
Mälardalen University Doctoral Thesis
No.337

A Safety-centered
Planning-time Framework for

Automated Process
Compliance Checking

Julieth Patricia Castellanos Ardila

September 2021

Department of Computer Science and Engineering
Mälardalen University

Västerås, Sweden

Copyright © Julieth Patricia Castellanos Ardila, 2021
ISBN 978-91-7485-511-1
ISSN 1651-4238
Printed by E-print AB, Stockholm, Sweden

Populärvetenskaplig
sammanfattning

Säkerhetskritiska system, som vid eventuella funktionsfel skulle kunna få katas-
trofala konsekvenser för oss, finns överallt. Det är inte bara miljöer med
högriskfunktioner, som t ex kärnkraftverk, som är säkerhetskritiska system.
Våra fordon, medicinsk utrustning som utför olika typer av behandlingar, flyg-
plan och industrirobotar, är också säkerhetskritiska system. Ju mer skada sys-
temet kan orsaka, desto noggrannare måste systemet designas, implementeras
och underhållas. Genom att med rimlig noggrannhet följa den praxis som van-
ligtvis finns i branschstandarder, kan tillverkare visa att de använder metoder
som förhindrar att de säkerhetskritiska systemen har brister eller ger upphov
till olika typer av skador. Av denna anledning är det ett måste, för tillverkare av
säkerhetskritiska system, att följa dessa standarder, särskilt säkerhetsstandarder.

Branschstandarder har ofta ett normativt upplägg som fokuserar på pro-
cessrelaterade krav. För att följa sådana standarder måste tillverkare noggrant
förbereda processplaner som korrekt uppfyller gällande krav. En lämplig pro-
cessplan måste inkludera ordningsföljden av de arbetsuppgifter som ingår i
gällande standarder samt de resurser som krävs för dessa uppgifter, t.ex. per-
sonal, arbetsmaterial, nödvändiga verktyg och metoder, samt viktiga egen-
skaper hos dem. En sådan arbetsuppgift kan stödjas genom att kontrollera att
processplanerna uppfyller de krav som ställs på aktuella punkter i standarden.

Det räcker ofta inte att en sådan kontroll görs för bara en standard. Inom
fordonsindustrin till exempel, rekommenderas tillverkare att åtminstone följa
standarder för funktionssäkerhet, cybersäkerhet och förbättringar av mjukvaru-
processer. Tillverkare måste även utföra anpassningar av standarder, dvs. välja
och ändra krav beroende på det enskilda projektet. I säkerhetsstandarder utförs
ofta anpassningar i enlighet med befintliga säkerhetskritiska nivåer. Dessutom

i

ii

krävs omcertifiering när nya versioner av standarderna släpps, vilket sker ofta.
Det är dessutom inte bara en enskild projektplan som kontrolleras. Företag
behöver ofta planera flera processer parallellt. Det är därför inte lätt att manuellt
kontrollera att processplanerna följer kraven i dessa standarder

Automatiserad kontroll av den typen av överensstämmelse skulle kunna
hjälpa processingenjörer i säkerhetskritiska sammanhang att upptäcka överträ-
delser samt säkra att överensstämmelsen följs under planeringstiden. Huvud-
målet för denna avhandling är därför att underlätta automatisk kontroll av öve-
rensstämmelsen av processplaner som används för att konstruera säkerhetskri-
tiska system i enlighet med de standarder som är obligatoriska (eller rekom-
menderade) i säkerhetskritiska sammanhang. För att nå vårt mål utgår vi från
moderna metoder och verktyg, anpassar dem genom att huvudsakligen fokusera
på mjukvara- och riskanalysprocessplaner samt bidrar till den senaste tekniken
enligt följande:

1. Vi identifierar aspekter som försvårar kontrollen av processplanens öve-
rensstämmelse med standarders fordrande och formulerar detaljerade krav
på en teknisk lösning på dessa problem.

2. Vi introducerar ACCEPT (Automated Compliance Checking of Engineer-
ing Process plans against sTandards), ett iterativt och begripligt ram- verk
som assisterar processingenjörer med att kontrollera och säkerställa att pro-
cessreglerna efterföljs.

3. Vi föreslår mekanismer för att underlätta skapandet och återanvändningen
av de specifikationer som krävs för att kontrollera processplanens överens-
stämmelse med standarderna.

4. Vi undersöker betydelsen av våra föreslagna lösningar genom att använda
olika valideringsmekanismer. I och med detta visar vi att våra lösningar kan
vara användbara för att stödja processingenjörer i de kontrolluppgifter som
krävs för planering av processer i säkerhetskritiska sammanhang.

Avhandlingens bidrag syftar till att plantera frön för framtida utveckling
av verktyg som stöder processingenjörers användning sig av automatiserade
metoder för kontroll av processplaners överensstämmelse med standarder.

Abstract

Safety-critical systems, whose failure could lead to catastrophic consequences,
are everywhere. Not only environments with high-risk functions, e.g., nuclear
power plants, are safety-critical systems. Our vehicles, medical devices that
perform different kinds of treatments, airplanes, and industrial robots, are also
safety-critical systems. The more harm the system can cause, the more care-
ful the system has to be designed, implemented, and maintained. By follow-
ing practices of reasonable care, typically collected within industry standards,
manufacturers demonstrate that they aim at preventing safety-critical systems
from failing or causing various types of damage. Thus, compliance with stan-
dards, especially safety standards, is a must-do for manufacturers of safety-
critical systems.

Industry standards often adopt a prescriptive approach, which focuses on
process-related requirements. To comply with such standards, manufacturers
have to carefully prepare process plans that properly address the applicable
requirements. A compliant process plan should include the sequence of tasks
mandated by applicable standards as well as the resources allocated to such
tasks, e.g., personnel, work products, required tools, and methods, which are
also framed with key properties. The planning task could be supported by
checking that planned processes fulfill the properties set down by standards at
given points.

Compliance checking of process plans is rarely done for just one standard.
In automotive, for instance, it is recommended that manufacturers follow at
least standards for functional safety, cybersecurity, and software process im-
provements. Manufacturers also need to perform tailoring, i.e., select and
modify requirements depending on the individual project. In safety standards,
tailoring is often performed by taking into account existing safety criticality
levels. Moreover, new versions of the standards, which are frequently released,
demand recertification. In addition, compliance checking is not only done to

iii

iv

one process plan. Companies commonly need to plan several processes simul-
taneously. Consequently, it is not easy to manually check that process plans
comply with the requirements of standards.

Automated compliance checking could help process engineers in such or-
ganizations to detect compliance violations and enforce compliance at planning
time. Thus, the main goal of this dissertation is to facilitate automated com-
pliance checking of the process plans used to engineer safety-critical systems
against the standards mandated (or recommended) in the safety-critical con-
text. To reach our goal, we adopt modern methods and tools, adapt them by
mainly focusing on software and risk analysis process plans, and contribute to
the state-of-the-art as follows:

1. We identify aspects that make compliance checking of process plans de-
manding and formulate requirements for a technical solution to these prob-
lems.

2. We introduce ACCEPT (Automated Compliance Checking of Engineering
Process plans against sTandards), an iterative and comprehensible frame-
work for supporting process engineers to check and enforce process plan
compliance.

3. We propose mechanisms for facilitating the creation and reuse of the speci-
fications required to check process plan compliance.

4. We investigate the significance of our proposed solutions by applying dif-
ferent validation mechanisms. As a result, our solutions show to be useful to
support process engineers in the compliance checking tasks required during
process planning.

This dissertation’s contributions aim at planting the seeds for the future
development of tools that support process engineers moving towards automated
compliance checking practices.

DEDICATED TO MY FAMILY

Acknowledgments

First, I would like to express my appreciation to my principal supervisor, Bar-
bara Gallina, who has supported me during the whole duration of my studies.
Thanks to her guidance, I have been able to fulfill all the research goals. I will
also thank my assistant supervisor, Faiz Ul Muram, for her contributions to my
research. Special thanks to Guido Governatori, leader of the Software Systems
Research Group at CSIRO’s Data61, for sharing his knowledge and expertise.

I also want to thank the head of our division, Radu Dobrin, and the student
representatives Viktorija Badasjane and Rachael Berglund for their support.
Special thanks to Thomas Nolte, Federico Ciccozzi, Jenny Hägglund and Car-
ola Ryttersson for facilitating the MDH routines. My gratitude is also for the
people who are or have been colleagues at MDH. In particular, I thank Jan Carl-
son, Antonio Cicchetti, Luciana Provenzano, Soheila Sheikh Bahaei, Robbert
Jongeling, Filip Markovic, Asha Kiran, Mirgita Frasheri, Irfan Sljivo, Simin
Cai, LanAnh Trinh, Gabriel Campeanu, Omar Jaradat, Inmaculada Ayala, and
Zulqarnain Haider, for taking their time to answer my countless questions, and
for sharing their interests. Special thanks to Cristina Seceleanu for reviewing
my thesis and giving me valuable comments.

I also want to give special thanks to my mother, Mercedes, who from
Colombia is encouraging me to finish everything I start. Finally, and most
importantly, I would like to express my gratitude and love to my husband Ola
and my son Gabriel. Their company, patience, hugs, unconditional support,
and love have strengthened me through this challenging experience.

The work in this Ph.D. thesis has been partially supported by EU and VIN-
NOVA via the ECSEL JU project AMASS (No. 692474) [1].

Julieth Patricia Castellanos Ardila
Västerås, September, 2021

vii

List of Publications

Papers Included in the Licentiate Thesis1

Paper A: Facilitating Automated Compliance Checking of Processes in the
Safety-critical Context, Julieth Patricia Castellanos Ardila, Barbara Gallina and
Faiz Ul Muram. Journal of Electronic Communications of the EASST. vol 78.
2019.

Paper B: Separation of Concerns in Process Compliance Checking: Divide-
and-Conquer, Julieth Patricia Castellanos Ardila and Barbara Gallina. In Pro-
ceedings of the European Systems, Software & Service Process Improvement
& Innovation. EuroAsiaSPI 2020. Communications in Computer and Informa-
tion Science, vol 1251. Springer, Cham. 2020.

Paper C: A Personal Opinion Survey on Process Compliance Checking in the
Safety Context, Julieth Patricia Castellanos Ardila and Barbara Gallina. In Pro-
ceedings of the 13th International Conference on the Quality of Information
and Communications Technology. QUATIC 2020. Communications in Com-
puter and Information Science, vol 1266. Springer, Cham. 2020.

Paper D: Compliance-aware Engineering Process Plans: The case of Space
Software Engineering Processes, Julieth Patricia Castellanos Ardila, Barbara
Gallina, and Guido Governatori. In Journal of Artificial Intelligence and Law.
2021.

Paper E: Reusing (Safety-oriented) Compliance Artifacts while Recertifying,
Julieth Patricia Castellanos Ardila and Barbara Gallina. In Proceedings of the

1The included papers have been reformatted to comply with the thesis layout

ix

x

9th International Conference on Model-Driven Engineering and Software De-
velopment. Scitepress Digital Library - Volume 1: Modelsward. 2021.

Paper F: Systematic Literature Review of Compliance Checking Approaches
for Software Processes, Julieth Patricia Castellanos Ardila, Barbara Gallina
and Faiz Ul Muram. Technical Report, ISRN MDH-MRTC-336/2021-1-SE.
Mälardalen Real-Time Research Center, Mälardalen University, June 2021. A
version is submitted to a journal.

Additional Peer-reviewed Publications Related to the
Thesis2

Paper 1: Towards Increased Efficiency and Confidence in Process Compli-
ance, Julieth Patricia Castellanos Ardila and Barbara Gallina. In Proceedings
of the 24th European Conference on Software Process Improvement (EuroAsi-
aSPI), Ostrava, Czech Republic, September 2017.

Paper 2: Towards Efficiently Checking Compliance Against Automotive Se-
curity and Safety Standards Julieth Patricia Castellanos Ardila and Barbara
Gallina. In Proceedings of the 7th IEEE International Workshop on Software
Certification (WoSoCer), Toulouse, France, October 2017.

Paper 3: Formal Contract Logic Based Patterns for Facilitating Compliance
Checking against ISO 26262, Julieth Patricia Castellanos Ardila and Barbara
Gallina. In Proceedings of the 1st Workshop on Technologies for Regulatory
Compliance (TeReCom), Luxembourg, Luxemburg, December 2017.

Paper 4: Compliance of Agilized (Software) Development Processes with Safety
Standards: a Vision, Barbara Gallina, Faiz Ul Muram and Julieth Patricia
Castellanos Ardila. In Proceedings of the 4th international workshop on Agile
Development of Safety-Critical Software (ASCS), Porto, Portugal, May 2018.

Paper 5: Enabling Compliance Checking against Safety Standards from SPEM
2.0 Process Models, Julieth Patricia Castellanos Ardila, Barbara Gallina and
Faiz Ul Muram. In Proceedings of the 44th Euromicro Conference on Soft-
ware Engineering and Advanced Applications (SEAA), Prague, Czech Repub-

2These papers are not included in this thesis

xi

lic, August 2018.

Paper 6: Transforming SPEM 2.0-compatible Process Models into Models
Checkable for Compliance, Julieth Patricia Castellanos Ardila, Barbara Gallina
and Faiz Ul Muram. In Proceedings of the 18th International Software Pro-
cess Improvement and Capability Determination Conference (SPICE), Thes-
saloniki, Greece, October 2018.

Paper 7: Lessons Learned while Formalizing Functional Safety Standards for
Compliance Checking, Julieth Patricia Castellanos Ardila, Barbara Gallina and
Guido Governatori. In Proceedings of the 2nd Workshop on Technologies for
Regulatory Compliance (TeReCom), Groningen, The Netherlands, December
2018.

Paper 8: Process Compliance Re-Certification Efficiency Enabled by EPF-C
◦ BVR-T, Barbara Gallina, Aleksandër Pulla, Antonela Bregu and Julieth Patri-
cia Castellanos Ardila. In Proceedings of the 13th International Conference on
the Quality of Information and Communications Technology. QUATIC 2020.
Communications in Computer and Information Science, vol 1266. Springer,
Cham. 2020.

Licentiate Thesis
Facilitating Automated Compliance Checking of Processes against Safety
Standards, Julieth Patricia Castellanos Ardila. Mälardalen University Press
Licentiate Theses, ISSN 1651-9256; 277. p. 170. March 28th 2019.

Contents

I Thesis 1

1 Introduction 3
1.1 Thesis Outline . 9

2 Background and Prior Work 15
2.1 Compliance Assessment of Processes Plans 16

2.1.1 ISO 26262 . 17
2.1.2 SAE J3061 . 18
2.1.3 ECSS-E-ST-40C . 19
2.1.4 ISO 14971 and Its Evolution 20

2.2 Process Models . 20
2.2.1 The Process Engineer 21
2.2.2 SPEM 2.0 . 22
2.2.3 EPF-C . 23

2.3 Process Variability Management 25
2.3.1 SoPLE . 26
2.3.2 The Integration of EPF-C and BVR-T 27

2.4 Process-based Compliance by Design 29
2.4.1 Normative Representation 30
2.4.2 Formal Contract Logic 31
2.4.3 Regorous . 35

2.5 Design Hints and Patterns . 38
2.5.1 Separation of Concerns: Divide-and-conquer Strategy 38
2.5.2 Property Specification Patterns 38

2.6 Empirical Research Aspects 39
2.6.1 Design Science Methodology 39
2.6.2 Personal Opinion Surveys 41

xiii

xiv CONTENTS

2.6.3 Systematic Literature Review 42
2.6.4 Technology Acceptance Model 42
2.6.5 Qualitative Criteria to Assess Compliance Approaches 42
2.6.6 Reuse Measurement 43

3 Research Summary 45
3.1 Research Process . 45
3.2 Problem Formulation . 47

3.2.1 Problem context . 48
3.2.2 Research Motivation 49

3.3 Research Goals . 49
3.3.1 Main Goal . 49
3.3.2 Research Sub-Goals 50

4 Thesis Contributions 51
4.1 Requirements for Automated Process Compliance Checking . 51

4.1.1 Compliance Reasons 52
4.1.2 The Process Plan . 53
4.1.3 Compliance Checking Challenges 53
4.1.4 Requirements for a Technical Solution 55

4.2 ACCEPT . 56
4.2.1 Conditions for Automatically Checking Compliance . 56
4.2.2 Tool-supported Methodological Approaches 57
4.2.3 Compliance Checking Framework 59
4.2.4 Methodological Steps 60

4.3 Process Compliance Hints and Patterns 66
4.3.1 Process Compliance Hints 66
4.3.2 Process Compliance Patterns 69

4.4 Systematic Reuse of Compliance Artifacts 73
4.4.1 SoPLE&Logic-basedCM 73
4.4.2 Tool-supported Methodological Framework 76

4.5 Solutions Validation . 79
4.5.1 Personal Opinion Survey 79
4.5.2 The case of Space Software Engineering Processes . . 80
4.5.3 Reuse Measurement within the Evolution of ISO 14971 83
4.5.4 SLR of Compliance Checking Approaches for Soft-

ware Processes . 89

CONTENTS xv

5 Related Work 95
5.1 Automated Compliance Checking 95
5.2 Requirements Specification 97
5.3 Reuse of Proofs . 99

6 Epilogue 101
6.1 Conclusions . 101

6.1.1 Research Goals Revisited 103
6.2 Limitations . 106
6.3 Future Work . 107

Bibliography 109

II Included Papers 127

7 Paper A:
Facilitating Automated Compliance Checking of Processes in the
Safety-critical Context 129
7.1 Introduction . 131
7.2 Background . 132

7.2.1 Process-based Compliance 132
7.2.2 Safety Standard ISO 26262 132
7.2.3 SPEM 2.0 . 133
7.2.4 Safety-oriented Process Line Engineering 134
7.2.5 Defeasible Logic . 134
7.2.6 Formal Contract Logic 135
7.2.7 Compliance by Design Approach 135
7.2.8 Regorous . 136
7.2.9 Specification Patterns 136

7.3 Related work . 137
7.4 Proposed Research . 139

7.4.1 Research Methodology 139
7.4.2 Motivation . 140
7.4.3 Research Goals . 141

7.5 Preliminary Results . 141
7.5.1 Conditions for Checking Compliance 141
7.5.2 Automated Compliance Checking Vision 143
7.5.3 ISO 26262-related Compliance Patterns Definition . . 144

xvi CONTENTS

7.5.4 Methodological Guidelines for Formalizing ISO 26262 146
7.5.5 Logic-based Framework for Enabling Reuse of Com-

pliance Proofs . 147
7.6 Conclusions and Next Steps 148

7.6.1 Conclusions . 148
7.6.2 Next steps . 149

Bibliography . 151

8 Paper B:
Separation of Concerns in Process Compliance Checking: Divide-
and-Conquer 157
8.1 Introduction . 159
8.2 Background . 160

8.2.1 Standards in the Safety-critical Context 160
8.2.2 CENELEC EN 50128 161
8.2.3 Software Processes and SPEM 2.0 162
8.2.4 Formal Contract Logic 162
8.2.5 Automatic Compliance Checking Method 162
8.2.6 Separation of Concerns: Divide-and-conquer Strategy 163

8.3 Separation of Concerns within the Regulatory Space 164
8.4 Illustrative Example . 166
8.5 Discussion . 168

8.5.1 Compliance-related Process Information 168
8.5.2 Software Process Diversity 169
8.5.3 Relation with the SPI Manifesto 169

8.6 Related Work . 170
8.7 Conclusions and Future Work 170
Bibliography . 173

9 Paper C:
A Personal Opinion Survey on Process Compliance Checking in
the Safety Context 177
9.1 Introduction . 179
9.2 Background . 179

9.2.1 Facilitating Process Compliance Checking 180
9.2.2 Personal Opinion Surveys 181
9.2.3 Technology Acceptance Model 181

9.3 Research Method . 183
9.3.1 Research Questions 183

CONTENTS xvii

9.3.2 Survey Design . 183
9.3.3 Instrument Evaluation and Data Collection 184
9.3.4 Subject Characteristics and Data Analysis 185
9.3.5 Survey Validity . 185

9.4 Survey Results . 185
9.4.1 Current Practices (RQ1) 186
9.4.2 Challenges (RQ2) . 187
9.4.3 Automatic Process Compliance Checking (RQ3) . . . 188

9.5 Discussion . 191
9.6 Related Work . 193
9.7 Conclusions and Future Work 193
Bibliography . 195

10 Paper D:
Compliance-aware Engineering Process Plans: The case of Space
Software Engineering Processes 197
10.1 Introduction . 199
10.2 Background . 201

10.2.1 Compliance with Industry Standards 201
10.2.2 SPEM 2.0 . 205
10.2.3 FCL . 206
10.2.4 Regorous . 207
10.2.5 Process Compliance Hints and Patterns 209
10.2.6 ACCEPT . 213

10.3 Case Study Design . 216
10.3.1 Rationale for the Case Study 216
10.3.2 Goal and Research Questions of the Case Study 217
10.3.3 Unit of Analysis and Method 218
10.3.4 Validity of the study 218

10.4 Data Collection . 220
10.4.1 Formalization of ECSS-E-ST-40C requirements 220
10.4.2 Modeling of Process Elements 225
10.4.3 Annotation of Process Tasks 225
10.4.4 Modeling of Process Workflow 226
10.4.5 Checking and Analysis of Compliance 227

10.5 Case Study Analysis . 229
10.5.1 Effort designing a CAEPP for software development

(RQ1) . 229

xviii CONTENTS

10.5.2 Coverage level of a CaEPP for software development
(RQ2) . 231

10.6 Discussion . 233
10.6.1 Case study insights 234
10.6.2 Challenges and Potential Improvements 235

10.7 Related Work . 237
10.8 Conclusions and Future Work 239
Bibliography . 243

11 Paper E:
Reusing (Safety-oriented) Compliance Artifacts while Recertifying251
11.1 Introduction . 253
11.2 Background . 254

11.2.1 ISO 14971 and its evolution 254
11.2.2 Automated Compliance Checking 255
11.2.3 Compliance Proofs Reuse 258
11.2.4 EPF-C ◦ BVR-T . 260
11.2.5 Reuse Measurement 260

11.3 Compliance Artifacts Reusability 261
11.3.1 Compliance Analysis 261
11.3.2 Systematic reuse of compliance artifacts 263

11.4 Reuse within ISO 14971 evolution 264
11.4.1 ISO 14971 evolved artifacts 264
11.4.2 Reuse Measurement 269

11.5 Discussion . 270
11.6 Related Work . 271
11.7 Conclusions and Future Work 272
Bibliography . 275

12 Paper F:
Systematic Literature Review of Compliance Checking Approaches
for Software Processes 279
12.1 Introduction . 281
12.2 Background . 283

12.2.1 Compliance Checking of Software Processes 283
12.2.2 Software Processes 284
12.2.3 Software Process-related Normative Frameworks . . . 286

12.3 Research Method . 288
12.3.1 Plan the Review . 289

CONTENTS xix

12.3.2 Perform the Review 296
12.4 Results . 303

12.4.1 Summary of the Primary Studies 303
12.4.2 Analysis . 317

12.5 Discussion . 327
12.5.1 The use of software process modeling languages . . . 327
12.5.2 Language suitability for normative requirements . . . 328
12.5.3 Towards a generic and domain-agnostic method 329
12.5.4 The need for diverse abilities 329
12.5.5 Increase the level of automation and tool support . . . 329
12.5.6 Going beyond technological dilemmas 330

12.6 Validity of the results . 331
12.7 Related Work . 332
12.8 Conclusions and Future Work 333
Bibliography . 337

I

Thesis

1

Chapter 1

Introduction

Manufacturers of safety-critical systems1 have the duty of care2 [4]. Duty of
care does not imply that the production of safety-critical systems is zero risks3

but responsible. As such, manufacturers should follow accepted practices of
reasonable care, usually found in industry standards [6]. Industry standards
offer frameworks that encompass adequate practices refined by experts from
historically successful experiences [7]. Standards also include knowledge and
awareness of public policy, societal norms, and preferences [8]. Consequently,
compliance with industry standards, particularly safety standards, is an essen-
tial requirement when performing safety-related engineering activities [9].

For industries developing safety-critical systems, safety considerations are
sometimes less important than the economic ones [10]. Consequently, a ma-
jor strand of social control has involved the imposition of standards [11]. For
instance, in the UK, the HSE4 has used compliance with IEC 61508 [12] as
a guideline for bringing legal actions if harm is caused by safety-critical sys-
tems [4]. In the US, the NHTSA5 has also the authority to subject manufac-
turers who fail to comply with the Federal motor vehicle safety standard to

1Safety-critical systems are those whose failure could lead to unacceptable consequences, e.g.,
death, injury, loss of property, or environmental harm [2]

2The obligation imposed on an individual or organization requiring adherence to a standard of
reasonable care while performing any acts that could foreseeably harm others [3].

3There is not such a thing as zero risks. The reason is that no physical item has zero failure rate,
no human being makes zero errors, and no piece of software design can foresee every operational
possibility. Thus, the concept of tolerable risk prevails. [5]

4Health and Safety Executive https://www.hse.gov.uk/
5National Highway Traffic Safety Administration https://www.nhtsa.gov/

3

4 Chapter 1. Introduction

civil penalties [13]. We can also see that more and more knowledgeable cus-
tomers individually demand the use of standards to influence responsible be-
havior among industry practices [14]. As a consequence, failure or inadequate
compliance with industry standards could not only lead to unexpected acci-
dents (see, for example, the inadequate compliance of the reconfigured MCAS6

included in the Boeing 737 MAX 8, that allows the airplanes into market, caus-
ing 346 people died in two crashes7) but also legal risks, i.e., penalties [18] and
prosecutions [19] (see, again, the case of Boeing8).

Given the previous considerations, it is clear that compliance with indus-
try standards is not a voluntary choice (even though in some contexts it is not
mandatory) but is a must-do for manufacturers of safety-critical systems. How-
ever, there are many normative frameworks, which aim at preventing harm and
under-performance of safety-critical systems. In addition, for manufacturers
acting in multiple jurisdictions (different regions with specific regulations and
laws), the compliance risk increases due to the diversity and complexity of the
normative frameworks that should be applied. Consequently, manufacturers
may fail in ensuring the required compliance [20].

Demonstrating compliance with industry standards requires evidence from
the object of conformity [21]. In particular, prescriptive standards, which as-
sure the system technical properties by heavily commanding a rigorous devel-
opment process [22], demand documented evidence of responsibilities, agree-
ments, and established processes [23]. For this reason, an essential part of
process assessments is the compliance of requirements related to the planning
part of such processes [24]. The rationale is that every work product that a
manufacturer provides is the outcome of a process [25]. Thus, normative im-
peratives should be designed into the system and not added later on.

The planning of the processes also servers safety-critical manufacturers to
proceed in a systematic way [26] increasing predictability and transparency [27].
A compliant process plan can demonstrate intentional compliance [28], i.e.,
“the design-time distribution of responsibilities, such that if every actor ful-

6MCAS (Maneuvering Characteristics Augmentation System) is a software application used
to adjust the angle-of-attack of the nose of the Boeing 737 MAX 8. MCAS was certified by the
FAA (Federal Aviation Administration) based on an earlier ”system safety analysis” provided by
Boeing to the regulators. Thus, FAA technical staff had not been fully aware of the latest details
of MCAS functions [15]

7Lion Air Flight 610 in October 29, 2018 [16], and Ethiopian Airlines Flight 302 in March
10, 2019 [17]

8Boeing estimated US$20 billion in direct cost from the grounding, US$100 million in victim
compensation fund, and legal liability to the families of the first 11 victims, at least US$1.2 million
each https://edition.cnn.com/2020/11/17/business/boeing-737-max-grounding-cost/index.html

5

fills its goals, then the compliance is ensured.” Thus, manufacturers of safety-
critical systems can use process plans to set agreements at the initial stages of
the development process with certification bodies and partners (for example,
the certification liaison process, explicitly defined in DO-178C [29]).

Adjusting process plans in compliance with applicable standards is a mat-
ter of decision-making, in which managers should consider the selection of a
strategy that fits within the boundaries allowed by the norms [28]. In partic-
ular, process plans should provide information regarding the types of compli-
ance evidence that will be used and how and when it will be produced [30].
Such information is related to the sequencing of tasks, the resources required
and produced (e.g., personnel, work products, and tools), and recommended
techniques. Moreover, all these elements are framed with different properties.
Standards also set down the points at which different sorts of compliance arti-
facts should be established [31]. For this reason, a common practice during the
planning of the processes is to perform compliance checks.

Compliance checking reports can provide the right level of abstraction so
that the conditions for compliance can be easily evaluated [28]. Such reports
help to identify compliance errors, assist in creating process specifications, and
prevent non-compliance tasks from being performed [32]. However, manually
checking the compliance of process plans is a challenging task. In particular,
compliance checking is rarely done for just one standard. For example, in au-
tomotive, manufacturers need to manage the introduction of guidelines aimed
at providing a base to address cybersecurity (e.g., SAE J3061 [33]) besides
already established normative documents such as standards for safety (i.e.,
ISO 26262 [34]) and process improvement (i.e., Automotive SPICE9 [35]).
Consequently, manufacturers need to face process diversity [36], which is the
management of the multiple reference models within single projects.

Manufacturers also need to perform tailoring. Tailoring requires selecting
applicable requirements, performing their eventual modifications, and explain-
ing their implementation according to the project’s particular circumstances.
There are several drivers for tailoring [37], e.g., aspects regulated by standards
(e.g., safety criticality levels), development constraints, product quality, and
business objectives. Moreover, new versions of the standards are frequently re-
leased. For instance, the different versions of the standard ISO 14971-process
for risk analysis and evaluation10 make it challenging for the medical domain
to gain approval for products within and outside Europe [41]. Standards evolu-
tion, process diversity, and tailoring involve dynamic complexity [42], which

9Software Process Improvement and Capability Determination
10ISO 14971:2007 [38], EN ISO 14971:2012 [39] and ISO 14971:2019 [40]

6 Chapter 1. Introduction

implies considering adequate means for handling change management.
Process-based assessments supported by tools, which can provide auto-

mated checks [43], could be a solution for permitting organizations to control
their procedures and avoid compliance risk. In particular, it is crucial to sup-
port the process engineer in such organizations, who is the role responsible for
selecting, composing, and documenting adequate process elements [44]. Au-
tomated compliance checking could help such engineers to detect compliance
violations and enforce compliance at planning time. Thus, the main goal of
this dissertation is to facilitate automated compliance checking of the pro-
cess plans used to engineer safety-critical systems against the standards
mandated (or recommended) in the safety-critical context. To reach our
goal, we define four subgoals and fulfil them by adopting and adapting modern
methods and tools. The subgoals and contributions are presented below.

1. Elicit the requirements to be met to support the automated compli-
ance checking of the process plans used in the safety-critical context.
This subgoal focuses on establishing the requirements for a technical solu-
tion that alleviates the compliance challenges that manufacturers of safety-
critical systems have in terms of prescriptive standards, specifically at plan-
ning time. The desired solution shall facilitate: 1) the management of the
artifacts required for compliance checking with prescriptive standards, i.e.,
the standards themselves, their requirements, the processes plans, and the
compliance means; 2) keeping track of the applicable requirements; 3) the
recognition of contradictions and ambiguities between applicable require-
ments; 4) managing the changing nature associated with requirements di-
versity.

2. Identify mechanisms for supporting automated compliance checking of
the process plans used in the safety-critical context. This subgoal focuses
on discovering how existing tools and methodologies can be appropriately
combined to provide the support required for automated compliance check-
ing of process plans. In particular, we adopt compliance by design [45], an
approach aimed at integrating compliance requirements at design time, per-
mitting to resolve compliance violations in engineering process plans before
they are executed. As a result, we introduce ACCEPT (Automated Compli-
ance Checking of Engineering Process plans against sTandards). ACCEPT
is an iterative and comprehensible framework that allows the creation of
engineering process plans checkable for compliance, i.e., process elements
enriched with compliance information through annotations representing for-
malized standards requirements in FCL (Formal Contract Logic) [46]. FCL

7

is a language created to represent and reason upon normative knowledge.
In particular, FCL permits to represent obligations (which are mandatory
situations), prohibitions (which are situations to avoid), and permissions
(which are allowed situations). Engineering processes checkable for com-
pliance can be formally verified. ACCEPT is supported by the tool-chain
constituted of Eclipse Process Framework Composer (EPF-C) [47], which
has good coverage of SPEM 2.0 (Systems & Software Process Engineer-
ing Metamodel) [48] concepts, and the compliance checker Regorous [49],
which provides automatic reasoning with FCL rules. We also define a set of
methodological steps that facilitate the use of ACCEPT.

3. Facilitate the creation of reusable specifications required for automated
compliance checking of the process plans. This subgoal focuses on dis-
covering adequate means to model the concepts included in the specifica-
tions, as well as the necessary support for enabling systematic reuse. For
this, we propose three mechanisms.

• Process compliance hints, which are resources designed to support the
creation of separated concepts included in the FCL specification based on
process structure and the concepts supported by SPEM 2.0. (i.e., tasks,
roles, work product, guidance, tools, and their relationships).

• Process compliance patterns, which indicate common structures that an
FCL designer is likely to encounter when formalizing standards (clauses
in a standard commonly have title, prerequisites, mandated tools/tech-
niques, work products, tailoring rules, and guidance).

• Systematic reuse and automatic generation of process compliance check-
ing artifacts through a solution that combines the reuse capabilities pro-
vided by SoPLE (Safety-oriented Process Line Engineering) [50] and
the support provided by the tool-chain composed by EPF-C and BVR-
T (Base Variability Resolution Tool) [51] (proposed in the context of the
European AMASS Project [52, 53]). This solution offers the opportunity
to specify constraints that reduce the selection of reusable process-related
compliance checking artifacts for its subsequent composition.

4. Investigate the significance of a solution for automated compliance check-
ing of process plans in the safety-critical context. This subgoal focuses
on objectively analyze our solutions’ pros and cons and define elements that
permit their future improvement and usage. In particular, we investigate
the significance of our proposed solutions by applying different validation
mechanisms, with the results presented below.

8 Chapter 1. Introduction

• First, we investigate the degree of acceptance of methods for automated
compliance checking via a personal opinion survey. In total, we obtained
15 valid responses from practitioners who participate in process compli-
ance checking, mainly from the European consultatory branch. The prac-
titioners show a favorable position regarding our solutions and indicated
usability aspects to be improved.

• Second, we evaluate ACCEPT, via a standard-based case study, consider-
ing specific qualitative usefulness criteria described in [54]. In particular,
we study the standard ECSS-E-ST-40C [55], which provides baseline cri-
teria for software process planning in space projects. Initial observations
show that the effort determined by task demand required to model com-
pliance checking artifacts is significant. However, the effort is reduced
in the long term since models are, to some extend, reusable and flexible.
Reusing artifacts may simplify the work that process engineers need to
perform in every process planning. Such a gain could be interpreted as
a benefit in terms of resource savings since professionals’ time is costly.
We also analyzed the coverage level of the models based on design deci-
sions. In our opinion, such a coverage level is adequate since it responds
to the information needs required by the standard studied.

• Third, we measure the reuse permitted by our solutions when showing
process plan adherence with new versions of standards. In particular, we
consider three versions of the standard ISO 14971 [56]-process for risk
management to medical devices, model the artifacts required for compli-
ance checking of process plans by using our solutions and measure the
enabled reuse by taking into account a metric for reuse measurement pro-
posed by [57] (which is expressed in terms of percentage by considering
the proportion of the number of new objects built and the total number of
objects used). The reuse extent in the context of medical devices com-
plying with the evolution of the standard ISO 14971 is significant. We
conclude that processes and standards that evince low levels of variation
could benefit from using our methodological framework during the mod-
eling task required for compliance checking.

• Fourth, we position our work with respect to the state-of-the-art and the
state-of-the-practice. First, we characterize the existent approaches for
compliance checking of software processes by performing a systematic
literature review. Second, we test our assumptions regarding compliance
checking current practices and challenges with a set of questions that were
answered in the personal opinion survey that was previously mentioned.

1.1 Thesis Outline 9

As a result, we find that our solutions provide a broader set of character-
istics that seamlessly integrate with current practices. We also identified
aspects that permit our solutions to improve in the future.

The resulting research efforts aim at planting the seeds for the future de-
velopment of tools that support process engineers moving towards automated
compliance checking practices.

1.1 Thesis Outline
We organize this thesis in two parts. In the first part, we summarize the re-
search as follows: In Chapter 2, we recall essential background and prior work.
In Chapter 3, we present the research summary. In Chapter 4, we describe the
specific research contributions of this thesis. In Chapter 5, we discuss related
work. Finally, in Chapter 6, we present conclusions and future work. The sec-
ond part is a collection of the papers included in this thesis. We present a brief
overview of the included papers.

Paper A: Facilitating Automated Compliance Checking of Processes in the
Safety-critical Context, Julieth Patricia Castellanos Ardila, Barbara Gallina,
and Faiz Ul Muram. Journal of Electronic Communications of the EASST. vol
78. 2019.

Abstract: In some domains, the applicable safety standards prescribe process-
related requirements. Essential pieces of evidence for compliance assessment
with such standards are the compliance justifications of the process plans used
to engineer systems. These justifications should show that the process plans
are produced in accordance with the prescribed requirements. However, pro-
viding the required evidence may be time-consuming and error-prone since
safety standards are large, natural language-based documents with hundreds
of requirements. Besides, a company may have many safety-critical-related
processes to be examined. In this paper, we propose a novel approach that
combines process modeling and compliance checking capabilities. Our ap-
proach aims at facilitating the analysis required to conclude whether the model
of a process plan corresponds to a model with compliant states. Hitherto, our
proposed methodology has been evaluated with academic examples that show
the potential benefits of its use.

My contribution: This paper summarizes the work done during the first two

10 Chapter 1. Introduction

years of the Doctoral tenure. I was the primary driver of the paper. The coau-
thors, who are my Ph.D. supervisors, were highly involved in this research by
providing all kinds of advice, ideas, reviews, comments, and more. This pa-
per was initially presented as a research abstract in the Doctoral Symposium at
ISOLA 201811.

Paper B: Separation of Concerns in Process Compliance Checking: Divide-
and-Conquer, Julieth Patricia Castellanos Ardila and Barbara Gallina. In Pro-
ceedings of the European Systems, Software & Service Process Improvement
& Innovation. EuroAsiaSPI 2020. Communications in Computer and Informa-
tion Science, vol 1251. Springer, Cham. 2020.

Abstract: Compliance with multiple standard’s reference models has the po-
tential to improve process quality but is a challenging task faced by manufac-
turers in the safety-critical context. To facilitate this task, we propose a method
for automated process compliance checking that can be used as a basis for
decision making. Our method requires users to create a knowledge base of for-
malized requirements and processes checkable for compliance. In this paper,
we exploit the natural separation of concerns in the state of practice to offer
adequate means to facilitate the creation of the required concepts by using a
divide and conquer strategy. For this, we discuss the impact of process factors
in compliance assessment and provide separation of concerns based on SPEM
2.0 (Systems and Software Process Engineering Metamodel). Then, we illus-
trate the defined concerns and discuss our findings.

My contribution: I was the primary driver of the paper under the supervi-
sion of the coauthor. My specific contribution included the description of the
method. I also illustrated the method by creating a model checkable for com-
pliance from the rail sector, and I wrote the paper. The coauthor contributed to
the design of the paper, idea for the title, reviews, and comments for improving
the paper.

Paper C: A Personal Opinion Survey on Process Compliance Checking in
the Safety Context, Julieth Patricia Castellanos Ardila and Barbara Gallina. In
Proceedings of the 13th International Conference on the Quality of Informa-
tion and Communications Technology. QUATIC 2020. Communications in
Computer and Information Science, vol 1266. Springer, Cham. 2020.

11https://www.isola-conference.org/isola2018/docsymp.html

1.1 Thesis Outline 11

Abstract: Manually checking the compliance of process plans against the re-
quirements of applicable standards is a common practice in the safety-critical
context. We hypothesize that automating this task could be of interest. To test
our hypothesis, we conducted a personal opinion survey among practitioners
who participate in process compliance checking. In this paper, we present the
results of this survey. Practitioners indicated the methods used and their chal-
lenges, as well as their interest in a novel method that could permit them to
move from manual to automated practices via compliance checking.

My contribution: I was the primary driver of the paper under the supervi-
sion of the coauthor. My specific contribution included the creation of a set of
initial questions. The second author helped to structure and design the survey
by providing comments for cleaning ambiguity and a more in-depth analysis
that led to the formulation of further questions. The final evaluation was per-
formed by both authors, improving textual explanations and questions. I also
apply the survey, analyse the data and wrote the paper.

Paper D: Compliance-aware Engineering Process Plans: The case of Space
Software Engineering Processes, Julieth Patricia Castellanos Ardila, Barbara
Gallina, and Guido Governatori. In Journal of Artificial Intelligence and Law.
2021.

Abstract: Safety-critical systems manufacturers have the duty of care, i.e.,
they should take correct steps while performing acts that could foreseeably
harm others. Commonly, industry standards prescribe reasonable steps in their
process requirements, which regulatory bodies trust. Manufacturers perform
careful documentation of compliance with each requirement to show that they
act under acceptable criteria. To facilitate this task, a safety-centered planning-
time framework, called ACCEPT, has been proposed. Based on compliance-
by-design, ACCEPT capabilities (i.e., processes and standards modeling, and
automatic compliance checking) permit to design Compliance-aware Engineer-
ing Process Plans (CaEPP), which are able to show the planning-time alloca-
tion of standard demands, i.e., if the elements set down by the standard require-
ments are present at given points in the engineering process plan.

In this paper, we perform a case study to understand if the ACCEPT pro-
duced models could support the planning of space software engineering pro-
cesses. Space software is safety and mission-critical, and it is often the result
of industrial cooperation. Such cooperation is coordinated through compliance

12 Chapter 1. Introduction

with relevant standards. In the European context, ECSS-E-ST-40C is the de-
facto standard for space software production. The planning of processes in
compliance with project-specific ECSS-E-ST-40C applicable requirements is
mandatory during contractual agreements. Our analysis is based on qualita-
tive criteria targeting the effort dictated by task demands required to create a
CaEPP for software development with ACCEPT. Initial observations show that
the effort required to model compliance and processes artifacts is significant.
However, such an effort pays off in the long term since models are, to some ex-
tend, reusable and flexible. The coverage level of the models is also analyzed
based on design decisions. In our opinion, such a level is adequate since it re-
sponds to the information needs required by the ECSS-E-ST-40C framework.

My contribution: I was the primary writer of the paper, and the coauthors
contributed with reviews and comments to improve the paper.

Paper E: Reusing (Safety-oriented) Compliance Artifacts while Recertify-
ing, Julieth Patricia Castellanos Ardila and Barbara Gallina. In Proceedings of
the 9th International Conference on Model-Driven Engineering and Software
Development. Scitepress Digital Library - Volume 1: Modelsward. 2021.

Abstract: Revisions of safety-related standards lead to the release of new ver-
sions. Consequently, products and processes need to be recertified. To support
that need, product line-oriented best practices have been adopted to system-
atize reuse at various levels, including the engineering process itself. As a
result, Safety-oriented Process Line Engineering (SoPLE) is introduced to sys-
tematize reuse of safety-oriented process-related artifacts. To systematize reuse
of artifacts during automated process compliance checking, SoPLE was con-
ceptually combined with a logic-based framework. However, no integrated and
tool-supported solution was provided. In this paper, we focus on process recer-
tification (interpreted as the need to show process plan adherence with the new
version of the standard) and propose a concrete technical and tool-supported
methodological framework for reusing (safety-oriented) compliance artifacts
while recertifying. We illustrate the benefits of our methodological framework
by considering ISO 14971 versions, and measuring the enabled reuse.

My contribution: I was the primary driver of the paper under the supervi-
sion of the coauthor. My specific contribution included the specification of the
approach presented in this paper and its illustration. I also wrote the paper. The
coauthor proposed the idea and title of the paper as well as the example that

1.1 Thesis Outline 13

was used in the illustration of the method. The coauthor also helped to shape
the contribution and commented on it to improve the paper.

Paper F: Systematic Literature Review of Compliance Checking Approaches
for Software Processes, Julieth Patricia Castellanos Ardila, Barbara Gallina
and Faiz Ul Muram. Technical Report, ISRN MDH-MRTC-336/2021-1-SE.
Mälardalen Real-Time Research Center, Mälardalen University, June 2021. A
version is submitted to a journal.

Abstract: Context: Software processes have increased demands coming from
normative requirements. Organizations developing software comply with such
demands to be in line with the market and the law. The state-of-the-art pro-
vides means to automatically check whether a software process complies with
a set of normative requirements. However, no comprehensive and systematic
review has been conducted to characterize such works. Objective: We char-
acterize the current research on this topic, including an account of the used
techniques, their potential impacts, and challenges. Method: We undertake a
Systematic Literature Review (SLR) of primary studies reporting techniques
for automated compliance checking of software processes. Results: We iden-
tify 41 papers reporting solutions focused on limited normative frameworks.
Such solutions use specific languages for the processes and normative repre-
sentation. Thus, the artifacts represented vary from one solution to the other.
The level of automation, which in most methods requires tool-support con-
cretization, focuses mostly on the reasoning process and requires human in-
tervention, e.g., for creating the inputs for such reasoning. In addition, only
a few contemplate agile environments and standards evolution. Conclusions:
Our findings outline compelling areas for future research. In particular, there
is a need to consolidate existing languages for process and normative represen-
tation, compile efforts in a generic and normative-agnostic solution, increase
automation and tool support, and incorporate a layer of trust to guarantee that
rules are correctly derived from the normative requirements.

My contribution: I was the primary driver of the paper under the supervision
of the coauthors, who contributed with reviews and comments.

Chapter 2

Background and Prior Work

Safety-critical systems are primarily identified in environments that have to
perform high-risk functions [58], for example, nuclear power systems, petro-
chemical plants, aircraft and airways, space systems, weapons, and DNA tech-
nology. Failure in these systems can quickly lead to severe consequences for
humans (death or injury), the damage of the environment (e.g., oil spill), prop-
erty or physical equipment (e.g., an spacecraft), and even situations where the
mission is critical (e.g., electric power systems) [59]. A closer look reveals that
there are many new types of systems that have the potential for very high con-
sequences of failure [60]. The main reason is the increasing use of software for
controlling almost everything (i.e., from home applications to warning systems
in safety-critical applications) [61]. Such increment is closely related to the
growing occurrence of systematic failures, which can lead to accidents [62].

As a counteract, proved strategies are at hand to support the production of
safety-critical systems and facilitate their safer deployment into society. One of
these strategies is compliance with industry standards, which consist of a set of
requirements created to protect customers from poor quality products and bad
design practices [63]. In some industries (e.g., civil aviation), manufacturers
are subject to mandatory compliance. In those cases, a delegated agency (e.g.,
FAA in the USA) performs compliance assessments and issue some kind of
approval (certification/licensing) that allows the system into market [59]. Not
all industries are forced to comply with standards. However, there are societal
factors that impose such compliance. We list some of those factors.

1. Consumers are demanding more and more information about the impacts of
their acquired goods at all stages of the product lifecycle [14].

15

16 Chapter 2. Background and Prior Work

2. In some countries, showing compliance with standards is relevant evidence
for a jury to consider in a product liability action [64], since compliance is
a sign of reasonable care [6].

3. Safety-critical systems production is frequently the result of industrial coop-
eration. Meeting the highest levels of industry standards helps to coordinate
lead firms and their suppliers on a global scale [65].

Demonstrating compliance with standards requires evidence regarding the
object of conformity (e.g., products, and processes) [21]. To ground our in-
vestigation, we focus on compliance assessment of processes plans, a common
and accepted procedure carried out in the safety-critical context. In this chap-
ter, we introduce essential background and prior work related to the object of
our study. In particular, we present aspects regarding compliance assessment
of process plans (see Section 2.1), process models (see Section 2.2), process
variability management (see Section 2.3), the process-based compliance by de-
sign approach (see Section 2.4), design hints and patterns (see Section 2.5), and
empirical research aspects (see Section 2.6).

2.1 Compliance Assessment of Processes Plans

Prescriptive standards assure the technical properties of a system by com-
manding a rigorous development process [22]. For instance, standards for
safety, such as RTCA DO-178C [29], RTCA/DO-330 [66], IEC 61508 [12],
ISO 26262 [34], EN 50128 [67], ECSS series [68], ISO 14971 [56], cyber-
security guidelines SAE J3061 [33], software processes (e.g., ISO/IEC/IEEE
12207 [69]), and quality, process improvement and capability maturity frame-
works such as ISO 9000 [70], ISO/IEC 15504 [71] and derivatives such as
Automotive SPICE [35], and CMMI [72], are conceived to focus on processes.
Safety-critical systems manufacturers use such standards to demonstrate that
their products and services are created using acceptable criteria.

In particular, the planning of the processes servers safety-critical manufac-
turers to proceed in a systematic way [26] increasing predictability and trans-
parency [27]. Consequently, one of the routine activities during compliance
assessment is the evaluation of process plans. For instance, the standard DO-
178C [29] defines the so-called certification liaison process, where the first in-
teraction between the applicant and the certification body is expected to occur
after the planning phase to ensure plan’s approval [73].

2.1 Compliance Assessment of Processes Plans 17

A compliant process plan should be able to demonstrate intentional com-
pliance [28], i.e., “the design-time distribution of responsibilities, such that if
every actor fulfills its goals, then the compliance is ensured.” Thus, complete
process plans should show not only the planning of tasks but also the resources
required and produced, e.g., personnel, work products, and tools, which are
additionally framed with essential properties. Furthermore, as recalled in [74],
traceability between the requirements and the evidence provided in the process
plan is also demanded by many normative frameworks. Thus, it is necessary
to include a model connected with the original legal texts that can justify the
outcomes of compliance checking activities [75].

In addition, compliance justifications, which are expected to be scrutinized
by an auditor, should also be provided. A compliance justification is a docu-
ment given in terms of either a checklist, an argument, or proof (e.g., a verifica-
tion report) that can show/argue/prove that the process plan complies with the
applicable requirements [73]. Compliant process plans should be agreed upon
at the beginning of the project between regulatory bodies and applicants [30].
In the remaining parts of this section, we recall the process related standards
ISO 26262 (see Section 2.1.1), SAE J3061 (see Section 2.1.2), ECSS-E-ST-
40C (see Section 2.1.3) and ISO 14971 (see Section 2.1.4).

2.1.1 ISO 26262

ISO 26262 [34] is a standard that addresses functional safety in automotive.
ISO 26262 introduces the notion of Automotive Safety Integrity Level (ASIL),
which represent a criterion to specify the item’s necessary safety requirements,
needed to ensure a certain level of confidence. In particular, ASIL corre-
spond with one of four levels to specify the item’s necessary requirements of
ISO 26262 and safety measures to apply for avoiding an unreasonable resid-
ual risk, which range from A (the milder) to D (the most stringent). Func-
tional safety is influenced by the development lifecycle process. Therefore,
ISO 26262 specifies a safety lifecycle that comprises the entirety of phases
from concept through decommissioning of the system. Planning, coordinat-
ing and documenting the safety activities of all phases of the safety lifecycle
are key management tasks during the implementation of ISO 26262. For ISO
26262, each requirement shall be fulfilled unless:

1. tailoring of the safety activities has been planned, or

2. an assessed rationale is available that the non-compliance is acceptable.

18 Chapter 2. Background and Prior Work

A clause in ISO 26262 states the objectives, general information of the
clause, inputs for the clause, requirements and recommendations to be fulfilled,
and finally the work products that are to be generated (see Table 2.1). Notes
are also included, but they have informative character, i.e., they are expected to
help the applicant in understanding and interpreting the requirements. The re-
quirements and recommendations section describes not only the activities and
the tasks required during the engineering process but also specific conditions
required for compliance.

Table 2.1: ISO 26262:2011-Part 3.
5. Item definition
Objectives. The first objective is to define and describe the...
General. This clause lists the requirements and recommendations for...
5.3. Inputs of this clause.
5.3.1. Prerequisites. None.
5.3.2. Further supporting information. Any information that already exists
concerning the item, ...
5.4. Requirements and recommendations
5.4.1 Functional and non-functional requirements shall be made available,
including:
a) functional concept
b)

...
5.4.2. ...
...
5.5 Work products: Item definition resulting from the requirements of 5.4.

2.1.2 SAE J3061

SAE J3061 [33] is a guidebook that provides a process reference model, high-
level guiding principles, and information on existing tools and methods to help
organizations identify and assess cybersecurity threats and design cybersecu-
rity into cyber-physical vehicle systems. The current version of SAE J3061
was released in January 2016, but the definition of Automotive Cybersecurity
Integrity Level (ACsIL) is still a work in progress. A cyber-physical vehi-
cle system contains a tight coupling between the computational elements, the

2.1 Compliance Assessment of Processes Plans 19

physical elements of the system, and the environment around the system. Cy-
bersecurity is an attribute of cyber-physical systems that should be built into the
design. Thus, an appropriate lifecycle, which addresses threats from concept
to decommissioning, is required. SAE J3061 proposes a lifecycle for handling
cybersecurity which is based on ISO 26262’s safety lifecycle. The lifecycle
can be integrated into a safety process tailored from ISO 26262 by including
the cybersecurity activities for each product lifecycle phase, with the related
activities for each product lifecycle phase described in the safety process.

2.1.3 ECSS-E-ST-40C

The European Cooperation for Space Standardization (ECSS) developed a set
of standards for use in all European space activities. The ECSS standard system
includes three branches, i.e., Management (M), Engineering (E), and Product
Assurance (Q). Handbooks (HB) guide the application of the requirements.
The software engineering handbook, ECSS-E-HB-40A [37], states that in a
space software project, a customer-supplier business agreement should be es-
tablished. The customer shall produce the project requirements documentation,
which could be produced by using the ECSS Applicability Requirements Ma-
trix (EARM). The EARM should have the list of applicable ECSS requirements
with identifiers, applicability condition, i.e., applicable without change (A), ap-
plicable with modification (M), not applicable (D), and new generated require-
ment (N). The supplier responds with the ECSS Compliance Matrix (ECM),
indicating the compliance for each requirement provided in the EARM. Partial
compliance needs to be detailed, such that the customer can assess the extent to
which the objective of the ECSS is covered. Non-compliance also needs to be
investigated in terms of feasibility and acceptability in the scope of the project.
When a space project starts, the supplier has to identify a suitable software
lifecycle process. Thus, discussions about the technical specifications based
on the requirements baseline must start early in the lifecycle process [76].

In space software development, the requirements prescribed by the stan-
dard ECSS-E-ST-40C [55], which determines mission (non-safety) require-
ments on how the goals can be achieved, should be applied. Such require-
ments could be tailored, i.e., adapted for the characteristics of the project. For
example, ECSS-E-ST-40C-Annex R, provides a pretailoring based on safety
criticality categories, which rank from catastrophic to negligible (prescribed in
ECSS-Q-ST-40C [77]). Thus, mission requirements have an inherent relation-
ship with safety issues. Further tailoring should be analyzed in the scope of
the project and its consequences assessed and documented. If requirements are

20 Chapter 2. Background and Prior Work

tailored out, the associated expected outputs are also tailored out.

2.1.4 ISO 14971 and Its Evolution

ISO 14971 [56] specifies the process required to identify hazards, estimate,
evaluate, control, and monitor the risk of medical devices during its lifecy-
cle. The content of ISO 14971 has been evolving over the years [78]. When
published, ISO 14971:2007 [38] was internationally endorsed. In contrast,
EN ISO 14971:2012 [39] is harmonized with EU directives (90/385/EEC [79],
93/42/EEC [80], and 98/79/EC [81]) for the European market. As a conse-
quence of the new release, recertification was mandatory. The latest version,
ISO 14971:2019 [40], is internationally endorsed again. This situation is par-
ticularly challenging for manufacturers of medical devices that need approval
from the different regulatory bodies within and outside the EU.

The risk analysis phase in ISO 14971:2007 and EN ISO 14971:2012 cor-
responds to clause 4 and requires the planning of three tasks, i.e., 1) De-
fine use/safety characteristics, 2) Estimate risks and 3) Identify hazards. In
contrast, the same phase corresponds to clause 5 in ISO 14971:2019 and the
task Define use/safety characteristics should be divided into two. For ISO
14971:2007, the manufacturer shall discard the negligible risk. Annexes of
EN ISO 14971:2012 and ISO 14971:2019 provide a deviation, i.e., the manu-
facturer shall consider all risks. In all versions, the manufacturer is the role
in charge, the risk management plan is the prerequisite of the clause, and the
work products are the risk analysis document and the risk management file.
The risk analysis document requires information regarding the medical device
description and identification, the identification of the person and organiza-
tion, the scope, date, the intended use, and reasonably foreseeable misuse, the
qualitative/quantitative safety characteristics of the medical device, known and
foreseeable hazards associated with the medical device, fault conditions, rea-
sonably foreseeable sequences of events, and the resulting hazardous situation.
Additional information is prescribed by ISO 14971:2019, i.e., intended med-
ical indication, patient population, part of the body/tissue, user profile, and
operating principle.

2.2 Process Models
Process models are the main artifacts used for supporting the management of
the processes, as they provide an explicit representation of the process knowl-

2.2 Process Models 21

edge [25]. A process is a sequence of units of work (phases, activities, tasks,
and steps) that consume resources (employee energy and time, infrastructure)
to transform inputs (data, material) into value-added outputs (products, ser-
vices, or information) [82]. For this reason, an appropriate representation of a
process serves several purposes [27]. For example, a process model can pro-
vide support for analyzing and improving complex organizational processes.
Moreover, as presented in Section 2.1, the model of a process plan can be often
used as a mechanism to convince third parties (regulatory bodies, customers)
about certain qualities of a product. A process model should [83]:

1. be described with rigorous notations;

2. be detailed enough;

3. be semantically broad; and

4. be clear and understandable to facilitate communication.

For example, a process description that does not indicate roles in charge of
tasks is not likely to be of much value in supporting reasoning about how to
improve team coordination. Process modeling languages (PMLs) are available
to give process engineers the means to create process models and management
tools to control them [84]. PMLs have been created from different perspec-
tives, such as programming-based languages, Petri net-based languages, and
rule-based languages [85]. In the remaining parts of this section, we present
the process engineers, an actor in charge of the creation of processes (see Sec-
tion 2.2.1). We also recall essential features of SPEM 2.0 (see Section 2.2.2),
and EPF-C (see Section 2.2.3)

2.2.1 The Process Engineer
The process engineer is the role responsible for eliciting process knowledge,
capturing this knowledge in a model, analyzing its execution, performing and
disseminating process changes, and implementing systems to provide auto-
mated support to the process users [86]. Process engineers may adopt two dif-
ferent attitudes [87]: descriptive or prescriptive. A descriptive attitude requires
the study of existing processes to characterize how they have been performed.
A prescriptive attitude is instead related to the definition of a process to see
how it should be developed. Commonly, a process engineer should adopt both
approaches to deal with existing process representations and analyze process
behavior, guide process users, enforce the rules (such as the ones prescribed by
standards), or automate process steps [86].

22 Chapter 2. Background and Prior Work

2.2.2 SPEM 2.0
SPEM 2.0 (Software and Systems Process Engineering Metamodel) [48] is a
PML that defines the elements required for modeling software and systems
processes. It is a good candidate to model processes mandated by standards, as
demonstrated in [50] and, to some extent, it also supports the creation of com-
pliance tables, i.e., the mapping between standard’s requirements and process
elements, as presented in [88, 89]. There is also the availability of tool support
for the creation of SPEM 2.0-like elements, which permits the concretization
of the models, i.e., EPF-C (recalled in Section 2.2.3).

SPEM 2.0 concepts are defined in separated UML packages that are in-
terrelated. For example, the meta-class Task Definition, which belongs to the
package MethodContentElement (partially depicted in Figure 2.1a) is used to
describe assignable units of work. Instances of Task Definition can be applied
in a process breakdown structure by defining a proxy with a Task Use, a meta-
class that belongs to the package ProcessWithMethods (partially depicted in
Figure 2.1b). A similar approach is made for roles and work products. A tool
definition is used to specify the tool’s participation in a Task Definition.

(a) Method Content Elements Taxonomy. (b) Work BreakDown Taxonomy.

(c) Activity Diagram Representing a Process Workflow.

Figure 2.1: SPEM 2.0 Taxonomies.

Guidance, which belongs to the package Managed Content, is a describ-
able element that provides additional information to other elements. There are
different guidance kinds, e.g., concept and reusable asset. A Delivery Process,
which belongs to the package Process Structure, describes an approach for per-
forming a specific project as a breakdown structure populated by different kind
of units of work (e.g., a task). A Category is used to group elements in a recur-
sive way. Some of the concepts previously mentioned are described with icons
(see Table 2.2).

2.2 Process Models 23

Table 2.2: Subset of Icons Used in SPEM 2.0.
Task Definition/Use Work Product Delivery Process Category Role Guidance

/

SPEM 2.0 supports variability management on breakdown structures and
content elements, i.e., an element can be extended from a base that has a similar
nature. We recall the variability mechanisms extends and contributes. With
extends, the base method element inherits the attributes of the extended base
element. Contributes is used to extend a base in an additive fashion.

2.2.3 EPF-C
Eclipse Process Framework Composer (EPF-C) [47] is a stand-alone java ap-
plication that uses the Eclipse Rich Client Platform (RCP) to implement UMA
(Unified Method Architecture) Metamodel [90]. UMA is a metamodel that has
been developed to provide the concepts and capabilities of different methods
and process engineering languages. In particular, UMA contains a subset of
SPEM 2.0 concepts (recalled in Section 2.2.2), providing capabilities for mod-
eling systems and software processes. EPF-C is based on open standards and
specifications to allow the exchange of process models specifications between
different tools. In particular, XMI (XML Meta Interchange)1 is used to store
and exchange metadata in XML format. In addition, UML 2.0 Diagram In-
terchange Specification2 is used to provide EPF-C with a proprietary activity
diagram, which can be used to generate the execution semantics of a process
from a process definition. The functionality of EPF-C mainly offers two capa-
bilities, the method and the process authoring.

Method Authoring: Functionality used to capture a set of reusable building
blocks, i.e., roles, tasks, work products, and guidance. Figure 2.2a shows an
example of a plugin, called Process Elements. As the figure depicts, the plugin
contains the definition of a role, i.e., Designer, three tasks, i.e., Design Software
Unit, Specify Software Unit Design and Start Software Unit Design Process
and three work products, i.e., Software Architectural Design, Software Safety
Requirements and Software Unit Design. These elements are defined by using
the subset of elements defined in SPEM 2.0 (see Table 2.2), which are also

1https://www.omg.org/spec/XMI/About-XMI/
2https://www.omg.org/spec/UMLDI/1.0/PDF

24 Chapter 2. Background and Prior Work

described by UMA metamodel. Conceptually, a task can be represented as a
synergy between different process elements (see Figure 2.2b). Therefore, a
task may have an used tool, mandatory input/output, a role that performs the
task, and it is guided by guidance elements.

(a) EPF-C Plugin Structure. (b) Elements relationships.

Figure 2.2: EPF-C Method Authoring.

Process Authoring: Functionality used to organize reusable process building
blocks into processes by defining Work Breakdown Structures. As depicted
in Figure 2.3a, a work breakdown structure describes the order of the units
of work. With this functionality, we can also create process workflows. The
workflow is represented as an Activity Diagram as depicted in Figure 2.3b.

(a) Work Breakdown Structure. (b) Activity Diagram.

Figure 2.3: EPF-C Process Authoring.

EPF-C implements the method plugin package, which defines the capa-
bilities of modularization and extensibility. With these capabilities, processes
and process elements defined in previous projects can be reused. EPF-C was
recently ported from Eclipse Galileo 3.5.2 to Eclipse Neon 4.6.3 [91]).

2.3 Process Variability Management 25

2.3 Process Variability Management
In the context of safety-critical systems, a process exhibit variation due to sev-
eral factors. For example, in automotive (see Figure 2.4) the growing con-
nectivity of the systems that are included in cars is pushing towards the in-
troduction of standards aimed at providing a baseline to address cybersecurity
(e.g., SAE J3061) besides safety (i.e., ISO 26262) and software process capa-
bility maturity (i.e., Automotive SPICE). Consequently, manufacturers need to
face process diversity [36], which is the management of the multiple reference
models within single projects.

Figure 2.4: Process Variation in Automotive.

Manufacturers also need to perform tailoring. Tailoring requires selecting
applicable requirements, performing their eventual modifications, and explain-
ing their implementation according to the project’s particular circumstances. In
automotive (as recalled in Section 2.1.1) tailoring is commonly performed by
taking into account the automotive-specific risk-based approach called ASIL.
Moreover, new versions of the standards are frequently released. For example,
there are already two versions of the standard ISO 26262, one released in 2011
and the other in 2018. Thus, processes assessed with the 2011 version may
need recertification with the 2018 version.

Process diversity, tailoring, and standards evolution imply variation in the
process plans used to engineer safety-critical systems. Such variation may im-
ply the reuse of core assets that are common in the processes. In the remaining
parts of this section, we recall the tool-supported methodological frameworks
used in this thesis to manage the variability. In particular, we recalled SoPLE
(see Section 2.3.1), which aims at systematizing reuse in process models. We
also recall the support of EPF-C ◦ BVR-T (see Section 2.3.2), which is a com-
position of tools that can be used for supporting SoPLE and the variability
management of processes.

26 Chapter 2. Background and Prior Work

2.3.1 SoPLE
SoPLE (Safety-oriented Process Line Engineering) [50] is a methodological
approach that permits process engineers to systematize the reuse of process-
related information. SoPLE builds on top of principles and concepts defined
in PLE (Product Line Engineering) [92]. PLE is a reuse-oriented engineering
method that consists of the systematization of commonalities and variabili-
ties characterizing a set of products belonging to the same family/product line.
Similarly, a process line is a set of processes that capture common reusable
process elements and controlled variabilities. Thus, each of the family’s pro-
cesses is then developed from the common set of core assets (features) in a
prescribed way [93]. SoPLE is constituted of two phases.

1. Engineering reusable safety process-related commonalities and vari-
abilities. This phase requires that the process engineer selects those charac-
teristics that are common in the process family. Then, the variabilities need to
be also determined. For example, Table 2.3 (recalled from [94]) presents the
comparison of activities between the description of the software unit design and
implementation phase presented in the functional safety standard ISO 26262
(recalled in Section 2.1.1) and its counterpart presented in the cybersecurity
guidebook SAE J3061 (recalled in Section 2.1.2). We called the activities
that are common Commonality Points (CP), and the ones that vary Variabil-
ity Points (VP). In the table, we can find four commonality points marked with
the unique identifier CP1, CP2, CP3, and CP4. These commonality points can
be extended with the variants that belong to the corresponding standard. For
example, there is a variability point called VP1a, which contains the informa-
tion regarding the ISO 26262 requirement, that corresponds to the first activity
(IA1), Design concerning safety. Similarly, there is a variability point called
VP1b, which contains the information regarding the SAE J3061 requirements,
that corresponds to the first activity (JA1) Design concerning cybersecurity.

2. Engineering single safety processes. Through the selection and compo-
sition of previously engineered reusable process elements, we create specific
processes for specific projects. First, we need to describe the skeleton that
defines the software process line. As depicted in Figure 2.5, the skeleton is
conformed by the Commonality Points, CP1, CP2, CP2, and CP4, which de-
scribes its essential structure. The variants are added to the commonality points
by using the variability type called contributes, which is provided by SPEM 2.0
(recalled in Section 2.2.2). Currently, SoPLE is supported by the integration of

2.3 Process Variability Management 27

Table 2.3: Activities Comparison ISO 26262/SAE J3061.
ID IR JR Common Name

CP1 IA1 JA1 Unit design

VP1a IA1 Design concerning safety

VP1b JA1 Design concerning cybersecurity

CP2 IA2 JA3 Unit design review

VP2a IA2 Design review concerning safety

VP2b JA3 Design review concerning cybersecurity

CP3 IA3 JA2 Unit implementation

VP3a IA3 Unit implementation concerning safety

VP1b JA2 Unit implementation concerning cybersecurity

CP4 IA4 JA4 Unit implementation review

VP4a IA4 Implementation review concerning safety

VP4b JA4 Implementation review concerning cybersecurity

EPF-C and Base Variability Resolution Tool (BVR-T), recalled in Section 2.3.2

Figure 2.5: A Process Line Skeleton.

2.3.2 The Integration of EPF-C and BVR-T
EPF-C ◦ BVR-T [51] is a tool-chain obtained by integrating EPF-C (recalled
in Section 2.2.3) and Base Variability Management (BVR-T)3. We focus on
BVR-T. As summarized in [41], BVR-T is used to model (VSpec), resolve
(Resolution) and realise (Realization) the variability.

VSpec. Permits users to model the variability in a feature diagram-like fash-
ion, which defines distinctive user visible aspects, or characteristic of a pro-

3https://github.com/SINTEF-9012/bvr

28 Chapter 2. Background and Prior Work

cess. As Table 2.4 recalls, a choice represents a yes/no decision, a constraint,
given in BCL (Basic Constraint Language), specifies restrictions on permissi-
ble resolution models, and a group dictates the number of choice resolutions.
Relationships between a parent and its child features are of various types, i.e.,
0.. *, refers to none or many selections; 1..1, which refers to alternative/xor in
which one of the child features must be selected; 1..* which refers to or means
that at least one of the child features must be selected. Relationships between
the features can be mandatory, which means that the child feature is required,
or optional, which means that the child feature can be or not selected.

Table 2.4: BVR Modelling Elements.
Choice Constraint Group

Figure 2.6 presents an example of a BVR VSpec related to a car modeling
(recalled from [78]). As Figure 2.6 depicts, the Car (represented by choice
element) is compounded by Engine (which is either HP140 or HP110, defined
by the grouping element), Parking Assist (which is present only in the cars
with the type of engine HP140, as the Constraint element denotes) and Seats
(denoted with a Multiplicity element that we do not use in our research).

Figure 2.6: An Example of VSpec Model.

Resolution. Permits users to make choices at variation points, where desired
variants can be selected. Resolution also includes the possibility to validate the

2.4 Process-based Compliance by Design 29

choices. Erroneous choices violating the cross-variation points requirements
can be detected. Figure 2.7 illustrates the same example provided in Figure
2.6, but generated from the Resolution editor. Because of the constraint that
was put in the VSpec model (as Figure 2.6 illustrates), the choice of HP110 is
set to ’false’, while the Parking Assist choice is ’true’.

Figure 2.7: An Example of Resolution Model.

Realization. Permits users to bind conceptual resolutions with the concrete
elements in the base model. In particular, it requires that users establish the
relationship between placements and replacements within the fragment substi-
tutions and the triggering of these substitution in the within the VSpec features.

2.4 Process-based Compliance by Design

Compliance assessment of process plans can be understood as the consistency
between a specified process and the reference model embedded in a prescrip-
tive standard [31]. There are two main approaches towards achieving process
compliance [95]. The first one is called Compliance by Detection (CbDt).
CbDt is an approach that entails a conformity check during or after the runtime
stage (in the execution environment). In CbDt, the detection of non-compliant
situations is problematic since it complicates the reconstruction of a process in
a compliant form after the process has been executed. The second one is called
Compliance by Design (CbD). CbD means that the set of applicable require-
ments are considered in the design stage of the process. In CbD, the conformity
check takes place in advance when the process is planned. This approach has
several advantages, as presented in [96].

30 Chapter 2. Background and Prior Work

1. The approach is flexible as the generation can be repeated when rules are
added, removed, or changed.

2. Compliance is not only detected but actually enforced. Thus, CbD is con-
sidered a preventive approach.

In CbD, the requirements prescribed in a normative system are propagated
into process plans [45]. For such propagation, the normative requirements have
to be represented in a machine-readable form. In the remaining parts of this
section, we present theoretical assumptions regarding normative representation
(see Section 2.4.1). Then, we present Formal Contract Logic (FCL) (see Sec-
tion 2.4.2), a language explicitly created for the representation or norms in legal
and business compliance. Finally, we present Regorous (see Section 2.4.3), a
compliance checker able to do reasoning with FCL rules.

2.4.1 Normative Representation
Normative documents contain principles of behavior used to regulate target
subjects by defining what is legal and what is not [97]. Such documents
arise from different sources, e.g., regulations, laws, standards, branch-specific
guidelines, internal code of conduct, social and moral rules [98]. In particular,
normative documents contain the conditions under which they are applicable
(i.e., the meaning of the terms or concepts where the norms are valid), and
the normative provisions they cause when applied [99]. Normative provisions
correspond to the legally binding notions that are anchored to the structure of
legislative text, laws, and regulations [100].

Normative documents are usually represented in natural language, which
can freely describe a wide range of concepts of the real, abstract, and imagi-
nary worlds [101]. Natural language is very expressive, but it has problems of
ambiguity, subjectivity, inconsistency, and inaccuracy [102]. For this reason,
formal models, which are a set of domain theorems that are amenable to for-
mal proving through reasoning, are of growing interest for compliance check-
ing [103]. Moreover, using formal methods provides rigorous methodologies
that facilitate compliance tasks [94]. However, the analysis of compliance with
normative frameworks is as good as the models used for such analysis [104].

In particular, the normative provisions of importance for process compli-
ance are those notions regarding the obligations, the permissions, and the pro-
hibitions [105] (see Figure 2.8). Obligations and prohibitions are constraints
that limit the behavior of processes. The difference between obligations and
prohibitions and other types of normative provisions is that they can finish in

2.4 Process-based Compliance by Design 31

a violation. A permission is the lack of obligation to the contrary and cannot
be violated. A violation could be compensated with a set of new obligations
arising after the violation. Compensations are also obligations that can be vi-
olated and compensable as well. Thus, recursive definitions for the notion of
compensated obligation is vital in the compliance analysis.

Figure 2.8: Normative Provisions Classification.

The formalization of normative documents is complex [106], and requires
precise notions that can adequately describe them [101]. A formal model of
the norms must have an unambiguous, mathematically defined syntax and se-
mantics of such norms [107]. Several approaches aimed at addressing the
representation of normative texts for system development have been created,
(see [108]). We focus on Formal Contract Logic (FCL) (see Section 2.4.2), a
framework that unambiguously represents normative knowledge as presented
in Figure 2.8.

2.4.2 Formal Contract Logic
Formal Contract Logic (FCL) [46] is a language created to represent norms.
An FCL rule is represented as follows:

r : a1, ..., an ⇒ c,

where r is the name of the rule (unique for each rule), a1, ..., an are the premises
(the conjunction of the propositions a1∧a2∧...∧an), which represent the con-
ditions of the applicability of the norm, and c is the conclusion of the rule (also
a proposition of the logic), which represents normative effects. The propo-
sitions of the logic are built from a finite set of atomic propositions, and the
following operators: − (for negation), O (for obligation), P (for permission),
and ⊗ (for violation/reparation). The formation rules are as follows [45].

32 Chapter 2. Background and Prior Work

• Every atomic proposition is a proposition. A simple proposition corresponds
to a factual statement.

• If p is an atomic proposition, then −p, is a proposition.

• If p is a proposition then Op is an obligation proposition and Pp is a permis-
sion proposition. Obligation propositions and permission propositions are
deontic propositions;

• if p1, ..., pn are obligation propositions and q is a deontic proposition, then
p1⊗ ...⊗pn⊗qn is a reparation chain. The conclusion c could also represent
a reparation chain.

FCL is a skeptical non-monotonic logic, meaning that it does not support
contradictory conclusions but seeks to resolve conflicts. In case there is sus-
tainable support to conclude both c and −c, FCL does not conclude any of
them. However, if the support for c has priority over the support of −c, then
c is concluded. This means that a designer of FCL rules has to identify pairs
of incompatible propositions, such as c and −c. Once defined, a superiority
relation (>) among rules is used to determine priorities (see Formula 2.1).

r : a1, ..., an ⇒ c,

r
′
: b1, ..., bn ⇒ −c,

r
′
> r

(2.1)

An FCL rule can specify that an obligation is in force at a particular time
point, i.e., a norm indicates when an obligation is active (see Figure 2.9). Thus,
the obligation O is in force at the point n in time t. An obligation is considered
to remain in force until it is terminated or removed.

Figure 2.9: Obligation in Force.

FCL provides a classification model on temporal validity of the obligations
and the effects of the violations. If an obligation needs to be obeyed for the
whole duration within the interval t in which it is in force, it is categorized as a
maintenance obligation (OM) (see Figure 2.10).

If achieving the content of the obligation at least once is enough to fulfill
it, it is called achievement obligation (OA). An OA is Preemptive if it could be

2.4 Process-based Compliance by Design 33

Figure 2.10: Maintenance Obligation.

fulfilled even before the obligation is in force. An OA is non-preemptive if it
only can be fulfilled after it is in force (see Figure 2.11).

Figure 2.11: Achievement Obligation (Preemptive and Non-Preemptive).

An OA is Perdurant if after being violated, the obligation is still required to
be fulfilled (see Figure 2.12). An OA is Non-Perdurant if after being violated,
the obligation does not require to be fulfilled.

Figure 2.12: Achievement-Perdurant Obligation.

A permission (P) is an allowed situation. If something is permitted the
obligation to the contrary does not hold. Prohibitions are forbidden situations
that are represented as the negation of the content of a maintenance obligation
−OMp. The different types of normative effects are summarized in Table 2.5.

Requirements in international standards (e.g., ISO 26262, ECSS standards,
CENELEC EN 50128, MIL STD 882D [109]) commonly use the modal “shall”
to define obligations, “shall not” to define prohibitions and “can” or “may” and
“need not” (this is explicit in ECSS standards) to define permission. Thus, in
the following, we present some everyday examples of the statements that could
be modeled in FCL by using the types of obligations presented in Table 2.5.

1. For the party in John’s house, you can dress informally. This statement
is a permission. Thus, a representation of the statement in FCL could have
as an antecedent the proposition that refers to the fact that there is a party in

34 Chapter 2. Background and Prior Work

Table 2.5: FCL Rule Notations.
Notation Description
[P]P A proposition P is permitted

[OM]P There is a maintenance obligation for the proposition P

[OM]-P There is a prohibition for proposition P

[OAPP]P There is an achievement, preemptive, and perdurant obligation for the proposition P

[OANPP]P There is an achievement, non-preemptive and perdurant obligation for the proposition P

[OAPNP]P There is an achievement, preemptive and non-perdurant obligation for the proposition P

[OANPNP]P There is an achievement, non-preemptive and non-perdurant obligation for proposition P

John’s house, which conclusion is that there is a permit for dressing infor-
mally (see Formula 2.2).

r : PartyInJohn
′
sHouse⇒ [P]dressInformally (2.2)

2. You shall not walk the dog in the avenue. This statement is a prohibition.
In FCL a prohibition is represented as the negation of the content of an OM.
Thus, a representation of the statement in FCL could have as an antecedent
the proposition that refers to the action walk the dog, whereas the conclusion
is negation of the content of the obligation walk the dog in the avenue (see
Formula 2.3).

r : walkTheDog ⇒ [OM]− walkTheDogInAvenue (2.3)

3. You shall pay the loan fee every month. This statement is an OA because
doing it once in the month is enough. It is also a preemptive because the
fee could even be paid before the deadline. It is also perdurant because
the no payment on time does not mean that should be not paid. Thus, a
representation of the statement in FCL have as an antecedent the fact that
the month starts, which conclusion is the OAPP to pay the loan fee(see
Formula 2.4).

r : theMonthStarts⇒ [OAPP]payLoanFee (2.4)

4. The package shall be registered once it arrives. This statement is an OA
since the package shall be registered only once. The OA is non-preemptive
since you cannot register it before it arrives. In addition, if the package
is not registered as soon as it arrives, there is a violating, but it does not

2.4 Process-based Compliance by Design 35

mean that the packages should not be registered anyway. Thus, the OA is
also perdurant. A representation of the statement in FCL is presented in
Formula 2.5.

r : PackageArrives⇒ [OANPP]registerPackage (2.5)

5. You shall buy the machine with discount. Discounts are only today. In
this case, buying the machine only once is enough. However, you cannot
buy before today, so, it is a OA that is non-preemptive. Moreover, if you
do not buy today, you cannot buy tomorrow with discount. Thus the OA is
also non-perdurant. A representation of the statement in FCL is presented
in Formula 2.6.

r : BuyMachine⇒ [OANPNP]buyingWtihDiscount (2.6)

6. You shall buy the machine with discount. The discounts finish next
week. In this case, buying the machine only once is enough to fulfil the
obligation. Moreover, you can buy the machine before the discount time
finish, so, it is a OA that is preemptive. If you do not buy the machine
before the discounts finish, you cannot buy it with discount. Thus the OA is
also non-perdurant. A representation of the statement in FCL is presented
in Formula 2.7.

r : BuyMachine⇒ [OAPNP]buyingWtihDiscount (2.7)

2.4.3 Regorous
Regorous [49] is a checker that permits the automatic analysis of compliance
of a process against a set of regulations formalized in FCL (recalled in Sec-
tion 2.4.2). For this, the process should be enriched with semantic annotations.
Unlike classic text annotation (used by humans to read associated informa-
tion), machines can use semantic annotations to refer to and compute informa-
tion. Annotations on process elements are literals that record data, resources,
and other information representing compliance effects. The annotated process
is taken by Regorous and converted in a logical state representation that is
compared with the set of FCL rules containing the standards information (see
Figure 2.13). The procedure executed by Regorous is the following:

36 Chapter 2. Background and Prior Work

Figure 2.13: Regorous Architecture.

1. Generate an execution trace of the process.

2. Traverse the trace:

• For each task in the trace, cumulate the effects of the task. Remark: if an
effect in the current task conflicts with previous annotations, update using
the effects of the current task.

• Use the set of cumulated effects to determine which obligations enter into
force at the current task. This is done by a call to of FCL reasoner.

• Add the obligations obtained from the previous step to the set of obliga-
tions carried over the previous task.

• Determine which obligations have been fulfilled, violated or pending, and
if there are violated obligations, check whether they have been compen-
sated.

3. Repeat for all traces.

A trace is a sequence of tasks in which a process can be executed. In par-
ticular, for the n-th element in a trace t, Regorous uses the function State (t,n)
to semantically describe the set of facts in the computation to determine which
rules are activated (or in other words, which rules fire). Consequently, obliga-
tions are in force after rules fire. Rules in force are described by Regorous with
the function Force(t, n+1). In addition, Force (t,n) contains the obligations that

2.4 Process-based Compliance by Design 37

are in force but are not terminated in n. An obligation can be terminated for
the following three reasons:

1. the obligation reaches its deadline

2. the obligation has been fulfilled

3. the obligation has been violated and it is not perdurant

To assess which obligations have been complied with or violated in n, Re-
gorous compares the elements of Force(t, n) and State(t, n). A process is fully
compliant if and only if all traces are compliant (all obligations have been ful-
filled, or if violated, they have been compensated).

Figure 2.14, shows a fictional FCL rule set and a compliance annotated
process. The ruleset in FCL contains four rules. The first rule, r1, implies
the obligation of providing A. The second rule, r2, implies the obligation of
providing B given the provision of A. The third rule, r3, implies the permission
to not provide C given the provision of B. And r4 implies the obligation of D
given the provision of B. From the FCL rule base, we have four compliance
effects, i.e., A, B, C, and D. As seen, the compliance effects are extracted from
the formulas composing the rules. The tasks in the process are annotated with
the effects as follows. T1 is annotated with effect A, T2 is annotated with effect
B, T3 is annotated with effect C, and T4 is annotated with effect D.

Figure 2.14: Analysis of Compliance.

To check compliance, we use the functions State and Force. The state of
the start point is empty because we have not defined any effect. After the start
point, the compliance checking process is activated. Thus, the first rule is in
force. The first task is expected to provide the effect A since there is the obli-
gation to provide A. Then, we check the state after the task T1. As we see in
the figure, T1 produces the effect A. So, the rule is fulfilled. Then, providing A

38 Chapter 2. Background and Prior Work

forces the provision of B in T2. In the figure, we can see that T2 provides ef-
fect B. So, the second rule is also fulfilled. After B is provided, it implies two
normative effects. The first one is the permission to not providing C in T3. Sec-
ond, it implies the obligation of providing D in T3. When checking T3, we can
see that it provides the effect C. However, having C as the produced effect does
not imply a violation of rule r3 because the force function has a permit, not an
obligation. However, in T3, we should have D, and the tasks T3 is not provid-
ing E. If the obligation of providing D is a OM or OA-preemptive, we have a
violation. A violation means that the process is not compliant. If the obliga-
tion is OA-non-preemptive, it can be fulfilled in T4. In this case, there is no
violation, and the process is compliant.

2.5 Design Hints and Patterns
Design hints and patterns are two kinds of resources used in computational
thinking [110]. Hints are rules of thumb used to solve a problem, while pat-
terns indicate common situations that are likely to be encounter. Our research
uses hints and patterns to facilitate creating the specifications required for au-
tomated compliance checking of process plans. In the remaining parts of this
section, we present a hint widely used in computer science, namely the divide
and conquer strategy (see Section 2.5.1). We also recall the notion of property
specification patterns (see Section 2.5.2).

2.5.1 Separation of Concerns: Divide-and-conquer Strategy
The Romans had a strategy called divide-and-conquer, which considers that
one power breaks another power into more manageable pieces to easier take
control. In software engineering, this strategy is adopted as a principle to man-
age complexity [111]. Particularly, divide-and-conquer is seen in the principle
of separation of concerns [112], which refers to the ability to separate and orga-
nize only those parts (or properties) of a system that are relevant to a particular
concept or to a particular goal. A concern may be defined as a functional notion
or more broadly as any piece of interest or focus.

2.5.2 Property Specification Patterns
The property specification patterns, formulated by Dwyer et al.’s [113], are
“generalized descriptions of commonly occurring requirements on the permis-

2.6 Empirical Research Aspects 39

sible state sequence of a finite state model of a system.” A selected set of
Dwyer et al.’s patterns4 is presented in Table 2.6. Each pattern has a scope,
which is the extent of the program execution over which the pattern must hold.
The types of scope that we consider in this thesis are: global, which repre-
sent the entire program execution, before, which includes the execution up to a
given state, and after which includes the execution after a given state.

Table 2.6: Dwyer’s Specification Patterns.
Name Description

Absence A given state P does not occur within a scope

Existence A given state P must occur within a scope

Universality A given state P must occur throughout a scope

Precedence A state P must always be preceded by a state Q within a scope

Response A state P must always be followed by a state Q within a scope

2.6 Empirical Research Aspects
In this section, we recall the aspects related to empirical research in computer
science that we use in this thesis. First, we present an overview of the design
science methodology for information systems and software engineering (see
Section 2.6.1). Then, we present the methods used in this thesis to validate
our research outputs. In particular, we present the methodology for performing
personal opinion surveys (see Section 2.6.2), systematic literature review (see
Section 2.6.3), the technology acceptance model (see Section 2.6.4), the qual-
itative criteria to assess compliance approaches usefulness (see Section 2.6.5),
and a metric called reuse measurement (See Section 2.6.6).

2.6.1 Design Science Methodology
The design science methodology for information systems and software engi-
neering [114] aims at designing and investigating treatments (an artifact im-
proving something in a problem context) used in software and information
systems. Research problems in design science contain design problems (which
call for a change in the real world) interacting with knowledge challenges (re-
quest understanding about the world as it is). Research problems also have a

4https://matthewbdwyer.github.io/psp/

40 Chapter 2. Background and Prior Work

problem context, including the social context (i.e., those who may affect or be
affected by the treatment) and the knowledge context (i.e., existing theories).

Design Cycle

The design cycle (see Figure 2.15) starts with a problem investigation, where
the phenomena to be improved and the reasons for that improvement are stud-
ied. Then, there is a treatment design, where designs aimed at treat the problem
are created. Finally, there is a treatment validation, where the suitability of the
artifacts for the treatment is assessed. Researchers iterate over these activities
many times in a design science research project.

Figure 2.15: Design Cycle.

Relevant Tasks

Peffers et al. [115] define a design science research methodology (DSRM) that
is a slightly elaborated design cycle. The relevant tasks are presented in Ta-
ble 2.7.

Goals’s Definition

According to Wieringa [114], design science also defines a range of goals.
There is a social context goal at the higher level, which is a goal aimed at im-
proving a problem context. To support this higher level goal, there may be
several types of goals. For example, prediction goals (guess concerning what
will happen in the future), knowledge goals (to answer knowledge questions),

2.6 Empirical Research Aspects 41

Table 2.7: Peffers’ DSRM Tasks.
Task Description
Problem identification Define the research problem.

Objectives definition Infer the objectives of a potential solution from the problem definition and
knowledge of what is possible and feasible.

Design and develop-
ment

Create an artifact (constructs, models, methods, instantiations or new prop-
erties of technical, social, and/or informational resources) by taking into
account the knowledge of theory that can be brought to bear in a solution.

Validation Demonstrate the use of the artifact to solve the problem.

Evaluation Observe the degree of support provided by the artifact to solve the problem.

Communication Communicate the problem and its importance, the artifact, its utility and
novelty, the rigor of its design, and its effectiveness to relevant audiences.

instrument design goals (to (re)design a research instrument), and artifact (or
technical) research goals (to (re)design an artifact). Those types of goals have
defined relationships. For example, to make predictions, we need knowledge.
Thus, knowledge goals may also be required to describe phenomena and to
explain them. For this, design science research projects require design instru-
ments to answer knowledge challenges, e.g., personal opinion surveys, system-
atic literature reviews. Design science research projects also need to validate
the suitability of the treatment, i.e., justify that it would contribute to stake-
holder goals if implemented. The following sections recall the instruments
used in this research to answer knowledge challenges and validate treatments.

2.6.2 Personal Opinion Surveys
A personal opinion survey [116] is a comprehensive research method for col-
lecting information using a questionnaire completed by subjects. When creat-
ing a survey, the first step is to define the expected outcomes. Then, the survey
should be designed, e.g., cross-sectional (participants are asked for informa-
tion at one fixed point in time). It is also essential to define options related
to how the survey would be administered. Once designed, the survey instru-
ment should be developed, evaluated, and applied to a sample population, from
which obtained data is analyzed.

In the creation of surveys, Likert Scales [117] are widely used. Likert
Scales are psychometric response scales, e.g., a five-point scale ranging from
“Strongly Disagree” to “Strongly Agree” used to ask respondents to indicate
their level of agreement with a given statement. On a Likert scale, each spe-
cific question can have its response analyzed separately, or have it summed

42 Chapter 2. Background and Prior Work

with other related items to create a score for a group of statements. Individual
responses are generally treated as ordinal data because although the response
levels do have a relative position, we cannot presume that participants perceive
the difference between adjacent levels to be equal.

2.6.3 Systematic Literature Review
A Systematic Literature Review (SLR) [118] is a review methodology used
for identifying, evaluating, and interpreting all available research relevant to
a particular research question. The first activity in a SLR is planning the re-
view. This activity includes the identification of the need for the SLR, the
specification of the research questions, and the design of the review protocol.
In the second activity, conducting the review, the researchers apply the review
protocol and answer the questions. In the last activity, reporting the review,
the researchers define the means to illustrate the findings. The guidelines, de-
scribed by Wohlin [119], consider a technique called snowballing, which can
be used to reach more relevant primary studies. Snowballing can be backward
(search of relevant studies by taking into account the reference list of an initial
set of primary studies) or forward (identifying more relevant studies based on
those papers citing the paper being examined).

2.6.4 Technology Acceptance Model
The Technology Acceptance Model (TAM) [120] provides general determi-
nants of computer acceptance. TAM is capable of explaining user behavior
across a broad range of end-user computing technologies and user populations,
while at the same time being theoretically justified. TAM focuses on three main
facets of user acceptance. The first is the degree to which a person believes that
using a particular method will be free of effort (Perceived Usability). The sec-
ond is related to a person’s subjective probability that using a particular system
would enhance his/her job (Perceived Usefulness). The third is the extent to
which a person intends to use a particular system (Intention to Use).

2.6.5 Qualitative Criteria to Assess Compliance Approaches
The usefulness of compliance management approaches can be qualitatively as-
sessed taking into account specific criteria in terms of effort and level of cov-
erage [54].

1. Effort to model needed to establish a model for managing compliance.

2.6 Empirical Research Aspects 43

2. Effort to comprehend processes and regulations models.

3. Effort to document compliance, i.e., verify whether processes model com-
ply with a legislation model.

4. Effort to manage evolution needed to find potential instances of non-
compliance in the models when regulatory documents are amended or when
their policies change.

5. Level of coverage for the model, how much of the policies and processes
can be modeled.

6. Level of coverage for compliance documentation, i.e., approach’s suc-
cess in terms of documenting the compliance and ensuring compliance to the
legislation.

7. Level of coverage for the evolution management, i.e., approach’s success
in handling the changes and assessing their overall impact.

The effort, according to to [121], is a variable that could be estimated dur-
ing task performance in two ways: the actual effort (determined by task de-
mands) and the perception of effort (relative to a subject’s capacity to recog-
nize the effort). In theory, the actual effort can be used to determine the intent
to complete a task a priori, independently of any conscious actor. In this thesis,
we use actual effort to gain a deeper understanding of our methods.

2.6.6 Reuse Measurement

A metric for reuse measurement is proposed by [57] (see below).

% Reuse = (1− Number of new objects built
Total number of objects used

) ∗ 100

The metric can be applied in hierarchical structures that permit the identifi-
cation of the objects and the applications to which they were originally created.
This metric is expressed in terms of percentage by considering the proportion
of the number of new objects built (created from scratch) and the total num-
ber of objects used (in the absence of reuse). Besides, it focuses on the total
benefit attributable to reuse. Thus, objects that are reused multiple times are
considered to represent multiple instances of reuse.

Chapter 3

Research Summary

In this chapter, we present a summary of the research addressed in this the-
sis. In particular, we present the research process used (See Section 3.1), the
problem formulation (see Section 3.2) and the research goals (see Section 3.3).

3.1 Research Process
The research process used in this thesis is based on the methodology for design
science research for information systems and software engineering, described
in Section 2.6.1. We adapt the design cycle presented in Figure 2.15 by includ-
ing the tasks presented in Table 2.7. As a result, we have a research process
that encompasses three stages. A. Research Initiation and C. Research Final-
ization are carried out once at a global scale, while B. Research Development
is a cyclic stage of research aimed at fulfilling the general research goal

A. Research initiation. In this stage, we perform the problem investigation
(first activity in the research cycle in Figure 2.15) at a global scale. We include
two tasks described in DSRM (see Table 2.7).

1. Problem identification. In this task, we define the overall problem. For
this, we require the state-of-the-practice (design problems which call for a
change in the real world), and state-of-the-art (design problems must in-
teract with knowledge challenges). The output is the problem formulation,
which includes the problem context and the research motivation.

45

46 Chapter 3. Research Summary

Figure 3.1: Research Process.

2. Main goal definition. In this task, we infer the overall research goal by
considering the problem formulation and the knowledge of what is possible
and feasible. The output of this task is the overall research goal.

B. Research development: This stage, which is composed by four tasks,
supports the achievement of the main goal.

1. Sub-goal definition. A subgoal should describe a specific problem and
justify the value of a specific solution. This task considers the problem
formulation and the overall research goal, which are the work products of
the research initiation. The output is the formulation of a subgoal, which
defines a specific focus. As defined in Section 2.6.1 goals can be of different
types. In this thesis, we define knowledge and technical research goals.

2. Solution artifact creation. In this task, we design an artifact, i.e., con-
structs, models, methods, or instantiations, new properties of technical, so-
cial, and/or informational resources, that solves the fulfill the specify sub-
goal. Within the artifact, its desired functionality, architecture, and actual
development have to be described. Resources required for moving from
the goal to creation of the artifact include knowledge of the theoretical ap-
proaches, i.e., additional state of the art, that can be brought to bear in a

3.2 Problem Formulation 47

solution and the tools required for modeling and development. The output
of this task is the produced artifact and the guidance required for it use.

3. Validation. In this task, the solution artifact is used to solve a specific in-
stance of the problem. We also observe the degree of support provided by
the artifact when solving such a problem instance. The validation could in-
volve the use of examples or other appropriate actions. Resources required
for the validation include adequate knowledge of how to use the artifact,
which is given by the artifact use guidance, and the actual artifact. Besides,
the description of the specific instance of the problem and guidance related
empirical research methods that would be used. In our research, we used
different research methods for validation. In particular, we use methodolo-
gies for gathering data such as personal opinion survey (recalled in Sec-
tion 2.6.2) and systematic literature reviews (recalled in Section 2.6.3). For
the validation of the artifacts created, we used the technology acceptance
model (recalled in Section 2.6.4), qualitative criteria to assess compliance
approaches (recalled in Section 2.6.5) and the reuse measurement metric
(recalled in Section 2.6.6). The output of this task is the validation results.
These three steps are repeated for every research goal.

4. Communication. In this task, the problem and its importance, artifact,
utility, novelty, its design, and capability to solve the problem (validation
results) are communicated to the research community and practitioners. The
knowledge of the disciplinary culture is a basic input for this task.

C. Research finalization: A Ph.D. position is a research tenure that is con-
strained by a time period. Results of this tenure should be visible at the end of
such a period. For this reason, we define the stage research finalization, which
is a communication activity as described in Table 2.7. In this stage, the activity
research publication is performed. In this activity, we compile all the par-
tial results obtained during the research development. The inputs of this stage
are all the work products resulting from the research initiation and research
development. The outputs are Ph.D thesis and the Ph.D seminar.

3.2 Problem Formulation
In this section, we formulate the problem to be tackled in this thesis. In partic-
ular, we define the problem context (see Section 3.2.1) and the research moti-
vation (see Section 3.2.2).

48 Chapter 3. Research Summary

3.2.1 Problem context

Manufacturers of safety-critical systems (see introduction of Chapter 2) have
to comply with industry standards to show that they act under acceptable crite-
ria. Compliance requires that manufacturers adapt their practices and provide
evidence regarding the object of conformity (e.g., products, processes). In this
thesis, we focus on the process used to engineer safety-critical systems as an
object of conformity. In particular, adjusting process plans in compliance with
applicable standards is a common, accepted, and mandatory procedure when
producing safety-critical systems (see Section 2.1). However, selecting a strat-
egy that fulfills business objectives in the process plan within the boundaries al-
lowed by all the requirements included in the applicable normative documents
is challenging (e.g., many standards, with different purposes and frequently
changing). Therefore, there is a need to provide mechanisms for supporting
the modeling of compliant processes at planning time. In the remaining parts
of this section, we describe the object of study and the target stakeholder.

The Object of Study

Prescriptive standards, as recalled in Section 2.1, include requirements that de-
mand the planning of tasks, the resources required and produced, and the use of
specific techniques, which are framed with different properties. Such standards
also set down the points at which different sorts of compliance artifacts should
be established. For this reason, compliance checking is a common practice
during the creation of process plans. Thus, the object of study in this research
is the compliance checking of process plans against industry standards.

Target Stakeholder

One key consideration when conducting compliance assessment is that regula-
tions are obligations on the licensee to fulfill in order to get authorizations. As
such, there are two different sides: the industry side and the regulatory body
side. Both sides involve different practitioners, i.e., process engineers, con-
sultants, auditors, and evaluators. When process-related compliance is used
to support contractual obligations between companies acting as customer and
supplier, respectively, lawyers may also be involved. However, the main re-
sponsible for the processes in a company is the process engineer (as recalled
in Section 2.2.1). We focus on such a role since a process engineer is respon-
sible for selecting, composing, and correctly documenting adequate process

3.3 Research Goals 49

elements and workflows to achieve the required process goals according to the
applicable standards.

3.2.2 Research Motivation

Process-related compliance responds to a cycle of activities that start with se-
lecting applicable standards to the demonstration of compliance with the se-
lected standards. Such activities are very complex. In particular, compliance
checking is typically considered time-consuming since standards contain hun-
dreds of requirements, which usually reference each other. Compliance check-
ing is also considered error-prone since there is much variation in process plan-
ning (see, for instance, Figure 2.4). Finally, compliance checking is a repeti-
tive job since industries commonly manage multiple process plans. Given such
complexity, errors in process-related compliance checking reports may arise.
Such errors may endanger the compliance process, leading to delays in the
production of safety-critical systems and, thus, economical losses.

The provision of solutions for automatizing compliance checking are im-
perative to permit organizations to have more control over their process plans
and avoid compliance risk, by:

1. detecting compliance violations, and

2. enforcing compliance at planning time.

3.3 Research Goals
In this section, we identify the main research goal (see Section 3.3.1) and the
derived research subgoals (see Section 3.3.2).

3.3.1 Main Goal

As presented in Section 3.2.1, we aim at addressing process compliance at
planning time to help process engineers do their job. As presented in Sec-
tion 3.2.2, we consider the provision of solutions that facilitate the automation
of compliance checking of processes so that compliance violations are detected
and compliance is enforced at planning time. With this, a process engineer
can demonstrate intentional compliance, i.e., the planning-time allocation of
responsibilities, such that if every actor fulfills its duties, then compliance is

50 Chapter 3. Research Summary

ensured. Based on the previous reasoning, we define a social context (main)
goal that drives this thesis as follows:

Facilitate automated compliance checking of the process plans
used to engineer safety-critical systems against the standards
mandated (or recommended) in the safety-critical context

3.3.2 Research Sub-Goals
In order to address the main goal (presented in Section 3.3.1), we define four
concrete sub-goals. As recalled in Section 2.6.1, different kinds of goals can
be defined in the design science methodology. In particular, we defined knowl-
edge goals, which help us explain the phenomena under study and the impact
of the proposed solution (subgoals 1 and 4). We also define technical goals
since we aim at proposing a technological solution (subgoals 2 and 3).

1. Elicit the requirements to be met to support the automated compliance
checking of the process plans used in the safety-critical context. This sub-
goal focuses on establishing the requirements for a technical solution that al-
leviate the compliance challenges that manufacturers of safety-critical systems
have in terms of prescriptive standards, specifically at planning time.

2. Identify mechanisms for supporting automated compliance checking of
the process plans used in the safety-critical context. This subgoal focuses
on discovering how existing tools and methodologies can be appropriately
combined to provide the support required for automated compliance checking
of process plans.

3. Facilitate the creation of reusable specifications required for automated
compliance checking of the process plans. This subgoal focuses on discov-
ering adequate means to model the concepts included in the specifications, as
well as to include the necessary support for enabling systematic reuse.

4. Investigate the significance of a solution for automated compliance
checking of process plans in the safety-critical context. This subgoal fo-
cuses on objectively analyze our solutions’ pros and cons and define elements
that permit their future improvement and usage.

Chapter 4

Thesis Contributions

In this chapter, we present the technical contributions presented this thesis. The
contributions are matched with the subgoals in Table 4.1.

Table 4.1: Contributions and Research Subgoals.
No. Contribution Goal addressed

1 Requirements for Automated Process
Compliance Checking (see Section 4.1)

Elicit the requirements to be met to support the auto-
mated compliance checking of the process plans used
in the safety-critical context

2 ACCEPT (see Section 4.2)
Identify mechanisms for supporting automated com-
pliance checking of the process plans used in the
safety-critical context

3
Process Compliance Hints and Patterns
(see Section 4.3) Facilitate the creation of reusable specifications

required for automated compliance checking of the
process plans.Systematic reuse of compliance artifacts

(see Section 4.4)

4 Solutions validation (see Section 4.5)
Investigate the significance of a solution for auto-
mated compliance checking of process plans in the
safety-critical context.

4.1 Requirements for Automated Process Compli-
ance Checking

In this section, we establish the requirements for a technical solution that allevi-
ates the challenges that manufacturers of safety-critical systems have regarding

51

52 Chapter 4. Thesis Contributions

prescriptive standards. In particular, in Section 4.1.1, we consider the compli-
ance reasons of a manufacturer of safety-critical systems. In Section 4.1.2, we
highlight the process plan. In Section 4.1.3, we emphasize the challenges re-
garding compliance checking of process plans. Finally, in Section 4.1.4, we
present the requirements for a technical solution.

4.1.1 Compliance Reasons
When producing safety-critical systems, manufacturers seek to fulfill the com-
pliance requirements provided by a set of applicable normative frameworks
(e.g., standards, policies, regulations) to demonstrate that they act under pub-
licly accepted criteria. For example, compliance with functional safety stan-
dards represents that the risks associated with the safety-critical system opera-
tion have been considered, analyzed, and mitigated to a sufficient level for their
confident deployment into a specific context in the society.

For some industries, compliance is not a simple voluntary act. For ex-
ample, software aspects of airborne systems and equipment need to comply
with airworthiness requirements described in DO-178C. Conversely, in auto-
motive, compliance certifications with a specific regulatory framework are not
de rigueur. However, since its inception in 2011, ISO 26262 has been consid-
ered the state-of-the-art automotive safety engineering. Thus, self-assessment
with ISO 26262 is essential in the production and commercialization of cars.
In any case, compliance with industry standards grants several benefits to man-
ufacturers involved in the production of safety-critical systems. For example:

1. Compliance requirements provide manufacturers a reference point for their
production operations based on expertise and best practices. For instance,
the functional safety standard ISO 26262 prescribes the specific actions to
be taken into consideration by a car manufacturer to achieve acceptable
safety levels in their fabricated or assembled vehicles.

2. Compliance requirements help to realize the ever more globalized safety-
critical systems production more confidently. For example, in the European
space context, the ECSS standards provide baseline requirements that space
agencies use to formulate the project-specific needs and requirements that
have to be met by their worldwide distributed suppliers.

3. A compliance stamp is a mark that customers trust. For instance, the CE
marking 1, which is the declaration that a product meets European standards
1https://ec.europa.eu/growth/single-market/ce-marking en

4.1 Requirements for Automated Process Compliance Checking 53

for health, safety, and environmental protection, is commonly preferred by
European consumers.

4. A standard-compliant safety-critical system support manufacturer in legal
actions if the product causes harm. For example, compliance with IEC 61508,
which is the functional safety of electrical/electronic/programmable elec-
tronic safety-related systems, is relevant evidence for a jury to consider in a
product liability action in England.

4.1.2 The Process Plan
Industry standards demand documented evidence of responsibilities and agree-
ments. Commonly, standards adopt a highly prescriptive approach where the
decision-making process is facilitated by integrating desired attributes, e.g.,
safety, security, and quality, into the development lifecycle of the safety-critical
systems. For this reason, manufacturers should plan the fulfillment of stan-
dards requirements at the beginning of the engineering activities. By follow-
ing such an approach, manufacturers can ensure that a rigorous process has
been designed to build the system. For example, safety standards demand a
safety plan, which contains the planning of activities related to the assurance
of the system’s safety. Compliant engineering process plans are used to coordi-
nate and track engineering progress, and in some contexts, e.g., avionics, they
should get initial approval from regulatory bodies.

Rigorous compliant process plans should include the sequence of tasks
mandated by standards (i.e., the process behavior) and the resources ascribed
to such tasks, e.g., personnel, work products, tools, and methods, which are
also framed with essential properties (i.e., the process structure). Task, re-
sources, and properties outside of the standards prescriptions are also possible
to plan, but they require a rationale in which compliance should be justified.
Consequently, a process plan is a detailed proposal of action that demonstrates
the planning-time allocation of responsibilities. Given these characteristics,
process-related compliance management could be supported by checking at
design time that processes planned to engineer safety-critical systems fulfill
the properties set down by standards at given points.

4.1.3 Compliance Checking Challenges
The process reference frameworks included in prescriptive standards focus on
what needs to be done, who should be involved in the process, and the recom-
mended techniques to be used to achieve desirable results. In some contexts,

54 Chapter 4. Thesis Contributions

tool qualification is also required, e.g., in avionics, the standard annex DO-330
defines that tool qualification is in itself a process necessary to obtain qualifica-
tion credit. Still, standards do not restrict organizations from using a particular
development process, e.g., organizations can develop safety-critical software
by using plan-driven or agile methodologies if they consider it appropriate.

The standards may outline some guidance that organizations can use in
their application. However, a concrete plan of action or exact specification on
how the process should be done is usually not provided. Thus, a process en-
gineer is responsible for selecting, composing, and documenting process plans
aimed at achieving the organization’s goals while complying with the applica-
ble standards’ requirements.

The creation of compliance checklists facilitates this job. An accurately
filled-in compliance checklist highlights missed requirements providing hints
to improve the compliance of a process plan. However, manually checking
compliance of process plans could be challenging. We identify five aspects
that contribute to making this task difficult.

1. Requirements Volume. Standards contain a sheer volume of requirements.
For instance, the ECSS compliance matrix V. 0.8 contains 38569 require-
ments2.

2. Interlaced Requirements. Requirements in one standard usually refer to
other requirements in the same standard or other standards. For example,
the standard CENELEC EN 50128 also refers to quality management and
continuous improvement of the systems, usually described in the Software
Process Improvement and Capability Determination (SPICE).

3. Contradictory/Ambiguos Requirements. Normative frameworks are
written in natural language by people who have a specific context in their
minds. Requirements in one part of the standard may contradict require-
ments in another part of the same standard or other applicable standards.
Sometimes, there may also be ambiguities derived from the difficulty that
interpreting natural language involves. Contradictory/Ambiguous require-
ments are challenging to highlight due to the requirements volume (chal-
lenge 1) and interlaced requirements (challenge 2).

4. Requirements diversity. Requirements from the same or different stan-
dards may apply to one or several projects at different times and jurisdic-
tions. See, the following cases.

2See https://ecss.nl/standards/downloads/earm/

4.1 Requirements for Automated Process Compliance Checking 55

• Standards evolve, i.e., there is a continuous release of new versions of
the standards. For example, the content of ISO 14971 (recalled in Sec-
tion 2.1.4), which defines the process for risk management of medical
devices, has been evolving over the years resulting in different versions
that apply to different jurisdictions.

• To apply standards, a tailoring process is usually required. Tailoring is
the activity of selecting applicable requirements from relevant standards,
performing their eventual modifications, and explaining their implemen-
tation according to the project’s particular circumstances. For example,
ISO 26262 (recalled in Section 2.1.1) required tailoring requirements ac-
cording to integrity levels of safety, which could be different for different
developed artifacts.

• Simultaneous use of multiple reference processes within a single project
is commonplace. For instance, in automotive, it is recommended to man-
ufacturers to comply with the functional safety standard ISO 26262, the
process improvement framework ASPICE, and cybersecurity guidelines,
such as SAE J3061 (see Figure 2.4).

5. Repetitive work. Industries commonly manage multiple process plans and,
thus, perform compliance checking repeatedly. In each case, if there is no a
mechanism to manage appropriately the information regarding standards re-
quirements, (re)interpretations may be needed (e.g., when the expert leaves
the company).

4.1.4 Requirements for a Technical Solution
A technical solution that alleviates the challenges described in Section 4.1.3
could support the process engineer when planning of compliant processes in
the safety-critical context. In particular, the desired solution:

1. shall facilitate the management of the artifacts required for compliance check-
ing with prescriptive standards, i.e., the standards themselves, their require-
ments, the processes plans and the compliance means (challenge 1 and 5),

2. shall facilitate keeping track of the applicable requirements (challenge 2),

3. shall facilitate the recognition of contradictions and ambiguities between
applicable requirements (challenge 3), and

4. shall facilitate managing the changing nature associated with requirements
diversity (challenge 4).

56 Chapter 4. Thesis Contributions

This contribution was initially defined in paper A (see Chapter 7)). Then, it
was refined in papers B (see Chapter 8), C (see Chapter 9), D (see Chapter 10),
and E (see Chapter 11).

4.2 ACCEPT
In this section, we present ACCEPT, which stands for Automated Compli-
ance Checking of Engineering Processes against sTandards. ACCEPT is an
iterative, comprehensible, and reusable framework for supporting process en-
gineers in creating compliant process plans. In the remaining parts of this
Section, we present the details regarding the definition of ACCEPT. In Sec-
tion 4.2.1, we identify the conditions for automatically checking compliance.
In Section 4.2.2, we identified the tool-supported methodological approaches
that have the potential to back up the previously identified conditions. In Sec-
tion 4.2.3, we present the design of a framework that defines the ACCEPT
structures. Finally, in Section 4.2.4, we describe the methodological steps nec-
essary to use ACCEPT.

4.2.1 Conditions for Automatically Checking Compliance

We have adopted compliance by design (recalled in Section 2.4), which is a
state-of-the-art methodology considering the propagation of normative require-
ments into process elements for demonstrating compliance at design time, i.e.,
process compliance before the process is executed. As such, two specifications
are required (see Figure 4.1), i.e., the specification that describes the require-
ments prescribed by the standards (on the right side) and the specification that
describes the process plans (on the left side).

Figure 4.1: Conditions for Automating Process Compliance Checking.

4.2 ACCEPT 57

The propagation of normative requirements is possible via the annotation of
compliance effects. Compliance effects correspond to the standard-permitted
states, which are extracted from the specification corresponding to the standard
requirements. Unlike other effects caused by process elements, compliance
effects should correlate with the standard-permitted states. For this reason, the
annotation process is an alignment between the states exhibited by the process
elements and the standard-permitted states. Properly annotated compliance
effects allow the generation of a compliance state representation of the process,
which can be used to perform the automatic analysis of compliance. A process
engineer can iteratively apply automated compliance checking to reach process
plans with compliant states.

4.2.2 Tool-supported Methodological Approaches
The identified tool-supported methodological approaches that have the poten-
tial to back up the conditions presented in Figure 4.1 are defined as follows.

Process Modeling and Annotation Capabilities.

A process engineer (as recalled in Section 2.2.1) is the person who deals with
representing of the processes used to engineer safety-critical systems. How-
ever, a process representation can be composed of hundreds of entities. Process
modeling languages (see Section 2.2) have been developed to provide process
engineers more control over their processes. We chose SPEM 2.0 (recalled in
Section 2.2.2), as opposed to other process modeling notations, because:

1. SPEM 2.0 is a standardized language, based on the UML;

2. SPEM 2.0 has the ability to capture several types of information;

3. SPEM 2.0-like artifacts can be captured via Eclipse Process Framework
Composer (EPF-C) (recalled in Section 2.2.3). EPF-C models can be ported
to other tools, via model-driven transformations.

4. SPEM 2.0 provides variability mechanisms that can be exploited for flexible
process derivation. Such mechanisms are currently tool-supported via the
composition of EPC-C with BVR (recalled in Section 2.3.2).

5. SPEM 2.0 elements can also be customized to permit the definition of arti-
facts beyond process elements. e.g., standards, requirements, rules and their
compliance effects. In addition, EPF-C is an environments that provides hi-
erarchal structures that facilitates keeping track of such artifacts.

58 Chapter 4. Thesis Contributions

6. SPEM 2.0 is widely accepted by the research community and industry.

Normative Representation Capabilities

Norms typically describe the conditions under which they are applicable, i.e.,
the meaning of the terms or concepts where the norms are valid. Norms also
describe the normative effects they produce when applied, i.e., legally-binding
effects. From a compliance perspective, the normative effects of importance
are deontic, which have intrinsic relations (as depicted in Figure 2.8).

There are three primary deontic effects. First, we have the obligations and
prohibitions, which are situations to which the bearer is legally bounded, or
that should avoid. In industry standards, obligations and prohibitions are com-
monly defined by the modal “shall”, and “shall not,” respectively. Second, we
have permissions, which are allowed situations. Industry standards commonly
use “can” or “may” or “need not” to define that something is permitted. It is
also essential to provide reasoning about normative violations and exceptions.
Normative violations correspond to the failure in fulfilling the requirements,
while exceptions are conditions that emerge in situations not considered by the
standard. In particular, exceptions defeat the established normative provisions.
Thus, we need to be able to represent also this type of information.

The normative provisions included in industry standards can be encoded
as implications. A normative implication has an antecedent, which is read as
a property of a state of affairs, while the conclusion has a deontic nature. If
one rule defeats another rule (i.e., rules contradict each other, as in the case
of exceptions), there must be a mechanism that permits plausible conclusions.
Giving these circumstances, we argue that deontic defeasible reasoning for-
malisms, such as Formal Contract Logic (FCL) (recalled in Section 2.4.2), can
be used to generate automatic support to reason from standard’s requirements
and the description of the process they regulate.

Reasoning Capabilities

As recalled in Section 2.4.3, Regorous is a tool-supported methodology for
compliance checking designed and implemented in the legal and business con-
text. Regorous is of particular interest since it implements compliance by de-
sign, which, as described in Section 4.2.1, is a methodology that is adequate
for facilitating the planning-time allocation of mandatory pieces of evidence
required by the majority of industry standards. In the process of compliance
checking, Regorous provides constructive proofs (a proof from which it is pos-

4.2 ACCEPT 59

sible to trace its derivation). Constructive proofs permit process engineers to
trace back the sources of uncompliant situations (or violations), facilitating
their detection and enforcing compliance. Regorous methodology is process
modeling language agnostic, i.e., only requires a process description that con-
tains compliance effects. Thus, it is theoretically adaptable with SPEM 2.0.

4.2.3 Compliance Checking Framework
In this section, we present the framework (see Figure 4.2) designed from the
assumptions defined in Section 4.2.1 and the identified tool-supported method-
ological approaches presented in Section 4.2.2.

Figure 4.2: Compliance Checking Framework.

As Figure 4.2 depicts, EPF-C is combined with Regorous. In EPF-C, the
process engineer can create process models, and an FCL-trained person can
represent the requirements of the standard in FCL (a.k.a. FCL rule set).

The FCL rule set contains the rules and the requirements from which they
are derived and the normative provisions, which are the source of compliance
effects. The process engineer uses the normative provisions included in the
FCL rule set to annotate the process models and create a compliance state
representation of the process plan.

The FCL rule set and the compliance state representation of the process
plans are then provided in the Regorous syntax by performing a set of auto-

60 Chapter 4. Thesis Contributions

mated transformations. With this information, Regorous automatically checks
compliance and produces compliance results that include the violations occur-
ring concerning the FCL rule set provided and the possible resolutions. Such
results are aimed at being backpropagated into EPF-C to facilitate analysis and
improvement of process plans.

4.2.4 Methodological Steps
Performing compliance checking with ACCEPT requires the application of the
five methodological steps shown in Figure 4.3. In the remaining part of this
section, we explain each step.

Figure 4.3: Methodological Steps.

Step 1: Formalization of Requirements. Standard requirements are formal-
ized in FCL by the person(s) with FCL and domain knowledge (e.g., process
engineers). This step has two inputs. The first input is the normative docu-
ment (i.e., industry standard) from which the rules are derived. The second
input is the list of customized compliance elements that we have designed to
facilitate the representations of requirements in EPC-C (see Figure 4.4). In par-
ticular, those artifacts are SPEM 2.0-like elements that represent the elements
required for modeling compliance information, i.e., compliance effects, rule
sets, requirements, and rules. The output is the FCL-based ruleset captured in
an EPF-C plugin.

4.2 ACCEPT 61

Figure 4.4: Elements Customization.

With our initial assumptions on formalization of requirements, we present
an example taking into account two requirements (see Table 4.2) of the stan-
dard ISO 26262 (recalled in Section 2.1.1)

Table 4.2: Requirements for ISO 26262:6-Clause 8.
ID Description

R1 Specify software units in accordance with the architectural design and the associated safety re-
quirements.

R2 The software unit design shall be described using specific notations, according to ASIL and
recommendation levels.

Initially, we create a rule that represents the obligation to address the soft-
ware unit design process required by the standard (see Formula 4.1). For sim-
plification, we use the requirement ID described in the first column of Table 4.2
to identify the requirements and their derived rules.

r1 :⇒ [OAPNP]addressSwUnitDesignProcess (4.1)

Requirement R1 mentions that the specification of the software units has to
be done in accordance with the architectural design and the associated safety
requirements. The expression in accordance with recalls the concept of pre-
condition, namely a task is prohibited until the previous tasks or elements are

62 Chapter 4. Thesis Contributions

provided. In this sense, architectural design and safety requirements have to be
provided before the software units are specified (see Formula 4.2).

r1a : addressSwUnitDesignProcess⇒ [OA]− performSpecifySwUnit

r1a
′
: performProvideSwArchitecturalDesign, performProvideSwSafetyRequirements

⇒ [P]performSpecifySwUnit

r1a
′
>r1a

(4.2)

Requirement R2 implies the use of mandatory methods in the description
of software units which are conditioned by the ASIL and the recommendation
levels. However, a rationale can be given that the selected methods (differ-
ent to the ones prescribed) comply with the corresponding requirement. The
formalization of the R2 is presented in Formula 4.3.

r2 : performSpecifySwUnit⇒ [OAPNP]selectMandatoryNotationsforSwDesign

r
′
2 : provideRationaleForNotSelectMandatoryNotationsforSwDesign

⇒ [P]− selectMandatoryNotationsforSwDesign

r
′
2>r2

(4.3)

The previous requirements, and their derived FCL rules are captured in an
EPF-C plugin as presented in Figure 4.5. In this plugin, we define a custom
category root called Standard Requirements ISO 26262 Software Unit Design,
to which we associate the two requirements (as nested custom categories) pre-
sented in Table 4.2 with a short but descriptive name, i.e., R1. Specify software
units and R2. Describe software unit specification. Both requirements are
described further in their respective Brief description field. Then, we extract
the compliance effects from the Formulas 4.1, 4.2 and 4.3. Recalling, com-
pliance effects correspond to the conclusions that compound the rules. For
example, the compliance effects associated to the Formula 4.2 are perform-
ProvideAssociatedSwSafetyRequirements, performProvideSwArchitecturalDe-
sign, -performSpecifySwUnits and performSpecifySwUnits. Compliance ef-
fects are defined as a customized concept and then assigned to their corre-
sponding requirements in the custom categories (see Figure 4.5). Finally, we
define the rule set in a customized reusable asset (called Rule Set-ISO 26262-
Software Unit Design).

Step 2: Modeling of Process Elements Capturing a process plan elements
is a task performed by the process engineer. The required input is informa-
tion about process plans, which could steam from the organization’s practices

4.2 ACCEPT 63

Figure 4.5: Standard’s Requirements Plugin.

and previous process plans. The output is the representation of the process
elements in EPF Composer. In this example, the definition of the process ele-
ments is based on our interpretations of the standard’s requirements provided
in Table 4.2. From R1, we deduce that there is one task called Specify Software
Unit. These tasks should be preceded by a task called Start Software Unit De-
sign Process, in which the requirements for the process is collected, namely,
the Software Architectural Design and its corresponding Software Safety re-
quirements, which are work products resulting from previous phases. From
R2, we deduce that we have a task called Design Software Unit and a work
product called Software Unit Design. Work products are associated to their
corresponding tasks. The modeling of the tasks and the work products is de-
picted in Figure 4.6.

Step 3: Annotation of Process Tasks The annotation is a task performed
by a process engineer. Previous process plans, as well as compliance effects
contained in the FCL rule set, and process elements, are the inputs of this

64 Chapter 4. Thesis Contributions

Figure 4.6: Process Elements Plugin.

step. The output is the annotated process tasks in EPF Composer. The an-
notation process consists of assigning the compliance effects to the tasks that
fulfill them. For example, the task Start Software Unit Design Process (see
Figure 4.7b) is performed and has two inputs, i.e., architectural design and
safety requirements. Thus, the annotated compliance effects (see Figure 4.7a)
are addressSwUnitDesignProcess, performProvideSwArchitecturalDesign and
performProvideSwSafetyRequirements.

(a) (b)

Figure 4.7: Compliance Annotated Process Plugin.

Step 4: Modeling of Process Workflow For modeling the process workflow,
the process engineer uses the compliance annotated process elements defined in
step 3. The output is the delivery process in EPF Composer, which contains the
process plan checkable for compliance, i.e., the compliance state representation
of the process plan (as depicted in Figure 4.8).

4.2 ACCEPT 65

Figure 4.8: Activity Diagram of the Software Unit Design Process.

Step 5: Checking and Analysis Checking and analyzing compliance is a
task performed by the process engineer. The required inputs are the FCL-
based ruleset and the delivery process. The output is the compliance analysis
(See Figure 4.9).

Figure 4.9: Regorous Results.

As Figure 4.9 depicts, a compliance report contains information regarding
the rules violated by the process and their possible reparation policies. Regor-
ous also provides the set of rules that did not fire, i.e., rules that were not used
during the compliance analysis. Such information can be used to make the ad-
justments required in the process plans to be checked iteratively. Reasons for
improvements could be workflow problems, failure in the annotation process,
failure to select process elements or a rule set with deprecated rules (i.e., rules
that in the light of new version of the standards have change or disappeared). In
the example depicted in Figure 4.9, it is possible to conclude that task Specify
Software Unit design is missing the annotation selectMandatoryNotationsS-

66 Chapter 4. Thesis Contributions

wDesign. With this information, we can revise such a task and understand the
reasons for the failure in the annotation, e.g., guidance regarding mandatory
notations is probably missing in the task.

4.3 Process Compliance Hints and Patterns
Skillful FCL rule set design can be reached by applying computational think-
ing resources, in particular, process compliance hints and patterns (as recalled
in Section 2.5). Hints are rules of thumb found in previous FCL formaliza-
tion experiences, while patterns indicate common situations an FCL designer
is likely to encounter. Both process compliance hints and patterns aim at fa-
cilitating the formalization of process-related requirements into FCL rules. In
Section 4.3.1, we present the process compliance hints. In Section 4.3.2, we
present the process compliance patterns.

4.3.1 Process Compliance Hints

The relationship between the requirements imposed by prescriptive standards
and the targeted processes is complex. The reason is that a single require-
ment may be impacting one element in the process, causing effects to several
elements. Moreover, each element in a process may be impacted by several
requirements. In addition, process diversity (i.e., the application of several
normative process reference frameworks in a single project) may lead to prob-
lems in the understanding of what is needed for managing process compliance.
Thus, we have a compact set of requirements, which we need to manage ap-
propriately.

The divide-and-conquer strategy (recalled in Section 2.5.1) is a design hint
that can be applied in the formalization of process-related requirements. By
applying the divide-and-conquer strategy, we could break down such complex-
ity and provide a more comprehensible view of the requirements. In particular,
the aspects that requirements in prescriptive standards regulate are the tasks,
their specific order, the mandatory in/outputs of the tasks, roles performing the
tasks, and the tools/recommended techniques used to do the tasks. Thus, the
concept of a task is central, to which properties such as the definition of roles,
inputs, outputs, tools, and techniques must apply.

However, requirements not only define the properties of the tasks. For ex-
ample, roles and tools should be qualified. This kind of requirements does not
directly affect the tasks. They directly affect other elements, which in turn have

4.3 Process Compliance Hints and Patterns 67

effects on tasks. Thus, a process can be deemed compliant if we can demon-
strate that the process contains the permitted tasks, such tasks have associated
the prescribed roles, inputs, outputs, tools, and techniques, and if the associ-
ated elements have associated their related properties. With such consideration,
dividing requirements in terms of the elements they target as well as the spe-
cific properties defined for each element seems to be the natural way in which
concerns should be separated.

According to SPEM 2.0 (recalled in 2.2.2), a task is performed by a role,
requires inputs and provides outputs, is guided by guidance, and a tool is used
(see Figure 2.2b). Thus, the tasks are the central elements, to which the other
elements are allocated. The methodological steps for compliance checking (re-
called in Section 4.2.4), requires that all the properties defined by the require-
ments of the standard are also allocated (or annotated) to the tasks included
in the process plan since such annotations describe the permitted compliance
states of the tasks. An abstraction of such a concept can be seen in Figure 4.7b.
However, not only tasks provide compliance effects to the overall process. As
we previously concluded, elements different from tasks too. Thus, we propose
a new abstraction of model annotation, in which tasks will no longer be the
placeholder of the compliance effects caused by the process elements ascribed
to them. Instead, every element will carry out its responsibility in terms of
compliance information (see Figure 4.10).

Figure 4.10: Annotated Role.

The novelty of the approach is threefold. First, we free the tasks from un-
necessary annotations. Second, annotations on shared process elements should
be done only once in a process model. Third, annotated elements have the po-
tential to be reused in other processes and easily re-checked. To facilitate the
creation of compliance effects, which later can be used to form the propositions
of the rules in FCL, we propose two aspects.

1. Icons based on targeted elements (see Table 4.3).

2. Templates that facilitate the creation of compliance effects (see Table 4.4).

68 Chapter 4. Thesis Contributions

Table 4.3: Icons Describing Specific Compliance Effects.
Role Work Product Guidance Tool

Task
Def Property Def Property Def Property Def Property

Table 4.4: Compliance Effects Targeting Differentiated Process Elements.
Element target Definitional propositions Property-based Propositions

In/Output elements provide{Element} {Element}with{Property}

Roles performedBy{Role} {Role}with{Property}

Tools used{Tool} {Tool}with{Property}

Guidelines guidedBy{Guidance} {Guidance}with{Property}

Tasks perform{Task}

Note: Fragments between {} should be replaced by the specific element or its property.

The result of this customization is the addition of new elements to the
compliance checking customizations plugin that was previously defined in Fig-
ure 4.4 (See Figure 4.11). We performed a complete example to illustrate our
customizations and templates in paper B (see Chapter 8).

Figure 4.11: Enhanced Elements Customization.

4.3 Process Compliance Hints and Patterns 69

4.3.2 Process Compliance Patterns

Formalizing the requirements prescribed by industry standards requires skills,
which cannot be taken for granted. Patterns could represent a solution. In the
remaining parts of this section, we define process compliance patterns (PCP’s)
and the PCP’s templates.

PCP’s Definition

Performing automatic compliance checking of a process requires the definition
of a finite state model of the process, where normative requirements provide the
permissible states of the process elements. This statement allows us to think
of a process as a kind of system that can be verified. Thus, we can translate
the property specification pattern definition (recalled in Section 2.5.2) into our
context as follows:

Process compliance patterns (PCP) are patterns that describe
commonly occurring normative requirements on the permis-
sible state sequence of a finite state model of a process.

With this definition, we developed the mapping between property specifi-
cation patterns and PCP’s. In this mapping, the state resulting from applying a
requirement on a process element is considered analogous to the state resulting
from applying a requirement on a system. The scope corresponds to the inter-
val in a process when the obligations formulated by a requirement are in force.
We have delineated five methodological steps to identify PCP’s, as depicted in
Figure 4.12.

Figure 4.12: Methodological Steps for Identifying PCPs.

According to the steps depicted in Figure 4.12, the first step consists is to
select a recurring structure. Standards, e.g., ISO 26262 (see Table 2.1) have
implicit and explicit structures that we can use for that purpose, e.g., a clause
has a title, prerequisites, work products. The second step is to describe the

70 Chapter 4. Thesis Contributions

obligation for compliance, which is to find the deontic (the mandatory or per-
missible) nature of the structure to be defined. The third step is describe the
pattern, based on similar (or a combination of) behaviors of the property spec-
ification patterns described in Section 2.5.2. This description is contextualized
to process compliance based on the mapping previously done. In this step, we
also assign a name for the PCP, reflecting the related obligation for compliance.
The fourth step is to define the scope of the pattern, which we also based on
the scopes defined to the property specification patterns. The fifth step is to
formalize in FCL (we present this step below).

FCL-based PCP’s Templates

The PCP template description is based on similar (or a combination of) behav-
iors described for the property specification patterns, which are mapped to the
notations provided in FCL (see Table 2.5), as follows:

• A global scope, which represents the entire process model execution, is de-
fined as a [OM]P.

• A before scope, which includes the execution of the process model up to a
given state, is mapped to a partial [OAP].

• An after scope, which includes the execution of the process model after a
given state, is mapped to a partial [OANP].

• If an obligation admits an exception, e.g., tailoring, the part of the pattern
corresponding to the exception is described as [P] since if something is per-
mitted, the obligation to the contrary does not hold. The excepted obliga-
tion is modeled as non-perdurant, since the permission is not a violation of
the obligation. Thus, the obligation does not persist after the permission is
granted.

In principle, the requirements included in standards can be tailored. Thus,
the achievement obligations are modeled as non-perdurant, i.e., [OAPNP] or
[OANPNP]. In this case, obligation and permission have contradictory conclu-
sions, but the permission is superior since it represents an exception.

In the remaining part of this section, we present the templates of the iden-
tified PCPs. In all templates, {#} should be replaced with the number that
identifies the requirement in the standard. When it is described as {#.i}, the
i should be replaced by a, b, ..., n, where n is the number of sub-items, e.g., if
there is a requirement with two parts that is identified with the number 5, the
rules’ identifiers are 5.a and 5.b.

4.3 Process Compliance Hints and Patterns 71

Tailoring requirements. Tailoring means to adapt (omit or perform dif-
ferently) the requirements in a standard to a specific project in a com-
pliant form. Tailoring requires a rationale (or justification). For being
valid, a rationale should always be verified by an expert. The ratio-
nale is an input element, and its verification is a property. An expert
with specific qualifications should also be appointed. Thus, we use the
templates for definitional and property-based propositions described in
Table 4.4 for in/output elements and roles, i.e., provide{Rationale},
{Rationale}withVerificationByExpert, performedBy{Expert} and
{Expert}with{Qualification}. {Rationale}, {Expert} and
{Qualification} should be replaced with the title of the required jus-
tification (if any), the role required and the necessary qualifications re-
spectively. Providing those four conditions permit to omit the require-
ment (in other words, permit not to perform the requirement). Any of
the definitional and property-based propositions described in Table 4.4
could be the target of such omission. For explanations purposes, we con-
sider omitting a requirement that imposes the definition of a task, i.e.,
⇒ [P] − perform{Task} (see the pattern 4.4). In this case, {Task}
should be replaced with the name of the task that will be omitted,

r{#}.Omitted:provide{Rationale}, {Rationale}withV erificationByExpert,

performedBy{Expert}, {Expert}with{Qualification}
⇒ [P]− perform{Task}

(4.4)

A second rule is included in case the task is done in a different way,
where [OANPNP]perform{DifferentTask} corresponds to the new
task replacing the previous one (see Pattern 4.5).

r{#}.ChangedRule:− perform{Task}
⇒ [OANPNP]perform{DifferentTask}

(4.5)

Provide a prerequisite. A prerequisite is an obligatory input element, which
should be fulfilled before it is in force. {prerequisite} should be re-
placed with the name of the prerequisite (see Pattern 4.6). If a pre-
vious rule triggers the prerequisite, its conclusion is included in the
{optionalTrigeringObligation}, e.g., when the prerequisite is pro-
duced by a previous task. Prerequisite could have properties. In this

72 Chapter 4. Thesis Contributions

case, the {optionalTrigeringObligation} could be a list of such prop-
erties, using the template {Element}with{Property}. Otherwise, it is
left empty.

r{#.i}:{optionalTrigeringObligation}
⇒ [OAPNP]provide{prerequisite.i}

(4.6)

Perform a unit of work. Pattern 4.7 represents the prescription of a unit of
work in a process (i.e., phase/activity/task). It considers the prerequi-
sites, if any, as the conditions of the applicability of the rule, which nor-
mative conclusion is performing a unit of work (e.g., a phase). It could
be preemptive ([OAPNP]), if the prerequisites and the task are provided
at the same time the task is performed.

r{#}:provide{Prerequisite1}..., provide{Prerequisite.i}
⇒ [OAPNP]perform{TitleClause}

(4.7)

It can be non-preemptive ([OANPNP]) as in Pattern 4.8, if the prereq-
uisite is another task, that have to be done first. In the example in Pat-
tern 4.8, {TitleClause} should be replaced with the specific clause title.

r{#}:perform{Task}
⇒ [OANPNP]perform{FollowingTask}

(4.8)

Provide guidance. Guidance elements may not be required during stan-
dards compliance auditing. However, internal policies in a company
may impose guidance elements. In that case, guidance elements should
be provided at the moment the element guided is created. We create
the propositions by using the template for guidance provided Table 4.4,
i.e., guidedBy{Guidance} and {Guidance}with{Property}. Guid-
ance can be defined for any element in the process (tasks, work product,
tool, or role). For explanation purposes, we consider perform{Task}
(see Pattern 4.9).

{#.i}:perform{Task}, {Guidance}with{Property}
⇒ [OAPNP]guidedBy{Guidance}

(4.9)

Provide a work product. Work products are the result of certain require-
ments. Thus, these requirements are presented as antecedents that oblige

4.4 Systematic Reuse of Compliance Artifacts 73

the provision of the related work product. Pattern 4.10 presents this
aspect in FCL, where {providePreviousObligations} should be re-
placed with the conditions that oblige the work product’s production,
usually the execution of a task (perform{Task}). Work product proper-
ties may be also required, i.e., {WorkProduct}with{Property}, where
{WorkProduct} and {Property} corresponds to the work product’s
name and its corresponding property.

r{#.i}:{providePreviousObligations}, {WorkProduct}with{Property}
⇒ [OANPNP]provide{WorkProduct}

(4.10)

PCP’s where initially defined in Paper A (see Chapter 7). Then, the PCP’s
where improved and applied in Paper D (see Chapter 10).

4.4 Systematic Reuse of Compliance Artifacts
The engineering of safety-critical systems must comply with different norma-
tive frameworks, which often exhibit common requirements or at least a signif-
icant potential for synergy. If the semantic interplay of all applicable norma-
tive frameworks is not adequately understood, a twofold negative consequence
needs to be faced:

1. the system’s safety might be compromised due to the potentially contradic-
tory influences of different regulatory frameworks;

2. compliance management might become even more time-consuming, risk-
ing stealing time and focus from other activities related to safety-critical
systems production, e.g., verification of systems behavior.

In this section, we consider reuse systematization as a potential solution for
coping with the demands of several standards. In particular, in Section 4.4.1,
we present a logic-based framework for enabling the reuse of compliance proofs,
called SoPLE&Logic-basedCM. In Section 4.4.2, we propose a technical and
methodological solution for concretizing such reuse.

4.4.1 SoPLE&Logic-basedCM
Safety-oriented Process Line Engineering (SoPLE) (as recalled in Section 2.3.1)
permits process engineers to systematize the reuse of process-related informa-
tion. However, to argue about or prove compliance, SoPLE is not enough.

74 Chapter 4. Thesis Contributions

Therefore, we intend to provide an additional layer of confidence by combin-
ing SoPLE with a logic-based framework that enables formal proofs of com-
pliance. To do that, we build on top of previous results. Specifically, we use
defeasible logic (the predecessor of FCL), a rule-based approach for efficient
reasoning with incomplete and inconsistent information, a typical scenario in
normative systems. As a result, we obtain SoPLE&Logic-basedCM (as de-
picted in Figure 4.13), a framework that has the potential to increase efficiency
in process compliance via systematic reuse of compliance proofs.

Figure 4.13: SoPLE&Logic-basedCM Framework.

As Figure 4.13, the framework is conformed by four spaces, as follows.

1. The process space. It is located in the left side of our framework. This
space represents a zone where families of processes (i.e., processes that
exhibit several commonalities) are managed by systematizing the reuse of
their process elements (process structure) and the sequences of tasks (pro-
cess behavior). For this, the process engineer uses SoPLE. As a result, a
Safety-oriented Process Line (SoPL) is created. A SoPL should include se-
lecting common and variable process elements (tasks, work products, roles,
tools, and guidance) and the composition of those elements in a skeleton
representing the process sequence.

2. The normative space. It is located in the right side of our framework.
This space represents a zone where families of standards (i.e., standard that
exhibit several commonalities, e.g., different versions of the same standard)
are managed. In this space, a person trained in logics (especially, logics
of the family of defeasible logics, such as FCL) formalise the standards
requirements and select the set of rules that overlap.

4.4 Systematic Reuse of Compliance Artifacts 75

3. The common space. It is located in the horizontal middle area of our frame-
work. This space represents a zone where common aspects extracted from
the processes meet the common rules extracted from the normative frame-
works. In this space, the process engineer needs to analyze the SoPL and
annotate it with the compliance effects found in the overlapping rules to
derive a compliance state representation of the SoPL.

4. The compliance space. It is located in the vertical middle area of our
framework. This space, which overlaps with the common space, represents
a zone where a process engineer performs two tasks. First, the process engi-
neer performs automatic compliance checking between the annotated SoPL
and the set of overlapping rules to obtain a set of common proofs. Second,
he or she analyzes the obtained set of proofs of compliance to define their
potential reusability.

The potential reusability aspect of the proofs of compliance depends on the
compliance effects of the tasks that vary in the process line. Changes in the
compliance status of the derived standard-specific processes are linked to the
normative effect of the variant. Depending on such effects, a process engineer
can fully or partially reuse the common proofs of compliance. Proofs may be
fully reused when the derived process does not replace any variability points
defined in a SoPL. Instead, proofs could be partially reused when the general
compliance is not affected by the compliance of the variability point once it is
replaced. However, the compliance of the variability point needs to be assessed
since the compliance analysis previously performed only included common
aspects. In this case, compositional reasoning may be a solution.

Compositional reasoning replaces the analysis of the global state of the
process with localized reasoning. In this sense, the process sequences affected
by the variability are analyzed separately, based on assumptions about the be-
havior of process sequences already deemed compliant by the common proofs.
For example, see the SoPL represented as the sequence C1-V1-C2 (see Fig-
ure 4.14). In such SoPL, the C1 and C2 represent the commonalities in the
family, and V1 represents a variability. For compliance checking, C1 and C2
are annotated with the compliance effects a and b, respectively. The effects
a and b are extracted from overlapping rules in the common normative space.
When deriving processes from the family, the variability, V1, could be replaced
either by R1 or R2, according to some aspect, e.g., the selection of a specific
standard. Moreover, R1 needs to fulfill specific obligations derived from one
of the standards in the family analyzed in the normative framework.

76 Chapter 4. Thesis Contributions

Figure 4.14: SoPL Skeleton of a Family of Processes.

As R2 does not have compliance effects to fulfill, its replacement in the
process lines does not affect compliance. In this case, the proof of compliance
obtained for the sequence C1-V1-C2 can be reused in the sequence C1-R2-
C2. When R1 is used to derive the process-specific member, the compliance
may be affected. Thus, the compliance status of task R1 needs to be checked
and, based on assumptions, included in the general compliance status of the
sequence C1-R2-C2. SoPLE&Logic-basedCM was defined in Paper A (see
Chapter 7).

4.4.2 Tool-supported Methodological Framework

In Section 4.2, we proposed a logic-based method for facilitating compliance
checking of single process plans, called ACCEPT. In Section 4.4.1, we also
proposed a methodological framework called SoPLE&Logic-basedCM that ex-
tends the use of logic-based methods by incorporating SoPLE (Safety-oriented
Process Line Engineering), to enable systematic reuse during compliance check-
ing of process plans. In this contribution, we integrate these methods and in-
clude the support provided by the integration of EPF-C and BVR-T (recalled in
Section 2.3.2). As a result, we offer a novel solution that encompasses process
modeling, compliance checking, and variability/change management capabili-
ties to enable systematic reuse and automatic generation of process compliance
checking artifacts.

The model of reuse was previously described in SoPLE&Logic-basedCM
as depicted in Figure 4.14. The management of such model in our new solution
needs to be translated to VSpec models. As depicted in Figure 4.15, the skele-
ton of the family C1-V1-C2 is described in VSpec (as recalled in Section 2.3.2)
as features connected to the parent feature (Checking Management) via solid
lines. The variability R1 and R2 are connected via dashed lines. Additional

4.4 Systematic Reuse of Compliance Artifacts 77

information can be modeled. In particular, the standard versions (e.g., S1 and
S2) are modeled with a group element. Moreover, BCL constraints are created
to restrict the selection of the variations according to the selected standard, e.g.,
if S1 is selected, then R1 and its effect c become mandatory features.

Figure 4.15: VSpec Model of the Checking Management.

The compliance status of task R1 needs to be analyzed to understand if the
general compliance status of the sequence C1-R2-C2 is the same the one ob-
tained for C1-V1-C2. If c = 0, the composition of the process elements would
not affect compliance since there are no new compliance effects to be fulfilled.
If c 6= 0, there are two cases. First, the effect is local to the task, i.e., the effect
is triggered and fulfilled in the variant R2. Second, the variant effect is not trig-
gered by a previous task and/or make a new influence in the subsequent task
effect. In both cases, the compliance status may be affected. For these cases,
we consider the separations of concerns within the regulatory space and check
the structural compliance (first case) separately from the compliance of the se-
quence of tasks (second case). The former permits the integration of the proof
in the line without affecting the general compliance status. Such checking can
be performed by BVR-T, which checks the presence/absence of process ele-
ments features. The latter makes the reuse of proof conditioned to additional
compliance analysis of the tasks surrounding the variant (C1 and C2). This
analysis can be performed by Regorous. The systematic reuse of compliance
artifacts requires four steps (see Figure 4.16).

1. Manage single process plan compliance. We seek for single process plan
compliance by using the automated compliance checking methodological
steps presented in Section 4.2.4. Resulting artifacts are three EPF-C plugins
and the compliance results issued by Regorous.

78 Chapter 4. Thesis Contributions

Figure 4.16: Family-oriented Compliance Annotated Processes.

2. Model the variability. We evaluate the commonalities and variabilities
regarding the models obtained in step 1) while adding standards of the
same family, e.g., different versions of the same standard. For this, we use
SoPLE&Logic-basedCM, which is described in Section 4.4.1. The artifacts
that vary are modeled in EPF-C. Thus, the resulting models are a lifecycle
plugin and standard information plugin for each standard evolution, con-
taining only artifacts related to the variability.

3. Analysis and modeling of the variability compliance. An analysis of the
changes in the compliance status of the standard-specific artifacts that are
part of the variability is performed by taking into account the annotated
compliance information. If needed, we use Regorous. However, if the vari-
ant is small, such analysis can be done manually. The result of this step is
the compliance annotated process model of the variants.

4. Model BVR artifacts. BVR-T is used to create the abstract representa-
tion of the families involved in compliance checking, i.e., process elements,
standard information and compliance annotated processes. Resolution mod-
els are automatically generated from the VSpec models, and use to validate
the membership of the elements according to the selected standard. In a fi-
nal step, which is not part of the scope of this thesis, realization models are
created. Realization permits to define the replacements that should be part
of the concrete standard-related artifacts that are exported back to EPF-C.

4.5 Solutions Validation 79

Thus, in this step we use the tool-chain integrated by EPF-C and BVR-T.
This contribution is presented in Paper E (see Chapter 11).

4.5 Solutions Validation
In this section, we present the validation performed to our proposed solu-
tions. In Section 4.5.1, we present the results of a personal opinion survey
applied among practitioners who participate in safety-related process compli-
ance checking. In Section 4.5.2, we present a case of compliance-aware space
software engineering processes. In Section 4.5.3, we present the benefits of
our methodological framework by measuring the enabled reuse. Finally, In
Section 4.5.4, we position our research in the context of existing research ef-
forts realized for compliance checking of software processes against different
normative frameworks.

4.5.1 Personal Opinion Survey
We design and apply a cross-sectional web-based personal opinion survey (as
recalled in Section 2.6.2). This survey goal is twofold. First, it aims at gath-
ering information about current industrial practices and challenges in process
compliance checking. For tackling this part of the survey, we used multiple
option questions. Second, it focuses on evaluating the acceptance level of AC-
CEPT (recalled in Section 4.2). For addressing this part of the survey, we
present an example of our solution applied to automotive, i.e., ISO 26262 (re-
called in Section 2.1.1). Then, we present a series of claims regarding such a
method from which we seek practitioners’ degree of acceptance about the as-
pects described in the TAM model (recalled in Section 2.6.4), i.e., the method
usefulness, usability, and user’s intention to use it. To collect the answers, we
use a five-point Likert Scale ranging from Strongly Agree to Strongly Disagree.

Our survey was answered by practitioners who participate in safety-related
process compliance checking mostly in the European context. The valid an-
swers were obtained from practitioners mostly working in the consultatory
branch and have experience demonstrating process compliance checking in 13
different countries, predominantly Europe. The practitioners have experience
in different safety-related domains and standards where automotive is the most
represented. Our findings are described in three categories.

1. Current practices in process compliance checking. For the practitioners,
process compliance checking is not only the way towards a safety certifi-

80 Chapter 4. Thesis Contributions

cate but also a mechanism for process improvement. Their current practices
include the checking of a variety of process plans, reuse of previous pro-
cess models and the use of software tools for supporting their practices.
Thus, process compliance checking is an important factor in compliance
management in the safety-critical context, which can benefit from the use
of frameworks that permit automation and reuse.

2. Process compliance checking challenges. In general, practitioners con-
sider that compliance checking is prone-to-error. For them, it is possible
to miss requirements. Moreover, they consider that it is not easy to de-
termine the kind of information that should be provided as evidence, and
that there are different possible interpretations provided by the assessors.
In addition, practitioners consider that compliance checking is time- and
resource-consuming since it requires many hours of work, several iterations
and many people involved. Thus, there is a need for solutions that provide
more confidence and efficiency in process compliance checking.

3. Acceptance level of the compliance checking method. Practitioners con-
sider that, in general, there are advantages regarding the method proposed
for automated process compliance checking. In particular, there is a good
degree of acceptance for the characteristics provided by FCL, for require-
ments representation. Moreover, the ability to represent processes graphi-
cally is seen as an advantage. In addition, practitioners consider that it is
easy to trace uncompliant situations. For this reasons, practitioners show
a willingness to use the method, which could be helpful for evolving from
the current manual practices to automated practices via compliance check-
ing. However, there is some hesitation regarding its usage, as expected with
formal methods. Thus, it is necessary to explain further the formalization
part of the method by providing more guidance and examples. We also
need to provide mechanisms for improving the tool’s usability in terms of
compliance information representation, which appears to be not easy to use
by practitioners. For facilitating this aspects, we consider to provide more
specific graphical representations of the compliance artifacts.

This contribution is presented in Paper C (see Chapter 9).

4.5.2 The case of Space Software Engineering Processes
We perform a case study to understand if the ACCEPT (presented in Sec-
tion 4.2) produced models could support the planning of space software engi-

4.5 Solutions Validation 81

neering processes. Space software is safety and mission-critical, and it is often
the result of industrial cooperation. Such cooperation is coordinated through
compliance with relevant standards. In the European context, ECSS-E-ST-40C
(recalled in Section 2.1.3) is the de-facto standard for space software produc-
tion. The planning of processes in compliance with project-specific ECSS-E-
ST-40C applicable requirements is mandatory during contractual agreements.
Our analysis is based on the qualitative criteria to assess compliance approaches
(recalled in Section 2.6.5), which consider two variables effort and converge
level. We consider actual effort, which is determined by task demands since,
in theory, it can be used to determine the intent to complete a task a priori,
independently of any conscious actor. The coverage level is analyzed consid-
ering how the models respond to the information that needs to be required by
the ECSS-E-ST-40C framework, i.e., information regarding standards, process
plans, and compliance (i.e., EARM and ECM matrices).

Case study insights

When planning a software engineering process plan, the challenge is to un-
derstand how many process elements should be specified and their order. In
the case study conducted, we define a model of a software process plan by the
book, i.e., we extract the process elements suggested by the selected portion of
ECSS-E-ST-40C standard without any tailoring. It is called Compliance-aware
Engineering Process Plan (CaEPP) since such process elements are enriched
with compliance information. In case of deviation (e.g., tailoring), we can also
know if the requirements are tailored out or modified. ACCEPT states that
creating a CaEPP requires several models, which design is a process that is
not free of effort. However, initial observations have shown that the effort re-
quired to comprehend processes and standards models and document models
is significantly less. The reason is that formal specifications are accompanied
by informal explanations that clarify their meaning and place them in context.
Moreover, the visual approach adopted allows for more focused reviews.

It is clear that organizations may depart from normative practices (i.e., to
not create process plans by the book) for project-inherent reasons that can be
justified. In such cases, logic-based requirements representations can be effort-
lessly superseded. In addition, the level of coverage of the models is higher.
Thus, we can take good advantage of such an initial effort in the long term.
Specifically, the models are created in an authoring environment that permits a
well-defined organization of compliance-related artifacts in a hierarchical, vi-
sual, and enriched structure, which can be reused. This modeling strategy min-

82 Chapter 4. Thesis Contributions

imizes the distance between the specification of the requirements’ normative
intention and the process elements that should respond to such requirements.

We could also include the possible exceptions that are derived from the
deviations. Once the models are created, the process plans’ validity can be
established by doing automatic reasoning about the standard conditions. In
particular, compliance violations could be drafted better since failure to re-
quirements is connected to textual sources. Therefore, the comprehension of
processes, standards, and their relationships is more natural, and the documen-
tation of compliance and the management of evolution get better support than
in manual checklists. These features are a valuable gain since once industry
standards and process plans are formalized, process engineers do not need to
expend valuable hours on reading regulatory documentation to infer the actions
that must be taken to maintain compliance.

Challenges and Potential Improvements

A key challenge in the use of ACCEPT is that standards are currently written
in natural language, and formalizing them is an intimidating and fairly sophis-
ticated task. The reason is that the number of requirements in a standard is
significant and context-specific. Thus, their interpretation requires expertise.
However, FCL has a limited set of constructs, which provide the expressivity
required for formalizing requirements. Such constructs also provide a frame-
work for thinking about the requirements in terms of deontic notions and ex-
ceptions, which could simplify their interpretation. Therefore, showing process
engineers the FCL potential and its easy to use aspect may strive the interest
for its exploitation.

The work to be done when creating a CaEPP for software projects in the
space context has the tendency to be repetitive. Repetition could cause a drop
in a subject’s capacity to perform the modeling task (i.e., disinterest, bore-
dom, fatigue), making relative task demands greater than necessary. Further
automation of such tasks might reduce the absolute demands, and thus the ac-
tual effort. For example, the manual creation of the compliance effects is a
repetitive task that has to be done for each effect. It was also prone to er-
ror since the effects’ names have similarities (e.g., almost all the tasks’ effects
have the word design). Thus, we needed to review our design several times and
manually track the information we were writing in EPF-C. However, this task
is systematic and supported by templates. As such, it could be automatized by
using a domain-specific language that permits an adequate characterization of
the specific compliance effects and their production.

4.5 Solutions Validation 83

In general, different mechanisms can be defined to determine the mean-
ing of context-dependent situations that could affect rules’ formalization. In
particular, patterns facilitate the recognition of relevant requirements, improv-
ing efficiency and consistency when producing rules. Our current selection of
compliance patterns is limited to general situations, and they are also manually
instantiated. Still, they can provide some assistance. Moreover, the process
compliance hints could be used to establish conceptual relationships between
the elements composing process plans and their compliance effects in the gen-
eral compliance status. Thus, automated formalization of requirements could
also be provided by performing an intermediate translation step into controlled
English. For the compliance annotation of processes, programming scripts that
examine the semantic similarity between process elements and compliance ef-
fects can be created. The modeling part could also be facilitated by provid-
ing general-purpose process model repositories to process engineers. Indeed,
EPF-C offers such kind of repositories with libraries that can be downloaded
and assemble in specific projects3.

This contribution is presented in Paper D (see Chapter 10).

4.5.3 Reuse Measurement within the Evolution of ISO 14971

In this section, we illustrate the benefits in terms of our tool-supported method-
ological solution for the reuse of compliance checking artifacts presented in
Section 4.4. We focus on recertification by showing process plan adherence
to new versions of standards. For this, we considered the evolution (i.e., new
versions of the standard resulting from revisions) of ISO 14971 (recalled in
Section 2.1.4), which is related to the process for risk management to medical
devices. By measuring the enabled reuse, we answer the question: To what
extent process-related compliance artifacts can be reused?

ISO 14971 Evolved Artifacts Management

We follow the steps described in Figure 4.16. The results are three plugins as
follows: the compliance effects and rules plugin (see Figure 4.17), the plugin
that contains the process elements and their relationships (see Figure 4.18), and
finally the compliance annotated plugin, which contains the annotations (see
Figure 4.19) and the process workflow (see Figure 4.20). Regorous automati-
cally generates a compliance state representation of the annotated process plan

3https://www.eclipse.org/epf/downloads/praclib/praclib downloads.php

84 Chapter 4. Thesis Contributions

and analyses compliance against the FCL rule set. When no counterexamples
exist, Regorous defines that the process is compliant (see Figure 4.21).

(a) (b)

Figure 4.17: ISO 14971:2007-Compliance Effects and Rules.

The second step consist of modeling the variability, i.e., we perform a gap
analysis and model the additional artifacts imposed by the new standard ver-
sions. In particular, a new process element is additionally required for com-
pliance with EN ISO 14971:2012, i.e., the guidance related to the inclusion
of all risks for the treatment of negligible risk (see Figure 4.22a). In con-
trast, four new elements are required for compliance with ISO 14971:2019,
i.e., two guidance elements (ISO 14871 clause 5 and the treatments of negli-
gible risk), and two additional tasks, which are the result of splitting the task
Define/use safety characteristics (see Figure 4.22b). In Step 3, the compliance
analysis of the variability is performed. In our case, we found that the com-
pliance with EN ISO 14971:2012 requires that one new element, specifically a
guidance called Treatment of Negligible Risk-Take all Risks is annotated with a
compliance effect called guidedByTakeIntoAccountAllRisks. A more complex
analysis is performed in the case of ISO 14971:2019 (see Table 4.5).

We model the compliance effects. Figure 4.23 shows compliance effects

4.5 Solutions Validation 85

(a) (b)

Figure 4.18: ISO 14971:2007-Process Elements.

Figure 4.19: Compliance Effects Annotations.

Figure 4.20: Compliance Annotated Process Plan.

Figure 4.21: Regorous Results.

extracted from ISO 14971:2007 (on the left side) and the variations (highlight
with different colors) respect the other two standards (on the right side).

86 Chapter 4. Thesis Contributions

(a) (b)

Figure 4.22: ISO 14971:2007-Process Elements.

Figure 4.23: Effects Variability between the Standards.

The fourth step is the modeling of BVR artifacts. In this step, we model
the VSpecs of the families corresponding to the process, ruleset, and checking
management. All the families are created under the same root, i.e., ISO 14971
(see Figure 4.24). A branch of the feature model tree contains the version of
the standards used to make the changes at variation points.

4.5 Solutions Validation 87

Table 4.5: ISO 14971: 2019-related Annotations.
Element Compliance Effect
Task: Definition of
the Intended Use performIntendedUse, initiateRiskAnalysisProcess

Task: Identification
of Characteristics
related to Safety

performIdentificationSafetyCharacteristics

Work Product:
Identification of
Characteristics
related to Safety

RiskAnalysisDocumentWithDescriptionPartOfTheTissue, RiskAnalysisDocu-
mentWithDescriptionPatientPopulation, RiskAnalysisDocumentWithDocument-
edHazardousSituation, RiskAnalysisDocumentWithIntendedMedicalIndication,
RiskAnalysisDocumentWithIntendedUseAndReasonablyForeseeableMisuse,
RiskAnalysisDocumentWithOperatingPrinciple, RiskAnalysisDocumentWith-
UseEnvironment, RiskAnalysisDocumentWithUserProfile

Guidance: ISO
14971 Clause 5 GuideByClause5

Guidance: Treat-
ment of Negligible
Risk-Take all Risks

guidedByTakeIntoAccountAllRisks

Figure 4.24: BVR VSpec.

Reuse Measurement

For compliance with EN ISO 14971:2012, we need to create 1 new process
artifacts, 2 new compliance effects and perform 1 compliance annotations. The
number of total artifacts was 9 process elements, and 27 compliance effects
and 26 compliance annotations. Thus, reuse is 88,9%, 92,3% and 96,2%%
respectively (See Table 4.6). Similar measurement is performed in the case of
compliance with ISO 14971:2019 (see Table 4.7).

88 Chapter 4. Thesis Contributions

Table 4.6: Reuse Measurement related to EN ISO 14971:2012.
Type of artifacts New Total Used Reuse Percentage

Process 1 9 88,9%

Compl. Effects 2 27 92,3%

Compl. Annotations 1 26 96,2%

Table 4.7: Reuse Measurement related to ISO 14971:2019.
Type of artifacts New Total Used Reuse Percentage

Process 4 10 60%

Compl. Effects 12 32 61,3%

Compl. Annotations 13 32 59,4%

Discussion about the Enabled Reuse

Reusing compliance checking artifacts is a plausible solution for showing pro-
cess plan adherence with new versions of standards. The reason is that recerti-
fication demands process reconfiguration. Considering the reuse measurement
previously performed, we answer the question initially posed, to what extent
process-related compliance artifacts can be reused?, as follows: the reuse ex-
tent measured is significant (the minimum gain was 59,4%). Thus, the con-
text of medical devices complying with ISO 14971-clause 4 (the risk analysis
phase) can positively benefit from the systematic reuse of compliance checking
artifacts. In general, processes and standards that evince low levels of variation
could be part of a family that exhibits high reuse levels in terms of compliance
checking artifacts and could benefit from using our methodological framework
during the required modeling task.

It is widely recognized that standards requirements are challenging to un-
derstand due to their wordiness and how they relate to each other. Their evolu-
tion is also challenging, due to the need to handle the normative changes and
the recertification effort. When using our methodological framework, process
engineers need to analyze new requirements systematically. This analysis is
required to determine whether an existing compliance checking-related artifact
can fulfill a specific requirement as-is or with modifications (new properties
should be added/deleted), or if new artifacts have to be modeled from scratch. It
also highlights problems between requirements, which may put compliance at
risk, i.e., contradictory requirements, real/fake dependencies between require-
ments and new compliance information applicable to existing process plans.

4.5 Solutions Validation 89

The most important is that the process engineer’s analysis is recorded in graph-
ical models, which not only provide automated checks but also automated pro-
cess plan’s reconfiguration. Thus, our methodological framework supports a
confident reduction of the work required to be done when new instances of
compliant process plans have to be modeled.

This contribution is presented in Paper E (see Chapter 11).

4.5.4 SLR of Compliance Checking Approaches for Software
Processes

Practitioners who participate in safety-related process compliance checking
find it advantageous to have automatic means for performing compliance check-
ing (as presented in Section 4.5.1). For this, it is required to use a unifying
logic that permits automatic reasoning between the process models and the
normative frameworks regulating them (as presented in Section 4.2.1). Sev-
eral studies have approached this idea by formulating methods for compliance
checking of software processes against different software process-related nor-
mative frameworks. However, to the best of our knowledge, no comprehensive
and systematic review has been conducted to characterize them. Thus, we con-
sider it essential to close this gap in the most possible systematic and unbiased
manner by performing an SLR (Systematic Literature Review) (as recalled in
Section 2.6.3). In this section, we present the results of the SLR.

Publication Distribution

We selected 41 primary studies after a thoughtful evaluation from a list of
2033 articles found in recognized online libraries. The selected primary stud-
ies where dating from 1995 to 2021, with a peak in 2017. The most preferred
venue to publish the articles are conferences. However, we found also relevant
papers published in workshops and journals.

Methods Characteristics

The primary studies were classified according to how compliance checking is
performed. Initial methods for process-based compliance checking with qual-
ity standards are based on the verification of document evolution. The second
group of methods considers the process-related concepts prescribed in the stan-
dards to defined models for checking compliance. The third group of methods
take as a base consolidated process modeling languages and add a layer of

90 Chapter 4. Thesis Contributions

analysis by using formal languages. The fourth group of methods is aimed at
checking compliance from role-based access controls. The final group uses
different methods, i.e., workflow engines, model refinements, model checking,
and process mining. The five types of approaches use 14 different languages to
represent the process elements and structures. Similarly, 14 different languages
are used to represent the requirements prescribed by the standards.

The automation part claimed in the studies is related to compliance reason-
ing, namely the automatic comparison between the process and the normative
documents. Frameworks composed of chained tools also automatically trans-
form the information between the interrelated tools. Those that perform pro-
cess mining also provide an automatic mining procedure. However, require-
ments formalization is mainly performed manually, in some cases, by using
formalization patterns. The state of the tool support is also variable. In partic-
ular, the majority of the methods provide prototypes that are used as proof of
concept.

Few primary studies present means for addressing software process recon-
figuration in the light of standards evolution (i.e., the release of a new version of
standards), tailoring (i.e., the selection, eventual modification, and implemen-
tation rationale), and process diversity (application of several standards in the
same project). Some studies show specific structures that permit the deletion
and modification of products and activities according to the project’s character-
istics, such as the integrity levels prescribed by safety standards. In others, the
reuse of process elements and the use of methodologies such as process lines
are also implemented to manage process diversity and standards evolution

Potential Impact

Several application domains are addressed in the primary studies. The most
represented application domain is characterized by the safety-critical systems
context (defined by the application of safety standards). There are also methods
addressing specific aspects of software process improvement (SPI) and quality,
data protection, software process verification, Cybersecurity and Health care.
Different standards have been modeled and used in the experimentations or
illustration results provided in the primary studies. The most represented is
ISO 26262, which is a functional safety standard used in automotive.

The illustrative scenarios are also variable. It is important to highlight that,
in total, 19 of the 41 studies used data extracted from industrial settings to
evaluate their methods There are few studies that also addressed the problem of
compliance checking in agile environments. Such approaches are mainly based

4.5 Solutions Validation 91

on mining techniques. Thus, they are not applicable in the case of seeking
compliance checking of process plans since process minign requires process
logs, which is information resulting after executing the process.

Discussion about Existing Methods

Existing literature related explicitly to compliance checking of software pro-
cesses is scarce and scattered. The publication’s irregularity in the initial years
and the reduced amount of journal papers published may indicate that the topic
has taken a long time to establish itself as a research subject. We found most
of the studies after 2017, which may mean that automated compliance check-
ing of software processes has started to be a consolidated topic in the research
agenda. In our opinion, these are relevant news since compliance checking is
not optional nor either an easy task.

1. The use of software process modeling languages. New languages (meta-
models, and ontologies) with limited scope have been created. The contin-
uous creation of ad-hoc software process-related modeling solutions could
be a disadvantage, especially when there are already well-defined process
modeling languages that could be reused and extend according to specific
needs. In addition, the creation of many new languages is a sign of research
efforts done in silos. Such independence may result in wasted research ef-
forts since languages are always created from scratch.

We consider that new research efforts in automatic compliance checking,
specifically for software processes, could take into account existing process
modeling languages to accelerate results in the topic and standardize the
techniques and tool support. For this, we could perform comparative stud-
ies between existing process modeling languages and case studies showing
their capabilities.

2. Language suitability for addressing normative requirements. Com-
pliance is a relationship between permissions (what you are allowed to do),
obligations (what you have to do), and prohibitions (what you should avoid).
In the case of compliance with standards, the concept of tailoring is also
relevant. Tailoring allows organizations to adapt normative requirements to
specific project conditions. However, in the tailoring process, the provision
of a justification (called rationales) is a must-do task aimed at legitimizing
changes.

Tailoring can be seen as a sort of justified exception handling in software
process compliance checking. Thus, the language selected to represent nor-

92 Chapter 4. Thesis Contributions

mative frameworks should be able to provide explicit means that facilitate
the description of the mentioned concepts since they are not only necessary
but also sufficient to tackle the compliance checking problem of software
processes. In our analysis of the languages used in the primary studies, we
found such exploitable characteristics in FCL.

3. Towards a generic and domain-agnostic method. The methods described
in the primary studies provide a set of interesting, applicable, and useful
aspects contributing to the automation of compliance checking of software
processes. However, in most cases, normative documents have been con-
sidered in isolation resulting in ad-hoc solutions. In reality, process engi-
neers have to deal with process diversity, tailoring, and standards evolution.
Moreover, software organizations are moving towards agile, even in heav-
ily regulated domains, such as the safety-critical. Thus, the narrow focus of
the methods reported may be a factor that also hinders their application in
practice.

In our opinion, it is crucial to spread out research results regarding com-
pliance checking of software processes by consolidating a method that can
handle the different concepts, structures, and scenarios. In that sense, we
will continue investigating how to combine existing languages. The goal is
to contribute with a well-defined (set of) logical structure(s) that works har-
moniously in all the aspects required for software process-related compli-
ance checking: reasoning capabilities, means for variability management,
support for agile environments, and process execution conformance.

4. The need for diverse abilities. In today’s methods for compliance check-
ing, diverse abilities are required from their potential users. In particular,
there is the need for knowledge regarding process modeling and the ability
to formalize natural language in a specific formal language. As potential
users, we have process engineers who may already have some expertise in
process modeling. However, different tools may approach modeling in dif-
ferent ways. Besides, the formalization of natural language in which the
requirements are commonly specified is always perceived as demanding.
Such perception may hinder the interest of the potential users and, thus, the
methods’ use.

A key point for introducing any formal language in the industry is the us-
ability aspects. We need to avoid the case of a new person feeling confused
and frustrated with such formalisms. In particular, it could be interesting to
develop short, straight-forward expressions (i.e., syntactic sugar) that make

4.5 Solutions Validation 93

it easier to read or to express normative frameworks, especially when the
complexity (and size) of the compliance checking tasks grows

5. Increase the level of automation and tool support. It is difficult to guar-
antee industrial adoption when there is nonexistent or loosely coupled tool
support. Thus, it is crucial to provide adequate and complete tool support for
automatically perform compliance checking. This aspect can be facilitated
by integrating existing development tools like Rational Method Composer,
which is are already used in industry. It is also essential to increase the au-
tomation means for easing the creation of rules, i.e., rule editors and process
models, since formalizing requirements still needs human intervention.

6. Going beyond technological dilemmas. In this point, we have two parts
to discuss.

(a) Article 22 of the GDPR stipulates that whenever a decision that legally
or significantly affects an individual relies solely on automated pro-
cessing, the right to contest the decision must be guaranteed. Thus,
there is a need to clearly explain the automatic compliance checking
results that guarantee organizations and individuals’ rights. Conse-
quently, means for transparency have to build in the methods. Trans-
parency can be achieved by implementing data provenance and trace-
ability mechanisms. Data provenance is associated with data regarding
origin, changes, and details supporting confidence or validity. Trace-
ability is related to the relationships between compliance results, soft-
ware process elements, and normative frameworks. We also consider
that informal explanations should always accompany formal specifica-
tions to clarify the rules’ meaning and place them in context.

(b) Assuming that the method for compliance checking and the tool sup-
port are correctly designed, good results may be expected. However,
correct answers depend on the quality of the inputs that the tool re-
ceives. Unfortunately, the use of mathematical methods for compli-
ance checking, as presented in the studies, are no guarantee of cor-
rectness since humans apply them. Cognitive biases, which are devia-
tions from the rational way we expect our brains to work, may appear
when we formalize normative documents. Therefore, there must be
a layer of trust in the methods, which guarantees that there is no re-
quirement poisoning, i.e., rules incorrectly derived from the normative
frameworks. This aspect can be reached in the future by using tech-
nological means. However, a shorter-term solution could be to contact

94 Chapter 4. Thesis Contributions

standardization/regulatory bodies to investigate the possibility of re-
leasing process models and formal representations of the requirements
within the release of new versions of the standards. With this strategy,
we could reduce undesired room for interpretation of the normative
texts.

This contribution is presented in Paper F (see Chapter 12).

Chapter 5

Related Work

In this chapter, we discuss the related work. In particular, we discuss ap-
proaches for automated compliance checking (see Section 5.1), approaches for
facilitating requirements specification (see Section 5.2), and approaches for fa-
cilitating the reuse of proofs (see Section 5.3).

5.1 Automated Compliance Checking

Means for compliance checking of processes have been provided in previous
research. In [122], the authors propose a semi-automatic compliance process
to support the formal verification of software requirements. In [102], the au-
thors present an approach to reason about the correctness of the process struc-
ture, which is based on the combination of CTN (Composition Tree Nota-
tions) [123] and Description Logic (DL). In [124], the authors extend the work
done in [102] to include the capability levels proposed in ISO/IEC 15504 [71].
Similarly, in [125] and [126], authors present models to enable the definition
process capability levels, according to ISO/IEC 15504 and CMMI (Capabil-
ity Maturity Model Integration) v1.3 [72]. In [127], the author presents a
formalization of data usage policies in a fragment of OWL (Web Ontology
Language) [128], which is a DL-based modeling language. All the previous
approaches consider the use of DL to reason about the compliance of the pro-
cess structure against specific normative frameworks (i.e., ISO/IEC 15504 and
CMMI). As presented in [129], DL has relative expressiveness, which makes
it more difficult to model certain concepts. Besides, the previous approaches

95

96 Chapter 5. Related Work

only consider the analysis of the process structure. Instead, our framework
considers the information that represents the effects caused by the tasks (a.k.a.
compliance effects annotation), which is used to check the compliance of a
process structure and its behavior. Our framework is not tied to specific nor-
mative frameworks and uses SPEM 2.0 concepts, which offers a standardized
structure for modeling processes and their related information.

SPEM 2.0 community is also interested in addressing compliance check-
ing and monitoring. In [130] and [131], the authors propose a framework that
uses LTL (Linear Temporal Logics) on top of SPEM 2.0 to monitor and control
process instances according to its defined process model. The work presented
in [132] and [133] aim at facilitating the checking of constraints that can be de-
fined as part of a specific process model (e.g., standards requirements, metrics)
by using SWRL (Semantic Web Rule Language) [134]. In [135], the authors
present an approach for representing SPEM 2.0 process models in DL to pro-
vide consistency checks. In [136], the authors provide an approach in OWL
for tailoring processes, in which outputs are transformed into SPEM 2.0 pro-
cess models. Approaches to systematically exploit the modeling capabilities
of SPEM 2.0 for collecting the compliance elements required by specific stan-
dards are also part of the state-of-the-art. Examples of those approaches are
presented in [137], which collects compliance information for EN 50128 [67],
and in [138], which collects evidence for supporting compliance with DO-
178C [29]. Models for representing Deployment Packages and Implementation
Guides for the Standard ISO/IEC 29110 [139] in EPF-C are presented in [140].

The use of SPEM 2.0 in the previous approaches is limited to modeling
the elements required to create the process structure. In addition to the process
structure, other approaches use concepts provided by SPEM 2.0 for modeling
additional elements required for compliance. For instance, in [89] customiza-
tion of the elements defined in SPEM 2.0 is performed to give the possibil-
ity to generate compliance tables. The modeling of standards requirements in
SPEM 2.0 presented in [141] is used to detect whether the process model con-
tains sufficient evidence for supporting the requirements, providing feedback to
the safety engineers regarding detected fallacies and recommendations to solve
them. As in [89] and in [141], our approach combines the modeling capabilities
for modeling standard’s requirements, plus customization of preexisting mod-
eling concepts to generate a centralized compliance-related knowledge base.
In addition, we add a layer of confidence by considering the use of methods to
derive proof of compliance. However, we do not use semantic web methods of
logics from the temporal logics family for deriving our proofs since they are
not expressive enough for modeling compliance notions [75]. Semantic web

5.2 Requirements Specification 97

methods, in particular, are computational methods that deal with ontologies
and rules, whose combination could be undecidable [142].

Approaches for compliance checking have been widely studied in the busi-
ness context. In [143], the authors propose a metamodel called REALM (Regu-
lations Expressed As Logical Models), which uses Real-time Temporal Object
Logic [144], for the representation of norms. In [145], the authors propose
an SOA (Service Oriented Architecture)-based compliance governance, called
COMPAS, to define compliant process fragments. In [146], authors propose
a compliance checking method for business process models, in which norms
are expected to be modeled in BPSL (Business Property Specification Lan-
guage) and then formalized in LTL (Linear Temporal Logic). Once the two
formal specifications are given, model checking via the NuSMV2-based Open
Process Analyser is performed for checking compliance. In [147], the authors
propose a solution for ensuring compliance by using a formal specification of
business rules. There is also compliance checking frameworks that combine
the modeling capabilities provided by BPMN (Business Process Model and
Notations) [148] and Temporal Logics for the modeling of regulations. Exam-
ples of these kind of frameworks can be found in [149], [150], and [151]. Our
framework uses a similar methodology, i.e., we define formal specifications of
the normative requirements and the processes. The main difference regarding
the previous approaches is the use of the modeling languages. In particular,
we use FCL and not any language derived from the family of Temporal Logics
for creating the formal specification of the requirements of the standards. The
reason for not using TL is that this logic cannot provide conceptually sound
representations of the regulatory requirements governing a process [152].

5.2 Requirements Specification

One of the significant challenges associated with the formalization of norma-
tive texts is requirements interpretation. Currently, research in this area aims
at bridging the gap between the normative expertise required to interpret the
regulatory text and the modeling skills required to build the knowledge base.
In particular, in [153], the authors focus on the representation of constitutive
rules in a machine-readable form. In [154], the authors propose a framework
for identifying terms and refining the goals proposed by privacy legislation.
In [155], the authors present a pattern-based approach to capture the knowl-
edge of domain experts. In [156], the authors present a methodology to for-
malize norms as logic programs. In [157], the authors use SBVR (Semantics

98 Chapter 5. Related Work

of Business Vocabulary and Business Rules), a controlled natural language,
to develop business vocabulary and business rules. In [158], the authors use
high-Level methodological approaches for the extraction and representation of
compliance objectives, rules, and constraints by using semantic web technolo-
gies. In [159], the authors also use conceptual models to extract information
from standards that apply to agricultural production. In [160], the authors de-
scribe a methodology for requirements formalization for flight-critical systems
verification. Like the previous works, our goal is to facilitate the formal speci-
fication of requirements by considering specific normative concepts. We focus,
mainly, on processes and provide a mechanism for facilitating the formaliza-
tion of process-related requirements prescribed by the standards in FCL based
on a standardized language, i.e., SPEM 2.0.

Separation of concerns within the normative space in FLC has also been
proposed in the state-of-the-art. In [161], four types of control tags are defined
for compliance checking of business processes. These control tags consist of
the state and operations of propositions about the conditions to be checked
on a task and are typed-linked, namely control tags represent compliance ef-
fects. Such tags are: the flow tag, which represents a control that would im-
pact the flow of the process activities; data tag, which identifies the data reten-
tion and lineage requirements; the resource tag, which represent access, role
management, and authorization; finally, time tag, which represents controls
for meeting time constraints such as deadlines and maximum durations. As
in [161], our work describes the compliance effects based on the type of ele-
ments present in a process. However, contrary to [161], we further separate the
definition of the elements from the properties allocated to these elements, i.e.,
we propose definitional and property-oriented compliance effects. Moreover,
we provide a template for creating the compliance effect and icons that facili-
tate their description and subsequent annotation in process elements. In [162],
the concept of data tag described in [161] is revisited to create a methodol-
ogy that permits their extraction from business process logs. The extraction of
our compliance effects, as opposite the work presented in [162], is performed
directly from the standards requirements since we aim at having a faithful rep-
resentation of the requirements prescribed by the standard at design time.

Guidelines are also widely used to spread the used of novel methods in en-
gineering tasks. In [163], the authors describe the Oracle Policy Modeling best
practices guidelines for business rules modeling. Similarly, in [164], the au-
thors describe a methodology to guide companies to establish Cyber-Physical
Social System data subjects’ consent and data usage policies. In [103], the
authors present guidelines for supporting the formal representation of safety

5.3 Reuse of Proofs 99

regulatory requirements. In [165], the authors present the use of tabular ex-
pressions to generate formal models of system requirements. The authors of
FCL have also published explicative examples of the modeling of FCL rules
within the business context, e.g., [166, 49], which can be used as a guide-
line for learning the language. In [167], the authors present a methodology
for extracting models from ISO 26262, called “snowball”, in which high-level
requirements (objectives section of the standard) are modeled first, and then
the low-level requirements (requirements and recommendations) are added as
rolling a snowball in the snow. The use of FCL for supporting compliance
management tasks in safety-related processes is a novelty. We did not find spe-
cific examples or guidelines that apply to the domain yet. Thus, the guidelines
provided by this thesis may be of interest for process engineers involved in the
different industries manufacturing safety-critical systems. We also consider
that our guidelines can be used to derive domain-specific guidance applicable
to process-based standards beyond the ones tackled in this thesis.

5.3 Reuse of Proofs

“State explosion phenomenon” [168] refers to the exponential growth of the
state space required to be verified by automatic checking methods. Essentially,
research impacting the reduction of this phenomenon is studied in software ver-
ification. In [169], the authors present an approach for exploiting the evolution-
ary nature of programs for reusability of proofs, in which a tree of connected
proved fragments of a program is built. In [170], the authors present a reuse
method that uses incremental proof construction for reusing correctness proofs
of Java programs. In [171], the authors give an overview of techniques for
reusing information obtained in verifications results from past trials. In [172],
the authors present a family-based strategy for minimizing the efforts in verify-
ing product lines. In particular, this verification can be achieved by combining
all code of all features in a single product simulator, which checks all products’
valid execution paths without generating and checking any individual product.
These approaches are focused on products, while our focus is the processes to
achieve such products.

The change triggered by updated standards for the software process is a
topic tackled from different perspectives. In [173], the authors propose a
method that permits the attachment of change information to process docu-
ments to facilitate change understandability. However, no systematic methods
to reuse modeling artifacts facilitating the changes are proposed as we do in our

100 Chapter 5. Related Work

work. Methods for modeling the change/variation and reuse of processes re-
sult from applying software process lines methodologies, as recently surveyed
in [174]. In particular, SoPLE [50] has been exploited to provide a represen-
tation of family members with safety information, e.g., reusable process argu-
ments used in safety cases [175] and tailoring of process models according to
safety integrity levels of products [176]. In our work, we also use SoPLE to
provide mechanisms to support variation knowledge reuse regarding compli-
ance checking artifacts, which has not been yet addressed in other approaches.

In the area of process compliance, only a few approaches that consider the
reuse of proofs are presented in the state-of-the-art. In [145], the authors con-
sider that after doing many customization steps, which can include techniques,
such as abstraction or parametrization, the functionality of a process chunk
can be reused. However, for performing the compliance checking of process
chunks, special formalizations have to be performed. Some researchers tack-
led reuse by defining building blocks that implement compliance requirements,
e.g., compliance scopes [177], and compliance fragments [178, 179]. Reuse is
also approached with the use of process patterns [180], and rule patterns [149].
In [150], business processes are augmented with reusable fragments, called
process fragments for compliance, stored in a fragment repository that sup-
ports versioned storage and retrieval. The intention is to ensure process com-
pliance to the corresponding compliance requirements. In contrast ot the pre-
vious works, we propose a holistic modeling framework for safety-related pro-
cess compliance checking that permits modeling artifacts, which can be auto-
matically interleaved with evolutionary/changing artifacts originated from new
versions of standards. In that way, building blocks that implement compliance
requirements are reusable and process models and rulesets denoting formalized
requirements from standards.

Chapter 6

Epilogue

In this chapter, we present the final remarks of this thesis. In particular, we
present conclusions (see Section 6.1), limitations of the study (see Section 6.2)
and future work (see Section 6.3).

6.1 Conclusions

Industry standards, especially safety standards, establish requirements that serve
as a baseline for developing safety-critical systems. For instance, compliance
with ISO 26262, the functional safety standard targeting automotive, represents
that the risks associated with the safety-critical system operation installed in a
vehicle have been considered, analyzed, and mitigated to a sufficient level for
their confident deployment into society. In some industries, compliance with
specific normative frameworks is mandatory (see, for instance, the certification
of airworthiness, which is based on standards applied by national aviation au-
thorities), while in others, the same procedure is not de rigueur (for instance,
the application of the standard ISO 26262 in automotive is voluntary).

Mandatory or not, compliance with industry standards serves as a bench-
mark to design, implement, maintain and evaluate technical products. It also
grants several benefits to manufacturers. For example, compliance require-
ments provide a reference point for production optimization. Moreover, com-
pliance requirements help manufacturers to formulate contractual obligations
with their partners in a globalized sphere. In addition, a compliance stamp,
which is a mark that consumers generally trust, could make manufacturers

101

102 Chapter 6. Epilogue

gain a lead against competitors. A standard-compliant safety-critical system
is also, to some extent, ”backed up” in legal actions if it unexpectedly causes
harm since compliance with standards is a sign of reasonable care. Given the
previous considerations, is it clear that compliance with standards is a must-do
for manufacturers of safety-critical systems.

Commonly, industry standards adopt a highly prescriptive approach, which
focuses on process reference models and process-related requirements. Such
an approach also demands that normative imperatives are planned at the begin-
ning of the development process and not added later on. A process plan cor-
rectly designed is a detailed proposal of action that demonstrates the planning-
time allocation of responsibilities. If every actor fulfills his/her duties, com-
pliance at execution time can also be guaranteed. Consequently, planning pro-
cesses is an essential requirement for manufacturers of safety-critical systems.

Compliance of process at planning time requires that process engineers
include the sequence of tasks mandated by standards (i.e., the process behav-
ior) and the resources ascribed to such tasks, e.g., personnel, work products,
tools, and methods, which are also framed with essential properties (i.e., the
process structure). Process elements and their features are described in the
standards and mandated to be achieved at certain points of the development
process. Thus, process-related compliance management can be supported by
checking that the processes planned to engineer safety-critical systems have
such elements and characteristics at the specific times they are required.

Manually checking process plan compliance is a complex task since stan-
dards contain a sheer volume of requirements. Requirements also have an in-
tricate nature, i.e., requirements in one standard usually refer to other require-
ments in the same standard or other standards. Moreover, requirements in one
part of the standard may contradict requirements in another part of the same
standard or other applicable standards. In addition, requirements from one or
different standards may apply to one or several processes at different times and
jurisdictions. Last but not less, manufacturers commonly manage multiple pro-
cess plans and, thus, perform compliance checking repeatedly. In each case,
if there are no mechanisms to manage the information regarding standards re-
quirements appropriately and the processes they regulate, (re)interpretations
and rework may be needed (e.g., when the process expert leaves the company),
and compliance risks may become commonplace.

Process management tasks supported by tools, which can provide auto-
mated checks, could be a plausible solution. Indeed, automated compliance
checking could help process engineers to detect compliance violations and en-
force compliance at planning time when allocating the resources for engineer-

6.1 Conclusions 103

ing safety-critical systems. Tools can also help the process engineers manage
the changing conditions required to comply with standards (new versions of
the standards, tailoring) and provide means for tracking such changes. Thus,
the main goal of our thesis is to facilitate automated compliance checking
of the process plans used to engineer safety-critical systems against the
standards mandated (or recommended) in the safety-critical context. For
reaching this goal, we defined four subgoals and provided contributions dis-
tributed in six papers (see Section 6.1.1).

6.1.1 Research Goals Revisited
In this section, we present the relationship between the research goals proposed
in Section 3.3, the contributions discussed in Chapter 4, and the included pa-
pers presented in Chapters 7 to 11 (see Figure 6.1).

Contribution 1. We identified challenges that manufacturers of safety-
critical systems have regarding compliance with prescriptive standards at plan-
ning time. Based on them, we specified requirements for a suitable techni-
cal solution that shall facilitate: 1) the management of the artifacts required
for compliance checking with prescriptive standards, i.e., the standards them-
selves, their requirements, the processes plans, and the compliance means;
2) keeping track of the applicable requirements; 3) the recognition of con-
tradictions and ambiguities between applicable requirements; and 4) managing
the changing nature associated with requirements diversity. With this contri-
bution, we fulfilled our first subgoal, namely, elicit the requirements to be met
to support the automated compliance checking of the process plans used in
the safety-critical context. This contribution, which was summarized in Sec-
tion 4.1, is found throughout the articles A, B, C, D, and E.

Contribution 2. We adopted compliance by design and introduced ACCEPT
(Automated Compliance Checking of Engineering Process plans against sTan-
dards). ACCEPT is an iterative and comprehensible framework that allows the
creation and management of the artifacts required for compliance checking,
i.e., the standards themselves, their requirements, the processes plans, and the
compliance means. It also permits the creation of engineering process plans
checkable for compliance, i.e., process elements enriched with compliance in-
formation through annotations representing formalized standards requirements
in FCL. FCL is a language based on defeasible logic, which permit to manage
the contradictory and ambiguous nature present in the normative documents.

104 Chapter 6. Epilogue

Figure 6.1: Relationships between Research Goals, Contributions and Papers.

ACCEPT is supported by the tool-chain constituted of EPF-C, which has good
coverage of SPEM 2.0 concepts, and the compliance checker Regorous, which
can perform automatic analysis of FCL rules. EPF-C is an environments that
provides hierarchal structures that facilitates keeping track of the applicable
requirements. ACCEPT is equipped with a set of methodological steps that
facilitate its use. ACCEPT provides a baseline for fulfilling the requirements
1, 2 and 3 elicited in contribution 1. With this contribution, we fulfilled our
second subgoal, namely, identify mechanisms for supporting automated com-
pliance checking of the process plans used in the safety-critical context. This
contribution was summarized in Section 4.2 and found in papers A and D.

6.1 Conclusions 105

Contribution 3. We proposed three mechanisms for facilitating the creation
and reuse of the specifications required to check compliance of process plans
automatically, which is the four requirement elicited in contribution 1. The
first two mechanisms are called process compliance hints and patterns. Pro-
cess compliance hints (summarized in Section 4.3.1) are resources designed
to support the creation of separated concepts included in the FCL specifica-
tion based on process structure and the concepts supported by SPEM 2.0. (i.e.,
tasks, roles, work product, guidance, tools, and their relationships). Process
compliance patterns (summarized in Section 4.3.2) indicate common situa-
tions an FCL designer is likely to encounter when formalizing standards. Both
process compliance hints and patterns provide reusable means for facilitating
the formalization of process-related requirements into FCL rules. The third
mechanism (summarized in Section 4.4) is the systematic reuse of compliance
checking artifacts. This solution is based on the reuse capabilities provided
by SoPLE and the support provided by the integration of the tools EPF-C and
BVR-T. With these contributions, we fulfilled our third subgoal, namely, facil-
itate the creation of reusable specifications required for automated compliance
checking of the process plans. These contributions are found in the papers as
follows. The process compliance hints are found in paper B. The process com-
pliance patterns are found in papers A and D. Finally, the systematic reuse of
compliance artifacts is found in papers A and E.

Contribution 4. Finally, we validated our proposed solutions. First, we
investigated the degree of acceptance of methods for automated compliance
checking via a personal opinion survey, which was applied to practitioners
who participate in safety-related process compliance checking. Second, we as-
sessed ACCEPT, via a standard-based case study applicable to space software
engineering processes, considering a specific set of qualitative usefulness cri-
teria. Third, we measured the reuse permitted by our solutions when showing
process plan adherence with new versions of standards related to the medi-
cal domain. Fourth, we positioned our work with respect to the state-of-the-art
and the state-of-the-practice by characterizing the existent approaches for com-
pliance checking of software processes and testing our assumptions regarding
compliance checking current practices and challenges. We found that our so-
lutions provide a set of characteristics that seamlessly integrate with current
practices. We also identified aspects that permit our solutions to improve in
the future. With this contribution, we fulfilled our fourth subgoal, namely, in-
vestigate the significance of a solution for automated compliance checking of
process plans in the safety-critical context. This last contribution, which was

106 Chapter 6. Epilogue

summarized in Section 4.5, is found in papers C, D, E, and F.

6.2 Limitations
Our solutions focus on compliance checking of the process plans used to engi-
neer safety-critical systems. The findings of this study have to be seen in light
of some limitations.

1. Manufacturers of safety-critical systems commonly make use of different
strategies to meet their needs regarding process compliance management.
In particular, this thesis address one of these strategies, i.e., compliance
checking of processes at planning time. In general, process compliance
can also be checked at runtime or post-execution time. Our framework can
provide a static view of the compliance status of the process at a specific
execution point that could support the decision-making process. However,
it cannot help the process engineers enforce compliance in the same way it
is done at planning time since activities already executed cannot be changed.

2. SPI frameworks, in addition to the process reference framework, also con-
sider the process outcomes/attributes ratings to determine the capability
level of the process (i.e., how well a manufacturer performs its processes).
Our framework provides the status of the process compliance to the process
reference framework provided by such standards, i.e., whether the tasks and
work products are achieved. The compliance reports obtained from our
framework can only be used as a baseline to manually determine the capa-
bility levels of the checked process.

3. The annotation of the compliance effects for the tasks, roles, work products,
tools, and guidance, is done manually, i.e., the process engineers, based on
their own experience, deduce the effects that the process elements can even-
tually cause. This procedure could pose some challenges when the process
plans are extensive, i.e., the manual annotation could be time-consuming.

4. Process compliance hints, which are our rule of thumb to address sepa-
rated concerns within the compliance information of a process, are only
conceptually achieved in our contribution. For this reason, such separation
of concerns is not still taken into account in practice by the checker.

5. The compliance checking methodology used in our approach is process
modeling language agnostic. However, the tool support lacks agnosticism,

6.3 Future Work 107

i.e., it depends on a specific modeling tool to provide compliance checking
results. This characteristic is currently impeding the back-propagation of
the compliance results in our selected process modeling language.

6.3 Future Work
We believe that the work needed to be done by a process engineer regarding
compliance management will benefit from the contributions achieved in this
dissertation since they provide a baseline for automation and systematic reuse.
We also consider that there are research directions that could increase the scope
of our current results, as presented below.

1. Validation. With the time we had at hand, we have performed a limited
evaluation of our achieved contributions. Thus, future work will include
more empirical research with the use of interviews and observations to see,
for instance, how practitioners carry out their compliance checking prac-
tices with our solutions in natural settings, i.e., industrial environments. In
particular, the experience of effort (or perception of effort) is a factor that
is very important to analyze since it can provide feedback on task diffi-
culty. With these evaluation results, we can revisit usability aspects and
improve our models’ representation if needed. In addition, we consider in-
cluding more elaborated measurement frameworks (e.g., metrics) to provide
evidence concerning our solution’s efficiency in terms of time and cost re-
duction (manual vs. automatic work). Finally, we could generate fitness
functions that facilitate calculations regarding the adequacy of the informa-
tion coverage level provided by the models, the compliance documentation,
and the evolution management (number of artifacts modeled vs. number of
artifacts required by the normative framework).

2. Automation. In general, the methodologies defined in our solution are sys-
tematic and can be further automated. For example, extensions to the cur-
rent algorithm used for compliance checking must be designed and imple-
mented to permit the inclusion of co-occurrent compliance effects (effects
that coincide in a task), which are annotated in process elements ascribed to
tasks. In addition, we consider that algorithms that automatically enable the
creation of process elements from the definitional compliance effects should
be investigated. We also need to find strategies to represent the compliance
checking results in an agnostic way to permit their automatic backpropaga-
tion in our selected process modeling tool. We also consider the creation

108 Chapter 6. Epilogue

of rule editors that facilitate the use of templates for process compliance
hints and patterns. Finally, algorithms that facilitate the automation of the
formalization of requirements, based on natural language processing, could
be proposed.

3. Impact. A trust mechanism to guarantee that rules are correctly derived
from the normative frameworks, i.e., it validates that requirements are not
lost or poisoned during formalization processes, is required. A solution for
this aspect could be to contact standardization/regulatory bodies to investi-
gate the possibility of releasing process models and formal representations
of the requirements within the release of new standards or new versions
of already positioned standards. With this strategy, we could reduce unde-
sired room for interpretation of the normative texts. In addition, our solu-
tions should be integrated into the platform created by the European project
AMASS (Architecture-driven, Multi-concern and Seamless Assurance and
Certification of Cyber-Physical Systems) [181]. With this strategy, we aim
at concretizing our work in terms of tool support.

4. Extension. Additional mechanisms for supporting compliance at runtime
or post-execution time (e.g., automated alerts, task post-execution analysis,
and recommendations systems) can be provided to manage compliance is-
sues once violations are detected in static compliance checks. These mech-
anisms could be beneficial in agile environments, which can make use of
static checks after each process iteration to support subsequent iterations
in a compliant-informed fashion. Algorithms that consider the ratings re-
quired for process capability determination could also be designed and im-
plemented for fully automated support regarding process improvement stan-
dards.

5. Generalization. We consider it essential to provide case studies by con-
sidering a broader range of standards in contexts beyond the ones already
evaluated.

Bibliography

[1] AMASS., “Architecture-driven, Multi-concern and Seamless Assur-
ance and Certification of Cyber-Physical Systems.” http://www.amass-
ecsel.eu/.

[2] N. Leveson, “Safety : Why, What, and How,” ACM Computing Surveys
(CSUR), vol. 18, no. 2, pp. 125–163, 1986.

[3] V. Icheku, Understanding Ethics and Ethical Decision-Making. Xlibris
Corporation, 2011.

[4] P. B. Ladkin, “Duty of Care and Engineering Functional Safety Stan-
dards,” Digital Evidence & Elec. Signature L. Rev., vol. 16, p. 51, 2019.

[5] D. J. Smith and K. G. Simpson, The Safety Critical Systems Handbook:
A Straightforward Guide to Functional Safety: IEC 61508 (2010 Edi-
tion), IEC 61511 (2015 Edition) and Related Guidance. Butterworth-
Heinemann, 2020.

[6] M. Generowicz, “The Easy Path to Functional Safety Compliance.”
https://www.iesystems.com.au/wp-content/uploads/2015/04/Duty-of-
Care-Article.pdf, 2013.

[7] J. Knight and J. Rowanhill, “The Indispensable Role of Rationale
in Safety Standards,” in 35th International Conference SAFECOMP,
vol. 2788, pp. 39–50, Springer, 2016.

[8] N. G. Leveson, Engineering a Safer World: Systems Thinking Applied
to Safety. The MIT Press, 2016.

[9] S. O. Hansson, “Safe Design,” Techné: Research in Philosophy and
Technology, vol. 10, no. 1, pp. 45–52, 2006.

109

110 BIBLIOGRAPHY

[10] J. Bowen, “The Ethics of Safety-critical Systems,” Communications of
the ACM, vol. 43, no. 4, pp. 91–97, 2000.

[11] G. T. Marx, “Technology and Social Control,” 2015.

[12] International Electrotechnical Commission, “IEC 61508-Functional
Safety of Electrical/Electronic/Programmable Electronic Safety-related
Systems,” 2010.

[13] J. Finch, “Toyota Sudden Acceleration: A Case Study of the National
Highway Traffic Safety Administration - Recalls for Change,” Loy. Con-
sumer L. Rev., vol. 22, p. 472, 2009.

[14] M. M. Rahim and S. O. Idowu, Social Audit Regulation: Development,
Challenges and Opportunities. Springer, 2015.

[15] P. A. Defazio and R. Larsen, “Final Committe Report - The Design,
Development & Certification of the Boeing 737 MAX ,” Tech. Rep.
September, The House Committe on Transportation & Infrastructure,
2020.

[16] Komite Nasional Keselamatan Transportasi (KNKT), West Java, Repub-
lic of Indonesia, “Final KNKT.18.10.35.04 Aircraft Accident Investiga-
tion Report, PT. Lion Mentari Airlines, Boeing 737-8 (MAX),” Tech.
Rep. October 29, 2019.

[17] Federal Democratic Republic of Ethiopia, Ministry of Transport, Air-
craft Accident Investigation Bureau, “Interim Investigation Report
on Accident to the B737-8(MAX) Registered ET-AVJ operated by
Ethiopian Airlines on 10 March 2019,” Tech. Rep. March 9, 2020.

[18] M. A. Cusumano, “Who is Liable for Bugs and Security Flaws in Soft-
ware?,” Communications of the ACM, vol. 47, no. 3, pp. 25–27, 2004.

[19] S. Ingolfo, A. Siena, and J. Mylopoulos, “Establishing Regulatory Com-
pliance for Software Requirements,” in International Conference on
Conceptual Modeling, pp. 47–61, Springer, 2011.

[20] A. Tiron-Tudor and C. Bota-Avram, “New Challenges for Internal Au-
dit: Corporate Social Responsibility Aspects,” in Social Audit Regula-
tion, pp. 15–31, Springer, 2015.

BIBLIOGRAPHY 111

[21] International Organization for Standardization/International Elec-
trotechnical Commission, “ISO/IEC 17000:2020 - Conformity Assess-
ment — Vocabulary and General Principles,” 2020.

[22] R. Kemp, “Regulating the Safety of Autonomous Vehicles using Artifi-
cial Intelligence,” Communications Law, vol. 24, no. 1, pp. 24–33, 2019.

[23] F. Moyón, D. Méndez, K. Beckers, and S. Klepper, “How to Integrate
Security Compliance Requirements with Agile Software Engineering at
Scale?,” in International Conference on Product-Focused Software Pro-
cess Improvement, pp. 69–87, Springer, 2020.

[24] A. Ruiz, G. Juez, H. Espinoza, J. de la Vara, and X. Larrucea, “Reuse
of Safety Certification Artefacts across Standards and Domains: A Sys-
tematic Approach,” Reliability Engineering & System Safety, vol. 158,
pp. 153–171, 2016.

[25] C. Di Ciccio, A. Marrella, and A. Russo, “Knowledge-intensive Pro-
cesses: Characteristics, Requirements and Analysis of Contemporary
Approaches,” Journal on Data Semantics, vol. 4, no. 1, pp. 29–57, 2015.

[26] G. Cugola and C. Ghezzi, “Software Processes: a Retrospective and a
Path to the Future,” Software Process: Improvement and Practice, vol. 4,
no. 3, pp. 101–123, 1998.

[27] R. Kneuper, Software Processes and Life Cycle Models. An Introduc-
tion to Modelling, Using and Managing Agile, Plan-Driven and Hybrid
Processes. Springer, Cham, 2018. ISBN 978-3-319-98845-0.

[28] A. Siena, J. Mylopoulos, A. Perini, and A. Susi, “From Laws to Require-
ments,” in 2008 Requirements Engineering and Law, pp. 6–10, IEEE,
2008.

[29] Radio Technical Commission for Aeronautics (RTCA) & European
Organisation for Civil Aviation Equipment (EUROCAE), “RTCA/DO-
178C - Software Considerations in Airborne Systems and Equipment
Certification.,” 2011.

[30] Swedish Ratiation Safety Authority, “Licensing of Safety Critical Soft-
ware for Nuclear Reactors,” tech. rep., 2018.

112 BIBLIOGRAPHY

[31] W. Emmerich, A. Finkelstein, C. Montangero, S. Antonelli, S. Ar-
mitage, and R. Stevens, “Managing Standards Compliance,” IEEE
Transactions on Software Engineering, vol. 25, no. 6, pp. 836–851,
1999.

[32] P. Chung, L. Cheung, and C. Machin, “Compliance Flow-Managing the
Compliance of Dynamic and Complex Processes,” Knowledge-Based
Systems, vol. 21, no. 4, pp. 332–354, 2008.

[33] SAE, “Surface Vehicle Recommended Practice,” tech. rep., 2016.

[34] International Organization for Standardization, “ISO 26262:2018 - Road
vehicles – Functional safety,” 2018.

[35] VDA QMC Working Group 13 / Automotive SIG, “Automotive SPICE
Process Assessment – Reference Model,” 2015.

[36] N. Ramasubbu, A. Bharadwaj, and G. K. Tayi, “Software Process Di-
versity: Conceptualization, Measurement, and Analysis of impact on
Project Performance,” Management Information Systems, vol. 39, no. 4,
pp. 787–807, 2015.

[37] European Space Agency, “ECSS-E-HB-40C – Space engineering - Soft-
ware engineering handbook,” 2013. https://ecss.nl/hbstms/ecss-e-hb-
40a-software-engineering-handbook-11-december-2013/.

[38] International Organization for Standardization, “ISO 14971:2007 – Ap-
plication of Risk Management to Medical Devices,” Mar. 2007.

[39] EN International Organization for Standardization, “ISO 14971:2012 -
Medical Devices – Application of Risk Management to Medical Devices
(ISO 14971:2007, Corrected version 2007-10-01),” July 2012.

[40] International Organization for Standardization , “ISO 14971:2019 -
Medical Devices – Application of Risk Management to Medical De-
vices,” Dec. 2019.

[41] B. Gallina, A. Pulla, A. Bregu, and J. P. Castellanos Ardila, “Process
Compliance Re-Certification Efficiency Enabled by EPF-C ◦ BVR-T: A
Case Study,” in International Conference on the Quality of Information
and Communications Technology, pp. 211–219, Springer, 2020.

BIBLIOGRAPHY 113

[42] N. Leveson, Engineering a Safer World: Systems Thinking Applied to
Safety. The MIT Press, 2011.

[43] R. O’Connor and C. Laporte, An Innovative Approach to the Develop-
ment of an International Software Process Lifecycle Standard for Very
Small Entities, vol. III. IGI Global, 2018.

[44] B. Gallina, E. Gómez-Martı́nez, and C. Benac-Earle, “Promoting MBA
in the Rail Sector by Deriving Process-related Evidence via MDSafe-
Cer,” Computer Standards & Interfaces, vol. 54, pp. 119–128, 2017.

[45] R. Lu, S. Sadiq, and G. Governatori, “Compliance Aware Business Pro-
cess Design,” in International Conference on Business Process Manage-
ment, pp. 120–131, 2007.

[46] G. Governatori, “Representing Business Contracts in RuleML,” Interna-
tional Journal of Cooperative Information Systems, vol. 14, no. 02n03,
pp. 181–216, 2005.

[47] “Eclipse Process Framework (EPF) Composer.”
http://www.eclipse.org/epf/.

[48] Object Management Group Inc., “Software & Systems Process En-
gineering Meta-Model Specification. Version 2.0.,” OMG Std., Rev,
p. 236, 2008.

[49] G. Governatori, “The Regorous Approach to Process Compliance,” in
19th International Enterprise Distributed Object Computing Workshop,
pp. 33–40, IEEE, 2015.

[50] B. Gallina, I. Sljivo, and O. Jaradat, “Towards a Safety-oriented Process
Line for Enabling Reuse in Safety Critical Systems Development and
Certification,” in 35th Annual IEEE Software Engineering Workshop,
pp. 148–157, 2012.

[51] M. Javed and B. Gallina, “Safety-oriented Process Line Engineering via
Seamless Integration between EPF Composer and BVR Tool,” in 22nd
International Systems and Software Product Line Conference, pp. 23–
28, ACM, 2018.

[52] A. Ruiz, B. Gallina, J. L. de la Vara, S. Mazzini, and H. Es-
pinoza, “AMASS: Architecture-driven, Multi-concern, Seamless,

114 BIBLIOGRAPHY

Reuse-Oriented Assurance and Certification of CPSs,” in 5th Interna-
tional Workshop on Next Generation of System Assurance Approaches
for Safety-Critical Systems (SASSUR). SafeComp, International confer-
ence on computer safety, reliability and security, Trondheim, 2016.

[53] J. Luis de la Vara, A. Ruiz Lopez, B. Gallina, G. Blondelle, E. Alaña,
J. Herrero, F. Warg, M. Skoglund, and R. Bramberger, “The AMASS
Approach for Assurance and Certification of Critical Systems,” in Em-
bedded world 2019 ewC-2019, 26 Feb 2019, Nuremberg, Germany,
2019.

[54] S. Ghanavati, D. Amyot, and L. Peyton, “Comparative Analysis be-
tween Document-based and Model-based Compliance Management Ap-
proaches,” in Requirements Engineering and Law, pp. 35–39, 2008.

[55] European Space Agency, “ECSS-E-ST-40C – Space Engineering Soft-
ware,” 2009. https://ecss.nl/standard/ecss-e-st-40c-software-general-
requirements/.

[56] International Organization for Standardization, “ISO 14971:2000 – Ap-
plication of Risk Management to Medical Devices,” Dec. 2000.

[57] R. Banker, R. Kauffman, and D. Zweig, “Repository Evaluation of
Software Reuse,” IEEE Transactions on Software Engineering, vol. 19,
no. 4, pp. 379–389, 1993.

[58] C. Perrow, Normal accidents: Living with High Risk Technologies -
Updated edition. Princeton university press, 2011.

[59] N. Leveson, “SAFETY III: A Systems Approach to Safety and Re-
silience,” 2020.

[60] J. C. Knight, “Safety Critical Systems: Challenges and Directions,” in
24rd International Conference on Software Engineering, pp. 547 – 550,
ACM, 2002.

[61] J. Hatcliff, A. Wassyng, T. Kelly, C. Comar, and P. Jones, “Certifiably
Safe Software-dependent Systems: Challenges and Directions,” Pro-
ceedings of the on Future of Software Engineering, pp. 182–200, 2014.

[62] N. G. Leveson, “System Safety in Computer-Controlled Automotive
Systems,” SAE transactions, vol. 109, pp. 287–294, 2000.

BIBLIOGRAPHY 115

[63] N. Fenton and M. Neil, “A Strategy for Improving Safety Related Soft-
ware Engineering Standards,” IEEE Transactions on Software Engineer-
ing, vol. 24, no. 11, pp. 1002–1013, 1998.

[64] A. Schwartz, “Statutory Interpretation, Capture, and Tort Law: The Reg-
ulatory Compliance Defense,” American Law and Economics Review,
vol. 2, no. 1, pp. 1–57, 2000.

[65] N. Brunsson and B. Jacobsson, A World of Wtandards. Oxford Univer-
sity Press, 2010.

[66] Radio Technical Commission for Aeronautics, “RTCA/DO-330-
Software Tool Qualification Considerations,” 2012.

[67] European Committee for Electrotechnical Standardization, “CENELEC
- EN 50128 - Railway Applications – Communication, Signaling and
Processing Systems Software for Railway Control and Protection Sys-
tems,” 2011.

[68] European Space Agency, “European Cooperation for Space Standard-
ization,” 1993. https://ecss.nl/.

[69] International Organization for Standardization/International Elec-
trotechnical Commission, “ISO/IEC/IEEE 12207 - Systems and Soft-
ware Engineering — Software Life Cycle Processes,” 2017.

[70] International Organization for Standardization, “ISO 9000 - Quality
Management Systems-Fundamentals and Vocabulary,” 2005.

[71] International Organization for Standardization (ISO) and International
Electrotechnical Commission , “IEC ISO/IEC 15504 - Information Tech-
nology – Process assessment - An Exemplar Software Life Cycle Process
Assessment model,” 2012.

[72] Software Engineering Institute, Carnegie Mellon, “CMMI® for Devel-
opment, Version 1.3 CMMI-ACQ, V1.3,” Tech. Rep. November, Soft-
ware Engineering Institute, Carnegie Mellon, 2010.

[73] B. Gallina, F. U. Muram, and J. P. Castellanos Ardila, “Compliance of
Agilized (Software) Development Processes with Safety Standards: A
Vision,” in Proceedings of the 19th International Conference on Agile
Software Development: Companion, pp. 1–6, 2018.

116 BIBLIOGRAPHY

[74] G. Regan, M. Biro, F. Mc Caffery, K. Mc Daid, and D. Flood, “A Trace-
ability Process Assessment Model for the Medical Device Domain,” in
European Conference on Software Process Improvement, pp. 206–216,
Springer, 2014.

[75] M. Palmirani and G. Governatori, “Modelling Legal Knowledge for
GDPR Compliance Checking,” Frontiers in Artificial Intelligence and
Applications, vol. 313, pp. 101–110, 2018.

[76] E. Ahmad, B. Raza, R. Feldt, and T. Nordebäck, “ECSS Standard Com-
pliant Agile Software Development: An Industrial Case Study,” in Na-
tional Software Engineering Conference, pp. 1–6, 2010.

[77] European Space Agency, “ECSS-Q-ST-40C – Space Product Assurance
- Safety,” 2017. https://ecss.nl/standard/ecss-q-st-40c-rev-1-safety-15-
february-2017/.

[78] A. Pulla and A. Bregu, “Master Thesis: Evaluating the Compliance Re-
Certification Efficiency Enabled by the AMASS Platform for Medical
Devices, Mälardalen University, School of Innovation, Design and En-
gineering, Västerås, Sweden,” 2020.

[79] Council of the European Union, “Council Directive 90/385/EEC of 20
June 1990 on the approximation of the laws of the Member States relat-
ing to active implantable medical devices,” June 1990.

[80] The Council of the European Communities, “Council Directive
93/42/EEC of 14 June 1993 concerning medical devices,” June 1993.

[81] European Parliament & Council of the European Union, “Directive
98/79/EC of the European Parliament and of the Council of 27 Octo-
ber 1998 on in vitro diagnostic medical devices,” Oct. 1998.

[82] T. Boutros and T. Purdie, The Process Improvement Handbook: A
Blueprint for Managing Change and Increasing Organizational Perfor-
mance. 2014.

[83] L. Osterweil, “Software Processes are Software Too,” Engineering of
Software, pp. 323–344, Springer, 2011.

[84] A. Fuggetta and E. Di Nitto, “Software Process,” in Future of Software
Engineering, pp. 1–12, 2014.

BIBLIOGRAPHY 117

[85] L. Garcı́a-Borgoñón, M. Barcelona, J. Garcı́a-garcı́a, M. Alba, and
M. Escalona, “Software Process Modeling Languages : A systematic
Literature Review,” Information and Software Technology, vol. 56, no. 2,
pp. 103–116, 2014.

[86] U. Becker-Kornstaedt, D. Hamann, R. Kempkens, P. Rösch, M. Ver-
lage, R. Webby, and J. Zettel, “Support for the Process Engineer: The
Spearmint Approach to Software Process Definition and Process Guid-
ance,” International Conference on Advanced Information Systems En-
gineering, pp. 119–133, 1999.

[87] J. Lonchamp, “A Structured Conceptual and Terminological Framework
for Software Process Engineering,” 2nd International Conference on the
Software Process, pp. 41–53, 1993.

[88] B. McIsaac, “IBM Rational Method Composer: Standards Mapping.,”
tech. rep., IBM Developer Works, 2015.

[89] ECSEL Research and Innovation actions (RIA) - AMASS, “D6.5 Pro-
totype for Cross/Intra-Domain Reuse (b),” 2017.

[90] IBM Corporation, “Key Capabilities of the Unified Method Architecture
(UMA).” http://deg.egov.bg/LP/core.base concepts/guidances/concept-
s/introduction to uma 931F5B93.html.

[91] M. Javed and B. Gallina, “Get EPF Composer Back to the Future: A
Trip from Galileo to Photon After 11 Years,” in EclipseCon, 2018.

[92] P. Clements and L. Northrop, Software Product Lines: Practices and
Patterns. Addison-Wesley Reading, 2002.

[93] T. Ternité, “Process Lines : A Product Line Approach designed for Pro-
cess Model Development,” in 35th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA)., pp. 173–180, 2009.

[94] J. P. Castellanos Ardila and B. Gallina, “Towards Efficiently Checking
Compliance Against Automotive Security and Safety Standards,” in The
7th IEEE International Workshop on Software Certification, 2017.

[95] P. Casanovas, J. González-Conejero, and L. De Koker, “Legal Compli-
ance by Design (LCbD) and through Design (LCtD): Preliminary Sur-
vey,” in 1st Workshop on Technologies for Regulatory Compliance Le-
gal, pp. 33–49, 2017.

118 BIBLIOGRAPHY

[96] S. Sadiq and G. Governatori, “A Methodological Framework for Align-
ing Business Processes and Regulatory Compliance,” Handbook of
Business Process Management’, Springer, 2009.

[97] G. Governatori, M. Hashmi, H. Lam, S. Villata, and M. Palmirani, “Se-
mantic Business Process Regulatory Compliance Checking using Legal-
RuleML,” in European Knowledge Acquisition Workshop, pp. 746–761,
Springer, 2016.

[98] F. Koetter, M. Kochanowski, T. Renner, C. Fehling, and F. Leymann,
“Unifying Compliance Management in Adaptive Environments through
Variability Descriptors,” 6th International Conference on Service-
Oriented Computing and Applications, pp. 214–219, 2013.

[99] M. Hashmi, G. Governatori, and M. Wynn, “Normative Requirements
for Regulatory Compliance: An Abstract Formal Framework,” Informa-
tion Systems Frontiers., vol. 18, no. 3, pp. 429–455, 2016.

[100] E. Francesconi, “Semantic Model for Legal Resources: Annotation and
Reasoning over Normative Provisions,” Semantic Web, vol. 7, no. 3,
pp. 255–265, 2016.

[101] L. Lúcio, S. Rahman, C.-H. Cheng, and A. Mavin, “Just Formal
Enough? Automated Analysis of EARS Requirements,” NASA Formal
Methods Symposium, pp. 427–434, Springer, 2017.

[102] E. Kabaale, L. Wen, Z. Wang, and T. Rout, “Representing Software Pro-
cess in Description Logics: An Ontology Approach for Software Pro-
cess Reasoning and Verification,” in Software Process Improvement and
Capability Determination, pp. 362–376, Springer, 2016.

[103] S. Vilkomir, J. Bowen, and A. Ghose, “Formalization and Assessment of
Regulatory Requirements for Safety-critical Software,” Innovations in
Systems and Software Engineering, vol. 2, no. 3-4, pp. 165–178, 2006.

[104] J. Munoz-Gama, “Conformance Checking and its Challenges,” Confor-
mance Checking and Diagnosis in Process Mining Comparing Observed
and Modeled Processes, pp. 11–18, 2016.

[105] M. Hashmi, Evaluating Business Process Compliance Management
Frameworks. Doctoral dissertation, Queensland University of Technol-
ogy (QUT), 2015.

BIBLIOGRAPHY 119

[106] A. Toval, A. Olmos, and M. Piattini, “Legal Requirements Reuse: A
Critical Success Factor for Requirements Quality and Personal Data
Protection,” in IEEE Joint International Conference on Requirements
Engineering, pp. 95–103, IEEE, 2002.

[107] D. Brown, H. Delseny, K. Hayhurst, and V. Wiels, “Guidance for Using
Formal Methods in a Certification Context,” ERTS2 2010, Embedded
Real Time Software & Systems, 2010.

[108] P. N. Otto and A. I. Antón, “Addressing Legal Requirements in Require-
ments Engineering,” in 15th IEEE international requirements engineer-
ing conference (RE 2007), pp. 5–14, IEEE, 2007.

[109] Department of Defense Standard Practice, “MIL-STD-882E-System
Safety,” 2012.

[110] P. J. Denning and M. Tedre, Computational Thinking. MIT Press, 2019.

[111] D. Smith, “The Design of Divide and Conquer Algorithms,” Science of
Computer Programming, vol. 5, pp. 37–58, 1985.

[112] I. Sommerville, “Software Processes,” in Software Engineering, ch. 2,
pp. 43–55, Addison-Wesley, 9th editio ed., 2011.

[113] M. Dwyer, G. Avrunin, and J. Corbett, “Property Specification for
Finite-State Verification,” in International Conference on Software En-
gineering., pp. 411–420, 1998.

[114] R. J. Wieringa, Design Science Methodology for Information Systems
and Software Engineering. Springer, Berlin, Heidelberg, 2014.

[115] K. Peffers, T. Tuunanen, M. Rothenberger, and S. Chatterjee, “A Design
Science Research Methodology for Information Systems Research,”
Journal of Management Information Systems, vol. 24, no. 3, pp. 45–77,
2007.

[116] B. Kitchenham and S. Pfleeger, “Personal Opinion Surveys,” in Guide to
Advanced Empirical Software Engineering, ch. 3, pp. 63–92, Springer
Science & Business Media, 2008.

[117] D. Bertram, “Likert Scales Are the Meaning of Life. CPSC 681-
Topic Report,” 2006. http://poincare.matf.bg.ac.rs/ kristina/topic-dane-
likert.pdf.

120 BIBLIOGRAPHY

[118] B. Kitchenham and S. Charters, “Guidelines for performing Systematic
Literature reviews in Software Engineering,” Tech. Rep. 4ve, 2007.

[119] C. Wohlin, “Guidelines for Snowballing in Systematic Literature Stud-
ies and a Replication in Software Engineering,” 18th International Con-
ference on Evaluation and Assessment in Software Engineering, pp. 1–
10, 2014.

[120] F. Davis, “A Technology Acceptance Model for Empirically Test-
ing New End-user Information Systems: Theory and Results.,” Mas-
sachusetts Institute of Technology, 1985.

[121] J. Steele, “What is (Perception of) Effort? Objective and Subjective Ef-
fort during Task Performance,” PsyArXiv, doi: 10.31234/osf.io/kbyhm,
2020.

[122] P. Engiel, J. Sampaio do Prado Leite, and J. Mylopoulos, “A Tool-
Supported Compliance Process for Software Systems,” in 2017 11th In-
ternational Conference on Research Challenges in Information Science
(RCIS), pp. 66–76, IEEE, 2017.

[123] L. Wen, D. Tuffley, and T. Rout, “Using Composition Trees to Model
and Compare,” in International Conference on Software Process Im-
provement and Capability Determination, no. March 2014, pp. 1–15,
Springer, 2011.

[124] E. Kabaale, L. Wen, Z. Wang, and T. Rout, “Ensuring Conformance to
Process Standards Through Formal Verification,” in International Con-
ference on Software Process Improvement and Capability Determina-
tion, vol. 2, pp. 248–262, Springer International Publishing, 2018.

[125] D. Proença and J. Borbinha, “Formalizing ISO/IEC 15504-5 and SEI
CMMI v1.3 – Enabling Automatic Inference of Maturity and Capability
Levels,” Computer Standards and Interfaces, 2018.

[126] G. Soydan and M. Kokar, “A Partial Formalization of the CMMI-DEV
— A Capability Maturity Model for Development,” Journal of Software
Engineering and Applications, vol. 5, no. 10, pp. 777–788, 2012.

[127] P. Bonatti, “Fast Compliance Checking in an OWL2 Fragment,” in 27th
International Joint Conferences on Artificial Intelligence Organization,
pp. 1746–1752, 2018.

BIBLIOGRAPHY 121

[128] W3C, “Web Ontology Language (OWL),” 2012.
https://www.w3.org/2001/sw/wiki/OWL.

[129] A. Borgida, “On the Relative Expressiveness of Description Logics and
Predicate Logics,” Artificial intelligence, vol. 82, no. 1-2, pp. 353–367,
1996.

[130] R. Bendraou, B. Combemale, X. Crégut, and M. Gervais, “Definition
of an Executable SPEM 2.0,” in 14th Asia-Pacific Software Engineering
Conference., pp. 390–397, 2007.

[131] F. Golra, F. Dagnat, R. Bendraou, and A. Beugnard, “Continuous Pro-
cess Compliance Using Model Driven Engineering,” in International
Conference on Model and Data Engineering, pp. 42–56, Springer, 2017.

[132] D. Rodrı́guez, E. Garcia, S. Sanchez, and C. Rodrı́guez-Solano, “Defin-
ing Software Process Model Constraints with Rules using OWL and
SWRL,” International Journal of Software Engineering and Knowledge
Engineering, vol. 20, no. 4, pp. 533–548, 2010.

[133] M. Valiente, E. Garcı́a-Barriocanal, and M. Sicilia, “Applying
Ontology-Based Models for Supporting Integrated Software Develop-
ment and IT Service,” IEEE Transactions on Systems, Man and Cyber-
netics, vol. 42, no. 1, pp. 61–74, 2012.

[134] I. Horrocks, P. Patel-schneider, H. Boley, S. Tabet, B. Grosof, and
M. Dean, “SWRL: A Semantic Web Rule Language Combining OWL
and RuleML,” W3C Member submission, vol. 21, no. 79, pp. 1–31, 2004.

[135] S. Wang, L. Jin, and C. Jin, “Represent Software Process Engineering
Metamodel in Description Logic,” in World Academy of Science, Engi-
neering and Technology, vol. 11, pp. 109–113, 2006.

[136] H. Jost, S. Köhler, and F. Köster, “Towards a Safer Development of
Driver Assistance Systems by Applying Requirements-Based Methods,”
in 14th International IEEE Conference on Intelligent Transportation
Systems (ITSC), pp. 1144–1149, IEEE, 2011.

[137] B. Gallina, E. Gómez-Martı́nez, and C. Earle, “Deriving Safety Case
Fragments for Assessing MBASafe ’ s Compliance with EN 50128,” in
International Conference on Software Process Improvement and Capa-
bility Determination, vol. 1, pp. 3–16, 2016.

122 BIBLIOGRAPHY

[138] A. Gannous, A. Andrews, and B. Gallina, “Toward a Systematic and
Safety Evidence Productive Verification Approach for Safety-Critical
Systems,” The 29th IEEE International Symposium on Software Reli-
ability Engineering (ISSRE 2018), pp. 329–336, 2018.

[139] International Organization for Standardization (ISO) and International
Electrotechnical Commission , “(IEC) ISO/IEC 29110:2016 - Systems
and software engineering – Lifecycle profiles for Very Small Entities
(VSEs),” 2016.

[140] École de technologie supérieure of Canada., “Deployment Packages for
the Generic Profile Group for VSEs Developing Systems and/or Soft-
ware,” 2010.

[141] F. Ul Muram, B. Gallina, and L. Gomez Rodriguez, “Preventing Omis-
sion of Key Evidence Fallacy in Process-based Argumentations,” in 11th
International Conference on the Quality of Information and Communi-
cations Technology (QUATIC), 2018.

[142] P. Hitzler, M. Krötzsch, and S. Rudolph, Foundations of Semantic Web
Technologies. Chapman & Hall/CRC,, 2009.

[143] C. Giblin, S. Müller, and B. Pfitzmann, “From Regulatory Policies to
Event Monitoring Rules: Towards Model-Driven Compliance Automa-
tion,” tech. rep., IBM Research Laboratory, Zurich, 2006.

[144] C. Giblin, A. Liu, S. Müller, B. Pfitzmann, and X. Zhou, “Regulations
Expressed As Logical Models (REALM),” tech. rep., IBM China Re-
search Lab, 2005.

[145] F. Daniel, F. Casati, E. Mulo, U. Zdun, S. Strauch, D. Schumm, F. Ley-
mann, S. Sebahi, F. De Marchi, and M. S. Hacid, “Business Compliance
Governance in Service-oriented Architectures,” in International Con-
ference on Advanced Information Networking and Applications (AINA),
pp. 113–120, 2009.

[146] A. Awad, G. Decker, and M. Weske, “Efficient Compliance Check-
ing Using BPMN-Q and Temporal Logic,” International Conference on
Business Process Management, pp. 326–341, 2008.

[147] L. Ly, K. Göser, S. Rinderle-ma, and P. Dadam, “Compliance of Se-
mantic Constraints – A Requirements Analysis for Process Management

BIBLIOGRAPHY 123

Systems,” in 1st International Workshop on Governance, Risk and Com-
pliance - Applications in Information Systems, 2008.

[148] Object Management Group, “Business Process Model and Notation Ver-
sion 2.0,” 2011.

[149] A. Elgammal, O. Turetken, W. van den Heuvel, and M. Papazoglou,
“Formalizing and Applying Compliance Patterns for Business Process
Compliance,” Software and Systems Modeling., pp. 119–146, 2016.

[150] D. Schumm, O. Turetken, N. Kokash, A. Elgammal, F. Leymann, and
W. van den Heuvel, “Business Process Compliance through Reusable
Units of Compliant Processes,” in International Conference on Web En-
gineering, pp. 325–337, 2010.

[151] M. El Kharbili, “Business Process Regulatory Compliance Management
Solution Frameworks: A Comparative Evaluation,” in 8th Asia-Pacific
Conference on Conceptual Modelling., pp. 23–32, 2012.

[152] G. Governatori and M. Hashmi, “No Time for Compliance,” no. Section
II, 2015.

[153] M. Ceci, T. Butler, L. Brien, and F. Al Khalil, “Legal Patterns for Dif-
ferent Constitutive Rules,” AI Approaches to the Complexity of Legal
Systems, pp. 105–123, 2015.

[154] S. Islam, H. Mouratidis, and S. Wagner, “Towards a Framework to Elicit
and Manage Security and Privacy Requirements from Laws and Regula-
tions,” in International Working Conference on Requirements Engineer-
ing: Foundation for Software Quality, pp. 255–261, 2010.

[155] S. Faßbender and M. Heisel, “A Computer-Aided Process from Prob-
lems to Laws in Requirements Engineering,” in Software Technologies,
pp. 215–234, Springer Berlin Heidelberg, 2014.

[156] B. Akinkunmi and M. Babalola, “Knowledge Representation for High-
Level Norms and Violation Inference in Logic Programming,” arXiv
preprint arXiv:1801.06740, 2018.

[157] K. Bouzidi, C. Faron-Zucker, B. Fies, and N. Le Thanh, “An Ontologi-
cal Approach for Modeling Technical Standards for Compliance Check-
ing,” in International Conference on Web Reasoning and Rule Systems,
pp. 244–249, Springer, 2011.

124 BIBLIOGRAPHY

[158] S. Bala, C. Cabanillas, A. Haselböck, G. Havur, J. Mendling, S. Sperl,
and S. Steyskal, “A Framework for Safety-Critical Process Management
in Engineering Projects,” in International Symposium on Data-Driven
Process Discovery and Analysis, vol. 1, pp. 1–27, 2015.

[159] E. Nash, J. Wiebensohn, R. Nikkilä, A. Vatsanidou, S. Fountas, and
R. Bill, “Towards Automated Compliance Checking based on a Formal
Representation of Agricultural Production Standards,” Computers and
Electronics in Agriculture, vol. 78, no. 1, pp. 28–37, 2011.

[160] G. Brat, D. Bushnell, M. Davies, D. Giannakopoulou, F. Howar, and
K. Temesghen, “Verifying the Safety of a Flight-Critical System,” in
International Symposium on Formal Methods, pp. 308–324, Springer,
2015.

[161] S. Sadiq, G. Governatori, and K. Namiri, “Modeling Control Objec-
tives for Business Process Compliance,” Business Process Management,
pp. 149–164, 2007.

[162] M. Hashmi, G. Governatori, and M. Wynn, “Business Process Data
Compliance,” in International Workshop on Rules and Rule Markup
Languages for the Semantic Web, vol. 7438 LNCS, pp. 32–46, 2012.

[163] J. Lee, “Oracle Policy Automation (OPA). Best Practice Guide for
policy Modelers.,” 2018. https://www.oracle.com/technetwork/apps-
tech/policy-automation/learnmore/opabestpracticeguidev12-
3697709.pdf.

[164] J. Fernandez, “Deliverable 6.1: Privacy Policy Formalization (v. 1),”
2018. http://cityspin.net/wp-content/uploads/2017/10/D6.1-Privacy-
policy-formalization.pdf.

[165] N. Singh, M. Lawford, T. Maibaum, and A. Wassyng, “Use of Tabular
Expressions for Refinement Automation,” in International Conference
on Model and Data Engineering, pp. 167–182, 2017.

[166] G. Governatori, “Practical Normative Reasoning with Defeasible De-
ontic Logic Practical Normative Reasoning with Defeasible Deontic
Logic,” no. September, 2018.

BIBLIOGRAPHY 125

[167] Y. Luo, M. Van Den Brand, L. Engelen, J. Favaro, M. Klabbers, and
G. Sartori, “Extracting Models from ISO 26262 for Reusable Safety As-
surance,” Lecture Notes in Computer Science, vol. 7925 LNCS, pp. 192–
207, 2013.

[168] D. Giannakopoulou, K. Namjoshi, and K. Pasareanu, “Compositional
Reasoning,” in Handbook of logic and language, pp. 345–383, Springer,
2018.

[169] W. Reif and K. Stenzel, “Reuse of Proofs in Software Verification,” in
International Conference on Foundations of Software Technology and
Theoretical Computer Science (FSTTCS), pp. 284–293, Lecture Notes
in Computer Science, 1993.

[170] B. Beckert and V. Klebanov, “Proof Reuse for Deductive Program Verifi-
cation,” in Proceedings of the Second International Conference on Soft-
ware Engineering and Formal Methods, pp. 77–86, IEEE, 2004.

[171] D. Beyer and P. Wendler, “Reuse of verification results conditional
model checking, precision reuse, and verification witnesses,” Model
Checking Software, vol. 7976, pp. 1–17, 2013.

[172] S. Apel, A. Von Rhein, P. Wendler, A. Groslinger, and D. Beyer, “Strate-
gies for Product-line Verification: Case Studies and Experiments,” Inter-
national Conference on Software Engineering, pp. 482–491, 2013.

[173] A. Ocampo and J. Münch, “Rationale Modeling for Software Pro-
cess Evolution Alexis,” Software Process: Improvement and Practice,
vol. 14, no. 2, pp. 85–105, 2009.

[174] E. N. Teixeira, F. A. Aleixo, F. D. de Sousa Amâncio, E. OliveiraJr,
U. Kulesza, and C. Werner, “Software Process Line as an Approach
to Support Software Process Reuse: A Systematic Literature Review,”
Information and Software Technology, vol. 116, p. 106175, 2019.

[175] H. Martin, M. Krammer, R. Bramberger, and E. Armengaud, “Process-
and Product-based Lines of Argument for Automotive Safety Cases,” in
7th International Conference on Cyber-Physical Systems, 2016.

[176] L. Bressan, A. L. de Oliveira, F. Campos, Y. Papadopoulos, and
D. Parker, “An Integrated Approach to Support the Process-Based Cer-
tification of Variant-Intensive Systems,” in International Symposium on
Model-Based Safety and Assessment, pp. 179–193, 2020.

[177] D. Schleicher, S. Grohe, F. Leymann, P. Schneider, D. Schumm, and
T. Wolf, “An Approach to Combine Data-related and Control-flow-
related Compliance Rules,” in International Conference on Service-
Oriented Computing and Applications, pp. 1–8, 2011.

[178] K. Görlach, O. Kopp, F. Leymann, and D. Schumm, “WS-BPEL Exten-
sion for Compliance Fragments (BPEL4CFrags),” tech. rep., Institute of
Architecture of Application Systems, University of Stuttgart., 2011.

[179] Z. Ma, Process Fragments: Enhancing Reuse of Process Logic in
BPEL Process Models. Ph.d. dissertation, University of Stuttgart, 2012.
http://elib.uni-stuttgart.de/opus/volltexte/2013/8075/.

[180] M. Kabir, Z. Xing, P. Chandrasekaran, and S. Lin, “Process Patterns:
Reusable Design Artifacts for Business Process Models,” International
Computer Software and Applications Conference, vol. 1, pp. 714–721,
2017.

[181] J. L. de la Vara, E. P. Corredor, A. R. Lopez, and B. Gallina, “The
AMASS Tool Platform: An Innovative Solution for Assurance and
Certification of Cyber-Physical Systems,” in 26th International Work-
ing Conference on Requirements Engineering: Foundation for Software
Quality, 2020.

II

Included Papers

127

Chapter 7

Paper A:
Facilitating Automated
Compliance Checking of
Processes in the
Safety-critical Context

Julieth Patricia Castellanos Ardila, Barbara Gallina, Faiz Ul Muram.
Journal of Electronic Communications of the EASST. vol 78. 2019

129

Abstract

In some domains, the applicable safety standards prescribe process-related re-
quirements. Essential pieces of evidence for compliance assessment with such
standard are the compliance justifications of the process plans used to engi-
neer systems. These justifications should show that the process plans are pro-
duced in accordance with the prescribed requirements. However, providing the
required evidence may be time-consuming and error-prone since safety stan-
dards are large, natural language-based documents with hundreds of require-
ments. Besides, a company may have many safety-critical-related processes
to be examined. In this paper, we propose a novel approach that combines
process modeling and compliance checking capabilities. Our approach aims
at facilitating the analysis required to conclude whether the model of a pro-
cess plan corresponds to a model with compliant states. Hitherto, our proposed
methodology has been evaluated with academic examples that show the poten-
tial benefits of its use.

7.1 Introduction 131

7.1 Introduction

The production of safety-critical systems is regulated by safety standards, which
in some domains prescribe processes-related requirements. Those require-
ments suggests proved procedures and methods as well as specific character-
istics of the process that aim at increasing the safety of the engineered sys-
tems. For compliance assessment with such standards, complete and convinc-
ing justifications, which show that the process-oriented requirements are ful-
filled within the planning of the development process, are required [1]. To
support the production of compliance justifications, compliance checking re-
ports can be used, since they facilitate the auditor’s job in detecting the defects
of the inspected processes [2]. However, their manual production may be time-
consuming and prone-to-error since they require that process engineers check
hundreds of requirements based on the information provided by process speci-
fications, which may be large and complicated.

Modeling languages are available to give process engineers the means to
generate process models and management tools to control them [3]. In partic-
ular, SPEM 2.0 (Systems & Software Process Engineering Metamodel) [4] is a
well-defined standard that is used to model engineering processes. In addition,
SPEM 2.0 provide support for Safety-oriented Processes Lines Engineering
(SoPLE) [5], which is an approach that facilitate the reuse of process-related
elements. However, the model of a process is not enough to prove compliance.
The reason is that process compliance is not only related to the structure of a
process, but also what the tasks in a process do and their effects in the general
process behavior [6]. Therefore, we intend to provide an additional layer of
confidence by offering a logic-based framework that facilitates the reasoning
from standards requirements and the processes they regulate. For this, we have
selected Formal Contract Logic (FCL) [7]. FCL permits to encode rules as
conditionals in which the antecedent is read as a property of a state of affairs,
and the conclusion has a deontic nature, i.e., notions regarding the obligatory,
the permitted and the forbidden. FCL is based on defeasible logic [8], which
contrary evidence defeats earlier reasoning, allowing the management of in-
consistencies. A set of process-related requirements encoded in FCL can be
used to automatize the compliance checking of a given process model. Rea-
soning with FCL rules is possible with Regorous [9], a compliance checker
available on the shelf, which provides traceable conclusions [10].

In this paper, we propose a novel approach for facilitating automatic check-
ing of processes against safety standards that combines: 1) process model-
ing capabilities for representing systems and software process specifications,

132 Paper A

2) normative representation capabilities for adequately encoding the require-
ments prescribed by the safety standards, 3) compliance checking capabilities
to provide the analysis required to conclude whether a process model corre-
sponds to the model with compliant states, and 4) process-line modeling capa-
bilities to systematize the reuse of process-related information. Hitherto, our
proposed methodology has been evaluated with academic examples that show
the potential benefits of its use.

The rest of the paper is structured as follows. Section 7.2 recalls essen-
tial background information. Section 7.3 presents related work. Section 7.4
presents the research summary. Section 7.5 presents preliminary results. Fi-
nally, Section 7.6 presents the concluding remarks and next steps.

7.2 Background
This section introduces essential background required by the current research.

7.2.1 Process-based Compliance
Process-based standards provide detailed guidance, in the form of best prac-
tices, that is used by regulatory bodies to tell suppliers what to achieve, and
how [11]. Such standards prescribe a safety lifecycle, which describes spe-
cific activities related to assuring the safety of the system [12]. One of the
key pieces of evidence for process-based compliance management is the safety
plan, which represents that a plan has been conceived and documented. How-
ever, the provision of the safety plan is not sufficient during the compliance
assessment process. A compliance justification in terms of, e.g., a compliance
checking report, should also be provided to show that the safety plan com-
plies with the requirements [1]. Both, safety plan and compliance justification,
should be agreed upon at the beginning of the project between the regulatory
body and the applicant [13] and used to manage the execution of safety activi-
ties during the engineering of safety-critical systems.

7.2.2 Safety Standard ISO 26262
ISO 26262 [14] addresses functional safety in automotive. ISO 26262 intro-
duces the notion of Automotive Safety Integrity Level (ASIL), which repre-
sents a criterion to specify the item’s necessary safety requirements needed to
ensure a certain level of confidence. ISO 26262 specifies a safety lifecycle that

7.2 Background 133

comprises the entirety of phases from concept through decommissioning of
the system. ISO 26262 is structured in several parts that contain clauses. The
first three clauses, which are similar in all the parts of the standard, only have
an informative nature. Clause 4 is of particular importance since it describes
two compliance conditions required along with all the standard: the general
requirements for compliance, and the interpretation of tables. The rest of the
clauses states the objectives, general information of the clause, inputs for the
clause, requirements, and recommendations to be fulfilled, and the work prod-
ucts that are to be generated. Notes are also included, but they have informative
character. The requirements and recommendations section describes not only
the activities and the tasks required during the engineering process but also the
specific conditions required for compliance.

7.2.3 SPEM 2.0

SPEM (Software & Systems Process Engineering Metamodel) 2.0 [4] is a stan-
dard that describes Method Content (knowledge base of reusable elements) and
Processes. Some elements of SPEM 2.0 are depicted in Table 7.1. A task def-
inition is an assignable unit of work which has expected input/output work
products. When a task is assigned to a process, it is called Task Use. Guidance
provides additional descriptions to method content elements. Custom Category
is a way to organize elements. A Delivery Process is an integrated approach for
performing a project. SPEM 2.0 supports variability management, e.g., Con-
tributes, which allows extending a base in an additive fashion without altering
its existing properties. The open-source tool EPF (Eclipse Process Frame-
work) Composer [15], implements UMA (Unified Method Architecture), a
metamodel that exhibits a good coverage of SPEM 2.0 concepts. Also, EPF
Composer has a proprietary activity diagram which partially generates the exe-
cution semantics of a defined process, and permits the importing and exporting
libraries with projects (a.k.a. plugins) allowing reusability.

Table 7.1: Subset of Icons Used in SPEM 2.0.
Task Definition/Use Work Product Guidance Custom Category Delivery Process

/

134 Paper A

7.2.4 Safety-oriented Process Line Engineering
Safety-oriented Process Line Engineering (SoPLE) [5] is a methodological
approach that permits process engineers to systematize the reuse of process-
related information. Two phases conform SoPLE. The first phase is aimed
at engineering reusable safety process-related commonalities and variabilities.
The second phase is aimed at engineering single safety processes via the se-
lection and composition of the reusable process elements. Currently, SoPLE
is supported by the integration of EPF Composer [15], which is used to model
the base processes, and Base Variability Resolution (BVR) Tool [16], which
allows users to bind the conceptual representation of the variable elements.
The integration of EPF Composer and BVR Tool is described in more details
in [17].

7.2.5 Defeasible Logic
Defeasible logic [18] is a rule-based logic that provides reasoning with incom-
plete and inconsistent information. A defeasible theory is a knowledge base in
defeasible logic, which contains:

1. Facts: indisputable statements;

2. Strict rules: rules in the classical sense, whenever the premises are indis-
putable, so is the conclusion;

3. Defeasible rules: rules that can be defeated by contrary evidence;

4. Defeaters: rules used only to prevent conclusions;

5. Superiority relation: a relation among rules used to define priorities.

Formally,

r : A(r) ↪→ C(r),

where a rule r consists of an antecedent A, the consequence of the rule C, and
the rule ↪→= {→ (strict),⇒ (defeasible), or (defeater)}. A defeasible
proof requires that we:

1. Put forward a supported rule for the conclusion we want to prove;

2. consider all possible reasons against the desired conclusion

3. rebut all counterarguments, by either showing that some premises of the
counterargument do not hold, or another argument defeats the argument.

7.2 Background 135

7.2.6 Formal Contract Logic
Formal Contract Logic (FCL) [7] is a language based on defeasible logic (de-
scribed in Section 7.2.5) and deontic logic of violations [19]. An FCL rule is
represented as follows:

r : a1, ..., an ⇒ c,

where a1, ..., an are the conditions of the applicability of the norm, and c is the
normative effect. Normative effects can be of two types. One type describes
the environment in which the process will be executed (constitutive rules). The
second type triggers deontic effects, such as Obligations, which are mandatory
situations, Prohibitions, which are forbidden situations and Permissions, which
are allowed situations. In addition, if something is permitted the obligation to
the contrary does not hold. There are different types of normative effects, as
presented in Table 7.2. An obligation that has to be obeyed during all instants
of the process is called Maintenance, while obligations that only require to be
fulfilled once are called Achievement. An achievement obligation is Preemptive
if it could be fulfilled even before the obligation is in force. Otherwise, it is
Non-Preemptive. If the obligation persists after being violated, it is considered
Perdurant. Otherwise, it is a Non-Perdurant.

Table 7.2: FCL Rule Notations.
Notation Description
[P]P P is permitted

[OM]P There is a maintenance obligation for P

[OAPP]P There is an achievement, preemptive, and non-perdurant obligation for P

[OANPP]P There is an achievement, non-preemptive and perdurant obligation for P

[OAPNP]P There is an achievement, preemptive and non-perdurant obligation for P

[OANPNP]P There is an achievement, non-preemptive and non-perdurant obligation for P

7.2.7 Compliance by Design Approach
Compliance by design [20] is an approach in which compliance of a process
with a set of rules is verified during process design. For applying this approach,
process traces, which are sequence of tasks in which a process can be executed,
should be defined. Moreover, semantic annotations, which are functions that
describe the environment in which a process operates, are required. In par-
ticular, two types of functions are necessary. The function Ann(n,t,i), which

136 Paper A

returns the state of a trace (n) obtained after a task (t), in the step (i). The func-
tion Force(n,t,i) = {o} associates to each task (t) in a trace (n), in the step (i) a
set of obligations (o).

7.2.8 Regorous

Regorous [9] is a compliance checker, which assists process engineers during
the design of the processes with mapping regulations to specific process and
process steps, so that processes can be designed or re-designed in a compliant
way. Regorous is the result of the implementation of the compliance by design
approach, recalled in Section 7.2.7. To check compliance of an annotated pro-
cess model against a relevant normative system, the procedure executed is the
following:

1. Generate an execution trace of the process.

2. Traverse the trace. For each task in the trace, cumulate the effects of the
task. Use the set of cumulated effects to determine which obligations enter
into force at the current task. Add the obligations obtained from the previ-
ous step to the set of obligations carried over the previous task. Finally, de-
termine which obligations have been fulfilled, violated or a pending, and if
there are violated obligations, check whether they have been compensated.

3. Repeat for all traces.

An obligation can be terminated if the deadline is reached, the obligation
has been fulfilled, or if the obligation has been violated and it is not perdu-
rant. A process is fully compliant if all its traces are compliant (all obligations
have been fulfilled, or if violated, they have been compensated). A process is
partially compliant if there is at least one trace that is compliant.

7.2.9 Specification Patterns

The specification patterns, formulated by Dwyer et al.’s [21], are ”generalized
descriptions of commonly occurring requirements on the permissible state se-
quence of a finite state model of a system.” A selected set of Dwyer et al.’s
patterns is presented in Table 7.3. The reader may refer to [22] to see the com-
plete set of patterns with their entire descriptions. Each pattern has a scope,
which is the extent of the program execution over which the pattern must hold.

7.3 Related work 137

The types of scope that we consider in this paper are: global, which repre-
sent the entire program execution, before, which includes the execution up to a
given state, and after which includes the execution after a given state.

Table 7.3: Dwyer’s Specification Patterns.
Name Description

Absence A given state P does not occur within a scope

Existence A given state P must occur within a scope

Universality A given state P must occur throughout a scope

Precedence A state P must always be preceded by a state Q within a scope

Response A state P must always be followed by a state Q within a scope

7.3 Related work

Compliance to standards is a matter of decision-making. Supporting that deci-
sion-making process requires the provision of the right level of abstraction of
the boundaries prescribed by the standard in a way that the conditions for
compliance can be evaluated. In [23], the authors propose a semi-automatic
compliance process to support the definition of a formal specification of soft-
ware requirements. In [24], the authors present an approach to reason about
the correctness of the process structure, which is based on the combination of
CTN (Composition Tree Notations) [25] and Description Logic (DL). Simi-
larly, in [26] and [27] approaches for enabling the definition process capability
levels, according to ISO/IEC 15504 and CMMI (Capability Maturity Model In-
tegration) v1.3 [28] are presented. In [29], the author presents a formalization
of data usage policies in a fragment of OWL (Web Ontology Language) [30].
All the previous approaches, consider the use of DL to reason about the compli-
ance of the process structure. One of the problems of DL, as presented by [31],
is its relative expressiveness, which makes more difficult the modeling of cer-
tain concepts. Besides, the previous approaches only consider the analysis of
the process structure. Instead, our approach considers the use of a mechanism
that permits the recording of the information that represents the effects caused
by the tasks, which is called compliance effects annotation. This mechanism
is not only useful for checking the compliance of a process structure, but also
its behavior. Other difference, we have included in our approach, is the use of
a SPEM 2.0-compatible software process modeling language.

138 Paper A

SPEM 2.0 community is interested in addressing checking and monitoring
capabilities. In [32], the authors propose a framework that uses LTL (Linear
Temporal Logics) on top of SPEM 2.0 for adding the ability to monitor and
control a real process according to its defined process model. The methodol-
ogy provided in [32] is also used in [33], to ensure process compliance during
execution time. The work presented in [34] aims at facilitating the checking
of constraints that can be defined as part of a specific process model by using
SWRL (Semantic Web Rule Language) [35]. The approach in [34] is also used
in [36], to permit that the description of IT (Information Technology) process
models are checked with the constraints provided by the business perspective.
An approach for representing SPEM 2.0 process models in DL, to provide pro-
cess analysis such as reasoning and consistency checks, is presented in [37].
The generation of the tailored process, in the automotive domain, is done by us-
ing ontologies created in OWL, which outputs are transformed into SPEM 2.0
process models [38]. Our approach combines the capabilities for modeling
standard’s requirements, plus customization of preexisting modeling concepts
to generate a centralized compliance-related knowledge base. Besides, we add
a layer of confidence by considering the use of methods that allow us to de-
rive proofs of compliance. However, we do not use semantic web methods
for deriving our proofs since they are computational methods that deal with
ontologies and rules, whose combination could be undecidable [39].

Approaches for compliance checking have been widely studied in the busi-
ness context. For instance, in [40], the authors propose to capture high-level
policies with a compliance metamodel called REALM (Regulations Expressed
As Logical Models), to support the formalization of compliance requirements
in Real-time Temporal Object Logic [41]. In [42], an object life cycle ap-
proach is used to generate a set of actions for the generation of process models,
in which the order of the model of the process actions is determined and then
combined into process fragments that are connected to decision and merge
nodes. In [43], the authors propose a Service Oriented Architecture-based
compliance governance, called COMPAS, to define compliant process frag-
ments. In [44], authors propose a compliance checking method for business
process models, in which norms are expected to be modeled in BPSL (Business
Property Specification Language) and then formalized in LTL (Linear Tempo-
ral Logic). In [45], the authors propose a solution for ensuring compliance
by using a formal language for specifying a subset of business rules and the
necessary mechanisms for parsing the constraints and ensuring compliance of
process management systems. There are also compliance checking frameworks
that combine the modeling capabilities provided by BPMN (Business Process

7.4 Proposed Research 139

Model and Notations) [46] and Temporal Logics for the modeling of regula-
tions, e.g., [47], and [48]. In our approach, we are using a similar methodology
that those previously presented. However, we do not use Temporal Logics for
creating the formal specification of the standards requirements since such logic
is not able to provide conceptually sound representations of the regulatory re-
quirements governing a process [49].

7.4 Proposed Research

In this section, we present the research methodology used. Then, we present
the motivation and the goals of our intended research.

7.4.1 Research Methodology

Our research methodology, which was inspired in the research methodology for
information systems research proposed in [50], consists of three main stages.

1. Research Initiation: Defines the overall research. In this stage, we identify
and motivate the problem and define the main goal. The resources required
in this stage include the knowledge of state of the art and the state of the
practice. A problem formulation, which describes the main problem and
formulates a motivation about the need to solve it, and an overall research
goal, which is designed to address the main problem, are produced.

2. Research Development: Supports the achievement of the main goal. Ini-
tially, we identify a sub-problem and define a subgoal, which should de-
scribe a specific problem and justify the value of a solution. Later, we design
and develop a solution artifact, i.e., constructs, models, methods, or instan-
tiations, new properties of technical, social, and/or informational resources,
that solves the specific problem. Within the artifact, its desired function-
ality, architecture and actual development have to be described. Then, the
demonstration, which could involve the use of the artifact in experimenta-
tion, case study, proof or other appropriate activity, is carried out. These
four steps are repeated for every research goal. Every iteration may finish
in a global activity called communication, in which the problem and its im-
portance, the artifact, its utility and novelty, the rigour of its design, and its
effectiveness is communicated to the research community and practitioners.

140 Paper A

3. Research Finalization: Compile the project. We integrate the solutions
of the subgoals and validate the overall research contribution, namely, we
observe how well the artifact produced solves the overall problem.

7.4.2 Motivation

Companies aiming at complying with process-based safety standards should
adapt their practices, and provide evidence that demonstrates the fulfillment of
the requirements. In particular, compliance checking of process plans against
safety standards is a mechanism that can be used to demonstrate the adher-
ence of the safety plan to the standard requirements regarding processes. The
result of this demonstration, which can take the form of a compliance check-
ing report, can support the provision of the compliance justification, which
is required during the interaction with the certification bodies in the planning
phases. Compliance checking may involve several steps. Initially, a process
engineer should know and understand the range of the criteria provided in the
standard’s requirements. Then, a careful examination of the process descrip-
tion and the interactions between process elements should be done to identify
whether the elements involved in the planning of the process conforms to the
standards prescriptions. Fulfilled requirements can be considered checkable
for compliance. However, the checking mark is not enough. It is expected that
a compliance checking report informs not only the fulfillment of the require-
ments but also what is the evidence collected that demonstrates that the process
satisfies the requirements. Thus, information regarding the identified elements
is also considered evidence that demonstrates compliance and should be doc-
umented within the checking mark, to produce a proper compliance checking
report. The process engineer can use the compliance checking report to identify
areas in the process that are uncompliant and, if needed, improve the process.
The improvement can be made by modifying or deleting existing process ele-
ments, or by adding new process elements, according to the compliance check-
ing report recommendations. However, improving some process elements may
affect the behavior of others, resulting in new uncompliant situations. There-
fore, complete re-checking may be required. Once fully compliance is reached,
the compliance checking report itself can be used as the evidence required
for the certification bodies to justify process compliance. However, manually
performing all the steps described before can be time-consuming and prone-
to-error since standards are large documents with hundreds of process-related
requirements. Besides, a company can have many safety-critical-related pro-
cesses to be checked. Thus, support for automated compliance checking may

7.5 Preliminary Results 141

be of interest to facilitate the production of compliance checking reports re-
quired during planning phases.

7.4.3 Research Goals
Given the research motivation presented in Section 7.4.2, we formulate our
overall research goal as follows:

Provide an approach that facilitates compliance checking of the
processes used to engineer safety-critical systems against the stan-
dards mandated (or recommended) in the safety-critical context.

In order to address the overall research goal, we define concrete subgoals
that address specific challenges. The subgoals are described as follows:

1. Elicit the requirements to be met to support the automation of process-based
compliance checking in the safety-critical context.

2. Identify methodologies that contribute to automate the compliance checking
of planned process against process-based safety standards.

3. Facilitate the creation of formal specifications of the process-based require-
ments prescribed by safety standards.

4. Analyse existing methodological approaches that could be used for increas-
ing efficiency in process compliance.

7.5 Preliminary Results
Hitherto we have achieved five technical contributions, which we describe in
this section.

7.5.1 Conditions for Checking Compliance
As presented in Section 7.4.2, automatizing the compliance checking is consid-
ered useful to facilitate the procurement of the compliance justification report
required during the planning phases. For facilitating this task, we have selected
the compliance by design approach (recalled in Section 7.2.7). As the defini-
tion recalls, for performing compliance by design we need to model two com-
ponents: the model that describes the norms, which will be propagated into the

142 Paper A

model that describes the process. This propagation is possible by a mechanism
called compliance effects annotation. This mechanism consists of recording
the information that represents the effects caused by the tasks that are aligned
with the requirements influences. Giving this appreciation, we could assume
that the compliance effects unlike other effects caused by the process tasks,
corresponds to the permissible states allowed by the standard’s requirements.
The permissible states trigger other (possible) permissible states that describe a
model with compliant states. When permissible states are possible to be anno-
tated into a process model, the requirements that represent are considered to be
checkable for compliance, because they can occur in the process model. Thus,
we can assign a boolean function to the requirements that is true when it oc-
curs and false otherwise. Based on the previous reasoning, we have defined the
conditions for automatically checking compliance in the safety-critical context
as follows:

Automatic compliance checking of a safety plan involves the an-
notation of the process elements defined to manage and guide the
execution of safety activities with compliance effects, which corre-
spond to the permissible states provided by the standard’s require-
ments, to describe a model with standard-compliant states.

These conditions require the association of three components as depicted
in Figure 7.1.

Figure 7.1: Required Components for Automating Compliance Checking.

The first component is a language to model processes that provides not
only the process modeling capabilities but also the annotation capabilities that
allows the enrichment of process tasks with compliance effects. The second

7.5 Preliminary Results 143

component is a language to encode requirements that provides normative rep-
resentation capabilities, to permit the interpretation of the standard’s require-
ments in an adequate machine-readable form, and the generation of the permis-
sible states that will be used as the compliance effects required for the anno-
tation process. Finally, the third component is a compliance checker that pro-
vides the reasoning capabilities necessary to conclude whether the annotated
process model corresponds to a model with compliant states. This contribution
is presented in [51].

7.5.2 Automated Compliance Checking Vision

Our compliance checking vision (see Figure 7.2), which has the potential to
automatize the compliance checking in the safety-critical context, considers
the combination of the tool-supported methodological approaches that pro-
vide the required capabilities described in Figure 7.1. In particular, the vi-
sion includes the provision of a compliance rule base in FCL (recalled in Sec-
tion 7.2.6), which provides the normative representation capabilities required
for annotating the process models and check compliance. Moreover, we in-
clude EPF Composer, which provides the SPEM 2.0-like process modeling and
annotation capabilities (as recalled in Section 7.2.3), as well as a basic platform
for FCL rule edition. Finally, we include Regorous (recalled in Section 7.2.8),
which provides reasoning capabilities with FCL rules required for compliance
checking. The vision also includes two main roles, i.e., a process engineer,
who should support the interpretation of the standard’s requirements, model,
annotate the process, and analyze the compliance report, and the FCL expert,
who should interpret standard’s requirements and formalize them in FCL.

Figure 7.2: Automated Compliance Checking Vision.

144 Paper A

The tool-support previously described is conceived in three steps. First,
we consider the definition of the mechanisms to annotate process models, to
support the process engineers. Then, we consider the definition of the facilities
required for editing FCL rules to produce the rule set supporting FCL experts.
Finally, we created the mechanisms to ensure EPF Composer and Regorous
compatibility. These mechanisms consist of a series of transformations that
take the models produced by EPF Composer and convert them into the mod-
els that Regorous can process. During the production of the transformations,
we realize that the tool-support provided by Regorous is not process modeling
language agnostic, as the Regorous methodology. In particular, Regorous de-
pends on a specific process modeling language, i.e., BPMN (Business Process
Model and Notation) to produce the compliance report. We need to detach the
compliance report from the modeling language to be able to backpropagate the
compliance results into EPF composer. The result of this discovering is that
Regorous has entered a refactoring period, from which we expect to concretize
our automated compliance checking vision in the future. This contribution is
presented in [52, 53].

7.5.3 ISO 26262-related Compliance Patterns Definition
Formalizing safety requirements in FCL is not an easy task, since it requires
skills, which cannot be taken for granted. For this issue, patterns could rep-
resent a solution. In particular, property specification patterns (as recalled in
Section 7.2.9) were created to ease the formalization of systems requirements
for finite state system model verification. We follow property specification
patterns style, to draw a general definition of safety compliance patterns as
follows:

Safety compliance patterns describe commonly occurring norma-
tive requirements on the permissible state sequence of a finite state
model of a process plan.

With this definition, we developed the mapping between specification pat-
terns and safety compliances patterns. In this mapping, the state of the obli-
gation imposed to an element in the process is considered in a similar way as
the presence of a state in a system, and that the scope corresponds to the in-
terval in a process when the obligations formulated by the pattern are in force.
For the identification of ISO 26262-related compliance patterns, we have de-
lineated five methodological steps, which are depicted in Figure 7.3, by using
SPEM 2.0 elements (recalled in Table 7.1).

7.5 Preliminary Results 145

Figure 7.3: Methodological Steps for Identifying Safety Compliance Patterns.

The first step consists of the selection of a recurring structure in the stan-
dard since, as recalled in Section 7.2.2, safety requirements in ISO 26262 have
implicit and explicit structures. The second step is the description of the obliga-
tion for compliance described in the requirement. The third step is the pattern
description, based on similar (or a combination of) behaviors of the property
specification patterns described in Section 7.2.9. This description is contex-
tualized to safety compliance, based on the mapping previously done. In this
step, we also assign a name for the safety compliance pattern, which reflects
the related obligation for compliance. The fourth step is the definition of the
scope of the pattern, which we also based on the scopes defined to the property
specification patterns. The fifth step is the formalization in FCL. To formalize
the pattern, the scope defined for the pattern requires being mapped into the
rule notations provided by FCL. Therefore, a global scope, which represents
the entire process model execution, can be mapped to maintenance obligation,
which represents that an obligation has to be obeyed during all instants of the
process interval. A before scope, which includes the execution of the process
model up to a given state, can be mapped to the concept of preemptive obli-
gation, which represents that an obligation could be fulfilled even before it is
in force. An after scope, which includes the execution of the process model
until a given state, can be mapped to the concept of non-preemptive obligation,
which represents that an obligation cannot be fulfilled until it is in force. It
should be noted that, in safety compliance, it is possible to define exceptions
for the rules. Therefore, if the obligation admits an exception, the part of the
pattern that corresponds to the exception is described as a permission. The
obligation, to which the exception applies, is modeled as non-perdurant, since
the permission is not a violation of the obligation, and therefore the obligation
does not persist after the permission is granted. In this case, the obligation and
the permission have contradictory conclusions, but the permission is superior
since it represent an exception. This contribution is presented in [54].

146 Paper A

7.5.4 Methodological Guidelines for Formalizing ISO 26262
To be able to formalize effectively, we consider that doing a pre-processing of
ISO 26262 (recalled in Section 7.2.2) was a necessary task. The pre-processing,
which is depicted in Figure 7.4, includes three tasks. Initially, we identify the
essential normative structures, namely those structures that define the safety
process to be adopted for developing the car’s safety-critical systems. Then,
we identified the repetitive structures of the standard that can be considered
Safety Compliance Patterns. With the identified Safety Compliance Patterns,
we create templates to consolidate a reusable knowledge base for future for-
malization jobs. Finally, the knowledge gathered in the pre-processing is used
to define a methodological guideline for facilitating the formalization of nor-
mative clauses in ISO 26262. This contribution is presented in [55].

Figure 7.4: Pre-processing.

From the pre-processing tasks described above, we got an understanding
of what to formalize and how we could proceed in the formalization process.
The parts to be formalized are those that determine the safety lifecycle, namely,
those clauses that start from Clause 5 in every part of the standard ISO 26262.
As Figure 7.5 depicts, initially, the given context of the phase, which is de-
scribed in the safety standard, should be understood. For this, the reading and
the analysis of the objectives and the main general information of the clause
to be formalized are required. Then, the formalization process initiates with
the prerequisites and followed by the title. After, one requirement is selected
from the list of Requirements and Recommendations. We suggest that the re-
quirements are selected in the order they are presented and that the rules are
named following the requirement numeration to ensure consistency and trace-
ability. During the formalization of the requirements, Safety Compliance Pat-
terns templates could be used to facilitate this task. However, if there are no
templates, brainstorming sessions are required. The brainstorming session can
be carried out in different ways, but the most relevant is that the group takes
one requirement at the time, discuss its importance in the compliance process
(e.g., related requirements or permits for tailoring), divide the requirement into
smaller sentences that have only one idea, and discuss every sentence. Finally,

7.5 Preliminary Results 147

when all requirements available in Requirements and Recommendations are
covered, the work products can be formalized.

Figure 7.5: Methodological Guidelines.

7.5.5 Logic-based Framework for Enabling Reuse of Com-
pliance Proofs

Safety-oriented Process Line Engineering (SoPLE) (recalled in Section 7.2.4),
permits process engineers to systematize the reuse of process-related informa-
tion. However, to argue about or prove compliance, SoPLE is not enough.
Therefore, we intend to provide a layer of confidence by offering a logic-based
framework that enables formal proofs of compliance. To do that, we build on
top of results stemming from the legal compliance and business process-related
community. Specifically, we use defeasible logic formalisms (recalled in Sec-
tion 7.2.5), which permit efficient reasoning with incomplete and inconsistent
information, a typical scenario in normative systems. Our approach, which is
called SoPLE&Logic-basedCM, is depicted in Figure 7.6. As Figure depicts,
a process engineer is expected to: 1) Model a SoPL, which includes manu-
ally modeling the skeleton of the process sequence; 2) Formalize the standards
rules, select the set of rules that overlap, and analyze the compliance of the
SoPL commonalities with the overlapping rules; and 3) Analyze the effects
of the tasks that contribute to the variabilities in the in the standard-specific
process. This contribution is presented in [56, 57].

148 Paper A

Figure 7.6: SoPLE&Logic-basedCM Framework.

7.6 Conclusions and Next Steps

This section present concluding remarks and next steps in the research

7.6.1 Conclusions

In this paper, we present a proposal for providing an approach that facili-
tates automated compliance checking of the process plans against the stan-
dards mandated (or recommended) in the safety-critical context. For reaching
this goal, we have defined the conditions for automatically checking compli-
ance based on the application of the compliance by design methodology. The
definition of these conditions, allow us to proposed an automated compliance
checking vision that suits the needs in the safety-critical context. The com-
pliance checking vision combines: 1) process modeling and process annota-
tion capabilities that are required for defining process models checkable for
compliance, 2) normative representation capabilities that permit the interpre-
tation of the standard’s requirements in an adequate machine-readable form,
and the generation of the compliance effects, which are the permissible states
required for the annotation process, 3) reasoning capabilities necessary to con-
clude whether an annotated process model corresponds to the model with the
compliant states described in the standard’s requirements, and 4) process-line
modeling capabilities to systematize the reuse of process-related information.
These capabilities are tool-supported. SPEM 2.0 (Software and Systems Pro-
cess Engineering Metamodel)-like implementation, called EPF (Eclipse Pro-
cess Framework) provides the modeling and annotation capabilities. FCL (For-
mal Contract Logic) provides the normative representation capabilities. Regor-
ous provides compliance checking capabilities. In addition, the combination of

7.6 Conclusions and Next Steps 149

EPF Composer and BVR (Base Variability Resolution) provides the process-
line modeling capabilities. To support the compliance checking vision, we
identified the essential elements required to generate process models checkable
for compliance in SPEM 2.0-like process models, and the transformations nec-
essary to automatically generate the models that can be processed by Regorous.
Hitherto, our proposed methodology has been evaluated with academic exam-
ples that show the potential benefits of its use. Our work represents a novelty in
process-based compliance in the safety-critical context, which may contribute
to increasing efficiency, via automation, and confidence, via formal checking.
It also contributes to cross-fertilize previously isolated communities, i.e., the
safety-critical and the legal contexts.

7.6.2 Next steps
The results of our thesis can be improved in several directions. Here, we
present the suggested areas of research in the future.

• The mapping of regulations to the process tasks, i.e. the annotation of the
compliance effects, is done manually, by deducing the effects that can even-
tually be caused by the tasks in the general compliance status. When the
processes are small, this mapping is straightforward. However, when pro-
cesses are extensive, the mapping may be difficult to achieve. Therefore,
methodologies and tactics should be investigated so that the process annota-
tion does not become a burden for the application of the compliance checking
approach.

• The automated compliance checking vision, described in this paper, only
permits that the analysis of compliance is performed in the sequence of tasks
assigned to a process plan. However, a process plan is not only comprised
by tasks but also it contains other process elements, such as roles and work
products. We aim at extending our approach for permitting that compliance
effects annotated to process elements beyond tasks are also included in the
analysis of compliance.

• The compliance checking methodology used in our approach is, undoubt-
edly, process modeling language agnostic. However, the current tool-support
lacks agnosticism, i.e., it depends on a specific modeling tool to provide com-
pliance checking results. This characteristic impedes the back-propagation
of the compliance results in our selected process modeling language. There-
fore, we need to investigate methods and strategies that allow us to represent

150 Paper A

the compliance checking results in an agnostic way so that we can concretize
our compliance checking vision.

• We have limited our analysis of patterns and methodological guidelines to
the functional safety standard ISO 26262. This restriction may also limit the
applicability of our approach. To expand our horizon, we need to generalize
the use of patterns and methodological guidelines so that we can incorporate
a wide range of standards. Therefore, comparative studies between standards
and definition of generalized patterns, as well as standard-specific patterns
could be investigated.

• The reuse of proofs of compliance may increase efficiency and confidence in
compliance checking. Thus, we aim at studying in deep the conditions that
are required for compositionality of proofs of compliance. We also need to
provide metrics for measuring increased confidence and increased efficiency.

• Our work has only be evaluated with academic examples. Therefore, we
require to further validating the approach with more complex cases, i.e., in-
dustrial cases.

• We need to better situate our work in the context of the state of the art. There-
fore, an extended and systematic literature review will be performed.

• To augment the impact for our results, we plan to integrate our automated
compliance checking approach to the platform created by the European project
AMASS (Architecture-driven, Multi-concern and Seamless Assurance and
Certification of Cyber-Physical Systems) [58].

Bibliography

[1] B. Gallina, F. Ul Muram, and J. Castellanos Ardila, “Compliance of Ag-
ilized (Software) Development Processes with Safety Standards: a Vi-
sion,” in 4th international workshop on Agile Development of Safety-
Critical Software (ASCS), 2018.

[2] J. Jiménez, J. Amelio, M. Merodio, and L. Sanz, “Computer Standards
& Interfaces Checklists for compliance to DO-178C and DO-278A stan-
dards,” Computer Standards & Interfaces, vol. 52, pp. 41–50, 2017.

[3] A. Fuggetta and E. Di Nitto, “Software process,” in Future of Software
Engineering, pp. 1–12, 2014.

[4] O. M. Group, “Software & Systems Process Engineering Meta-Model
Specification. Version 2.0.,” 2008.

[5] B. Gallina, I. Sljivo, and O. Jaradat, “Towards a Safety-oriented Pro-
cess Line for Enabling Reuse in Safety Critical Systems Development
and Certification,” in 35th Annual IEEE Software Engineering Workshop
(SEW), pp. 148–157, 2012.

[6] M. Hashmi, G. Governatori, and M. Wynn, “Business process data com-
pliance,” in International Workshop on Rules and Rule Markup Lan-
guages for the Semantic Web, pp. 32–46, 2012.

[7] G. Governatori, “Representing business contracts in RuleML,” Interna-
tional Journal of Cooperative Information Systems, vol. 14, no. 02n03,
pp. 181–216, 2005.

[8] D. Nute, “Defeasible Logic,” in International Conference on Applications
of Prolog, pp. 151–169, Springer, 2001.

151

152 BIBLIOGRAPHY

[9] G. Governatori, “The Regorous Approach to Process Compliance,” in
IEEE 19th International Enterprise Distributed Object Computing Work-
shop (EDOCW), pp. 33–40, IEEE, 2015.

[10] S. Sadiq, G. Governatori, and K. Namiri, “Modeling Control Objectives
for Business Process Compliance,” in International Conference on Busi-
ness Process Management, pp. 149–164, 2007.

[11] S. Vilkomir, J. Bowen, and A. Ghose, “Formalization and assessment
of regulatory requirements for safety-critical software,” Innovations in
Systems and Software Engineering, vol. 2, no. 3-4, pp. 165–178, 2006.

[12] IEC, “Functional safety. Essential to overall safety,” 2015.

[13] Bel V, BfS, CSN, ISTec, ONR, SSM, and STUK, “Licensing of safety
critical software for nuclear reactors. Common position of seven Euro-
pean nuclear regulators and authorised technical support organisations,”
tech. rep., 2010.

[14] International Organization for Standardization (ISO) 26262:2018, “Road
vehicles – Functional safety,” 2018.

[15] Eclipse Foundation, “Eclipse Composer Framework.”
https://www.eclipse.org/epf/.

[16] Ø. Haugen and O. Øgård, “BVR – Better Variability Results,” in Interna-
tional Conference on System Analysis and Modeling, pp. 1–15, 2014.

[17] M. Javed and B. Gallina, “Safety-oriented Process Line Engineering via
Seamless Integration between EPF Composer and BVR Tool,” in 22nd
International Systems and Software Product Line Conference, pp. 23–28,
ACM, 2018.

[18] G. Antoniou, D. Billington, G. Governatori, and M. J. Maher, “Repre-
sentation Results for Defeasible Logic,” ACM Transactions on Computa-
tional Logic, no. 2, pp. 255–287, 2000.

[19] G. Governatori and A. Rotolo, “Logic of Violations: A Gentzen System
for Reasoning with Contrary-To-Duty Obligations,” Australasian Journal
of Logic, vol. 4, no. 4, pp. 193–215, 2006.

[20] R. Lu, S. Sadiq, and G. Governatori, “Compliance Aware Business Pro-
cess Design,” in International Conference on Business Process Manage-
ment, pp. 120–131, 2007.

BIBLIOGRAPHY 153

[21] M. Dwyer, G. Avrunin, and J. Corbett, “Property Specification for Finite-
State Verification,” in 2nd Workshop on Formal Methods in Software
Practice, pp. 7–15, 1998.

[22] Santos Laboratory, “Specification Patterns .”
http://patterns.projects.cs.ksu.edu/.

[23] P. Engiel, J. Sampaio do Prado Leite, and J. Mylopoulos, “A Tool-
Supported Compliance Process for Software Systems,” in 2017 11th In-
ternational Conference on Research Challenges in Information Science
(RCIS), pp. 66–76, IEEE, 2017.

[24] E. Kabaale, L. Wen, Z. Wang, and T. Rout, “Representing Software Pro-
cess in Description Logics: An Ontology Approach for Software Process
Reasoning and Verification,” in Software Process Improvement and Ca-
pability Determination, pp. 362–376, Springer, 2016.

[25] L. Wen, D. Tuffley, and T. Rout, “Using Composition Trees to Model and
Compare,” in International Conference on Software Process Improvement
and Capability Determination, no. March 2014, pp. 1–15, Springer, 2011.

[26] D. Proença and J. Borbinha, “Formalizing ISO/IEC 15504-5 and SEI
CMMI v1.3 – Enabling automatic inference of maturity and capability
levels,” Computer Standards and Interfaces, 2018.

[27] G. Soydan and M. Kokar, “A Partial Formalization of the CMMI-DEV
— A Capability Maturity Model for Development,” Journal of Software
Engineering and Applications, vol. 5, no. 10, pp. 777–788, 2012.

[28] SEI Carnegie Mellon, “CMMI® for Development, Version 1.3 CMMI-
ACQ, V1.3,” Tech. Rep. November, Software Engineering Institute,
Carnegie Mellon, 2010.

[29] P. Bonatti, “Fast Compliance Checking in an OWL2 Fragment,” in 27th
International Joint Conferences on Artificial Intelligence Organization
(IJCAI), pp. 1746–1752, 2018.

[30] OWL Working Group, “Web Ontology Language (OWL),”
https://www.w3.org/OWL/.

[31] A. Borgida, “On the relative expressiveness of description logics and
predicate logics,” Artificial intelligence, vol. 82, no. 1-2, pp. 353–367,
1996.

154 BIBLIOGRAPHY

[32] R. Bendraou, B. Combemale, X. Crégut, and M. Gervais, “Definition
of an executable SPEM 2.0,” in 14th Asia-Pacific Software Engineering
Conference (ASPEC), pp. 390–397, 2007.

[33] F. Golra, F. Dagnat, R. Bendraou, and A. Beugnard, “Continuous Process
Compliance Using Model Driven Engineering,” in International Confer-
ence on Model and Data Engineering, pp. 42–56, Springer, 2017.

[34] D. Rodrı́guez, E. Garcia, S. Sanchez, and C. Rodrı́guez-Solano Nuzzi,
“Defining software process model constraints with rules using OWL and
SWRL,” International Journal of Software Engineering and Knowledge
Engineering, vol. 20, no. 04, pp. 533–548, 2010.

[35] I. Horrocks, P. Patel-schneider, H. Boley, S. Tabet, B. Grosof, and
M. Dean, “SWRL: A Semantic Web Rule Language Combining OWL
and RuleML,” W3C Member submission, vol. 21, no. 79, pp. 1–31, 2004.

[36] M. Valiente, E. Garcı́a-Barriocanal, and M. Sicilia, “Applying Ontology-
Based Models for Supporting Integrated Software Development and IT
Service,” IEEE Transactions on Systems, Man and Cybernetics, Part C:
Applications and Reviews, vol. 42, no. 1, pp. 61–74, 2012.

[37] S. Wang, L. Jin, and C. Jin, “Represent S oft w are Process Engineering
Metamode l in Description Logic,” World Academy of Science, Engineer-
ing and Technology, vol. 11, pp. 109–113, 2006.

[38] H. Jost, S. Köhler, and F. Köster, “Towards a Safer Development of
Driver Assistance Systems by Applying Requirements-Based Methods,”
in 14th International IEEE Conference on Intelligent Transportation Sys-
tems (ITSC), pp. 1144–1149, IEEE, 2011.

[39] P. Hitzler, M. Krötzsch, and S. Rudolph, Foundations of Semantic Web
Technologies. Chapman & Hall/CRC,, 2009.

[40] C. Giblin, S. Müller, and B. Pfitzmann, “From Regulatory Policies to
Event Monitoring Rules: Towards Model-Driven Compliance Automa-
tion,” tech. rep., IBM Research Laboratory, Zurich, 2006.

[41] C. Giblin, A. Liu, S. Müller, B. Pfitzmann, and X. Zhou, “Regulations Ex-
pressed As Logical Models (REALM),” tech. rep., IBM China Research
Lab, 2005.

BIBLIOGRAPHY 155

[42] J. Küster, K. Ryndina, and H. Gall, “Generation of Business Process
Models for Object Life Cycle Compliance,” in International Conference
on Business Process Management, pp. 165–181, Springer, 2007.

[43] F. Daniel, F. Casati, E. Mulo, U. Zdun, S. Strauch, D. Schumm, F. Ley-
mann, S. Sebahi, F. De Marchi, and M. S. Hacid, “Business compli-
ance governance in service-oriented architectures,” in International Con-
ference on Advanced Information Networking and Applications (AINA),
pp. 113–120, 2009.

[44] A. Awad, G. Decker, and M. Weske, “Efficient Compliance Checking
Using BPMN-Q and Temporal Logic,” International Conference on Busi-
ness Process Management, pp. 326–341, 2008.

[45] L. Ly, K. Göser, S. Rinderle-ma, and P. Dadam, “Compliance of Seman-
tic Constraints – A Requirements Analysis for Process Management Sys-
tems,” in 1st Int’ernational Workshop on Governance, Risk and Compli-
ance - Applications in Information Systems (GRCIS), 2008.

[46] Object Management Group, “Business Process Model and Notation Ver-
sion 2.0,” 2011.

[47] D. Schumm, O. Turetken, N. Kokash, A. Elgammal, F. Leymann, and
W. van den Heuvel, “Business Process Compliance through Reusable
Units of Compliant Processes,” in International Conference on Web En-
gineering, pp. 325–337, 2010.

[48] M. El Kharbili, “Business Process Regulatory Compliance Management
Solution Frameworks: A Comparative Evaluation,” in 8th Asia-Pacific
Conference on Conceptual Modelling., pp. 23–32, 2012.

[49] G. Governatori and M. Hashmi, “No Time for Compliance,” IEEE
19th International Enterprise Distributed Object Computing Workshop,
(EDOCW), pp. 9–18, 2015.

[50] K. Peffers, T. Tuunanen, M. Rothenberger, and S. Chatterjee, “A De-
sign Science Research Methodology for Information Systems Research,”
Journal of Management Information Systems, vol. 24, no. 3, pp. 45–77,
2007.

[51] J. Castellanos Ardila, Facilitating Compliance Checking of Processes
against Safety Standards. Licentiate thesis, Mälardalen University, 2019.

[52] J. P. Castellanos Ardila, B. Gallina, and F. UL Muram, “Transforming
SPEM 2.0-compatible Process Models into Models Checkable for Com-
pliance,” in 18th International SPICE Conference, 2018.

[53] J. P. Castellanos Ardila, B. Gallina, and F. Ul Muram, “Enabling Com-
pliance Checking against Safety Standards from SPEM 2.0 Process Mod-
els,” in Euromicro Conference on Software Engineering and Advanced
Applications, 2018.

[54] J. P. Castellanos Ardila and B. Gallina, “Formal Contract Logic Based
Patterns for Facilitating Compliance Checking against ISO 26262,” in
1st Workshop on Technologies for Regulatory Compliance (TeReCom),
pp. 65–72, 2017.

[55] J. Castellanos Ardila, B. Gallina, and G. Governatori, “Lessons Learned
while formalizing ISO 26262 for Compliance Checking,” in 2nd Work-
shop on Technologies for Regulatory Compliance (TeReCom), pp. 1–12,
CEUR-Workshop Proceedings, 2018.

[56] J. Castellanos Ardila and B. Gallina, “Towards increased efficiency and
confidence in process compliance,” in The 24th EuroAsiaSPI Conference,
vol. 748, 2017.

[57] J. P. Castellanos Ardila and B. Gallina, “Towards Efficiently Checking
Compliance Against Automotive Security and Safety Standards,” in The
7th IEEE International Workshop on Software Certification (WoSoCer),
2017.

[58] AMASS., “Architecture-driven, Multi-concern and Seamless Assurance
and Certification of Cyber-Physical Systems,” 2016. http://www.amass-
ecsel.eu/.

Chapter 8

Paper B:
Separation of Concerns in
Process Compliance
Checking:
Divide-and-Conquer

Julieth Patricia Castellanos Ardila, Barbara Gallina.
Proceedings of the European Systems, Software & Service Process Improve-
ment & Innovation. EuroAsiaSPI 2020. Communications in Computer and
Information Science, vol 1251. Springer, Cham. 2020.

157

Abstract

Compliance with multiple standard’s reference models has the potential to im-
prove process quality but is a challenging task faced by manufacturers in the
safety-critical context. To facilitate this task, we propose a method for auto-
mated process compliance checking that can be used as a basis for decision
making. Our method requires users to create a knowledge base of formalized
requirements and processes checkable for compliance. In this paper, we ex-
ploit the natural separation of concerns in the state of practice to offer adequate
means to facilitate the creation of the required concepts by using a divide and
conquer strategy. For this, we discuss the impact of process factors in com-
pliance assessment and provide separation of concerns based on SPEM 2.0
(Systems and Software Process Engineering Metamodel). Then, we illustrate
the defined concerns and discuss our findings.

8.1 Introduction 159

8.1 Introduction

In the safety-critical context, standards commonly prescribe requirements that
include the tasks to be performed, and resources ascribed to such tasks, i.e.,
personnel, work products, tools, and methods, which are also framed with es-
sential properties. With the growing software development complexity, there is
a need to adequately allocated such resources during the software development
lifecycle [1]. However, this task becomes difficult due to software process di-
versity, i.e., the simultaneous use of multiple reference models within a single
project [2]. To tackle this situation, organizations produce generic software
process baselines. In the analysis of these baselines, gaps to best practices
could be discovered [3], and potential improvements, based on standard’s in-
formation, can be performed [4]. Thus, part of the software process improve-
ment effort required in the safety-critical context is expended in process-based
compliance.

A high level of investment in process-based compliance could result in an
improvement in productivity and quality, especially when there is process di-
versity [2]. Process-based compliance could be supported by checking that the
process used to engineer safety-critical systems fulfill the properties set down
by standards at given points. The resulting compliance checking reports can
be used not only to demonstrate to auditors that process plans fulfill the pre-
scribed requirements [5], but also to discover essential improvement aspects.
Thus, in previous work [6, 7], we presented a method for automated compli-
ance checking of processes plans. Our method requires users to: 1) model a for-
mal specification of the standard requirements by using FCL (Formal Contract
Logic) [8] and 2) model a specification of the process plans that are checkable
for compliance, i.e., processes augmented with compliance information, by
using SPEM 2.0 (Systems and Software Process Engineering Metamodel) [9].
Thus, an essential step of our method is dedicated to creating well-formed spec-
ifications.

In this paper, we aim at facilitating the creation of the specifications re-
quired for automated compliance checking. Given the natural separation of
concerns in the state of practice, we try to offer adequate means to support the
separated concepts based on process structure and different standards, by us-
ing a divide-and-conquer strategy. For this, we discuss the impact of process
factors in compliance assessment and justify the separation of concerns based
on SPEM 2.0 concepts. SPEM 2.0 is a well-defined metamodel that not only
permits the modeling of software processes but also the customization of el-
ements to provide standards-related information. Then, we illustrate the use

160 Paper B

of the defined concerns with the requirements prescribed in the railway sector.
Finally, we discuss the potential benefits and implications of our work.

The paper is organized as follows. We present essential background in
Section 8.2. We discuss the separation of concerns within the regulatory space
in Section 8.3. We illustrate the defined concerns in Section 8.4. We discuss
our findings in Section 8.5. We present related work in Section 8.6. Finally,
we conclude the work and outline future work in Section 8.7.

8.2 Background
This section presents essential background required in this paper.

8.2.1 Standards in the Safety-critical Context

Compliance with safety standards typically involves the provision of evidence
regarding process plans since standards reference frameworks contain require-
ments that prescribe artifacts related to the planning of activities [10]. In par-
ticular, process reference models describe a set of tasks to be performed dur-
ing the development of safety-critical systems. For example, ISO 26262 [11],
which is the standard that applies in automotive, proposes a V-model, in which
the activities related to the development of the software are contrasted with the
ones related to verification and validation. The standard DO-178C [12] de-
scribes a set of objectives that implicitly define a lifecycle model. ECSS-E-ST-
40C [13], which applies in space software projects, focuses on the definition
of software development phases and their characteristics. In all the standards,
the detailed breakdown of the work can be inferred from the requirements.
Moreover, process-related standards commonly have sections in which they
describe the necessary inputs and the mandatory outputs of the safety lifecy-
cle phases. The qualification of personnel may vary from one standard to the
other. ISO 26262 mentions the importance of qualified personnel, but it leaves
the decision to the company, which should have a minimum set of internal
requirements in that matter. In ECSS E-ST-40C, the degree of independence
between developers and reviewers is highlighted. In DO-178C, specific roles
are defined for specific phases in the lifecycle. Similarly, tool qualification is
required in the safety-critical context. In ECSS-E-ST-40C, supporting tools
are a customer/supplier agreement that shall be documented in the plan. A
specific standard annex, called DO-330 [14], defines that for Avionics, the tool
qualification is in itself a process necessary to obtain qualification credit. For

8.2 Background 161

ISO 26262, evidence regarding the tool suitability for specific uses should be
shown. All the standards prescribe methods and techniques that should be used
to perform specific tasks in the form of guidance.

8.2.2 CENELEC EN 50128

CENELEC EN 50128 [15], which is the standard that focuses on software
aspects regarding control and protection applications in railways, prescribes
requirements that target the different elements described in Section 8.2.1. In
Table 8.1, we recall a set of requirements that apply to the Architecture and
Design Phase.

Table 8.1: CENELEC EN 50128-Architecture and Design Phase
Element Description

Inputs Software Requirements Specification (SRS).

Outputs

Software Architecture Specification (SAS), Software Design Specification (SDS), Soft-
ware Interface Specifications (SIS), Software Integration Test Specification (SITS), Soft-
ware/Hardware Integration Test Specification (SHITS), Software Architecture and Design
Verification Report (SADVR).

Tasks

1) Software Architecture Specification, 2) Software Interface Specification, 3) Software
Design Specification, 4) Selection/Creation Coding Standards, 5) Software Integration
Test Specification, 6) Software/Hardware Integration Test Specification, 7) Software Ar-
chitecture and Design Verification Report

Roles Designer for task 1), 2), 3) and 4). Integrator for tasks 5) and 6). Verifier for task 7). The
designer shall be competent in safety design principles and EN 50128.

Tools Suitable tools with a certificate of validation (e.g., Matlab and MS Word)

Guidelines

Guidance for the Software Architecture Specification task (req-7-3-4-5), guidance for SAS
(req-7-3-4-10), guidance for the SIS (req-7-3-4-19), guidance for SDS (req-7-3-4-23),
guidance for the selection/creating coding standards (req-7-3-4-25), guidance for the de-
sign method selection (req-7-3-4-28), guidance for the software integration test specifica-
tion task (req-7-3-4-31), guidance for the software/hardware integration test specification
(req-7-3-4-36), guidance for SHITS (req-7-3-4-37), guidance for the Software Architec-
ture and Design verification report (req-7-3-4-42)

CENELEC EN 50128 also refers to quality management and continuous
improvement of the systems within the organizations. Companies may have
quality assurance mechanisms that conform to different frameworks such as
Software Process Improvement and Capability Determination (SPICE), also
known as ISO/IEC 15504. In particular, part 5 [16] provides processes that
serve primary parties during the lifecycle of software. We select the process
outcome database design, as an example. Process outcomes are essential for
determining the result of the execution of the process.

162 Paper B

8.2.3 Software Processes and SPEM 2.0
A software process [17] provides a broad and comprehensive concept to frame
and organize the different tasks required during the development of software.
To ensure understanding, documentation, and exchange of process specifica-
tions, technological support is required [18]. In particular, SPEM 2.0 (Systems
and Software Process Engineering Metamodel) [9] is a software process mod-
eling language that provides the capability of modeling method content inde-
pendently from their use in processes. Method content describes different pro-
cess elements as presented in Figure 8.1a. Such elements are related to each
other, as presented in Figure 8.1b. EPF (Eclipse Process Framework) Com-
poser [19], which was recently migrated from Eclipse Galileo 3.5.2 to Eclipse
Neon 4.6.3. [20], provides the environment for modeling SPEM 2.0-like pro-
cess models.

(a) SPEM 2.0 Elements (b) Elements Relationships

Figure 8.1: Content Elements Definitions in SPEM 2.0.

8.2.4 Formal Contract Logic
Formal Contract Logic (FCL) [8] is a logic that supports the modeling of norms
representing obligations and permissions in a normative context that can be de-
feated by evolving knowledge. Thus, FCL is classified as a defeasible deontic
logic. In FCL, a rule has the form: r: a1, ..., an ⇒ c, where r is the rule identi-
fier, a1, ..., an are the propositions that represent the conditions of the applica-
bility of the norm, and c is the concluding proposition that contains normative
effects.

8.2.5 Automatic Compliance Checking Method
Our method for automated compliance checking of processes plans [6], re-
quires users to model processes with SPEM 2.0 (recalled in Section 8.2.3)

8.2 Background 163

and formalize standards requirements with FCL (recalled in Section 8.2.4).
Rules in FCL are composed of propositions that correspond to the properties
described in the requirements of the standard. Such properties can be annotated
to the process tasks that fulfill them. Annotations reflect not only the state of
the task but also the effects such task produces on subsequent tasks. For this
reason, FCL propositions describe compliance effects, which annotated on pro-
cess models permit the derivation of process models checkable for compliance
(compliance state representation of such processes that permits automatic rea-
soning). We explain the modeling part of our method with an example from
ISO 26262 presented in [6]. The modeled requirement is obtained from part 6
clause 8, number 8.1, which states: “Specify software units in accordance with
the architectural design and the associated safety requirements”. The FCL
representation of this requirement is presented in Equation 8.1.

r2.1 : addressSwUnitDesignProcess⇒ [O]− performSpecifySwUnit

r2.2 : performProvideSwArchitecturalDesign,

performProvideSwSafetyRequirements⇒ [P]performSpecifySwUnit

r2.2>r2.1

(8.1)

To create the process models checkable for compliance, we fist need to
model the compliance effects described in the propositions of the rules. For
example, the rules on Equation 8.1 contains five propositions, namely ad-
dressSWUnitDesignProcess, -performSpecifySwUnit, performProvideSwAr-
chitecturalDesign, performProvideSwSafetyRequirements and performSpeci-
fySwUnit, which are presented in Figure 8.2a. Then, we need to assign such
compliance effects to the tasks that fulfill them. For example, the task Start
software Unit Design Process indicates that the process is performed and has
two inputs. Therefore the annotated compliance effects are addressSwUnitDe-
signProcess, performProvideSwArchitecturalDesign and performProvideSwSafe-
tyRequirements (see Figure 8.2b). The reader can discover more details about
the previous modeling in [6].

8.2.6 Separation of Concerns: Divide-and-conquer Strategy
The Romans had a strategy called divide-and-conquer, which considers that
one power breaks another power into more manageable pieces to easier take
control. In software engineering, this strategy is adopted as a principle to man-
age complexity [21]. Particularly, divide-and-conquer is seen in the principle
of separation of concerns [22], which refers to the ability to separate and orga-
nize only those parts (or properties) of a system that are relevant to a particular

164 Paper B

(a) Compliance Effects. (b) Annotated Task.

Figure 8.2: Method for Automatic Compliance Checking: The Modeling Part.

concept or to a particular goal. A concern may be defined as a functional notion
or more broadly as any piece of interest or focus.

8.3 Separation of Concerns within the Regulatory
Space

The relationship between the requirements imposed by safety standards (re-
called in Section 8.2.1) and the targeted software processes (recalled in Sec-
tion 8.2.3) is complex. The reason is that a single requirement may be impact-
ing one element in the process, causing effects to several elements. Moreover,
each element in a process may be impacted by several requirements. In addi-
tion, software process diversity, as recalled in the introductory part, may lead
to problems in the understanding of what is needed for managing the compli-
ance. Thus, we have a compact set of requirements, which we need to manage
appropriately. By applying the divide-and-conquer strategy, we could break
down such complexity and provide a better view of the requirements.

Separation of concerns (recalled in Section 8.2.6) applied to the regulatory
space could be oriented to the process-specific factors. In particular, the aspects
that requirements regulate are the tasks, their specific order, the mandatory
input and outputs of the tasks, the personnel performing the tasks, the tools as
well as the recommended techniques that should be used to do the tasks. Thus,
the concept of a task is central, to which properties such as the definition of
roles, inputs, outputs, tools, and techniques must apply.

However, requirements not only define the properties of the tasks. For
example, roles and tools should have a qualification. This kind of requirements

8.3 Separation of Concerns within the Regulatory Space 165

does not directly affect the tasks. They directly affect other elements, which
in turn have effects on tasks. Thus, a process can be deemed compliant if
we can demonstrate that the process contains the permitted tasks, such tasks
have associated the prescribed roles, inputs, outputs, tools, and techniques, and
if the associated elements have associated their related properties. With such
consideration, dividing requirements in terms of the elements they target, as
well as the specific properties defined for each element, seems to be the natural
way in which concerns should be separated.

According to SPEM 2.0 (recalled in Section 8.2.3), a task is performed by
a role, requires inputs and provides outputs, is guided by guidance, and a tool
is used (see Figure 8.1b). Thus, the tasks are the central elements, to which the
other elements are allocated. Our method for compliance checking (recalled
in Section 8.2.5), requires that all the properties defined by the requirements
of the standard are also allocated (or annotated) to the tasks included in the
process plan since such annotations describe the permitted compliance states
of the tasks. An abstraction of such a concept can be seen in Figure 8.2b.
However, not only tasks provide compliance effects to the overall process. As
we previously concluded, elements different from tasks too.

Figure 8.3: Annotated Role.

Thus, we propose a new abstraction of
model annotation, in which tasks will no
longer be the placeholder of the compli-
ance effects caused by the process elements
ascribed to them. Instead, every element
will carry out its own responsibility in terms
of compliance information (see Figure 8.3).
The novelty of the approach is threefold.
First, we free the tasks from unnecessary annotations. Second, annotations on
shared process elements should be done only once in a process model. Third,
annotated elements have the potential to be reused in other processes and easily
re-checked.

To facilitate the creation of compliance effects, which later can be used
to form the propositions of the rules in FCL (recalled in section 8.2.4), we
propose two aspects. The first aspect is the definition of icons, which includes
the description of the targeted elements, as presented in Table 8.2. The second
aspect is the definition of templates that facilitate the creation of compliance
effects, as presented in Table 8.3. Both, icons and templates are based on the
concepts described in SPEM 2.0 in Figure 8.1.

166 Paper B

Table 8.2: Icons Describing Specific Compliance Effects.
Role Work Product Guidance Tool

Task
Definition Property Definition Property Definition Property Definition Property

Table 8.3: Compliance Effects Targeting Differentiated Process Elements
Element target Definitional propositions Property-based Propositions

In/Output elements provide{Element} {Element}with{Property}

Roles performedBy{Role} {Role}with{Property}

Tools used{Tool} {Tool}with{Property}

Guidelines guidedBy{Guidance} {Guidance}with{Property}

Tasks perform{Task}

8.4 Illustrative Example

We illustrate the separation of concerns in the regulatory space by taking into
account the requirements for the architecture and design phase proposed by
CENELEC EN 50128 (see Section 8.2.2). Initially, we need to classify the
requirements in terms of the process elements they target. This operation is
already presented in Table 8.1. From this division, we can describe the def-
initional and property-based propositions derived from these requirements by
using the propositions templates shown in Table 8.3, and the icons described
in Table 8.2. Then, we model them as SPEM 2.0-like elements in the guidance
part of EPF Composer. Figure 8.4 presents the instantiation of the templates
with the predefined icons. For example, the designer should be defined (defini-
tional proposition), and the designer should have competence in safety design
and EN 50128 (two property-oriented propositions). The previous proposi-
tions are highlighted in red in Figure 8.4. A similar analysis is done with all
the requirements.

The next step is to annotate the compliance effects defined in Figure 8.4
into a process plan. For simplicity, we described a process plan taking into
account the process elements described in the standard, recalled in Table 8.1
(see Figure 8.5). As we can see in Figure 8.5, the process plan contains a series
of tasks and elements ascribed to such tasks. To annotate the effect, we need
to compare each element in Figure 8.5 with the list of compliance effects in
Figure 8.4. In this case, the names of the process elements can be found in the

8.4 Illustrative Example 167

(a) (b)

Figure 8.4: CENELEC EN 50128 - Architecture and Design Phase.

names of the compliance effects since both models are taken from the standard.
Thus, the annotation process is straightforward.

Figure 8.5: Process Plan Targeting the Architecture and Design Phase

Figure 8.6 shows the annotation of the task SW Design Definition. As the
figure depicts, this task has one direct CENELEC EN 50128-related compli-

168 Paper B

ance effect, i.e., performSoftwareDesignDefinition. The remaining eight com-
pliance effects are allocated to the elements that directly fulfill them, e.g., the
task is performed by a designer, who should have a certificate of UML, and that
has knowledge of EN 50128. As we can see in Figure 8.5, some tasks are done
by the same role. e.g., the designer should perform the first four tasks, and the
same tools should be used. Thus, our approach simplifies the annotations pro-
cess since all those indirect compliance effects are not required to be annotated
in each task. To make the process also compliant with ISO/IEC 15504, the
outcome prescribed by the effect provideDatabase (we assume it was modeled
as in Figure 8.4), should be included in the modeling of the process (see the
work product Database highlighted with a dotted line in Figure 8.6).

Figure 8.6: Task and their Ascribed Elements Annotated with Effects

8.5 Discussion
In this section, we present a discussion regarding our method.

8.5.1 Compliance-related Process Information
Compliance management can benefit from our proposed modeling strategy.
First, the icons describing definitions (see Table 8.2) will correspond to the
software process elements required in a fully compliant process plan. Thus,
such visual descriptions make the process engineer compliance-aware during
software process modeling. Second, the templates presented in Table 8.3 aim
at relating process elements with their properties. Thus, discovering the com-
pliance effects, which the software process element produces in the context of
the whole process, is facilitated. Third, as every process element carries out

8.5 Discussion 169

its compliance information, the annotation process is more efficient since it is
expected that tasks share their associated elements, i.e., roles, guidance, tools,
and work products (See Figure 8.6). Moreover, compliance effects from differ-
ent standards can be added to software process elements without limitations,
helping to define multi-compliant process-checkable for compliance. Finally,
we propose a standardized template-based mechanism for creating definitional
and property-based compliance effects (See Table 8.3). Such mechanism can
also be exploited for automating the generation of standard(s)-compliant pro-
cess components that can be reused when assembling the processes required in
different projects.

8.5.2 Software Process Diversity
Software process diversity is common in safety-related context, as recalled in
the introductory part. Our approach implicitly takes into consideration pro-
cess diversity by providing a method that facilitates the selection of compli-
ance artifacts as needed for specific compliance frameworks. In particular, the
definition of compliance effects, as presented in Figure 8.4, could help in the
creation of compliance artifacts from one standard, that can also be enriched
with the compliance effects of related standards, as depicted in Figure 8.6,
for configuring process models that are multi-compliant. This aspect results
in the utilization of cohesive process components that have distinctive value
attributes. Besides, process components that do not receive significant levels
of resource commitments in terms of compliance could be identified as po-
tentially less useful and could be eliminated without significantly impacting
project outcomes.

8.5.3 Relation with the SPI Manifesto
The application of standards best practices is a way to learn from the experi-
ence of the functional experts. Such experience is valuable to define and im-
prove specific, project-oriented software processes. Our approach provides a
method for deploying compliant-related pieces required for controlling knowl-
edge across standards and projects (as presented in Figure 8.4). A process
engineer can play with such pieces and learn how to use them to satisfy the
demands, not only of the applicable standard(s) but also the company and cus-
tomer needs. In this way, our approach addresses principle 4 of SPI Manifesto[23],
which states that SPI creates a learning organization. Moreover, having a
model of the required pieces could help the definition and improvement of

170 Paper B

baseline process models (see Figure 8.5). The resulting artifacts aim not only
at enabling certification according to the standard but also to change existing
habits in the organization, incrementing their awareness regarding best prac-
tices and therefore making the business more successful. Thus, our approach
also addresses principle 6 of SPI Manifesto, which states the use of dynamic
and adaptable models as needed.

8.6 Related Work
In this section, we discuss other approaches that have proposed the separation
of concerns for facilitating compliance checking with FCL. In [24], four types
of control tags are defined for compliance checking of business processes.
These control tags consist of the state and operations of propositions about
the conditions that are to be checked on a task and are typed-linked, namely
control tags represent compliance effects. Such tags are: the flow tag, which
represents a control that would impact on the flow of the process activities; data
tag, which identifies the data retention and lineage requirements; the resource
tag, which represent access, role management and authorization; finally, time
tag, which represents controls for meeting time constraints such as deadlines
and maximum durations. Our work, as in [24], describes the compliance effects
based on the type of elements that are present in a process. However, contrary
to [24], we further separate the definition of the elements from the properties
allocated to these elements, i.e., we propose definitional and property-oriented
compliance effects. Moreover, we provide a template for creating the compli-
ance effect and icons that facilitate their description and its subsequent anno-
tation in process elements. In [25], the concept of data tag described in [24]
is revisited to create a methodology that permits their extraction from business
process logs. Contrary to the work presented in [25], the extraction of our
compliance effects is performed directly from the standards and not from pro-
cess logs since we aim at having a faithful representation of the requirements
prescribed by the standard at design time.

8.7 Conclusions and Future Work
(Process-oriented) Safety standards define process elements and their proper-
ties. Similarly, process modeling languages, such as SPEM 2.0, provide def-
initions that match precisely with the ones described in the standards. In this
paper, we took advantage of these characteristics to offer a natural separation

8.7 Conclusions and Future Work 171

of concerns that could be applicable in compliance checking. From the defi-
nition of concerns, we proposed a template to describe the compliance effects
that are expected from the process elements. Moreover, we proposed icons for
their representation that permit their identification and annotation on the cor-
responding process elements. Our approach offers adequate means to support
the separated concepts based on process competence and different standards,
and thus it may facilitate the modeling part of our method for automated com-
pliance checking.

Future work includes the evaluation of our approach in terms of usabil-
ity. In addition, to put the approach into practice, extensions to the current
algorithm used for compliance checking must be designed and implemented to
permit the inclusion of co-occurrent compliance effects, which are annotated
in process elements ascribed to tasks, into the compliance analysis. Moreover,
to facilitate further the annotation process, algorithms that permit automatic
mapping between compliance effects and company-specific processes, as well
as algorithms that automatically permit the creation of process elements from
the definitional compliance effects, should be created.

Bibliography

[1] M. Yilmaz and R. O’Connor, “A Market Based Approach for Resolving
Resource Constrained Task Allocation Problems in a Software Develop-
ment Process,” European Conference on Software Process Improvement,
pp. 25–36, 2012.

[2] N. Ramasubbu, A. Bharadwaj, and G. K. Tayi, “Software Process Diver-
sity: Conceptualization, Measurement, and Analysis of impact on Project
Performance,” Management Information Systems, vol. 39, no. 4, pp. 787–
807, 2015.

[3] M. Eckey, C. Greiner, and T. Peisl, “Why Do Organizations Focus on As-
sessments Instead of Their Process-Improvement Objectives?,” in Euro-
pean Conference on Software Process Improvement, pp. 392–401, 2019.

[4] C. Crabtree, C. Seaman, and A. Norcio, “Exploring Language in Soft-
ware Process Elicitation: A Grounded Theory Approach,” in 3rd Interna-
tional Symposium on Empirical Software Engineering and Measurement,
pp. 324–335, 2009.

[5] B. Gallina, F. Ul Muram, and J. Castellanos Ardila, “Compliance of Ag-
ilized (Software) Development Processes with Safety Standards: a Vi-
sion,” in 4th international workshop on Agile Development of Safety-
Critical Software, pp. 1–6, 2018.

[6] J. P. Castellanos Ardila, B. Gallina, and F. Ul Muram, “Enabling Com-
pliance Checking against Safety Standards from SPEM 2.0 Process Mod-
els,” in Euromicro Conference on Software Engineering and Advanced
Applications, pp. 45 – 49, 2018.

173

174 BIBLIOGRAPHY

[7] J. P. Castellanos Ardila, B. Gallina, and F. UL Muram, “Transforming
SPEM 2.0-compatible Process Models into Models Checkable for Com-
pliance,” in 18th International SPICE Conference, 2018.

[8] G. Governatori, “Representing Business Contracts in RuleML,” Interna-
tional Journal of Cooperative Information Systems., pp. 181–216, 2005.

[9] OMG, “Software & Systems Process Engineering Meta-Model Specifi-
cation. Version 2.0.,” 2008.

[10] A. Ruiz, G. Juez, H. Espinoza, J. L. de la Vara, and X. Larrucea, “Reuse of
safety certification artefacts across standards and domains: A systematic
approach,” Reliability Engineering & System Safety, vol. 158, pp. 153–
171, 2017.

[11] ISO/TC 22/SC 32, “ISO 26262 - Road vehicles – Functional safety,”
2018.

[12] Radio Technical Commission for Aeronautics (RTCA) & Euro-
pean Organisation for Civil Aviation Equipment (EUROCAE) RTCA,
“RTCA/DO-178C - Software Considerations in Airborne Systems and
Equipment Certification.,” 2011.

[13] ESA, “ECSS-E-ST-40C – Space Engineering Software,” 2009.
https://ecss.nl/standard/ecss-e-st-40c-software-general-requirements/.

[14] Radio Technical Commission for Aeronautics, “RTCA/DO-330-Software
Tool Qualification Considerations,” 2012.

[15] European Committee for Electrotechnical Standardization – CENELEC -
EN 50128, “Railway applications – Communication, signaling and pro-
cessing systems Software for railway control and protection systems,”
2011.

[16] International Organization for Standardization (ISO) and International
Electrotechnical Commission (IEC), “Information Technology – Pro-
cess assessment - An Exemplar Software Life Cycle Process Assessment
Model,” 2012.

[17] A. Fuggetta, “Software Process Patterns: A Roadmap,” in International
Conference on Software Engineering,, pp. 25–34, 2000.

[18] B. Gallina, K. Pitchai, and K. Lundqvist, “S-TunExSPEM: Towards an
Extension of SPEM 2.0 to Model and Exchange Tunable Safety-oriented
Processes,” Software Engineering Research, Management and Applica-
tions, vol. 496, pp. 215–230, 2014.

[19] Eclipse, “Eclipse Process Framework (EPF) Composer.,” 2018.
https://www.eclipse.org/epf/.

[20] M. Javed and B. Gallina, “Get EPF Composer back to the future: a trip
from Galileo to Photon after 11 years,” in EclipseCon, 2018.

[21] D. Smith, “The Design of Divide and Conquer Algorithms,” Science of
Computer Programming, vol. 5, pp. 37–58, 1985.

[22] I. Sommerville, Software Engineering. Pearson, ninth ed., 2011.

[23] J. Pries-Heje and J. Johansen, “The SPI Manifesto,” 2009.
https://2020.eurospi.net/images/eurospi/DownloadCenter/spi mani-
festo.pdf.

[24] S. Sadiq, G. Governatori, and K. Namiri, “Modeling Control Objectives
for Business Process Compliance,” in International conference on busi-
ness process management, pp. 149–164, 2007.

[25] M. Hashmi, G. Governatori, and M. Wynn, “Business Process Data Com-
pliance,” in International Workshop on Rules and Rule Markup Lan-
guages for the Semantic Web, vol. 7438 LNCS, pp. 32–46, 2012.

Chapter 9

Paper C:
A Personal Opinion Survey
on Process Compliance
Checking in the Safety
Context

Julieth Patricia Castellanos Ardila, Barbara Gallina.
Proceedings of the 13th International Conference on the Quality of Informa-
tion and Communications Technology. QUATIC 2020. Communications in
Computer and Information Science, vol 1266. Springer, Cham. 2020.

177

Abstract

Manually checking the compliance of process plans against the requirements of
applicable standards is a common practice in the safety-critical context. We hy-
pothesize that automating this task could be of interest. To test our hypothesis,
we conducted a personal opinion survey among practitioners who participate
in safety-related process compliance checking. In this paper, we present the
results of this survey. Practitioners indicated the methods used and their chal-
lenges, as well as their interest in a novel method that could permit them to
move from manual to automated practices via compliance checking.

9.1 Introduction 179

9.1 Introduction

Safety standards usually include requirements that prescribe the planning of
tasks, and the resources required and produced, e.g., personnel, work prod-
ucts, and tools. Nair et al. [1], reports 9 essential process plans required in
safety assessment, i.e., Safety Management, Communication, Risk Manage-
ment, Configuration Management, Development, Verification and Validation,
Modification Procedures, Operation Procedures, and Staff Competence. Man-
ually checking the compliance of such plans against the requirements of ap-
plicable standards is a common practice. The checklists used can be obtained
by listing the requirements of the standard, or listing personal or organizational
practices [2]. A process compliance checklist, which has been accurately filled-
in, requires a proper evaluation of the satisfaction of the requirements. Thus,
missed requirements are highlighted, providing hints to improve the process.

Process compliance checking could be overwhelming due to the sheer vol-
ume and complexity of the knowledge included in the standards. Thus, we hy-
pothesize that automating this task could be of interest. To test our hypothesis,
we conducted a personal opinion survey [3] among practitioners who partici-
pate in safety-related process compliance checking. In this paper, we present
the results of this survey. In particular, practitioners indicated the methods
used and their challenges, as well as their interest in a novel method that could
permit them to move from manual to automated process compliance checking.
These results contribute to systematizing the knowledge about process compli-
ance checking and finding methods and tools for facilitating this practice.

The rest of the paper is organized as follows. In Section 9.2, we present
essential background. In Section 9.3, we present the research method used
to conduct the survey. In Section 9.4, we present the survey results. In Sec-
tion 9.5, we discuss our findings. In Section 9.6, we examine related work.
Finally, in Section 9.7, we conclude our work and present future work.

9.2 Background

This section presents essential background.

180 Paper C

9.2.1 Facilitating Process Compliance Checking

In the context of the European project AMASS (Architecture-driven, Multi-
concern and Seamless Assurance and Certification of Cyber-Physical Systems)1,
we proposed a process-centered planning-time method for safety-related pro-
cess compliance checking [4, 5]. The method requires users to create arti-
facts in a SPEM 2.0 (Systems & Software Process Engineering Metamodel)2

reference implementation supported with Eclipse Process Framework (EPF)
Composer3 (see Figure 9.1), as follows. (1) Method content, which are ele-
ments that are part of a process, i.e., roles, tasks, work products, and guidance.
(2) A knowledge base of compliance information based on the formalization
of standard requirements in Formal Contract Logic (FCL) [6]. FCL is a defea-
sible deontic logic, i.e., it supports the modeling of norms representing obliga-
tions and permissions in a normative context that can be defeated by evolving
knowledge. In FCL, a rule has the form: r: a1, ..., an ⇒ c, where r is the
rule identifier, a1, ..., an are the propositions that represent the conditions of
the applicability of the norm, and c is the concluding proposition that contains
normative effects. For this, SPEM 2.0 guidance elements are customized as re-
quirements, FCL rules, and compliance effects (which correspond to the propo-
sitions of the rules). (3) Compliance effects are annotated in the process tasks.
As compliance effects describe the concrete actions prescribed by the standard
requirements, users need to evaluate each task action and define its effects in
the overall process compliance to make the annotation. For example, the task
Start software Unit Design Process indicates that the process is performed and
has two inputs. Thus, the annotated compliance effects are addressSwUnit-
DesignProcess, ProvideSwArchitecturalDesign and ProvideSwSafetyRequire-
ments. (4-a) A sequential representation of the process plan, as well as its
dynamic representation (4-b), are created by using the compliance annotated
tasks. The dynamic representation is used to automatically generate a compli-
ance state representation of the process, which permits automatic compliance
analysis with the compliance checker Regorous4. Regorous provides (5) com-
pliance checking results, i.e., description of compliance issues, rules and ele-
ments involved, and possible resolutions. For facilitating FCL formalization,
the concept of Safety Compliance Pattern (SCP) [7, 8] has been defined. An
SCP describes commonly occurring normative safety requirements on the per-

1https://www.amass-ecsel.eu/
2https://www.omg.org/spec/SPEM/About-SPEM/
3https://www.eclipse.org/epf/
4https://research.csiro.au/data61/regorous/

9.2 Background 181

missible state sequence of a finite state model of a process. These patterns
can be instantiated from predetermined templates. EPF-C has been recently
updated to Eclipse Neon 4.6.3 in the context of the AMASS project [9].

9.2.2 Personal Opinion Surveys
A personal opinion survey [3] is a comprehensive research method for collect-
ing information using a questionnaire completed by subjects. When creating
a survey, the first step is to define the expected outcomes. Then, the survey
should be designed, e.g., cross-sectional (participants are asked for informa-
tion at one fixed point in time). It is also essential to define options related
to how the survey would be administered. Once designed, the survey instru-
ment should be developed, evaluated, and applied to a sample population, from
which obtained data is analyzed.

Four types of validity need to be addressed to make sure that the survey
instrument is measuring what it supposes to measure [3]. 1) Face validity is a
cursory review of items by untrained judges. 2) Content validity is a subjective
assessment of how appropriate the instrument seems to a group of reviewers
with knowledge of the subject matter. 3) Criterion validity is the ability of
a measurement instrument to distinguish respondents belonging to different
groups. 4) Construct validity concerns how well an instrument measures the
construct it is designed to measure.

In the creation of surveys, Likert Scales [10] are widely used. Likert
Scales are psychometric response scales, e.g., a five-point scale ranging from
”Strongly Disagree” to ”Strongly Agree,” used to ask respondents to indicate
their level of agreement with a given statement. On a Likert scale, each spe-
cific question can have its response analyzed separately, or have it summed
with other related items to create a score for a group of statements. Individual
responses are generally treated as ordinal data because although the response
levels do have a relative position, we cannot presume that participants perceive
the difference between adjacent levels to be equal.

9.2.3 Technology Acceptance Model
The Technology Acceptance Model (TAM) [11] provides general determinants
of computer acceptance. TAM is capable of explaining user behavior across a
broad range of end-user computing technologies and user populations, while at
the same time being theoretically justified. TAM focuses on three main facets
of user acceptance. The first is the degree to which a person believes that using

182 Paper C

Figure 9.1: Method for Facilitating Process Compliance Checking.

9.3 Research Method 183

a particular method will be free of effort (Perceived Usability). The second is
related to a person’s subjective probability that using a particular system would
enhance his/her job (Perceived Usefulness). The third is the extent to which a
person intends to use a particular system (Intention to Use).

9.3 Research Method
In this section, we present the details regarding the creation of a personal opin-
ion survey. We followed the guidelines recalled in Sections 9.2.2 and 9.2.3.

9.3.1 Research Questions
In this survey, we aim at gathering information about current industrial prac-
tices and challenges in process compliance checking, as well as the accep-
tance level of the method for automated compliance checking (recalled in Sec-
tion 9.2.1). Within this scope, we formulate the research questions presented
below.

• RQ1: How do practitioners currently perform process compliance checking?

• RQ2: What are the challenges that practitioners face when performing pro-
cess compliance checking?

• RQ3: What is the level of acceptance of practitioners regarding a novel
method for facilitating automated compliance checking?

9.3.2 Survey Design
We designed a cross-sectional web-based personal opinion survey, whose goal
is to collect data relevant to answer the research questions presented in Sec-
tion 9.3.1. The target population is practitioners involved in process compli-
ance checking in the safety-related context. The final survey5, which starts with
a short introduction to the purpose of the study, is composed of 21 questions,
which are organized into four parts.

1. Demographics. Questions 1-7 aim at gathering the background character-
istics of the practitioners.

5https://www.dropbox.com/s/efcab84me7kxpj8/FinalSurvey.pdf?dl=0

184 Paper C

2. Current practices. Questions 8-14 aim at gathering information about
practitioners’ experiences in compliance checking.

3. Challenges. Questions 15 and 16 aim at inquiring about the challenges
appearing in process compliance checking. In question 15, practitioners
rate the importance of 7 possible challenges by using a five-point Likert
scale ranging from Unimportant to Very Important. Question 16 is an open
question in which practitioners can write further challenges.

4. Automated process compliance checking. First, practitioners read infor-
mation about the method for facilitating automated compliance checking
recalled in Section 9.2.1. Then, we present the questions 17-21 as a series
of claims from which we seek practitioners’ degree of acceptance regarding
the user acceptance aspects described in the TAM model (see Section 9.2.3),
i.e., the method usefulness, usability, and user’s intention to use it. To col-
lect the answers, we use a five-point Likert Scale ranging from Strongly
Agree to Strongly Disagree.

We were interested in the practitioners’ overall experience. Thus, where
possible, the practitioners were allowed to select more than one option to indi-
cate their experience regarding several practices. Practitioners were also given
the possibility to mention additional options or answer ”Don’t know” if this
was the case. We consider that completing the survey would take between
20-25 minutes.

9.3.3 Instrument Evaluation and Data Collection
The first author created a set of initial questions. The second author helped to
structure and design the survey by providing comments for cleaning ambiguity
and a more in-depth analysis that led to the formulation of further questions.
Then, we distributed the survey to a selected group of safety experts during the
Scandinavian Conference on System & Software Safety6. One expert provided
valuable comments that were used to improve the survey. The final evaluation
was performed by both authors, improving textual explanations and questions.

The data was collected from January 22th to February 28th of 2020. The
survey was distributed via personal e-mail invitations. The selection of the
practitioners included industrial experts (on purpose, we discarded research
institutions) that participate in European projects related to certification and

6http://safety.addalot.se/2019

9.4 Survey Results 185

self-assessment. We also extracted industrial-related practitioners from con-
ferences, symposiums, and workshops related to safety assurance. In total,
we obtained 15 valid responses from which 8 were received after the initial
invitation letter, and 7 were received after a reminder e-mail.

9.3.4 Subject Characteristics and Data Analysis

The valid answers were obtained from practitioners mostly working in the
consultatory branch (see Figure 9.2a and Figure 9.2g) which have experience
demonstrating process compliance checking in 13 countries (see Figure 9.2b),
predominantly Europe. The practitioners have experience in 9 safety-related
domains (see Figure 9.2c) and 13 standards (see Figure 9.2d), where auto-
motive is the most represented. The major interest of the practitioners, which
shows higher levels of expertise (see Figure 9.2f) in process compliance check-
ing, is to get the compliance certification and improve processes (see Fig-
ure 9.2g). The analysis of our survey was adjusted with the information pro-
vided in the ”Others” option.

9.3.5 Survey Validity

The four types of validity of the survey instrument (recalled in Section 9.2.2)
were addressed as follows. To avoid face validity, we perform a careful review
of our survey instrument in several stages and with experts in the field of safety
certification. Content validity was assured by doing a careful literature review
on the topic and validating as well with experts. Regarding criterion validity,
we assure that the practitioners’ background was related to the type of exper-
tise we were looking by making a careful selection process. For reducing the
construct validity, we allow the practitioners to include the ”Others” option.
Thus, the threat of providing an incomplete list of options is minimized. Ad-
ditionally, to avoid evaluation apprehension, we guaranteed confidentiality and
anonymity of the responses.

9.4 Survey Results

In this section, we present the results of the survey by answering the research
questions presented in Section 9.3.1.

186 Paper C

(a) Role. (b) Countries. (c) Domain. (d) Standards.

(e) Company Type. (f) Expertise. (g) Checking Reasons.

Figure 9.2: Demographic Results.

9.4.1 Current Practices (RQ1)
Figure 9.3a shows the 9 process plans (recalled in the introductory part) pro-
vided as alternatives in the questionnaire in the vertical axis, and the percent-
age of respondents, who selected each type in the horizontal axis. Figure 9.3a
shows that practitioners have performed compliance checking mostly on the
Verification and Validation, Configuration Management, Safety Management,
Development, Risk Management, and Modification Procedure Plans. The re-
maining plans listed were less considered as part of the practitioners’ com-
pliance checking duties. In the ”Others” option, practitioners mentioned the
Software Quality Assurance, Safety Assessment, Documentation, and Cyber-
security Plans. Current practices indicate that processes are mostly represented
with only text, but graphical representations are also relevant (see Figure 9.3b).
Moreover, process plan reuse is a common practice (see Figure 9.3c).

Regarding checklist preparation, we found that the three alternatives given
in the questionnaire are almost equally used (see Figure 9.4a). The practice of
compliance checking is done in different ways. Most commonly, practitioners
take every requirement and check it against the information provided by the

9.4 Survey Results 187

(a) Plan Types. (b) Representation. (c) Creation.

Figure 9.3: Information Regarding Processes.

process specification (see Figure 9.4b). Practitioners also base the compliance
assessment on other practices, such as the use of points of compliance, and
the assessment of strengths and weaknesses of the findings. It is common that
practitioners use software tools for performing compliance management tasks
(see Figure9.4c). Rational doors, Microsoft suite (e.g., Word, Excel, and MS
project), opencert, verification studio, engineering studio, stages (for modeling
processes) were the tools mentioned by practitioners in the survey.

(a) Preparation. (b) Checking. (c) Mechanism.

Figure 9.4: Information Regarding Compliance Checking.

9.4.2 Challenges (RQ2)

Figure 9.5 presents a set of challenges that could appear during process compli-
ance checking to which we ask respondents to rate them from very important
to unimportant. The results shows that one of the challenges that was consid-
ered very important by the practitioners is that ”it is common to miss require-
ments”. Important challenges are: ”Check process-based compliance requires
that many people are involved”, ”Check the compliance of a process requires
many interactions”, ”Check process-based compliance requires many hours of

188 Paper C

work” , and ”It isn’t easy to determine the kind of information that should be
provided as evidence from the process perspective.” The practitioners consid-
ered the other challenges moderately important. The practitioners also have the
option to list their challenges to which they answer that ”Sometimes there is no
access to the evidence”, ”Sometimes the safety assessor could have different
interpretations”, and ”It is difficult to check the user acceptance of the defined
processes.”

Figure 9.5: Challenges in Process Compliance Checking.

9.4.3 Automatic Process Compliance Checking (RQ3)

This part of the survey gathered data regarding the user acceptance level of
the method for facilitating automated process compliance checking (recalled
in Section 9.2.1). Initial evaluation is performed on FCL, which is the logic
used to formalize the requirements prescribed by the standards. Practitioners
somewhat agree that the formalization of standard requirements could be facil-
itated with FCL since it provides the compliance concepts and there are safety
compliance patterns to instantiate (see Figure 9.6). Practitioners also some-
what agree that FCL can be used to support the creation of the tailoring rules.
However, most of the practitioners are neutral whether the analysis required to
formalize process requirements could help them to understand their intention.

Regarding the ability of the method to represent processes and compliance
information (see Figure 9.7) we found that the majority of the practitioners
somewhat agree with the statements regarding the provision of graphical rep-

9.4 Survey Results 189

Figure 9.6: The Ability to Formalize Requirements with FCL.

resentations. In particular, graphical representation of the compliance informa-
tion, as well as process plans, facilitate their understanding and documentation.
Similarly, the majority of the practitioners somewhat agree that this aspect also
would facilitate compliance management.

Figure 9.7: The Ability to Represent Processes and Compliance Information.

Then, we focused on the ability of the method to perform automated com-
pliance checking (see Figure 9.8). As the figure depicts, the ability to perform
automated compliance checking is seen by the majority of the practitioners as
favorable. In particular, practitioners somewhat agree that the iterative appli-
cation of automated compliance checking can help them to reach process plans
with compliant states. Moreover, the majority of the practitioners strongly
agree that modifying a compliant process plan to define a new process reduces
the work that needs to be done. Finally, traceability could be facilitated with

190 Paper C

a hierarchically organized knowledge-based of compliance artifacts. Such an
organization helps to understand the source of compliance problems.

Figure 9.8: The Ability to Perform Automated Compliance Checking.

Figure 9.9 shows the results regarding the perceived usability aspect of the
method. Practitioners do not strongly agree or strongly disagree with any of the
questionnaire’s options. However, there are two statements that practitioners
somewhat agree: it is easy to 1) trace uncompliant situations and 1) graphically
model process elements.

Figure 9.9: Perceived Usability Aspect of the Method.

9.5 Discussion 191

Figure 9.10: Intention to Use.

Finally, one question was asked to
the practitioners about their intention to
use the method. As Figure 9.10 depicts
67% of the practitioners indicated that
they would use the method for facilitat-
ing automated compliance checking if it
were made available. In contrast, 13% of
the practitioners do not know, and 20%
would not do it.

9.5 Discussion
In this section, based upon the result of the survey, we discuss our findings.

Current Practices: Given the characteristics of the subjects, presented in
Section 9.3.4, we consider our sample to be representative of the European
safety-critical context. For this kind of population, process compliance check-
ing is not only the way towards a safety certificate but also a mechanism for
process improvement (see Figure 9.2g). Their current practices include the
checking of a variety of process plans (see Figure 9.3a). Additional plan types
respect to the ones described in the introductory part were considered nec-
essary in the safety-critical context, i.e., Software Quality Assurance Plan,
Safety Assessment Plan, Documentation Plan, and Cybersecurity Plan (see
Section 9.4.1). Thus, it seems that compliance management from the process
perspective is a growing area. Practitioners also create process plans mostly
by reusing previous processes or their elements (see Figure 9.3c). This aspect
indicates that support for reusability is significant in process compliance man-
agement. We also could see that there are different ways to create checklists
(see Figure 9.4a). It is interesting to see that most of the time, the practitioners
receive the checklist from the organization (which is based on the organiza-
tion’s experience in the domain) or transcribe the actual requirements provided
by the standard direct into a checklist. In those cases, there is not additional
intellectual work included in the preparation of the checklist, and the provision
of a general, widely accepted checklist could be useful for minimizing such
initial work. Finally, most of the practitioners use software tools to perform
compliance checking to support their activities (see Figure 9.4c). Thus, it is
not expected that the introduction of more sophisticated software tools would
generate extreme distortions in their daily job. However, it would be good to

192 Paper C

revise the ways to introduce them smoothly.

Challenges: Practitioners are faced with several challenges when performing
compliance checking, as presented in Section 9.4.2. In general, practitioners
consider that compliance checking is prone-to-error. For them, it is possible to
miss requirements. Moreover, they consider that it is not easy to determine the
kind of information that should be provided as evidence (or there is no access
to evidence), and that there are different possible interpretations provided by
the assessors. In addition, practitioners consider that compliance checking is
time-consuming since it requires many hours of work and several iterations.
Finally, many people in the organization are needed making it also resource-
consuming. Thus, there is a need for solutions that provide more confidence
and efficiency in process compliance checking.

Automated compliance checking: User acceptance is a major for any tech-
nological endeavor. In general, as we presented in Section 9.4.3, there are ad-
vantages regarding automated process compliance checking. In particular, as
depicted in Figure 9.6, there is a good degree of acceptance for the characteris-
tics provided by FCL, which is the formal approach used for requirements rep-
resentation. However, there is some hesitation regarding its usage, as expected
with formal methods. In particular, practitioners do not see how the analysis re-
quired to formalize process requirements would help them to understand their
intention. For this reason, it is necessary to explain further the formalization
part of the method by providing more guidance and examples. As presented
in Figure 9.7 and Figure 9.8, the ability to represent processes and compliance
information graphically and the ability to automatically check compliance also
have a good degree of acceptance. Thus, the method has high acceptability
potential, and its graphical representations are considered the strongest advan-
tage. Finally, as presented in Figure 9.9, two aspects regarding the method
are considered easy to use, i.e., graphically represent process models and trace
uncompliant situations. However, we need to provide mechanisms for improv-
ing the tool usability in terms of compliance information representation, which
appears to be not easy to use by practitioners. In addition, we need to im-
prove the representation of checking results. For facilitating these aspects, we
can provide more specific graphical representations of the compliance artifacts
and, after backpropagating the results of Regorous into EPF Composer, present
them in a suitable user interface that provides detailed explanations. Finally,
practitioners show a willingness to use the method, which could be helpful for

9.6 Related Work 193

evolving from the current manual practices to automated practices via compli-
ance checking.

9.6 Related Work

Nair et al. [2] performed in-depth interviews with 7 safety-related practition-
ers, which show the importance of checklists in safety assessment. In [12],
a personal opinion survey was applied to 53 experts to study safety evidence
management practices. Our survey also analyzed the use of the process plans
analyzed in [12], and found that additional process-related plans are required
in safety assessment. In [13], the authors present the results of interviews with
practitioners regarding change impact analysis, which is essential during safety
assessment. De la Vara et al. [14] surveyed safety evidence, particularly the cir-
cumstances under which it is created, the tool support used, and the challenges
faced. In contrast to the works previously mentioned [2, 12, 13, 14] our focus is
to investigate the currently used methods and its challenging aspects in process
compliance checking, as well as the practitioner’s interest in novel methods for
facilitating the automation of this task. The work conducted by Diebold and
Scherr [15] reports industrial practices regarding the use of software process
descriptions. In particular, the survey shows that companies use different pro-
cess representations, i.e., graphical, table-based, or structured text notations.
It also shows that the use of formal models and their advantages are highly
desirable by practitioners. Our study differs from [15] in that we also include
aspects regarding the use of formal descriptions of processes for compliance
checking.

9.7 Conclusions and Future Work

In this paper, we presented the results of a personal opinion survey conducted
among practitioners who participate in process compliance checking in the
safety-critical context. The practitioners indicated that they mostly represent
process plans and standard requirements by using software-based tools. Thus,
software-based compliance checking aids are not new for them. However,
practitioners consider that process compliance checking is prone-to-error; e.g.,
missing requirements is a common problem. Process compliance checking also
requires many hours of work and several people. Finally, the practitioners show
a favorable position regarding automated process compliance checking based

194 Paper C

on SPEM 2.0-like artifacts. They also indicated usability aspects regarding the
formalization of requirements that we need to revisit and improve.

Future work will include more empirical research with the use of inter-
views and observations to see, for instance, how practitioners carry out their
compliance checking in real settings. In addition, the usability aspects will be
revisited, in order to provide more guidance and improve the representation of
compliance artifacts and checking results. Finally, the tool support will be con-
cretized to facilitate evaluations in terms of efficiency through industrial case
studies.

Bibliography

[1] S. Nair, J. De La Vara, M. Sabetzadeh, and L. Briand, “An extended sys-
tematic literature review on provision of evidence for safety certification,”
Information and Software Technology, vol. 56, no. 7, pp. 689–717, 2014.

[2] S. Nair, T. Kelly, and M. Jørgensen, “A Report on the State-of-the-
Practice of Safety Evidence Assessment,” tech. rep., 2014.

[3] B. Kitchenham and S. Pfleeger, “Personal Opinion Surveys,” in Guide
to Advanced Empirical Software Engineering, ch. 3, pp. 63–92, Springer
Science & Business Media, 2008.

[4] J. P. Castellanos Ardila, B. Gallina, and F. Ul Muram, “Enabling Com-
pliance Checking against Safety Standards from SPEM 2.0 Process Mod-
els,” in Euromicro Conference on Software Engineering and Advanced
Applications, pp. 45 – 49, 2018.

[5] J. P. Castellanos Ardila, B. Gallina, and F. UL Muram, “Transforming
SPEM 2.0-compatible Process Models into Models Checkable for Com-
pliance,” in 18th International SPICE Conference, 2018.

[6] G. Governatori, “Representing business contracts in RuleML,” Interna-
tional Journal of Cooperative Information Systems, vol. 14, no. 02n03,
pp. 181–216, 2005.

[7] J. P. Castellanos Ardila and B. Gallina, “Formal Contract Logic Based
Patterns for Facilitating Compliance Checking against ISO 26262,” in 1st
Workshop on Technologies for Regulatory Compliance, pp. 65–72, 2017.

[8] J. Castellanos Ardila, B. Gallina, and G. Governatori, “Lessons Learned
while formalizing ISO 26262 for Compliance Checking,” in 2nd Work-
shop on Technologies for Regulatory Compliance, pp. 1–12, 2018.

195

[9] M. Javed and B. Gallina, “Get EPF Composer back to the future: a trip
from Galileo to Photon after 11 years,” in EclipseCon, 2018.

[10] D. Bertram, “Likert Scales Are the Meaning of Life. CPSC 681-Topic
Report,” 2006.

[11] F. Davis, “A technology acceptance model for empirically testing new
end-user information systems: Theory and results.,” Massachusetts Insti-
tute of Technology, 1985.

[12] S. Nair, J. De La Vara, M. Sabetzadeh, and D. Falessi, “Evidence manage-
ment for compliance of critical systems with safety standards: A survey
on the state of practice,” Information and Software Technology, vol. 60,
pp. 1–15, 2015.

[13] M. Borg, J. de la Vara, and K. Wnuk, “Practitioners’ perspectives on
change impact analysis for safety-critical software – A preliminary anal-
ysis,” in International Conference on Computer Safety, Reliability, and
Security, pp. 346–358, 2016.

[14] J. De La Vara, M. Borg, K. Wnuk, and L. Moonen, “An Industrial Survey
of Safety Evidence Change Impact Analysis Practice,” IEEE Transac-
tions on Software Engineering, vol. 42, no. 12, pp. 1095–1117, 2016.

[15] P. Diebold and S. Scherr, “Software process models vs descriptions: What
do practitioners use and need?,” Journal of Software: Evolution and Pro-
cess, vol. 29, no. 11, pp. 1–13, 2017.

Chapter 10

Paper D:
Compliance-aware
Engineering Process Plans:
The case of Space Software
Engineering Processes

Julieth Patricia Castellanos Ardila, Barbara Gallina, Guido Governatori.
Journal of Artificial Intelligence and Law. 2021

197

Abstract

Safety-critical systems manufacturers have the duty of care, i.e., they should
take correct steps while performing acts that could foreseeably harm others.
Commonly, industry standards prescribe reasonable steps in their process re-
quirements, which regulatory bodies trust. Manufacturers perform careful doc-
umentation of compliance with each requirement to show that they act un-
der acceptable criteria. To facilitate this task, a safety-centered planning-time
framework, called ACCEPT, has been proposed. Based on compliance-by-
design, ACCEPT capabilities (i.e., processes and standards modeling, and au-
tomatic compliance checking) permit to design Compliance-aware Engineer-
ing Process Plans (CaEPP), which are able to show the planning-time alloca-
tion of standard demands, i.e., if the elements set down by the standard require-
ments are present at given points in the engineering process plan.

In this paper, we perform a case study to understand if the ACCEPT pro-
duced models could support the planning of space software engineering pro-
cesses. Space software is safety and mission-critical, and it is often the result
of industrial cooperation. Such cooperation is coordinated through compliance
with relevant standards. In the European context, ECSS-E-ST-40C is the de-
facto standard for space software production. The planning of processes in
compliance with project-specific ECSS-E-ST-40C applicable requirements is
mandatory during contractual agreements. Our analysis is based on qualita-
tive criteria targeting the effort dictated by task demands required to create a
CaEPP for software development with ACCEPT. Initial observations show that
the effort required to model compliance and processes artifacts is significant.
However, such an effort pays off in the long term since models are, to some ex-
tend, reusable and flexible. The coverage level of the models is also analyzed
based on design decisions. In our opinion, such a level is adequate since it re-
sponds to the information needs required by the ECSS-E-ST-40C framework.

10.1 Introduction 199

10.1 Introduction
Safety-critical systems manufacturers have the duty of care1 [2], i.e., they
should follow accepted practices of reasonable care, usually found in indus-
try standards [3]. Failure or inadequate compliance with such standards could
lead to legal risks, i.e., penalties [4] and prosecutions [5]. For example, in
2015, The Volkswagen “Dieselgate” scandal [6], i.e., emissions levels of the
cars were not complying with emission standards, resulted in huge lost to the
company [7]. Compliance with industry standards is relevant evidence for a
jury to consider in a product liability action [8]. In England, the Health and
Safety Executive has used compliance with IEC 61508 [9] as a guideline for
bringing legal actions if harm is caused by safety-critical systems [2].

Industry standards demand documented evidence of responsibilities and
agreements [10]. Usually, they place requirements on engineering processes [11],
which should be planned at the beginning of the engineering activities [12].
Compliant engineering process plans are used to coordinate and track engi-
neering progress, support contractual relationships between partners and agree-
ments with certification bodies. In the context of the project AMASS [13, 14], a
safety-centered planning-time framework, called ACCEPT (Automated Com-
pliance Checking of Engineering Process plans against sTandards) [15, 16],
has been proposed to facilitate process compliance checking tasks. ACCEPT is
based on Compliance-by-design [17], an approach aimed at integrating compli-
ance requirements at design time, permitting to resolve compliance violations
in engineering process plans before they are executed. ACCEPT is supported
by rules-based technologies to automatically check if a compliance-aware en-
gineering process plan (CaEPP) is designed, i.e., if the elements set down by
the requirements (e.g., tasks, personnel, work products, techniques, and tools,
as well as their properties) are present at given points in the engineering pro-
cess plan. A CaEPP can show how and when the evidence will be produced,
taking into account all the process-related requirements or their tailoring (i.e.,
adapted to the specific project conditions in a compliant form). A CaEPP is
able to demonstrate intentional compliance [18], i.e., planning-time allocation
of responsibilities, such that if every actor fulfills its duties, then the compli-
ance is ensured.

ACCEPT uses Formal Contract Logic (FCL) [19], which provides a frame-
work that unambiguously represents normative knowledge, i.e., obligations,

1In tort law, a duty of care is a legal obligation which is imposed on an individual requiring
adherence to a standard of reasonable care while performing any acts that could foreseeably harm
others [1].

200 Paper D

prohibitions, and permissions. ACCEPT also uses the compliance checker
Regorous [20], which provides an algorithm that determines whether an an-
notated process model is compliant with a specific set of FCL rules. The
annotated process models required by Regorous, i.e., process enriched with
compliance effects through annotations representing the formalized require-
ments, is provided via SPEM 2.0 (Systems & Software Process Engineering
Metamodel) [21]. We chose SPEM 2.0, as opposed to other process model-
ing notations, for several reasons. 1) SPEM 2.0 is a standardized language,
based on the Unified Modeling Language (UML) [22]. 2) SPEM 2.0-like arti-
facts can be captured freely via Eclipse Process Framework Composer (EPF-
C) [23] (recently ported to Eclipse Neon 4.6.3 [24]). 3) SPEM 2.0 has the
ability to capture several types of information. 4) SPEM 2.0 provides vari-
ability mechanisms that can be exploited for flexible process derivation. Such
mechanisms are currently tool-supported via the composition of EPC-C with
BVR (Base Variability Management Tool [25]) [26] included in the AMASS
tool platform [27]. 5) SPEM 2.0 elements can also be customized to permit
the definition of a variety of artifacts. All these characteristics facilitate the
modeling of process-related compliance artifacts, i.e., engineering processes
and their elements, as well as standards requirements and their derived rule-
sets, annotated process plans, and workflows representations, which can be
also reused, tailored and explicitly documented. EPF-C models can be ported
to other tools, via model-driven transformations. Finally, SPEM 2.0 is widely
accepted by the research community [28] and industry [29].

In this paper, we perform a case study to understand if the ACCEPT pro-
duced models could support space manufacturers’ needs in planning space soft-
ware engineering processes. Space software is safety-critical since a failure
could cause a mission disaster leading to financial losses, environmental pollu-
tion, and people’s endangerment in case of manned missions [30]. Moreover,
space software production is frequently the result of industrial cooperation. For
example, the European space context consists of space agencies often acting as
customers in projects, and companies, which act as suppliers, or as intermedi-
ate customers for subcontractors [31]. Meeting the highest levels of industry
standards helps to coordinate such cooperation. In this context, ECSS-E-ST-
40C is the de-facto standard for space software production. Thus, the planning
of processes in compliance with project-specific ECSS-E-ST-40C applicable
requirements is mandatory during contractual agreements. We have selected a
portion of the ECSS-E-ST-40C [32] related to the design of the software items
to perform our analysis, which is based on a set of well-defined qualitative
criteria defined in [33]. In particular, we target the effort dictated by task de-

10.2 Background 201

mands required to create a CaEPP for software development with ACCEPT.
Initial observations show that the effort required to model compliance and pro-
cesses artifacts is significant. However, such an effort pays off in the long term
since models are, to some extend, reusable and flexible. The coverage level of
the models is also analyzed based on design decisions. In our opinion, such
a level is adequate since it responds to the information needs required by the
ECSS-E-ST-40C framework.

The paper is organized as follows. In Section 10.2, we provide essential
background. In Section 10.3, we present the case study design. In Section 10.4,
we present the data collection. In Section 10.5, we present the case study
analysis. In Section 10.6, we discuss the findings. In Section 10.7, we present
related work. Finally, In Section 10.8, we present the conclusion and future
work.

10.2 Background

In this section, we present essential background required in this paper.

10.2.1 Compliance with Industry Standards

Industry standards offer frameworks that encompass adequate practices refined
by experts from historically successful experiences [34] as well as knowledge
and awareness of public policy, societal norms, and preferences [35]. Orga-
nizations comply with industry standards (sometimes augmented with internal
guidelines) to minimize legal risks [36] since compliance is the demonstration
that the organization acts under well-defined and acceptable criteria. In some
industries, a compliance certification is mandatory to be able to sell products on
a specific market, e.g., medical devices [37]. Compliance is also a mark that
customers trust. For example, in space, standards requirements are intended
to support the contractual negotiation by helping customers to formulate their
requirements and suppliers to prepare their responses and to implement the
work [38]. Contracts are legally binding documents in which development
freedom becomes limited. Thus, non-compliance is harmful to the success of
organizations. In the remaining part of this section, we recall essential infor-
mation regarding software process standards, and we focus on the software
engineering standard that regulates the European space context.

202 Paper D

Software Process Standards

In the past, software companies vacate liability for software errors by licensing
it to a user that agreed that the company would not be liable for damages caused
by errors in the code [39]. This policy contributed to enforce the computer rev-
olution. However, the software was limited to provide simple tasks and some-
times computational power for complex systems. Nowadays, the software is
used to control most systems (including physical) involving potentially large
and even catastrophic loses [40]. Consequently, software projects are becom-
ing critical in terms of legal aspects, e.g., software not delivered in time or with
ill-defined functionality could lead to legal claims [41]. In the safety-critical
context, legal aspects are also related to each activity performed in its produc-
tion [42, 43]. The reason is that a well-defined process would make it difficult
to exclude significant aspects of the software engineering aspects. Examples
of inadequate software engineering process practices have been considered as
one of the factors that cause Therac-25 radiotherapy machine’s massive over-
dose [44] and the failed launch of the ARIANE 5 [45]. Choices seem not to be
either deliberately planned in the definition of the features created to force the
plane BOEING 737-MAX to nose down, causing fatal accidents [46]. Sound
engineering processes present a structured collection of practices [47]. Com-
panies that follow the process-related frameworks prescribed by industry stan-
dards tend to achieve more consistent results [48]. Legal risk can also be pre-
vented since proofs of compliance can demonstrate that companies have taken
correct steps while performing acts that could foreseeably harm others [42, 36].
Software process standards do not restrict organizations from using a particu-
lar development lifecycle. Instead, the process framework focuses on what
needs to be done. Sometimes, who should be involved in the process and the
recommended techniques and tools to be used to achieve desirable results are
also prescribed. Route maps may be indicated, but exact specifications on how
the process should be done usually are not provided. In addition, software
with high requirements, such as safety, requires detailed documentation ac-
cording to regulations, which may imply the creation of very formal software
processes [41]. For this reason, a software process engineer is responsible for
the selection, composition, and correct documentation of adequate software
process elements aimed at achieving the required process goals [49].

ECSS Standards: Focus on Software Engineering

The European Cooperation for Space Standardization (ECSS) developed a set
of standards for use in all European space activities. The ECSS standard system

10.2 Background 203

includes three branches, i.e., Management (M), Engineering (E), and Product
Assurance (Q). Handbooks (HB) guide the application of the requirements.
The software engineering handbook, ECSS-E-HB-40A [50], states that in a
space software project, a customer-supplier business agreement should be es-
tablished. The customer shall produce the project requirements documentation,
which could be produced by using the ECSS Applicability Requirements Ma-
trix (EARM). The EARM should have the list of applicable ECSS requirements
with identifiers, applicability condition, i.e., applicable without change (A), ap-
plicable with modification (M), not applicable (D), and new generated require-
ment (N). The supplier responds with the ECSS Compliance Matrix (ECM),
indicating the compliance for each requirement provided in the EARM. Partial
compliance needs to be detailed, such that the customer can assess the extent to
which the objective of the ECSS is covered. Non-compliance also needs to be
investigated in terms of feasibility and acceptability in the scope of the project.
When a space project starts, the supplier has to identify a suitable software
lifecycle process. Thus, discussions about the technical specifications based
on the requirements baseline must start early in the lifecycle process [51].

In space software development, the requirements prescribed by the stan-
dard ECSS-E-ST-40C [32], which determines mission (non-safety) require-
ments on how the goals can be achieved, should be applied. Such require-
ments could be tailored, i.e., adapted for the characteristics of the project. For
example, ECSS-E-ST-40C-Annex R, provides a pretailoring based on safety
criticality categories, which rank from catastrophic to negligible (prescribed in
ECSS-Q-ST-40C [52]). Thus, mission requirements have an inherent relation-
ship with safety issues. Further tailoring should be analyzed in the scope of
the project and its consequences assessed and documented. If requirements are
tailored out, the associated expected outputs are also tailored out. Table 10.1
recalls a set of requirements from the phase 5.5. Software Design and Im-
plementation Engineering Process, particularly the activity 5.5.2. Design of
Software Items. The inputs of this activity are the Technical Specification of
the Software Components (TSSC), the Architectural Design (AD) the Design
Justification (DJ), and the Preliminary Design Review (PDR). During the de-
tailed design review the expected items of every requirement are revised and
compiled in eight work products, i.e., the DDF (Design Definition File), SDD
(Software Design Document), CDR (Critical Design Review), TS (Technical
Specification), ICD (Interface Control Document), SUM (Software User Man-
ual), DJF (Design Justification File) and SUITP (Software unit-integration Test
Plan).

204 Paper D

Table 10.1: Activity 5.5.2: Design of the Software Items.
Id. Requirement Expected Item
5.5.2.1 Detailed design of software component Software components design document (Scdd)

a. The supplier shall develop a detailed design for each component of the software and document it.

b. Each software component shall be refined into lower levels

c. It shall be ensured that all the software requirements are allocated to software units.

5.5.2.2 Development and documentation of the
software interfaces detailed design External and internal interfaces design (Eid /Iid).

a. The supplier shall develop and document a detailed design for the interfaces (external and internal).

5.5.2.3 Production of the detailed design model Software static-dynamic and -behavioral design
model (Ssdm, Sddm, Sbdm)

a. The supplier shall produce the detailed design model of the software components (static, dynamic and
behavioural aspects).

5.5.2.4 Software detail design method Software design method (Sdm).

a. The supplier shall use a design method to produce the detailed design including software units, their inter-
faces, and relationships.

5.5.2.5 Detailed design of real–time software Real-time software dynamic design model (R-
tddm).

a. The dynamic design model shall be compatible with the computational model of the architectural design.

b. The supplier shall document and justify all timing and synchronization mechanisms.

c. The supplier shall document and justify all the design mutual exclusion mechanisms.

d. The supplier shall document and justify the use of dynamic allocation of resources.

e. The supplier shall ensure protection during the use of dynamic allocation of resources.

5.5.2.6 Utilization of description techniques for
the software behaviour

Software behavioural design model techniques
(Sbdmt).

a. The behavioural design of the units shall be described by means of techniques (i.e. automata and scenarios.)

5.5.2.7 Determination of design method consis-
tency for real–time software

Compatibility of real-time design methods with
the computational model (CR-tdm).

a. It shall be ensured that all the methods utilized for different item of the same software are, from a dynamic
stand–point, consistent among themselves and consistent with the selected computational model.

5.5.2.8 Development and documentation of the
software user manual Software user manual (Sum)

a.The supplier shall develop and document the software user manual.

5.5.2.9 Definition and documentation of the
software unit test requirements and plan Software unit test plan (Sutp).

a. The supplier shall define and document responsibility and schedule, control procedures, testing approach,
test design and test case specification for testing software units.

5.5.2.10 Conducting a detailed design review

a. The supplier shall conduct a detailed design review.

10.2 Background 205

10.2.2 SPEM 2.0
SPEM 2.0 (Software and Systems Process Engineering Metamodel) [21] is a
modeling language that defines the elements required to plan engineering pro-
cesses. An engineering process is a sequence of units of work (e.g., tasks) that
consume resources (e.g., employee time) to transform inputs (e.g., data, raw
material) into outputs (e.g., products) [53]. SPEM 2.0 concepts are defined
in separated UML [22] packages that are interrelated. For example, the meta-
class TaskDefinition, which belongs to the package MethodContent is used to
describe assignable units of work. Instances of Task Definition can be applied
in a process breakdown structure by defining a proxy with a TaskUse, a meta-
class that belongs to the package ProcessWithMethods (both meta-classes are
highlighted with red in Figure 10.1). The same approach is used for the defi-
nition and use of roles and work products. Instead, a tool definition is used to
specify the tool’s participation in a Task Definition. Guidance, which belongs
to the package Managed Content, is a describable element that provides addi-
tional information to other elements. There are different guidance kinds, e.g.,
concept and reusable asset. A Delivery Process, which belongs to the package
Process Structure, describes an approach for performing a specific project. A
Category is used to group elements in a recursive way. SPEM 2.0 supports vari-
ability management on breakdown structures representing processes as well as
in content elements. In particular, we recall the variability mechanism called
extends, in which the method content element that extends the base method
element inherits the attributes of the extended base element.

Figure 10.1: Partial Representation of SPEM 2.0 Taxonomy.

SPEM 2.0-like concepts can be modeled with an open-source tool, called
Eclipse Process Framework Composer(EPF-C) [23]. In particular, EPF-C pro-
vides a Method Authoring, which is used to describe roles, tasks, work prod-
ucts, and guidance. EPF-C also has a Process Authoring, which is used to
organize reusable process building blocks in the form of delivery processes.
EPF-C implements the method plugin package, which defines capabilities for
modularization and extensibility. Such plugins, which can contain libraries
of method content and processes, are reusable (see Figure 10.2a). Conceptu-

206 Paper D

ally, a task can be represented as a synergy between different process elements
(see Figure 10.2b). In EPF-C, the process’s partial execution semantics can be
modeled with UML activity diagrams (see Figure 10.2c).

(a) EPF-C Plugin. (b) The Task Concept.

(c) Activity Diagram Representing a Process Workflow.

Figure 10.2: EPF-C Environment.

10.2.3 FCL
FCL (Formal Contract Logic) [19] is a language that permits the formalization
of normative requirements. An FCL rule has the form a1, ..., an ⇒ c, where
r is the unique identifier of the rule, a1, ..., an are the propositions that repre-
sent the conditions of the applicability of such a rule, and c is the conclusion.
The conclusion characterizes normative deontic effects, such as obligations,
prohibitions, or permissions. FCL does not support contradictory conclusions
but seeks to resolve conflicts. For instance, if it is sustainable support to con-
clude both c and −c, FCL does not conclude any of them. However, if the
support for c has priority to the support of −c, then c is concluded. Thus, an
FCL rules designer has to identify pairs of rules with incompatible literals and
define superiority relations, as follows:

r : a1, ..., an ⇒ c, and r′ : b1, ..., bn ⇒ −c, then r′ > r

10.2 Background 207

Obligations and prohibitions are constraints that limit the behaviour of pro-
cesses. As such, they can be violated. Permissions, which cannot be violated,
can be used to determine that there are no obligations or prohibitions to the
contrary. Hashmi et al. [54] proposes the foundations for the normative re-
quirements that constraint processes, which considers different types of obliga-
tions (based on the temporal validity of norms and the effects of violating these
obligations). Thus, an obligation is in force if the obligation is activated at a
particular time point in a time interval. An obligation is considered to be non-
persistent if it remains in force until it is terminated. Such obligation should be
obeyed for the instant it is in force. In opposition, an obligation is considered
persistent if it remains in force until it is removed. When a persistent obligation
needs to be obeyed for the whole duration within the interval in which it is in
force, it is called maintenance obligation. If achieving the content of the obli-
gation at least once is enough to fulfill it, it is called achievement obligation.
An achievement obligation is preemptive if it could be fulfilled even before the
obligation is in force. Otherwise, it is non-preemptive. An achievement obli-
gation is perdurant if, after being violated, the obligation is still required to be
fulfilled. Otherwise is non-perdurant. A prohibition corresponds to the nega-
tion of the content of an achievement obligation. The types mentioned above
are adopted, and notated in FCL, as presented in Table 10.2.

Table 10.2: FCL Rule Notations.
Notation Description
[P]P A proposition P is permitted

[OM]P There is a maintenance obligation for the proposition P

[OM]-P There is a prohibition for proposition P

[OAPP]P There is an achievement, preemptive, and non-perdurant obligation for the proposition P

[OANPP]P There is an achievement, non-preemptive and perdurant obligation for the proposition P

[OAPNP]P There is an achievement, preemptive and non-perdurant obligation for the proposition P

[OANPNP]P There is an achievement, non-preemptive and non-perdurant obligation for proposition P

10.2.4 Regorous

Regorous [20] is a process compliance checker that implements compliance by
design [55], i.e., check requirements that are propagated into models of pro-
cess plans. Regorous requires two specifications: 1) a rule base representing
the regulation in FCL (recalled in Section 10.2.3), and 2) a state representa-

208 Paper D

tion of a process, i.e., a process enriched with semantic annotations. Semantic
annotations on process elements are literals that record data, resources, and
other information used by machines to refer, compute, and align information.
The recorded information, which represents the effects caused by the tasks,
is used by Regorous to perform compliance analysis. Two types of semantic
annotations are necessary. The first one is State (t,n), which semantically an-
notates the set of facts in the computation to determine which rules fire (get
active) for the n-th element in a trace t. A trace is a sequence of tasks in which
a process can be executed. Consequently, obligations are in force after rules
fire. The second one is Force(t,n+1), which contains the obligations that are
in force but are not terminated in n-th element in the trace t. An obligation
can be terminated if the deadline is reached, the obligation has been fulfilled,
or if the obligation has been violated and is not perdurant. A process is fully
compliant if all obligations are fulfilled, or if violated, they are compensated).
For example, Figure 10.3, shows a fictional FCL rule base and a compliance
annotated process. As the figure depicts, the ruleset in FCL contains four rules.
The first rule, r1, implies the obligation of providing A. The second rule, r2,
implies the obligation of B given the provision of A. The third rule, r3, implies
the permission to not provide C given the provision of B. And r4 implies the
obligation of D given the provision of B. From the FCL rule base, we have
four compliance effects, i.e., A, B, C, and D. As seen, the compliance effects
are extracted from the formulas composing the rules. The tasks in the process
are annotated with the effects as follows. T1 is annotated with effect A, T2 is
annotated with effect B, T3 is annotated with effect C, and T4 is annotated
with effect D. To check compliance, we use the functions State and Force, as
previously described. The State of the start point is empty because we have
not defined any effect. After the start point, the compliance checking process
is activated. Thus, the first rule is in force. The first task is expected to provide
the effect A since there is the obligation to provide A. Then, we check the State
after the task T1. As we see in the figure, T1 produces the effect A. So, the rule
is fulfilled. Then, providing A forces the provision of B in T2. In the figure,
we can see that T2 provides effect B. So, the second rule is also fulfilled. After
B is provided, it implies two normative effects. The first one is the permission
to not providing C in T3. Second, it implies the obligation of providing D in
T3. When checking T3, we can see that it provides the effect C. However,
having C as the produced effect does not imply a violation of rule r3 because
the force function has a permit, not an obligation. However, in T3, we should
have D, and the tasks T3 is not providing E. If the obligation of providing D
is a Maintenance or achievement preemptive, we have a violation. A violation

10.2 Background 209

means that the process is not compliant. If the obligation is achievement non-
preemptive, it can be fulfilled in T4. In this case, there is no violation, and the
process is compliant.

Figure 10.3: Analysis of Compliance.

10.2.5 Process Compliance Hints and Patterns
Skillful FCL ruleset design can be reached by applying computational think-
ing resources, in particular, design hints and patterns [39]. Hints are rules of
thumb found in previous FCL formalization experiences, while patterns indi-
cate common situations an FCL designer is likely to encounter. Both process
compliance hints and patterns aim at facilitating the formalization of process-
related requirements into FCL rules. In the remaining part of this section, we
recall these resources in more detail.

Process Compliance Hints

The divide-and-conquer strategy, adopted in software engineering as a princi-
ple to manage complexity [56], is a hint that can be applied in the formalization
of process-related requirements, as presented in [57]. In particular, the aspects
that requirements in standards regulate are the tasks, their specific order, the
mandatory in/outputs of the tasks, roles performing the tasks, and the tools/rec-
ommended techniques used to do the tasks. Thus, the concept of a task is cen-
tral, to which properties such as the definition of roles, inputs, outputs, tools,
and techniques must apply. However, requirements not only define the proper-
ties of the tasks. For example, roles and tools should be qualified. This kind
of requirements does not directly affect the tasks. They directly affect other
elements, which in turn have effects on tasks. Thus, a process can be deemed

210 Paper D

compliant if we can demonstrate that the process contains the permitted tasks,
such tasks have associated the prescribed roles, inputs, outputs, tools, and tech-
niques, and if the associated elements have associated their related properties.
With such consideration, dividing requirements in terms of the elements they
target as well as the specific properties defined for each element seems to be
the natural way in which concerns should be separated. To facilitate the cre-
ation of compliance effects, which later can be used to form the propositions
of the rules in FCL (recalled in section 10.2.3), two aspects are proposed (see
Figure 10.4). The first aspect is the customization of icons, which describe the
targeted elements. The second aspect is the definition of templates that facili-
tate compliance effects creation (fragments between {}, should be replaced by
the specific element or its property). Both, icons and templates are based on
the concepts described in SPEM 2.0 (recalled in Section 10.2.2, specifically in
Figure 10.2). Once created, the compliance annotations are performed in the
elements that carry out their compliance responsibility.

Figure 10.4: Elements Customization.

10.2 Background 211

Process Compliance Patterns

Process Compliance Patterns (PCP) [58] are commonly occurring normative
requirements on the permissible state sequence of a finite state model of a pro-
cess. The PCPs description is based on similar (or a combination of) behaviors
described for the property specification patterns [59], which are mapped to the
notations provided in FCL (recalled in Table 10.2). A global scope, which
represents the entire process model execution, is defined as a [OM]P. A be-
fore scope, which includes the execution of the process model up to a given
state, is mapped to a partial [OAP]. An after scope, which includes the exe-
cution of the process model after a given state, is mapped to a partial [OANP
]. If an obligation admits an exception, e.g., tailoring, the part of the pattern
corresponding to the exception is described as [P] since if something is per-
mitted, the obligation to the contrary does not hold. The excepted obligation is
modeled as non-perdurant, since the permission is not a violation of the obli-
gation. Thus, the obligation does not persist after the permission is granted. In
principle, all the requirements could be tailored. Thus, obligations are mod-
eled as [OAPNP] or [OANPNP]. In this case, obligation and permission have
contradictory conclusions, but the permission is superior since it represents an
exception. Table 10.3 presents the templates of the PCPs. In all templates {#}
should be replaced with the number that identifies the requirement in the stan-
dard. When it is described as {#.i}, the i should be replaced by a, b, ..., n,
where n is the number of sub-items, e.g., if there is a requirement with two
parts that is identified with the number 5, the rules’ identifiers are 5.a and 5.b.
Following, we present a more detailed description of the patterns.

Tailoring requirements (PCP 1a and 1b). Tailoring means to adapt (omit
or perform differently) the requirements to a specific project in a compliant
form. Tailoring requires a rationale (or justification). For being valid, a ra-
tionale should always be verified by an expert. The rationale is an input el-
ement, and its verification is a property. An expert with specific qualifica-
tions should also be appointed. Thus, we use the templates for definitional and
property-based propositions described in Figure 10.4 for in/output elements
and roles, i.e., provide{Rationale}, {Rationale}withVerificationByExpert,
performedBy{Expert} and {Expert}with{Qualification}. Providing those
four conditions permit to omit the requirement (in other words, permit not to
perform the requirement). Any of the definitional and property-based proposi-
tions present in Figure 10.4 could be the target of such omission. For explana-
tions purposes, we consider omitting a requirement that imposes the definition

212 Paper D

Table 10.3: PCP Templates.
PCP FCL notation

1a r{#}.Omitted: provide{Rationale}, {Rationale}withV erificationByExpert} ,

performedBy{Expert}, {Expert}with{Qualification}

⇒ [OANPP]− perform{Task}

1b r{#}.ChangedRule: -perform{Task}⇒ [OANPNP]perform{DifferentTask}

2 r{#.i}:{optionalTrigeringObligation}⇒ [OAPNP]provide{prerequisite.i}

3a r{#}: provide{Prerequisite1}..., provide{Prerequisite.i}

⇒ [OAPNP]perform{TitleClause}

3b perform{Task} ⇒ [OANPNP]perform{FollowingTask}

4 {#.i}: perform{Task}, {Guidance}with{Property}

⇒ [OAPNP]guidedBy{Guidance}

5 r{#.i}:{providePreviousObligations}, {WorkProduct}with{Property}

⇒ [OANPNP]provide{WorkProduct}

of a task (⇒ [P] − perform{Task}). In PCP 1a, {Rationale} should be
replaced with the title of the required justification. {Task} should be replaced
with the name of the task that will be omitted. Finally, {Expert} should be
replaced with the role required and {Qualification} with the necessary qual-
ifications. A second rule, i.e., PCP 1b, is included in case the task is done in
a different way, where [OANPNP]perform{DifferentTask} corresponds to
the new task replacing the previous one.

Provide a prerequisite (PCP 2). A prerequisite is an obligatory input ele-
ment, which should be fulfilled before it is in force. {prerequisite} should be
replaced with the name of the prerequisite. If a previous rule triggers the pre-
requisite, its conclusion is included in the {optionalTrigeringObligation},
e.g., when the prerequisite is produced by a previous task. Prerequisite could
have properties. In this case, the {optionalTrigeringObligation} could be a
list of such properties, using the template {Element}with{Property}. Oth-
erwise, it is left empty.

Perform a unit of work (PCP 3a and 3b). Template PCP 3a represents the
performance of a unit of work that can be prescribed in a process (i.e., phase/ac-
tivity/task). It considers the prerequisites, if any, as the conditions of the appli-
cability of the rule, which normative conclusion is performing a unit of work
(e.g., a phase). It could be preemptive ([OAPNP]), if the prerequisites and the

10.2 Background 213

task are provided at the same time. It can be non-preemtive ([OANPNP]) as
in template 3b, if the prerequisite is another task, that have to be done first. In
the example of PCP 3a, {TitleClause} should be replaced with the specific
clause title.

Provide guidance (PCP 4). Guidance elements may not be required during
standards compliance auditing. However, internal policies in a company may
impose guidance elements. In that case, guidance elements should be provided
at the moment the element guided is created. We create the propositions by us-
ing the template for guidance provided in Figure 10.4, i.e., guidedBy{Guidance}
and {Guidance}with{Property}. Guidance can be defined for any element
in the process (tasks, work product, tool, or role). For explanation purposes,
we consider perform{Task} (see PCP 4).

Provide a work product (PCP 5). Work products are the result of certain re-
quirements. Thus, these requirements are presented as antecedents that oblige
the provision of the related work product. PCP 5 presents this aspect in FCL,
where {providePreviousObligations} should be replaced with the condi-
tions that oblige the work product’s production, usually the execution of a
task (perform{Task}). Work product properties may be also required, i.e.,
{WorkProduct}with{Property}, where {WorkProduct} is the work prod-
uct’s name and {Property} is the corresponding property.

10.2.6 ACCEPT
ACCEPT (Automatic Compliance Checking of Engineering Processes against
sTandards) [60, 61], is a safety-centered planning-time framework aimed at fa-
cilitating the analysis of the tradeoffs associated with the planning of compliant
processes in the safety-critical context. ACCEPT uses state-of-the-art tools and
methodologies (see Figure 10.5).

In particular, ACCEPT is based on compliance by design [17], a preven-
tive approach aimed at integrating compliance requirements into process plans.
Such an approach requires the definition of two specifications. The first one is
the FCL (recalled in Section 10.2.3) based standards requirements. FCL pro-
vides a framework that unambiguously represents the deontic notions required
for compliance analysis. The second one is the process plan enriched with com-
pliance effects, which is provided via SPEM 2.0-like artifacts in EPF-C (re-
called in Section 10.2.2). SPEM 2.0 is flexible, i.e., concepts can be customized
and extended to permit not only the creation artifacts related to processes but

214 Paper D

Figure 10.5: ACCEPT Framework.

also compliance checking artifacts, such as standard requirements, rules and
annotated process plans. SPEM 2.0-like artifacts are also reusable since ca-
pabilities for modularization and extensibility are implemented in EPF-C (i.e.,
plugins). With the composition of EPF-C and the Base Variability Manage-
ment Tool [26], tailoring of compliance artifacts and reuse is also facilitated.
ACCEPT is equipped with guidance regarding process compliance hints and
patterns (recalled in Section 10.2.5) that ease the creation of the required speci-
fications. ACCEPT uses Regorous (recalled in Section 10.2.4), which provides
a sound algorithm for the analysis of FCL rules that automatically check if a
compliance-aware engineering process plan (CaEPP) is designed, i.e., if the
elements set down by the requirements (e.g., tasks, personnel, work products,
techniques, and tools, as well as their properties) are present at given points
in the engineering process plan. The approach consists of five methodological
steps, as shown in Figure 10.6.

Step 1: Formalization of Requirements. Standard requirements are for-
malized in FCL by and FCL-trained person supported by a process engineer
(or an FCL-trained process engineer). Three inputs are required: the standard
requirements, the compliance hints and patterns guidance, and the EPF-C plu-
gin with the customized compliance checking artifacts (see Figure 10.4). First,
the requirements should be classified in terms of the process elements they tar-
get and their properties to create the rules’ propositions (see Section 10.2.5).
Then, PCPs are used to create the FCL rules (see section 10.2.5). The output is
an EPF-C plugin with the FCL-based ruleset containing information about the

10.2 Background 215

Figure 10.6: Methodological Steps Required for Using ACCEPT.

standard, their requirements, the rules derived from the requirements, and the
separated set of propositions composing the rules.

Step 2: Modeling of Process Elements. Capturing process plan elements is
a task performed by the process engineer. The required input is information
about process plans, which could steam from the organization’s practices and
previous process plans. The output is the representation of the process elements
in EPF-C, as depicted in Figure 10.2a. Detailed guidance regarding the creation
of content elements in EPF-C is provided in [62]).

Figure 10.7: Annotation.

Step 3: Annotation of Process Tasks. The an-
notation process, which a process engineer per-
forms manually, consists of assigning the com-
pliance effects to the elements that fulfill them
as presented in Figure 10.7. For this, the compli-
ance effects modeled in the FCL ruleset (created
in step 1) and the process elements (created in
step 2), or previous process plans, are the inputs of this step. The output is the
annotated process elements in EPF-C.

Step 4: Modeling of Process Workflow. The process engineer uses the com-
pliance annotated process elements resulting from step 3 to model the work-
flow (see Figure 10.2c). The output is the delivery process in EPF-C, which
contains the process plan checkable for compliance, i.e., the compliance state
representation of the process plan.

216 Paper D

Step 5: Checking and Analysis Checking and analyzing compliance is a
task performed by the process engineer. The required inputs are the FCL-
based ruleset and the delivery process. The output is the compliance analysis,
which contains information regarding the rules violated by the process, their
reparation policies, and the rules that were not activated during the compliance
checking analysis. Such information is used to improve the process plans to
be checked iteratively. Reasons for such improvements could be workflow
problems (error in the placement of tasks), failure in the annotation process
(errors in the assignment of the compliance effects), failure in the selection of
process elements (e.g., missed elements), or FCL ruleset errors (not applicable
rules due to tailoring or standards evolution).

10.3 Case Study Design
In this section, we present the essential details regarding the case study design.

10.3.1 Rationale for the Case Study

In the European context, space software production is often the result of indus-
trial cooperation. Such cooperation is coordinated using the de-facto standard
ECSS-E-ST-40C (recalled in Section 10.2.1). Such a standard provides re-
quirements that help customers formulate their project-specific requirements
by using the EARM matrix. Suppliers need to prepare their responses by us-
ing the ECM matrix, which will help them implement the work. ECSS-E-ST-
40C is a process-related standard. Thus, the planning of software engineering
processes in compliance with project-specific ECSS-E-ST-40C applicable re-
quirements is mandatory during contractual agreements. Moreover, the tailor-
ing decisions, i.e., A, M, D, and N, should be documented. Thus, we wonder
if the current status of the models produced by ACCEPT could support space
manufacturers’ needs. For this, we perform a case study, according to the
guidelines provided in [63]. In particular, we consider the selected portion of
ECSS-E-ST-40C requirements related to the software items’ design (recalled
in Table 10.1). Our case study is descriptive (i.e., it portrays the current status
of ACCEPT) and exploratory (i.e., it seeks future ACCEPT improvements).
The data collected is qualitative involving models and their descriptions. The
criteria used for the analysis is described in [33]. In particular, we analyze the
effort to model (needed to establish a model for managing compliance), the
effort to comprehend (processes and standards models), the effort to document

10.3 Case Study Design 217

compliance, (needed to verify whether process models comply with standards
models), and the effort to manage evolution, (needed to find potential instances
of non-compliance when standards change). Moreover, we take into account
the level of coverage for the model (which shows how much of the requirements
and engineering processes can be modeled), the level of coverage for compli-
ance documentation (which examines the level of success of the approach in
terms of documenting the compliance), and the level of coverage for the evo-
lution management (which examines the approach’s success in handling the
changes).

10.3.2 Goal and Research Questions of the Case Study

As presented in Section 10.3.1, we want to analyze ACCEPT in the context
of space software engineering processes planning in compliance with ECSS-
E-ST-40C. We have also selected specific criteria, which essentially consider
two variables: effort and coverage level. The effort, according to [64], is a
variable that could be estimated during task performance in two ways: the ac-
tual effort (determined by task demands) and the perception of effort (relative
to a subject’s capacity to recognize the effort). In this case study, our anal-
ysis is based on actual effort (from now on called effort) since, in theory, it
can be used to determine the intent to complete a task a priori, independently
of any conscious actor. The coverage level is analyzed considering how the
models respond to the information that needs to be required by the ECSS-E-
ST-40C framework, i.e., information regarding standards, process plans, and
compliance (i.e., EARM and ECM matrices). Thus, our goal is to qualita-
tively analyze the current effort required to model a CaEPP in ACCEPT
for software development processes in compliance with ECSS-E-ST-40C
and the coverage level of such models. Based on this goal, we derive the
following research questions:

RQ1: How could we consider the effort required in designing a CaEPP
with ACCEPT for software development? The answer of this question will
be supported by answering the following subquestions:

RQ1.1: How could we consider the effort required to create models?

RQ1.2: How could we consider the effort required to comprehend the models?

RQ1.3: How could we consider the effort required to document compliance?

RQ1.4: How could we consider the effort required to manage evolution?

218 Paper D

RQ2: How could we consider the coverage level of a CaEPP for software
development created with ACCEPT? The answer of this question will be
supported by answering the following subquestions:

RQ2.1: How could we consider the coverage level of the models?

RQ2.2: How could we consider the coverage level of the documentation?

RQ2.3: How could we consider the coverage level of the evolution manage-
ment?

10.3.3 Unit of Analysis and Method
To support our goal (defined in Section 10.3.2), we model a CaEPP for space
software engineering processes. The standard requirements involved in our
models are the ECSS-E-ST-40C, focus on software design (recalled in Sec-
tion 10.2.1). In general, ECSS-E-ST-40C determines mission-critical require-
ments that have an inherent relationship with safety issues since a software
failure could lead to mission loss that could have catastrophic consequences.
Thus, such requirements belong to the safety-critical context. The portion se-
lected provides a view to the general structure of such a standard, i.e., pre-
scribes requirements that impose the presence of process elements that can be
tailored in a process plan. Thus, we consider such a portion representative of
the whole standard. The method selected for conducting the case study is de-
scribed in the steps required for facilitating automated compliance checking
of engineering processes against standards (see Figure 10.6). Such a method
permits us to collect the data required for the analysis.

10.3.4 Validity of the study
Case studies in software engineering are conducted to increase knowledge and
bringing change in the studied phenomenon [63]. Researchers must consider
issues that may diminish the results’ trustworthiness by demonstrating the ex-
tent to which the researchers’ subjectiveness does not bias the results. In this
study, we consider a scheme of four aspects of validity in case studies in soft-
ware engineering defined in [63]. 1) Construct validity reflects the extent to
which the research represents the theoretical concepts used in the study. 2) In-
ternal validity is of concern when causal relations are examined. 3) External
validity addresses the ability of the research to be generalized. 4) Reliability
is concerned with the extent to which the data and analysis are dependent on
specific researchers. Addressing these four validity aspects is essential since it

10.3 Case Study Design 219

permits an accurate account of the research by selecting and using acceptable
methodological practices that guarantee correct steps for collecting and analyz-
ing the data. The concrete ways in which we addressed the mentioned validity
aspects are listed below.

Construct validity: To avoid construct validity, we established a chain of evi-
dence by rigorously following our defined methodology (see Figure 10.6),
reporting the results consistently with such a methodology. However, de-
signed methodologies may be biased. For mitigating this aspect, we re-
view our assumptions against theoretical foundations several times dur-
ing several sessions to avoid oversimplifications that may confirm our
preconceptions. We also got external reviews in previous phases of our
work, as well as initial stages of this case study. We use such reviews to
improve our methodology, its presentation, and the definition of the case
study itself.

Internal validity: The manual formalization of the FCL rules may imply a
internal validity threat, due to the possibility of typos in the syntax and
inconsistencies in the rules statements. For mitigating this aspect, we in-
stantiated the process compliance hints and patterns (see Section 10.2.5)
and performed manual syntactic corrections of the FCL specification. In
the future, we plan to develop tools for supporting the process of writing
and verifying rules.

External validity: We have performed an ACCEPT analysis on a limited por-
tion of a software process standard. It is a single case study, but it
is not trivial. It shows dilemmas and design choices that are typical
in safety-related engineering process plans. In particular, ECSS-E-ST-
40C determines mission-critical requirements that have an inherent rela-
tionship with safety issues since mission loss could lead to catastrophic
consequences. Thus, they belong to the safety context. Moreover, the
ECSS-E-ST-40C portion selected contains all the characteristics regard-
ing process-based standards, i.e., the definition of work units, in/out-
puts, elements properties, and other process-related elements such as
guidance, which have the possibility to be tailored. Such characteris-
tics are presented in whole standard. Thus, the selected requirements are
representative and can be generalized to the complete ECSS-E-ST-40C
standard. However, the outcome of this case study applies to a CaEPP
for software development that respond to the mentioned characteristics.
Additional challenges may arise when analyzing standards beyond safety

220 Paper D

and software that also apply in the safety-critical context. Thus, to gener-
alize our framework capabilities, we must carry out case studies beyond
the ones we have already performed.

Reliability: Reliability threats were mitigated by involving the researchers in
peer debriefing, i.e., iterative review of research artifacts (formalization
of standard requirements, EPF-C models) during all the process.

10.4 Data Collection
In this section, we collect the data required for the case study.

10.4.1 Formalization of ECSS-E-ST-40C requirements

As described in Section 10.2.6, we classify the requirements in terms of the
process elements and their properties (see Table 10.4), and create the rules’
propositions (see Figure 10.8) based on process compliance hints (see Sec-
tion 10.2.5).

Table 10.4: Process Elements Required by ECSS-E-ST-40C.
Element Description

Inputs TSSC, AD, DJ, PDR.

Outputs

Expected items of every requirement are: Scdd, Eid, Iid, Ssdm, Sddm, Sbdm, Sdm, R-
tddm (with timing, synchronization and mutual exclusion mechanisms, and dynamic allo-
cation of resources), Sbdmt CR-tdm, Sum, and Sutp (with responsibility, schedule, control
procedures, testing approach, test design and test case specification). Final outputs: DDF,
SDD, CDR, TS, ICD, SUM, DJF and SUITP.

Tasks

Phase Design of the software items which contains the following tasks (and their proper-
ties): 1) Detailed design of each software component, 2) Development and documentation
of the software interfaces detailed design, 3) Production of the detailed design model, 4)
Software detail design method, 5) Detailed design of real–time software, 6) Utilization
of description techniques for the software behaviour, 7) Determination of design method
consistency for real–time software, 8) Development and documentation of the software
user manual, 9)Definition and documentation of the software unit test requirements and
plan, and 10) Conducting a detailed design review

Guide Guidance for Scdd (req-5-5-2-1), R-tddm (req-5-5-2-5), Sutp (req-5-5-2-9)

The initial part of the ruleset defines the provision of requirements TSSC,
AD, DJ, PDR, which are needed to start the activity described in Table 10.1.
The PCP 2 is used to create the rules mandating the requirements (rules r5.5.2.a
to r5.5.2.d) and PCP 3a to create the rule mandating the phase definition (rule

10.4 Data Collection 221

Figure 10.8: Rules Propositions.

r5.5.2) as follows:

r5.5.2.a:⇒ [OAPNP]provideTSSC

r5.5.2.b:⇒ [OAPNP]provideAD

r5.5.2.c:⇒ [OAPNP]provideDJ

r5.5.2.d:⇒ [OAPNP]providePDR

r5.5.2:provideTSSC, provideAD, provideDJ, providePDR

⇒ [OAPNP]performDesignOfTheSoftwareItems

We define a custom category in EFP-C (ECSS-E-ST-40C) to create the rule
set. For each requirement, we nest a category. In each category, we nest the
rule. We assign the compliance effect (the conclusion of the rule) to each rule
(see Figure 10.9). All requirements and rules are modeled in a similar way.

We use PCP 3b formalize the requirements that define the first task Detailed
design of each software component (see rule 5.5.2.1), which prerequisite is the
activity definition (see rule 5.5.2). Then, we use PCP 5 to define the expected
item (ei), which is the work product of this task (see rule r5.5.2.1.ei). Then we
used the PCP 4 to define the guidance (see rule r5.5.2.1.guide).

r5.5.2.1:performDesignOfTheSoftwareItems⇒ [OANPNP]performDetailedDesign

r5.5.2.1.ei:performDetailedDesign⇒ [OANPNP]provideScdd

r5.5.2.1.guide:performDetailedDesign⇒ [OANPP]guidedByReq5− 5− 2− 1

222 Paper D

Figure 10.9: Rules Definition.

Requisite 5.5.2.2 is the definition of the task Development and documen-
tation of the software interfaces detailed design, which produces two expected
items (ei) Eid and Iid. As two ei are created, we further identify the rules by
adding a and b to the rules (see rules r5.5.2.2.ei.a and r5.5.2.2.ei.b).

r5.5.2.2:performDetailedDesign

⇒ [OANPNP]performDevelopAndDocumentSwInterfacesDesign

r5.5.2.2.ei.a:performDevelopAndDocumentSwInterfacesDesign

⇒ [OANPNP]provideEid

r5.5.2.2.ei.b:performDevelopAndDocumentSwInterfacesDesign

⇒ [OANPNP]provideEid

Requisite 5.5.2.3 is the definition of the task Production of the detailed de-
sign model (see rule r5.5.2.3) and three items are expected (see rules r5.5.2.3.ei.a,
r5.5.2.3.ei.b and r5.5.2.3.ei.c).

r5.5.2.3:performDevelopAndDocumentSwInterfacesDesign

⇒ [OANPNP]performProductionDetailedDesign

r5.5.2.3.ei.a:performProductionDetailedDesign⇒ [OANPNP]provideSsdm

r5.5.2.3.ei.b:performProductionDetailedDesign⇒ [OANPNP]provideSddm

r5.5.2.3.ei.c:performProductionDetailedDesign⇒ [OANPNP]provideSbdm

Requisite 5.5.2.4 is the definition of the task Software detail design method
(see rule r5.5.2.4) and one item is expected (see rule r5.5.2.4.ei).

r5.5.2.4:performProductionDetailedDesign

⇒ [OANPNP]performDescribeSwDetailDesignMethod

r5.5.2.ei:performProductionDetailedDesign⇒ [OANPNP]provideSdm

Requisite 5.5.2.5 is the definition of the task Detailed design of real–time
software (see rule r5.5.2.5) and one item is expected . However, this expected

10.4 Data Collection 223

item has several properties, which are included in the antecedent of the rule
r5.5.2.5.ei. Additionally, guidance is defined for this task. So, we use PCP 4 to
define the mandatory guidance (see rule r5.5.2.5.guide).

r5.5.2.5:performDescribeSwDetailDesignMethod

⇒ [OANPNP]performDetailedRealT imeSw

r5.5.2.5.ei:performDetailedRealT imeSw,R− tddmWithDynamicAllocationResources,

R− tddmWithMutualExlcusionsMechanisms,

R− tddmWithSynchronizationMechanisms,R− tddmWithTimingMechanisms

⇒ [OANPNP]provideR− tddm

r5.5.2.5.guide:performDescribeSwDetailDesignMethod

⇒ [OAPNP]guidedByReq5− 5− 2− 5

Requisite 5.5.2.6 is the definition of the task Utilization of description tech-
niques for the software behaviour (see rule r5.5.2.6) and one item is expected
(see rule r5.5.2.6.ei).

r5.5.2.6:performDetailedRealT imeSw

⇒ [OANPNP]performDescribeTechniquesSwBehavior

r5.5.2.6.ei:performDescribeTechniquesSwBehavior

⇒ [OANPNP]provideSbdmt

Requisite 5.5.2.7 is the definition of the task Determination of design method
consistency for real–time software (see rule r5.5.2.7) and one item is expected
(see rule r5.5.2.7.ei).

r5.5.2.7:performDescribeTechniquesSwBehavior

⇒ [OANPNP]performDeterminationDesignMethodConsistencyRT

r5.5.2.7.ei:performDeterminationDesignMethodConsistencyRT

⇒ [OANPNP]provideCRtdm

Requisite 5.5.2.8 is the definition of the task Development and documen-
tation of the software user manual (see rule r5.5.2.8) and one item is expected
(see rule r5.5.2.8.ei).

r5.5.2.8:performDeterminationDesignMethodConsistencyRT

⇒ [OANPNP]performDocumentationSwUserManual

r5.5.2.8.ei:performDocumentationSwUserManual

⇒ [OANPNP]provideInitialSum

Requisite 5.5.2.9 is the definition of the task Definition and documentation
of the software unit test requirements and plan (see rule r5.5.2.9). One item,
with several properties is expected (see rule r5.5.2.9.ei) as well as guidance

224 Paper D

(see rule r5.5.2.9.guide).

r5.5.2.9:performDocumentationSwUserManual

⇒ [OANPNP]performDefinitionSwUnitTestReq

r5.5.2.9.ei:performDefinitionSwUnitTestReq, SutpWithControlProcedures,

SutpWithResponsabilities, SutpWithSchedule, SutpWithTestCaseSpecification,

SutpWithTestDesign, SutpWithTestingApproach

⇒ [OANPNP]provideSutp

r5.5.2.9.guide:performDocumentationSwUserManual

⇒ [OAPNP]guidedByReq − 5− 5− 2− 9

Finally, requisite 5.5.2.10 is the definition of the task Conducting a detailed
design review (see rule r5.5.2.10), Eight items are expected after this task (see
rules r5.5.2.10.ei.a to r5.5.2.10.ei.h).

r5.5.2.10:performDefinitionSwUnitTestReq

⇒ [OANPNP]performConductingDetailedDesignReview

r5.5.2.10.ei.a:performConductingDetailedDesignReview ⇒ [OANPNP]provideDDF

r5.5.2.10.ei.b:performConductingDetailedDesignReview ⇒ [OANPNP]provideSDD

r5.5.2.10.ei.c:performConductingDetailedDesignReview ⇒ [OANPNP]provideCDR

r5.5.2.10.ei.d:performConductingDetailedDesignReview ⇒ [OANPNP]provideTS

r5.5.2.10.ei.e:performConductingDetailedDesignReview ⇒ [OANPNP]provideICD

r5.5.2.10.ei.f:performConductingDetailedDesignReview ⇒ [OANPNP]provideSUM

r5.5.2.10.ei.g:performConductingDetailedDesignReview ⇒ [OANPNP]provideDJF

r5.5.2.10.ei.h:performConductingDetailedDesignReview ⇒ [OANPNP]provideSUITP

Requirements tailored as omitted (not applicable (D) in the ECSS Applica-
bility Requirements Matrix (EARM)) can be formalized using PCP 1a. For ex-
ample, it is defined that requirement 5.5.2.10, which is the definition of the task
Conducting a detailed design review is omitted (see rule r5.5.2.10.Ommited).
If we do not perform the review, their work products are also not required.

r5.5.2.10.Ommited:provideJustificationNotPerformConductingDetailedDesignReview,

JustNotPerformConductingDetailedDesignReviewWithV erificationByExpert,

performedByAssesor, AsessorWithExperienceECSS − E − ST − 40− C

⇒ [P]− performConductingDetailedDesignReview

r5.5.2.10.Ommited > r5.5.2.10

We use the PCP 1b, if the same task is defined in the EARM as applica-
ble with modification (M), or new generated requirement (N). For illustration
purpose, we consider that a simple review could be performed instead of the
detailed review (see rule r5.5.2.10.ChangedRule).

r5.5.2.10.ChangedRule:− performConductingDetailedDesignReview

⇒ [OANPNP]performSimpleReview

10.4 Data Collection 225

Propositions used in rules r5.5.2.10.Ommited and r5.5.2.10.ChangedRule
should be added to the list of rule propositions presented in Figure 10.8.

10.4.2 Modeling of Process Elements

Initial process plan elements are extracted from the standard ECSS-E-ST-40C,
specifically, the requirements presented in Table 10.1. The result is process
elements depicted in Figure 10.10, which contains work products, tasks and
guidance artifacts.

Figure 10.10: Process Elements Plugin.

10.4.3 Annotation of Process Tasks

A copy of the process elements defined in Section 10.4.2 (depicted in Fig-
ure 10.10) is created in a new plugin, which we called ComplianceAnnotat-
edProcessPlan. These process elements are also extended to the original by
using the content variability type Extends. With this extension, we ensure that
the information previously defined is also included, such as the assignment of
in/output or guidance to the tasks. Then, every process element is annotated
with the compliance effect they produce by adding the guidance elements that
contains the effect (see Figure 10.11). The complete compliance annotation of
process elements is presented in Table 10.5.

226 Paper D

Figure 10.11: Annotation of Tasks.

10.4.4 Modeling of Process Workflow

The tasks annotated in Section 10.4.3 are used to create the delivery process
(see Figure 10.12).

(a) Breakdown Structure. (b) Activity Siagram.

Figure 10.12: Delivery Process.

Figure 10.13: EPF-C Plugins.

As depicted in Figure 10.13, AC-
CEPT involves the modeling of four
separated models, which are con-
cretized in EPF Composer as plug-
ins. The ComplianceCheckingCus-
tomization (highlighted in red in the
figure) is provided in the method and
the process engineer only needs to
use it.

10.4 Data Collection 227

Table 10.5: Compliance Effects Annotation on Process Elements.
Process element Compliance Effect
Detailed design of each software component performDetailedDesign

Scdd provideScdd

Development/documentation of the software inter-
faces performDevelopAndDocumentSwInterfacesDesign

Eid provideEid

Iid provideIid

Production of the detailed design model performProductionDetailedDesign

Ssdm provideSsdm

Sddm provideSddm

Sbdm provideSbdm

Define Software detail design method performDescribeSwDetailDesignMethod

Sdm provideSdm

Detailed design of real-time software performDetailedRealTimeSw

R-tddm provideR-tddm

Utilization of description techniques for the soft-
ware performDescribeTechniquesSwBehavior

Sbdmt provideSbdmt

Determination of design method consistency for
realtime performDeterminationDesignMethodConsistencyRT

CRtdm provideCRtdm

Development and documentation of the software
user manual performDocumentationSwUserManual

Sum provideInitialSum

Definition and documentation of the software unit
test requirements and plan performDefinitionSwUnitTestReq

Sutp provideSutp

Conducting a detailed design review performConductingDetailedDesignReview

Req-5.5.2.1 Detailed design of each software com-
ponent Software components design guidedByReq5-5-2-1

Req-5.5.2.5 for the Detailed design of real–time
software guidedByReq5-5-2-5

Req.-5.5.2.9 Definition and documentation of the
software unit test requirements and plan guidedByReq-5-5-2-9

10.4.5 Checking and Analysis of Compliance

The ruleset formalized in Section 10.4.1, and the workflow modeled in Sec-
tion 10.4.4 (located in the plugins ECSS-E-ST-40C-Requirements and Compli-

228 Paper D

anceAnnotatedProcessPlan in Figure 10.13, respectively) are the two speci-
fications required by Regorous (recalled in Section 10.2.4) to perform auto-
matic compliance checking. The results of the checking are presented in Fig-
ure 10.14.

Figure 10.14: Compliance Checking Results.

As Figure 10.14(a) depicts, the process is non-compliant. Thus, the plan
needs improvement. Such results could point to compliance problems on the
workflow, in the annotation process, or missing characteristics in the process
plans (e.g., absent tasks or work products). The problems related to the rules
(e.g., wrong formalization) need to be analyzed in the context of specific stan-
dard with experts, such as safety assessors. For example, there is a violation
regarding provideAD (see Figure 10.14(b)). It turns out that rule r5.5.2.b is
violated (see Figure 10.14(c)). The reparation policy suggests to prevent the
violation, by performing provideAD after ’Start’. This means that in the first
task, which is called detailed design of each software component, we need to
add the input AD and its corresponding compliance effect provideAD (see Fig-
ure 10.14(d)). When the compliance checking results are positive, namely the
result is the process is compliant, it does not mean that there is no further im-
provement. Instead, we need to perform the analysis, taking into account the
rules that did not fire. Once the process is improved for compliance, compli-

10.5 Case Study Analysis 229

ance checking is performed iteratively until the process plan is deemed com-
pliant by Regorous.

10.5 Case Study Analysis
In this section, we analyse the case study results presented in Section 10.4 by
answering the research questions defined in Section 10.3.2.

10.5.1 Effort designing a CAEPP for software development
(RQ1)

We judge the effort determined by task demand, which is based on design
choices. In theory, such effort can be used to determine the intent to complete
a task independently of any conscious actor. We refer in this analysis to the
effort required to create and comprehend the models and document and manage
evolution.

Effort required to create the models (RQ1.1)

When using ACCEPT for creating a CaEPP for software projects, three mod-
els (the ComplianceCheckingCustomization is provided in the method), which
are concretized in EPF-C as plugins, are required (see Figure 10.13). To popu-
late the ECSS-E-ST-40C-Requirements plugin, we needed to formalize require-
ments in FCL. Performing a formalization process is, in general, a difficult task
that requires skills, which cannot be taken for granted. Moreover, due to the
sheer size of the standards, this work requires time and focus. An advantage of
FCL is that it provides a valid set of understandable concepts to the users of the
standards, i.e., obligations, prohibitions, and permission (see Section 10.2.3).
Moreover, ACCEPT provides process compliance hints and patterns (recalled
in Section 10.2.5), which facilitate the identification and modeling of com-
pliance artifacts, i.e., requirements and their corresponding rules as well as
compliance effects (see Section 10.4.1). However, the instantiation of hints
and patterns is done manually in a process that is repetitive and prone-to-error.
Defining the ProcessElements plugin required in a process is a task that is not
difficult to perform since EPF-C has graphical representations of the elements
that can be modeled in a well-defined structure (see Section 10.4.2). However,
a specific effort in terms of time is also required. ACCEPT states that the el-
ements required in the ComplianceAnnotatedProcessPlan plugin are linked to

230 Paper D

the elements in other models in two ways (see Section 10.4.3). 1) By perform-
ing extensions between elements in the method content, to inherit the charac-
teristics of the process elements. 2) By performing the compliance annotation
process, which is the method that guarantees that the model is checkable for
compliance. Currently, compliance annotations are performed manually, based
on the domain expert’s knowledge about the engineering process.

In summary, there is a need to manually (and iteratively) formalize re-
quirements, graphically model compliance and process artifacts, and extend
and annotate compliance effects. Thus, the effort required to create models
is significant and may increase with the continued attempting to do the same
tasks repeatedly. However, the effort required to model the ECSS-E-ST-40C-
Requirements plugin is only significant during the first time. The reason is that
such a model can be used several times in different CaEPPs that are modeled
in compliance with the same standard (until new versions of the standard are
released). Similar situations could occur with the other plugins, but they need
to be evaluated in project-specific circumstances.

Effort required to comprehend processes and standards models (RQ1.2)

The method uses artifacts that are systematically organized in a hierarchical
and visual structure that permits the identification of compliance information.
In particular, standard requirements and their elements are arranged in a nested
list of compliance artifacts (see Figure 10.9(a)). Moreover, process elements
are created in particular structures that differentiate, e.g., work products from
tasks (see Figure 10.10). The abstract association of elements within process
tasks (depicted in Figure 10.2b) permits the comprehension of the required
compliance information provided by the compliance effects. This abstraction
provides an approach for direct requirements allocation into process models.
Thus, once the models are created, there is a required low effort to comprehend
the information they contain. In summary, the models created in EPF-C have
a specific structure that facilitates the visualization of their artifacts and their
use, proving models that have an advantage over, e.g., text-based approaches.

Effort required to document compliance (RQ1.3)

The ability to provide means to document method content and processes in
SPEM 2.0-like elements was exploited in ACCEPT. Having an structural, hi-
erarchical representation of the standards (see Figure 10.9(a)) with descriptive
information (see (see Figure 10.9(b)), as well as content elements organized

10.5 Case Study Analysis 231

according to their function (see Figure 10.10) helps to have a written record of
the artifacts required for compliance. This structural representation, originally
provided by SPEM 2.0, may facilitate the work of a third party (independent)
assessor in case the parties decide to include additional certainty to their as-
sessment schema. Thus, the required high modeling effort results in lower
compliance documentation effort.

Effort required to manage evolution (RQ1.4)

The compliance information in ACCEPT created in Section 10.4.1 could be
seen as an initial frozen specification of the standard. However, such specifica-
tion does not need to be bypassed altogether, when obsolescence no longer
stands the strain of being frozen, i.e., a new version of the standard is re-
leased. In normal conditions, only some requirements change, and some get
deprecated, but the majority remain. For example, the ECSS-E-ST-40-C has
a log, which explicitly describes few adjustments regarding previous versions
(ECSS-E-40 Part 1B, released on 28 November 2003, and the ECSS-E-40 Part
2B, released on 31 March 2005). In ACCEPT, such changes can be embraced.
First, as specifications are reusable, a copy of the requirements can be per-
formed and saved with the new version name. Second, as the requirements
model is hierarchically designed, the changes can be absorbed in an orderly
way. Once a new version of the standards is defined, changes in the rules may
impact the compliance status. Thus, it becomes necessary to re-check the pro-
cess plans. However, as the rulesets are executable, the checking is easier, and
process plans can be improved according to the new version of the ruleset (as
described in Section 10.4.5). However, standards evolution would require some
human intervention. In particular, there is a need for monitoring the changes
in the standards and maintain accuracy in the rulesets. EFP-C provides tex-
tual descriptions regarding, i.e., versioning or revisions, which can be used to
maintain a log of information between users facilitating further revision work.

10.5.2 Coverage level of a CaEPP for software development
(RQ2)

We judge the models’ coverage level, taking into account how the information
provided by the CaEPP models fit in the information required by the ECSS-E-
ST-40C framework. We refer to the coverage level of the models, the compli-
ance documentation, and the evolution management.

232 Paper D

Level of coverage of the models (RQ2.1)

The models used in ACCEPT cover several aspects required in process com-
pliance. First, standard artifacts (see Figure 10.9(a)) are represented by a struc-
ture that covers the textual description of the requirements, their respective
FCL rules, and compliance effects. Second, the method content provided (see
Figure 10.10) covers the elements required to describe detailed process plans.
Third, the compliance effects annotation (see Figure 10.11) covers the require-
ments allocating into process plans, which permits us to understand the explicit
relationships between artifacts. Finally, the compliance analysis provided by
Regorous (see Figure 10.14) covers the compliance status of the process plan,
the compliance violations, and possible resolutions that facilitate the compli-
ance analysis.

Level of coverage of the compliance documentation (RQ2.2)

As previously described, the models provide all the required information for
documenting compliance. Moreover, the compliance analysis is detailed enough
to describe compliance status (full or non-compliance), the compliance viola-
tions, and the inactive rules. For our particular case study, this approach is
sufficient. On the one side, as recalled in Section 10.2.1, a customer of a space
software project needs to provide an ECSS Applicability Requirements Ma-
trix (EARM), which can be extracted from the model that contain the require-
ments, i.e., the ECSS-E-ST-40C-Requirements plugin (see Figure 10.9(a)).
As the figure depicts, the plugin contains the requirements identifier and the
text. Moreover, the applicability status can be obtained from the descrip-
tion of the identifier in the rules. For example, tailored out requirements are
identified with the particle Ommited (see rule r5.5.2.10.Ommited). In con-
trast, modified ones are identified with the particle ChangedRule (see rule
r5.5.2.10.ChangedRule). On the other side, the supplier needs to respond with
the ECSS Compliance Matrix (ECM), which should be done at the level of
each requirement (as opposed to a global statement of compliance) in order
to allow the customer to detect early enough in the project the non or partial
compliance. The information required in the ECM can be extracted from the
compliance checking results (see Figure 10.14(b) and (c)). Such results will
identify compliance violations to the rules that belong to the requirements ex-
plicitly defined by the customer in the EARM. An analysis of the violations
may lead to modification of the requirements upon agreements between the
parties when compliance has become excessively demanding or unreachable
(due to unpredictable or changing conditions in the project).

10.6 Discussion 233

Level of coverage of the evolution management (RQ2.3)

ACCEPT is defined in an authoring platform that permits the organization the
compliance information as standards evolve. Thus, successive models that rep-
resent the evolution of the standards can be defined and stored in EPF-C plu-
gins as a library of reusable knowledge (see Figure 10.13). Administrative
directives from the organization that apply the standards could also be defined
and included as FCL rules (as presented in Section 10.4.1). Consequently, the
process engineer, whose expertise may be limited by specific knowledge, could
find the hints that facilitate applying the specific standard version. Moreover,
the process engineer could also include his/her knowledge (or lessons learned)
after performing compliance practices, as part of the documentation that is per-
mitted by EPF-C.

10.6 Discussion
As presented in Section 10.2.1, a software process engineer is responsible for
the composition and documentation of compliant software engineering pro-
cesses plans. In general, the planning of engineering processes, which criteria
could be initially abstracted from ad-hoc practices, needs to be concretized to
support manufacturers in achieving goals. Specifically, in the space context,
baseline criteria for software process planning are defined by the de-facto stan-
dard ECSS-E-ST-40C (recalled in Section 10.2.1). ECSS-E-ST-40C proposes
reference models that prescribe artifacts related to planning activities, i.e., a set
of units of work necessary to engineer systems. ECSS-E-ST-40C also contains
process-related requirements, which prescribe properties for the activities, e.g.,
the prerequisites for performing activities, the work products to be produced,
and specific guidance (see Table 10.4). Guidance elements may not be re-
quired for compliance auditing. However, internal policies in a company may
impose the need to have guidance that facilitates the process’s execution. All
those requirements need to be specified in the project-related documents, e.g.,
the EARM, after careful selection by the customer. The requirements spec-
ification should contain the definition of one party’s obligations towards the
other and the authorization from the customer to the supplier to deviate from
the standard requirements. The specification of the customer’s requirements is
an input for software project-specific contractual agreements with the supplier,
who use them to define a CaEPP to perform the job. Thus, for defining contrac-
tual obligations regarding software projects, the discussions about the technical
specifications based on the requirements baseline provided by ECSS-E-ST-40C

234 Paper D

must be carried out early in the lifecycle process. Selected requirements must
be correctly adopted in the software engineering process plan. Otherwise, they
may constitute a legal cause of action for breaching the contractual agreements.

Manually checking software process plans compliance with the EARM re-
quirements is a common practice in this context. Indeed, the ECSS secretariat
provides the EARM matrix with all requirements 2 for that purpose. Filled
checklists highlight specific defects in the process (e.g., missed tasks) respect
the defined requirements, which could be the source of compliance risks (as
well as legal risks) during process execution. Besides, these checklists provide
hints to improve processes performance and re-negotiate requirements if full
compliance has become too demanding or unnecessary for the specific project.
However, performing manual checks could be overwhelming. In particular,
the knowledge included in ECSS-E-ST-40C is abundant (656 requirements),
and their complexity (there are connections between different requirements and
standards) have a direct implication in the correctness of the resulting process
plans, i.e., the sequencing of process tasks and the definition of the properties
of such tasks. Moreover, standards evolve (new versions are frequently re-
leased). Extensive process plans, which typically have a high number of states
and transitions, are difficult to verify against industry standards’ changing na-
ture. Thus, the lack of methodological support for dealing with compliance
management could involve unstructured practices, uncertain outcomes, com-
pliance, and legal risks. Due to the fact that we are performing a single-case
study, no firm conclusions should be done for the results. However, the data
collected (see Section 10.4) and its analysis results (see Section 10.5) can be
used as indications to guide the shaping of future designs and prototypes. In
the remaining part of this section, we present a specific discussion regarding
the case study insights as well as the challenges and potential improvements
that could be done to enhance ACCEPT.

10.6.1 Case study insights
When planning a software engineering process plan, the challenge is to under-
stand how many process elements should be specified and their order. In the
case study conducted, we defined a model of a software process plan by the
book, i.e., we extract the process elements suggested by the selected portion of
ECSS-E-ST-40C standard without any tailoring. It is called CaEPP since such
process elements are enriched with compliance information. In case of devia-
tion (e.g., tailoring), we can also know if the requirements are tailored out or

2https://ecss.nl/standards/downloads/doors-download/

10.6 Discussion 235

modified (as done for rules r5.5.2.10.Ommited and r5.5.2.10.ChangedRule in
Section 10.4.1). ACCEPT states that creating a CaEPP requires several mod-
els, which design is a process that is not free of effort, as presented in Sec-
tion 10.5.1. However, initial observations have shown that the effort required
to comprehend processes and standards models (see Section 10.5.2) and doc-
ument models (see Section 10.5.1) is significantly less. The reason is that for-
mal specifications are accompanied by informal explanations that clarify their
meaning and place them in context. Moreover, the visual approach adopted
allows for more focused reviews. It is clear that organizations may depart
from normative practices (not creation process plans by the book) for project-
inherent reasons that can be justified. In such cases, logic-based requirements
representations can be effortlessly superseded (as analyzed in Section 10.5.1).
In addition, the level of coverage of the models is higher (as analyzed in Sec-
tion 10.5.2). Thus, we can take good advantage of such an initial effort in the
long term. Specifically, the models are created in an authoring environment
that permits a well-defined organization of compliance-related artifacts in a hi-
erarchical, visual, and enriched structure, which can be reused. This modeling
strategy minimizes the distance between the specification of the requirements’
normative intention and the process elements that should respond to such re-
quirements. We could also include the possible exceptions that are derived
from the deviations. Once the models are created, the process plans’ validity
can be established by doing automatic reasoning about the standard conditions.
In particular, compliance violations could be drafted better since failure to re-
quirements is connected to textual sources. Therefore, the comprehension of
processes, standards, and their relationships is more natural, and the documen-
tation of compliance and the management of evolution get better support than
in manual checklists. These features are a valuable gain since once industry
standards and process plans are formalized, process engineers do not need to
expend valuable hours on reading regulatory documentation to infer the actions
that must be taken to maintain compliance.

10.6.2 Challenges and Potential Improvements

A key challenge in the use of ACCEPT is that standards are currently written
in natural language, and formalizing them is an intimidating and fairly sophis-
ticated task. The reason is that the number of requirements in a standard is
significant and context-specific. Thus, their interpretation requires expertise.
However, FCL has a limited set of constructs, which provide the expressivity
required for formalizing requirements. Such constructs also provide a frame-

236 Paper D

work for thinking about the requirements in terms of deontic notions and ex-
ceptions, which could simplify their interpretation. Therefore, showing process
engineers the FCL potential and its easy to use aspect may strive the interest
for its exploitation.

The work to be done when creating a CaEPP for software projects in the
space context has the tendency to be repetitive. Repetition could cause a drop
in a subject’s capacity to perform the modeling task (i.e., disinterest, boredom,
fatigue), making relative task demands greater than necessary. Further automa-
tion of such tasks might reduce the absolute demands, and thus the actual effort.
For example, the manual creation of the compliance effects is a repetitive task
that has to be done for each effect. In this case, we repeated this task 48 times
(see Figure 10.8). It was also prone to error since the effects’ names have
similarities (e.g., almost all the tasks’ effects have the word design). Thus,
we needed to review our design several times and manually track the informa-
tion we were writing in EPF-C. However, this task is systematic and supported
by templates. As such, it could be automatized by using a domain-specific
language that permits an adequate characterization of the specific compliance
effects and their production.

In general, different mechanisms can be defined to determine the mean-
ing of context-dependent situations that could affect rules’ formalization. In
particular, patterns facilitate the recognition of relevant requirements, improv-
ing efficiency and consistency when producing rules. Our current selection of
compliance patterns is limited to general situations, and they are also manually
instantiated. Still, they can provide some assistance. Moreover, the process
compliance hints could be used to establish conceptual relationships between
the elements composing process plans and their compliance effects in the gen-
eral compliance status. Thus, automated formalization of requirements could
also be provided by performing an intermediate translation step into controlled
English. For the compliance annotation of processes, programming scripts that
examine the semantic similarity between process elements and compliance ef-
fects can be created. The modeling part could also be facilitated by provid-
ing general-purpose process model repositories to process engineers. Indeed,
EPF-C offers such kind of repositories with libraries that can be downloaded
and assemble in specific projects 3.

3https://www.eclipse.org/epf/downloads/praclib/praclib downloads.php

10.7 Related Work 237

10.7 Related Work
ECSS standards are difficult to manage since they involve hundreds of pages
containing around 25.000 requirements for the development and operations of
European Space Systems. These standards are available in the form of docu-
ments (Word and PDF). In an effort for helping organizations, The European
Space Agency (ESA) 4 provides an Excel document that contains the ECSS
Applicability Requirement Matrix (EARM), which is useful for selecting re-
quirements and document tailoring procedures. However, process engineers
need to check the applicable requirements one by one. In addition, the data
model requirements are specified in the ECSS digital Requirements Manage-
ment System (E-RMS) conceptual data model [65], which guarantees the per-
sistence of the ECSS requirements, but it does not have facilities for process
modeling processes. A more sophisticated approach is presented in [66], which
proposes a persistent connection via relational databases to word processor
documents that contain the work products required in the standard. With this
approach, compliance checking results may be incomplete, as not all activities
produce work products, leaving mandatory activities out of the checking scope.
In contrast, ACCEPT provides compliance checking of the process workflow,
which not only takes into account the results of the tasks (e.g., work prod-
ucts). For this reason, it is more useful at planning stages. Moreover, ACCEPT
is not only domain-specific as the ESA Excel document. In principle, any
process-based requirements catalog can be formalized, uploaded and applied
to a variety of safety-critical related software process plans.

Compliance-related artifacts modeling has also been the target of some re-
search efforts. For example, in [67], the authors provide a model of the process
concepts, via the UML [22] class diagrams. Automated rule checking with
OCL (Object Constraint Language) constructs 5 is also suggested (but not im-
plemented). In [68], the authors introduce SafetyMet. SafetyMet is a generic
metamodel that includes the concepts and relationships common to different
safety standards and project practices. With SafetyMet, mapping standards
models and project information is also possible. In [69], the authors describe
a SPEM 2.0 extension, which incorporates process requirements, guidelines,
and their properties. The extension is used to generate an ontological repre-
sentation that can be visualized with the Semantic Media Wiki (SMW) 6. In
contrast to the work presented in [67, 68, 69], we consider SPEM 2.0 (with-

4https://ecss.nl/
5https://wiki.eclipse.org/OCL
6https://www.semantic-mediawiki.org/wiki/Semantic MediaWiki

238 Paper D

out performing any extension), an Object Management Group specification 7

that is well-documented, mature, and open, and permits to model not only the
processes and their related library but also the artifacts required for performing
compliance checking.

Logic-based approaches have also provided a suitable framework to repre-
sent and reasoning upon normative knowledge. In [70], the authors propose
a document schema specification in UML. The properties of the documents
prescribed by the standards are formalized in first-order logic (FOL). Checks
are performed when there is an attempt to read/write documents during pro-
cess enactment. FOL can express property specifications, but it is insufficient
to express the sequence of tasks in a process plan. In [71], the authors pro-
pose an approach for compliance checking based on temporal logic. However,
it does not build an operational model of the process from the beginning. In-
stead, it needs the extraction of knowledge from event logs provided by the
systems to create traces. Traces only contain tasks, which means that other
process elements are not explicitly defined. As in [70], this approach only
detects uncompliant states in the process execution. Moreover, the explicit
definition of process elements beyond tasks is not possible. In [72], the authors
present a framework based on Natural Language Semantics and Natural Lan-
guage Processing techniques for recognizing correlations between provisions
in a standard and requirements in a given law. However, it does not provide
logic constructs to represent process plans, which is also part or our work. Our
approach, as in [70, 71, 72], uses logical-based approaches for the formulation
of requirements constraints. However, it is process-centered, planning-time,
which means that a process and its elements are essential inputs.

Compliance checking by design is approached in the safety-critical con-
text. In [73], the authors propose the comparison between an initial model of
the process lifecycle prescribed by the standards and the plan provided by the
users. The compliance checking is the result of the matching between the two
process-based models. In contrast to the approach provided by [73], other ap-
proaches provide a comparison between the process and the requirements spec-
ification. For example, the authors in [74] propose a framework that uses Lin-
ear Temporal Logic to model a specification of the reference model provided
by a standard. This specification is used to check the model of a SPEM 2.0
process. The work presented in [75, 76] aims at facilitating the checking of
constraints by using SWRL (Semantic Web Rule Language) [77] on a process
defined in SPEM 2.0. In [78], the authors present an approach for representing

7https://www.omg.org/spec/

10.8 Conclusions and Future Work 239

SPEM 2.0 process models in Description Logics, to provide process analysis
such as reasoning and consistency checks. ACCEPT has similarities with the
approaches provided in the previous works [74, 75, 76]. First, it considers that
the model of the norms and the model of the process are necessary inputs for
compliance checking. Second, processes are modeled with SPEM 2.0-like arti-
facts. However, ACCEPT uses customized SPEM 2.0-like artifacts to provide
visual relationships between compliance artifacts. Moreover, ACCEPT uses
FCL, which is a deontic language able to directly provide normative notions,
i.e., obligation, prohibition, and permission, without the need for combining
expressions. Moreover, FCL, which is also a defeasible logic, is capable of
providing the management of the tailoring rules.

10.8 Conclusions and Future Work

ACCEPT is a framework based on a proactive strategy called compliance-by-
design that permits process engineers to create compliance-aware engineering
process plans (CaEPP). A CaEPP can show the planning-time allocation of
standard demands, i.e., if the elements set down by the standard requirements
are present at given points in the engineering process plan. A CaEPP avoids
that process engineers experience the tasks related to process compliance man-
agement as reactive, i.e., it provides a risk control mechanism at planning-time
that facilitates the decision-making process. Thus, a CaEPP could increase
confidence in process compliance, which at the same time could reduce li-
ability in case of an adverse event occurs. This situation is essential in the
safety-critical context since the duty of care and standards compliance are typ-
ically linked together. In this paper, we performed a case study to understand
if the ACCEPT produced models could support the planning of space soft-
ware engineering processes. Space software is safety-critical since a software
failure could cause a space mission disaster leading to financial losses, envi-
ronmental pollution, and people’s endangerment. Space software production
is frequently the result of industrial cooperation. Such cooperation is coor-
dinated through compliance with relevant standards. In the European space
context, in which projects are share between companies that act as supplies
with others that act as customers, the de-facto standard that regulated soft-
ware development is the ECSS-E-ST-40C. Such a standard provides require-
ments that help customers formulate their project-specific requirements (ECSS
Applicability Requirements Matrix or EARM) and suppliers to prepare their
responses and implement the work (ECSS Compliance Matrix or ECM). For

240 Paper D

this reason, the planning of software engineering processes in compliance with
project-specific ECSS-E-ST-40C applicable requirements is mandatory during
contractual agreements. The sheer volume of the requirements in this spe-
cific standard, which requires tailoring and documentation, make compliance
duties challenging. The case study’s goal was to qualitatively analyze the cur-
rent effort required to model a CaEPP in ACCEPT for software development
processes in compliance with ECSS-E-ST-40C and the coverage level of such
models. In particular, we analyzed actual effort, which is determined by task
demands. Initial observations show that the effort required to model compli-
ance and processes artifacts is significant. However, the effort is reduced in the
long term since models are, to some extend, reusable and flexible. Thus, pro-
cess engineers in the space context do not need to start from scratch in every
project. Reusing artifacts in the compliance checking process may simplify the
work that process engineers need to perform in every process planning. Such
gain could be interpreted as a benefit in terms of resource savings since profes-
sionals’ time is costly. We also analyzed the coverage level of the models based
on design decisions. In our opinion, such a coverage level is adequate since
it responds to the information needs required by the ECSS-E-ST-40C frame-
work, i.e., information requested by EARM and ECM matrices, the process
they regulate, and their required alignment (compliance annotations, analysis,
and results).

The outcome of this case study only applies to compliance-aware software
engineering processes with the characteristics demanded by ECSS-E-ST-40C.
Other safety-critical engineering processes, such as safety-critical processes in
chemical plants, may exhibit additional challenges. Thus, to generalize our
framework capabilities, we have to perform more case studies with a broader
range of standards applicable to the safety-related context. Additional case
studies may also help us further improve our framework and provide more
cases that facilitate its introduction in different contexts. However, the analy-
sis performed in this case study gave us insights that could lead to additional
refinements and improvements. In general, ACCEPT methodology is system-
atic and can be further automated. Thus, we consider adding mechanisms that
facilitate the edition of rules and the use of templates for safety compliance
hints and patterns. We also aim to design algorithms that facilitate the automa-
tion of the formalization of requirements and examine the semantic similarity
between process elements and compliance effects to facilitate the compliance
annotation of process elements. In terms of analysis, we have a further job to
do. The experience of effort (or perception of effort) is a factor that is also
important to analyze since it can provide feedback on task difficulty. There-

10.8 Conclusions and Future Work 241

fore, we plan to conduct experiments that include users perceiving effort in the
modeling tasks required to create CaEPPs. Moreover, we aim to evaluate user
acceptance by using frameworks, such as the technology acceptance model
(TAM) [79]). We also need to specify well-defined metrics to demonstrate our
approach’s value-add in terms of efficiency. Finally, we could generate fitness
functions that facilitate calculations regarding the adequacy of the information
coverage level provided by the models, the compliance documentation, and the
evolution management.

Bibliography

[1] V. Icheku, Understanding ethics and ethical decision-making. Xlibris
Corporation, 2011.

[2] P. B. Ladkin, “Duty of care and engineering functional-safety standards,”
Digital Evidence & Elec. Signature L. Rev., vol. 16, p. 51, 2019.

[3] M. Generowicz, “The Easy Path to Functional Safety Compliance.” 2013.

[4] M. A. Cusumano, “Who is liable for bugs and security flaws in soft-
ware?,” Communications of the ACM, vol. 47, no. 3, pp. 25–27, 2004.

[5] S. Ingolfo, A. Siena, and J. Mylopoulos, “Establishing regulatory com-
pliance for software requirements,” in International Conference on Con-
ceptual Modeling, pp. 47–61, Springer, 2011.

[6] N. Walkinshaw, “Software quality assurance,” Springer International
Publishing, vol. 10, pp. 978–3, 2017.

[7] B. Blackwelder, K. Coleman, S. Colunga-Santoyo, J. S. Harrison, and
D. Wozniak, “The volkswagen scandal,” 2016.

[8] A. Schwartz, “Statutory interpretation, capture, and tort law: The regula-
tory compliance defense,” American Law and Economics Review, vol. 2,
no. 1, pp. 1–57, 2000.

[9] IEC 61508, “Functional safety of electrical/electronic/programmable
electronic safety-related systems,” 2010.

[10] F. Moyón, D. Méndez, K. Beckers, and S. Klepper, “How to inte-
grate security compliance requirements with agile software engineering
at scale?,” in International Conference on Product-Focused Software Pro-
cess Improvement, pp. 69–87, Springer, 2020.

243

244 BIBLIOGRAPHY

[11] K. Eastaughffe, A. Cant, and M. Ozols, “A framework for assessing stan-
dards for safety critical computer-based systems,” in 4th IEEE Interna-
tional Software Engineering Standards Symposium and Forum.’Best Soft-
ware Practices for the Internet Age’, pp. 33–44, IEEE, 1999.

[12] B. Gallina, F. U. Muram, and J. P. Castellanos Ardila, “Compliance of
agilized (software) development processes with safety standards: a vi-
sion,” in 19th International Conference on Agile Software Development,
pp. 1–6, 2018.

[13] A. Ruiz, B. Gallina, J. L. de la Vara, S. Mazzini, and H. Espinoza,
“Amass: Architecturedriven, multi-concern, seamless, reuse-oriented as-
surance and certification of cpss,” in 5th International Workshop on Next
Generation of System Assurance Approaches for Safety-Critical Systems
(SASSUR), Trondheim, Norway, September, Computer Safety, Reliabil-
ity, and Security (SAFECOMP), Lecture Notes in Computer Science, vol
9923, pp. 311–321, 2016.

[14] J. L. de la Vara, E. Parra, A. Ruiz, and B. Gallina, “Amass: a large-
scale european project to improve the assurance and certification of cyber-
physical systems,” in International Conference on Product-Focused Soft-
ware Process Improvement, pp. 626–632, Springer, 2019.

[15] J. Castellanos Ardila, Facilitating Compliance Checking of Processes
against Safety Standards. Licentiate thesis, Mälardalen University, Swe-
den, 2019.

[16] J. P. Castellanos Ardila, “Facilitating automated compliance checking in
the safety-critical context,” Electronic Communications of the EASST,
vol. 78, 2019.

[17] R. Lu, S. Sadiq, and G. Governatori, “Compliance aware business process
design,” in International Conference on Business Process Management,
pp. 120–131, Springer, 2007.

[18] A. Siena, J. Mylopoulos, A. Perini, and A. Susi, “From laws to require-
ments,” in 2008 Requirements Engineering and Law, pp. 6–10, IEEE,
2008.

[19] G. Governatori, “Representing Business Contracts in RuleML,” Interna-
tional Journal of Cooperative Information Systems., pp. 181–216, 2005.

BIBLIOGRAPHY 245

[20] G. Governatori, “The Regorous approach to process compliance,” in
IEEE 19th International Enterprise Distributed Object Computing Work-
shop, pp. 33–40, 2015.

[21] OMG, “Software & Systems Process Engineering Meta-Model Specifi-
cation. V. 2.0.,” 2008.

[22] OMG, “Unified Modeling Language Specification V. 2.5.1,” 2017.

[23] Eclipse Foundation, “Eclipse Process Framework (EPF) Composer,”
2018.

[24] M. A. Javed and B. Gallina, “Get EPF Composer back to the future: a trip
from Galileo to Photon after 11 years,” in EclipseCon, 2018.

[25] SINTEF, “BVR Tool, https://github.com/SINTEF-9012/bvr,” 2016.

[26] M. A. Javed and B. Gallina, “Safety-oriented Process Line Engineering
via Seamless Integration between EPF Composer and BVR Tool,” in 22nd
International Systems and Software Product Line Conference, pp. 23–28,
2018.

[27] J. L. de la Vara, E. Parra, A. Ruiz, and B. Gallina, “The amass tool
platform: An innovative solution for assurance and certication of cyber-
physical systems.,” in Joint Proceedings of REFSQ-2020 Workshops,
Doctoral Symposium, Live Studies Track, and Poster Track co-located
with the 26th International Conference on Requirements Engineering:
Foundation for Software Quality (REFSQ 2020)CEUR Workshop Pro-
ceedings, Vol-2584, urn:nbn:de:0074-2584-1, 2020.

[28] I. Ruiz-Rube, J. M. Dodero, M. Palomo-Duarte, M. Ruiz, and D. Gawn,
“Uses and applications of spem process models. a systematic mapping
study,” Journal of Software Maintenance and Evolution: Research and
Practice, vol. 1, no. 32, pp. 999–1025, 2012.

[29] G. Baumgarten, M. Rosinger, A. Todino, and R. de Juan Marı́n, “Spem
2.0 as process baseline meta-model for the development and optimization
of complex embedded systems,” in 2015 IEEE International Symposium
on Systems Engineering (ISSE), pp. 155–162, IEEE, 2015.

[30] V. Rantala, K. Könnölä, S. Suomi, M. Isomäki, and T. Lehtonen, “Agile
embedded system development versus european space standards,” Inter-
national Journal of Information Systems and Social Change, vol. 8, no. 1,
pp. 1–23, 2017.

246 BIBLIOGRAPHY

[31] A. Lill, Definition of an Agile Software Development Process for the Eu-
ropean Space Industry. Master thesis, Technische Univesität München,
2018.

[32] ESA, “ECSS-E-ST-40C – Space Engineering Software,” 2009.

[33] S. Ghanavati, D. Amyot, and L. Peyton, “Comparative Analysis be-
tween Document-based and Model-based Compliance Management Ap-
proaches,” in Requirements Engineering and Law, pp. 35–39, 2008.

[34] N. Harkiolakis, Assurance, pp. 122–127. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2013.

[35] N. G. Leveson, Engineering a safer world: Systems thinking applied to
safety. The MIT Press, 2016.

[36] H. M. Kienle, D. Sundmark, K. Lundqvist, and A. Johnsen, “Liability
for software in safety-critical mechatronic systems: An industrial ques-
tionnaire,” in 2nd International Workshop on Software Engineering for
Embedded Systems, pp. 44–50, IEEE, 2012.

[37] U.S. FDA, “U.S. Food and Drug-Medical Devices,” 1906.

[38] ESA, “ECSS-S-ST-00C – System, Description, implementation and gen-
eral requirements,” 2009.

[39] P. J. Denning and M. Tedre, Computational Thinking. MIT Press, 2019.

[40] N. Leveson, “Are you sure your software will not kill anyone?,” Commu-
nications of the ACM, vol. 63, no. 2, pp. 25–28, 2020.

[41] G. Kalus and M. Kuhrmann, “Criteria for software process tailoring: a
systematic review,” in International Conference on Software and System
Process, pp. 171–180, 2013.

[42] J. Cosgrove, “Software engineering and the law,” IEEE Software, vol. 18,
no. 3, pp. 14–16, 2001.

[43] L. Buglione, A. April, and R. J. Rejas-Muslera, “The need for a legal per-
spective in software engineering maturity models,” Intellectual Property,
vol. 4, no. 9, p. 10, 2010.

[44] N. Leveson et al., “Medical devices: The therac-25,” Appendix of: Safe-
ware: System Safety and Computers, 1995.

BIBLIOGRAPHY 247

[45] M. Dowson, “The ariane 5 software failure,” ACM SIGSOFT Software
Engineering Notes, vol. 22, no. 2, p. 84, 1997.

[46] B. S. Cruz and M. de Oliveira Dias, “Crashed boeing 737-max: Fatalities
or malpractice?,” GSJ, vol. 8, no. 1, pp. 2615–2624, 2020.

[47] SEI, “CMMI for Development V. 1.3– Capability Maturity Model Inte-
gration,” 2011.

[48] G. O’Regan, “Overview of software engineering,” in World of Comput-
ing, pp. 179–202, Springer, Cham, 2018.

[49] B. Gallina, E. Gómez-Martı́nez, and C. B. Earle, “Deriving safety case
fragments for assessing mbasafe’s compliance with en 50128,” in Inter-
national Conference on Software Process Improvement and Capability
Determination, pp. 3–16, Springer, 2016.

[50] ESA, “ECSS-E-HB-40C – Space engineering - Software engineering
handbook,” 2013.

[51] E. Ahmad, B. Raza, R. Feldt, and T. Nordebäck, “Ecss standard compliant
agile software development: an industrial case study,” in Proceedings of
the 2010 National Software Engineering Conference, pp. 1–6, 2010.

[52] ESA, “ECSS-Q-ST-40C – Space Product Assurance - Safety,” 2017.

[53] T. Boutros and T. Purdie, The Process Improvement Handbook: A
Blueprint for Managing Change and Increasing Organizational Perfor-
mance. McGraw-Hill Education, 2014.

[54] M. Hashmi, G. Governatori, and M. Wynn, “Normative Requirements for
Business Process Compliance,” Lecture Notes in Business Information
Processing, vol. 177, pp. 100–116, 2013.

[55] S. Sadiq, G. Governatori, and K. Namiri, “Modeling Control Objectives
for Business Process Compliance,” in International Conference on Busi-
ness Process Management, pp. 149–164, 2007.

[56] D. Smith, “The Design of Divide and Conquer Algorithms,” Science of
Computer Programming, vol. 5, pp. 37–58, 1985.

[57] J. P. Castellanos Ardila and B. Gallina, “Separation of concerns in process
compliance checking: Divide-and-conquer,” in 27th European & Asian

248 BIBLIOGRAPHY

System, Software & Service Process Improvement & Innovation, pp. 135–
147, Springer, 2020.

[58] J. P. Castellanos Ardila and B. Gallina, “Formal Contract Logic Based
Patterns for Facilitating Compliance Checking against ISO 26262,” in 1st
Workshop on Technologies for Regulatory Compliance, pp. 65–72, 2017.

[59] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett, “Patterns in property spec-
ifications for finite-state verification,” in 21st International Conference on
Software Engineering, pp. 411–420, 1999.

[60] J. P. Castellanos Ardila, B. Gallina, and F. Ul Muram, “Enabling Com-
pliance Checking against Safety Standards from SPEM 2.0 Process Mod-
els,” in Euromicro Conference on Software Engineering and Advanced
Applications, pp. 45 – 49, 2018.

[61] J. P. Castellanos Ardila, B. Gallina, and F. U. Muram, “Transforming
spem 2.0-compatible process models into models checkable for compli-
ance,” in International Conference on Software Process Improvement and
Capability Determination, pp. 233–247, Springer, 2018.

[62] B. Tuft, “Eclipse Process Framework (EPF) Composer: Installation, In-
troduction, Tutorial and Manual,” 2010.

[63] P. Runeson, M. Höst, A. Rainer, and B. Regnell, Case study research in
software engineering: Guidelines and examples. John Wiley & Sons,
2012.

[64] J. Steele, “What is (perception of) effort? objective and subjective effort
during task performance,” PsyArXiv, doi: 10.31234/osf.io/kbyhm, 2020.

[65] ESA, “ECSS MasterDB - User requirements Document,” 2018.

[66] O. Armbrust, A. Ocampo, and M. Soto, “Tracing process model evolu-
tion: A semi-formal process modeling approach,” in ECMDA Traceabil-
ity Workshop, pp. 57–66, 2005.

[67] R. K. Panesar-Walawege, M. Sabetzadeh, L. Briand, and T. Coq, “Char-
acterizing the chain of evidence for software safety cases: A conceptual
model based on the iec 61508 standard,” in 3rd International Confer-
ence on Software Testing, Verification and Validation, pp. 335–344, IEEE,
2010.

BIBLIOGRAPHY 249

[68] J. L. de la Vara and R. K. Panesar-Walawege, “Safetymet: A metamodel
for safety standards,” in International Conference on Model Driven En-
gineering Languages and Systems, pp. 69–86, Springer, 2013.

[69] R. Eito-Brun and A. Amescua, “Dealing with software process require-
ments complexity: an information access proposal based on semantic
technologies,” Requirements Engineering, vol. 22, no. 4, pp. 527–542,
2017.

[70] W. Emmerich, A. Finkelstein, C. Montangero, S. Antonelli, S. Armitage,
and R. Stevens, “Managing standards compliance,” IEEE Transactions
on Software Engineering, vol. 25, no. 6, pp. 836–851, 1999.

[71] F. Martinelli, F. Mercaldo, V. Nardone, A. Orlando, A. Santone, and
G. Vaglini, “Model Checking Based Approach for Compliance Check-
ing,” Information Technology And Control, vol. 48, no. 2, pp. 278–298,
2019.

[72] C. Bartolini, A. Giurgiu, G. Lenzini, and L. Robaldo, “Towards legal
compliance by correlating standards and laws with a semi-automated
methodology,” in Benelux Conference on Artificial Intelligence, pp. 47–
62, Springer, 2016.

[73] P. W. Chung, L. Y. Cheung, and C. H. Machin, “Compliance
flow–managing the compliance of dynamic and complex processes,”
Knowledge-Based Systems, vol. 21, no. 4, pp. 332–354, 2008.

[74] F. Golra, F. Dagnat, R. Bendraou, and A. Beugnard, “Continuous Process
Compliance Using Model Driven Engineering,” in International Confer-
ence on Model and Data Engineering, pp. 42–56, Springer, 2017.

[75] D. Rodriguez, E. Garcia, S. Sanchez, and C. R.-S. Nuzzi, “Defining soft-
ware process model constraints with rules using owl and swrl,” Inter-
national Journal of Software Engineering and Knowledge Engineering,
vol. 20, no. 4, pp. 533–548, 2010.

[76] M. Valiente, E. Garcı́a-Barriocanal, and M. Sicilia, “Applying Ontology-
Based Models for Supporting Integrated Software Development and IT
Service,” IEEE Transactions on Systems, Man and Cybernetics, vol. 42,
no. 1, pp. 61–74, 2012.

[77] I. Horrocks, P. Patel-schneider, H. Boley, S. Tabet, B. Grosof, and
M. Dean, “SWRL: A Semantic Web Rule Language Combining OWL
and RuleML,” W3C Member submission, vol. 21, no. 79, pp. 1–31, 2004.

[78] S. Wang, L. Jin, and C. Jin, “Represent Software Process Engineering
Metamodel in Description Logic,” in World Academy of Science, Engi-
neering and Technology, vol. 11, pp. 109–113, 2006.

[79] F. D. Davis, A technology acceptance model for empirically testing new
end-user information systems: Theory and results. PhD thesis, Mas-
sachusetts Institute of Technology, 1985.

Chapter 11

Paper E:
Reusing (Safety-oriented)
Compliance Artifacts while
Recertifying

Julieth Patricia Castellanos Ardila, Barbara Gallina.
Proceedings of the 9th International Conference on Model-Driven Engineering
and Software Development. Scitepress Digital Library - Volume 1: Model-
sward. 2021

251

Abstract

Revisions of safety-related standards lead to the release of new versions. Con-
sequently, products and processes need to be recertified. To support that need,
product line-oriented best practices have been adopted to systematize reuse at
various levels, including the engineering process itself. As a result, Safety-
oriented Process Line Engineering (SoPLE) is introduced to systematize reuse
of safety-oriented process-related artifacts. To systematize reuse of artifacts
during automated process compliance checking, SoPLE was conceptually com-
bined with a logic-based framework. However, no integrated and tool-supported
solution was provided. In this paper, we focus on process recertification (inter-
preted as the need to show process plan adherence with the new version of the
standard) and propose a concrete technical and tool-supported methodological
framework for reusing (safety-oriented) compliance artifacts while recertify-
ing. We illustrate the benefits of our methodological framework by considering
ISO 14971 versions, and measuring the enabled reuse.

11.1 Introduction 253

11.1 Introduction

Revisions of safety-related standards lead to the release of new versions. Ad-
justments resulting from adding, deleting, or modifying requirements change
the compliance status of organizations. Consequently, products and processes
need to be recertified. To maintain processes compliance back in line, manu-
facturers perform a gap analysis between standards versions. A gap analysis
permits manufacturers to understand what can be reused in terms of process
information and process compliance demonstration [1]. In general, by reading
the requirements of prescriptive standards, it is possible to identify similarities
regarding tasks, work products, and other process-related artifacts, which are
candidates for reuse. Based on product line-oriented best practices, reuse can
be systematized at various levels, including the engineering process itself. As
a result, Safety-oriented Process Line Engineering (SoPLE) [2] is introduced
to systematize reuse of safety-oriented process-related artifacts.

To increase confidence in process compliance via compliance proofs and
efficiency via systematic reuse [3], SoPLE was conceptually combined with a
logic-based framework. The initial logic-based framework was adapted to be
used with safety-related software processes [4, 5]. As such, it requires users to
model process plans checkable for compliance in EPF-C [6] (recently migrated
from Eclipse Galileo 3.5.2 to Eclipse Neon 4.6.3 [7]), which provides the en-
vironment for modeling SPEM 2.0 (Systems & Software Process Engineering
Metamodel) [8]-like artifacts. Process models of this type are composed of ar-
tifacts enriched with compliance information through annotations representing
formalized standards requirements in FCL (Formal Contract Logic) [9]. FCL,
a logic used to interpret and model normative knowledge, can be formally veri-
fied with Regorous [10], a compliance checker created in the business and legal
context. The addition of SoPLE was meant to extend systematic reuse to the
automated compliance checking artifacts included in such models. However,
no integrated and tool-supported solution was provided.

In this paper, we focus on showing process plan adherence with new ver-
sions of standards and propose a concrete technical and tool-supported method-
ological framework for reusing (safety-oriented) compliance artifacts while re-
certifying. In particular, we include the tool support for variability manage-
ment offered by BVR-T (Base Variability Resolution Tool [11]), included in
the tool-chain EPF-C ◦ BVR-T [12]. EPF-C ◦ BVR-T was developed in the
context of the AMASS project [13] and was used in the space domain [14].
Systematic reuse of compliance checking artifacts is done in four steps. 1) Ini-
tial compliance checking of single process plans is performed, via EPF-C and

254 Paper E

Regorous. 2) The resulting models are used as the base for evaluating com-
monalities and variabilities while adding standards of the same family, e.g.,
different versions of the same standard. The artifacts that vary are modeled
in EPF-C. 3) The analysis of the compliance status of the standard-specific
artifacts that are part of the variability is performed by taking into account
the annotated compliance information. The compliance status can be analyzed
by using Regorous. 4) The tool-chain EPF-C ◦ BVR-T is used to model the
families included in the compliance checking process, pre-check the choices
at variation points and deliver the concrete standard-specific (safety-oriented)
compliance checking artifacts, i.e., process models, rulesets denoting formal-
ized requirements from standards, and compliance annotated process artifacts.
We illustrate the benefits of our tool-supported methodological framework by
considering the evolution (i.e., new versions of the standard resulting from re-
visions) of ISO 14971 [15]-process for risk management to medical devices. In
particular, when published, ISO 14971:2007 [16] was internationally endorsed.
In contrast, EN ISO 14971:2012 [17] is harmonized with EU directives for the
European market. The latest version, ISO 14971:2019 [18], is internationally
endorsed again. Thus, ISO 14971-related compliance is challenging for manu-
facturers of medical devices, who need to find approval from regulatory bodies
within and outside the EU. By measuring the enabled reuse, we answer the
question To what extent process-related compliance artifacts can be reused?

The paper is organized as follows. In Section 11.2, we provide essential
background. In Section 11.3, we present our methodological framework for
compliance checking artifacts reusability. In Section 11.4, we illustrate our
methodological framework by considering ISO 14971 versions, and measure
the enabled reuse. In Section 11.5, we discuss our findings. In Section 11.6,
we present related work. Finally, in Section 11.7, we conclude our work and
present future work.

11.2 Background
In this section, we provide basic information on which we base our work.

11.2.1 ISO 14971 and its evolution

ISO 14971 [15] specifies the process required to identify hazards, estimate,
evaluate, control, and monitor the risk of medical devices during its lifecycle.
The content of ISO 14971 has been evolving over the years [19], incorporating

11.2 Background 255

consensus-based modifications and refinements. As a result, different versions
have been published, i.e., ISO 14971:2007 [16], EN ISO 14971:2012 [17] and
ISO 14971:2019 [18]. Relevant concepts that are used in the following sections
are presented in italics. In particular, the risk analysis phase in ISO 14971:2007
and EN ISO 14971:2012 corresponds to clause 4 and requires the planning
of three tasks, i.e., 1) Define use/safety characteristics, 2) Estimate risks and
3) Identify hazards. In contrast, the same phase corresponds to clause 5 in
ISO 14971:2019 and the task Define use/safety characteristics should be di-
vided into two. For ISO 14971:2007, the manufacturer shall discard the neg-
ligible risk. Annexes of EN ISO 14971:2012 and ISO 14971:2019 provide
a deviation, i.e., the manufacturer shall consider all risks. In all versions, the
manufacturer is the role in charge, the risk management plan is the prerequisite
of the clause, and the work products are risk analysis document and risk man-
agement file. The risk analysis document requires information regarding the
medical device description and identification, the identification of the person
and organization, the scope, date, the intended use, and reasonably foresee-
able misuse, the qualitative/quantitative safety characteristics of the medical
device, known and foreseeable hazards associated with the medical device,
fault conditions, reasonably foreseeable sequences of events, and the resulting
hazardous situation. Additional information is prescribed by ISO 14971:2019,
i.e., intended medical indication, patient population, part of the body/tissue,
user profile, and operating principle.

11.2.2 Automated Compliance Checking

Our logic-based framework for automated compliance checking [4] requires
process engineers to model process plans enriched with compliance annota-
tions (see Figure 11.1), which are extracted from formalized standards require-
ments. An expert in FCL (Formal Contract Logic) [9] performs the required
formalization. FCL is a logic that supports the modeling of norms represent-
ing obligations ([O]) and permissions ([P]) in a normative context that can be
defeated by evolving knowledge. In FCL, norms are implications in which the
antecedent represents the conditions for the requirements’ applicability, and
the conclusion represents compliance effects. Compliance effects express the
concrete behavior of the process elements that adhere to standards require-
ments. Regorous receives the models automatically transformed from EPF-C
(see [5]) and perform the automated compliance analysis. The process engi-
neer uses compliance results (which have the potential to be transformed back
into EPF-C-like formats) to perform compliance analysis and improve the pro-

256 Paper E

cess compliance iteratively.

Figure 11.1: Process Compliance Checking Framework.

More concretely, EPF-C is used to model the base process and its related li-
brary (see Figure 11.2-(A1)). A role represents who does a task. Work products
identify a type of artifacts resulting from a task. Guidance represents free-form
documentation that can be attached to process elements. A task is related to
other elements as depicted in Figure 11.2-(A2). For performing automated
compliance checking, the process engineer needs to model three plugins1 in
EPF-C (see Figure 11.2-(A), -(B) and -(C)).

The Lifecycle Plugin (see Figure 11.2-(A)) contains the method content
necessary to create process plans. Figure 11.2-(A1) depicts method content re-
quired for manufacturing a medical device in compliance with ISO 14971:2007
(see [19]).

The Standard Information Plugin (see Figure 11.2-(B)) contains the stan-
dard requirements and their formalization in FCL. To model FCL-related in-
formation, rule propositions are modeled by using SPEM 2.0 guidance ele-
ments customized in a specific way [20]. For this, we take into account the
type of process elements that are targeted by the standard requirements. As a
result, process elements definition are represented with specific icons (see Fig-
ure 11.2-(B1)) and the propositions are created based on templates, i.e., per-
form{TaskName}, provide{WorkProductName}, guidedBy{GuidanceName},

1An EPF-C plugin is a mechanism for packaging content providing modularization and ex-
tensibility

11.2 Background 257

Figure 11.2: Modeling Process Plans Checkable for Compliance.

performedBy{RoleName}. Similarly the definition of process elements prop-

258 Paper E

erties, i.e., {ElementName}with{Element Property}. Requirements and rules
are also represented with specific customized icons (see Figure 11.2-(B2)). A
set of FCL rules for ISO 14971-risk analysis is presented in Figure 11.2-(D).
For example, rule 4.1.1.a refers to the provision of the prerequisite, which as
recalled in Section 11.2.1, is an obligation. Once provided, we have the obli-
gation of initiate the risk analysis process (see 4.1.1.b).

The Compliance Annotated Process Plugin contains the process anno-
tated with compliance effects (see Figure 11.2-(C)). The annotation requires
users to evaluate the effect that each element provide to the overall process
compliance (see Figure 11.2-(C1)). For example, the task DefineUse/Safety-
Characteristics is used to initiate the risk analysis process and to perform the
definition of intended use and safety characteristics. Thus, we annotate it with
the corresponding compliance effects. Then, a dynamic representation of the
process plans is created with the annotated process elements (see Figure 11.2-
(C2)).

Regorous automatically generates a compliance state representation of the
annotated process plan and analyses compliance against the FCL ruleset by us-
ing two functions. The function State(t,i) returns the state of a task (t), in the
step (i). The function Force(t,i) = {O} associates to each task (t), in the step (i)
a set of obligations O. See, for example, the rules 4.1.1.a, 4.1.1.b, 4.1.1.c,
4.1.1.d. and 4.2.1.a, presented in the ruleset excerpt (see Figure 11.2-(D)).
These rules represent the obligations in force at different steps. Thus, rule
4.1.1.a forces the first obligation, i.e., Force(1,1) = [O]provideRiskManageme-
ntPlan. In a similar manner, the subsequent rules are forced, because the an-
tecedent is getting fulfilled. Define use/Safety Characteristics is the first task in
the workflow (see Figure 11.2-(C2)), and all the elements are associated to this
task (Figure 11.2-(A2)) have their corresponding annotated compliance effects
(see Figure 11.2-(C1)). Thus, the state representation of this task, State (1,1),
contains all the compliance effects required by the force functions and the task
is compliant. Regorous apply this strategy to the whole workflow and provide
the compliance status of the process as well as the counterexamples in case
of rules violations. When no counterexamples exist, Regorous defines that the
process is compliant (see Figure 11.2-(E)).

11.2.3 Compliance Proofs Reuse

A methodological framework (see Figure 11.3) for enabling reuse of compli-
ance proofs [3] includes the combination of formal approaches with SoPLE
(Safety-oriented Process Line Engineering) [2]. SoPLE manages families of

11.2 Background 259

processes and standards (i.e., families that exhibit several commonalities and
differ via as set of managed variabilities, e.g., different versions of a standard).
In SoPLE, commonalities, indeed, represent clearly reusable elements. These
commonalities are defined beyond the syntactical comparison. We are inter-
ested in extracting full commonalities, i.e., whenever two elements of the same
type expose only common aspects. With our methodological framework, we
learned that proofs of compliance could be fully or partially reused, depending
on the compliance effects produced by the variability. In Section 11.3.1, we
extend the compliance analysis of such reuse.

Figure 11.3: Framework for Compliance Proofs Reuse.

The framework is composed by four spaces where the process engineer
perform specific actions.

1. In the process space, he/she models a Safety-oriented Process Line (SoPL).
A SoPL includes manually modeling the skeleton (with commonalities and
variabilities) of the process sequence.

2. In the normative space, he/she formalizes rules and models a SoPL-like
structure with such rules, i.e., selects the set of rules that overlap.

3. In the common space, he/she analyzes the compliance of commonalities
between the process-related SoPL with the SoPL-like rules.

4. In the compliance space, he/she analyzes the compliance effects of the tasks
that contribute to the variabilities in the standard-specific process.

260 Paper E

11.2.4 EPF-C ◦ BVR-T
EPF-C ◦ BVR-T [12] is a tool-chain composed by EPF (see Section 11.2.2)
Composer and BVR-T (Base Variability Resolution Tool) [11] that enables So-
PLE (recalled in Section 11.2.3). We focus on BVR-T. As summarized in [21],
BVR-T is used to manage the variability by providing an environment in which
families of different kinds, e.g., processes or products, can be modeled. A
BVR model consist of three parts. The first part is the variability model, called
VSpec, which permits users to model the family via a feature diagram-like
fashion supplemented with constraints. Feature diagrams permit to define the
distinctive user-visible aspects of the family members that are common and
that vary. Table 2 recalls some basic elements. A choice represents a yes/no
decision. A constraint (given in Basic Constraint Language-BCL) specifies re-
strictions on permissible resolution models. A group dictates the number of
choice resolutions. For example, 1..1 (represents an XOR) identifies that one
of the child features must be selected. Solid lines permit to link the mandatory
features to a parent feature, while dashed lines permit to link optional features.
Figure 11.5 depicts a VSpec diagram created with the mentioned elements.

Table 11.1: BVR Essential Modeling Elements.
Choice Constraint Group

The second part, called the resolution, is used to allocate specific family
members’ values and validate such values. Thus, wrong choices violating the
cross-variation points requirements designed in the VSpec can be detected. Fi-
nally, the realization permits users to bind conceptual resolutions with the con-
crete elements defined in EPF-C via the definition of fragment substitutions.
The realization permits that specific processes are derived automatically. In
this paper, we have not performed the realization part.

11.2.5 Reuse Measurement
A metric for reuse measurement is proposed by [22] (see below).

% Reuse = (1− Number of new objects built
Total number of objects used

) ∗ 100

The metric can be applied in hierarchical structures that permit the identifi-
cation of the objects and the applications to which they were originally created.

11.3 Compliance Artifacts Reusability 261

This metric is expressed in terms of percentage by considering the proportion
of the number of new objects built (created from scratch) and the total num-
ber of objects used (in the absence of reuse). Besides, it focuses on the total
benefit attributable to reuse. Thus, objects that are reused multiple times are
considered to represent multiple instances of reuse.

11.3 Compliance Artifacts Reusability
In this section, we present our methodological framework for compliance arti-
facts reusability.

11.3.1 Compliance Analysis

The skeleton of a family in SoPLE (as recalled in Section 11.2.3) is repre-
sented as the sequence C1-V1-C2 (see Figure 11.4). Such sequence is called
the Safety-oriented Process Line or SoPL, where C1 and C2 represent the
commonalities in the family and V1 represent the variability. For compliance
checking (as recalled in Section 11.2.2), C1 and C2 are annotated with the
compliance effects a and b, respectively. When deriving processes from the
family, the variability, V1, is replaced either with R1 or R2, according to some
aspect, e.g., the selection of a specific standard. Moreover, R1 is annotated
with c, while R2 does not have any annotation.

Figure 11.4: SoPL Skeleton of a Family of Processes.

The VSpec model representing the skeleton of the family C1-V1-C2 is
described in VSpec as features connected to the parent feature (Checking -
Management) via solid lines (see Figure 11.5). The variability R1 and R2 are
connected via dashed lines. Additional information can be modeled. In partic-
ular, the standard versions (e.g., S1 and S2) are modeled with a group element.

262 Paper E

Moreover, BCL constraints are created to restrict the selection of the variations
according to the selected standard, e.g., if S1 is selected, then R1 and its effect
c become mandatory features.

Figure 11.5: VSpec Model of the Checking Management.

The compliance state representation of the skeleton (see Figure 11.6b) is
different from the derived family member, in which the replacement R1, which
is annotated with the compliance information c, is replaced in V1 (see Fig-
ure 11.6d). Such representations have to comply with the respective ruleset
(see Figures. 11.6a, 11.6c)

(a) (b)

(c) (d)

Figure 11.6: Effects/State Representation of the Variability.

Changes in the compliance status of the derived standard-specific processes
depend on the normative effect of the variant. If c = 0, the composition of the
process elements would not affect compliance since the ruleset in Figure 11.6a,
would be the same that applies to the SoPLE-member. For c 6= 0, there are two
cases. First, the effect is local to the task, i.e., the effect is triggered and ful-
filled in the variant. Second, the variant effect is not triggered by a previous task
and/or make a new influence in the subsequent task effect (see Figure 11.6c). In
both cases, the compliance status may be affected. For these cases, we consider
the separations of concerns within the regulatory space and check the structural

11.3 Compliance Artifacts Reusability 263

compliance (first case) separately from the compliance of the sequence of tasks
(second case). The former permits the integration of the proof in the line with-
out affecting the general compliance status. Such checking can be performed
by BVR-T, which checks the presence/absence of process elements features.
The latter makes the reuse of proof conditioned to additional compliance anal-
ysis of the tasks surrounding the variant (C1 and C2 in Figure 11.4). This
analysis can be performed by Regorous.

11.3.2 Systematic reuse of compliance artifacts
The systematic reuse of compliance artifacts requires four steps (see Figure 11.7).

Figure 11.7: Family-oriented Compliance Checking Process.

1. Manage single process plan compliance. We seek for single process plan
compliance by using the automated compliance checking method recalled
in Section 11.2.2. Resulting artifacts are three EPF-C plugins and the com-
pliance results issued by Regorous.

2. Model the variability. We evaluate the commonalities and variabilities re-
garding the models obtained in step 1) while adding standards of the same
family, e.g., different versions of the same standard. For this, we use the
method recalled in Section 11.2.3. The artifacts that vary are modeled in
EPF-C. Thus, the resulting models are a lifecycle plugin and standard infor-
mation plugin for each standard evolution, containing only artifacts related
to the variability.

3. Analysis and Modeling of the variability compliance. An analysis of
the changes in the compliance status of the standard-specific artifacts that

264 Paper E

are part of the variability, as presented in Section 11.3.1, is performed by
taking into account the annotated compliance information. If needed, we
use Regorous. However, if the variant is small, such analysis can be done
manually. The result of this step is the compliance annotated process model
of the variants.

4. Model BVR artifacts. BVR-T is used to create the abstract representation
of the families involved in compliance checking, i.e., lifecycle, standard
information and compliance annotated processes. Resolution models are
automatically generated from the VSpec models, and use to validate the
membership of the elements according to the selected standard. In a final
step, which is not part of the scope of this paper, realization models are
created. Realization permits to define the replacements that should be part
of the concrete standard-related artifacts that are exported back to EPF-C.
Thus, in this step we use the tool-chain EPF-C ◦ BVR-T, recalled in Section
11.2.4.

11.4 Reuse within ISO 14971 evolution

In this section, we use our solution (presented in Section 11.3.2) to systematize
and measure compliance artifacts reuse within the evolution of the ISO 14971
standards (recalled in Section 11.2.1).

11.4.1 ISO 14971 evolved artifacts

As presented in Figure 11.7, the first step consists of seeking the compliance
of a process plan against an initial standard, in this case, ISO 14971:2007. The
results of this step are three plugins that contain process elements, compliance
rules, annotated process models (see Figures 11.2-(A), -(B) and -(C)), and
the compliance analysis delivered by Regorous (see Figure 11.2-(E)), which
shows that the process is compliant with the rules derived from the standard.

The second step consists of modeling the variability, i.e., we perform a
gap analysis and model the additional artifacts imposed by the new standard
versions. In particular, a new process element is additionally required for com-
pliance with EN ISO 14971:2012, i.e., the guidance related to the inclusion of
all risks for the treatment of negligible risk (see Figure 11.8).

In contrast, four new elements are required for compliance with ISO 14971:2019,
i.e., two guidance elements (ISO 14871 clause 5 and the treatments of negli-

11.4 Reuse within ISO 14971 evolution 265

Figure 11.8: EN ISO 14971:2012-Variable Process Elements.

gible risk), and two additional tasks, which are the result of splitting the task
Define/use safety characteristics (see Figure 11.9).

Figure 11.9: ISO 14971:2019-Variable Process Elements.

We also model the compliance effects. Figure 11.10 represents compliance
effects extracted from ISO 14971:2007. Figure 11.11 shows 1 new compli-
ance effect found in EN ISO14971:2012, while Figure 11.12 shows 11 new
compliance effects found in ISO 14971:2019.

Figures 11.10, 11.11, and 11.12 also depict artifacts highlighted with col-
ors. Such colors represent replacements that are necessary to be done during
the standard-specific derivation. For example, performIdentificationofSafety-
Characteristics and performIntendedUse, created for the ISO 14971:2019 rule-
set, are meant to replace the effect performDefinitionOfIntendedUseAndSafe-
tyCharacteristics, created for the ISO 14971:2007. In black, we highlight an
artifact which contains the general information of the ruleset, which also varies
with each standard. Compliance effects that are not highlighted represent arti-
facts that are common and can be reused.

In Step 3, the compliance analysis of the variability is performed, as pre-
sented in Section 11.3.1. In our case, we found that the compliance with
EN ISO 14971:2012 requires that one new element, specifically a guidance
called Treatment of Negligible Risk-Take all Risks (see Fig. 11.8) is annotated
with a compliance effect called guidedByTakeIntoAccountAllRisks (see Fig-
ure 11.11). A more complex analysis is performed in the case of ISO 14971:2019.
In particular, there are requirements that mandate the replacement of the task
Define/Use Safety Characteristics. This implies a variation in the ruleset as

266 Paper E

Figure 11.10: ISO 14971:2007-Compliance Effects.

Figure 11.11: EN ISO 14971:2012-Effects Variability.

presented in Figure 11.13, which is evidently different from the ruleset created
for ISO 14971:2007 (see Figure 11.2-(D)). With the introduction of these re-
quirements, the compliance flow changes. Thus, we need to use Regorous for
perform compliance checking in the first 3 tasks of the new workflow.

The remaining new elements (see Figure 11.9) trigger and fulfil themselves
the new compliance effects (see Figure 11.12). The result of this analysis cor-
responds to the compliance annotations presented in Table 11.2.

The fourth step is the modeling of BVR artifacts. In this step, we model

11.4 Reuse within ISO 14971 evolution 267

Figure 11.12: ISO 14971:2019-Effects Variability.

Figure 11.13: Ruleset Variation Respect ISO 14971:2019.

Figure 11.14: BVR VSpec.

the VSpecs of the families corresponding to the process, ruleset, and checking
management. All the families are created under the same root, i.e., ISO 14971
(see Figure 11.14). A branch of the feature model tree contains the version of
the standards used to make the changes at variation points.

The interested reader may refer to [19] for detailed information regard-
ing the VSpec of the process for risk management with ISO 14971. In this
paper, we focus on the VSpec model for the ruleset and the checking manage-

268 Paper E

Figure 11.15: Variation Related to Compliance Effects.

Table 11.2: ISO 14971: 2019-related Annotations.
Element Compliance Effect
Task: Definition of the Intended
Use performIntendedUse, initiateRiskAnalysisProcess

Task: Identification of Characteris-
tics related to Safety performIdentificationSafetyCharacteristics

Work Product: Identification of
Characteristics related to Safety

RiskAnalysisDocumentWithDescriptionPartOfTheTissue,
RiskAnalysisDocumentWithDescriptionPatientPopulation,
RiskAnalysisDocumentWithDocumentedHazardousSituation,
RiskAnalysisDocumentWithIntendedMedicalIndication,
RiskAnalysisDocumentWithIntendedUseAndReasonablyFore-
seeableMisuse, RiskAnalysisDocumentWithOperatingPrinciple,
RiskAnalysisDocumentWithUseEnvironment, RiskAnalysis-
DocumentWithUserProfile

Guidance: ISO 14971 Clause 5 GuideByClause5

Guidance: Treatment of Negligible
Risk-Take all Risks guidedByTakeIntoAccountAllRisks

ment. For example, Figure 11.15 depicts the representation of the compliance
effects related to the requirements that impose the creation of the task De-
fine use/safety characteristics. In particular, as presented in Section 11.2.1,
such task is mandatory for ISO 14971:2007 and EN ISO 14971:2012, while
in ISO 14971:2019 becomes two tasks, i.e., intended Use and Identification
of Safety Characteristics. Thus, the three compliance effects (highlighted in
purple in Figures 11.10 and 11.11) are modeled and two BCL constraints are
created to define the variations regarding the version of the standard selected.
For example, if the standard ISO 14971 2019 is selected in the branch of the
version, BVR resolution will check that we select performIdentificationSafe-
tyCharacteristics and performIntendedUse during the selection of the family-
member corresponding to the ruleset of such version. The VSpec for the branch
compliance checking management, contains the compliant process elements

11.4 Reuse within ISO 14971 evolution 269

Figure 11.16: Variation Related to Annotated Compliant Tasks.

grouped by their concern, i.e., tasks, role, work product, and guidance, and
enriched with the compliance effects annotations. Figure 11.16 presents the
branch Compliant Task that shows the set of tasks that should appear in the
process plan as well as BCL constraint that restrict the correct representation
according to the standard version selected. The resolution permits the selection
of correct configuration that could be exported back to EPF-C via realization
models. A realization model will permit to bind the selected configuration into
the concrete EPF-C related models.

11.4.2 Reuse Measurement
In our approach, we opt to model the full commonalities between families of
standards, the process they regulate, and the compliance annotations required
for automated compliance checking. Full commonalities can be guaranteed
by atomizing the elements in the compliance spaces as much as possible so
that only common aspects are present. For this reason, we consider that the
commonalities included in the modeling of such families have the potential to
be fully reusable. In that light, the percentage of reuse of compliance artifacts
can be performed by using the metric defined for reuse measurement which is
recalled in Section 11.2.5.

Reuse-related to EN ISO 14971:2012

For compliance with EN ISO 14971:2012, the guidance called Treatment of
Negligible Risk-Take all Risks (see Figure 11.8) was additionally required with

270 Paper E

respect to compliance established with ISO 14971:2007. In total, we used 9
process elements. Thus, the percentage of reuse is 88,9%. We also need to
create 1 compliance effect and 1 ruleset (see Figure 11.11). As we used 27
artifacts, the reuse is 92,3%. The compliance effect is associated to the new
guidance, which corresponds to a new compliance annotation of 26 used in
total. Thus, the reuse of compliance annotations is 96,2%. (See Table 11.3).

Table 11.3: Reuse Measurement Related to EN ISO 14971:2012.
Type of artifacts New Total Used Reuse Percentage

Process 1 9 88,9%

Compl. Effects 2 27 92,3%

Compl. Annotations 1 26 96,2%

Reuse-related to ISO 14971:2019

For compliance with ISO 14971:2019, we need to create 4 new process artifacts
(see Figure 11.9), 11 new compliance effects (see Figure 11.12) and perform
13 compliance annotations (see Table 11.2). The number of total artifacts was
10 process elements, and 32 compliance effects and compliance annotations.
Thus, reuse is 60%, 61,3% and 59,4% respectively (see Table 11.4).

Table 11.4: Reuse Measurement Related to ISO 14971:2019.
Type of artifacts New Total Used Reuse Percentage

Process 4 10 60%

Compl. Effects 12 32 61,3%

Compl. Annotations 13 32 59,4%

11.5 Discussion
For coping with the recertification demands enforced by the new versions of
standards (new requirements, jurisdictional changes) in the medical domain,
process plan reconfiguration is necessary. Compliant process plan reconfigura-
tion supported by models automatically checked for compliance is a plausible
solution. Such solution involves the creation of new modeling artifacts, as
presented in Section 11.4.1. However, it also involves high degrees of arti-
facts reuse, as presented in Section 11.4.2. In particular, Tables 11.3 and 11.4

11.6 Related Work 271

shows a positive gain in terms of compliance checking artifacts reusability.
With these percentages, the answer to the question posed in the introductory
part of this paper, to what extent process-related compliance artifacts can be
reused?, could be the following: the reuse extent in the context of medical de-
vices is significant (the minimum gain was 59,4%). In particular, given that the
manual configuration of process models checkable for compliance in EPF-C
could be labor-intensive and time-consuming, the context of medical devices
complying with ISO 14971 can positively benefit from the systematic reuse of
compliance checking artifacts. In general, processes and standards that evince
low levels of variation could be part of a family that exhibits high reuse lev-
els in terms of compliance checking artifacts and could benefit from using our
methodological framework during the required modeling task.

It is widely recognized that standards requirements are challenging to un-
derstand due to their wordiness and how they relate to each other. Their evo-
lution is also challenging, due to the need to handle the normative changes
and the recertification effort, which, as for ISO 14971, may include cross-
jurisdictional spaces. When using our methodological framework, process
engineers need to analyze new requirements systematically. This analysis is
required to determine whether an existing compliance checking-related artifact
can fulfill a specific requirement as-is or with modifications (new properties
should be added/deleted), or if new artifacts have to be modeled from scratch. It
also highlights problems between requirements, which may put compliance at
risk, i.e., contradictory requirements, real/fake dependencies between require-
ments and new compliance information applicable to existing process plans.
The most important is that the process engineer’s analysis is recorded in graph-
ical models, which not only provide automated checks but also automated pro-
cess plan’s reconfiguration. Thus, our methodological framework supports a
confident reduction of the work required to be done when new instances of
compliant process plans have to be modeled.

11.6 Related Work

The change triggered by updated standards for software process is a topic tack-
led from different perspectives. In [23], the authors propose a method that
permits to attach change information to process documents to facilitate change
understandability. However, no systematic methods to reuse modeling arti-
facts facilitating the changes are proposed as we do in our work. Methods for
modeling the change/variation and reuse of processes result from the applica-

272 Paper E

tion of software process lines methodologies, as recently surveyed in [24]. In
particular, SoPLE [2] has been exploited to provide a representation of fam-
ily members with safety information, e.g., reusable process arguments used in
safety cases [25] and tailoring of process models according to safety integrity
levels of products [26]. In our work, we also use SoPLE to provide mech-
anisms to support variation knowledge reuse regarding compliance checking
artifacts, which has not being yet addresses in other approaches.

Advances regarding compliance artifacts reusability exist in the business
community. Some researchers tackled reuse by defining building blocks that
implement compliance requirements, e.g., compliance scopes [27], and com-
pliance fragments [28, 29]. Reuse is also approached with the use of pro-
cess patterns [30], and rule patterns [31]. In contrast, we propose a holistic
modeling framework for safety-related process compliance checking that per-
mits to model artifacts, which can be automatically interleaved with evolution-
ary/changing artifacts originated from new versions of standards. In that way,
not only building blocks that implement compliance requirements (i.e., called
in our framework, process models checkable for compliance) are reusable but
also process models and rulesets denoting formalized requirements from stan-
dards.

11.7 Conclusions and Future Work

Recertification is the consequence of the release of new versions of standards.
In this paper, we focused on process recertification needs (interpreted as the
need to show process plan adherence with the new version of the standard).
Taking this into account, we proposed a concrete technical and tool-supported
methodological framework for reusing (safety-oriented) compliance artifacts
while recertifying. This methodological framework encompasses process mod-
eling, process compliance checking, and variability management capabilities
to enable systematic reuse and automatic generation of process-related com-
pliance checking artifacts (i.e., process models, rulesets denoting formalized
requirements from standards, and compliance annotated process artifacts). We
illustrate our methodological framework within the family composed of the
versions of the standard ISO 14971. Finally, we answer our initial question
regarding the extent of reuse of process-related compliance artifacts by mea-
suring the reuse enabled by our methodological framework. In particular, in the
context of medical devices complying with different versions of ISO 14971, the
reuse is significant. We concluded that processes and standards that evince low

11.7 Conclusions and Future Work 273

levels of variation (such as ISO 14971) could benefit from using our method-
ological framework during the modeling task required for compliance check-
ing.

In the future, we intend to perform evaluations that consider the entire
ISO 14971 and related standards (e.g., process improvement and security).
Moreover, we plan to conduct controlled experiments to evaluate the users’
perceived usefulness. We also believe that when creating/updating standards,
process models, and formal representations of the requirements should also be
provided. Thus, we plan to contact standardization bodies to investigate this
possibility, which could reduce our approach’s modeling effort and at the same
time reduce undesired room for interpretation of the standards. Finally, we
intend to use more elaborated measurement frameworks to provide evidence
concerning our solution’s efficiency in terms of time and cost reduction, as
well as scalability.

Bibliography

[1] B. Gallina, S. Kashiyarandi, H. Martin, and R. Bramberger, “Modeling
a Safety- and Automotive-Oriented Process Line to Enable Reuse and
Flexible Process Derivation,” in 38th International Computer Software
and Applications Conference, pp. 504–509, 2014.

[2] B. Gallina, I. Sljivo, and O. Jaradat, “Towards a Safety-oriented Pro-
cess Line for Enabling Reuse in Safety Critical Systems Development
and Certification,” in 35th Annual IEEE Software Engineering Workshop,
pp. 148–157, 2012.

[3] J. P. Castellanos Ardila and B. Gallina, “Towards increased efficiency and
confidence in process compliance,” in Systems, Software and Services
Process Improvement, pp. 162–174, 2017.

[4] J. P. Castellanos Ardila, B. Gallina, and F. Ul Muram, “Enabling Com-
pliance Checking against Safety Standards from SPEM 2.0 Process Mod-
els,” in Euromicro Conference on Software Engineering and Advanced
Applications, pp. 45 – 49, 2018.

[5] J. P. Castellanos Ardila, B. Gallina, and F. UL Muram, “Transforming
SPEM 2.0-compatible Process Models into Models Checkable for Com-
pliance,” in 18th International SPICE Conference, 2018.

[6] Eclipse-Foundation, “Eclipse Process Framework (EPF) Composer –
EPF 1.5.2 Release,” 2018.

[7] M. Javed and B. Gallina, “Get EPF Composer back to the future: a trip
from Galileo to Photon after 11 years,” in EclipseCon, 2018.

[8] OMG, “Software & Systems Process Engineering Meta-Model Specifi-
cation. Version 2.0.,” 2008.

275

276 BIBLIOGRAPHY

[9] G. Governatori, “Representing Business Contracts in RuleML,” Interna-
tional Journal of Cooperative Information Systems., pp. 181–216, 2005.

[10] G. Governatori, “The Regorous Approach to Process Compliance,” in
19th International Enterprise Distributed Object Computing Workshop,
pp. 33–40, 2015.

[11] SINTEF, “BVR Tool, https://github.com/SINTEF-9012/bvr,” 2016.

[12] M. Javed and B. Gallina, “Safety-oriented Process Line Engineering via
Seamless Integration between EPF Composer and BVR Tool,” in 22nd
International Systems and Software Product Line Conference, pp. 23–28,
2018.

[13] J. L. de la Vara, E. Parra, A. Ruiz, and B. Gallina, “AMASS: A Large-
Scale European Project to Improve the Assurance and Certification of
Cyber-Physical Systems,” in 20th International Conference in Product-
Focused Software Process Improvement, pp. 626–632, 2019.

[14] B. Gallina, “Quantitative evaluation of tailoring within spice-compliant
security-informed safety-oriented process lines,” Journal of Software:
Evolution and Process, vol. e2212, pp. 1–13, aug 2019.

[15] ISO, “ISO 14971:2000 – Application of risk management to medical de-
vices,” Dec. 2000.

[16] ISO, “ISO 14971:2007 – Application of risk management to medical de-
vices,” Mar. 2007.

[17] ISO, “EN ISO 14971:2012 – Application of risk management to medical
devices (ISO 14971:2007, Corrected version 2007-10-01),” July 2012.

[18] ISO, “ISO 14971:2019 – Application of risk management to medical de-
vices,” Dec. 2019.

[19] A. Pulla and A. Bregu, “Master Thesis: Evaluating the Compliance Re-
Certification Efficiency Enabled by the AMASS Platform for Medical
Devices, Mälardalen University, School of Innovation, Design and Engi-
neering, Västerås, Sweden,” 2020.

[20] J. P. Castellanos Ardila and B. Gallina, “Separation of concerns in pro-
cess compliance checking: Divide-and-conquer,” in Systems, Software
and Services Process Improvement, pp. 135–147, 2020.

BIBLIOGRAPHY 277

[21] B. Gallina, A. Pulla, A. Bregu, and J. Castellanos Ardila, “Process Com-
pliance Re-Certification Efficiency Enabled by EPF-C � BVR-T : a Case
Study,” in 13th International Conference on the Quality of Information
and Communications Technology, pp. 1–8, 2020.

[22] R. Banker, R. Kauffman, and D. Zweig, “Repository Evaluation of Soft-
ware Reuse,” IEEE Transactions on Software Engineering, vol. 19, no. 4,
pp. 379–389, 1993.

[23] A. Ocampo and J. Münch, “Rationale Modeling for Software Process
Evolution Alexis,” Software Process: Improvement and Practice, vol. 14,
no. 2, pp. 85–105, 2009.

[24] E. N. Teixeira, F. A. Aleixo, F. D. de Sousa Amâncio, E. OliveiraJr,
U. Kulesza, and C. Werner, “Software process line as an approach to sup-
port software process reuse: A systematic literature review,” Information
and Software Technology, vol. 116, p. 106175, 2019.

[25] H. Martin, M. Krammer, R. Bramberger, and E. Armengaud, “Process-
and product-based lines of argument for automotive safety cases,” in 7th
International Conference on Cyber-Physical Systems, 2016.

[26] L. Bressan, A. L. de Oliveira, F. Campos, Y. Papadopoulos, and D. Parker,
“An integrated approach to support the process-based certification of
variant-intensive systems,” in International Symposium on Model-Based
Safety and Assessment, pp. 179–193, 2020.

[27] D. Schleicher, S. Grohe, F. Leymann, P. Schneider, D. Schumm, and
T. Wolf, “An approach to combine data-related and control-flow-related
compliance rules,” in International Conference on Service-Oriented
Computing and Applications, pp. 1–8, 2011.

[28] K. Görlach, O. Kopp, F. Leymann, and D. Schumm, “WS-BPEL exten-
sion for compliance fragments (BPEL4CFrags),” tech. rep., Institute of
Architecture of Application Systems, University of Stuttgart., 2011.

[29] Z. Ma, Process fragments: enhancing reuse of process logic in BPEL
process models. Ph.d. dissertation, University of Stuttgart, 2012.

[30] M. Kabir, Z. Xing, P. Chandrasekaran, and S. Lin, “Process Patterns:
Reusable Design Artifacts for Business Process Models,” International
Computer Software and Applications Conference, vol. 1, pp. 714–721,
2017.

[31] A. Elgammal, O. Turetken, W. van den Heuvel, and M. Papazoglou, “For-
malizing and applying compliance patterns for business process compli-
ance,” Software and Systems Modeling., pp. 119–146, 2016.

Chapter 12

Paper F:
Systematic Literature
Review of Compliance
Checking Approaches for
Software Processes

Julieth Patricia Castellanos Ardila, Barbara Gallina, Faiz Ul Muram.
Technical Report, ISRN MDH-MRTC-336/2021-1-SE. Mälardalen Real-Time
Research Center, Mälardalen University, June 2021. A version is submitted to
a journal.

279

Abstract

Context: Software processes have increased demands coming from normative
requirements. Organizations developing software comply with such demands
to be in line with the market and the law. The state-of-the-art provides means
to automatically check whether a software process complies with a set of nor-
mative requirements. However, no comprehensive and systematic review has
been conducted to characterize such works. Objective: We characterize the
current research on this topic, including an account of the used techniques,
their potential impacts, and challenges. Method: We undertake a System-
atic Literature Review (SLR) of primary studies reporting techniques for au-
tomated compliance checking of software processes. Results: We identify 41
papers reporting solutions focused on limited normative frameworks. Such so-
lutions use specific languages for the processes and normative representation.
Thus, the artifacts represented vary from one solution to the other. The level
of automation, which in most methods requires tool-support concretization, fo-
cuses mostly on the reasoning process and requires human intervention, e.g.,
for creating the inputs for such reasoning. In addition, only a few contem-
plate agile environments and standards evolution. Conclusions: Our findings
outline compelling areas for future research. In particular, there is a need to
consolidate existing languages for process and normative representation, com-
pile efforts in a generic and normative-agnostic solution, increase automation
and tool support, and incorporate a layer of trust to guarantee that rules are
correctly derived from the normative requirements.

12.1 Introduction 281

12.1 Introduction
Many applications and infrastructures rely on software, including the internet,
warning systems, and medical and financial information systems [1]. Due to
its growing use, the software is becoming a public good, and its quality is a
concern for society [2]. In particular, there is a group of stakeholders, called
community stakeholders [3], including governments, regulatory bodies, and
companies or individuals, who make a strong influence on normative compli-
ance.

Governments and regulatory bodies demand compliance with standards
and policies for licensing and certification purposes. Companies acting as
customers in a production chain commonly demand compliance with specific
regulations from their suppliers to have a standardized and transparent produc-
tion [4]. There are also knowledgeable individuals demanding the use of stan-
dards to influence responsible behavior among industry practices [5]. Thus,
compliance with normative frameworks is a must-do for software development
organizations, especially when software is developed for safety-critical sys-
tems1.

The software engineering community has observed that standardized soft-
ware processes make development tasks more predictable, transparent, and
economical [7, 8, 9]. Standardized software processes are referenced in in-
ternational standards, e.g., ISO/IEC 12207 [10] for software, and ISO/IEC
15504 [11] series of standards - and its evolution ISO/IEC 330xx series [12]
for assessment and improvement processes. It is also common to find stan-
dards and regulations in the safety-critical context that follow a prescriptive
approach, i.e., they mandate a rigorous process for software development [13].
However, such standards mean stringent compliance requirements beyond the
commitment to improve process capability [14]. In general, requirements reg-
ulating software aim at covering a broad set of organization and use cases [3].
For this reason, they act as process constraints and generally omit implementation-
specific details [15].

Standards commonly provide information regarding the process elements
required during software development and the mandated features. When seek-
ing compliance, process engineers use this information to include the sequence
of tasks mandated (i.e., the process behavior) and the resources ascribed to
such tasks, e.g., personnel, work products, tools, and methods, which are also
framed with essential properties (i.e., the process structure). Such work can

1Safety-critical systems are those whose failure could lead to unacceptable consequences, e.g.,
death, injury, loss of property, or environmental harm [6]

282 Paper F

be seen as systematic, i.e, methodical in procedure or plan2. Thus, process
compliance management has been usually supported by systematically check-
ing that the processes used to develop software have such information at the
required points.

Properly designed and developed information technology tools has the po-
tential to support process engineers in their compliance checking tasks [16].
For this, a unifying mechanism that permits automatic reasoning between the
software process models and the normative frameworks regulating them could
be a solution. Several studies have approached this idea by formulating meth-
ods for automating this task. However, to the best of our knowledge, no com-
prehensive and systematic review has been conducted to characterize them.

In this paper, we undertake an SLR (Systematic Literature Review) of pri-
mary studies reporting techniques for automated compliance checking of soft-
ware processes. An SLR, according to Kitchenham and others [17, 18], is a
secondary study used to identify, analyze, and interpret all available evidence
related to a specific topic. Briefly, the purposes of this SLR are as follows:
1) provide an overview regarding the evolution of the research regarding au-
tomated compliance checking of software processes; 2) provide an account of
the current techniques; 3) describe their potential impacts and challenges; and,
4) outline key areas where future research can advance to support companies
moving towards automated compliance checking practices.

As a result, we identify 41 primary studies from a list of 2033 found in
recognized online libraries. The selected primary studies provide a set of ad
hoc solutions that are interesting, applicable, and valuable contributions to the
topic. However, such solutions use specific languages for the processes and
normative representation. Thus, the artifacts represented vary from one so-
lution to the other. Most of the languages used for representing requirements
primarily define obligations (the mandatory requirements) but leave aside other
considerations, such as the permitted actions that could indirectly affect com-
pliance, e.g., exceptional cases surrogated by requirements tailoring. The level
of automation claimed in the studies is mainly related to the reasoning re-
quired to define compliance between software processes and the normative
documents. However, current methods require human intervention, especially
to implement the inputs of such a reasoning process. Tool support still needs
concretization since most of the approaches are in the stage of conceptual mod-
eling or have been materialized as proof-of-concept prototypes. In addition,
only a few methods contemplate agile environments and standards evolution.

2https://www.merriam-webster.com/dictionary/systematic

12.2 Background 283

Our findings outline compelling areas where future research can advance
to support companies moving towards automated compliance checking prac-
tices. First, there is a need to consolidate existing languages for process and
normative representation since there are already too many options not being
adequately exploited. In our opinion, it is also crucial to consolidate a generic
and normative-agnostic solution that can handle the different concepts, struc-
tures, and scenarios provided in the standards. Such a solution could be more
attractive to organizations. It is also crucial to increase automation for easing
the creation of rules, i.e., rule editors, since formalizing requirements still need
human intervention. It is also essential to provide concrete and stable tools that
can support the compliance checking process. Finally, a layer of trust should
be incorporated in the methods for compliance checking to guarantee that rules
are correctly derived from the normative frameworks.

The paper is organized as follows. In Section 12.2, we present essential
background. In Section 12.3, we present the research method. In Section 12.4,
we report the results of the review. In Section 12.5, we discuss the findings.
In Section 12.6, we discuss the validity of the findings. In Section 12.7, we
discuss related work. Finally, In Section 12.8, we summarize the work and
present future remarks.

12.2 Background
This section presents essential background required in the rest of the paper.

12.2.1 Compliance Checking of Software Processes

Software process compliance aims to ensure the fidelity of the processes used
to engineer software products to a selected normative framework, usually in the
form of an industry standard [19]. For this, organizations show either full ad-
herence, by complying with all requirements set out by the applicable standard
or perform requirements tailoring. Tailoring requires selecting applicable re-
quirements, performing their eventual modifications, and explaining their im-
plementation according to the project’s particular circumstances. A tailoring
process should also ensure consistency to the defined normative framework,
which determines allowed actions and the resulting conditions [9]. Traceabil-
ity is also a mandated requirement [20]. Normative frameworks commonly
prescribe requirements that include the tasks to be performed and resources as-
cribed to such tasks, i.e., personnel, work products, tools, and methods, which

284 Paper F

are also framed with essential properties [21]. Given these features, compliance
management can be supported by checking that the process used to engineer
software systems fulfill the properties set down by standards at given points.

Compliance checking requires at least two sources of information [22].
One is the normative document to be complied with, and the other is the pro-
cess for which compliance is desired. Automatizing this task requires that
these specifications are computer-based analyzable. Formal methods, which
are a set of domain theorems that are amenable to formal proving through rea-
soning, are of growing interest for compliance checking [23, 24]. Using formal
methods provides rigorous methodologies that increase confidence in the cor-
rectness and completeness of the software processes. However, the analysis of
compliance is as good as the models used for such analysis [25]. Moreover,
the translation of requirements written in natural language is complex. For this
reason, precise notions are required [26]. Moreover, to be formal in a certi-
fication context, a model must have an unambiguous, mathematically defined
syntax and semantics [27].

A formal language should be expressive enough to cover the properties
described by the models under consideration. Commonly, there are two crit-
ical features expressed in the normative frameworks. First, software process
reference models prescribed by the standards are a ”shall” type collections of
requirements, i.e., compliance requires the satisfaction of all requirements, and
precise documentation documented along with the reasoning behind the re-
quirements [28]. Second, the requirements of reasonable regulations must be
balanced with other values like the urgency of the problems in question, re-
spect for the plurality of view of participants, values, precedents, and tradi-
tions [29]. Thus, justified exceptions are also be permitted. Accordingly, soft-
ware process-based compliance requirements conform to a standard if and only
if it satisfies all the obligations prescribed by the process-related requirements.
Violating such requirements could introduce potential risks. However, permis-
sions provide exceptions to obligations, indirectly affecting compliance [30].
Thus, compliance is a relationship between permissions (optional) and obliga-
tions (required).

12.2.2 Software Processes

Software developers perform processes, which are often defined to various lev-
els of detail [31]. According to Parnas et al. [32], the most advantageous form
of a process description will be in terms of work products workflow. Lon-
champ [33] highlighted the importance of organizational structures. Fuggetta [34]

12.2 Background 285

concretize the definition by including the involvement of constraints governing
the conception, development, deployment, and maintenance. Software pro-
cesses have also been considered analogous to other kinds of processes [35,
36]. However, the software process definition goes further since the software
has a unique characteristic, i.e., it is a pure information product that requires
high abstraction levels [37]. According to Armour [38], the authentic product
of the software development is the knowledge contained in the software. Thus,
the software process’s primary goal is to solve an application data processing
problem [37] by performing a knowledge acquisition activity [38].

Explicit descriptions of the software processes servers development to pro-
ceed in a systematic way [7], increases predictability and transparency [9].
Software process descriptions are also commonly used to convince third par-
ties, such as customers or regulatory bodies, regarding the quality of the soft-
ware [34, 9]. However, different development methodologies tackled the ne-
cessity of software processes in different ways. In particular, agile methodolo-
gies prioritize individuals and interactions over processes and tools3. More-
over, agile follows an empirical logic. In regulated environments, a defined
logic is more desirable. Thus, agile is faced with some fundamental challenges
in regulated environments [39]. In contrast, plan-driven methodologies build
mainly on the codification strategy and the definition of appropriate steps in ad-
vance, making it more suitable for regulated environments. Given the success-
ful application of agile in software projects4 and the suitability of plan-driven
methodologies in regulated environments, hybrids between them are also con-
ceived [40, 41], e.g., the Scaled Agile Framework (SAFe)5.

Software process models help organizations preserve, repeat, analyze and
reuse process information [42]. Models also can improve the understanding
of compliance needs [43]. A software process model is an abstraction whose
goal is to approximate the full range of characteristics and properties of an
actual software process [44]. For this, a process model should [31]: 1) be
described with rigorous notations; 2) be detailed enough; 3) be semantically
broad; and 4) be clear and understandable to facilitate communication. For
example, a process description that does not indicate roles in charge of tasks is
not likely to be of much value in supporting reasoning about how to improve
team coordination.

The concept of the software process model is analogous to the concept of
the life cycle (or lifecycle) model [9]: software life cycle models define the

3https://agilemanifesto.org/
4See for instance: https://stateofagile.com/
5https://www.scaledagile.com/

286 Paper F

main steps and their sequence, while software process models provide more
detailed instructions, breaking the main steps down into sub-steps, and adding
information about the results generated and the roles involved.

A recent survey conducted by Diebold and Scherr [23] shows the most ex-
pected characteristics of the software process models in industrial settings. In
particular, it is expected to have concepts that permit the creation of a detailed
description of the software process elements, i.e., the units of work and their
order, the roles performing the units of work, and the artifacts used and pro-
duced. Besides, graphical representation of the process and structured text to
explain details are also desirable, mainly in projects where auditors need to as-
sess the software process for standards compliance. The possibility of having
different views on the software process is relevant, i.e., hierarchical represen-
tation of the information, different perspectives for each role, and the usage
and arrangement of compliance artifacts. Finally, artifacts and environment
customization are essential aspects demanded from software process modeling
tools since they can help engineers configure models according to context (or
project)-specific needs.

12.2.3 Software Process-related Normative Frameworks
Normative frameworks addressing software processes prescribe requirements
for their implementation. Organizations follow these documents, which are
also called prescriptive [45], to facilitate the process standardization, evalu-
ation, and improvement [46, 47]. For example, the standard ISO/IEC/IEEE
12207 [10] provides terminology to establish a common framework for soft-
ware life cycle processes. The Software Process Improvement (SPI) move-
ment started with the Capability Maturity Model Integration (CMMI) [48] as
a significant innovation [49]. Then, the Software Process Improvement and
Capability Determination-SPICE (ISO/IEC 15504 [11]) was also created. SPI
frameworks, which mainly impose a plan-based development paradigm, aim
at increasing product quality but also to reduce time-to-market and production
costs [7].

Several SPI context-specific frameworks exist [50], e.g., Automotive SPICE
(or ASPICE) [51], the medical devices MDevSPICEe [52] and the Object-
Oriented Software Process OOSPICE [53]. Recently, SPICE has been re-
vised and replaced with the ISO/IEC 330XX series [12], e.g., ISO/IEC TS
33053 [54], which defines a process assessment, and process reference model
(PRM) for quality management.

The International Organization for Standardization (ISO) has also defined

12.2 Background 287

the fundamentals of quality management systems, which influence the process
assessment and improvement [55]. In particular, there is the ISO 9000 se-
ries [56], e.g., ISO 9001 [57], guidance for their application ISO/IEC 90003 [58],
and ISO/IEC TR 29110 [59], which applies to very small entities. Additionally,
the information technology infrastructure Library (ITIL) framework, which the
UK government has developed, aims to provide a guideline for delivering qual-
ity information technology services [55]. Six Sigma, an organized method-
ology that guides continuous improvement on manufacturing or service pro-
cesses, has also been used as a set of techniques and tools for SPI [60].

Manufacturers of safety-critical systems have the duty of care6 [62]. Con-
sequently, ethics and regulatory regimes explicitly addressing such systems
have stronger compliance requirements beyond the commitment to improve
software process capability [14]. Manufacturers then must establish effec-
tive software development processes based on recognized engineering princi-
ples [20], usually found in industry standards [1]. There are governing bodies
that are in charge of ensuring the safety of citizens. For example, e.g., the Eu-
ropean Commission (EC) and the United States Food and Drug Administration
(FDA) enforce regulatory obligations on manufacturers of medical devices so
that they are safe and fit for their intended purpose [63]. The Health and Safety
Executive in England has used compliance with IEC 61508 [64] as a guideline
for bringing legal actions if harm is caused by safety-critical systems [62]. As
compliance with safety standards has become essential evidence for a jury in
a product liability action [65], failure or inadequate compliance could lead to
legal risks, i.e., penalties [66] and prosecutions [67].

In particular, prescriptive safety standards cover requirements for all soft-
ware life-cycle activities, and exist in almost all safety-related domains, e.g.,
ISO 26262 [68] (automotive), CENELEC EN 50128 [69] and EN 50126 [70]
(railway), DO-178C [71] (avionics), and IEC 62304 [72] (medical devices),
to only mention some of them. Cybersecurity handbooks (e.g., cyber-physical
vehicle systems SAE J3061 [73]), standard for software development (e.g.,
medical devices-IEC 62304 [72] and space mission-critical software-ECSS-
ST-40C [74]), risk management (e.g., ISO 14971-application of risk manage-
ment to medical devices [75]), and information technology (e.g., ISO/IEC
27000 [76]), are also part of the menu of standards that became de facto regu-
latory frameworks subjecting the organizations to mandatory certification.

We also find explicitly defined regulations. For instance, the European

6In tort law, a duty of care is a legal obligation which is imposed on an individual requiring
adherence to a standard of reasonable care while performing any acts that could foreseeably harm
others [61].

288 Paper F

Data Protection Directive (EU DPD) [77], then replaced by the General Data
Protection Regulation (GDPR) [78], and PIPEDA (Personal Information Pro-
tection and Electronic Documents Act) [79]. Both regulations lay down rules
relating to protecting natural persons in the European Union and Canada, re-
spectively. Regulators will likely introduce additional measures to maintain
legal oversight over artificial intelligence (AI) algorithmic systems [80]. Since
AI is still software, its needs will probably be approached from the software
process perspective [81]. Thus, practitioners have to embrace software process
diversity, i.e., the adoption of multiple normative software process frameworks
within single software processes [19].

12.3 Research Method
This section describes our research method, which is based on the guidelines
for Systematic Literature Review (SLR) recommended by Kitchenham and
others [17, 18]. A SLR is a rigorous review methodology that involves three
main activities.

1. Plan the review. This is a pre-review activity, which includes three tasks.

(a) Identify the need for a review. This tasks permits to identify the rea-
sons for undertaking the review and its scope.

(b) Specify goal and research question. The goal and the research ques-
tions that aim at guiding the review are specified.

(c) Design the review protocol. The review protocol should include a
search strategy, which contains the search terms and resources to be
searched, e.g., digital libraries. It also includes the study selection
criteria that are used to determine which studies are included and ex-
cluded. Moreover, it contains the study selection procedure, which
describes how the selection criteria will be applied. Finally, it includes
the quality assessment criteria used to determine the rigorousness and
credibility of the used research methods and the relevance of the stud-
ies.

2. Conduct the review. In this activity, the researchers apply the review pro-
tocol previously created and answer the research questions. Tasks relevant
to this activity are the data collection and the data extraction.

3. Report the results of the review. In this activity, the researchers define the
means to illustrate the findings, including the SLR results and analysis.

12.3 Research Method 289

The activities and tasks mentioned above should, in theory, be implemented
sequentially. However, in practice, it is often necessary to iterate between them
and update their discovered information as the researchers’ understanding of
the topic deepens. In the remaining parts of this section, we describe the first
two activities included in the SLR, i.e., plan and conduct the review, while we
report the results of the review in Section 12.4.

12.3.1 Plan the Review
This section presents the pre-review activities, i.e., identify the need for a re-
view, specify the goal and research questions, and design the review protocol.

Identify the Need for a Review

As recalled in Section 12.2.2 the primary goal of a software process is to solve
an application data processing problem by performing a knowledge acquisition
activity. As such, software processes are valuable informational assets, which
have increasing demands regarding the inclusion of requirements associated
with normative frameworks (as recalled in Section 12.2.3). Organizations un-
derstand that they have to adhere to such demands because it is implicitly or
explicitly dictated by both, the market and the law. However, those organiza-
tions that want to move towards greater agility may find it challenging since
normative frameworks are commonly prescribed in a plan-based development
paradigm.

Techniques for software process compliance checking could be helpful for
organizations. Such techniques permit organizations to verify whether a soft-
ware process complies (or conforms) with the applicable normative require-
ments (as recalled in Section 12.2.1). However, the software process compli-
ance checking tends to be complex. We present some factors that add com-
plexity to the compliance checking tasks, as follows.

• The requirements included in the standards prescribe many details regarding
the process structure (the presence of tasks ordered in a determined way, and
resources ascribed to such tasks, i.e., personnel, work products, tools, and
methods), and the properties of the process elements;

• There are many possible ways to be compliant. In particular, software process-
related normative frameworks provide tailoring rules that should be applied
according to specific processes’ needs (which may open room for including
agile methodologies);

290 Paper F

• The requirements can be superseded or eliminated if assessed rationales, i.e.,
explicit justifications demonstrating compliance, are provided;

• Requirements in one part of the standard may refer to other parts of the same
standard or even to different standards, making their understanding compli-
cated:

• Many standards or new versions of older standards may apply to the same
software process.

For this reason, the automation of the tasks involved in compliance check-
ing of software process is an area of research of increasing interest. Such task
is considered to provide benefits in terms of efficiency and confidence to man-
agers and process engineers, who require to (re)configure their software pro-
cesses according to applicable software process-related normative frameworks.
Efficiency could be reached by leaving the repetitive work of checking the re-
quirements to a machine. Confidence could instead be reached when, after
providing appropriate representations of both standards and processes, proofs
of compliance can be derived. Several methods for compliance checking of
software processes against different kinds of normative frameworks have been
proposed in the literature. However, to the best of our knowledge, no compre-
hensive and systematic review has been conducted to characterize them. Thus,
we consider it essential to close this gap in the most possible systematic and un-
biased manner by performing an SLR that permits us to recognize what exists
in the current state-of-the-art in that area.

Scope: The scope of an SLR can be defined by taking into account the guide-
lines proposed by Cooper et al. [82]. In particular, it is essential to determine
the focus (outcomes, methods, theories, applications), the goal (integration,
criticism or identification of central issues), the reviewers’ perspective (neu-
tral representation or espousal of position), coverage (exhaustive, exhaustive
with selective citation, representative, central or pivotal), organization (histori-
cal, conceptual or methodological), and audience (specialized scholars, general
scholars, practitioners or policymakers, the general public).

In particular, we focus on the research outcomes of the available literature
addressing automated compliance checking of software process. Our goal is
to identify the specific aspects that have dominated past efforts regarding such
topic, i.e., publication trends, the characteristics of the methods, potential im-
pact, and challenges. We consider reporting our result from a neutral represen-
tation perspective, i.e., attempting to present the explicit evidence available in

12.3 Research Method 291

the literature. We aim at implementing exhaustive coverage by determining an
inclusive review protocol. The SLR summary will be organized conceptually,
i.e., works relating to the same abstract ideas will appear together. Finally, we
aim to write our SLR to target specialized scholars, practitioners, and policy-
makers.

Specify Goal and Research Questions

In this section, we describe the main goal of our SLR and the research ques-
tions.

Goal: Based on the need identified in Section 12.3.1, this SLR goal is to
characterize the current state-of-the-art regarding automated compliance check-
ing of software processes against the constrains associated to different kind of
software process-related normative frameworks (as recalled in Section 12.2.3).
As presented in Section 12.2.1, compliance checking requires at least two
sources of information, the normative document to be complied with and the
process for which compliance is desired. To automatize this task, such sources
of information should be computer-based analyzable. Thus, it is essential to
know the methods used in the state-of-the-art to represent such specifications
as well as the individual concepts used to describe the features included in
the specifications. Moreover, it is important to identify the status of the tool-
support provided and the mechanisms used to handle changes in the normative
space, e.g., recertification. It is also crucial to learn the methods’ target appli-
cation, i.e., application domains, normative documents addressed, illustrative
scenarios and support for agile methodologies. We are also interested in know-
ing the evolution of the topic over time and the current challenges.

Research questions: Research questions are formulated by taking into ac-
count the research goal previously described (see Table 12.1).

Design the Review Protocol

We present a summary of the concrete and formal plan used in the execution
of the SLR.

Search Strategy: An SLR uses specific concepts and terms for reaching the
possible amount of primary studies. In particular, the outcomes of the search
should refer to factors of importance for the review. To define such factors,

292 Paper F

Table 12.1: Research Questions
Id Question Motivation

RQ 1

How did research in automated
compliance checking of soft-
ware processes developed over
time?

Identify the publication trend (i.e., number of papers
published, dates and the publication venues), and the
active groups doing research in the context of auto-
mated compliance checking of software processes.

RQ 2

What are the characteristics of the methods described the primary studies?

2.1 Which are the languages
used to represent software pro-
cesses entities and structures?

Characterize the different alternatives used to repre-
sent the software processes entities (units of work,
roles, tools, and guidance) and their properties, as well
as structures such as workflows, which are required
for automated compliance checking described in the
primary studies.

2.2 Which are the languages
used to represent the compli-
ance requirements?

Characterize the different alternatives used to provide
a representation of the requirements described in the
standards.

2.3 Which is the level of au-
tomation? Examine the automation level described in the studies.

2.4 What are the mechanisms,
if any, used to handle standards
evolution and software process
reconfiguration?

Identify the characteristics used in the primary stud-
ies to address software process reconfiguration in the
light of standards evolution (i.e., the release of a new
version of standards), tailoring (i.e., the selection,
eventual modification, and implementation rationale)
and process diversity (application of several standards
in the same project).

RQ 3

What is the potential impact of the proposed methods?

3.1 What are the application do-
mains?

Determine the specific application domain, e.g., auto-
motive, general software purposes, etc.

3.2 What are the types of norma-
tive documents targeted?

Describe the type of standards, policies, regulations,
reference models or frameworks that target the stud-
ies.

3.3 What are the types of illus-
trative scenarios presented?

Extract information regarding the examples, illustra-
tions, validation or use cases that describe the meth-
ods/frameworks/techniques.

3.3 To what extent agile
methodologies are supported?

Describe whether the primary studies take into ac-
count the compliance checking in agile software pro-
cesses.

RQ 4 What challenges are identified
in the primary studies?

Identify the challenges in current research or open
problems, which can be used to determine future di-
rections in this area.

we consider the structure of the Context–Intervention–Mechanism–Outcome
(CIMO) Logic [83]. The CIMO is a logic constructed as follows: if you have
a problematic Context (C), use a special kind of Intervention (I) to invoke the
generative Mechanism(s) (M), to deliver a specific Outcome (O). The context
corresponds to the surroundings (external and internal environment) factors.

12.3 Research Method 293

The interventions are those factors that have the potential to do some influence.
The mechanisms are the means that in a specific context are triggered by the
intervention. Finally, the outcomes are the intervention results in its various
aspects.

Table 12.2: Structure of the CIMO Logic.
CIMO criteria Factors
Context (C) Software processes

Intervention (I) Normative software process constraints

Mechanism (M) Automation methods

Outcome (O) Results of compliance checking

As presented in Table 12.2, the factors of importance in our SLR are soft-
ware processes, normative software process constraints, automation methods,
the results of compliance checking. Commonly, synonyms of such terms are
also used in the literature. We based the selection of the synonyms on the
background information gathered in Section 12.2. First, in Section 12.2.2, we
found that the concept of ”software process” is related to the concept of ”soft-
ware lifecycle” (or life cycle), ”software workflow,” and ”software develop-
ment methodology.” Second, in Section 12.2.3, we found sources of ”norma-
tive software process constraints” in a ”standard”, ”reference model”, ”frame-
work”, ”regulation”, ”policy.” Third, in Section 12.2.1, we see that the word
”compliance” is used interchangeably with the word ”conformance”. The word
”checking” and ”verification” could also be seen as synonyms. We are not in-
terested in checking the compliance of specifications beyond the ones contain-
ing normative requirements. Therefore, we focus on the concept ”compliance”
or ”conformance”, which is the current jargon, and do not strike on the concept
”model checking”, which is commonly used for software verification. Ac-
tually, using the mentioned words, we find articles containing techniques for
compliance checking by means of model checking technology (See S9, S12,
S15, and S27), So, the not inclusion of the concept did not limit the selections
of the corresponding studies.

We did a test search in the library Science Direct7 to check whether the
information retrieval was different between all synonyms. The word verifica-
tion was showing fewer results than the searching results regarding checking.
Moreover, the results were related to software (as a product) verification and
not software process verification. We concluded that the word verification is

7https://www.sciencedirect.com/

294 Paper F

not used together with the work compliance or conformance of software pro-
cesses. The words ”automatic,” ”automated,” computer-based,” logic-based,”
and ”formal” could also be seen as synonyms. A similar test permitted us
to check the difference between these three words. We found that the word
”automatic” leads to more results than the word ”automated.” Moreover, the
results obtained with the word automated are included in the results obtained
with the work automatic. Thus, the word automated is not included in the final
search string. The results obtained with the word computer-based and logic-
based were very few. Moreover, such results were included in the search that
included the word automatic. Thus, computer-based and logic-based are not
used in the final search string. Instead, the word formal yielded relevant new
results. Thus, the word formal is included in the final search string. Finally,
we tested the plurals software processes, software workflows, software devel-
opment methodologies, standards, reference models, frameworks, regulations,
and policies. There were no new results by using such plurals. Based on the
analysis and the combinations of the terms previously defined, we specify our
search string (see Table 12.3).

Table 12.3: Search String
(”automatic” OR ”formal”) AND (”compliance checking” OR ”conformance checking”) AND
(”software process” OR ”software life cycle” OR ”software lifecycle” OR ”software workflow” OR
”software development methodology”) AND (”standard” OR ”reference model” OR ”framework”
OR ”regulation” OR ”policy”)

Study Selection Criteria: Primary studies are searched on popular scientific
online digital libraries that are widely used in computer science and software
engineering research, as reported in [84]: 1) ACM Digital Library8, 2) IEEE
Xplore Digital Library9, 3) Springer Link10, and 4) Google Scholar11. We
also include the results we gathered during our search string test in the library
Science Direct. The search time-frame is not restricted to a specific interval
since we also want to see the evolution of the topic over time. The inclusion
and exclusion criteria is presented in Table 12.4.

8https://dl.acm.org/
9https://ieeexplore.ieee.org/Xplore/home.jsp

10https://link.springer.com/
11https://scholar.google.com/

12.3 Research Method 295

Table 12.4: Inclusion and Exclusion Criteria.
Type Description

Inclusion

I1 The primary study belongs to the software engineering domain. We are only inter-
ested in automated compliance checking of software processes.

I2
The primary study is about compliance/conformance checking of software pro-
cesses against the constraints associated to different kind of software process-
related standards and reference frameworks

I3
The primary study included in the selection is a peer-reviewed article (i.e., scien-
tific journal, conference, symposium, or workshop) written in English related to
automatic compliance checking of software process.

I4
The primary study reports issues, problems, or any type of experience concerning
the aspects related to process-related automated compliance checking, i.e., process
models, requirements formalization, analysis of compliance.

I5
The primary study describes solid evidence on automated compliance checking
of software processes by using, e.g., rigorous analysis, experiments, case studies,
experience reports, field studies, and simulation.

Exclusion

E1

The primary study focus on software process aspects different from compliance
checking, e.g., process design, execution, the management of workflow, or adher-
ence of a software process plan with the execution, or is does not does not present
sufficient technical details regarding automated compliance checking of software
processes.

E2 The text of the primary study is not available.

E3

The primary study belongs to the following categories: commercials, pure opin-
ions, grey literature (e.g., reports, working papers, white papers, and evaluations),
books, tutorials, posters, and papers outside of the contexts of computer-based crit-
ical systems.

E4 The primary study is about automatic compliance checking of processes different
from software processes, e.g., business processes, building processes, etc.

E5 The primary study is not clearly related to at least one aspect of the specified re-
search questions.

E6 The study is a secondary or tertiary study.

E7
The primary study did not undergo a peer-review process, such as non-reviewed
journal, magazine, or conference papers, master theses and books (in order to en-
sure a minimum level of quality).

Study Selection Procedure: The search string defined in Table 12.3 is ap-
plied to the electronic databases selected in the study selection criteria. Differ-
ent filtering levels are then applied to the retrieved studies to find the relevant
ones for this research. Initially, we perform a title screening on the initial set
of retrieved publications. In this phase, we also remove the duplicates that can
be found in different databases. Then, we perform an abstract screening, from
which we select the papers that would be thoroughly read. After, we perform
a snowballing [85], which is a technique that aims at reaching more relevant
primary studies. Backward snowballing refers to searching relevant studies

296 Paper F

by considering the reference list of an initial set of primary studies. Forward
snowballing aims at identifying more relevant studies based on those papers
citing the paper being examined. For the forward snowballing, we use Google
scholar, due to its convenient facilities for finding referring papers. The num-
ber of papers resulting from this selection procedure were be fully processed in
the SLR. The first author (who is a Ph.D. student) does the paper’s search and
selection. During every phase, the second and third authors perform quality
controls. To record the data for later analysis and correlation, we used spread-
sheets. In particular, we focused on the data presented in Table 12.5.

Table 12.5: Data Extraction Criteria.
Extracted data Used for
Author information, Study title Study overview

Year, Publication types venues, and research groups Study overview and RQ1

Languages for representing software processes RQ2.1

Languages for representing requirements mandated by standards RQ2.2

Level of automation (fully automated, semi-automated) RQ2.3

Mechanisms for handling variability, if any RQ2.4

Validation/illustration/exemplification scenarios RQ3.1

Standards /policies/regulations/frameworks addressed RQ3.2

Support for agile, if any RQ3.3

Application domain RQ3.4

Challenges RQ4

Quality Assessment Criteria: We developed a checklist for the quantitative
and qualitative assessment of the selected research articles (see Table 12.6),
based on criteria formulated by Kitchenham and others [86]. For each item
QA1 to QA7, the scoring procedure has only three optional answers: Yes = 1,
Partially = 0,5, or No = 0. For a given study, its quality score is computed by
summing up the scores of the answers to the quality assessment questions.

12.3.2 Perform the Review

In this section, we present the details regarding how we perform the review.

12.3 Research Method 297

Data Collection

We apply the review protocol described in Section 12.3.1. In particular, we ap-
plied the search string defined in Table 12.3 to the different databases included
in the study selection criteria without trunking the dates of the search. Our
search was performed between February 22 to March 15, 2021. The databases
Springer Link, ACM (in which we took the option ”Expand our search to The
ACM Guide to Computing Literature”), and IEEExplore accepted all the words
included in the search string. From these searches, we got 153, 71, and 1 pos-
sible primary studies, respectively. Instead, in Google scholar, we needed to
divide the search string in two. The first one was (”automatic” OR ”formal”)
AND (”compliance checking” OR ”conformance checking”) AND (”software
process” OR ”software life cycle” OR ”software lifecycle” OR ”software work-
flow” OR ”software development methodology”) AND (”standard” OR ”reg-
ulation” OR ”policy”) and the second one was (automatic OR formal) AND
(”compliance checking” OR ”conformance checking”) AND (”software pro-
cess” OR ”software life cycle” OR ”software lifecycle” OR ”software work-
flow” OR ”software development methodology”) AND (”reference model” OR
”framework”). We obtained 762 and 839 possible primary studies, respectively
(a total of 1601 primary studies, many of them were repeated). We also added
the 208 primary studies that we found in the search string test that we per-
formed in Science direct. In total, our search resulted in 2034 hits. Then, we
perform the title screening. In this step, we selected papers that match at least
one of the criteria we defined in the search string but do not match any exclu-
sion criteria. For example, the paper is selected if the title has the word process
and conformance checking. However, if the title has the expression business
process, it is immediately discarded. We did this to have a more accurate filter
of useful material from the first phase of our SLR. Given this strategy, we se-
lected 68 primary studies in Springer Link, 17 in ACM, 1 in IEE Explore, 106
in Google scholar, and 11 in Science direct. The total of primary studies after
title screening was 203. Then, we discarded the duplicates found in different
databases, resulting in 170 possible relevant studies. Then, we performed ab-
stract screening and selected 45 primary studies. We fully read the 45 studies
and apply to them the quality criteria. We decided to select the studies that got
6 of 7 in the quality criteria. As a result, 28 articles are selected. We performed
the snowballing process to the 28 articles previously selected. As a result we
got 8 new primary studies in the backward snowballing and 5 new primary
studies in the forward snowballing. The complete set of primary study that
we have included in our SLR is 41. We illustrate the search process and the

298 Paper F

number of primary studies identified at each stage in Figure 12.1.

Figure 12.1: Paper Selection Process.

Data Extraction

The selected 41 papers were carefully read, evaluated with the quality criteria
(presented in Table 12.6), and compiled in Table 12.7. Then, we did a sum-
mary of every approach, which we present in Section 12.4. We also collect
relevant data that could help to answer our research questions (presented in Ta-
ble 12.1). To record the data for later analysis and correlation, we used Excel
spreadsheets. In particular, we focused on the data presented in Table 12.5.

12.3 Research Method 299

Table 12.6: Study Quality Assessment Criteria.
Item Assessment Criteria Score Description

QA1
Does the study includes a clear
statement of the goal?

0 No. The goal is not described

0,5 Partially. The goal is described, but
unclearly

1 Yes. The goal are well described
and clear

QA2
Does the selected primary study
discuss their results?

0
No. The results are not explicitly
discussed in a discussion section (or
a similar section)

0,5

Partially. There is a discussion sec-
tion (or something similar), but re-
sults are not completely and clearly
discussed.

1 Yes. The results are well discussed.

QA3
Is the paper based on research (or it
is merely a ”lessons learned” report
based on expert opinion)?

0 The paper is a report based on ex-
pert opinion

0,5 Partially. It is not completely clear
the research validity of the study.

1 Yes. The paper is based on research.

QA4

Does the selected primary study
completely addresses the topic of
automated compliance checking of
software processes?

0 No. The paper is not completely ad-
dressing the topic of the research

0,5 Partially. The study partially ad-
dress the topic of the research.

1 Yes. The paper completely ad-
dresses the topic of research.

QA5
Is there an adequate description of
the context in which the research
was carried out?

0 No. The paper is not describing an
adequate context of the research

0,5 Partially. The study partially de-
scribes the context of the research.

1 Yes. The paper is describing an ad-
equate context of the research

QA6
Is there a clear statement of
findings?

0 No. The paper is not having a clear
statement of the findings

0,5 Partially. The study partially de-
scribes the findings of the research.

1 Yes. The paper is having a clear
statement of the findings

QA7
Are the results in accordance with
the goal of the selected primary
study?

0 No. The results are not in accor-
dance with the goal.

0,5 Partially. The study partially de-
scribes the findings of the research.

1 Yes. The results are in accordance
with the goal.

300 Paper F

Ta
bl

e
12

.7
:S

el
ec

te
d

pr
im

ar
y

st
ud

ie
s

us
in

g
SL

R
.

ID
St

ud
y

D
es

cr
ip

tio
n

Ye
ar

Ty
pe

Q
ua

lit
y

A
ss

es
sm

en
tC

ri
te

ri
a

Q
E

1
Q

E
2

Q
E

3
Q

E
4

Q
E

5
Q

E
6

Q
E

7
Sc

or
e

S1
Ta

ilo
ri

ng
an

d
C

on
fo

rm
an

ce
Te

st
in

g
of

So
ft

w
ar

e
Pr

oc
es

se
s:

T
he

Pr
o-

ce
PT

ap
pr

oa
ch

[8
7]

19
95

C
on

fe
re

nc
e

1
0

1
1

1
1

1
6

S2
M

an
ag

in
g

St
an

da
rd

s
co

m
pl

ia
nc

e
[8

8]
19

99
Jo

ur
na

l
1

0
1

1
1

1
1

6

S3
M

an
ag

in
g

Pr
oc

es
s

co
m

pl
ia

nc
e

[8
9]

20
03

Jo
ur

na
l

1
1

1
1

1
1

1
7

S4
C

om
pl

ia
nc

e
flo

w
-

m
an

ag
in

g
th

e
co

m
pl

ia
nc

e
of

dy
na

m
ic

an
d

co
m

pl
ex

pr
oc

es
se

s
[9

0]
20

08
Jo

ur
na

l
1

1
1

1
1

1
1

7

S5
A

n
A

ut
om

at
ic

C
om

pl
ia

nc
e

C
he

ck
in

g
A

pp
ro

ac
h

fo
r

So
ft

w
ar

e
Pr

o-
ce

ss
es

[9
1]

20
09

C
on

fe
re

nc
e

1
1

1
1

1
1

1
7

S6
Su

pp
or

tin
g

Q
ua

lifi
ca

tio
n-

Sa
fe

ty
St

an
da

rd
C

om
pl

ia
nt

Pr
oc

es
s

Pl
an

ni
ng

an
d

M
on

ito
ri

ng
[9

2]
20

10
C

on
fe

re
nc

e
1

0
1

1
1

1
1

6

S7
D

efi
ni

ng
So

ft
w

ar
e

pr
oc

es
s

m
od

el
co

ns
tr

ai
nt

s
w

ith
ru

le
s

us
in

g
O

W
L

an
d

SW
R

L
[9

3]
20

10
Jo

ur
na

l
1

0
1

1
1

1
1

6

S8
A

m
od

el
-d

riv
en

en
gi

ne
er

in
g

ap
pr

oa
ch

to
su

pp
or

t
th

e
ve

ri
fic

at
io

n
of

co
m

pl
ia

nc
e

to
sa

fe
ty

st
an

da
rd

s
[9

4]
20

11
C

on
fe

re
nc

e
1

0
1

1
1

1
1

6

S9
N

O
VA

W
or

kfl
ow

:A
W

or
kfl

ow
M

an
ag

em
en

tT
oo

lT
ar

ge
tin

g
H

ea
lth

Se
r-

vi
ce

s
D

el
iv

er
y

[9
5]

20
12

Jo
ur

na
l

1
0

1
1

1
1

1
6

S1
0

To
w

ar
ds

a
pr

oc
es

s
fo

rl
eg

al
ly

co
m

pl
ia

nt
so

ft
w

ar
e

[9
6]

20
13

W
or

sh
op

1
0

1
1

1
1

1
6

S1
1

Su
pp

or
tin

g
th

e
ve

ri
fic

at
io

n
of

co
m

pl
ia

nc
e

to
sa

fe
ty

st
an

da
rd

sv
ia

m
od

el
-

dr
iv

en
en

gi
ne

er
in

g:
A

pp
ro

ac
h,

to
ol

-s
up

po
rt

an
d

em
pi

ri
ca

l
va

lid
a-

tio
n

[9
7]

20
13

Jo
ur

na
l

1
1

1
1

1
1

1
7

S1
2

A
fr

am
ew

or
k

to
fo

rm
al

ly
ve

ri
fy

co
nf

or
m

an
ce

of
a

so
ft

w
ar

e
pr

oc
es

s
to

a
so

ft
w

ar
e

m
et

ho
d

[9
8]

20
15

C
on

fe
re

nc
e

1
1

1
1

1
1

1
7

S1
3

C
yb

er
se

cu
ri

ty
po

lic
y

ve
ri

fic
at

io
n

w
ith

de
cl

ar
at

iv
e

pr
og

ra
m

m
in

g
[9

9]
20

16
Jo

ur
na

l
1

0
1

1
1

1
1

6

S1
4

R
ep

re
se

nt
in

g
So

ft
w

ar
e

Pr
oc

es
s

in
D

es
cr

ip
tio

n
L

og
ic

s:
A

n
O

nt
ol

og
y

A
pp

ro
ac

h
fo

rS
of

tw
ar

e
Pr

oc
es

s
R

ea
so

ni
ng

an
d

V
er

ifi
ca

tio
n

[1
00

]
20

16
C

on
fe

re
nc

e
1

0
1

1
1

1
1

6

12.3 Research Method 301

Ta
bl

e
12

.7
C

on
tin

ue
d:

Se
le

ct
ed

Pr
im

ar
y

St
ud

ie
s.

S1
5

H
ow

to
A

ss
ur

e
C

or
re

ct
ne

ss
an

d
Sa

fe
ty

of
M

ed
ic

al
So

ft
w

ar
e:

T
he

H
em

od
ia

ly
si

s
M

ac
hi

ne
C

as
e

St
ud

y
[1

01
]

20
16

C
on

fe
re

nc
e

1
0

1
1

1
1

1
5

S1
6

A
Fr

am
ew

or
k

fo
r

Sa
fe

ty
-C

ri
tic

al
Pr

oc
es

s
M

an
ag

em
en

ti
n

E
ng

in
ee

ri
ng

Pr
oj

ec
ts

[1
02

]
20

17
C

on
fe

re
nc

e
1

0
1

1
1

1
1

5

S1
7

A
pp

ly
in

g
pr

oc
es

s
m

in
in

g
te

ch
ni

qu
es

in
so

ft
w

ar
e

pr
oc

es
s

ap
-

pr
ai

sa
ls

[1
03

]
20

17
Jo

ur
na

l
1

1
1

1
1

1
1

7

S1
8

C
on

tin
uo

us
pr

oc
es

s
co

m
pl

ia
nc

e
us

in
g

m
od

el
dr

iv
en

en
gi

ne
er

in
g

[1
04

]
20

17
C

on
fe

re
nc

e
1

0
1

1
1

1
1

6

S1
9

To
w

ar
ds

In
cr

ea
se

d
E

ffi
ci

en
cy

an
d

C
on

fid
en

ce
in

Pr
oc

es
s

C
om

pl
i-

an
ce

[1
05

]
20

17
C

on
fe

re
nc

e
1

1
1

1
1

1
1

7

S2
0

A
ut

om
at

ed
le

ga
lc

om
pl

ia
nc

e
ch

ec
ki

ng
by

se
cu

ri
ty

po
lic

y
an

al
ys

is
[1

06
]

20
17

C
on

fe
re

nc
e

1
0

1
1

1
1

1
6

S2
1

A
fo

rm
al

iz
at

io
n

of
th

e
IS

O
/I

E
C

15
50

4:
en

ab
lin

g
au

to
m

at
ic

in
fe

re
nc

e
of

ca
pa

bi
lit

y
le

ve
ls

[1
07

]
20

17
C

on
fe

re
nc

e
1

0
1

1
1

1
1

6

S2
2

Se
cu

ri
ty

A
na

ly
si

s
an

d
L

eg
al

C
om

pl
ia

nc
e

C
he

ck
in

g
fo

r
th

e
D

es
ig

n
of

Pr
iv

ac
y-

fr
ie

nd
ly

In
fo

rm
at

io
n

Sy
st

em
s

[1
08

]
20

17
C

on
fe

re
nc

e
1

1
1

1
1

1
1

7

S2
3

To
w

ar
ds

ef
fic

ie
nt

ly
ch

ec
ki

ng
co

m
pl

ia
nc

e
ag

ai
ns

t
au

to
m

ot
iv

e
se

cu
ri

ty
an

d
sa

fe
ty

st
an

da
rd

s
[1

09
]

20
17

W
or

ks
ho

p
1

0
1

1
1

1
1

6

S2
4

A
n

A
xi

om
B

as
ed

M
et

am
od

el
fo

r
So

ft
w

ar
e

Pr
oc

es
s

Fo
rm

al
is

at
io

n:
A

n
O

nt
ol

og
y

A
pp

ro
ac

h
[1

10
]

20
18

Jo
ur

na
l

1
0

1
1

1
1

1
6

S2
5

E
na

bl
in

g
co

m
pl

ia
nc

e
ch

ec
ki

ng
ag

ai
ns

ts
af

et
y

st
an

da
rd

s
fr

om
SP

E
M

2.
0

pr
oc

es
s

m
od

el
s

[1
11

]
20

18
C

on
fe

re
nc

e
1

0
1

1
1

1
1

6

S2
6

E
ns

ur
in

g
C

on
fo

rm
an

ce
to

Pr
oc

es
s

St
an

da
rd

s
T

hr
ou

gh
Fo

rm
al

V
er

ifi
ca

-
tio

n
[1

12
]

20
18

C
on

fe
re

nc
e

1
0

1
1

1
1

1
6

S2
7

In
te

gr
at

in
g

fo
rm

al
m

et
ho

ds
in

to
m

ed
ic

al
so

ft
w

ar
e

de
ve

lo
pm

en
t:

T
he

A
SM

ap
pr

oa
ch

[1
13

]
20

18
Jo

ur
na

l
1

0
1

1
1

1
1

6

S2
8

Tr
an

sf
or

m
in

g
SP

E
M

2.
0-

C
om

pa
tib

le
Pr

oc
es

s
M

od
el

s
in

to
M

od
el

s
C

he
ck

ab
le

fo
rC

om
pl

ia
nc

e
[1

14
]

20
18

C
on

fe
re

nc
e

1
1

1
1

1
1

1
7

302 Paper F

Ta
bl

e
12

.7
C

on
tin

ue
d:

Se
le

ct
ed

Pr
im

ar
y

St
ud

ie
s.

S2
9

C
om

pl
ia

nc
e

of
ag

ili
ze

d
(s

of
tw

ar
e)

de
ve

lo
pm

en
t

pr
oc

es
se

s
w

ith
sa

fe
ty

st
an

da
rd

s:
a

vi
si

on
[1

15
]

20
18

C
on

fe
re

nc
e

1
0

1
1

1
1

1
6

S3
0

Fo
rm

al
iz

in
g

IS
O

/I
E

C
15

50
4-

5
an

d
SE

I
C

M
M

I
v1

.3
–

E
na

bl
in

g
au

to
-

m
at

ic
in

fe
re

nc
e

of
m

at
ur

ity
an

d
ca

pa
bi

lit
y

le
ve

ls
[1

16
]

20
18

Jo
ur

na
l

1
0

1
1

1
1

1
6

S3
1

Fa
st

C
om

pl
ia

nc
e

C
he

ck
in

g
in

an
O

W
L

2
Fr

ag
m

en
t[

11
7]

20
18

C
on

fe
re

nc
e

1
1

1
1

1
1

1
7

S3
2

D
ev

el
op

in
g

M
ed

ic
al

D
ev

ic
es

fr
om

A
bs

tr
ac

tS
ta

te
M

ac
hi

ne
s

to
E

m
be

d-
de

d
Sy

st
em

s:
A

Sm
ar

tP
ill

B
ox

C
as

e
St

ud
y

[1
18

]
20

18
Jo

ur
na

l
1

1
1

1
1

1
1

6

S3
3

Fa
ci

lit
at

in
g

A
ut

om
at

ed
C

om
pl

ia
nc

e
C

he
ck

in
g

in
th

e
Sa

fe
ty

-c
ri

tic
al

C
on

te
xt

[1
19

]
20

19
Jo

ur
na

l
1

0
1

1
1

1
1

6

S3
4

Fo
rm

al
is

in
g

Pr
oc

es
s

A
ss

es
sm

en
t

an
d

C
ap

ab
ili

ty
D

et
er

m
in

at
io

n:
A

n
O

nt
ol

og
y

A
pp

ro
ac

h
[1

20
]

20
19

C
on

fe
re

nc
e

1
0

1
1

1
1

1
6

S3
5

U
si

ng
M

od
el

s
to

E
na

bl
e

C
om

pl
ia

nc
e

C
he

ck
in

g
ag

ai
ns

tt
he

G
D

PR
:A

n
E

xp
er

ie
nc

e
R

ep
or

t[
12

1]
20

19
C

on
fe

re
nc

e
1

1
1

1
1

1
1

7

S3
6

A
L

if
e

C
yc

le
fo

rA
ut

ho
ri

za
tio

n
Sy

st
em

sD
ev

el
op

m
en

ti
n

th
e

G
D

PR
Pe

r-
sp

ec
tiv

e
[1

22
]

20
20

C
on

fe
re

nc
e

1
0

1
1

1
1

1
6

S3
7

C
o-

en
gi

ne
er

in
g

of
sa

fe
ty

an
d

se
cu

ri
ty

lif
e

cy
cl

es
fo

re
ng

in
ee

ri
ng

of
au

-
to

m
ot

iv
e

sy
st

em
s

[1
23

]
20

20
Jo

ur
na

l
1

1
1

1
1

1
1

7

S3
8

Se
pa

ra
tio

n
of

C
on

ce
rn

s
in

Pr
oc

es
s

C
om

pl
ia

nc
e

C
he

ck
in

g:
D

iv
id

e-
an

d-
C

on
qu

er
[2

1]
20

20
C

on
fe

re
nc

e
1

1
1

1
1

1
1

7

S3
9

R
eu

si
ng

(S
af

et
y-

or
ie

nt
ed

)
C

om
pl

ia
nc

e
A

rt
ifa

ct
s

w
hi

le
R

ec
er

tif
y-

in
g

[1
24

]
20

21
C

on
fe

re
nc

e
1

1
1

1
1

1
1

7

S4
0

C
om

pl
ia

nc
e-

aw
ar

e
E

ng
in

ee
ri

ng
Pr

oc
es

s
Pl

an
s:

T
he

C
as

e
of

Sp
ac

e
So

ft
-

w
ar

e
E

ng
in

ee
ri

ng
Pr

oc
es

se
s

[1
24

]
20

21
Jo

ur
na

l
1

1
1

1
1

1
1

7

S4
1

Su
pp

or
tin

g
Q

ua
lit

y
A

ss
ur

an
ce

w
ith

A
ut

om
at

ed
Pr

oc
es

s-
C

en
tr

ic
Q

ua
lit

y
C

on
st

ra
in

ts
C

he
ck

in
g

[1
25

]
20

21
C

on
fe

re
nc

e
1

1
1

1
1

1
1

7

12.4 Results 303

12.4 Results

In this section, we report the results of the SLR. In Section 12.4.1, we present
the a summary of the primary studies selected. Finally, in section 12.4.2, we
present the analysis of the results in relation to the research questions of the
study.

12.4.1 Summary of the Primary Studies

In this section, we summarize the main results obtained in the SLR. Specif-
ically, the selected 41 papers (see Table 12.7) are categorized into 5 groups,
according to the type of approach (see Table 12.8). As the table shows, most
of the primary studies aim at performing compliance checking from the mod-
eling of standards concepts (15). The second-largest group of primary studies
belongs to the category in which compliance checking is performed from pro-
cess modeling languages (13). Compliance checking from role-based access
controls has 5 primary studies, compliance checking from documents work-
flow has 2 primary studies, and other approaches have 6 primary studies. Ta-
ble 12.9, presents as summary of the main characteristics of the 41 studies. In
the remaining part of this section, we present a summary of the studies accord-
ing to the types of approaches previously described.

Table 12.8: Type of Approaches.
Type Primary Studies Total

Compliance Checking from Documents
Workflow S1, S2 2

Compliance Checking from Standards
Concepts Modeling

S3, S4, S5, S8, S10, S11, S12, S14, S18,
S21, S24, S26, S30, S31, S34 15

Compliance Checking from Process
Modeling Languages

S6, S7, S16, S19, S23, S25, S28, S29,
S33, S37, S38, S39, S40 13

Compliance checking from Role-based
Access Controls S13, S20, S22, S35, S36 5

Other Methods S9, S15, S17, S27, S32, S41 6

Compliance Checking from Documents Workflow

Initial approaches for process-based compliance checking with quality stan-
dards are based on the verification of document evolution. In S1, the authors

304 Paper F

describe the process model as the specification of documents flow for all neces-
sary tasks during standards assessments. The check is performed by reviewing
whether the activities can occur by verifying the conditions for documents’
existence. The rules that condition the specification of documents are pro-
vided in PROLOG III [126], which is a language that has its roots in FOL.
The conformance checking is done with a PROLOG-based tool called Pro-
cePT (Process Programming & Tailoring) and exemplified with the German
process model VORGEHENSMODELL (short GV-Model) [127], which can
be tailored against different kinds of quality standards such as ISO 9001. Such
tailoring is done by removing activities and documents if they are not required
in the selected standard. The approach only takes tasks and documents under
the GV model. Process elements such as persons and means to activities should
be passed on experience from previous projects.

The authors of S2 consider that process compliance is represented in the
documents produced during the engineering process. For this, a specification
of a document schema in UML is proposed. The properties of the documents
prescribed by the standards are formalized in FOL. Checks are performed when
there is an attempt to read or write documents during process enactment. The
environment is based on DOORS (Dynamic Object Oriented Requirements
System) for managing the documents. DOORS has a Dynamic eXtension Lan-
guage (DXL) that can be used to automate tasks. The checking of FOL rules
is done with AP5 [128], which is an extension of Common Lisp. The standard
used for exemplifying the approach is called PSS-05. Both tools in S1 and S2
are proof of concept prototypes.

Compliance Checking from Standards Concepts Modeling

Several approaches consider the modeling of process-related elements from
specific standards concepts provided by the standards. In S3, the authors con-
ceive a workflow manager, in which a given standard, in this case, the standard
IEC 61508, is represented as a Model of Standards, which acts as a knowledge-
base to provide the required information. The standard’s meta-model is cre-
ated in UML. An intelligent compliance agent, called the Inspector, performs
compliance checks by comparing the model of standards and the User-Defined
Process (UDP). The approach is illustrated with a recommendation handling
example. In S4, the same approach than in S3 is enhanced with more details.
In particular, the model of standards is presented as an activity-based ontol-
ogy where task execution is constrained by the pre-and post-conditions, with
an added type of precondition being the technique that has to be used to carry

12.4 Results 305

out a task. A task agent performs a task, and the progress of the task’s exe-
cution is represented through several states. A capability is a skill, technique,
method, knowledge, or any attribute that a task agent requires to perform a
task. Compliance checks are for checking a UDP against the Model to identify
compliance errors and assist the user in specifying a process that meets a se-
lected standard’s requirements. The approach is evaluated with the light guard
development project, an application for assuring programmable electronic sys-
tems.

In S5, the authors present an approach for compliance checking with qual-
ity standards (such as ISO/IEC 90003) in which the process-based require-
ments of a standard are represented as process patterns. The process elements
normally found in standards, i.e., activities, roles, and work products, are de-
fined as UML classes. The compliance checking is a measure of the process
deviation (absent or skipped element, or reverse order of the implemented tasks
represent a non-compliant process model) during enactment using feature di-
agrams called PPST (Process Pattern Structure Tree). PPST is based on the
idea of Structured Activity Node in UML Activity Diagram and PST (Process
Structure tree) [129]. The approach is exemplified with a general software
development process.

In S8, the authors propose the use of UML metamodel for creating process
models and the conceptual models of the safety standard. The UML model
of the process concepts includes activities, artifacts produced and required,
techniques and roles. UML profiles are created to describe instances of the
standards, in this case, the standard IEC 61508. The profile is augmented with
verifiable constraints written in OCL. The compliance checking is automated.
Compliance rules have to be manually created, as well as the process model.
The approach is tool-supported, i.e., by using Rational Software Architect12.
The application UML profile is done in a case study related to the construction
of a domain model for sub-sea control systems in compliance with IEC 61508.
In S11, the same approach as in S8 is evaluated by taking into account experts
opinions, which found the approach easy to use and with a good acceptance.

In S10, the author present a Governance Analysis Tool (GAT) for infor-
mation privacy. GAT is a UML-based metamodel that contains a Governance
Analysis Model(GAM) and a Governance Analysis Language (GAL). GAM
captures information domain, i.e., process activities and roles, as well as orga-
nizational information and general information regarding the legal entity. GAL
is capable of expressing many types of legal and organizational requirements.

12https://www.ibm.com/developerworks/downloads/r/architect/index.html

306 Paper F

The MIT’s logic analyzer Alloy13 is the engine on which GAT runs. For this,
GAL information is translated into assertions in Alloy’s language (which uses
predicate logic) and the Alloy tool can find counterexamples indicating situa-
tions of non-compliance. A case related to compliance checking of a personal
health information agains PIPEDA (the Canada’s Personal Information Protec-
tion and Electronic Documents Act) is presented for illustration purposes.

In S12, the authors propose a general software process reasoning and ver-
ification tool by using fUML, a language that defines precisely the execution
semantics for a subset of UML Activity Diagram. The formalization of con-
straints included in software process reference frameworks such as OPENUP,
extreme programming, scrum and Kanban is done by using Linear Temporal
Logic (LTL). The tools, which is graphical-based, is developed as an Eclipse
EMF plug-in. Modelling of process and the formalization of constraints is
manual but assisted with the tool and by a specific template-based constraint
language. Evaluation is presented on a Scrum-based process.

In S14, S24, S26, and S34, the authors present the evolution of a framework
for software process assessment and capability determination. In particular, in
S14, the authors present an approach for software process verification and rea-
soning, which permits the translating of process models represented in compo-
sition tree notations into DL. The knowledge of the process models contains
the title, purpose, outcomes, activities and task. The resulting knowledge base
representing properties of the process elements that can be constrained with
software process standards such as ISO/IEC 12207, and ISO/IEC/29110. The
approach is illustrated with a case study related to the Human Resource Man-
agement Process. In S24, the authors present an ontological approach (defined
as an axiom metamodel) in OWL-DL. Such ontology contains 4 main concepts
which are originally selected form the standard ISO/IEC 29110 is presented. In
S26, the authors built on top of the previous work S14 and S24, which is related
to the creation of the process model, including a formal approach to software
process analysis and verification using DL-based ontology. In this case the DL
axioms represent the based practices or the process reference model (PRM)
defined by ISO/IEC 15504-5. To illustrate the process verification approach
and the inferencing services offered by ontologies, Protegé14 is used. The case
study selected is related to the development of Moodle15. In S34, the authors
include DL axioms related to the formalisation of the process capability dimen-
sion of process assessment model (PAM). As a running process capability level

13https://alloytools.org/
14https://protege.stanford.edu/
15https://moodle.org/

12.4 Results 307

example, the authors use the capability level two (managed process) featuring
PA2.1 performance management attribute and PA2.2 work product manage-
ment process attribute from ISO/IEC 15504-5. The Measurement Framework
is extracted from ISO/IEC 33020. The compliance checking is done by using
OWL reasoners.

In S18, the authors present a metamodel defining two layers of abstrac-
tion. The abstract level defines the abstract notions of process design and the
concrete level defines the corresponding concrete implementations. Elements
defined are activity, role, and tools. Each activity defines contracts. The notion
of contract is used to bind the components (activities) using Design by Con-
tract. A notion of conditions is also associated with the contracts at both levels.
This serves for specifying the pre/post conditions associated with an activity.
For compliance checking, a mapping between the abstract and concrete pro-
cess is performed. A process standard is translated into the abstract level of a
process model only once for each standard. The metamodel is proposed, but
there is not a mention of a specific tool, The example application is presented
with the standard ECSS-E-ST-40C.

In S21, and S30, the authors present the evolution of a framework for en-
abling inference of maturity and capability levels of software processes. The
concepts related to processes and work products are modeled in OWL. SWRL
is used to create the compliance requirements. An SWRL rule is an implication
between the antecedent and the consequent, which is a combination of zero or
more atoms that are not allowing disjunctions or negation. The standards anal-
ysed are ISO/IEC 15504 and SEI CMMI v1.3. Test cases from different orga-
nizations and appraisals results published by the CMMI Institute16, were used
for testing the approach, which was modeled in OWL and analyzed with OWL
reasoners, such as HermIT17. In S31, the authors a similar approach for the rep-
resentation of GDPR, but the modeling is performed in OWL with constraint
in DL.

Compliance Checking from Process Modeling Languages

Some approaches take as a base consolidated process modeling languages and
add a layer of analysis by using formal languages. In S6, the authors propose a
framework in which an OWL ontology is used to formalize domain standards
and further domain knowledge required to understand processes. The informa-
tion in the ontology is constrained with Description Logic (DL) rules and trans-

16https://sas.cmmiinstitute.com/pars/
17http://www.hermit-reasoner.com/

308 Paper F

formed into the SPEM 2.0 process models. Explicitly, the authors mention the
provision of tasks in the process model, which are traceable to product models.
Tooling is consolidated by using Protege for the ontology, XSLT transforma-
tion, and Eclipse Process Framework as the reference for SPEM 2.0 elements.
Illustrations of the concepts presented in ISO 26262. In terms of tailoring,
there are OWL structures defined for transferring only elements according to a
determined ASIL. The limitation is that the formalized library only applied to
ISO 26262.

In S7, the authors present an approach in which software process are im-
plements in SPEM 2.0, and then translated in OWL ontologies to permit the
application of constraints that can be derived from software engineering stan-
dards such as ISO 12207, process improvement frameworks such as CMMI or
ISO/IEC 15504 and agile processes. Both, S6 and S7 present a basic approach
as a proof of concept using OWL in Protegé. S7 in addition combines protegé
with SWRL (Semantic Web Rule Language) rules to represent constraints as
rules.

In S16, the authors propose a framework for compliance checking automa-
tion at planning time, which includes the formalization of process in BPMN
and then transformed into timed petri nets. Compliance constraints, which are
extracted from the regulations, are represented in SHACL, which is a constraint
language able to retrieve information from RDF (Resource Description Frame-
work)18. Process tasks are represented in Camunda BPM engine19, which is a
toolset that offers support for BPMN 2.0 (Business Process Management No-
tation). The authors have implemented a project-specific reasoner. The frame-
work has been defined from an industry scenario from the railway automation
domain in compliance with EN 50126.

In S19, S23, S25, S28, S33, S38, S39, and S40 the authors present the
evolution of a safety-centered planning-time framework for compliance check-
ing of safety-related processes. Process plans are modeled with a reference
implementation of SPEM 2.0 (Software & Systems Process Engineering Meta-
model), called EPF (Eclipse Process Framework) Composer, which permits the
representation of process elements (i.e., tasks, roles, work products, guidance,
and tools, and process workflows). In S19 and S23, the requirements from the
standards are modeled in defeasible logic, and the approach permits to manage
safety-oriented process lines, i.e., process that are highly related. The reasoner
used for compliance checking is called SPINdle20. Initially, the authors focus

18https://www.w3.org/RDF/
19https://camunda.com/
20http://spindle.data61.csiro.au/spindle/

12.4 Results 309

on the automotive domain by using the standards ISO 26262, ASPICE, andthe
cybersecurity handbook SAE J3061. In S25 and S28, the authors consolidate a
tool supported framework by including Formal Contract Logic (FCL), which is
an evolution of defeasible logic augmented with the concepts of deontic logic.
FCL, which can be analysed by using a compliance checker called Regorous21,
combines concepts and temporal knowledge representation characteristics to
support the formalization of requirements representing obligations and permis-
sions in a normative context that can be defeated by evolving knowledge. The
standards used to illustrate the approach are ISO 26262 and CENELEC EN
50128 (which applies to railways). In S33, the authors augment the framework
with process patterns extracted from ISO 26262. In S38, the authors include
process compliance hints. Such hints are based on dividing requirements in
terms of the elements they target as well as the specific properties defined for
each element. As a result, customized icons an templates are provided for fa-
cilitating compliance effects creation, which are used to form the propositions
of the rules in FCL. Compliance hints are illustrated with the formalization of
CENELEC EN 50128. In S39, the framework adds the tool support for vari-
ability management offered by BVR-T (Base Variability Resolution Tool22),
included in the tool-chain EPF-C ◦ BVR-T [130] to show process plan adher-
ence with new versions of standards (in this case the family of the standard
ISO 14971).

In S40, the authors compile the compete framework and present a case
study taking into account the standards ECSS-E-ST-40. In S29, the frame-
works is analysed focusing on support for agilized environments, specially R-
Scrum [39], an agile process for avionics [131] and Safe Scrum [132].

In S37, the authors propose a method for managing compliance of pro-
cesses that have similar characteristics. In this approach, the process elements
are manually selected according to one specific standard and modeled in SPEM
2.0. Then, a standard of the same family, i.e, standard with similar character-
istics is selected an manually compared with the initial one. Such comparison
should highlight the common and variable process aspects mandated by the
standards. Such aspects are modeled. The compliance checking is done by
using BVR tool, which permits the creation of simple rules in Basic Constraint
Language (BCL) to make possible the creation of compliant plans according
to the selected standard.

21https://research.csiro.au/data61/regorous/
22https://github.com/SINTEF-9012/bvr

310 Paper F

Compliance Checking from Role-based Access Controls

In S13, the authors present an approach for the cybersecurity domain, which
permits to address the verification of security policies in role-based access con-
trol of enterprise software. The automated security policy verification approach
describes a representation model and rules derived from the company’s role-
based access control (RBAC) policy in Answer Set Logic (ASL). ASL seman-
tics is based on autoepistemic logic and default logic. For this reason, it makes
a distinction between a strong (or traditional) negation and negation as failure
(negation derived from incomplete information). It is a modeling concept illus-
trated with a web application software to assist the hiring process in a company
that can be implemented with ASP solvers, e.g., LPARSE, DLV, GRINGO.

In S20 and S22, the authors based their approach on the premise: ”access
rights are permitted or denied depending on the security characteristics of the
entities involved in the access control.” The process is described as a purpose-
aware access control model concretized with message sequence charts. The
message chart, which represent the interaction between roles, specifies how an
organization performs a particular process. Access rights to certain informa-
tion have to be granted to the roles taking into account the types of permitted
actions. Compliance policies are formalized in FOL and resolved with SMT
(Satisfiability Modulo Theories [133]) solvers. The control policy is checked
on the access rights of the roles that are involved in the process. However, there
is not check on tasks to be performed or other process elements. A Python-
based tool is created to perform the compliance checking. Such tool uses the
PySMT library23 API to invoke the SMT solver MathSA24. The approach is
illustrated with the a Personal Health Record (PHR) system and the processing
of personal data to produce salary slips of employees.

In S36, control policies are represented as user histories, e.g., As a [Data
Subject], I want [to access my Personal Data and all the information (e.g.,
purpose and categories)], so that [I can be aware about my privacy]. Then, such
policies are translated into machine interpretable statements by using XACML
(eXtensible Access Control Markup Language). As a result a list of XACML
policies encoding the GDPR’s provisions are defined. The list of XACML
policies are instantiated with actual attributes. An access control tool uses the
derived attribute classification for mapping them into the user histories and
enforce policies. Consequently the policies are applicable to the subject. This
approach does not utilizes compliance checking as such, but helps for deriving

23https://github.com/pysmt/pysmt
24http://mathsat.fbk.eu.

12.4 Results 311

test cases that could enforce the policies at testing time.
In S35, the authors propose a conceptual representation of the entities in-

volved in GDPR (General Data Protection Regulation) in UML. The UML
representation permits the creation of different types of data artifacts. How-
ever, for process-based compliance checking, the artifacts available are the
roles (called actors). A set of OCL (Object Constraint Language)25 constraints
embedded in the UML classes are created to reflect the GDPR’s obligations. It
only tackles obligations, and the rules are embedded in the generic model.

Other Methods

In S9, the authors present a workflow management system called NOVA, which
is not specifically defined for compliance checking of software process but can
be used for that purpose. The approach uses the time Compensable Workflow
Modeling Language (CWMLT) extended with the time constraints of delay
and duration in Linear Temporal Logic (LTL). In the workflow, it is possible
to create units of work (or tasks). There is a small ontology in OWL 2.0 rep-
resenting the facts and rules found in healthcare policies. The NOVA Engine
is a workflow engine based on Service Oriented Architecture (SOA). The ap-
proach is illustrated with a monitor system following the guidelines for manag-
ing cancer-related pain in adults. NOVA Editor uses a graphical environment,
which permits the creation of correct by construction workflows (the incorrect
composition of workflow activities is prevented). Manual changes have to be
done in the workflow model if guidelines are tailored to specific cases.

In S15, S27, and S32, the authors propose an incremental life cycle model
for medical software development based on model refinement, includes the
main software engineering activities (specification, validation, verification, con-
formance checking), and is tool-supported. The approach is based on the Ab-
stract Sate Machine (ASM) [134], which is a transition system that extend finite
states machines with domain of objects with functions and predicates. ASM is
a modeling technique that integrates dynamic (operational) and static (declara-
tive) descriptions, as well as an analysis technique that combines validation (by
simulation and testing) and verification methods at any desired level of detail.
In particular, it is possible to model the units of work and their sequence. ASM
has rule constructors that represent common vulnerabilities and defects. Such
rules are created in Computation Tree Logic (CTL) and can be used to check
the ASM modeling for avoiding violations of suitable properties. The reasoner
is part of a framework called AsmetaV. ASM is used to define the main phases

25https://www.omg.org/spec/OCL/2.4/PDF

312 Paper F

and activities of the development process. Requirements modeling is based
on model refinement; it starts by developing a high-level ground model that
captures stakeholders requirements.

S15 and S27 show a case study related to the hemodialysis machine case
study. In S32, the authors present an approach for checking the activities that
are needed for creating a Smart Pill Box. The checks are implemented in a
language called Avalla and tested with the validator AsmetaV. The compliance
verification with IEC 62304 and the FDA general principles of software val-
idation are manually mapped to the steps taken in the process verification of
the approach presented. Thus, the approach is actually doing model check-
ing to the device. In S17, the authors present a method for discovering actual
software process models based on event logs and check conformance with the
CMMI-DEV model. For this, an event log is used to automatically construct
a petri net that explain the behavior discovered in the log. The conformance
checking process aims to verify the discovered process with the ”assessable”
elements of CMMI-DEV model (development lifecycle proposed by CMMI-
DEV), which are modeled by using Linear Temporal Logic (LTL).The result
is a report presenting if certain properties (CMMI-DEV model rules) hold in a
log. The method is tool supported via the ProM tool26.

In S41, the authors present a tool-supported framework for tracking pro-
cesses in the background of the actual software development, automatically
standards constraints, e.g., DO-178C/ED-12C and informing quality viola-
tions. The approach is evaluated with an open source system for unmanned
aerial vehicles and an industrial air traffic control system (ATC).

26http://www.promtools.org/doku.php

12.4 Results 313

Ta
bl

e
12

.9
:S

um
m

ar
y

of
th

e
R

ev
ie

w
ed

St
ud

ie
s.

ID
Pr

oc
es

s

R
ep

re
se

nt
at

io
n

Tasks

WorkProducts

Roles

Guidance

Tools

WorkFlow

R
eq

ui
re

m
en

ts
R

ep
re

se
nt

at
io

n

Levelofautomation

EvolutionHandling?

Il
lu

st
ra

tiv
e

sc
en

ar
io

s

IndustrialSettings?

St
an

da
rd

s
ta

rg
et

ed

SupportAgile?

A
pp

lic
at

io
n

D
om

ai
ns

S1
Pr

oc
eP

T
X

X
FO

L
(P

ro
lo

g)
PC

X
So

ft
w

ar
e

D
ev

el
op

-
m

en
t

IS
O

90
01

Q
ua

lit
y

S2
U

M
L

X
FO

L
PC

So
ft

w
ar

e
D

ev
el

op
-

m
en

t
IS

O
12

20
7

Q
ua

lit
y

S3
U

M
L

X
X

X
U

M
L

C
M

R
ec

om
m

en
da

tio
n

H
an

dl
in

g
X

IE
C

61
50

8
Sa

fe
ty

-c
ri

tic
al

S4
U

M
L

X
X

X
U

M
L

PC
Pr

og
ra

m
m

ab
le

E
le

c-
tr

on
ic

Sy
st

em
s

X
IE

C
61

50
8

Sa
fe

ty
-c

ri
tic

al

S5
U

M
L

X
X

PP
ST

PC
So

ft
w

ar
e

D
ev

el
op

-
m

en
t

IS
O

/I
E

C
90

00
3

Q
ua

lit
y

S6
SP

E
M

2.
0

X
X

SL
T

PC
X

A
ut

om
ot

iv
e

Sy
st

em
D

es
ig

n
IS

O
26

26
2

Sa
fe

ty
-c

ri
tic

al

S7
SP

E
M

2.
0

X
X

SW
R

L
PC

So
ft

w
ar

e
D

ev
el

op
-

m
en

t
Pr

oc
es

s
G

ui
de

lin
es

X
Pr

oc
es

s
V

er
ifi

ca
-

tio
n

S8
U

M
L

X
X
X
X

O
C

L
PC

Su
b-

Se
a

co
nt

ro
l

X
IE

C
61

50
8.

Sa
fe

ty
-c

ri
tic

al

S9
C

W
M

LT
X

X
LT

L
PC
X

Se
rv

ic
es

D
el

iv
er

y
X

In
te

rn
al

G
ui

de
lin

es
.

H
ea

lth
C

ar
e

S1
0

U
M

L
X
X

G
A

L
IT

In
fo

rm
at

io
n

Pr
iv

ac
y

X
PI

PE
D

A
.

D
at

a
Pr

ot
ec

tio
n

S1
1

U
M

L
X
X
X
X

O
C

L
PC

Su
b-

Se
a

co
nt

ro
l

X
IE

C
61

50
8

Sa
fe

ty
-c

ri
tic

al

314 Paper F

Ta
bl

e
12

.9
C

on
tin

ue
d:

Su
m

m
ar

y
of

th
e

R
ev

ie
w

ed
St

ud
ie

s.

S1
2

fU
M

L
X

X
LT

L
IT

So
ft

w
ar

e
D

ev
el

op
-

m
en

t
Pr

oc
es

s
G

ui
de

lin
es

X
Pr

oc
es

s
V

er
ifi

ca
-

tio
n

S1
3

A
SP

X
X

X
A

SL
C

M
H

um
an

R
es

ou
rc

es
X

R
B

A
C

po
lic

y
C

yb
er

se
cu

ri
ty

S1
4

C
T

X
X

D
L

PC
H

um
an

R
es

ou
rc

es
X

IS
O

/I
E

C
T

S
33

05
3

Q
ua

lit
y

S1
5

A
SM

X
X

LT
L

PC
M

ed
ic

al
D

ev
ic

es
X

IE
C

62
30

4
Sa

fe
ty

-c
ri

tic
al

S1
6

B
PM

N
X
X

SH
A

C
L

PC
R

ai
lw

ay
X

E
N

50
12

6
Sa

fe
ty

-c
ri

tic
al

S1
7

Pe
tr

in
et

X
X

LT
L

IT
In

fo
rm

at
io

n
Te

ch
no

l-
og

y
C

M
M

I-
D

E
V

v1
.3

SP
I

S1
8

U
M

L
X
X

X
M

ap
pi

ng
C

M
Sp

ac
e

E
C

SS
-S

T-
40

C
Sa

fe
ty

-c
ri

tic
al

S1
9

SP
E

M
2.

0
X
X
X
X
X
X

D
ef

-L
C

M
X

A
ut

om
ot

iv
e

IS
O

26
26

2
A

SP
IC

E
Sa

fe
ty

-c
ri

tic
al

S2
0

SM
T

X
FO

L
IT

H
um

an
R

es
ou

rc
es

X
E

U
D

PD
D

at
a

Pr
ot

ec
tio

n

S2
1

O
W

L
X
X

SW
R

L
C

M
Pr

oc
es

s
A

ss
es

sm
en

ts
X

IS
O

/I
E

C
15

50
4

SP
I

S2
2

M
SC

X
FO

L
PC

H
um

an
R

es
ou

rc
es

X
E

U
D

PD
D

at
a

Pr
ot

ec
tio

n

S2
3

SP
E

M
2.

0
X
X
X
X
X
X

D
ef

-L
C

M
X

A
ut

om
ot

iv
e

IS
O

26
26

2
SA

E
J3

06
1.

Sa
fe

ty
-c

ri
tic

al

S2
4

O
W

L
X
X

D
L

PC
X

So
ft

w
ar

e
de

ve
lo

p-
m

en
t

IS
O

/I
E

C
29

11
0

Pr
oc

es
s

V
er

ifi
ca

-
tio

n

S2
5

SP
E

M
2.

0
X
X
X
X
X
X

FC
L

PC
X

A
ut

om
ot

iv
e

IS
O

26
26

2
Sa

fe
ty

-c
ri

tic
al

S2
6

O
W

L
X
X

D
L

PC
So

ft
w

ar
e

R
eq

ui
re

-
m

en
ts

A
na

ly
si

s
IS

O
/I

E
C

15
50

4
SP

I

S2
7

A
SM

X
X

LT
L

PC
M

ed
ic

al
D

ev
ic

es
X

IE
C

62
30

4
FD

A
pr

in
ci

pl
es

Sa
fe

ty
-c

ri
tic

al

S2
8

SP
E

M
2.

0
X
X
X
X
X
X

FC
L

PC
X

R
ai

lw
ay

C
E

N
E

L
E

C
E

N
50

12
8

Sa
fe

ty
-c

ri
tic

al

S2
9

SP
E

M
2.

0
X
X
X
X
X
X

FC
L

PC
A

gi
liz

ed
E

nv
ir

on
-

m
en

ts
IS

O
26

26
2

D
O

-1
78

C
X

Sa
fe

ty
-c

ri
tic

al

12.4 Results 315

Ta
bl

e
12

.9
C

on
tin

ue
d:

Su
m

m
ar

y
of

th
e

R
ev

ie
w

ed
St

ud
ie

s.

S3
0

O
W

L
X
X

SW
R

L
C

M
C

om
pa

ni
es

A
p-

pr
ai

sa
ls

R
es

ul
ts

X
IS

O
/I

E
C

15
50

4
C

M
M

Iv
1.

3
SP

I

S3
1

O
W

L
X

D
L

C
M

M
ed

ic
al

D
ev

ic
e

X
G

D
PR

D
at

a
Pr

ot
ec

tio
n

S3
2

A
SM

X
X

C
T

L
PC

M
ed

ic
al

D
ev

ic
e

X
IE

C
62

30
4

FD
A

pr
in

ci
pl

es
Sa

fe
ty

-c
ri

tic
al

S3
3

SP
E

M
2.

0
X
X
X
X
X
X

FC
L

PC
X

A
ut

om
ot

iv
e

IS
O

26
26

2
Sa

fe
ty

-c
ri

tic
al

S3
4

O
W

L
X
X

D
L

PC
So

ft
w

ar
e

D
ev

el
op

-
m

en
t

IS
O

/I
E

C
15

50
4

SP
I

S3
5

U
M

L
X

O
C

L
PC

In
fo

rm
at

io
n

Te
ch

no
l-

og
y

G
D

PR
D

at
a

Pr
ot

ec
tio

n

S3
6

X
A

C
M

L
X

X
A

C
M

L
C

M
A

ut
ho

ri
za

tio
n

Sy
st

em
s

X
G

D
PR

X
D

at
a

Pr
ot

ec
tio

n

S3
7

SP
E

M
2.

0
X
X
X
X
X
X

B
C

L
PC
X

A
ut

om
ot

iv
e

IS
O

26
26

2
SA

E
J3

06
1

Sa
fe

ty
-c

ri
tic

al

S3
8

SP
E

M
2.

0
X
X
X
X
X
X

FC
L

PC
X

R
ai

lw
ay

C
E

N
E

L
E

C
E

N
50

12
8.

Sa
fe

ty
-c

ri
tic

al

S3
9

SP
E

M
2.

0
X
X
X
X
X
X

FC
L

,B
C

L
PC
X

M
ed

ic
al

D
ev

ic
es

IS
O

14
97

1
Sa

fe
ty

-c
ri

tic
al

S4
0

SP
E

M
2.

0
X
X
X
X
X
X

FC
L

PC
X

Sp
ac

e
E

C
SS

-E
-S

T-
40

C
Sa

fe
ty

-c
ri

tic
al

S4
1

U
M

L
X
X

X
D

ec
la

ra
tiv

e
PC

A
vi

on
ic

s
X

D
O

-1
78

C
X

Sa
fe

ty
-c

ri
tic

al

C
on

ve
nt

io
ns

(X
)S

up
po

rt
ed

,(
C

M
)C

on
ce

pt
ua

lM
od

el
,(

PC
)P

ro
of

of
C

on
ce

pt
Pr

ot
ot

yp
e,

(I
T

)I
m

pl
em

en
te

d
To

ol
.

L
an

gu
ag

es

(U
M

L
)U

ni
fie

d
M

od
el

in
g

L
an

gu
ag

e27
,(

O
W

L
)W

eb
O

nt
ol

og
y

L
an

gu
ag

e28
,(

SP
E

M
2.

0)
So

ft
w

ar
e

&
Sy

st
em

s
Pr

oc
es

s
E

ng
in

ee
ri

ng
M

et
am

od
el

29

27
ht

tp
s:

//w
w

w
.o

m
g.

or
g/

sp
ec

/U
M

L
/

28
ht

tp
s:

//w
w

w
.w

3.
or

g/
O

W
L

/
29

ht
tp

s:
//w

w
w

.o
m

g.
or

g/
sp

ec
/S

PE
M

316 Paper F

Ta
bl

e
12

.9
C

on
tin

ue
d:

Su
m

m
ar

y
of

th
e

R
ev

ie
w

ed
St

ud
ie

s.

(C
W

M
LT

)C
om

pe
ns

ab
le

W
or

kfl
ow

M
od

el
in

g
L

an
gu

ag
e

[1
35

],
(f

U
M

L
)F

ou
nd

at
io

na
lS

ub
se

tf
or

E
xe

cu
ta

bl
e

U
M

L
M

od
el

s30
,

(A
SM

)A
bs

tr
ac

tS
ta

te
M

ac
hi

ne
s

[1
34

],
(A

SP
)A

ns
w

er
Se

tP
ro

gr
am

m
in

g
&

(A
SL

)A
ns

w
er

Se
tL

og
ic

[1
36

],

(B
PM

N
)B

us
in

es
s

Pr
oc

es
s

M
an

ag
em

en
tN

ot
at

io
n31

,(
SM

T
)S

at
is

fia
bi

lit
y

M
od

ul
o

T
he

or
ie

s
[1

33
],

(X
A

C
M

L
)e

X
te

ns
ib

le
A

cc
es

s
C

on
tr

ol
M

ar
ku

p
L

an
gu

ag
e,

(F
O

L
)F

ir
st

O
rd

er
L

og
ic

,(
PP

ST
)P

ro
ce

ss
Pa

tte
rn

St
ru

ct
ur

e
Tr

ee
[1

29
],

(X
SL

T
)E

xt
en

si
bl

e
St

yl
es

he
et

L
an

gu
ag

e
Tr

an
sf

or
m

at
io

ns
32

,(
SW

R
L

)S
em

an
tic

W
eb

R
ul

e
L

an
gu

ag
e33

,(
O

C
L

)O
bj

ec
tC

on
st

ra
in

tL
an

gu
ag

e34
,

(L
T

L
)L

in
ea

rT
em

po
ra

lL
og

ic
[1

37
],

(G
A

L
)G

ov
er

na
nc

e
A

na
ly

si
s

L
an

gu
ag

e
[9

6]
,(

D
L

)D
es

cr
ip

tio
n

L
og

ic
35

,

(D
ef

-L
)D

ef
ea

si
bl

e
L

og
ic

36
,(

FC
L

)F
or

m
al

C
on

tr
ac

tL
og

ic
[1

38
],

(C
T

L
)C

om
pu

ta
tio

na
lT

re
e

L
og

ic
,(

B
C

L
)B

as
ic

C
on

st
ra

in
tL

an
gu

ag
e,

(S
H

A
C

L
)S

ha
pe

s
C

on
st

ra
in

tL
an

gu
ag

e37
,(

C
T

)C
om

po
si

tio
n

Tr
ee

s

30
ht

tp
s:

//w
w

w
.o

m
g.

or
g/

sp
ec

/F
U

M
L

31
ht

tp
s:

//w
w

w
.b

pm
n.

or
g/

32
ht

tp
s:

//w
w

w
.w

3.
or

g/
T

R
/2

01
7/

R
E

C
-x

sl
t-

30
-2

01
70

60
8/

33
ht

tp
s:

//w
w

w
.w

3.
or

g/
Su

bm
is

si
on

/S
W

R
L

/
34

ht
tp

s:
//w

w
w

.o
m

g.
or

g/
sp

ec
/O

C
L

/
35

ht
tp

://
dl

.k
r.o

rg
/

36
ht

tp
://

w
w

w
.d

ef
ea

si
bl

e.
or

g/
37

ht
tp

s:
//w

w
w

.w
3.

or
g/

T
R

/s
ha

cl
/

12.4 Results 317

12.4.2 Analysis
In this section, we present the analysis of the results in relation to the addressed
research questions presented in Table 12.1.

RQ 1. Publications Distribution

This section presents the publication distribution of the 41 primary studies re-
sulting for the SLR (i.e., time and venue) (see Figure 12.2) and active research
groups in the context automatic compliance checking of software processes
(see Table 12.10). In particular, Figure 12.2a, presents the distribution of the
studies according to the types of publication venues. As the figure depicts, most
primary studies were published in conferences (66%), while journals (29%)
and workshops (5%) were the sources of fewer studies.

In the first years (1995 to 2009), only one or no publications were discov-
ered. The distribution of the publications presents one peak in 2017, where
9 papers were found. Then, in 2018 the publication of papers descent again
to seven papers and continue in descending mode until 2021. We also could
see that most of the studies have been found after 2017 (26 out of 41 stud-
ies 63%). However, the literature revision during 2021 only included the first
three months since we finished our search in March. Thus, the trend could
increase during this year.

(a) Venues Types. (b) Years.

Figure 12.2: Publications Distribution.

Concerning the active research groups within automated compliance check-
ing for software processes, we looked at the selected primary studies’ affiliation
details. The assignment of contributed studies of each active research group is
based on the affiliations given in these studies to the first author. Table 12.10

318 Paper F

presents the active research groups (with at least two publications on the men-
tioned topic) and the corresponding number of contributed studies. The results
depict that the Mälardalen University is the leading organization in terms of the
number of publications, followed by Griffith University. Then, Charles Univer-
sity, Loughborough University, Universidade de Lisboa, and the University of
Oslo appear with two publications. The rest of the universities and centers only
have one publication (in total, 19). Thus, there are research groups around the
world doing research in this topic.

Table 12.10: Active Research Groups.
Affiliations Primary Studies Total

Mälardalen University S19, S23, S25, S28, S29, S33, S37, S38,
S39, S40 10

Griffith University S14, S24, S26, S34 4

Charles University S15, S27 2

Loughborough University S3, S4 2

Universidade de Lisboa S21, S30 2

University of Oslo S8, S11 2

Other Universities/Centers S1, S2, S5, S6, S7, S9, S10, S12, S13, S16,
S17, S18, S20, S22, S31, S32, S35, S36, S41 19

Analysis of the results for RQ 1. We did not set a lower boundary for the
year of publication in our search process since, to the best of our knowledge,
there is no precise date where the concept (or the topic) was coined, as it hap-
pens in other subject areas. However, as Figure 12.2b depicts, the time frame
identified the first primary study on the topic back in the 1990s. Previous to
this year, we did not find primary studies, so we could consider the 1990’s the
initiation of this topic’s work. This result corroborates with the publication of
Osterweil’s seminal paper [37] back in 1987, where the author discusses the
nature of software processes and categorized them as a kind of software, which
can also be programmed.

Osterweil’s assumptions could be the source of interest for work related to
the formalization of processes and their normative constraints. However, af-
ter analyzing the general temporal view of the studies, we can conclude that
the number of studies about automated compliance checking of software pro-
cesses is rare through the years. Although the apparent increase in the number
of primary studies found in 2017, this result corroborates that the topic has

12.4 Results 319

been somewhat neglected. However, some groups, especially in Europe and
Australia, continue advancing the research on the topic.

RQ 2. Characteristics of the Methods

In this section, we present the characteristics of the methods described in the
primary studies selected (summarized in Figure 12.3) by answering questions
RQ 2.1, RQ 2.2, RQ 2.3 and RQ 2.4.

RQ 2.1. Languages used to represent software processes entities and
structures Five types of approaches (see Table 12.8) have been used to rep-
resent the information contained in software processes. Such approaches are
distributed as presented in Figure 12.3a. 36% of the primary studies, namely
S3, S4, S5, S8, S10, S11, S12, S14, S18, S21, S24, S26, S30, S31, S34, con-
sider the modeling of process-related elements from specific standards con-
cepts. 32% of the primary studies, namely S6, S7, S16, S19, S23, S25, S28,
S29, S33, S37, S38, S39, S40, take as a base consolidated process modeling
languages to which a layer of analysis using formal languages is added. The
minority of the studies found are distributed as follows: 12% of the methods,
namely S13, S20, S22, S35, S36, take into account access rights given to the
roles in a process, 5% of the methods, namely, S1 and S2, take into account the
documents workflow, and the final 15% of the methods, namely S9, S15, S17,
S27, S32, S41, have other types of proposals. e.g., process mining, declarative
programming, and workflow modeling.

The five types of approaches make use of 14 different languages to repre-
sent the process elements, and structures as Figure 12.3b depicts. n particular,
S15, S27, S32 use ASM, S13 uses ASP, S14 uses CT, S9 uses CWMLT, S12
uses fUML, S22 uses MSC, S21, S24, S26, S30, S31 and S34 use OWL, S17
uses Petri Net, S16 uses BPMN, S20 uses SMT, S1 uses ProcePT, S6, S7, S19,
S23, S25, S28, S29, S33, S37, S28, S39 use SPEM 2.0, S2, S3, S4, S5, S8, S10,
S11, S18 and S35 use UML, and finally S36 uses XACML (see Table 12.9).

It is important to note that models created in OWL and UML could also
be considered as new languages. Thus, in the end, we have more than 14 lan-
guages used for modeling software processes. We also can see in Figure 12.3c
that some process elements have more importance than others in the model-
ing languages created/reused, as each normative framework considers different
kinds of process elements. In particular, significant attention in the modeling
part of the processes is given to the tasks, work products, and workflows.

320 Paper F

(a) General Approaches. (b) Languages for Modeling Process.

(c) Process Elements Represented. (d) Languages for Requirements Model-
ing.

(e) State of the tool support. (f) Evolution Handling Provision.

Figure 12.3: Methods Characteristics.

RQ 2.2. Languages used to represent compliance requirements In the
analysis of the selected primary studies, we found that a wide range of studies
uses FCL (S25, S33, S28, S29, S33, S38 and S39) to formalize the require-
ments prescribed by the standard (see Figure 12.3d). In the second place, the

12.4 Results 321

preferred languages are LTL (S9, S12, S15, S17 and S27) and DL (S14, S24,
S26, S31 and S34). In the third place, the selected language is FOL (S1, S2,
S20, S22). However, there are languages in many other flavors that the re-
searchers prefer to represent the requirements prescribed by the standards, i.e.,
ASL, BCL, CTL, Def-L, GAL, OCL, PPST, SHACL, SWRL, UML, XACML,
XSLT, and Declarative languages (database approach). Thus, the modeling of
requirements follows a similar trend as modeling processes: several languages,
each selected according to specific needs.

RQ 2.3. Level of automation The automation part claimed in the studies
(see Section 12.4) is related to the compliance reasoning, namely the auto-
matic comparison between the process and the normative documents. Frame-
works composed of chained tools also automatically transform the information
between the interrelated tools. Those that perform process mining also provide
an automatic mining procedure. However, the formalization of requirements
is performed mostly manually, in some cases, by using formalization patterns.
The state of the tool support is also variable. We classify it in three groups:
(CM) Conceptual Model, (PC) Proof of Concept Prototype, (IT) Implemented
Tool, as presented in Figure 12.3e. As the figure depicts, 68% of the methods,
namely, S1, S2, S4, S5, S6, S7, S8, S9, S11, S14, S15, S16, S22, S24, S25,
S26, S27, S28, S29, S32, S33, S34, S35, S37, S38, and S39, are prototypes
that are used as a proof of concept, 22% of the methods, namely, S3, S13, S18,
S19, S21, S23, S30, S31 and S36, are conceptual models, and only 10% of the
methods, namely S10, S12, S17, and S20, are fully implemented tools.

RQ 2.4. Evolution handling As presented in Figure 12.3f, only 34% of the
primary studies present explicit means for addressing software process recon-
figuration in the light of standards evolution (i.e., the release of a new version
of standards), tailoring (i.e., the selection, eventual modification, and imple-
mentation rationale) and process diversity (application of several standards in
the same project). In S1, for example, there are specific structures, such as
the definition of integrity levels prescribed by safety standards, which permit
the deletion and modification of work products and activities according to the
project’s characteristics. In S6 and S9, there is a tailoring step in the creation of
processes models process, which is in charge of transferring only those require-
ments, methods and activities, which are relevant according to the system’s
ASIL. In S9, in addition, there is a monitor system that follows the guidelines
for managing constraints and permits the creation of correct by construction

322 Paper F

workflows, preventing the incorrect composition of tasks. In S24, it is used
a mechanism called powertype, which is pattern for modeling that combines
instantiation and generalisation semantics in process metamodeling. In S19,
S23, S37, and S39, the use of methodologies such as process lines, permit not
only evolution handling but also to manage process diversity and reuse. In
S25, S28, S33, S38 and S40, the change management is based on the extension
capabilities reuse and traceability provided by the process modeling language
SPEM 2.0.

Analysis of the results for RQ 2 We can see in the results that researchers
use different kinds of approaches and methodologies to represent the software
process to be used for automatic compliance checking. The purpose of the
primary studies was to model the specific concepts provided in particular stan-
dards. In most cases, the standards only prescribe the sequence of tasks (pro-
cess behavior) and process outcomes (defined in the work products). Only a
few primary studies provide the possibility of modeling several process ele-
ments rather than only process workflows and work products. As a result, new
languages with limited scope have been created. The continuous creation of
ad-hoc software process-related modeling solutions could be a disadvantage,
especially when well-defined process modeling languages (such as SPEM 2.0
and BPMN) could be reused and extended according to specific needs.

Compliance checking of software processes built on the capabilities pro-
vided by logic-based languages, especially for representing the requirements
prescribed by the normative frameworks. In particular, the selection of lan-
guages in the primary studies was very diverse showing a similar trend than
in languages used to represent software processes. In general, every formal
method has its strengths and limitations as its own formal approaches and se-
mantics. Some are easier to understand and use than others. The coverage,
readability characteristics and tool support are also aspects that vary from one
formal language to the other. Thus, it is important to find the correct balance
between all those aspects to achieve the best fit for the problem at hand.

Essentially, the surveyed methods require human intervention, especially to
implement the inputs of the reasoning process. The manual mapping or formal-
ization of requirements as constraints requires considerable knowledge of the
underlying formalisms and formal techniques. Therefore, formal approaches
are often not easy to use for many process engineers. Given this aspect, there
is a need for automate the transformation of normative requirements into for-
mal representation, or at least, the provision of editors that could lessen the
demands of its use. In addition, it is challenging to promote the use of meth-

12.4 Results 323

ods for automatic compliance checking in the industry when the tool support
is lacking or nonexistent.

Evolution handling is a crucial aspect of process-related compliance man-
agement. However, the results of the SLR show that this aspect has been some-
what neglected. Another downside of the methods could be that the hard-coded
rules could lessen the extensibility and generality and, therefore, the scope of
application of these approaches. Therefore, there is a need to provide change
management means that permit process engineers to understand, plan, imple-
ment and communicate the change due to the evolution of the standards, tailor-
ing, and process diversity.

RQ 3. Potential Impact

In this section, we present the potential impact of the studies in terms of appli-
cation domain, normative documents targeted, illustrative Scenarios and agile
support (summarized in Figure 12.4) by answering questions RQ 3.1, RQ 3.2,
RQ 3.3 and RQ 3.4.

RQ 3.1. Application domains Several application domains are addressed
in the primary studies, as presented in Figure 12.4a. The most representative
application domain is the safety-critical, with 51% of the studies tackling this
sector, i.e., S3, S4, S6, S8, S11, S15, S16, S18, S19, S23, S25, S27, S28,
S29, S32, S33, S37, S38, and S39. Then, we find that the researchers are
interested in software process improvement SPI and quality (22%), i.e., S1,
S2, S5, S14, S17, S21, S26, S30, and S34, and data protection (15%), i.e., S10,
S20, S22, S31, S35, and S36. Other application domains are also represented
in less quantity, i.e., software process verification (7%), i.e., S7, S12, and S24,
Cybersecurity (2%), i.e., S13 and health care (2%), i.e., S9.

RQ 3.2. Normative documents targeted Different standards have been
modeled and used in the experimentations or illustration results provided in
the primary studies. As depicted in Figure 12.4b, the standards more used are
ISO 26262 (15%), i.e., S6, S19, S23, S25, S29, S33, and S37, IEC 61508 (9%),
i.e., S3, S4, S8, and S11, and ISO/IEC 15504 (9%), i.e., S21, S26, S30 and S34.
To a lesser extent, the primary studies used GDPR (6%), IEC 62304 (6%), SAE
J3062 (4%), FDA principles for software development (4%), software process
guidelines (4%), internal guidelines (4%), ECSS-E-ST-40C (4%), DO-178C
(4%) and CMMI (4%). Other standards were also used, representing 19% of

324 Paper F

(a) Application Domain. (b) Normative Frameworks Addressed.

(c) Illustrative Scenarios. (d) Evaluation Data from Industry.

(e) Agile Support.

Figure 12.4: Potential Impact.

the studies (i.e., ISO 12207, ISO 14971, ISO 9001, ISO/IEC 29110, ISO/IEC
90003, ISO/IEC TS 33053, PIPEDA, ASPICE, EN 50126.

RQ 3.3. Illustrative scenarios Illustrative scenarios are presented in Fig-
ures 12.4c and 12.4d. In particular, the studies focused primarily in general as-

12.4 Results 325

pects of software development (23%), i.e., the GV-Model in S1, Case PSS-05
in S2, testing procedures and scrum processes), Automotive examples (16%),
i.e., S6, S19, S23, S25, S33 and S37, and Medical devices development (11%),
i.e., S17 and S19 with the hemodialysis machine, S32 with the smart pill box,
S39 with a general risks analysis for medical devices and S40 with a wear-
able fitness appliance. Representative examples were also found in human
resources systems (9%), i.e., i.e., S13, S14, S20, and S22, general applications
in information technology (7%), i.e., S10. S17 and S35 railway (7%), i.e., S16,
S28 and S28, avionics (4%), i.e., S29 and S41, Space (5%), i.e., S18 and S49,
Sub-sea control (5%), i.e., S22 and S36 and appraisals results (4%), i.e., S31
and S34. Other illustrative scenarios have a 9% of representation (i.e., agilized
environments, programable electronic systems, recommendation handling sys-
tems and services delivery). In total, 19 of the 41 studies (approximately, 46%)
used data extracted from industrial settings to evaluate their methods, i.e., S3,
S4, S8, S9, S10, S11, S13, S14, S15, S16, S10, S21, S22, S27, S30, S31, S32,
S36 and S41.

RQ 3.4. Agile support Support for agile is not highly represented in the
studies selected (the only 10% of the studies showed some agile-related infor-
mation). The information related to agile compliance is having different char-
acteristics in different studies. For example, in studies S7 and S12, the tech-
niques apply for compliance checking with the SCRUM framework, but there
are no direct observations regarding compliance checking with a regulatory
text. In S29, the support is provided to agilized environments, i.e., environ-
ments that result from the combination of agile and plan-based development
processes, especially applicable to regulated contexts. In S35, the support is
presented by providing normative requirements formalization templates in the
form of user stories. Finally, in S41, the framework uses mining techniques to
extract the developers’ performed work. This technique is restricted to process
executions and reconstruction of compliance after the fact. Thus, some support
for agile methodologies exists. However, there is much room for improving
this aspect. Correctly combined with other techniques, agile methodologies in
compliance with normative frameworks could be better supported.

Analysis of the results for RQ 3 The primary studies’ methods provide a
set of engaging, applicable, and useful aspects contributing to the automation
of compliance checking of software processes. In general, there are diverse ap-
plication domains, different standards targeted, and illustrative scenarios per-
formed. From such scenarios, valuable lessons learned and practical insights

326 Paper F

have also been collected. However, in most cases, normative documents have
been considered in isolation resulting in ad-hoc solutions. In addition, the use
of case studies from industry, even though it is good (46%), should be increased
in order to provide real setting insights. In reality, manufacturers have to deal
with software process diversity, tailoring, and standards evolution. Moreover,
software organizations are moving towards agile, even in heavily regulated do-
mains, such as the safety-critical. Thus, the narrow focus of the methods re-
ported, the poor support for agile environments, and the non concretized tool
support (which is the common aspect) may be a factor that also hinders their
application in practice.

RQ 4. Challenges

Our investigation found that the existing literature related explicitly to compli-
ance checking of software processes is scarce and scattered (see answer to RQ
1). The publication’s irregularity in the initial years and the reduced amount
of journal papers published may indicate that the topic has taken a long time
to establish itself as a research subject. It seems also that research has been
done in silos. Such independence may result in wasted research efforts since
languages for process modeling are very often created from scratch.

In today’s methods for automated compliance checking of software pro-
cesses (see answer to RQ 2), diverse abilities are required from their potential
users. In particular, there is the need for knowledge regarding process model-
ing and the ability to formalize natural language in a specific formal language.
As potential users, we have the process engineers who may already have some
expertise in process modeling. However, different tools may approach model-
ing in different ways. Besides, the formalization of natural language in which
the requirements are commonly specified is always perceived as demanding.
Such perception may hinder the interest of the potential users and, thus, the
methods’ use.

The automation level claimed by the methods studied is related to two as-
pects. On the one hand, there are means to automate the compliance reasoning
required to compare processes and the normative documents regulating them.
On the other hand, there is conceptual integration of the tool-chain required
to provide the reasoning aspects. However, in most primary studies, the con-
crete technological interaction between different tool-chain components is still
a weak link in tool support provision. As a result, it is frequent to find that
the tool support is still at the stage of conceptual modeling or proof of concept
prototypes.

12.5 Discussion 327

Finally, we can see impact problems (see the answer to RQ 3). Particularly,
there is no consistent use of data from industry, limiting the evaluation of the
studies. Moreover, in almost all the studies, the standards are addressed in iso-
lation, reducing the results’ generalizability. Finally, there is a lack of support
for agile. These three aspects should be addressed in future research efforts
to boost the implementation of the methods that are already available in the
state-of-the-art.

12.5 Discussion

In this section, we discuss outstanding aspects regarding automatic compliance
checking of software processes based on interpretations of the authors.

12.5.1 The use of software process modeling languages

Notably, a software product with desirable guaranteed attributes (e.g., safety,
quality, reliability) is the result of several artifacts supplementing each other
as well as actors performing on it with specialized techniques and tools in
well-defined engineering processes. Consequently, it is essential to be able
to describe all such concepts and structures included in a software process, as
well as their properties, plus additional descriptive information. This could be
the reason for the change of the trend in the last years, where researchers tend
to use consolidated process modeling languages

For example, languages like SPEM 2.0 and BPMN have already defined
characteristics, e.g., extensibility and reuse capabilities. Consequently, new
features can be modeled if needed by customizing or extending existing ones,
permitting the modeling of more complete software processes that help the
process users and auditors to understand what is needed to be done, who will
perform tasks, what resources will be used, and what results will be obtained.
A software process model with such characteristics is especially needed for
creating software products in the safety-critical context, which is often subject
to a certification process. Most of the consolidated process modeling languages
already offer tool support, which makes their use even easier. Thus, we con-
sider that new research efforts in automatic compliance checking, specifically
for software processes, could consider existing process modeling languages to
accelerate results in the topic and standardize the techniques and tool support.

328 Paper F

12.5.2 Language suitability for normative requirements

First and foremost, compliance is a relationship between permissions (what
you are allowed to do), obligations (what you have to do), and prohibitions
(what you should avoid). In the case of compliance with standards, the con-
cept of tailoring is also relevant. Tailoring allows organizations to adapt nor-
mative requirements to specific project conditions. However, in the tailoring
process, the provision of a justification (called rationale) is a mandatory ele-
ment aimed at legitimizing changes. Tailoring can be seen as a sort of justified
exception-handling in software process compliance checking. Thus, the lan-
guage selected to represent normative frameworks should be able to provide
means that facilitate the description of the mentioned concepts since they are
not only necessary but also sufficient to tackle the compliance checking prob-
lem of software processes.

In our analysis of the languages used in the primary studies, we found ex-
ploitable characteristics. For example, FCL explicitly provides the concepts of
obligation, permission, and the rule priority, allowing reasoning with excep-
tions. Def-L permits to model facts, defeasible rules, and defeaters, providing
the opportunity to model and reasoning with contradictory information. ASL
provides a clear distinction between strong (or traditional) negation to represent
a negation derived from evidence and negation as failure, admitting reasoning
with incomplete information.

The remaining languages consider the requirements as constraints that re-
strict the processes’ scope of action. In other words, requirements are defined
as the obligations that the process or the process elements should fulfill or the
prohibitions that should avoid to be deemed compliant. Thus, they can cope
with the concept of obligation (or prohibition) very well, even though such a
concept is not explicitly defined. However, the possibility to handle contra-
dictions and incomplete information is not provided either in an implicit or
explicit form. Such reduced semantics lead to reduced reasoning capabilities,
which also decreases the scope of the methods used for compliance checking.

An ideal language for formalizing the requirements of normative frame-
works could actually be a combination of several mechanisms and well-defined
semantics that could work harmoniously to achieve idealized goals: compli-
ance checking of single processes, variability management, agile processes as
well as plan-driven, and finally, process planning and execution.

12.5 Discussion 329

12.5.3 Towards a generic and domain-agnostic method

Most of the approaches aim at seeking compliance at design time. As such,
compliance checking is able to demonstrate intentional compliance, i.e., distri-
bution of responsibilities, such that if every actor fulfills its goals, then the com-
pliance is ensured. [139]. However, intentional compliance can only permit,
not guarantee, any quality attribute of the process. Non-conformance between
process planning and execution can put the software development at risk in re-
alizing the compliance required. Therefore, combinations between compliance
of software process plans and follow-ups during process execution should be
made sure. In our opinion, the results of the methods surveyed in this study
could fertilize each other towards the consolidation of a more holistic, generic
and normative-agnostic solution that is able to tackle, e.g., quality, SPI, safety,
cybersecurity. A resulting method could be more attractive to organizations,
and industrial applications could be made on a larger scale.

12.5.4 The need for diverse abilities

Converting normative requirements into formal specifications has many ben-
efits. In particular, formal descriptions obligate the person who analyses the
norms to see them from a causal perspective that would facilitate their inter-
pretation. Moreover, a formal specification of normative requirements is a de-
scription that is precise and (if properly done) complete. These two charac-
teristics may convince practitioners to use formal languages to do compliance
checking tasks. However, there is nothing to do if the language used to perform
such formalization is too difficult to understand. A key point for introducing
any formal language in the industry is the usability aspects. We need to avoid
the case of a new person feeling confused and frustrated with such formalisms.
In particular, it could be interesting to develop short, straight-forward expres-
sions, which are clear, and at the same time, readable when the complexity
(and size) grows.

12.5.5 Increase the level of automation and tool support

It is difficult to guarantee industrial adoption when there is nonexistent or
loosely coupled tool support. Thus, it is crucial to provide adequate and com-
plete tool support for automatically perform compliance checking. This as-
pect can be facilitated by integrating existing development tools like Rational
Method Composer, which is are already used in industry. It is also essential to

330 Paper F

increase the automation means for easing the creation of rules, i.e., rule editors
and process models, since formalizing requirements still needs human inter-
vention. A good aspect is that the research arena moves towards automatic
means to model the process after the fact, namely, process mining approaches.
These approaches suit agile/agilized environments very well if automation is
used during the development process stages. However, where there are no
process logs available, the approach is not very suitable. Besides, mining tech-
niques could extract the information too late in the development process, and
then compliance may be challenging to fix. In our opinion, process mining
techniques can be included in a framework for facilitate the compliance check-
ing lifecycle, but not as a standalone technique to guarantee compliance.

12.5.6 Going beyond technological dilemmas

Article 22 of the GDPR [140] stipulates that whenever a decision that legally
or significantly affects an individual relies solely on automated processing, the
right to contest the decision must be guaranteed. Thus, there is a need to clearly
explain the automatic compliance checking results that guarantee organizations
and individuals’ rights. Consequently, means for transparency have to build in
the methods. Transparency can be achieved by implementing data provenance
and traceability mechanisms. Data provenance is associated with data regard-
ing origin, changes, and details supporting confidence or validity. Traceability
is related to the relationships between compliance results, software process ele-
ments, and normative frameworks. We also consider that informal explanations
should always accompany formal specifications to clarify the rules’ meaning
and place them in context. In that way, if problems arise with released software
products, transparent, traceable, and fully documented compliance checking
results could show that the prescribed procedure was applied.

Assuming that the method for compliance checking and the tool support are
correctly designed, good results may be expected. However, correct answers
depend on the quality of the inputs that the tool receives. Unfortunately, the use
of mathematical methods for compliance checking, as presented in the studies,
are no guarantee of correctness since humans apply them. Cognitive biases,
which are deviations from the rational way we expect our brains to work, may
appear when we formalize normative documents. Therefore, there must be a
layer of trust in the methods, which guarantees that there is no requirement
poisoning, i.e., rules incorrectly derived from the normative frameworks. In
that way, we could fight the lack of trust between organizations participating
in global software development governance and the utilization of automated

12.6 Validity of the results 331

means for compliance checking.

12.6 Validity of the results

The research method used in this work intends to capture all papers address-
ing automatic compliance approaches of software processes. Therefore, we
followed strictly the guidelines recommended in [17, 18]. However, there are
threats that could undermine the validity of the results obtained in this system-
atic review. In this section, we address potential threats regarding publication
bias (refers to the problem that positive results are more likely to be published
than negative results), identification of primary studies (refers to the strategy
to collect all possible studies), and data extraction consistency (refers to the
strategy to extract all data required to address the review questions).

Publication bias: We designed a review protocol by following the steps
proposed by the guidelines described in Section 12.3. The first author pre-
pared the protocol while the second and third authors (who have previously
participated in research involving SLR, see for instance [141, 142]) ensure ap-
propriateness by performing an exhaustive review and assessment. We also
pay careful attention to external reviewers’ critical comments on an earlier ver-
sion of this paper. Their observations lead to an increase in the clarity of the
review protocol. We also include Google scholar to avoid limiting information
sources to specific publishers, journals, or conferences. In order to accumulate
reliable information, we decided not to restrict the search dates and avoid the
inclusion of technical reports, works in progress, unpublished paper, or non-
peer-reviewed publications.

Identification of primary studies: We aimed at ensuring that the search
addresses our review intentions. For this, we performed a careful characteri-
zation of the topic (see Section 12.2) in an attempt to discover all the possible
concepts and their respective synonyms. We additionally tested such concepts
in a known digital library. With such a result, we concretized our search string
as presented in Table 12.3. We are aware that the search strategy is not suf-
ficient to capture all the possible studies. We carry out the snowballing pro-
cess to mitigate this threat. Consequently, we manually scanned and analyzed
the references used primary studies retrieved from the automated search (back-
ward snowballing) and the citations such studies get in Google scholar (forward
snowballing). The main goal was to ensure that our SLR also covers follow-up
works that might exist but have not been included in the search. The process
of identifying primary studies was performed by the first author, who is a Ph.D

332 Paper F

student. The prospective primary studies were evaluated and cross-validated
by the second and third authors, who are experienced researchers.

Data extraction consistency: We based our data extraction strategy on the
data extraction criteria presented in Table 12.5. The first author prepared the
selection criteria by considering the quality criteria presented in Table 12.6,
and the research questions we intend to answer in the SLR, presented in Ta-
ble 12.1. We checked the data extraction table’s consistency by conducting
a data extraction pilot on a set of primary studies. After that test, we refine
the data extraction table by aggregating parametrization. For instance, we de-
fined parameters for the information regarding automation levels of the stud-
ies surveyed (CM, PC, and IT). The data was distributed in two tables. The
first table contains selection criteria and articles identification (see Table 12.7).
The second table contains 16 columns aimed at recording the information cor-
responding to the research questions (see Table 12.9). All this information
was recorded and analyzed by using Excel spreadsheets. We consider that the
adopted data extraction strategy could help to reduce threats regarding the data
extraction consistency.

12.7 Related Work

SLRs regarding process-based compliance checking have been conducted pri-
marily in business-related areas. In particular, the work included in Becker
et al. [143] presents a classification of approaches for compliance checking
at design time (processes are checked at the moment they are created) based
on business-related compliance patterns and the use of different techniques
for modeling processes. Ly et al.’s [144] work provides a systematic com-
parison of existing approaches for monitoring compliance rules over business
processes during run-time (compliance is checked during process execution).
In the work done by Hashmi et al. [145], the authors evaluate selected frame-
works regarding the modeling of different compliance requirements and their
link with the business process. In the work done by Hashmi et al [146] and El
Kharbili et al [147], the authors present an evaluation of compliance manage-
ment strategies at different times of the compliance lifecycle, i.e., design-time,
run-time, and auditing-time (compliance is checked after the process has been
executed). In Hashmi et al.’s work, the author also review how control flow
structures and norms are modeled. Like the previous SLRs, our work also
found that different kinds of formal approaches are used to model processes
and normative frameworks. However, any of these SLRs include compliance

12.8 Conclusions and Future Work 333

checking of software processes, which is our focus. Moreover, in our work,
we found that the concepts used to describe processes are modeled according
to the specific standard’s needs. Instead, the business context reviews found
that it is more common to model artifacts in existing business-oriented process
modeling languages. Besides, none of the previous SLRs review the concepts
required for modeling complete process specifications, according to software
process needs, i.e., the definition of roles, work products, guidance, and tools.
Only the review presented by Hashmi et al. [146] considers the data manage-
ment at run-time, but only from the perspective of norms definition.

In engineering contexts, we find the work of Boella et al. [148] and, more
recently Akhigbe et al. [149], whose focus is surveying the representation of
knowledge for legal and regulatory requirements engineering. On the one
hand, Boella et al.’s work focuses on norms representation. On the other hand,
Akhigbe et al.’s focus on studying the uses and main claimed benefits and draw-
backs of goal-oriented and non-goal-oriented modeling methods for legal and
regulatory compliance. Instead, we focus on characterizing compliance check-
ing as a whole. For this reason, we include the languages used to model the
normative frameworks and the processes used to engineer the software. There
are works targeting software processes from different perspectives. For ex-
ample, the work done by von Wangenheim et al. [50] is an SLR, that focuses
on software process capability/maturity models. In addition, the work done
by Yan et al [150] presents a systematic mapping study on quality assessment
models. Our work, instead, focuses on all the models that can be derived from
normative frameworks applied to software processes, which include quality
and SPI. The work done by Garcia et al [151] focuses on the identification
of software process modeling languages. We do a similar thing, but we also
include the models for normative frameworks required for compliance analy-
sis. Finally, in the context of safety-related compliance management, we find
Nair et al.’s work [152], whose work focuses on the characterization of compli-
ance artifacts, including the importance of providing process-based compliance
checks. However, it is not covering how such checking is done.

12.8 Conclusions and Future Work

The world is permeated by software applications, many of them acting in
safety-critical environments. Organizations doing software solutions also have
to implement processes, which are often mandated by normative frameworks,
i.e., standards, regulations, laws and guidance. For this reason, software pro-

334 Paper F

cess compliance is not an option. However, software process compliance check-
ing is challenging due to the numerous normative frameworks to which orga-
nizations need to comply. In the research arena, we can find several studies,
which have tackled the compliance checking problem of software processes
from diverse perspectives. In this paper, we characterized the state-of-the-art
by performing a systematic literature review on the topic. In our opinion, the
primary studies selected provide a set of ad hoc solutions that are interesting,
applicable, and valuable contributions to the topic. There is also diversity re-
garding process modeling languages and the types of artifacts described. Most
of the languages used for representing requirements primarily cover the con-
cept of obligations and prohibitions (what should be done and what should be
avoided) but leave aside other considerations, such as the permitted actions
that could indirectly affect compliance, e.g., requirements tailoring. The level
of automation claimed is related to the compliance reasoning required to com-
pare processes and the normative documents and tool-chain information inte-
gration. Essentially, the surveyed methods require human intervention, espe-
cially to implement the inputs of the reasoning process. Tool support is still an
issue since most of the approaches are in the stage of conceptual modeling or
have been materialized as proof-of-concept prototypes. In addition, few of the
methods contemplate agile environments and standards evolution.

In the future, we will consider possible solutions for the challenges discov-
ered in this SLR (see Section 12.5). First, new research efforts in automatic
compliance checking, specifically for software processes, need to consider ex-
isting process modeling languages to accelerate the topic’s results and stan-
dardize the techniques and tool support. In particular, we consider it essential to
promote well-defined software process modeling languages, such as SPEM 2.0,
to avoid repetition in creating process-related modeling resources. For this,
we could perform comparative studies between existing process modeling lan-
guages and case studies showing their capabilities. Second, researchers need
to find appropriate means for using logical approaches for the representation
of normative frameworks. In that sense, we will continue investigating how to
combine existing languages. The goal is to contribute with a well-defined (set
of) logical structure(s) that works harmoniously in all the aspects required for
software process-related compliance checking: reasoning capabilities, means
for variability management, support for agile environments, and process execu-
tion conformance. However, we need to avoid the case of a new person feeling
confused and frustrated when using formal methods. In particular, it could be
interesting to develop short, straightforward expressions (i.e., syntactic sugar)
that make it easier to read or to express normative frameworks, especially when

12.8 Conclusions and Future Work 335

the complexity (and size) of the compliance checking tasks grows. Third, we
believe that existing studies could be combined to achieve a generic and nor-
mative agnostic method. Fourth, it is also vital to increase automation level
by defining mechanisms that support the formalization of rules and reuse. It is
also essential to concretize the tool support and increase the use of data derived
from industrial-related software processes to evaluate the methods. Finally, we
also mentioned incorporating a trust layer to guarantee that rules are correctly
derived from the normative frameworks. This aspect can be reached in the fu-
ture by using technological means. However, a shorter-term solution could be
to contact standardization/regulatory bodies to investigate the possibility of re-
leasing process models and formal representations of the requirements within
the release of new versions of the standards. With this strategy, we could re-
duce undesired room for interpretation of the normative texts.

Bibliography

[1] M. Generowicz, “The Easy Path to Functional Safety Compliance,” I&E
Systems Pty Ltda, pp. 1–3, 2013. https://www.iesystems.com.au/wp-
content/uploads/2015/04/Duty-of-Care-Article.pdf, Accessed March
30, 2021.

[2] I. Schieferdecker, “Responsible software engineering,” in The Future of
Software Quality Assurance, pp. 137–146, Springer, Cham, 2020.

[3] M. Usman, M. Felderer, M. Unterkalmsteiner, E. Klotins, D. Mendez,
and E. Alégroth, “Compliance requirements in large-scale software
development: An industrial case study,” in International Confer-
ence on Product-Focused Software Process Improvement, pp. 385–401,
Springer, 2020.

[4] J. P. Castellanos Ardila, B. Gallina, and G. Governatori, “Compliance-
aware engineering process plans: The case of space software engineer-
ing processes,” Artificial intelligence and law, 2021.

[5] M. M. Rahim and S. O. Idowu, Social Audit Regulation: Development,
Challenges and Opportunities. Springer, 2015.

[6] N. Leveson, “Safety : Why, What, and How,” ACM Computing Surveys
(CSUR), vol. 18, no. 2, pp. 125–163, 1986.

[7] G. Cugola and C. Ghezzi, “Software processes: a retrospective and a
path to the future,” Software Process: Improvement and Practice, vol. 4,
no. 3, pp. 101–123, 1998.

[8] P. L. Tarr and A. L. Wolf, “Introduction to “engineering of software: The
continuing contributions of leon j. osterweil”,” Engineering of Software,
Springer, Berlin, Heidelberg.

337

338 BIBLIOGRAPHY

[9] R. Kneuper, Software Processes and Life Cycle Models. An Introduc-
tion to Modelling, Using and Managing Agile, Plan-Driven and Hybrid
Processes. Springer, Cham, 2018. ISBN 978-3-319-98845-0.

[10] International Organization for Standardization/International Elec-
trotechnical Commission, “ISO/IEC/IEEE 12207– Systems and software
engineering — Software life cycle processes,” 2017.

[11] International Organization for Standardization, “ISO/IEC 15504 – In-
formation technology - Process assessment,” June 2013.

[12] International Organization for Standardization - Technical Committe:
ISO/IEC JTC 1/SC 7, “ISO/IEC 330XX – Information technology - Pro-
cess assessment – Concepts and Terminology.,” 2015.

[13] R. Kemp, “Regulating the safety of autonomous vehicles using artificial
intelligence,” Communications Law, vol. 24, no. 1, pp. 24–33, 2019.

[14] M. Biro, “Open services for software process compliance engineering,”
in International Conference on Current Trends in Theory and Practice
of Informatics, pp. 1–6, Springer, 2014.

[15] I. F. Alexander, “A taxonomy of stakeholders: Human roles in system
development,” International Journal of Technology and Human Interac-
tion (IJTHI), vol. 1, no. 1, pp. 23–59, 2005.

[16] S. Kerrigan and K. H. Law, “Logic-based regulation compliance-
assistance,” Proceedings of the 9th international conference on Artificial
intelligence and law, pp. 126–135, 2003.

[17] B. Kitchenham and S. Charters, “Guidelines for performing Systematic
Literature reviews in Software Engineering,” Tech. Rep. 4ve, 2007.

[18] B. Kitchenham and P. Brereton, “A systematic review of systematic re-
view process research in software engineering,” Information and soft-
ware technology, vol. 55, no. 12, pp. 2049–2075, 2013.

[19] N. Ramasubbu, A. Bharadwaj, and G. K. Tayi, “Software process diver-
sity: Conceptualization, measurement, and analysis of impact on project
performance,” MIS Quarterly, vol. 39, no. 4, pp. 787–808, 2015.

BIBLIOGRAPHY 339

[20] G. Regan, M. Biro, F. Mc Caffery, K. Mc Daid, and D. Flood, “A
traceability process assessment model for the medical device domain,”
European Conference on Software Process Improvement, pp. 206–216,
Springer, 2014.

[21] J. P. Castellanos Ardila and B. Gallina, “Separation of concerns in pro-
cess compliance checking: Divide-and-conquer,” European Conference
on Software Process Improvement, pp. 135–147, Springer, 2020.

[22] J. L. De La Vara, A. Ruiz, K. Attwood, H. Espinoza, R. K. Panesar-
Walawege, Á. López, I. Del Rı́o, and T. Kelly, “Model-based spec-
ification of safety compliance needs for critical systems: A holistic
generic metamodel,” Information and Software Technology, vol. 72,
no. C, pp. 16–30, 2016.

[23] P. Diebold and S. Scherr, “Software process models vs descriptions:
What do practitioners use and need?,” Journal of Software: Evolution
and Process, vol. 29, no. 11, pp. 1–13, 2017.

[24] S. Vilkomir, J. Bowen, and A. Ghose, “Formalization and assessment
of regulatory requirements for safety-critical software,” Innovations in
Systems and Software Engineering, vol. 2, no. 3-4, pp. 165–178, 2006.

[25] J. Munoz-Gama, “Conformance Checking and its Challenges,” Confor-
mance Checking and Diagnosis in Process Mining Comparing Observed
and Modeled Processes, pp. 11–18, 2016.

[26] L. Lúcio, S. Rahman, C.-H. Cheng, and A. Mavin, “Just formal enough?
automated analysis of ears requirements,” NASA Formal Methods Sym-
posium, pp. 427–434, Springer, 2017.

[27] D. Brown, H. Delseny, K. Hayhurst, and V. Wiels, “Guidance for using
formal methods in a certification context,” ERTS2 2010, Embedded Real
Time Software & Systems, 2010.

[28] H. Harju, J. Lahtinen, J. Ranta, R. Nevalainen, and M. Johansson, “Soft-
ware safety standards for the basis of certification in the nuclear do-
main,” 7th International Conference on the Quality of Information and
Communications Technology, pp. 54–62, 2010.

340 BIBLIOGRAPHY

[29] N. Jääskinen, “Better regulation programs: Some critical remarks,” in
Changing Forms of Legal and Non-Legal Institutions and New Chal-
lenges for the Legislator., pp. 29–33, International Conference on Leg-
islative Studies in Helsinki, 2008.

[30] N. Dinesh, A. Joshi, I. Lee, and O. Sokolsky, “Checking Traces for Reg-
ulatory Conformance,” Proceedings of the International Workshop on
Runtime Verification, pp. 86–103, 2008.

[31] L. J. Osterweil, “Formalisms to support the definition of processes,”
Journal of Computer Science and Technology, vol. 24, no. 2, pp. 198–
211, 2009.

[32] D. L. Parnas and P. C. Clements, “A rational design process: How
and why to fake it,” IEEE transactions on software engineering, no. 2,
pp. 251–257, 1986.

[33] J. Lonchamp, “A structured conceptual and terminological framework
for software process engineering,” 2nd International Conference on the
Software Process-Continuous Software Process Improvement, pp. 41–
53, IEEE, 1993.

[34] A. Fuggetta, “Software process: a roadmap,” Conference on the Future
of Software Engineering, (Orlando, Florida), pp. 25–34, 2000.

[35] W. Scacchi, “Business processes can be software too: some initial
lessons learned,” 3rd International Conference on the Software Process.
Applying the Software Process, pp. 183–184, IEEE Computer Society,
1994.

[36] P. Henderson, “Software processes are business processes too,” 3rd In-
ternational Conference on the Software Process. Applying the Software
Process, pp. 181–182, IEEE, 1994.

[37] L. Osterweil, “Software processes are software too,” in 9th international
conference on Software Engineering (ICSE 1987), IEE, 1987.

[38] P. G. Armour, The Laws of Software Process: A New Model for the
Production and Management of Software. CRC Press, 2003.

[39] B. Fitzgerald, K. J. Stol, R. O’Sullivan, and D. O’Brien, “Scaling Agile
Methods to Regulated Environments: An Industry Case Study,” 35th

BIBLIOGRAPHY 341

International Conference on Software Engineering (ICSE), pp. 863–872,
IEEE Computer Society, 2013.

[40] M. Kuhrmann, P. Diebold, J. Münch, P. Tell, V. Garousi, M. Felderer,
K. Trektere, F. McCaffery, O. Linssen, E. Hanser, et al., “Hybrid
software and system development in practice: waterfall, scrum, and
beyond,” International Conference on Software and System Process,
pp. 30–39, 2017.

[41] M. Kuhrmann, P. Diebold, J. Munch, P. Tell, K. Trektere, F. McCaf-
fery, V. Garousi, M. Felderer, O. Linssen, E. Hanser, et al., “Hybrid
software development approaches in practice: a european perspective,”
IEEE Software, vol. 36, no. 4, pp. 20–31, 2018.

[42] L. A. Clarke, L. J. Osterweil, and G. S. Avrunin, “Supporting human-
intensive systems,” FSE/SDP workshop on Future of software engineer-
ing research, pp. 87–92, 2010.

[43] J. L. De La Vara, B. Marı́n, C. Ayora, and G. Giachetti, “An empirical
evaluation of the use of models to improve the understanding of safety
compliance needs,” Information and Software Technology, vol. 126,
p. 106351, 2020.

[44] S. Cha, R. N. Taylor, and K. Kang, Handbook of software engineering.
Springer, 2019.

[45] N. G. Leveson, “The use of safety cases in certification and regulation,”
tech. rep., Massachusetts Institute of Technology. Engineering Systems
Division, 2011.

[46] J. M. Fernandes and F. J. Duarte, “A reference framework for process-
oriented software development organizations,” Software & Systems
Modeling, vol. 4, no. 1, pp. 94–105, 2005.

[47] M. Kuhrmann, C. Konopka, P. Nellemann, P. Diebold, and J. Münch,
“Software process improvement: where is the evidence?: initial findings
from a systematic mapping study,” International Conference on Soft-
ware and System Process, pp. 107–116, 2015.

[48] Software Engineering Institute - Carnegie Mellon University, “CMMI
for Development Version 1.3– Capability Maturity Model Integration,”
2011.

342 BIBLIOGRAPHY

[49] M. Biro, “Open services for software process compliance engineering,”
SOFSEM 2014: Theory and Practice of Computer Science, (Cham),
pp. 1–6, Springer International Publishing, 2014.

[50] C. G. von Wangenheim, J. C. R. Hauck, C. F. Salviano, and A. von
Wangenheim, “Systematic literature review of software process capa-
bility/maturity models,” International Conference on Software Process
Improvement and Capabity Determination (SPICE), Pisa, Italy, 2010.

[51] Automotive SIG, “Automotive SPICE V. 3.0 – Process Assessment/Ref-
erence Model,” 2015.

[52] P. Clarke, M. LepmetsF, F. McCaffery, A. Finnegan, A. Dorling, and
D. Flood, “Mdevspice - a comprehensive solution for manufacturers
and assessors of safety-critical medical device software,” Software Pro-
cess Improvement and Capability Determination, (Cham), pp. 274–278,
Springer International Publishing, 2014.

[53] F. Stallinger, B. Henderson-Sellers, and J. Torgersson, “The oospice as-
sessment component: Customizing,” Business Component-Based Soft-
ware Engineering, vol. 705, p. 119, 2012.

[54] ISO/IEC JTC 1/SC 7, “ISO/IEC TS 33053 – Information technology
— Process assessment — Process Reference Model (PRM) for quality
management,” 2019.

[55] A. A. Khan, J. Keung, M. Niazi, S. Hussain, and A. Ahmad, “Systematic
literature review and empirical investigation of barriers to process im-
provement in global software development: Client–vendor perspective,”
Information and Software Technology, vol. 87, pp. 180–205, 2017.

[56] International Organization for Standardization, “ISO 9000– Quality
Management Systems-Fundamentals and Vocabulary,” 2005.

[57] International Organization for Standardization, “ISO 9001-3– Quality
Management and Quality Assurance Standards - Part 3,” 1991.

[58] Internation Organization for Standardization, “ISO/IEC 90003:2004-
Software engineering – Guidelines for the application of ISO 9001:2000
to computer software,” 2004.

BIBLIOGRAPHY 343

[59] International Organization for Standardization, “ISO/IEC TR 29110-5-
1-2 – Software engineering – Lifecycle profiles for Very Small Entities
(VSEs): Management and engineering guide: Generic profile group:
Basic profile,” 2011.

[60] A. C. Tonini, M. D. Mesquita Spinola, and F. J. Barbin Laurindo, “Six
sigma and software development process: Dmaic improvements,” vol. 6
of Technology Management for the Global Future - PICMET 2006 Con-
ference, pp. 2815–2823, 2006.

[61] V. Icheku, Understanding ethics and ethical decision-making. Xlibris
Corporation, 2011.

[62] P. B. Ladkin, “Duty of care and engineering functional-safety stan-
dards,” Digital Evidence & Elec. Signature L. Rev., vol. 16, p. 51, 2019.

[63] N. Carroll and I. Richardson, “Software-as-a-medical device: demysti-
fying connected health regulations,” Journal of Systems and Information
Technology, 2016.

[64] International Electrotechnical Commission, “IEC 61508– Functional
safety of electric/electronic/programmable electronic safety-related sys-
tems,” 1998.

[65] A. Schwartz, “Statutory interpretation, capture, and tort law: The regula-
tory compliance defense,” American Law and Economics Review, vol. 2,
no. 1, pp. 1–57, 2000.

[66] M. A. Cusumano, “Who is liable for bugs and security flaws in soft-
ware?,” Communications of the ACM, vol. 47, no. 3, pp. 25–27, 2004.

[67] S. Ingolfo, A. Siena, and J. Mylopoulos, “Establishing regulatory com-
pliance for software requirements,” International Conference on Con-
ceptual Modeling, pp. 47–61, 2011.

[68] International Organization for Standardization - Technical Committe:
ISO/TC 22/SC 32, “ISO 26262: Road Vehicles Functional Safety,”
2018.

[69] European Committee for Electrotechnical Standardization, “CENELEC
- EN 50128. Railway Applications-Communication, Signaling and Pro-
cessing Systems Software for Railway Control and Protection Systems,”
2011.

344 BIBLIOGRAPHY

[70] European Committee for Electrotechnical Standardization, “CENELEC
- EN 50126. Railway Applications - The Specification and Demonstra-
tion of Reliability, Availability, Maintainability and Safety (RAMS),”
2017.

[71] European Organisation for Civil Aviation Equipment & European Or-
ganisation for Civil Aviation Equipment, “RTCA/DO-178C – Soft-
ware Considerations in Airborne Systems and Equipment Certification,”
2011.

[72] Internation Organization for Standardization - Technical Committee
210, “IEC 62304- Medical device software — Software life cycle pro-
cesses,” 2006.

[73] SAE International, “SAE J3061 – Cybersecurity Guidebook for Cyber-
Physical Vehicle Systems,” 2016.

[74] European Space Agency, “ECSS-E-ST-40C – Space Engineering Soft-
ware,” 2009.

[75] Internation Organization for Standardization, “ISO 14971:2019 – Appli-
cation of risk management to medical devices,” Dec. 2019.

[76] International Organization for Standardization - Technical Committe:
ISO/IEC joint technical committee JTC 1, “ISO/IEC 27000– Informa-
tion Technology,” 2018.

[77] The European Parlament and the Council of the European Union, “ EU
DPD – European Data Protection Directive,” 1995.

[78] European Parliament and Council of the European Union, “General
Data Protection Regulation (GDPR),” 2016.

[79] Goverment of Canada, “PIPEDA – Personal Information Protection and
Electronic Documents Act,” 2000.

[80] K. Bauer, O. Hinz, W. van der Aalst, and C. Weinhardt, “Expl(ai)n it to
me–explainable ai and information systems research,” Business & Infor-
mation Systems Engineering, 2021.

[81] V. Vakkuri, M. Jantunen, E. Halme, K.-K. Kemell, A. Nguyen-Duc,
T. Mikkonen, and P. Abrahamsson, “Time for ai (ethics) maturity model
is now,” arXiv preprint arXiv:2101.12701, 2021.

BIBLIOGRAPHY 345

[82] H. M. Cooper, “Organizing knowledge syntheses: A taxonomy of liter-
ature reviews,” Knowledge in society, vol. 1, no. 1, pp. 104–126, 1988.

[83] D. Denyer, D. Tranfield, and J. E. Van Aken, “Developing design propo-
sitions through research synthesis,” Organization studies, vol. 29, no. 3,
pp. 393–413, 2008.

[84] H. Zhang, M. Ali-Babar, and P. Tell, “Identifying relevant studies in
software engineering,” Information and Software Technology, vol. 53,
no. 6, pp. 625–637, 2011.

[85] C. Wohlin, “Guidelines for snowballing in systematic literature studies
and a replication in software engineering,” 18th International Confer-
ence on Evaluation and Assessment in Software Engineering, pp. 1–10,
2014.

[86] B. Kitchenham, O. P. Brereton, D. Budgen, M. Turner, J. Bailey, and
S. Linkman, “Systematic literature reviews in software engineering–
a systematic literature review,” Information and software technology,
vol. 51, no. 1, pp. 7–15, 2009.

[87] D. Welzel, H. Walter, and W. Schmidt, “Tailoring and conformance test-
ing of software processes: the ProcePT approach,” Software Engineer-
ing Standards Symposium, pp. 41–49, 1995.

[88] W. Emmerich, A. Finkelstein, C. Montangero, S. Antonelli, S. Ar-
mitage, and R. Stevens, “Managing Standards Compliance,” IEEE
Transactions on Software Engineering, vol. 25, no. 6, pp. 836–851,
1999.

[89] L. Cheung, P. Chung, and R. Dawson, “Managing process compliance,”
Information management: Support systems and multimedia technology,
pp. 48–62, 2003.

[90] P. Chung, L. Cheung, and C. Machin, “Compliance Flow-Managing the
Compliance of Dynamic and Complex Processes,” Knowledge-Based
Systems, vol. 21, no. 4, pp. 332–354, 2008.

[91] X. He, J. Guo, Y. Wang, and Y. Guo, “An automatic compliance check-
ing approach for software processes,” Asia-Pacific Software Engineer-
ing Conference, pp. 467–474, 2009.

346 BIBLIOGRAPHY

[92] H. Jost, A. Hahn, S. Häusler, S. Köhler, J. Gačnik, F. Köster, and
K. Lemmer, “Supporting qualification: Safety standard compliant pro-
cess planning and monitoring,” Symposium on Product Compliance En-
gineering, pp. 1–6, 2010.

[93] D. Rodriguez, E. Garcia, S. Sanchez, and C. R.-S. Nuzzi, “Defining
software process model constraints with rules using owl and swrl,” In-
ternational Journal of Software Engineering and Knowledge Engineer-
ing, vol. 20, no. 04, pp. 533–548, 2010.

[94] R. Panesar-Walawege, M. Sabetzadeh, and L. Briand, “A Model-Driven
Engineering Approach to Support the Verification of Compliance to
Safety Standards,” in International Symposium on Software Reliability
Engineering, pp. 30–39, 2011.

[95] W. Maccaull and F. Rabbi, “NOVA Workflow : A Workflow Manage-
ment Tool Targeting Health Services Delivery,” in International Sympo-
sium on Foundations of Health Informatics Engineering and Systems,
pp. 75–92, 2012.

[96] W. Hassan and L. Logrippo, “Towards a process for legally compliant
software,” in 2013 6th International Workshop on Requirements Engi-
neering and Law (RELAW), pp. 44–52, IEEE, 2013.

[97] R. Panesar-Walawege, M. Sabetzadeh, and L. Briand, “Supporting the
verification of compliance to safety standards via model-driven engi-
neering: Approach, tool-support and empirical validation,” Information
and Software Technology, vol. 55, no. 5, pp. 836–864, 2013.

[98] D.-E. Khelladi, R. Bendraou, S. Baarir, Y. Laurent, and M.-P. Gervais,
“A framework to formally verify conformance of a software process to a
software method,” in Proceedings of the 30th Annual ACM Symposium
on Applied Computing, pp. 1518–1525, 2015.

[99] R. Hewett, P. Kijsanayothin, S. Bak, and M. Galbrei, “Cybersecurity
policy verification with declarative programming,” Applied Intelligence,
vol. 45, no. 1, pp. 83–95, 2016.

[100] E. Kabaale, L. Wen, Z. Wang, and T. Rout, “Representing Software Pro-
cess in Description Logics: An Ontology Approach for Software Pro-
cess Reasoning and Verification,” Software Process Improvement and
Capability Determination Conference, pp. 362–376, Springer, 2016.

BIBLIOGRAPHY 347

[101] P. Arcaini, S. Bonfanti, A. Gargantini, and E. Riccobene, “How to As-
sure Correctness and Safety of Medical Software : The Hemodialysis
Machine Case Study,” in International Conference on Abstract State
Machines, pp. 344–359, 2016.

[102] S. Bala, C. Cabanillas, A. Haselböck, G. Havur, J. Mendling,
A. Polleres, S. Sperl, and S. Steyskal, “A Framework for Safety-Critical
Process Management in Engineering Projects,” vol. 1 of International
Symposium on Data-Driven Process Discovery and Analysis, pp. 1–27,
2017.

[103] A. M. Valle, E. A. Santos, and E. R. Loures, “Applying process mining
techniques in software process appraisals,” Information and software
technology, vol. 87, pp. 19–31, 2017.

[104] F. R. Golra, F. Dagnat, R. Bendraou, and A. Beugnard, “Continuous
process compliance using model driven engineering,” in International
Conference on Model and Data Engineering, pp. 42–56, Springer, 2017.

[105] J. Castellanos Ardila and B. Gallina, “Towards increased efficiency and
confidence in process compliance,” vol. 748 of The 24th EuroAsiaSPI
Conference, 2017.

[106] S. Ranise and H. Siswantoro, “Automated Legal Compliance Checking
by Security Policy Analysis,” in International Conference on Computer
Safety, Reliability, and Security, pp. 361–372, 2017.

[107] D. Proença and J. Borbinha, “A Formalization of the ISO/IEC 15504:
Enabling Automatic Inference of Capability Levels,” in International
Conference on Software Process Improvement and Capability Determi-
nation, pp. 197–210, 2017.

[108] P. Guarda and S. Ranise, “Security Analysis and Legal Compliance
Checking for the Design of Privacy-friendly Information Systems,” in
Symposium on Access Control Models and Technologies, pp. 247–254,
2017.

[109] J. P. Castellanos Ardila and B. Gallina, “Towards Efficiently Checking
Compliance Against Automotive Security and Safety Standards,” 7th
IEEE International Workshop on Software Certification, 2017.

348 BIBLIOGRAPHY

[110] E. Kabaale, L. Wen, Z. Wang, and T. Rout, “An Axiom Based Meta-
model for Software Process Formalisation : An Ontology Approach,”
vol. 2 of International Conference on Software Process Improvement
and Capability Determination, pp. 226–240, 2017.

[111] J. P. Castellanos Ardila, B. Gallina, and F. Ul Muram, “Enabling
Compliance Checking against Safety Standards from SPEM 2.0 Pro-
cess Models,” Euromicro Conference on Software Engineering and Ad-
vanced Applications, pp. 45 – 49, 2018.

[112] E. Kabaale, L. Wen, Z. Wang, and T. Rout, “Ensuring Conformance to
Process Standards Through Formal Verification,” vol. 2 of International
Conference on Software Process Improvement and Capability Determi-
nation, pp. 248–262, Springer International Publishing, 2018.

[113] P. Arcaini, S. Bonfanti, A. Gargantini, and A. Mashkoor, “Integrat-
ing formal methods into medical software development: The ASM ap-
proach,” Science of Computer Programming, vol. 158, pp. 148–167,
2018.

[114] J. P. Castellanos Ardila, B. Gallina, and F. UL Muram, “Transforming
SPEM 2.0-compatible Process Models into Models Checkable for Com-
pliance,” 18th International SPICE Conference, 2018.

[115] B. Gallina, F. Ul Muram, and J. Castellanos Ardila, “Compliance of
Agilized (Software) Development Processes with Safety Standards: a
Vision,” 4th International Workshop on Agile Development of Safety-
Critical Software, pp. 1–6, 2018.

[116] D. Proença and J. Borbinha, “Formalizing ISO/IEC 15504-5 and SEI
CMMI v1.3 – Enabling automatic inference of maturity and capability
levels,” Computer Standards and Interfaces, 2018.

[117] P. Bonatti, “Fast Compliance Checking in an OWL2 Fragment,” in 27th
International Joint Conferences on Artificial Intelligence Organization,
pp. 1746–1752, 2018.

[118] A. Bombarda, S. Bonfanti, and A. Gargantini, “Developing medical de-
vices from abstract state machines to embedded systems: A smart pill
box case study,” in International Conference on Objects, Components,
Models and Patterns, pp. 89–103, Springer, 2019.

BIBLIOGRAPHY 349

[119] J. Castellanos Ardila, B. Gallina, and F. Ul Muram, “Facilitating Auto-
mated Compliance Checking of Processes in the Safety-critical Con-
text,” Electronic Communications of the EASST, vol. 078, pp. 1–20,
2019.

[120] E. Kabaale, L. Wen, Z. Wang, and T. Rout, “Formalising Process
Assessment and Capability Determination : An Ontology Approach,”
vol. 2 of European Conference on Software Process Improvement,
pp. 594–605, Springer International Publishing, 2019.

[121] D. Torre, G. Soltana, M. Sabetzadeh, L. Briand, Y. Auffinger, and
P. Goes, “Using Models to Enable Compliance Checking against the
GDPR : An Experience Report,” 22nd International Conference on
Model Driven Engineering Languages and Systems, pp. 1–11, 2019.

[122] S. Daoudagh and E. Marchetti, “A life cycle for authorization systems
development in the gdpr perspective,” ITASEC, pp. 128–140, 2020.

[123] R. Bramberger, H. Martin, B. Gallina, and C. Schmittner, “Co-
engineering of safety and security life cycles for engineering of auto-
motive systems,” ACM SIGAda Ada Letters, vol. 39, no. 2, pp. 41–48,
2020.

[124] J. P. Castellanos Ardila and B. Gallina, “Reusing (safety-oriented) com-
pliance artifacts while recertifying,” 9th International Conference on
Model-Driven Engineering and Software Development - Volume 1:
MODELSWARD,, pp. 53–64, INSTICC, SciTePress, 2021.

[125] C. Mayr-Dorn, M. Vierhauser, S. Bichler, F. Keplinger, J. Cleland-
Huang, A. Egyed, and T. Mehofer, “Supporting quality assurance with
automated process-centric quality constraints checking,” IEEE/ACM
43rd International Conference on Software Engineering (ICSE), 2021.

[126] A. Colmerauer, “An Introduction to Prolog III,” Computational Logic,
pp. 37–79, 1990.

[127] Bundesamt für Wehrtechnik und Beschaffung (BWB), “General Di-
rective 250: Software Development Standard for the German Federal
Armed Forces, V-model, Software Lifecycle Process Model,” 1992.

[128] D. Cohen, “AP5 Reference Manual. https://ap5.com/doc/ap5-
man.html,” 2019.

350 BIBLIOGRAPHY

[129] J. Vanhatalo, H. Völzer, and J. Koehler, “The refined process structure
tree,” Data & Knowledge Engineering, vol. 68, no. 9, pp. 793–818,
2009.

[130] M. Javed and B. Gallina, “Safety-oriented Process Line Engineering via
Seamless Integration between EPF Composer and BVR Tool,” 22nd In-
ternational Systems and Software Product Line Conference, pp. 23–28,
2018.

[131] J. Marsden, A. Windisch, R. Mayo, J. Grossi, J. Villermin, L. Fabre,
and C. Aventini, “Ed-12c/do-178c vs. agile manifesto: A solution to
agile development of certifiable avionics,” in 9th European Congress
Embedded Real Time Software and Systems (ERTS), 2018.

[132] T. Stålhane, T. Myklebust, and G. Hanssen, “The application of safe
scrum to IEC 61508 certifiable software,” in 11th International Prob-
abilistic Safety Assessment and Management Conference and the An-
nual European Safety and Reliability Conference, vol. 8, pp. 6052–6061,
2012.

[133] C. Barrett and C. Tinelli, “Satisfiability Modulo Theories,” Handbook of
Model Checking, pp. 305–335, 2018.

[134] E. Börger and R. Stark, Abstract State Machines: A Method for High-
Level System Design and Analysis. New York, Inc.: Springer-Verlag,
2003.

[135] F. Rabbi, H. Wang, and W. MacCaull, “Compensable workflow nets,”
International Conference on Formal Engineering Methods, pp. 122–137,
Springer, 2010.

[136] V. Lifschitz, “What is answer set programming,” vol. 8 of AAAI,
pp. 1594–7, 2008.

[137] A. Pnueli, “The temporal logic of programs,” 18th Annual Symposium
on Foundations of Computer Science, pp. 46–57, IEEE, 1977.

[138] G. Governatori, “Representing business contracts in RuleML,” Interna-
tional Journal of Cooperative Information Systems, vol. 14, no. 02n03,
pp. 181–216, 2005.

[139] A. Siena, J. Mylopoulos, A. Perini, and A. Susi, “From Laws to Re-
quirements,” in Requirements Engineering and Law, pp. 6–10, 2008.

BIBLIOGRAPHY 351

[140] The European Parliament and the Council of the European Union,
“GDPR – General Data Protection Regulation,” 2016.

[141] C. Carlan, B. Gallina, and L. Soima, “Safety case maintenance: A sys-
tematic literature review,” in 40th International Conference on Com-
puter Safety, Reliability and Security, 2021.

[142] F. u. Muram, H. Tran, and U. Zdun, “Systematic review of soft-
ware behavioral model consistency checking,” ACM Computing Surveys
(CSUR), vol. 50, no. 2, pp. 1–39, 2017.

[143] J. Becker, P. Delfmann, M. Eggert, and S. Schwittay, “Generalizabil-
ity and Applicability of Model- Based Business Process Compliance-
Checking Approaches: A State-of-the-Art Analysis and Research
Roadmap,” Business Research, vol. 5, no. 2, pp. 221–247, 2012.

[144] L. Ly, F. Maggi, M. Montali, S. Rinderle-Ma, and W. Van Der Aalst,
“Compliance monitoring in business processes: Functionalities, appli-
cation, and tool-support,” Information Systems, vol. 54, pp. 209–234,
2015.

[145] M. Hashmi and G. Governatori, “A methodological evaluation of busi-
ness process compliance management frameworks,” Proceedings of the
Asia-Pacific Conference on Business Process Management, pp. 106–
115, 2013.

[146] M. Hashmi, G. Governatori, H. Lam, and M. Wynn, “Are we done with
business process compliance: state of the art and challenges ahead,”
Knowledge and Information Systems, vol. 57, no. 1, pp. 79–133, 2018.

[147] M. e. Kharbili, A. K. A. d. Medeiros, S. Stein, and W. M. van der Aalst,
“Business process compliance checking: Current state and future chal-
lenges,” Modellierung betrieblicher Informationssysteme (MobIS 2008),
2008.

[148] G. Boella, L. Humphreys, R. Muthuri, P. Rossi, and L. Van Der Torre,
“A critical analysis of legal requirements engineering from the perspec-
tive of legal practice,” 7th International Workshop on Requirements En-
gineering and Law, pp. 14–21, 2014.

[149] O. Akhigbe, D. Amyot, and G. Richards, “A systematic literature map-
ping of goal and non-goal modelling methods for legal and regulatory

compliance,” Requirements Engineering, vol. 24, no. 4, pp. 459–481,
2019.

[150] M. Yan, X. Xia, X. Zhang, L. Xu, D. Yang, and S. Li, “Software quality
assessment model: A systematic mapping study,” Science China Infor-
mation Sciences, vol. 62, no. 9, pp. 1–18, 2019.

[151] L. Garcı́a-Borgoñon, M. A. Barcelona, J. A. Garcı́a-Garcı́a, M. Alba,
and M. J. Escalona, “Software process modeling languages: A system-
atic literature review,” Information and Software Technology, vol. 56,
no. 2, pp. 103–116, 2014.

[152] S. Nair, J. De La Vara, M. Sabetzadeh, and L. Briand, “An extended
systematic literature review on provision of evidence for safety certifica-
tion,” Information and Software Technology, vol. 56, no. 7, pp. 689–717,
2014.

