
Decreasing Maintenance Costs by Introducing

Formal Analysis of Real-Time Behavior in

Industrial Settings

Anders Wall, Johan Andersson, and Christer Norström

Department of Computer Science and Engineering, Mälardalen University,
Box 883, Väster̊as, Sweden

{anders.wall,johan.x.andersson,christer.norstrom}@mdh.se

Abstract. A common problem with long-lived large industrial software
systems such as telecom and industrial automation systems is the increas-
ing complexity and the lack of formal models enabling efficient analyses
of critical properties. New features are added or changed during the sys-
tem life cycle and it becomes harder and harder to predict the impact of
maintenance operations such as adding new features or fixing bugs.
We present a framework for introducing analyzability in a late phase of
the system’s life cycle. The framework is based on the general idea of
introducing a probabilistic formal model that is analyzable with respect
to the system properties in focus, timing and usage of logical resources.
The analyses are based on simulations. Traditional analysis method falls
short due to a too limited modelling language or problems to scale up to
real industrial systems.
This method can be used for predicting the impact caused by e.g. adding
a new feature or other changes to the system. This enables the system
developers to identify potential problems with their design at an early
stage and thus decreasing the maintenance cost.
The framework primarily targets large industrial real-time systems, but
it is applicable on a wide range of software system where complexity is
an issue. This paper presents the general ideas of the framework, how to
construct, validate, and use this type of models, and how the industry
can benefit from this. The paper also present a set of tools developed to
support the framework and our experiences from deploying parts of the
framework at a company.

1 Introduction

Large industrial software systems evolve as new features are being added. This
is necessary for the companies in order to be competitive. However, this evolu-
tion typically causes the software architecture to degrade, leading to increased
maintenance costs. Such systems, e.g. process control systems, industrial robot
control systems, automotive systems and telecommunication systems, have typi-
cally been in operation for quite many years and have evolved considerably since
its first release and are today maintained by a staff where most of the people



were not involved in the initial design of the system. These systems typically
lack a formal model enabling analysis of different system properties.

The architectural degradation is a result of maintenance operations (e.g. new
features and bug fixes) performed in a less than optimal manner due to e.g. time
pressure, wrong competence, or insufficient documentation. As a result of these
maintenance operations, not only the size but also the complexity of the system
increases as new dependencies are introduced and architectural guidelines are
broken. Eventually it becomes hard to predict the impact a certain maintenance
operation will have on the system’s behaviour. This low system understandability
forces the developers to rely on extensive testing, which is time consuming, costly
and usually misses a lot of bugs. The software systems we are studying have real-
time requirements, which mean that it is of vital importance that the system
is analyzable with respect to timing related properties, such as response times.
However, bugs related to concurrency and timing are hard to find by testing [1],
as they are hard to reproduce.

By introducing analyzability with respect to properties of interest, the un-
derstandability of the system can be increased. If it is possible to predict the
impact of a maintenance operation, it can help system architects making the
right design decisions. This leads to a decreased maintenance cost and the life
cycle of the system is lengthened.

The work presented in this paper focuses on a model-based approach for
increasing the understandability and analysability with respect to timing and
utilization of logical resources. A model is constructed, describing the timing
and behaviour of the system, based on the source code, documentation and sta-
tistical information measured on the system. This model can be used for impact

analysis, i.e. predicting the impact a change will have on the runtime behaviour
of the system. We refer to the general method as the ART Framework. This
implementation of the framework is based on the ART-ML modelling language
[2]. An ART-ML model is intended to be analysed using simulation. An ini-
tial case-study in presented in [3], where we used the modelling language and a
simulator is used in order to analyse timing properties of an industrial system.
The case-study showed the feasiblity of using the modelling language for this
purpuse, but also showed that analysing the simulation output required tool
support. We therefore proposed the Probabilistic Property Language (PPL) in
[4]. In this paper we present tools supporting PPL.

Existing work related to simulation based analysis of timing behaviour is
given in [5, 6]. Analytical methods for probabilistic analysis of timing behaviour
is given in [7]. However, none of them fulfils our requirements completely, i.e.
a rich and probabilistic modelling language and analyses scalable to large and
complex systems.

Our contribution in this paper is a set of tools developed to support the
ART Framework, how the tools can be used for impact analysis and regression
analysis, and how ART-ML models can be validated. We also present how a
company can benefit from using the ART Framework and our experiences from



introducing parts of the framework at ABB Robotics in Sweden, one of the
world’s largest producers of industrial robots and robot control systems.

The paper is organized as follows: In Section 2 the design rationales behind
the framework is discussed and in Section 3, we give a brief presentation of the
ART Framework, including the modelling language ART-ML and the property
specification language PPL. Further, in Section 3.4, we present how the frame-
work can be used, how industry can benefit from it and our experiences from
introducing this at ABB Robotics. Section 5 describe the tools we have developed
to support this framework. Finally, the paper is concluded in Section 7.

2 Design rationales

There exist many analytical methods for modelling and analysis of a real-time
system’s temporal behaviour [8, 9]. However, the analytical models and analyses
found in conventional scheduling theories are often too simple and therefore a
real system cannot always be modelled and analyzed using such methods. The
models used in those methods are not expressive enough in order to capture
the behaviour of large and complex systems. There is no possibility of specify-
ing dependencies between tasks and the models only allow worst-case execution
times to be specified. Moreover, the analyses only cover deadline properties, i.e.
whether or not every deadline is violated. In many real systems the temporal
requirements are not only expressed in terms of deadlines, for instance there can
be requirements on message queues such as starvation properties. Such require-
ments can not easily be verified with the analytical methods.

On the other extreme we find model-checking methods with rich modelling
languages such as timed automata [10, 11]. Timed automata allow modelling of
temporal behaviour as well as functional behaviour. By using synchronization
channels we can model dependencies between tasks in the system. However,
model-checking does not scale properly to larger systems due to the state-space
explosion which makes such an approach useless in a realistic setting.

Simulation is better from that point of view. Using simulation, rich modelling
languages can be used to construct very realistic models, using e.g. realistic
distributions of execution times. A disadvantage of the simulation approach is
that we can not be confident in finding the worst possible temporal behaviour
through simulation, since the state-space is only partially explored. Therefore,
designers of hard real-time systems and safety-critical systems should not rely on
simulation for analysis of critical properties if safe analysis methods are possible,
such as model checking or scheduability analysis. However, when analysing a
complex, existing system, that has not been designed for analysability, simulation
is often the only alternative.

The design rationale behind the modelling language ART-ML is to provide
a rich, probabilistic modelling language suitable for simulation. It should be
possible to describe the behaviour of tasks, how the tasks synchronize and com-
municate and describe explicit execution times using probability distributions.
We could have used an existing notation, for instance timed automata, and



extended it with execution time distributions and probabilities. However, we
wanted a modelling language similar to the implementation, in order to facili-
tate the understanding of the model. We believe that software developers that
are not used to formal methods are more likely to use this kind of models.

When designing the ART Framework we basically had one major trade-off
to consider: being able to predict something at the cost of precision. We have
chosen to use simulations as a tool for analysis. Even though a simulation might
miss some situations, it may still point out potential problems and thus guiding
the developers making the right decisions, while analytical methods are often
not even possible to use in practice.

3 The ART Framework

The general idea in the ART Framework is the use of a model for analyzing
the impact on timing and utilization of logical resources caused by maintenance
operations, e.g. changing an existing feature or adding a new feature. It is also
possible to use the tools in this framework to analyse measurements of the system
directly, without using a model.

The core of the ART Framework is a general process (Figure 1) describing
how model is constructed and used. Since the process is general it to be in-
stantiated using any appropriate modelling and analysis method. The process
is intended to be integrated in the life-cycle process at software development
organizations.

We will start with a brief overview of the process and describe its steps in
more details later on in this paper. The process consists of five steps:

1. Construct (or update) a structural model of the system, based on system
documentation and the source code.

2. Populate the structural model with data measured on a running system. This
data is typically probabilities of different behaviours and execution times.

3. Validate the constructed model by comparing predictions made using the
model with observations of the real system. If the model does not capture
the system’s behaviour sufficiently, the first two steps are repeated in order to
construct a better model and the new model is validated. This process should
be repeated until a valid model is achieved. Model validation is discussed in
Section 4.

4. Use the model for prototyping a change to the system, for instance if a new
feature is to be added, the model is used for prototyping the change.

5. Analyse the updated model in order to identify any negative effects on the
overall system behaviour, such as deadline misses or starvation on critical
message queues.

If the impact of the change on the system is unacceptable, the change should
be re-designed. On the other hand, if the results from the analysis are satisfactory
the change can be implemented in the real system. The final step when changing
the system is to update the model so that it reflects the implementation in the



Step 1:
Create or update

the structural model

Step 2:
Populate the model 

using data measured 
on the real system

Step 3:
Check if model is valid

A valid model exists, ready to be used

Step 6:
Go ahead with
implementation

Step 5:
Analyze impact of 

alteration
Decide if acceptable.

Step 4:
Add prototype of new 
feature/alteration on 

the model

A new feature is to be added

Impact not acceptable

Re-design the 
feature/alteration

Impact acceptable

Model is valid

Fig. 1. The process of introducing and using a model for impact analysis

real system by profiling the system in order to update the estimated execution
times, steps 1-3 in Figure 1.

3.1 Constructing the model

To construct a structural model of a system is to document the architecture and
behaviour of the system in a notation suitable for analysis, at an appropriate
level of abstraction. The resulting model describes what tasks there are, their
attributes such as scheduling priority and their behaviour with respect to timing
and interaction with other tasks using e.g. message queues and semaphores. To
construct this model requires not only studies of the system documentation and
code, but also to involve system experts throughout the complete process. This
is important in order to select what parts of the system to focus the modelling
effort on, since it is likely that some parts of the system are more critical than
others and thus more interesting to model. Other parts of the system can be
described in a less detailed manner.

Iterative reviewing of the model is necessary in order to avoid misunderstand-
ings, due to e.g. different backgrounds and views of the system. If the system
is large, this step can be tedious, several man months is realistic if the model
engineer is unfamiliar to the system, according to our experiences. An experi-
enced system architect can probably construct this structural model faster, but
since such experts often are very busy, it is likely that the model developer is
a less experienced engineer. In order to simplify the construction of the model,
reverse-engineering tools such as Rigi [12, 13] or Understand for C++ [14] can
be used. These tools parse the code and visualize the relations between classes
and files.



In step 2 of the process described in Figure 1, measurements are made in order
to populate the model with execution times distributions and probabilities. The
runtime behaviour of the system is recorded with respect to task timing, i.e. when
tasks start and finish, how the tasks pre-empt each other, their execution times
and the usage of logical resources such as the number of messages in message
queues. This requires the introduction of software probes.

The output from the profiling is a stream of time-stamped events, where each
event represents the execution of a probe. Typically, the execution of a probe
corresponds to a task-switch or an operation on a logical resource (e.g. message
queue).

Since the type of systems we consider are quite large and are changed often,
we assume that the probes can remain in the system. This way we avoid the
probe effect, since the probes becomes a part of the system, and also facilitates
future measurements. The added probes will have a small effect on the system
performance, less than one per cent, as the amount of probing necessary for
our purposes is quite reasonable. The operating system used, VxWorks, allows
user code to executed on every context switch, so by adding a single probe it is
possible to record all context-switches and also the resulting scheduling status
of the tasks. To record IPC communication requires four probes per task of
intererst. This way we can record what message codes that are sent, i.e. what
commands, but not the arguments. Recording the usage of a logical resource
such as a message queue requires two probes per logical resource of interest. To
register operations on semaphores could be done by adding three probes in the
OS isolation layer.

Before the model is used to make predictions, it should be validated, i.e.
compared with the real system in order make sure that the model described the
system behavior correctlty and in an apporpriate level of abstraction. In Section
4 we present a method for this.

3.2 The Modelling Language ART-ML

The ART-ML language describes a system a set of tasks and mechanisms for
synchronization, where each task has an attributes part and a behaviour part.

The behaviour part of a task is described in an imperative language, C ex-
tended with ART-ML primitives, and describes the temporal behaviour and, to
some extent, the functional behaviour. The attributes are the scheduling priority
and how the task is activated, one-shot, periodically or sporadically. The be-
haviour is described in C, extended with ART-ML primitives and routines, e.g.
for sending and receiving messages to message queues, semaphore operations.
The execution time for a block of code is modelled with a special statement for
consuming time, execute. The execute-statement is used for modelling sections
of code from the real system by their execution time only. The execution time
is specified as a discrete probability distribution.

An example of a task in ART-ML is:



TASK SENSOR

TASK_TYPE: PERIODIC

PERIOD: 2000

PRIORITY: 1

BEHAVIOR:

execute ((30, 200), (30, 250), (40, 300));

sendMessage(CTRLDATAQ, MSG_A, NO_WAIT);

chance(20){

execute ((60, 200), (40, 230));

sendMessage(CTRLCMDQ, MSG_B, FOREVER);

}

END

The chance statement in ART-ML provides a probabilistic selections, i.e. a
non-deterministic selection with probability. Chance express the probability of a
particular selection. A chance statement can be used for mimicking behaviours
observed in measurements of the real system, where the exact cause is not in-
cluded in the model.

A message queue is a FIFO buffer storing messages. The message queue
declaration contains the name and the size of the message buffer. A message is
sent to a message queue using the sendMessage and a message is read from a
message queue using the recvMessage.

An ART-ML semaphore provides mutual exclusion between tasks and con-
forms to the concept of the classic binary semaphores proposed by Djikstra. A
semaphore is locked using the sem wait and released using sem post routine.

3.3 Analysis of system properties using PPL

The analysis method decides what properties that can be analyzed and also
affects the confidence assessment of the result. The main focus of the ART
Framework is to support analysis of probabilistic system properties related to
timing and usage of logical resources. For this purpose we have developed a
property language called Probabilistic Property Language (PPL). This language
was first proposed in [4]. We have recently implemented a tool for evaluating PPL
queries, described in Section 5.3.

The analyses of system properties in our implementation of the ART Frame-
work are based on trace of the dynamic behaviour, either from a real system
implementation or from a simulation based on a ART-ML model. Based on the
recording we evaluate the system properties specified in PPL.

System properties related to deadlines is a requirement on response times,
either related to a particular task or features involving several tasks, i.e. end-to-

end response time. A deadline property can be formulated as hard, or as a soft
deadline. An example of a formulation of a soft deadline is that at least 90 % of
the response times of the instances of a task are less than a specified deadline.
In PPL, this property is formulated as follows:

P(TaskX.response < 1200) >= 0.9



Another property of interest could be the separation in time between in-
stances of a task. The following PPL query checks if two consecutive instances
of a task can be separated in time with less than 1000 time units.

P(TaskX(i+1).start - TaskX(i).end >= 1000) = 1

A PPL query may contain an unbounded variable. If replacing a constant
value with an unbounded variable, the PPL tool calculates for what values the
query result is true. The following PPL query finds the tightest deadline D that
TaskX meets with a probability of at least 0.9.

P(TaskX.response < D) = 0.9

Resource usage properties are those addressing limited logical resources of a
system such as fixed size message buffers and dynamic memory allocation. When
analyzing such properties, the typical concern is to avoid ”running out” of the
critical resource. An example is the invariant that a message queue is always
non-empty. In PPL, this is formulated as follows:

P(*.probe21 > 0) = 1

In this query above, it is assumed that the number of messages in the criti-
cal message queue is monitored using probe 21. The asterisk specifies that the
condition should hold at all times. If a task name is specified instead, it means
that the condition should hold when instances of that task starts.

3.4 Uses of the ART Framework

The ART Framework was initially developed for impact analysis, to predict the
impact on timing and resource usage caused by a change. However, we discovered
another use of the ART Framework, regression analysis, to analyse the current
implementation and compare with previous versions. In this section these uses
are described.

Impact Analysis If a model has been constructed as described in Section 3.1
it can be used for predicting the impact an maintenance operation will have on
the runtime behaviour of the system. The change is prototyped in the model and
simulations of the updated model are made, generating execution traces. These
are analyzed (as described in Section 3.3) in order to evaluate important system
properties. This analysis can, in an early phase, indicate if there are potential
problems associated with the change that are related to timing and usage of
logical resources.

If this is the case, the designers should change their design in order to con-
sume fewer resources. Since the change is not implemented yet, this means in
practice to impose a resource budget on the implementer, specifying for instance
a maximum allowed execution time.



If the impact of the change is acceptable, and is implemented, the model
should be updated in order to reflect the implementation. This corresponds to
step one trough three in the process shown in Figure 1, i.e. updating the model
structure, profiling and validation.

The main problem with impact analysis is how to validate models. This is
however not a problem unique for our approach, any formal analysis based on
a model has this problem, if the model has been re-engineered from an existing
system. In this paper we have presented a method for model validation (see
Section 4), and in future work we intend to investigate other complementary
methods.

Regression Analysis Another use of the framework is regression analysis,
i.e. to compare properties of the current release of the system with respect to
certain invariants and with previous versions of the system. This is very close to
regression testing, but instead of testing the functional behaviour, timing and
resource usage are analyzed. It is also possible to compare the analysis result
with earlier versions of the system. In this way, it is possible to study how
the evolution of the system has affected the properties of interest. It might be
possible to identify trends in system properties that could cause problems in
future releases. If a model has been developed, the impact analysis can be used
in order to predict how an extrapolation of a trend will affect the system.

In order to use regression analysis in a development organization, there is
an initial effort of specifying the properties of interest, formulate them as PPL
queries, define comparison rules and instrument the system with the appropriate
software probes. The setup of the system should be specified in a document,
in order to allow measurements to be reproduced. It is possible that different
properties require different system setups, in that case multiple measurements
of the system is necessary.

After this initial work, performing a regression analysis is straightforward and
can be performed as one of many test-cases by a system tester, without deeper
system understanding or programming knowledge. Measurements are made ac-
cording to the documents initially produced. This results in execution traces,
which are analyzed and compared with earlier releases, using a highly automated
tool. Based on the comparison rules, the tool decides if there are alarming differ-
ences and informs the user of the outcome. A tool supporting this is presented
in Section 5.3.

We are working on this approach in tight cooperation with ABB Robotics
where we intend to introduce regression analysis. We have already integrated our
recording functionality in their robot control system, which allows them to use
our tools. The overall reaction among key persons at the company has been very
positive. Before the method can be fully utilized at ABB Robotics, the relevant
properties and the system setups used for the measurements must be specified.



4 Validation of Models

Validating a model is basically the activity of comparing the predictions from
the model with observations of the real system. However, a direct comparison is
not feasible, since the model is a probabilistic abstraction of the system. Instead,
we compare the model and the system based on a set of properties, comparison

properties. The method presented in Section 3.3 is used in order to evaluate
these comparison properties, with respect to both the predictions based on the
model and measurements of the real runtime system. If the predicted values
of the comparison properties match the observations from the real system, the
model is observable property equivalent to the real system. A typical comparison
property can be the average response time of a task. It is affected by many
factors and characterizes the temporal behaviour of the system.

Selecting the correct comparison properties is important in order to get a
valid comparison. Moreover, as many system properties as practically possible
should be included in the set of comparison properties in order to get high
confidence in the comparison. The selected system properties should not only be
relevant, but also be of different types in order to compare a variety of aspects
of a model. Other types of comparison properties could be related to e.g. the
number of messages in message queues (min, max, average) or pattern in the
task scheduling (inter-arrival times, precedence, pre-emption).

Even if the model gives accurate predictions, there is another issue to con-
sider, the model robustness. If the model is not robust, the model might become
invalid as the system evolves, even if the corresponding updates are made on the
model. Typically, a too abstract model tends to be non-robust, since it might
not model dependencies between tasks that allow the impact of a change to
propagate. Hence, it may require adding more details to the model in order to
keep it valid and consistent with the implementation. If a model is robust, it
implies that the relevant behaviours and semantic relations are indeed captured
by the model at an appropriate level of abstraction.

4.1 Model Robustness

The robustness of a model can be analyzed using a sensitivity analysis. The ba-
sic idea is to test different probable alterations and verify that they affect the
behaviour predicted by the model in the same way as they affect the observed
behaviour of the system. Performing a sensitivity analysis is typically done after
major changes of the model, in the validation step of the process. The process
of performing sensitivity analysis is depicted in Figure 2. First a set of change
scenarios has to be elicitated. The change scenarios should be representative
for the probable changes that the system may undergo. Typical examples of
change scenarios are to change the execution times of a task, to introduce new
types of messages on already existing communication channels or change the
rate sending messages. The change scenario elicitation requires, just as develop-
ing scenarios for architectural analysis, experienced engineers that can perform
educated guesses about relevant and probable changes.



Comparison
M1 – S1

System S3

Comparison
M2 - S2

System S2

Comparison
M3 - S3

System S1

+

Change
Scenario 1

Change
Scenario 2

Change
Scenario 3

System S0

+

+

Model M3

Model M2

Model M1

+

Model M0 +

+

Fig. 2. The Sensitivity Analysis

The next step is to construct a set of system variants S = (S1, ..., Sn) and
a set of corresponding models M = (M1, ..., Mn). The system variants in S are
versions of the original system, S0, where n different changes have been made
corresponding to the n different change scenarios. The model variants in M are
constructed in a similar way, by introducing the corresponding changes in the
initial model M0. Note that these changes only need to reflect the impact on
the temporal behaviour and resource usage caused by the change scenarios, they
do not have to be complete functional implementations. Each model variant is
then compared with its corresponding system variant by investigating if they
are equivalent as described in Section 3.3. If all variants are obserable property
equivalent, including the original model and system, we say that the model is
robust.

5 Tools in the ART Framework

This section presents three tools within the ART Framework, supporting the
process described in Section 3.

– An ART-ML simulator, used to produce execution traces based on an ART-
ML model.

– The Tracealyzer, a tool for visualizing the contents of execution traces and
also allows PPL queries to be evaluated with respect to execution trace.

– The Property Evaluation Tool, PET, a tool for analysis and comparison of
execution traces.



5.1 The ART-ML Simulator

The ART-ML Simulator has a graphical front-end with an integrated model
editor, making it easy to use. This is not a simulator in the traditional sense, i.e.
a general simulator application reading models as input. Instead, when the user
clicks on the simulate-button, it translates the ART-ML model into ANSI C,
compiles it using a standard C-compiler and links it with an ART-ML library.
This results in an executable file, containing a synthesis of the ART-ML model.
The synthesized model is executed for the specified duration, which produces an
execution trace.

5.2 The Tracealyzer tool

The Tracealyzer has two main features, visualization of an execution trace and a
PPL terminal, a front-end for the PPL analysis tool. The execution trace is pre-
sented graphically. Tasks and generic probes are presented in parallel, allowing
correlation between the task scheduling and the task behaviour. It is possible to
navigate in the trace by using the mouse and also to zoom in and out and to
search for task instances or probe observations with different characteristics. If
the user clicks on a task instance, information about it is presented, such as the
execution time and response time of the instance and the average execution and
response times for the task. If more task statistics are desired, it is possible to
generate a report, containing a lot of information about all tasks.

Fig. 3. The Tracealyzer Tool

It is also possible to save a list of the task instances to a text file. This way, the
data can be imported into e.g. Excel and visualized in other ways than the ones



provided by the Tracealyzer. Apart from visualizing the data in an execution
trace, the Tracealyzer also contains a PPL terminal. It is basically a front-end
for the PPL analysis engine. The terminal contains two fields, one input where
PPL queries can be typed and one output where the result is presented.

5.3 Property Evaluation Tool

The Property Evaluation Tool, PET, is a tool for analysing and comparing
execution traces with respect to different system properties, formulated in PPL
(described in Section 3.3). The operation of PET is rather simple. The user
selects a file containing a predefined set of system properties, formulated as PPL
queries. The file can also contain a comparison rule for each property, specifying
what results that is acceptable and what is not. The user then only has to select
the execution trace(s) to analyse.

If desired, two execution traces can be specified, but it is also possible to
analyse a single trace. Specifying a second execution trace allows the tool to do
an automatic comparison of the results using the comparison rules. When the
user clicks on the analyse-button the properties are evaluated with respect to the
trace(s) and the results are presented. If two traces are specified, the properties
with comparison rules are compared automatically. Any properties where the
rule has been broken are pointed out.

The application has three uses: impact analysis, regression analysis and model
validation. In the impact analysis case, execution traces from simulation of two
models are compared. One of the models is considered ”valid” and used as ref-
erence. The other model contains a prototype of a new feature or other changes.
By comparing these traces, the impact of the new feature can be analyzed.

When used for model validation, a trace from simulation is compared with a
trace measured from the real system. This way, it is possible to gain confidence
in the model validity.

In the regression analysis case, no data from simulation of models are used.
Instead, execution traces measured from different versions of the system are
analyzed and compared, in order to identify trends and alarming differences,
which might be a result of undesired behavior in the system.

6 Benefits for Industry

If impact analysis can be performed when designing a new feature or other vast
changes in the system, bad design decisions can be avoided. The designer of the
feature can try alternative designs on a model and predict their impact on the
system. This is likely to decrease maintenance costs since problems with timing
and resource usage can be identified before implementation. Consequently, the
time for identifying errors related to timing in late testing phases is reduced
which decreases the cost for maintenance. This also leads to better system reli-
ability.



Regression analysis and trend identification can point out undesired be-
haviour in the system that reflects in the system properties of interest, for in-
stance execution times. It can also be used for performance analysis, by pointing
out bottlenecks in the system. Information about trends in system properties
can be used to plan ahead for hardware upgrades in the product which also is
an important maintenance activity. If a trend in a property has been identified,
impact analysis can be used to predict how the system will behave if a trend
continues, for instance if a certain execution time keeps increasing as the system
evolves.

The graphical visualization of execution traces, provided by the Tracealyzer
tool is, according to our experiences, an effective way of increasing the under-
standability of the system. When the tool was introduced to developers and ar-
chitects at ABB Robotics, showing them execution traces from the latest version
of their system, we got immediate reactions on details and suspicious behaviours
in the execution trace. We provided them with a new view of the run-time be-
haviour, increasing the understandability and facilitating debugging activities.

The results we have gotten so far from using the ART Framework at ABB
Robotics indicates that maintenance costs can be reduced, as it enables impact
analysis, regression analysis and significantly increases the system understand-
ability. Even though the deployment of the framework is in an initial phase it has
already pinpointed anomalies in the timing behaviour that were not previously
known. Based on discussions with system architects, we believe that by deploy-
ing regression analysis we can reduce maintenance costs at ABB Robotics. As
mentioned, we are working on introducing regression analysis in the company
and later, when this has been used for a while, we plan to investigate the actual
impact on maintenance costs.

We believe that introducing impact analysis could further reduce mainte-
nance costs, as it helps system designers taking the right design decisions. Fur-
ther research is however necessary in order to validate this approach.

7 Conclusions

In this paper we have briefly presented the ART Framework; the general ideas,
the languages ART-ML and PPL. We have presented the three tools developed
for this framework and an approach for validating ART-ML models. We have
presented how the framework can be used for impact analysis, regression analysis
and how the industry can benefit from these uses of the ART Framework. We
have also presented our experiences from deploying parts of the framework in
a development organisation, which strengthen our hypothesis that maintenance
costs can be cut by introducing the methods proposed in the ART Framework.

We believe that this approach is very useful for its purpose, analysis of prop-
erties related to timing and resource utilization, targeting complex real- time
systems. However, there is work remaining before we can validate this approach.

One problem with the approach described in this paper is the error-prone
work of constructing the model. Instead of manually constructing the whole



structural model, tools could be developed that mechanically generate at least
parts of it, based on either a static analysis of the code, dynamic analysis of the
runtime behaviour or a hybrid approach. This is part of our future work.

Further we intend to perform two case studies on the two uses of the ART
Framework. In the first case study, we plan to further investigate the benefits
and problems associated with deployment of regression analysis. We also intend
to do a continuation of the case study on impact analysis, presented in [2], using
a more advanced model and the tools presented in this paper. Later on, when
this framework has been in use for some time, we plan to investigate how the
maintenace cost at ABB Robotics have changed, by analysing the company’s
fault report database.

References

1. Schutz, W.: On the testability of distributed real-time systems. In: Proceedings of
the 10th Tenth Symposium on Reliable Distributed Systems, (IEEE) 52–61

2. Wall, A., Andersson, J., Neander, J., Norström, C., Lembke, M.: Introducing
Temporal Analyzability Late in the Lifecycle of Complex Real-Time Systems. In:
Proceedings International Conferance on Real-Time Computing Systems and Ap-
plications. (2003)

3. Wall, A.: Architectural Modeling and Analysis of Complex Real-Time Systems.
PhD thesis, Mälardalen University (2003)

4. Wall, A., Andersson, J., Norström, C.: Probabilistic Simulation-based Analysis of
Complex Real-Time Systems. In: Proceedings 6th IEEE International Symposium
on Object-oriented Real-time distributed Computing. (2003)

5. Audsly, N.C., Burns, A., Richardson, M.F., Wellings, A.J.: Stress: A simulator for
hard real-time systems. Software-Practice and Experience 24 (1994) 543–564

6. Storch, M., Liu, J.S.: DRTSS: a simulation framework for complex real-time sys-
tems. In: Proceedings of the 2nd IEEE Real-Time Technology and Applications
Symposium (RTAS ’96), Dept. of Comput. Sci., Illinois Univ., Urbana, IL, USA
(1996)

7. Manolache, S., Eles, P., Peng, Z.: Memory and Time-efficient Schedulability Anal-
ysis of Task Sets with Stochastic Execution Time. In: Proceedings of the 13nd
Euromicro Conference on Real-Time Systems, Department of Computer and In-
formation Science, Linköping University, Sweden (2001)

8. Audsley, N.C., Burns, A., Davis, R.I., Tindell, K.W., , Wellings, A.J.: Fixed priority
pre-emptive scheduling: An historical perspective. Real-Time Systems Journal 8

(1995) 173–198
9. Liu, C.L., Layland, J.W.: Scheduling Algorithms for Multiprogramming in hard-

real-time environment. Journal of the Association for Computing Machinery 20

(1973) 46–61
10. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science

126 (1994)
11. Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a Nutshell. Springer International

Journal of Software Tools for Technology Transfer 1 (1997)
12. Muller, H., Klashinsky, K.: Rigi: a system for programming-in-the-large. In: Pro-

ceedings of the 10th International Conference on Software Engineering. (1988)
13. Rigi Group: (Rigi Group Home Page) http://www.rigi.csc.uvic.ca/index.html.
14. Scientific Toolworks: (Scientific Toolworks Home Page) http://www.scitools.com/.


