P04, G1, G2, G5, G6, G7, G8, G9, G10, G11, G12, G13, G14, G15, G16,
G17, G18, G19, G20

P1916,
P360, P51,
P05

P651, P964 P1495

Table 13. Concrete syntax

Explicit Implicit

P1002, P1011, P1012, P1034, P1039, P1097, P1101, P1103, P1105, P1113,
P1116, P1118, P1131, P1136, P114, P116, P1175, P1200, P1233, P1254,
P1260, P1285, P1288, P1291, P1293, P1313, P1317, P134, P1371, P138,
P1388, P1412, P1425, P143, P1433, P1437, P1442, P1452, P1467, P147,
P1480, P1514, P155, P1550, P1565, P1572, P1586, P1620, P1632, P1636,
P1649, P168, P1695, P1705, P1710, P1711, P1717, P1738, P1752, P1764,
P1771, P1804, P1849, P1867, P1910, P1916, P1928, P1940, P1941, P1944,
P1970, P198, P1988, P1991, P2023, P2036, P2055, P2072, P208, P2113,
P2120, P252, P268, P281, P284, P292, P296, P297, P334, P344, P364, P367,
P392, P415, P443, P444, P446, P465, P472, P498, P545, P581, P605, P619,
P62, P633, P636, P656, P669, P692, P72, P734, P748, P764, P786, P787,
P800, P805, P824, P825, P840, P852, P866, P886, P891, P90, P910, P931,
P949, P954, P968, P972, P993, P08, P07, P01, P02, P05, P03, P04, G1, G6,
G7, G8, G9, G10, G11, G12, G13, G14, G15, G16, G17, G18, G19, G20

P1041, P105, P1172, P1304, P1312,
P132, P1351, P1389, P1395, P140,
P1464, P1495, P1511, P1550,
P1641, P1669, P1681, P1691,
P1700, P171, P1736, P1844,
P1894, P1906, P1912, P1923,
P1924, P1930, P1931, P1970,
P1976, P2094, P215, P232, P240,
P347, P36, P360, P363, P380,
P408, P457, P460, P476, P479,
P48, P480, P51, P52, P586, P608,
P650, P651, P658, P665, P726,
P728, P735, P736, P768, P846,
P87, P907, P930, P964, P980,
P998, P01, G2, G3, G5

Table 14. Parallel primitives

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:40 Ciccozzi et al.

Imperative Declarative Object-Oriented Multi-
Paradigm

Actor-
Based

Event-
Driven

P1002, P1012, P1034, P1039, P1041,
P105, P1097, P1103, P1105, P1113,
P1116, P116, P1175, P1254, P1260,
P1288, P1291, P1293, P1312, P1317,
P134, P1351, P1371, P138, P1388, P1395,
P140, P1412, P143, P1433, P1442, P1452,
P1464, P1467, P147, P1480, P1511,
P1514, P155, P1565, P1620, P1636,
P1669, P168, P1691, P171, P1711, P1717,
P1736, P1738, P1764, P1771, P1844,
P1867, P1906, P1912, P1923, P1924,
P1928, P1940, P1941, P198, P1988,
P2023, P2036, P2072, P208, P2094,
P2120, P215, P268, P281, P344, P347,
P380, P392, P408, P443, P444, P457,
P465, P476, P480, P51, P608, P636, P656,
P669, P692, P72, P728, P734, P735, P736,
P748, P768, P787, P825, P852, P866,
P886, P891, P930, P954, P964, P968,
P998, P08, P07, P03, P04, G1, G2, G7,
G8, G12, G14, G15, G16, G17, G19

P1011, P1172,
P1233, P1285,
P132, P1389,
P1425, P1495,
P1586, P1636,
P1700, P1705,
P1736, P1752,
P1931, P1970,
P2113, P292,
P334, P360,
P48, P581,
P633, P650,
P651, P665,
P728, P748,
P805, P866,
P87, P949,
P972, P993,
P998, P02,
G5, G7, G10,
G11, G18,
G20

P1011, P1012, P1097, P1101,
P1118, P1131, P1136, P114,
P1200, P1304, P1313, P1317,
P1371, P1437, P1467, P1550,
P1565, P1572, P1632, P1641,
P1649, P1681, P1695, P1710,
P1804, P1849, P1894, P1910,
P1916, P1930, P1944, P1976,
P1991, P2055, P232, P240,
P252, P284, P292, P296, P297,
P344, P36, P363, P364, P367,
P415, P444, P446, P460, P472,
P479, P480, P498, P52, P545,
P586, P605, P619, P62, P658,
P726, P728, P735, P764, P786,
P824, P840, P846, P90, P907,
P910, P931, P949, P964, P972,
P980, P993, P07, P01, P05, G1,
G3, G6, G7, G9, G13, G14, G15,
G17, G18, G20

P1011,
P1012,
P1097,
P1304,
P1317,
P1371,
P1467,
P1565,
P1636,
P1736,
P1804,
P292,
P344,
P444,
P480,
P728,
P748,
P866,
P949,
P964,
P972,
P993,
P998, G1,
G7, G14,
G15, G17,
G18, G20

P1916 P1304,
P800

Table 15. Programming paradigm

Synchronous Asynchronous

P1002, P1011, P1012, P1034, P1039, P105, P1097, P1101, P1105,
P1113, P1116, P1118, P1131, P1136, P116, P1175, P1200, P1233,
P1254, P1260, P1285, P1288, P1291, P1293, P1312, P1313, P1317,
P134, P1371, P138, P1395, P1412, P143, P1433, P1442, P1452,
P1464, P1467, P147, P1480, P1495, P1511, P1514, P1550, P1565,
P1572, P1586, P1620, P1632, P1636, P1669, P168, P1681, P1691,
P1705, P171, P1710, P1711, P1717, P1736, P1738, P1752, P1764,
P1771, P1849, P1894, P1910, P1923, P1924, P1928, P1930, P1940,
P1941, P1944, P198, P1988, P1991, P2023, P2036, P2055, P208,
P2113, P2120, P240, P252, P281, P284, P292, P296, P297, P347,
P36, P360, P364, P367, P380, P392, P415, P443, P446, P460,
P465, P476, P480, P498, P52, P545, P586, P605, P62, P633, P636,
P650, P651, P656, P658, P665, P669, P692, P72, P726, P728,
P734, P736, P786, P800, P805, P825, P846, P852, P891, P90,
P907, P930, P949, P954, P964, P980, P993, P08, P01, P05, P03,
P04, G1, G3, G5, G7, G8, G10, G12, G15, G17, G18, G19, G20

P1002, P1011, P1012, P1041, P1097, P1105,
P1113, P1118, P1136, P116, P1172, P1175,
P1233, P1254, P1288, P1304, P1312, P1313,
P1317, P132, P1351, P138, P1388, P1389,
P140, P143, P1437, P1442, P1467, P1480,
P1514, P1550, P1572, P1586, P1620, P1636,
P1649, P168, P1695, P1700, P1711, P1717,
P1736, P1844, P1867, P1906, P1912, P1924,
P1928, P1941, P1970, P1991, P2036, P2072,
P2094, P2120, P215, P232, P252, P292, P296,
P347, P36, P367, P408, P443, P444, P457,
P472, P479, P48, P581, P605, P608, P62, P656,
P665, P669, P726, P735, P764, P768, P787,
P824, P825, P840, P866, P87, P886, P891, P90,
P910, P931, P949, P954, P972, P993, G1, G2,
G3, G6, G7, G9, G11, G12, G13, G14, G15,
G16, G18, G20

Table 16. Communication type

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2020.

A Comprehensive Exploration of Languages for Parallel Computing 1:41

Lock Barrier Rendez-
vous

Monitor Channel Depen-
dency
Graph

Dyna-
mic
In-
ter-
faces

Lock
Free
Data
Struct.

P1011, P1039, P1113, P1116,
P1131, P1136, P116, P1260,
P1288, P1291, P1293, P1313,
P1317, P1412, P1433, P1437,
P1452, P1480, P1514, P1550,
P1632, P1691, P1711, P1717,
P1736, P1738, P1752, P1849,
P1910, P1924, P1940, P1941,
P1976, P2023, P2036, P2120,
P240, P252, P296, P297,
P364, P380, P392, P415,
P460, P480, P545, P586,
P605, P633, P650, P651,
P656, P669, P72, P800, P805,
P824, P825, P846, P891,
P930, P931, P954, P01, P03,
G1, G7, G12, G17, G18, G19,
G20

P1002, P1011, P1012, P1136,
P1200, P1254, P1288, P134,
P138, P1395, P1442, P1586,
P1620, P1636, P1669, P168,
P1681, P1705, P171, P1717,
P1736, P1764, P1894, P1910,
P1923, P1924, P1930, P1940,
P1941, P1944, P198, P1988,
P1991, P2036, P208, P2120,
P232, P252, P281, P284,
P347, P36, P360, P367, P415,
P443, P446, P465, P498, P52,
P586, P62, P656, P669, P728,
P736, P764, P805, P824,
P825, P852, P891, P954,
P993, P08, P05, G1, G5, G7,
G12, G14, G15, G16, G17,
G20

P1011,
P1101,
P1175,
P1288,
P1433,
P147,
P1514,
P296,
P658,
P786

P1097,
P1254

P1105,
P1233,
P1254,
P1467

P1285,
P143

P90 P1118,
P2055,
P907

Table 17. Synchronisation type

Task Parallelism Data Parallelism Pipeline
Paral-
lelism

Nested
Paral-
lelism

P1002, P1034, P1039, P1097, P1101, P1103, P1105,
P1113, P1118, P1131, P1136, P114, P116, P1175,
P1200, P1233, P1254, P1285, P1288, P1291, P1293,
P1304, P1313, P1317, P134, P1371, P1388, P1412,
P143, P1433, P1437, P1442, P1452, P1464, P1467,
P1495, P1511, P1514, P155, P1550, P1565, P1572,
P1586, P1632, P1636, P1641, P1649, P1681, P1705,
P171, P1710, P1711, P1717, P1738, P1771, P1804,
P1844, P1849, P1867, P1894, P1906, P1910, P1916,
P1923, P1924, P1928, P1931, P1940, P1941, P1944,
P1970, P198, P1988, P1991, P2023, P2036, P2055,
P2072, P2113, P232, P240, P252, P268, P281, P292,
P296, P297, P344, P36, P367, P392, P415, P443,
P444, P446, P457, P460, P465, P476, P479, P52,
P545, P581, P586, P605, P62, P633, P650, P651,
P656, P658, P692, P72, P726, P734, P735, P736,
P748, P764, P768, P786, P787, P800, P805, P824,
P825, P840, P846, P866, P886, P891, P90, P907,
P930, P949, P954, P972, P980, P998, P07, P01, P05,
G1, G3, G7, G8, G9, G13, G15, G16, G17, G18

P1002, P1011, P1012, P1034, P1041, P105,
P1105, P1116, P1131, P1172, P1254, P1260,
P1288, P1291, P1312, P1313, P132, P1351,
P1371, P138, P1389, P1395, P140, P1425,
P143, P1452, P1467, P1495, P1511, P1514,
P1550, P1620, P1649, P1669, P168, P1691,
P1695, P1700, P1705, P1711, P1717, P1736,
P1738, P1752, P1844, P1867, P1906, P1912,
P1930, P1944, P1970, P198, P1991, P2036,
P2055, P208, P2120, P215, P232, P252,
P268, P284, P296, P334, P347, P360, P363,
P364, P367, P380, P408, P444, P457, P460,
P465, P472, P48, P480, P498, P52, P586,
P608, P619, P633, P636, P658, P665, P669,
P726, P728, P735, P768, P787, P824, P825,
P840, P846, P852, P866, P87, P886, P891,
P90, P910, P930, P931, P954, P964, P980,
P993, P08, P07, P02, P05, P04, G2, G3, G13,
G15, G17

P1260,
P138,
P147,
P1480,
P1738,
P1752,
P2094,
P51

P1034,
P114,
P1620,
P472,
P619,
P656,
P734,
P886,
P949,
G15

Table 18. Problem decomposition

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:42 Ciccozzi et al.

Shared Memory Message Passing Data
Flow

FIFO
Buffer

Shared
Events

P1002, P1012, P1097, P1105, P1113,
P1131, P116, P1175, P1200, P1233, P1288,
P1312, P1317, P134, P1371, P1389, P1395,
P140, P1412, P143, P1442, P1452, P147,
P1514, P155, P1572, P1586, P1632, P1636,
P1641, P168, P1691, P1695, P1700, P1705,
P1710, P1711, P1717, P1738, P1752,
P1764, P1771, P1849, P1894, P1910,
P1912, P1923, P1924, P1930, P1941,
P1970, P1988, P1991, P2036, P2055,
P2072, P2120, P215, P232, P297, P392,
P443, P444, P446, P460, P465, P472, P476,
P48, P480, P586, P605, P633, P656, P72,
P726, P734, P735, P736, P764, P800, P825,
P846, P87, P891, P90, P907, P930, P931,
P949, P964, P972, P993, P08, P07, P02,
P03, G1, G7, G8, G10, G12, G15, G16, G17,
G18

P1011, P1039, P1041, P1101, P1103, P1105,
P1116, P1118, P1131, P1136, P114, P1172,
P1175, P1200, P1233, P1254, P1288, P1291,
P1293, P1313, P1317, P1351, P138, P1388,
P143, P1433, P1437, P1442, P1464, P1467,
P1480, P1511, P155, P1565, P1620, P1669,
P1681, P171, P1711, P1717, P1764, P1844,
P1867, P1906, P1910, P1916, P1924, P1930,
P1941, P1944, P198, P1988, P2023, P2055,
P208, P240, P252, P281, P292, P296, P347,
P36, P360, P364, P367, P380, P457, P479,
P581, P608, P62, P658, P669, P692, P726,
P728, P735, P748, P764, P768, P786, P805,
P824, P825, P840, P852, P90, P910, P931,
P949, P954, P968, P980, P08, P07, G1, G2,
G5, G6, G7, G8, G11, G12, G13, G14, G15,
G16, G17, G18, G19, G20

P105,
P1260,
P1312,
P1480,
P1495,
P1572,
P1649,
P1736,
P1867,
P2094,
P284,
P363,
P364,
P51, P52,
P608,
P619,
P636,
P650,
P651,
P665,
P08, G3

P998 P1976

Table 19. Communication model

Stack
Based

Shared Region
Based

Distributed

P1011,
P1293,
P1437,
P1464,
P1565,
P1632,
P171,
P1849,
P1910,
P1916,
P1924,
P240,
P334,
P392,
P651,
P72,
P764,
P786,
P891,
P910,
P998,
G11

P1002, P1012, P1034, P1097, P1105, P1113, P1131,
P1136, P116, P1175, P1200, P1233, P1260, P1285,
P1288, P1312, P1313, P1317, P134, P1371, P1388,
P1389, P1395, P140, P1412, P143, P1433, P1442,
P1452, P1467, P147, P1495, P1514, P155, P1586,
P1641, P168, P1691, P1695, P1700, P1705, P1710,
P1717, P1736, P1738, P1752, P1764, P1771, P1894,
P1910, P1912, P1923, P1928, P1930, P1931, P1940,
P1941, P1976, P1988, P1991, P2023, P2036, P2055,
P2072, P208, P2094, P2120, P215, P232, P281, P284,
P292, P297, P344, P360, P367, P408, P444, P446,
P460, P465, P472, P476, P48, P480, P51, P586, P605,
P636, P650, P656, P658, P72, P726, P734, P735, P736,
P768, P787, P800, P805, P825, P846, P87, P907, P930,
P931, P949, P954, P964, P968, P972, P993, P07, P02,
P05, P03, P04, G1, G5, G7, G8, G10, G11, G12, G15,
G16, G17, G18, G19

P1105,
P1711,
P1906,
P1970,
P36,
P444,
P498,
P01

P1011, P1034, P1039, P1041, P105,
P1101, P1103, P1105, P1116, P1118,
P1131, P1172, P1175, P1233, P1254,
P1288, P1291, P1317, P1351, P1371,
P138, P1425, P143, P1442, P1480,
P1511, P155, P1565, P1572, P1620,
P1636, P1649, P1669, P1691, P1705,
P1736, P1764, P1804, P1844, P1867,
P1930, P1941, P1944, P198, P1988,
P2023, P208, P252, P281, P292, P296,
P344, P347, P360, P364, P367, P380,
P392, P446, P457, P479, P52, P581,
P586, P608, P62, P633, P636, P658,
P665, P669, P692, P726, P728, P735,
P748, P787, P824, P825, P840, P852,
P866, P90, P954, P993, P08, P07, G1,
G2, G5, G6, G7, G11, G15, G16, G20

Table 20. Memory model

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2020.

A Comprehensive Exploration of Languages for Parallel Computing 1:43

Compiled Interpreted Hybrid

P1002, P1011, P1012, P1034, P1039, P1041, P105, P1097, P1101, P1103, P1105,
P1116, P1118, P1131, P1136, P114, P116, P1172, P1175, P1200, P1233, P1254,
P1260, P1285, P1288, P1291, P1293, P1304, P1312, P1313, P1317, P1371, P138,
P1388, P1389, P1395, P140, P1412, P1425, P143, P1433, P1437, P1442, P1452,
P1464, P147, P1480, P1495, P1511, P1514, P155, P1550, P1565, P1572, P1586,
P1620, P1632, P1641, P1669, P168, P1681, P1691, P1695, P1700, P1705, P171,
P1710, P1711, P1717, P1738, P1752, P1764, P1771, P1804, P1844, P1849, P1867,
P1894, P1906, P1910, P1912, P1916, P1923, P1924, P1928, P1930, P1931, P1940,
P1941, P1944, P1970, P1976, P198, P1988, P1991, P2023, P2036, P2055, P2072,
P208, P2094, P2120, P215, P232, P240, P252, P268, P281, P284, P297, P334, P347,
P36, P360, P364, P367, P380, P408, P443, P444, P457, P460, P465, P472, P476,
P479, P48, P480, P498, P51, P52, P545, P586, P605, P608, P619, P62, P633, P636,
P650, P651, P656, P658, P665, P669, P692, P72, P726, P728, P734, P736, P748,
P764, P768, P786, P787, P824, P825, P840, P846, P852, P866, P891, P90, P910,
P930, P931, P949, P954, P964, P968, P972, P993, P998, P08, P07, P01, P02, P05,
P03, P04, G1, G2, G3, G5, G7, G8, G9, G10, G11, G12, G13, G14, G15, G16, G17,
G18, G19, G20

P1113, P1351,
P1467, P1636,
P1649, P198,
P296, P581,
P87, P907,
P980, P01,
G6

P1736, P2113,
P735, P805

Table 21. Execution mode

High-level Low-level

P1002, P1011, P1012, P1034, P1039, P1041, P1097, P1101, P1103, P1116,
P1131, P1172, P1175, P1260, P1291, P1293, P1313, P1317, P1388, P1395,
P1412, P1425, P1433, P1437, P1442, P1452, P1464, P147, P1480, P1511,
P1514, P168, P1681, P1691, P1695, P1700, P1705, P1711, P1717, P1736,
P1752, P1771, P1804, P1849, P1867, P1894, P1916, P1923, P1930, P1931,
P1940, P1944, P1976, P1988, P1991, P2023, P2036, P2072, P208, P2094,
P2120, P215, P232, P284, P297, P347, P360, P364, P367, P380, P408,
P415, P443, P444, P457, P460, P472, P476, P48, P480, P498, P586, P605,
P608, P62, P650, P651, P658, P665, P669, P726, P728, P734, P735, P736,
P764, P768, P805, P825, P840, P866, P891, P910, P930, P954, P968, P972,
P993, P998, P08, P07, P02, P05, P03, P04, G9, G17

P1105, P1118, P1136, P114, P116,
P1200, P1233, P1254, P1285, P1288,
P1312, P1371, P138, P1389, P140,
P143, P155, P1586, P1620, P1641,
P1669, P1738, P1844, P1906, P1910,
P1912, P1916, P1924, P1941, P1970,
P198, P2055, P252, P268, P334, P36,
P465, P479, P52, P545, P633, P636,
P824, P852, P90, P01, G1, G3, G5, G7,
G8, G10, G11, G12, G13, G14, G15,
G18, G19, G20

Table 22. Target language

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:44 Ciccozzi et al.

Multi CPU Many CPU GPU GPGPUFPGA DSA Target Independent

P1011, P1034, P1041, P1097, P1103,
P1113, P1233, P1260, P1285, P1291,
P1304, P1388, P1389, P1412, P1425,
P1467, P147, P1511, P1550, P1572,
P1586, P1620, P1636, P1641, P168,
P1691, P1717, P1738, P1764, P1771,
P1844, P1867, P1923, P1928, P1930,
P1931, P1940, P1941, P1970, P198,
P1988, P2055, P2072, P2120, P215,
P232, P252, P296, P297, P36, P360,
P367, P392, P408, P443, P446, P457,
P472, P479, P48, P545, P581, P586,
P605, P619, P633, P636, P669, P692,
P72, P726, P728, P734, P735, P736,
P800, P805, P824, P825, P840, P846,
P866, P886, P90, P930, P954, P972,
P993, G1, G3, G7, G9, G10, G12,
G16, G17, G19

P1011, P1012,
P1041, P1097,
P1233, P1291,
P1313, P1371,
P1412, P1442,
P1511, P1565,
P1636, P1641,
P1691, P1717,
P1738, P1764,
P1867, P1930,
P1941, P1970,
P198, P2072,
P215, P232,
P252, P36, P367,
P408, P443,
P444, P457,
P465, P472,
P48, P586, P669,
P726, P728,
P734, P735,
P825, P90, P954,
P980

P1012,
P1312,
P1371,
P1464,
P1641,
P1695,
P1717,
P1738,
P1764,
P1912,
P1930,
P1931,
P2055,
P2094, P215,
P347, P360,
P408, P465,
P476, P498,
P608, P87,
P930, P993,
P02, P04,
G1, G3, G7,
G9, G12,
G17

P1312,
P1717,
P1738,
P1912,
P1930,
P2094,
P215,
P268,
P347,
P408,
P480,
P87,
P930,
P02,
G1

P1002,
P1371,
P140,
P1764,
P51,
P852,
P907,
G3

P1254,
P1371,
P143,
P1924,
P281,
P334,
P415,
P51,
P786

P1039, P1101, P1105,
P1116, P1118, P1136,
P1172, P1175, P1200,
P1288, P134, P1351,
P138, P1395, P1433,
P1437, P1452, P1480,
P1495, P1514, P155,
P1632, P1649, P1669,
P1681, P1700, P171,
P1711, P1736, P1752,
P1804, P1849, P1894,
P1906, P1910, P1916,
P1944, P1976, P1991,
P2023, P2036, P208,
P240, P284, P363, P380,
P460, P52, P62, P650,
P651, P658, P665, P748,
P764, P768, P891, P910,
P931, P964, P998, P08,
P07, P01, P05, P03, G20

Table 23. Target architecture

Extension Standalone

P1002, P1011, P1012, P1034, P1039, P1041, P105, P1097, P1101, P1105,
P1116, P1118, P1131, P1136, P114, P116, P1254, P1260, P1285, P1291,
P1293, P1304, P1312, P1313, P1317, P132, P1371, P1389, P1395, P140,
P1412, P1433, P1464, P1495, P1514, P155, P1550, P1586, P1620, P1636,
P1649, P1669, P1681, P1691, P1695, P1700, P1710, P1711, P1717,
P1736, P1752, P1764, P1771, P1804, P1849, P1867, P1894, P1910,
P1923, P1924, P1928, P1930, P1931, P1940, P1941, P1944, P1970, P198,
P1988, P1991, P2023, P2036, P2055, P2072, P208, P2094, P215, P232,
P281, P284, P292, P296, P347, P360, P364, P367, P415, P443, P444,
P460, P465, P472, P476, P48, P480, P51, P581, P586, P608, P619, P62,
P636, P650, P651, P656, P669, P692, P72, P726, P728, P735, P736, P748,
P764, P786, P787, P824, P825, P852, P866, P891, P910, P930, P931,
P949, P954, P964, P972, P993, P998, P08, P07, P05, P03, G1, G9, G13,
G14, G16, G17, G20

P1103, P1113, P1172, P1175, P1200,
P1233, P1288, P134, P1351, P138,
P1388, P1425, P143, P1437, P1442,
P1452, P1467, P147, P1480, P1511,
P1565, P1572, P1632, P1641, P1705,
P1738, P1844, P1906, P1912, P1916,
P2113, P2120, P240, P252, P268, P297,
P334, P344, P36, P363, P380, P392,
P408, P446, P457, P479, P498, P52,
P545, P605, P633, P658, P665, P734,
P768, P800, P805, P840, P886, P90,
P907, P968, P980, P01, P02, P04, G2,
G3, G5, G6, G7, G8, G10, G11, G12,
G15, G18, G19

Table 24. Implementation type

J. ACM, Vol. 1, No. 1, Article 1. Publication date: January 2020.

	Abstract
	1 Introduction
	2 Research Method
	2.1 Research goal and questions
	2.2 Search and Selection Strategy
	2.3 Data extraction
	2.4 Data analysis and synthesis

	3 Results: Vertical Analysis
	3.1 Publication trends (RQ1)
	3.2 Technical characteristics (RQ2)
	3.3 Limitations (RQ3)

	4 Results: orthogonal analysis
	4.1 Problem decomposition Vs. Parallel primitives
	4.2 Communication model Vs. Memory model
	4.3 Communication and memory models Vs. Target architecture

	5 Open challenges and prospects
	6 Threats to Validity
	6.1 External Validity
	6.2 Internal Validity
	6.3 Construct Validity
	6.4 Conclusion Validity

	7 Related Work
	8 Conclusions and future directions
	Acknowledgments
	References
	A Supplementary material

