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Abstract

Modern automotive software systems consist of hundreds of heterogeneous software applications, belonging to separated
function domains and often developed within distributed automotive ecosystems consisting of original equipment
manufactures, tier-1 and tier-2 companies. Hence, the development of modern automotive software systems is a formidable
challenge. A well-known instrument for coping with the tremendous heterogeneity and complexity of modern automotive
software systems is the use of architectural languages as a way of enabling different and specific views over these
systems. However, the use of different architectural languages might come with the cost of reduced interoperability
and automation as different languages might have weak to no integration. In this article, we tackle the challenge of
integrating two architectural languages heavily used in the automotive domain for the design and timing analysis of
automotive software systems: AMALTHEA and Rubus Component Model. The main contributions of this paper are i) a
mapping scheme for the translation of an AMALTHEA architecture into a Rubus Component Model architecture where
high-precision timing analysis can be run, and the back annotation of the analysis results on the starting AMALTHEA
architecture; ii) the implementation of the proposed scheme, which uses the concept of model transformations for enabling
a full-fledged automated integration; iii) the application of such automation on three industrial automotive systems
being the brake-by-wire, the full blown engine management system and the engine management system. We discuss and
evaluate the proposed contributions using an online, experts survey and the above-mentioned use cases. Based on the
evaluation results, we conclude that the proposed automation mechanism is correct and applicable in industrial contexts.
Besides, we observe that the performance of the automation mechanism does not degrade when translating large models
with several thousands of elements. Eventually, we conclude that experts in this field find the proposed contribution
industrially relevant.
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1. Introduction

Automotive software was born less than 45 years ago
when General Motors employed a single function controller
for the electronic spark in their Oldsmobile Toronado. In
less than five decades, the complexity of automotive soft-
ware and its development has grown remarkably [1]. Mod-
ern automotive software systems consist of hundreds of het-
erogeneous applications, belonging to different functional
domains and developed in parallel within huge ecosystems
involving tens of automotive Original Equipment Manufac-
tures (OEM), tier-1 and tier-2 companies [2] [3]. In addi-
tion, these applications are integrated into heterogeneous
computing platforms and need to comply with stringent
quality attributes such as performance and timing [2] [3].

To tackle the tremendous complexity of modern auto-
motive software systems, both practitioners and researchers
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have promoted the use of multiple views for the develop-
ment of these systems [4]. Views should be linked using
suitable relationships, which are fundamental to under-
stand the impact of architectural decisions. Each view
can be described by one or more Architectural Languages
(ALs) [5] [6] for easing the design, communication and
analysis of automotive systems [7]. Functional1 ALs are
typically used for designing automotive software systems as
they focus on the system decomposition in components and
interactions among components [8]. Technical ALs, instead,
describe automotive software systems from the realisation
perspectives (e.g., execution environment, hardware plat-
form and software to hardware allocation) hence they are
mostly employed for enabling model-based non-functional
analyses of the automotive software systems [9]. In this
context, interoperability among different ALs is not only
desirable but pivotal for benefiting from the advantages in-
troduced from the use of ALs such as increased abstraction,

1We assume that the reader is familiar with the concepts of
functional, logical and technical architectures defined in [8].
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separation of concerns and reduced overall complexity [10].
In addition, the lack of mature tools support [10] and proper
integration mechanisms among different ALs represent one
of the main factors hampering the full-fledged adoption of
these languages in industry [7].

An example of this is the joint use of so-called func-
tional, logical and technical ALs. While the former is
typically used for designing purposes (as they reflect the
decomposition of software systems into sets of components
and interactions among them), the latter is commonly used
for non-functional analyses of software systems (as they
describe software systems from the realisation-perspective,
e.g., execution environment, hardware platform and allo-
cation). According to the empirical study by Malavolta
et al., one of the main reasons why practitioners use ALs
is for (automated) non-functional analysis such as timing
analysis [7]. However, this is hampered by the lack of inte-
gration among the languages as different ALs have weak or
no integration with each other [7]. As a consequence, these
languages are often integrated manually using engineers
educated guesses. Malavolta et al. have identified this as
one of the major challenges slowing down the full-fledged
adoption of ALs in industry [7].

In this work, we tackle the challenge of integrating
two industrial ALs heavily used within the automotive
domain: AMALTHEA [11] and Rubus Component Model
(RCM) [12]. AMALTHEA is an automotive AL, which
has been defined in 2011 within the European project
AMALTHEA [13]. Since 2011, AMALTHEA has been con-
stantly refined through several European projects including
AMALTHEA4public [14] and PANORAMA [15]. Currently,
AMALTHEA is used by several automotive OEMs and sup-
pliers in the value chain mostly as industrial exchange
format. RCM has been defined in 2008 within the col-
laborative research project MultEx [16] and builds on the
concepts presented by Hansson et al. [17]. RCM support the
timing analysis and synthesis of distributed real-time em-
bedded systems and it is mostly used within the automotive
value chain from international OEMs and suppliers such
as Volvo AB, BAE Systems plc, Knorr-Bremse AG. The
interest for and relevance of such integration has emerged
within several research projects [18] including the Euro-
pean project PANOARAMA, which involves more than 20
partners among research institutions and companies from
5 different countries [15] [19]. Within PANORAMA, we
have observed that several automotive OEMs and suppliers
employ a development process, which leverages AMAL-
THEA, for the automotive system and software design, and
RCM for high-precision timing analysis (e.g., response-time
analysis [20], distributed end-to-end response-time and de-
lay analyses [21]), as graphically described by Figure 1.
There are several factors, which justify the interplay be-
tween AMALTHEA and RCM. AMALTHEA is a large and
flexible AL, which provides dozens of elements for the repre-
sentation of the software system, the hardware abstraction,
the software to hardware allocation, the operating system
abstraction, and different kinds of events and constraints.

Software
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System
modelling

Partitioning Simulation

Optimisation

Modelling Deployment

Timing
verification Synthesis

AMALTHEA Rubus Compnent Model

Development activities
supported by the ADL

Development activities in a typical
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AMALTHEA to RCM and back

Contribution

Figure 1: Architecture languages, development process and contribu-
tion of this work.

At times, such a wealth of elements makes AMALTHEA
less suited for performing timing verification of automotive
software systems. To have meaningful results, the engi-
neer would be required to have an extensive knowledge
of AMALTHEA and to describe several low-level details
such as, e.g., operating system. RCM is a rather concise
and pragmatical AL, which has been purposely defined for
supporting early high-precision timing analysis. RCM fea-
tures an accompanying real-time operating system (RTOS)
and development environment certified according to the
ISO 26262 international standard for functional safety of
electrical and/or electronic systems in production auto-
mobiles [22]. Using RCM, the engineer does not need to
explicitly represent low-level details as memory hierarchies
or the operating system as this information is abstracted by
the accompanying RTOS and development environment.

In this work, we extend our earlier work that described
an initial mapping from Amalthea to RCM [23]. Specifically,
we report on our experience in integrating AMALTHEA
and RCM as a way for improving the design and timing
verification of automotive software systems. The main
contributions of this work are:

• a mapping scheme enabling i) the translation of an
AMALTHEA architecture into an RCM compliant archi-
tecture where high-precision timing analysis can be run,
and ii) the back-annotation of the analysis results in the
AMALTHEA architecture,

• a realisation of the mapping scheme for automatically
performing the translations using the concept of model
transformations [24]

• the application of the automation mechanism to the
Brake-By-Wire (BBW), the Full Blown Engine Man-
agement system (FBEM), and the Engine Management
System (EMS) industrial use cases.

The work described in this paper has been carried out
within the research project PANORAMA [15] in close col-
laboration with automotive OEMs and suppliers. We have
used a research methodology, which is an adaptation of the
model by Gorschek et al. for industry-relevant research
in software engineering [25]. The proposed mapping has
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been defined building on the knowledge and best prac-
tices acquired during PANORAMA and the engine control
system use case presented by Frey et al. [26]. The automa-
tion mechanism is realised as proof-of-concept implementa-
tion and allows to translate and back-annotate large scale
industrial-sized applications.

We have assessed the applicability of the mapping
scheme and the automation mechanism using the BBW
use case. We have assessed the correctness of the map-
ping scheme and automation mechanism by comparing the
automatically generated RCM model for the BBW use
case with an RCM model built manually from an engineer
having more than 10 years of experience with RCM. We
have discussed the scalability and the performance of the
automation mechanism using the FBEM and the EMS use
cases. The FBEM use case was proposed by Robert Bosch
GmbH within the 2017 WATERS Industrial Challenge of
the Euromicro Technical Committee on Real-Time Systems
[27]2, while the EMS use case is described by Frey in [26].
Eventually, we have assessed the industrial relevance of
this research using expert interviews and online workshops.

The remainder of this paper is structured as follows.
Section 2 describes the background for this work and its
relation with our previous works. Section 4 presents the
mapping between AMALTHEA and RCM and its realisa-
tion. Section 6 describes the application of the proposed
mapping scheme on the BBW use case. Section 7 presents
a discussion on the correctness, scalability, performance
and industrial relevance of this work. Section 8 presents re-
lated work documented in the literature. Finally, Section 9
concludes the paper with final remarks and future work.

2. Background

In this section, we describe the background of this
research. In particular, we discuss the main architectural
elements of AMALTHEA and RCM. Besides, we describe
the importance of timing verification for the development
of automotive software systems and how timing verification
is supported by current ALs.

2.1. AMALTHEA

AMALTHEA is an automotive-specific language, which
focuses on the design, implementation and optimisation
of automotive software for multi-core systems. AMAL-
THEA has been defined and extended through several Eu-
ropean research projects including AMALTHEA, AMAL-
THEA4public and PANORAMA, and it is developed and
maintained by a wide consortium of automotive companies
and research institutes. AMALTHEA supports the design,
implementation and optimisation of automotive software
employing two main data models, which are the system
model and the trace model. In turn, the system model is
organised in different data models. In this work, we focus

2https://www.ecrts.org/archives/index4bb2.html?id=277
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Figure 2: Simplified representation of the AMALTHEA hardware
model.

on hardware, mapping, operating system, software, events,
stimuli, constraints and measurement data models.

The hardware data model describes the hardware plat-
form of the systems using HwModule and HwConnection

elements. The former is used for representing electronic
control unit (ECU), processing units, etc. while the latter
represent communication means. In AMALTHEA, HwMod-
ule and HwConnection elements communicate via ports.
AMALTHEA supports different kind of communication pro-
tocols including Ethernet [28], CAN [29, 30], etc. Figure 2
shows a simplified representation of the main hardware
elements and their relationships. The software data model
describes the automotive software in terms Runnable and
Task elements and connections among them. Runnable

elements represent basic software units. Task elements
represent executable units that can be managed by an
operating system scheduler. Hence, Runnable elements
are refined into one or more Task elements. The com-
munication among software units is represented using the
Label and Channel elements. Both represent data in the
memory, but Channel elements can hold multiple data ele-
ments where Label elements hold only the most recent data
(last-is-best semantic). Figure 3 shows a simplified repre-
sentation of the relationships among Runnable, Channel
and Label elements. Software units can be activated peri-
odically or sporadically. Such information is specified using
the stimuli data model. The main elements of this data
model are Stimulus and Clock. The events data model
describes tracing configurations, event chains and some tim-
ing constraints. There are different event elements for the
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Figure 3: Simplified representation of the relationships among
Runnable, Channel and Label elements.

different elements that can be traced. Examples of event el-
ements are: RunnableEvent, LabelEvent, ChannelEvent,
and ProcessEvent. Hence event elements can be linked
to different software and hardware elements. The con-
straints data model specifies different constraints including
runnable-sequencing-constraints, affinity constraints and
timing constraints. RunnableSequencingConstraint ele-
ments define an order for the specified runnable elements.
AffinityConstraint elements constraint the mapping of
runnable and other software elements. Timing constraints
restrict the time span between events or the duration of
event chains and are expresses using different elements
including DataAgeContraint, EventChain elements and
others. The mapping data model describes allocation infor-
mation of Runnable, Task, Interrupt, Task scheduler

and other elements. This is achieved using specific elements
such as RunnableAllocation elements for the allocation
of Runnable to Scheduler elements. In addition, the map-
ping data model specifies how the software is mapped
to the memory using the MemoryMapping and Physical-

SectionMapping elements. The operating system data
model describes the main functionalities of a RTOS as
well as the access to system resources. The main elements
are OperatingSystem, OsOverhead and Semaphore, where
OperatingSystem element contains TaskScheduler and
InterruptController elements.

The measurement model provides the possibility to
store measured times. In this research, we use the measure-
ment model for enabling the back annotation of the timing
analysis results from Rubus ICE. In particular, we use the
EventChainMeasurament and TaskMeasurament elements
for storing the measured time for event chains and task,
respectively. For both the elements, we create three cus-
tom properties Worst-Case Reaction Time, Worst-Case
Response Time and Creator for storing the type of the
recorded results and their origin, respectively.

2.2. RCM

RCM is an industrial AL specifically defined for eas-
ing and supporting the timing analysis and synthesis of
distributed real-time embedded software systems. It is

developed and maintained by Arcticus Systems with the
collaboration of several research institutes such as the KTH
Royal Institute of Technology and Mälardalen University.
RCM and its accompanying RTOS and development envi-
ronment have evolved over the years through several na-
tional and European research projects. Currently, RCM is
used by several automotive manufacturers like Volvo Group,
BAE Systems, Hoerbiger, Knorr Bremse and others for
the development of predictable and resource-constrained
embedded software systems [31].

The purpose of RCM is to express the infrastructure for
software functions. To this end, RCM features four main
data models, which are hardware, software, allocation and
timing. The hardware data model provides for the descrip-
tion of the hardware platform in terms of its processing
units and network busses. The software data model is
used for describing software systems in terms of software
functions and connections among them. The allocation
data model provides for the specification of software-to-
hardware allocation constraints. The timing data model
allows expressing real-time requirements and properties on
the software architecture. As mentioned in Section 1, RCM
describes the hardware platform in terms of processing
elements abstracting from low-level details such as memory
hierarchies or the operating system, which are taken care
from the accompanying RTOS and development environ-
ment. Hence, the hardware abstraction is described using
Node, Core, Partition, and Network elements. Processing
units are represented using Node elements. Their internal
structure is described using Core and Partition elements.
Core elements represent physical cores while Partition

elements represent the logical partitions of cores. Network
elements encapsulate network specification details as well
as protocol stack information of different network commu-
nication protocols such as the Time Sensitive Networking
(TSN) [32], CAN and its higher-level protocols [29, 30].

In RCM, software functions are encapsulated from
Software Circuit (SWC) elements. SWCs are the lowest-
level hierarchical elements and contain Behaviours and an
Interface elements. Behaviour elements represent the
functional behaviour of functions and allow for the speci-
fication of real-time properties of the SWCs such as worst-
average- and best-case execution times, and maximum
stack usage. Interface elements are used for grouping
SWC ports. SWCs interaction is clearly separated in data and
control flows for facilitating the definition of the control
specification and interactions, typical of real-time embed-
ded systems. Data and control flows are specified using
connectors and ports of SW. This means that interface
elements contain both Data and Control ports. SWCs can
be activated through their control ports. RCM supports
both periodic and sporadic activation. Periodic activation
is modelled with Clock elements while the most common
sporadic activation is activation from a preceding SWCs. As-
sembly elements are only used for grouping SWC elements in
a hierarchical fashion. Mode elements group assembly and
SWC elements and are used for modelling specific configura-
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Figure 4: RCM main elements and relationships.

tions of the software system such as start-up or error mode.
Mode elements are grouped into Application elements,
where an Application element represents an independent
software functionality in the system under development
such as steer-by-wire application. Figure 4 shows the main
RCM elements and their relationships using the concrete
syntax of the accompanying RCM development environ-
ment. Software to hardware allocation constraints are
specified using relations between software and hardware
elements. The isAllocated reference can be specified for
any SWC, Assembly and Application element towards any
Partition, Core and Node element.

2.3. Timing

Amalthea, as well as RCM, allows for the specification
of timing properties. The timing properties that can be
specified in both ALs are rooted in the Timing Augmented
Description Language TADL2 [33]. Amalthea allows spec-
ifying the timing constraints on events, either for single
tasks/runnables or for the data propagation trough an
event chain. The event chain concept is a direct result of
TADL2, where event chain items are defined by a stimuli
and a response event. The chain is then a result of several
event chain items that connect over shared events for re-
sponse and stimuli respectively. The data age constraint or
the reaction constraint can then be specified for the event
chain [34]. Classical real-time constraints such as dead-
lines and jitter can be specified as well. Similarly, RCM
allows specifying timing constraints on event chains. Here,
the AgeDataEnd and AgeDataStart or ReactionDataEnd

and ReactionDataStart element can be connected to data
ports of the SWC. The event chain is then implicitly defined
by the data path in the model. A detailed discussion of
the representation of TADL2 timing constraints in RCM is
provided in [35].

The RCM model allows performing high-precision tim-
ing analysis. This is possible through the Rubus RTOS and
well defined synthesis from RCM model to the final code.

On SWC-level, the analysis engine then implements tight
response time analysis for tasks with offsets [36]. Holistic
timing analysis is implemented for task chains that are dis-
tributed over several compute nodes [37]. And end-to-end
delays of effect chains, such as data age or reaction delay,
are available as well [38] based on the analysis of [34].

3. Research method

We have conducted this study using an adaptation of the
model for industry-relevant research in software engineer-
ing proposed by Gorschek et al. [25]. The adapted model

Figure 5: Adopted research method.

consists of 3 main steps carried out iteratively. In three
iterations, we have developed and evaluated the mapping
scheme and the automation mechanism. Figure 5 provides
a graphical representation of the steps and iterations. As a
first step, we have observed domain and business settings
and assessed current industrial practices with the aim of
defining a research statement aligned with industrial needs.
Such an observation has happened in the context of the
PANORAMA project and involved several national and
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international automotive companies. Integrating AMAL-
THEA and RCM has emerged as a pressing concern that
was of interest for both the practitioners and the research
community. In the next step, we have developed a first
architectural mapping between AMALTHEA and RCM.
We have constructed the mapping using relevant sources
and use cases. In this step, we have collaborated with two
automotive companies being Arcticus Systems in Sweden
and Robert Bosch GmbH in Germany. We have evaluated
the applicability of the mapping scheme using the BBW use
case. Besides, we have assessed the relevance of this work
using expert surveys. The survey contains a set of 10 ques-
tions drawing on the model for evaluating research rigour
and relevance presented in [39]. The pool of interviewed
experts includes 10 researchers and practitioners with rel-
evant experience in the fields of cyber-physical systems,
software engineering, software architecture, model-driven
engineering and real-time embedded systems. More details
on the survey are provided in Section 7. The application
of the mapping scheme on the BBW use case has proved
its applicability. The survey has shown that there was a
consensus on the usefulness and relevance of the mapping
scheme. It has also pointed some limitations and possible
improvements. The limitation that has concerned the most
the respondents was that the proposed mapping scheme did
not contain relationships for back annotating the timing
analysis results on the AMALTHEA architecture. Hence,
in the second iteration, we have focused on identifying the
architectural elements for enabling the back annotation of
the original AMALTHEA architecture with timing analy-
sis results. The result was an extended mapping scheme,
which we have validated on the same BBW use case. An-
other concern we have collected from the expert survey was
regarding the size of the use case, which was considered as
relevant only by half of the respondents. We have addressed
this feedback by introducing other use cases, the FBEM
and the EMS use cases, which have helped us in evaluating
the scalability and performance of the automation, too. To
collect further feedback on the usefulness of this research,
we have presented the proposed mapping scheme to the
broader community during two online workshops. In the
first workshop, we have discussed our effort together with
the research community of the Euromicro Conference on
Software Engineering and Advanced Applications. The
participants were mostly academics with different titles
and job positions, from PhDs to Professors. This work-
shop has lasted for 40 minutes and has involved In the
second workshop, we have discussed our research with the
partners from the PANORAMA project. The attendees of
this workshop were a mix of academics and professionals
researching and working in automotive software engineer-
ing. Among others, we had representatives from Arcticus
Systems, Robert Bosch GmbH, Alten, SAAB AB, KTH
Royal Institute of Technology, Siemens AG, University of
Gothenburg, University of Rostock, etc. This workshop
has lasted for one hour. During both workshops, it was
suggested to use the mapping scheme for defining an au-

tomation mechanism able to integrate AMALTHEA and
RCM. In the third and last iteration, we have focused on
developing such an automation mechanism using the con-
cept of model transformation. Besides, we have focused on
validating the applicability, correctness, scalability and per-
formance of the proposed automation mechanism. We have
validated the applicability and correctness of the automa-
tion mechanism using the BBW use case. For assessing
the correctness, we have compared the automatically gener-
ated RCM model of the BBW system with an RCM model
created manually by a software engineer with more than
10 years of experience with these technologies. To evaluate
scalability and performance we have used the FBEM and
EMS use cases.

3.1. Threats to validity

Hereafter, we discuss and classify potential threats to
validity and describe our mitigation strategies according
to the scheme proposed by Runeson et al. [40].

3.1.1. Threats to internal validity

Threats to internal validity affect the relation among
the observed variables. To mitigate the threat to treat-
ment setup and design, we have carried out this research
by following the model for industry-relevant research in
software engineering and complemented it with domain
knowledge, best practices and experiences acquired dur-
ing our consolidated collaborative research experience. To
mitigate threats related to subjects selection, we have in-
volved only subjects with extensive and proven experience
in the field. All the data and use cases in this research
have been provided from our industrial partners or taken
from openly available industrial use-cases such as the ones
provided trough the WATERS Industrial Challenge [27]
and the work by Frey [26]. This has helped us in miti-
gating threats to treatment design and sample selection.
Besides, we have mitigated the lack of clear data collection
procedure threats by describing all the steps we have fol-
lowed for the design and validation of this research. We
have made publicly available all the artefacts used in this
research, i.e., use cases, code of the automation mechanism
and the survey. This has helped us in mitigating possible
threats to poor parameter settings and lack of discussion
on development and testing artefacts. To mitigate the risk
that the questions composing the survey might have influ-
enced the answers, we have built the survey on the model
for evaluating research rigour and relevance presented by
Ivarsson et al. [39]

3.1.2. Threats to construct validity

Threats to construct validity related to the design of
the study. To minimise such threats, we have adopted
a well-defined research protocol based on the model for
industry-relevant research in software engineering. We have
mitigated mono-operation bias using different validation
means, i.e., use cases, survey and workshops, and subjects.
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To minimise threats related to experimenter bias and ex-
pectations, we have made an effort in relying on well-known
and accepted methods such as the one by Ivarsson et al. [39].
In this research, we have run the proposed mechanism on
real-world use cases coming from industry. This has helped
us in reducing threats to the appropriateness of data. All
researchers involved in this work have prior and established
experience in the automotive domain, which has helped in
ensuring construct validity. It is worth mentioning that all
the authors have longstanding professional collaborations
with the experts involved in the evaluation and this has
resulted in insightful discussions characterised by mutual
trust.

3.1.3. Threats to external validity

Threats to external validity affect the generalisation of
the observed results. The main threats to external validity
for this research are the representation of the population
and settings. To mitigate threats to the representation of
the settings, we have made an effort in using use cases and
tools representative of the actual domain. In particular,
we have leveraged three real-world use cases, which we
have manipulated using the official accompanying tools
of the languages, being APP4MC and Rubus ICE. To
mitigate threats to the representation of the population, we
evaluated this research only with profiles having extensive
and proven experience in the field of automotive software
engineering. Besides, both the authors have a long track
record in such a field proven both by the different research
projects they run and by their professional experience.

3.1.4. Threats to conclusion validity

Threats to conclusion validity affect the ability to derive
conclusions from the observed relationships. One of the
main threats to conclusion validity for this research is the
reliability of the measures as the research results could
have been affected by the quality of the leveraged use cases
and survey questions. We have addressed this threat by
using real-world industrial use cases and by building the
survey on a well-known model for evaluating research rigour
and relevance presented by Ivarsson et al. [39]. Another
important threat to conclusion validity is the statistical
power as the survey was answered by 10 respondents. To
mitigate such a threat, we have complemented the expert
survey with two online meetings involving more than 40
participants, consisting of researchers and practitioners in
software engineering from well-known and reputable uni-
versities and companies. We have tried to mitigate other
threats to conclusion validity such as lack of expert evalua-
tion and fishing for results by involving only profiles with an
extensive and proven experience and by not contaminating
the validation activities with our expectations.

4. From AMALTHEA to RCM and back

In this section, we present a mapping scheme for the
integration of AMALTHEA and RCM. The proposed map-

ping scheme allows for the translation of an AMALTHEA
architecture into an RCM one, where high-precision timing
analysis can be performed. Besides, the mapping allows for
the back-annotation of the timing analysis results on the
starting AMALTHEA architecture. Table 1 summarises
the main relationship composing the proposed mapping.
Each relationship relates one RCM element to the corre-
sponding AMALTHEA element(s) from which it can be
translated. The wealth of elements of AMALTHEA means
that the elicited relationship might not be unique as RCM
elements may be translated from different AMALTHEA
ones. We believe that the existence of such alternatives
does not affect the correctness and effectiveness of the
proposed mapping. We discuss this aspect in Section 7.

4.1. From AMALTHEA to RCM

In RCM, a Node element represents a computing pro-
cessor. An RCM Node element can be translated from an
AMALTHEA HwStructure element when its structure-

Type is typed to either ECU or micro-controller. Figure 6
shows an example of an AMALTHEA architecture where
the HwStrcuture NXP MPC5744P [41] is typed to a micro-
controller.

Figure 6: Extract of an AMALTHEA architecture depicting an
HwStructure element of type Microcontroller.

An RCM Core element describes a processing unit and
it can be translated from an AMALTHEA ProcessingU-

nit. In this case, the associated ProcessingUnitDefi-

nition must have the attribute puType set to CPU. In
Figure 7 the element CPU type is typed to CPU. From a
semantic perspective, these two relationships allow preserv-
ing the structural containment between HwStructure and
ProcessingUnit elements, and between Node and Core.
Figure 7 shows the containment between NXP MPC5744P

and CPU type.

Figure 7: Extract of an AMALTHEA architecture depicting an Hw-
Structure element, a ProcessingUnit element and their relationship.

Generally, RCM does not require to explicitly model
memory hierarchies as the allocation of code to data mem-
ory is subject to automated synthesis and not entrusted to
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Scope RCM AMALTHEA

Hardware

Node HWModel::HwStructure
Core HWModel::ProcessingUnit

Network HWModel::ConnectionHandler

Message
SWModel::Channel and

SWModel::Label
Operating system Partition OSModel::TaskScheduler

Software

Application SWModel
Mode SWModel::Mode

Software circuit SWModel::Runnable

Data port
SWModel::Channel and

SWModel::Label
Clock StimuliModel::PeriodicStimulus

Activation from predecessor
StimuliModel::SporadicActivation and

SWModel::ActivityGraph
Priority MappingModel::TaskAllocation

Worst-case execution time
SWModel::Ticks and
HWModelFrequency

Mapping
Software to hardware

allocation
MappingModel::SchedulerAllocation

Timing
DataAge ConstraintModel::EventChainLatencyConstraint

DateReaction ConstraintModel::EventChainLatencyConstraint

Table 1: Mapping relationships.

…
…

Figure 8: Extract of an AMALTHEA architecture depicting
a ProcessingUnit element, a TaskScheduler element and the
SchedulerAllocation element.

the engineer. An exception to this is the description of the
communication network where RCM requires the explicit
modelling of the network and all the messages travelling
through it. In RCM, a Network element represents the
network connecting different nodes of the architecture. A
Network element can be translated from the AMALTHEA
ConnectionHandler element. An RCM network Message

represents data exchanged from software elements resid-
ing in different nodes of the architecture. Hence, it can
be translated from an AMALTHEA Label or Channel el-
ement, when it refers to Runnable elements in different
HwStructure elements.

In RCM, a Partition element represents a logical divi-
sion of cores and it is used for grouping software functions
to schedulable units. It can be translated from an AMAL-
THEA TaskScheduler element. One important aspect
to consider when translating TaskScheduler elements are

…
…

Figure 9: Extract of an RCM architecture depicting a Partition

element, a Core element and a Node element.

the allocation information: in AMALTHEA, such informa-
tion is specified using the SchedulerAllocation element,
while in RCM a Partition element is structurally con-
tained within a Core element. Hence, the information
modelled by the SchedulerAllocation element must be
taken into account for creating Partition elements within
the proper Core elements. An example is shown in Fig. 8.
The example includes an e200z4 CPU core that is modelled
as ProcessingUnit element, a MICROSAR task scheduler
modelled as TaskScheduler element and the Scheduler-

Allocation element that maps the scheduler to the pro-
cessing unit. Fig. 9 depicts the RCM elements Node, Core,
Partition and Application of the AMALTHEA model
in Fig 8. The structural containment of the elements is
visualised in the figure. An RCM Application element
is used for grouping software functions and specifying its
safety-related properties. It can be translated from an
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Sequential TriggeringCommunication via 
shared label 1

Periodic Execution 
with Priority

End-to-End Latency Constraint (Data Age)
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Figure 10: Extract of an AMALTHEA architecture and its RCM representation. Highlighted are the periodic execution with fixed priority
(marking 1), mapping of runnable execution from AMALTHEA tasks to sequential execution in the RCM model (marking 2), communication via
shared labels in the AMALTHEA model and mapping to communication via data channels in the RCM model (marking 3), and representation
of end-to-end timing constraints in the RCM model (marking 4).

AMALTHEA SWModel element. RCM Mode elements RCM
can be translated from the AMALTHEA Mode elements. In
RCM, an SWC element describes an elementary unit of com-
putation. In AMALTHEA, a Runnable element represents
an abstraction of an executable entity and a Task element
represents an executable unit. Each AMALTHEA task
needs to specify the sequence of the executable entity using
the Activity Graph element. Hence, we believe that RCM
SWCs should be translated from the Runnable elements
contained within an Activity Graph. An example of this
is provided in Figure 10, which shows the example task
Task1, its Activity Graph and the Runnable elements A,
B and C in the graph, which in turn exchange data via the
communication labels label1 and label2. The example
task is periodically activated with a period of 10 ms and a
fixed priority of 10 (marking 1). The runnables that are
executed by Task1 are instantiated in the RCM model and
their trigger ports are connected to form a sequential exe-
cution (marking 2). Communication in the AMALTHEA
model is realised via shared labels that are accessed from
the Runnables with either read or write access. These are
translated to data ports and their connection in the RCM
model (highlighted for the example of label1, marking 3).

It is important to note that since a single Runnable

element can be referred from different Activity Graph

elements, SWCs should be translated with proper identi-
fiers. In RCM, some important properties of a SWC are the
Priority and the Worst-Case Execution Time (WCET).
These properties can be translated from an AMALTHEA
architecture. The former can be translated from the prior-
ity parameter of AMALTHEA TaskAllocation elements.
The WCET of a runnable can be calculated using the at-
tribute Ticks of the Runnable elements and the attribute
Frequency of FrequencyDomain elements used to denote
the CPU frequency, as follows:

WCET = Ticks/Frequency

For instance, if the CPU frequency is defined to be 300 MHz,
the execution time of the runnable A in Figure 10 can be
computed by dividing 15000 ticks by 300 MHz.

As mentioned above, RCM Data port elements can be
generated from AMALTHEA Label and Channel elements
depending on the size of the data. If the AMALTHEA archi-
tecture does not contain Label or Channel elements, RCM
Data port elements can be derived from Event Chain

and Event elements. In RCM, Control port elements are
mandatory and are used for specifying the activation of
SWC elements, which can be either periodic or sporadic.
Periodic activation is modelled using Clock elements, while
the most common kind of sporadic activation is the acti-
vation from a preceding SWC (see Figure 10, marking
1).

An RCM Clock element can be derived from an AMAL-
THEA PeriodicStimulus element while a sporadic acti-
vation can be translated from an AMALTHEA Sporad-

icActivation element and from the order of Runnable

elements within an Activity Graph element.
RCM only express software to hardware allocation in-

formation and it does that using the isAllocated associ-
ation, which can be specified between any RCM software
and hardware element. Such information can be derived
from the AMALTHEA SchedulerALlocation and Task

Allocation elements. The former allows for the linking of
Scheduler elements to processing unit elements while the
latter links Task elements to Scheduler elements.

RCM provides for the specification of timing require-
ments on response-time analysis and end-to-end data prop-
agation delay analysis [38, 42]. These requirements are
expressed using Data Age and Data Reaction elements,
which can be translated from AMALTHEA EventChain-

LatencyConstraint elements. If the attribute Latency-

Type of an EventChainLatencyConstraint is set to Age

then the AMALTHEA constraint will be translated into
an RCM Data Age; if the attribute LatencyType of an
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EventChainLatencyConstraint is set to Reaction then
the AMALTHEA constraint will be translated into an RCM
Data Reaction. Figure 11 provides an example of a la-
tency data age constraint. The resulting representation in
the RCM model is highlighted in Figure 10, marking 4.

Figure 11: Extract of an AMALTHEA architecture depicting a latency
data age constraint.

4.2. Back-annotating timing analysis results

The above relationships allow for the translation of an
AMALTHEA into an RCM architecture. Response-time
analysis and end-to-end data-propagation delay analysis
can be executed on the generated RCM architecture. Once
the timing analyses are run, their results should be anno-
tated back to the starting AMALTHEA model. To perform
such back-annotation we propose to use the AMALTHEA
MeasurementModel. We use the EventChainMeasurement

element and the TaskMeasurement element for storing the
results of the timing analyses for data chains and tasks, re-
spectively. To this end, we propose to create three custom

properties named Worst-Case Reaction Time, Worst-
Case Response Time and Creator. The first two proper-
ties identify the type of the recorded results while the last
property its origin. It should be noted that these results
are statically determined meaning that they give us values
for the upper bounds and not for the distribution of the
measured constraints. Besides, since the results are specific
for a model, changes in the AMALTHEA model should
lead to an invalidation of the measurement model. An
example is shown in Figure 12 where the results of the
timing analysis for an event chain EC Sequence FL of type
reaction constraint is highlighted.

Figure 12: Extract of an AMALTHEA architecture depicting the
back annotation of latency constraints.

5. Automating the translation

This section provides details on the implementation of
the proposed automation mechanism. First, we provide
a high-level description of the mechanism and after we
discuss each phase of the automation mechanism in greater
detail.
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Figure 13: Overview of the automation mechanism and its phases.

5.1. Overview of the Transformation Process

Figure 13 shows the proposed automation mechanism
and its composing phases, which are: setup, transformation,
export and back-annotation. The setup, transformation and
export phases represent the heart of the automation mech-
anism and provide for the automatic translation of an
AMALTHEA model into an RCM one, which can then
be used, amongst other things, as input for high preci-
sion timing analysis. The timing analysis is entrusted
to the Rubus ICE development environment [43], which
collects its results in a report that can be used to back-
annotate the original AMALTHEA model. APP4MC is
the Eclipse-based platform built around the AMALTHEA
language [11]. Among other utilities, APP4MC provides
means for manipulating AMALTHEA models using Java.
The proposed automation mechanism uses such APP4MC
utilities, therefore, is based on Java, too.

5.1.1. Setup

The setup phase is responsible for preparing the nec-
essary infrastructure for the model transformation phase.
This includes parsing the arguments of the transformation
program, loading the respective AMALTHEA model from
the XML file and creating the folder structure for the RCM
model (if it does not yet exist). The arguments of the
program define:

• The path to the AMALTHEA model (or to the timing
analysis report).

• The destination folder of the RCM model.
• A flag that indicates the direction (i.e. transformation

or back-annotation).

This is done using the AMALTHEALoader class provided
by APP4MC. The class returns an AMALTHEA object that
represents the loaded AMALTHEA model, which can be
used to operate on the model.
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5.1.2. Transformation

The transformation phase is the core of the automation
mechanism. Hereafter, we outline the steps of the program
and provide some details using pseudo-code. The transfor-
mation phase operates on the AMALTHEA object that was
loaded from the provided AMALTHEA model file in the
setup phase. The first step of the transformation is the
extraction of the frequency domain defined in the AMAL-
THEA model. This is required as the execution time of
the runnables are specified in ticks whereas the execution
time of RCM SWCs is specified in time units. Algorithm 1
presents the pseudo-code of the part of the transforma-
tion responsible for translating the AMALTHEA hardware
model. The transformation traverses all HwStructure ele-
ments of the HwModel (line 1). If a HwStructure element
is of type MICROCONTROLLER, the element is transformed
to an RCM Node element and added to the RCM model
(line 2-4). In turn, all HwModule elements of the HwStruc-

ture are traversed and if they are of type ProcessingUnit
they are transformed to an RCM Core element (line 5-7).
The RCM Core is then added to the previously created
Node element (line 8).

Algorithm 1: Hardware Model Transformation

1 for ∀ HwStructure ∈ amalthea.HwModel do
2 if HwStructure.type == MICROCONTROLLER then
3 rcmNode = toRcmNode(HwStructure)
4 rcm.add(rcmNode)
5 for ∀ HwModule ∈ HwStructure do
6 if HwModule is ProcessingUnit then
7 rcmCore = toRcmCore(HwModule)
8 rcmNode.add(rcmCore)

9 end

10 end

11 end

12 end

Once the hardware model is successfully transformed,
the software model is transformed. Algorithm 2 shows the
pseudocode for this part of the transformation. As only
the parts of the software that are mapped to the platform
need to be transformed, the MappingModel of AMALTHEA
is utilised. The algorithm traverses all TaskAllocation
elements of the MappingModel (line 1). For each TaskAllo-

cation element, an empty list of RCM SoftwareCircuit

elements is created. For each of the RunnableCall elements
that are defined in the AMALTHEA task’s ActivityGraph
one RCM Software Circuit is created and added to the
temporary list (line 3-6). The created Software Circuit

has trigger input and output ports, but also data ports
for each of the communication labels that are accessed by
the original AMALTHEA runnable. If the LabelAccess

element in the AMALTHEA model is defined as read, a
data input port is created. If the label access is defined
as write the data port is an output. Once all required
Software Circuits are created, a trigger source is created
for the RCM model that is equivalent to the one of the
AMALTHEA task. This Clock element is then connected

to the trigger port of the first Software Circuit in the
temporary list (line 9-10). For all other Software Cir-

cuit pairs in the list the trigger output port is connected
to the trigger input port of the respective next Software
Circuit in the list (line 12). Finally, a TrigTerminator

element is added to the trigger output port of the last
SoftwareCircuit in the list. This effectively creates a
trigger chain of all Software Circuit elements in the list.
Afterwards, the Software Circuit elements in the tem-
porary list are added to the RCM model (line 15). After

Algorithm 2: Task Transformation

1 for ∀ TaskAllocation ∈ amalthea.MappingModel do
2 tmpSwcList = ∅
3 for ∀ ActivityGraphItem ∈ TaskAllocation.Task do
4 if ActivityGraphItem is RunnableCall then
5 rcmSWC = getRcmSwc()
6 tmpSwcList.add(rcmSWC)

7 end

8 end
9 rcmClock = toRcmTrigClockTT(TaskAllocation.Task)

10 tmpSwcList.first = conTrigIn(rcmClock)
11 for SWC pair ∈ tmpSwcList do
12 linkTrigger()
13 end
14 tmpSwcList.last = conTrigOut(rcmTrigTerminator)
15 rcm.addAll(tmpSwcList)

16 end

this step, the main parts of the AMALTHEA application
are represented in the RCM model. However, it remains
to connect the data ports of the RCM model to realise the
communication between Software Circuit element. Data
input and output ports are connected if they are a result
of access to the same Label in the AMALTHEA model.
Generally, only one writer exists, but multiple readers are
possible.

As the last step, the timing constraints that are spec-
ified in the AMALTHEA model need to be represented
in the RCM model as well. This information can be ob-
tained from the ConstraintsModel of AMALTHEA. While
AMALTHEA specified the complete sequence of events that
are part of the EventChain, it is only necessary to get its
beginning and end. At these points RCM requires Age-

DataStart and AgeDataEnd or ReactionDataStart and
ReactionDataEnd elements for data age constraints or re-
action constraints respectively. To connect these to the
RCM Software Circuit, a dedicated data port is added
to which the timing constraint is connected.

5.1.3. Export

The export phase is responsible for writing the RCM
model to its XML output format that can then be loaded
by the Rubus ICE timing analysis engine. Rubus ICE
allows for different alternatives to store the RCM model.
For example, SWCs can be defined in one file and then
referenced from the main file. The same can be done with
partition or node elements. In a manual workflow this
might be desired as it would save some development effort
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and it provides for a more structured representation of the
model. In this case, the RCM model is not intended to be
modified manually as modifications should be performed
on the AMALTHEA model instead. Therefore, the au-
tomation mechanism generates a single file that represents
the complete RCM model.

5.1.4. Back-annotation

Rubus ICE allows for different alternative file formats
for storing the analysis report (TXT file, HTML file and
XML file). The back-annotation phase is responsible for
parsing the analysis report file and extracting the timing
properties and calculated values. The calculated values can
then be added to the original AMALTHEA model using
the measurement data model as described in Section 4.2.
Once all the back-annotations are performed, the model
can be written back to the XML file using the provided
AMALTHEAWriter class.

6. Applying the automation mechanism on an in-
dustrial use case

In this section, we describe the application of the au-
tomation mechanism on the BBW use case. First, we show
how the proposed mechanism can automatically trans-
late the BBW AMALTHEA architecture into an RCM
one, where response-time analysis and end-to-end data-
propagation delay analysis can be run. After, we use the
proposed mechanism for back-annotating the timing anal-
ysis results to the starting AMALTHEA model. A BBW
system replaces the old-fashioned mechanical linkages with
a stand-alone braking system, which allows controlling
the brakes through electronic means. There are different
implementations of the BBW system. In this work, we
use the implementation used by an international Swedish
automotive OEM. Figure 14 provides for a graphical rep-
resentation of the BBW use case, which is comprised of
11 periodic tasks, activated at 5 different periods. These
tasks ensure that the BBW activates the brakes each time
that the brake pedal is pressed. Besides, it ensures that the
actuation happens within a specified time interval. To this
end, four data chains subject to reaction timing constrains
are specified on the architecture. The data chains share the
first 3 tasks (pBrakePedalLDM, pGlobalBrakeController
and pBrakeTorqueMap) and then continue individually on
each wheel (ABS FL Pt and pLDM Brake FL for the front
left wheel, ABS RL Pt and pLDM Brake RL for the rear-left
wheel, ABS FR Pt and pLDM Brake FR for the front right
wheel, and ABS RR Pt and pLDM Brake RR for the rear-right
wheel). Figure 15 shows the AMALTHEA architecture of
the BBW system realised in the Eclipse APP4MC plat-
form, which is the AMLTHEA accompanying development
environment.

It is important to note that the automation mechanism
uses the XML file rather than the three-based graphical
representation of it. Within APP4MC, each model is stored
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Figure 14: Block diagram of the BBW application. Different tasks
and their communication pattern are shown. Task period and reaction
time constraints are annotated.

as an XML file so no further processing is needed. In this
work, for the sake of clarity and verbosity, we omit the
XML representation of the BBW use case and only provide
its graphical representation as in Figure 15. Besides, in
Figure 15 some model elements have not been expanded
and some element names have been cropped out. The inter-
ested reader can find the complete AMALTHEA project for
the BBW system in [44]. The AMALTHEA software model
for the BBW system consists of 11 runnables mapping to
the 11 tasks described above. Besides, it contains 10 labels
realising the communication between the software elements.
The AMALTHEA hardware model for the BBW system
contains an HwStructure describing the NXP MPC5744P pro-
cessor [41], which is a single-core processor tailored for
automotive applications. The frequency of the processor is
specified through the FrequencyDomain element and is set
to 3.0E8 Hz. The AMALTHEA operating system model
and stimuli model for the BBW system specify the sched-
uler for the available core and the periodic activation of
the eleven task elements, respectively. The AMALTHEA
event data model of the BBW defines events that are con-
nected to software elements and can be used to specify
timing constraints. The AMALTHEA constraints model
includes several pieces of information: ProcessRequire-

ment elements specify the response-time of tasks, while
the EventChainLatencyConstraint elements describe the
reaction constraints described above. Eventually, the map-
ping model specifies the allocation of the 11 tasks to the
task scheduler and the allocation of the task scheduler to
the available core.

As described in the previous section, the proposed au-
tomation mechanism is realised as a Java program. This
means that it can be run in any instance of the Eclipse plat-
form as the program takes care of importing the relevant
packages and solving the dependencies with the APP4MC
platform. To execute the mechanism, we have provided the
path to the AMALTHEA BBW model as input together
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Figure 15: Excerpt of the AMALTHEA architecture of the BBW
system realised within the Eclipse APP4MC platform.

with the direction of the mechanism and the path to the
folder for storing the generated RCM file. The applica-
tion of the proposed automation mechanism on the BBW
model of Figure 15 produces an XML file describing the
corresponding RCM architecture. As for the AMALTHEA
architecture, we omit the XML file and show its graphi-
cal representation in Figure 163. It should be noted that
despite Rubus ICE provides for a graphical editor, all the
models are stored as XML files. Besides, all the Rubus ICE
plugins, as the timing analysis plugins, work directly on
the XML files. The automation mechanism has generated
the RCM file in 5.71 ms. We have measured the run-time
for the setup, transformation and export phases, which are:

3The interested reader can find the complete RCM model for the
BBW system at [44]

3.20 ms, 0.86 ms and 1.65 ms, respectively. The measured
run-time refers to a system containing an Intel Core i9
8-Core processor at 2.3 GHz and 32 GB RAM. It can be
noted that the setup phase has required the most time
while the actual transformation phase the least time (later
in Section 7.2 the scalability of the proposed mechanism
is investigated using a large scale industrial application).
Figure 16 shows the SWCs generated from the tasks and
respective runnables along with their data and control flows.
To identify the origin of a SWC, its name is a result of
the AMALTHEA task name and the runnable name. In
Figure 16 shortened names have been presented to increase
readability. Each SWC is equipped with data ports (grey
circles in Figure 16) and control ports (white triangles
in Figure 16) translated from EventChain and Activity

Graph elements. Periodic activation of tasks is translated
using clock elements. Execution times, worst-case execution
times and other timing properties are specified as proper-
ties of the SWCs. The AMALTHEA reaction constraints
are translated as DataReaction elements represented as
grey boxes in Figure 16. To evaluate whether the reaction
constraints of 20 ms are met, we run delay analyses on
the automatically generated RCM architecture [21]. The
analyses are run in Rubus ICE, which displays the analysis
results in so-called analysis reports. Figure 17 depicts an
excerpt of the analysis report, while the complete report
can be found at [44]. The report specifies the name of
the constraint on the left-most column, the specified de-
lay in the column in the middle and the calculated delay
on the right-most column. In our case, the specified de-
lays of 20 ms are not met as the calculated delays are of
20.359 ms, 20.267 ms, 20.177 ms and 20.037 ms, respec-
tively. To back-annotate the analysis results, we have run
the automation mechanism a second time with the path
to the timing analysis report and the opposite direction
as arguments. The calculated delays together with the
tasks maximum response times are annotated back to the
original AMALTHEA model. The proposed mechanism
enriches the starting XML file with the tags representing
the measurement model. The measured run-time for the
back-annotation is 1.90 ms. Figure 18 shows the graph-
ical representation of the updated AMALTHEA model
containing the analysis results for the BBW system.

7. Evaluation and discussion

In this section, we describe and discuss the activities we
have performed for validating the correctness, scalability
and performance of the proposed automation mechanism.
Eventually, we discuss the industrial relevance of this work.

7.1. Correctness

In Section 4, we have discussed how the wealth of ele-
ments of AMALTHEA could make the existence of other
relationships between AMALTHEA and RCM elements
possible. We hypothesise that the existence of alternative
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Figure 16: Excerpt of the RCM architecture of the BBW system realised within Rubus ICE.

Figure 17: Excerpt of the timing analysis report.

Figure 18: Excerpt of AMALTHEA architecture showing the back-
propagation of the analysis results.

relationships does not affect the correctness of the identified
ones. To prove the correctness of the mapping scheme we
have created and used for the automation mechanism, we
have compared the automatically generated RCM model for
the BBW system with an RCM model created manually by
a software engineer. The engineer has more than 10 years
of experience with RCM and automotive software develop-
ment. Besides, he has been involved in several national and
European research projects. We have provided the engineer
with the starting AMALTHEA model for the BBW system
and the link to the AMALTHEA official documentation.
All the artefacts and documentation were provided via
email and we have remained available for any clarification.

Figure 19 shows the RCM architecture for the BBW system
as developed by the software engineer. It might be noted
that this architecture is identical to the one automatically
generated and reported in Figure 16 except for two dif-
ferences regarding the data ports of the SWCs. The first
difference is that in our architecture the automation mecha-
nism has created one data port for each latency constraint,
while the software engineer has created one single data port
for all the constraints. In the case of the BBW system, such
a difference does not have any impact as there is no data
communicated among tasks (SWCs) since the first task
(SWC) reads the break pedal signal. In the general case
where data might be passed among tasks (SWCs), there
should be separate ports. The second difference is that the
engineer used a special data port called named data port

for improving the graphical representation of the model.
The named data port element called data links the data
output port DO of the pBlobalBrakeController SWC to
all the DI ports of the ABS RR Pt, ABS RL Pt, ABS FR Pt

and ABS FL Pt SWCs without changing the semantic of the
data port. Automation mechanisms might be notoriously
less effective in capturing specific syntactic and semantic
aspects, which can be easily handled by engineers. How-
ever, in this case these aspects were only impacting the
graphical display of the model. The comparison has shown
that the mapping scheme leveraged by the automation
mechanism translates AMALTHEA architectures in RCM
ones in a similar way to a skilled software engineer with
several year of experience with these technologies would do.
Hence, our hypothesis seems to be correct: other mapping
relationships among AMALTHEA and RCM languages do
not affect the correctness of the proposed mapping scheme.
This conclusion is strengthened by the results of the execu-
tion of the proposed automation mechanism on the EMS
and FBEM use cases described in the following section.

7.2. Scalability and performance using Case Studies

By running the automation mechanism on the BBW
use case, we have shown that the mechanism applies to
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Figure 19: Excerpt of the RCM architecture of the BBW system created manually from a software engineer.

real-world automotive systems and that its performance is
acceptable for its intended use. However, the BBW system
is a rather concise system, which composes of few dozen
of model elements. To demonstrate that the proposed
mechanism does not only apply on bigger systems, but
that its performance remains acceptable, we apply the
automation mechanism on two additional use cases notably
the FBEM and the EMS.

7.2.1. Description of the FBEM use case

The FBEM use case was proposed by Robert Bosch
GmbH within the 2017 WATERS Industrial Challenge [27].
The challenge describes an engine management system
consisting of 1194 runnables with periodic activation and
46 runnables with sporadic activation. Communication
among runnables is entrusted to 10000 label elements. The
runnables are mapped to 21 tasks and interrupt service
routines, that are executed by the operating system. The
hardware platform consists of a multi-core processor with
four cores that execute at 200 MHz, each with a local
scratchpad program and data memory. Global DRAM
is used for communication. Latency and other timing
elements, such as data propagation constraints on chains
of runnables, are expressed as well. Both the hardware and
software models are provided in the Amalthea file format.
The interested reader can download the full model at the
link provided in the Note 2. We have not modified the
model except for some minor fixes as follows:

• Added the unit ”Hz” to the GenericPLL Frequency Do-
main element used to denote the CPU frequency.

• Removed the feature accessElement from the model as it
is no longer supported after the migration to Amalthea
0.9.7.

7.2.2. Description of the EMS use case

The EMS use case is described by Frey in [26] and is
part of the examples provided with AMALTHEA [45]. It

executes 43 runnables using 3 different tasks. Communi-
cation between the different runnables is realised by 71
communication labels. The hardware platform consist of
a single core processor that is clocked with 200 MHz. The
interested reader can download the full model at the link
provided in the Note 2. We have not modified the model
except for some minor fixes as follows:

• Created a mapping model that allocates the three tasks
to the operating system, as well as the operating system
to the processor.

• Increased the clock frequency to 600 MHz as the initial
DemoCar model has a Utilization > 1 which makes it
unschedulable using the provided worst-case execution
time values.

7.2.3. Performance and Scalability Evaluation

To evaluate the performance and scalability of the trans-
formation process the same measurements are performed
as for the BBW use case in Sec. 6. Measurement results
are reported for the three transformation phases (1) Setup
Phase, (2) Transformation Phase, (3) Export Phase, as well
as for the total time taken. 1000 runs of the automation
mechanism are recorded. Table 2 presents the collected
results. It is noteworthy to point out the difference between
the minimum and maximum times measured for the setup
phase is rather large for both case studies. This is due to
the initial latency of the AMALTHEA model loader that
occurs only for the first measurement. Compared to the
BBW use case, for the large scale case FBEM case study,
the transformation process now requires the most time of
all phases, but despite the significant size of the application
model the required time is still in the millisecond range.
Hence, we conclude that the proposed automation mech-
anism applies to large scale industrial sized applications
with more than 1000 runnables and 10000 communication
labels, too, with a maximum total time of 2628 ms. We did
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EMS FBEM
Min Max Avrg. SD Min Max Avrg. SD

Setup Phase 0.74 ms 736 ms 2.27 ms 23 ms 98 ms 1024 ms 113 ms 31 ms
Transformation Phase 0.13 ms 22 ms 0.31 ms 1 ms 530 ms 1561 ms 657 ms 70 ms
Export Phase 0.84 ms 45 ms 1.43 ms 2 ms 173 ms 616 ms 208 ms 31 ms
Total Time 1.78 ms 804 ms 4.02 ms 23 ms 833 ms 2628 ms 979 ms 96 ms

Table 2: Duration of the proposed transformation of 1000 executions with the EMS and the FBEM use cases.

Figure 20: Perceived industrial relevance of this research.

not measure the performance of the proposed mechanism
when back-annotating the results. The performance of
the back-propagation mainly depends on the number of
timing constraints specified. In our experience, we have no-
ticed that almost all the models do not contain more than
few constraints even for industrial applications. Hence,
scalability and performance analysis would not make sense.

7.3. Industrial relevance

To assess the industrial relevance of this work, we have
used an online survey. We have asked 10 experts to answer
a set of 10 questions drawing on the model for evaluating
research rigour and relevance presented by Ivarsson et
al. [39]. All the respondents possess a PhD degree and have
prior and established experience in the field of automotive
software engineering. The interested reader can access the
complete list of questions at [44]. The pool of experts was
composed of the following profiles:

• 6 researchers in the fields of cyber-physical systems, soft-
ware engineering, software architecture, model-driven
engineering and real-time embedded systems.

• 4 practitioners working for Swedish and German auto-
motive OEM, tier-1 and tier-2 companies.

The respondents found the proposed research to be indus-
trially relevant (Figure 20), with 40% of the experts that
found it relevant or extremely relevant (Figure 20). One
expert has remarked that “In my opinion, such mappings
have high-industrial relevance, especially in supporting in-
teroperability among various industrial languages and tools”.
According to Ivarsson et al., the subject of a research refers

Figure 21: Perceived industrial relevance of the subjects performing
this research.

Figure 22: Perceived industrial relevance of the context of this research
this research.

to the profiles that performed the research and their suit-
ability to industrial settings [39]. Figure 21 shows that
80% of the experts have found the subjects to be indus-
trially relevant. The context of a research refers to the
environment in where the research was carried out, while
the research method refers to the protocol used for planning
and executing the research [39]. Similar to the subject,
80% of the experts have found the context and the research
method of this work to be industrially relevant (Figure 22
and Figure 23). The scale of a research refers to the sig-
nificance of the use case used for its validation and its
relevance for industry. The opinion of the experts on this
question was split and only 50% of the experts has found
the size of the BBW use case to be industrially relevant.
Half of the experts has found the size of the BBW use case
not particularly representative of industrial settings. To
address this concern, we have complemented the BBW use
case with the FBEM use case. We show the application of
the automation on the FBEM in Section 5.
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Figure 23: Perceived industrial relevance of the research method of
this research.

Figure 24: Expert survey results.

8. Related Work

To the best of our knowledge, this research represents
the first documented effort in providing an automation
mechanism for translating an AMALTHEA architecture
into an RCM compliant one. However, mapping schemes
between different ALs and their automation by model
transformations are not new research lines and there is a
vast body of literature focusing on these two areas.

One of the first work focusing on the interplay of Model-
Driven Engineering (MDE) techniques and ALs is the study
by Lago et al., which propose MDE as a technological solu-
tion for building next-generation ALs [46]. In their study,
the authors claim that MDE might bring several benefits to
ALs including support for defining ALs, managing language
and tool extensibility, automatically generating different
kinds of artefacts spanning the development life cycle. One
example of such an interplay is reported in the work by
Malavolta et al. [47], which uses model transformations for
providing ALs and tools interoperability. This is achieved
using an automated framework called DUALLY. The au-
thors apply the DUALLY approach on an industrial system
for transforming a UML architecture into a Darwin/FSP
one.

In the automotive domain, there are several works inves-
tigating the integration between automotive-specific ALs
such as EAST-ADL [48], AUTOSAR [49], RCM [48], etc.
EAST-ADL in an automotive-specific AL, which through
the years became a de facto standard. In their work, Cuenot
et al. present a mapping scheme between EAST-ADL and
AUTOSAR [50] . The proposed mapping scheme focuses

on the relation between the structural elements and events
of these two ALs, only. The authors present a validation of
their mapping scheme using an industrial use case. Similar
to the research by Cuenot et al., the work by Qureshi et al.
also proposes a mapping scheme between EAST-ADL and
AUTOSAR [51]. However, this work focuses on relating
the behavioural elements of the two languages. Other re-
searches focusing on integrating EAST-ADL and other ALs
are the work from Enoiu et al. [52] and Kang et al. [53]. In
the first work, the authors present a way of integrating ar-
chitectural models and verification techniques focusing on
the integration of EAST-ADL models and timed automata
models. In the second work, Kang et al. extend EAST-
ADL with energy constraints and integrates the extension
with formal analysis techniques based on ERT constraints.
To facilitate the integration, the authors propose a map-
ping scheme, which is validated and demonstrated on an
automotive case study.

Other examples of works focusing on the integration of
automotive ALs are the researches by Giese et al. [54] and
Bucaioni et al. [55]. The former uses model transformation
for integrating SYSML and AUTOSAR. In particular, the
authors use graph grammars for defining an automation
mechanism to tackle consistency problems typical of de-
velopment scenarios using different ALs. The automation
mechanism is exemplified by an experiment done within
an industrial project. The research from Bucaioni et al.
first provides a metamodel definition for RCM. Later, they
provide a model transformation integrating RCM and AU-
TOSAR for demonstrating how a proper metamodel defini-
tion can enable a full-fledged model-driven development.

Sometimes, relations among ALs are used to classify and
compare the languages rather than integrating them. This
is the case of the works by Sailer et al. [56] and Medvidovic
et al. [57]. The former presents a practical comparison of
ALs focusing on the design and development of automotive
systems on multi-core platforms. The selected languages
are AMALTHEA, AUTOSAR and ASAM MDX. The com-
parison is carried out on a subset of common elements.
The latter, first propose a classification framework. Then it
uses the proposed framework for classifying and comparing
several existing ALs. In the process, the authors identify
key properties of ALs, areas where existing ALs provide
extensive support and areas where ALs lack of support.

9. Conclusion and Future Work

In this work, we have reported on our experience in
providing an automation mechanism for the integration of
two automotive architectural languages being AMALTHEA
and the Rubus Component Model.

The proposed mechanism allows for the automatic trans-
lation of an AMALTHEA architecture into a Rubus Com-
ponent Model one where high-precision timing analysis can
be run. Besides, it allows for the back annotation of the
analysis results into the starting AMALTHEA architec-
ture. We have evaluated the applicability of the proposed
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mechanism using industrial automotive use cases including
the brake-by-wire system and a large scale engine manage-
ment system consisting of more than 1000 runnables and
10000 communication labels. To evaluate the scalability of
the approach we compare the runtime of the translation
for both models, demonstrating its practicability in an
industrial work-flow. We have discussed the correctness of
the proposed mechanism by comparing the automatically
generated AMALTHEA and RCM architectures to AMAL-
THEA and RCM architectures crafted manually as the
result of a traditional process. Eventually, we have asked
automotive experts to rate the industrial relevance of this
research using online surveys. The respondents have found
the automation mechanism interesting and industrially
relevant.

While working on this research, we have realised that
AMALTHEA has an extensive set of data models and el-
ements. This wealth of elements makes the existence of
alternative relationships between elements of AMALTHEA
and the Rubus Component Model possible. However, we
envision that not all the relationships will be meaning-
ful for all the stakeholders involved in the development
process. Hence, possible lines for future work encompass
investigating relations between AMALTHEA data models
and different roles on the development process and ex-
tending the automation mechanism with further mapping
rules. Another possible extension to the automation mech-
anism involves the addition of optimisations such as the
use of named data ports. Another line of future work
encompasses the integration of the timing analyses with
the automation mechanism so as to reach a full-fledged
tool-chain integration. In this context, advanced model
transformation techniques can be used for automatically
preserving the consistency among the artefacts [58]. Even-
tually, another interesting future direction is to evaluate the
relations between AMALTHEA and RCM and further lan-
guages belonging to other (optional) views of architecture
frameworks as the so-called deployment viewpoint [59].
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[21] S. Mubeen, J. Mäki-Turja, M. Sjödin, Support for end-to-end
response-time and delay analysis in the industrial tool suite:
Implementation issues, experiences and a case study, Computer
Science and Information Systems 10 (1) (2013) 453–482.

[22] ISO 26262-1:2011: Road Vehicles in Functional Safety,
http://www.iso.org/.

[23] A. Bucaioni, M. Becker, J. Lundbäck, H. Mackamul, From
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[36] J. Mäki-Turja, M. Sjödin, Tighter response-times for tasks with
offsets, in: Real-time and Embedded Computing Systems and
Applications Conference (RTCSA), Springer-Verlag, 2004.
URL http://www.es.mdh.se/publications/622-
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