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Abstract

Safety-critical software systems have traditionally been found in the aerospace-, nuclear- and
medical domains. As technology advances and software complexity increases, such systems
can be found in more and more applications, e.g. self driving cars. These systems need to meet
exceptionally strict standards in terms of dependability. Proving compliance is a challenge for
the industry. The regulatory bodies often require a certain amount of testing to be performed but
do not require evidence of a given failure rate (which for software is hard to deal with compared
to hardware). This Licentiate thesis discusses how to quantify test results and analyses what
conclusions can be drawn from a given test effort, in terms of remaining faults in the software.

Sammanfattning

Säkerhetskritiska system är system som kan vålla svåra konsekvenser (förlust av liv,
miljöförstöring, mm) om de inte fungerar som de ska. Dylika system, som måste vara ex-
tremt tillförlitliga, har funnits i årtionden i flyg-, kärnkrafts- och medicinska tillämpningar. Den
snabba tekniska utvecklingen leder till att alltmer komplexa mjukvarusystem, ofta säkerhetskri-
tiska, nu återfinns i alltfler applikationer, t.ex. i självkörande fordon. Sådana system måste
uppfylla extremt högt ställda krav på tillförlitlighet. För industrin är det problematiskt att visa
att man uppfyller kraven. Myndigheterna kräver vanligtvis att en viss mängd testning ska ut-
föras innan systemen driftsätts, men kräver inte bevis på att en given tillförlitlighet ska visas
(vilket anses extra svårt för mjukvarusystem). I denna licentiatavhandling diskuteras hur testre-
sultat kan användas för att statistiskt kvantifiera mängden kvarvarande fel i ett system. Syftet är
att bättre kunna förutse tillförlitligheten innan driftsättning.
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1. Introduction

Software based applications have been changing our daily lives. We wake
up every morning to our a digital clocks; we stream the morning news on
our smart TVs; our cappuccino is made by automatic coffee machines; our
movements and steps are monitored by our smart watches; on our drive to
work we monitor the traffic situation on our smart phones; on the way we
listen to music provided by streaming services; we use our smart phones to
call and communicate with friends, colleagues, customers, and to learn what
has happened in the world. Software is so integrated in today’s world that we
hardly reflect on it.

This development has made our lives more convenient and has relieved hu-
mans from doing many routine tasks as well as dangerous activities like min-
ing or tasks requiring exposure to radiation or chemicals. The capabilities of
software is developing rapidly with the emergence of areas like AI (Artificial
Intelligence), ML (Machine Learning) and IoT (Internet of Things). However,
this means that more errors and bugs will come along. More and more com-
plex software poses a challenge for software testing. For simpler software,
e.g., a music streaming service, sufficient testing can be to make sure that the
product can perform a certain task, like select a chosen tune. If there are a few
cases where this does not work, it can obviously be annoying but never dan-
gerous. The scope of the testing of such systems have to be extensive enough
to make sure that the system lives up to the user/customer expectations of the
product, i.e., it cannot have too many annoying bugs.

Bear in mind that testing software is different from testing activities in gen-
eral, in that it is binary by nature. There are so called "cliff effects" which
means that one input can be safe and an almost identical input can trigger a
failure. In many cases there is no warning or indication that the system is
close to fail. This peculiarity of software underlines the importance of good
test coverage when high reliability is required.

For safety-critical systems, especially those that undergo a certification pro-
cess, the scope of the testing is a different matter. Safety-critical systems are
often defined as systems that can cause serious consequences if they fail, e.g.,
loss of lives, environmental damage, financial loss. Such systems need to be
extremely reliable and fulfill stringent requirements, e.g., the aviation standard
DO-178C [28] requires a failure rate of less than 10

-9
faults per flight hour, for

systems that can cause a catastrophic failure. This is equivalent to a failure
rate of one failure per approximately 114,000 years.
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The problem is that there is no way of proving that such requirements are
fulfilled. Even if testing is accelerated it is virtually impossible to show com-
pliance [10, 22]. However, since this is known and accepted by the certi-
fying bodies, an alternative method has been adopted. Instead of providing
proof that the such requirements have been fulfilled, it is sufficient to provide
proof that best practices have been followed throughout the development pro-
cess. What constitutes best practices is domain dependent and described by
accepted standards, e.g., ISO 26262 [18] for the automotive domain, DO-178C
[28] for the aerospace domain and, IEC 61513 [17] for the nuclear domain.

A closer look at the history of the traditional safety-critical domains (aerospace,
nuclear, medical) shows that this approach has worked out fairly well, i.e.,
very few accidents can be attributed to faulty software over the years. There
are some well known exceptions where software has been a main cause of
substantial damage, e.g., Therac-25 medical radiation equipment [20], Ariane
5 rocket crash [23], Knight Capital $440 million bug [1] . Additionally, there
are a number of classified occurrences in the military domain.

However, the above mentioned "mature" domains have had the chance to
gradually build experience of developing safety-critical software. Procedures
and practices have, for decades, had time to evolve with the capability of tech-
nology and the number of systems in use have been limited. Meaning that,
there are relatively few nuclear power plants, medical radiation equipment,
and a typical fleet of aircraft numbers in the hundreds. But, the current tech-
nology development means that this situation is now changing rapidly. The
exposure of safety-critical systems will increase dramatically when such sys-
tems are implemented in new domains, e.g., self-driving cars. Bertolino, et
al., show in [7] that a critical system in a typical fleet of self-driving cars
statistically have a mere 5% probability of surviving its lifetime without en-
countering a catastrophic failure, somewhere in the fleet. They compare this
with a critical system in an aircraft fleet which has a 99.64% probability of
surviving. These numbers assume that the actual failure rate fulfills a require-
ment of 10

-9
failures per execution. If this is not the case, i.e., the actual failure

rate is higher, the situation can be orders of magnitude worse and a significant
increase of software caused catastrophic failures can be expected. Increased
exposure in combination with the difficulties of predicting the failure rate prior
to deployment, is problematic.

The point here is that the expected massive exposure of safety-critical sys-
tems in the near future will undrape any weaknesses in the current way of
certifying such systems. The current gap between the failure rate that can
be claimed by following a certification process and what can be statistically
proven, does not inspire confidence. McDermid calls this the "prediction gap"
[24]. In order to move on and enable the technological development in this
area it is important to develop and improve methodologies that allow confi-
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dence building and assessment of software failure rate prior to release, i.e.,
reduce the "prediction gap".

This Licentiate thesis is addressing this objective by improving the inter-
pretation of test results. The main idea is to view test results not just as being
a fault removal activity to fulfill a process but also as a statistical sample of the
software, from which conclusions of remaining faults can be drawn.

Throughout this thesis, the following definitions are used:
• Model: The model defined in Paper I.
• Fault: It is a condition that causes the software to fail to perform its

required function. (IEEE)
• Failure: It is the inability of a system or component to perform required

function according to its specification. (IEEE)
• Failure density: The risk of a random input triggering a failure. From

Paper II.

1.1 Problem Statement
The capabilities of software is developing rapidly with the emergence of areas
like AI (Artificial Intelligence), ML (Machine Learning) and IoT (Internet
of Things). This development can relieve humans from doing many routine
tasks but also dangerous activities like mining or tasks requiring exposure to
radiation or chemicals. There are many areas where there is a great potential
for improving safety by letting software do the job instead of humans. CFIT
constitutes around 6% of the aviation accidents [16]. CFIT is an acronym
for Controlled Flight Into Terrain, which is an in-flight collision with terrain,
water, or obstacle without indication of loss of control, i.e., the pilot flies the
aircraft into the terrain due to lack of situational awareness. Another example
from the automotive domain is driver error, which is the leading cause of road
accidents [2]. A higher degree of automation is seen as a possible solution to
such problems.

In the past such safety-critical systems have been found in a few domains
such as aerospace, nuclear and medical. These domains have over the years
acquired a certain level of maturity when it comes to development of safety-
critical systems. Standards, e.g., DO-178C [28] or IEC 61513 [17], have
evolved to give guidance on best practice.

However, there has been the lingering problem of actually proving the target
failure rates prior to deploying the systems. McDermid [24] talks about a
"prediction gap", between what is claimed and what is proven.

The size and complexity of today’s systems rules out exhaustive testing and
leaves a doubt whenever a new system is deployed.

For safety-critical software there is a lack of methods and strategies to deal
with the issue of predicting the failure rate or even, with confidence, determine
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the status in terms of safety. The drive towards autonomous vehicles, advanced
IoT, artificial intelligence etc, means that this problem is further aggravated.

Introduction of formal methods (mathematical techniques) have shown promise
but have until now struggled to gain a wider industry acceptance. Random
testing is another way to improve the knowledge of software based systems
and to achieve a significantly improved test coverage. However, in order to
maximize the benefit of increased testing it is important to quantify what the
increase means, in terms of improved quality/safety.

This Licentiate work addresses the problem of a lack of methods for inter-
pretation and quantification of test results.

1.2 Research Objectives
The scope of this work can be described as having the purpose of reducing the
so called "prediction gap"[24]. The work is divided in two parts, the Licentiate
and the PhD.

The first part, which comprise the Licentiate thesis, is theoretical and is
focused on quantifying the remaining faults in the software after tests. This
requires an improved modeling of fault detection vs test coverage.

The second part, is more practical and has the purpose of increasing the
test coverage, by applying massive structured random testing on commercial
industry software.

Scope of the work (Licentiate and Phd):
1. Quantification of test results

This part of the work analyzes the effect of test effort. The analysis
is focused on which conclusions that can be drawn from a given test
coverage, and test result.
In order to achieve industry acceptance, predictions need to be made
using parameters that are known from the test process.

2. Distributed Autonomous Random Testing
This is a practical implementation of Autonomous random testing. Fo-
cus is on defining a methodology for an autonomous testing that does
not require user supervision or interaction. This allows for utilization
of redundant computational resources connected to the network. By us-
ing the idle computational power it is possible to achieve a significant
increase in the pre-deployment test coverage.
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1.3 Thesis Objective (Licentiate)
The overall objective of this Licentiate thesis is to address the problem of
quantification of undetected faults in safety-critical software.

The objective is met in the following ways:
1. Define a model that describes random testing (of safety-critical software)

in terms of fault triggering.
2. Define a method for prediction of the remaining undetected faults.

In addition, the input to the equation must be parameters that are avail-
able in an industry setting.

3. Investigate limitations of the prediction.
Theoretical analysis

Simulated data is analysed. The initial results are presented in paper I
and a generalized form of the prediction equation is presented in paper
II.

Analysis of industry test data
In this work a tool is implemented to run long test suites. The results
from the test suites are used to calculate the detected and undetected
faults of the system. These results are checked for consistency.

1.3.1 Research questions
The research questions have been iteratively refined, in accordance with the
steps described in section 2 Research process.

The following research questions and their rationale have been defined:
M - Model related
Ind - Industry related
1. M-RQ1: How can the fault finding dynamics of random testing of safety-

critical systems be modeled?
A model is required for gaining understanding of the subject.

M-RQ1a: Which factors affect the amount of remaining faults?
Understanding what affects the final result is vital for improving the test-
ing process.

M-RQ1b: Can industry test result data be used for prediction of the
amount of remaining faults?
Industry acceptance can only be achieved if such data can be used.

2. Ind-RQ2: Can the required random (uniform) sampling strategy be im-
plemented in an industry setting?
The prediction equation requires sampling of the full input space, which
needs to be fully identified and analyzed.

3. Ind-RQ3: Can the amount of remaining faults be predicted when the test
coverage is limited?
It is important to investigate if it is possible to make predictions in those
cases were sampling of the full input space is unfeasible.
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4. Ind-RQ4: How can the concept of (failure density based) entropy (Shan-
non information) be implemented in an industry software testing pro-
cess?
Shannon information (entropy) is a measure of uncertainty that fits well
with determining the status of safety-critical software. Guidance for
industry implementation is needed.

1.3.2 Assumptions
The context of this work is testing complex safety-critical software. It deals
with quantification of the effect of a substantial amount of testing. The char-
acteristics of safety-critical software differ from software in general in that
it is more reliable, deterministic, and has less faults. These properties make
it possible to approach the problem of quantification from a new angle. The
rationale of the assumptions is discussed in more detail in Paper II.

For this work below assumptions are made.
The main assumption is:
∗ There is a relationship between the length of the test suite and remaining

undetected faults.
Below assumptions come from the nature of safety-critical software. They

may not be valid for software in general, but are consequences of the way this
software is developed and designed. The development standards, e.g., DO-
178C [28], require that all code must reachable and executed during testing,
i.e., unreachable code, dead code must be removed. To increase the safety
a number of practices, sometimes called defensive programming, are used to
prevent code from executing unintended or unpredictable operations, e.g., con-
straining the use of certain structures, avoiding unsafe numerical operations,
and not allowing dynamic memory allocation.

∗ The input- and state spaces of the system are reachable.
∗ All parameters are defined at runtime.
∗ The system has a deterministic behavior.

Other assumptions that are made in this work, should be seen as limita-
tions describing the focus of the performed simulations or have been derived
during the research process. The use of uniform sampling is a deliberate step
away from assuming a user profile, the purpose is to achieve a more robust
predictability. This eliminates questions about the accuracy and correctness
of the user profile, i.e., a small deviation between actual and assumed user
profile can lead to very different predictions. The minimum number of faults
should be seen as stating that this work is focused on more complex systems.
According to a study, funded by the UK MoD, the software of transport air-
craft C130J was found to have 1.4 safety-critical faults per 1,000 LOC (lines
of code) [13]. McDermid states [24] that 1 fault per 1,000 LOC can be seen as
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world class. This means that an assumption of at least 50 faults translates to a
code size of at least 35-50 kLOC, which excludes smaller systems.

∗ Uniform sampling of the input space is used.
∗ More than 1,000 test cases are generated.
∗ More than 50 faults are present in the system prior to testing.

15

world class. This means that an assumption of at least 50 faults translates to a
code size of at least 35-50 kLOC, which excludes smaller systems.

∗ Uniform sampling of the input space is used.
∗ More than 1,000 test cases are generated.
∗ More than 50 faults are present in the system prior to testing.

15

17



2. Research Process

This section presents an overview of the methods that we used to conduct the
research. We first describe the general process that we follow in our research,
after which we explain the selected methods used in this thesis. Our research
process is shown in Figure 2.1.

Figure 2.1. Overview of research sequence, -activities and -results.

This work started with an interest in investigating the relationship between
test coverage and remaining undetected faults in safety-critical software. The
lack of methods for proving that safety requirements are fulfilled or even esti-
mating the safety of the software, became evident at a point when our industry
team (in the aerospace domain) had been able to dramatically improve the test
coverage. This was achieved by adding a combination of random testing and
by preforming a large number of static test cases. The results were obvious to
everyone involved, bugs could now be found earlier in the development, pre-
viously undetected bugs surfaced, and the development process became more
predictable (on time). However, the overall improvement could not be quanti-
fied in terms of how much safer had the software become from the performed
improvements.

The relationship between test coverage and software safety has been hard
to describe, both for the industry and academia. This area of research has been
seen as a futile part of computer science. Quotes like "Program testing can be
a very effective way to show the presence of bugs, but is hopelessly inadequate
for showing their absence" (Edsger Dijkstra) [12], have long been the common
view of this problem.

Based on the assumption that there indeed is a describable relationship,
research goals were formulated. In order to address these goals and determine
state-of-the-art and state-of-practice, the critical analysis of literature method
[15] was used.
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The selected systematic approach was determined to be an analysis of the
problem, by the method of Mathematical modeling [15]. The created model
was explored using simulation. The results from the implemented approach
was reported in reports and research papers, see Papers I - III.

The results determined if new refined research goals should be defined or if
a new literature search should be performed and a revised proposed solution
should be defined. During this research process a number of research methods
were applied. Through the initial stages the method Proof of concepts [15]
was used to show the correctness and applicability of our proposed approach.

Finally we applied the method of Proof by demonstration [15], by devel-
oping a tool that provided the necessary input for analysis of the proposed
prediction equations.
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3. Thesis Contributions

The following are the main research contributions included in this thesis, col-
lected from the set of included papers.

The full PhD-thesis is investigating ways to reduce the so called "prediction
gap", between proven and claimed (expected) in-service failure rate for safety-
critical software. The research strategy is to significantly increase the number
of performed tests and to improve the interpretation of the test results. The
practical part of this work is implementation and optimization of autonomous
testing, a continuously running test program that defines, runs and evaluates
test cases. The result of this is a radically increased test coverage.

The theoretical part is investigating how to quantify this increase by de-
scribing the relationship between software quality and length of the test suite.
The Licentiate part of the PhD-thesis is focused on the theoretical part.

The following are the main research contributions included in this thesis,
collected from the set of included papers.

• Model of the effect of random testing (Paper I)
In this paper a theoretical 3D model is introduced. By studying the effect
of parameters such as length of test suites, and initial distribution of
faults, the model allows for a visual representation of the probability
of fault detection. This model answers the research question M-RQ1:
How can the fault finding dynamics of random testing of safety-critical
systems be modeled? and the theoretical work in all papers use this basic
model.

• Definition of prediction equation for long test suites (Paper II)
This work looks at the special characteristics of safety-critical software
that allows for quantification of the undetected faults remaining in the
system. The paper also describes why the use of uniform sampling is
preferred. The test results, in terms of number of tests, number of faults
triggered, and number of identified unique faults, are used as a statistical
sample of the software. The sample is used to predict the sum of the
undetected faults. The research questions that are answered and reported
in Paper II are; M-RQ1a: Which factors affect the amount of remaining
faults? and M-RQ1b: Can the data from an industry test result be used
for prediction of the amount of remaining faults?

• Definition and validation of the use of entropy as a test metric (Pa-
per III)
This work presents a generalization of the previous equation in Paper II.
Here the theoretical model is validated against industry data. It addresses
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the cases in the industry where an extensive sampling of the input space
is infeasible or too costly. The paper shows how to predict the failure
density with a significantly lower coverage of the input space. Further-
more, it discusses that for more complex software, a uniform sampling
strategy may not be sufficient in an industry setting. For example, if the
system processes a number of subsequent inputs like control loops, it
may be necessary to apply a so called Grey box approach, i.e. to an-
alyze and adapt the sampling strategy to the software structure. Two
research questions are answered in this part of Paper III; Ind-RQ2: Can
the required random (uniform) sampling strategy be implemented in an
industry setting? and Ind-RQ3: Can the amount of remaining faults be
predicted when the test coverage is limited?
Moreover, Paper III shows the use of entropy or Shannon information
as a test metric, which has been suggested by for example Clark [11].
Entropy can be seen as a measure of "ignorance" of the system. This
"ignorance" can be reduced by the test process. The paper shows how
this concept can be implemented in an industry setting. The paper also
discusses the dynamics and limitations of fault detection and shows how
important fault size distribution is to the end result, i.e., remaining faults.
This part of the paper answers the research question; Ind-RQ4: How can
the concept of (failure density based) entropy (Shannon information) be
implemented in an industry software testing process?

3.1 Model of safety-critical software testing
A model needs to describe the key aspects of what is being researched. In order
to be a tool for making predictions, a good model needs to be both accurate
and simple. However, even a good model will almost always have limitations.

The defined model, though only internally published [29], has been of great
importance to this work. Its purpose is to describe the effect of a randomly
generated test suite of a given length (number of test cases) on remaining un-
detected faults. The model has been vital for exploring and gaining an under-
standing of the dynamics of safety-critical software testing. It is important to
understand what is modeled, as it is not generic software testing. In this section
the following aspects will be discussed further, the uniform sampling strategy
and n-dimensionality, the concept of volumes representing risk of being trig-
gered (fault sizes), and factors affecting the remaining undetected faults.

Safety-critical software testing differs in some important aspects from soft-
ware testing in general. The input space of a safety-critical system is restricted
by validity and feasibility checks, i.e., out-of-range values are not accepted as
valid and therefore not considered by the system. Typically, such out-range-
values are handled by separate code, that also need to be tested. How to im-
plement and optimize the testing to cover also the error handling code will
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values are handled by separate code, that also need to be tested. How to im-
plement and optimize the testing to cover also the error handling code will
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be discussed further in later papers. The limitation of the input space allows
for sampling of, and drawing statistical conclusions related to this finite input
space, e.g., 0.5% of all input can be expected to trigger failures. Another as-
pect that is different is that unreachable code is not allowed. As a consequence
the full input space must cover all the code.

3.1.1 Random (uniform) sampling
The model assumes that random (uniform) sampling is used, i.e., all param-
eter values are equally probable. Moreover, as is required for safety-critical
software, all parameters are initialized and defined. Uniform sampling is a
different approach from the previously suggested, definition and focus on an
expected user profile, see section 5 Related work. This means that a large
number of unrealistic test cases, with unlikely parameter combinations are per-
formed. However, there is a point here, this uniform sampling and variation of
all parameters makes it possible to explore the full input space, regardless of
the number of parameters.

Example:
Let us assume a simulation scenario where a truck is driven on a highway

at high speed. An input vector is randomly generated and all parameters are
defined. The ignition switch has four positions (possible values); OFF, AC-
CESSORY, RUN, and START. It might seem strange that all four values are
equally likely to be selected, but that is what uniform sampling of the full
input space represents. It should be noted that the oracle (the evaluation of
the output/result) needs to take into consideration, the expected behavior. In
this case, loss of power may be a normal and expected behavior for the OFF
position, while considered a failure for the other possible positions.

3.1.2 Volumes and fault sizes
An important concept that the model needs to capture is that different faults
occur at different rates, i.e., they are more or less likely to be triggered by (in
this case) a random input.

Littlewood and Strigini state in [21]; A plausible conceptual model of the
software failure process is as follows. A program starts life with a finite num-
ber of faults, and these are encountered in a purely unpredictable fashion.
Different faults contribute differently to the overall unreliability of the pro-
gram: some are "larger" than others, i.e., they would show themselves (if not
removed) at a larger rate. Thus different faults have different rates of occur-
rence.

The concept of fault size is implemented in the model. Thus, a large fault
means that a relatively large partition of the input space represents a specific
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fault. This is equivalent to saying that it occurs at a relatively large rate during
random sampling of the input space.

Figure 3.1 shows the faults of the system modeled as subvolumes. The
(size of the) subvolume is proportional to the risk of being triggered by a
random input. This should be viewed as a number of parameters, typically
less than six [19], forming a volume within the full input space. Within this
subvolume, where all parameters are in a critical range, a fault is triggered.
The size or risk of being triggered is the only aspect that the model needs
to capture. The positions and shapes of the subvolumes are therefore of no
importance in the graphical representation. The model randomly generates
independent subvolumes. They can, just as in real software, overlap.

Figure 3.1. 3D model of safety-critical software testing. The N-dimensional input
space is projected onto a 3D volume. The black dots represent performed test cases.
The red boxes are triggered (detected) faults. All other boxes depict the (so far) unde-
tected faults.

The test cases are seen as black dots in Figure 2.1 and represent a randomly
generated fully defined input vector. Moreover, the resulting triggered or not
triggered fault, fits well with the typical safety-critical evaluation of anomalies.
The standards require a binary classification of all findings as being OK or
NOT OK. There is no grey zone.

Example:
Let us look at an Automatic Braking System for a car, that engages when

there is an imminent collision. Let us assume that the system should be trig-
gered at the situation shown in Figure 3.2. Let us now assume that the system
for some reason does not activate, due to a fault in the software. In this case
the car is moving at 50 km/h at a distance of 20 m to traffic ahead, which is
moving at 15 km/h. If the same fault is also triggered under slightly different
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circumstances, e.g., 49.2 km/h / 21m, and 16 km/h. We have a case where the
parameters span a volume, such as the ones in the model (Figure 2.1).

Figure 3.2. Three parameters triggering a fault in an Automatic Braking System of a
car

The model allows for changing some initial conditions, i.e., initial sum of
faults, number of faults, and which statistical distribution to use for genera-
tion. Which distribution to use is a complex matter. Some theoretical papers
like Arcuri’s [3] use Uniform distribution. This is of course a simplification
of the problem that means that all faults are equally probable. Many statisti-
cians argue that the default choice is a Gaussian distribution, which implies
that that faults are independent. However, there are some questions related to
this choice. Examples, what would be the mean fault size and another which
factors affect the mean, and how to handle the negative tail part of the distri-
bution. Other researchers, like Bishop [9], argue for a lognormal distribution.
However, they refer to non safety-critical software, e.g., IBM products, that
are developed very differently.

The software development process affects the fault distribution of the sys-
tem. A more stringent safety-critical process aims at reducing remaining
faults. It is not determined if such measures also reshapes the distribution and
to what degree, e.g., if you remove (more likely larger) values from a Gaussian
distribution it will at some point no longer fit as Gaussian. The more stringent
the development process, the more the introduction of faults is reduced. The
end result can be assumed to be a flatter distribution. The reduced introduction
of faults, is not only the effect of early testing on unit- , and module level, but
also stems from activities such as reviews and careful requirement manage-
ment.

3.1.3 Important factors
The process of defining the model lead to some interesting insights. The initial
prototype was a 2D model. However, in order to better fit the commonly used
space associations (input-, state-, and output space) a 3D model was defined. It
turns out that the dimensionality does not matter in this case. The simulation
results are the same for 1D, 2D, 3D and 4D (moving volumes), as the fault
sizes in all cases are proportional to the full length, area or volume.
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The conclusion here is that as long as all parameters are defined and uni-
formly varied during testing, the number of parameters (complexity) of the
system does not affect the result.

With the model in place the work with finding a prediction equation could
commence. During the simulations all internal model parameters are available,
e.g., all individual fault sizes. However, as such parameters are not available
in the industry they could not be used for prediction.

The conclusions that soon became obvious were that a few factors are the
most important for the final result (the remaining undetected faults).

1. The granularity of the faults.
Many smaller faults are harder to detect than fewer larger.

2. The initial fault volume.
The more faults that are in the system from the beginning the more faults
will remain undetected for a given test suite.

3. The length of the test suite (number of test points).
The longer the test suite the fewer the faults that remain undetected.

4. The distribution of volumes/fault sizes.
The remaining faults depend on how the fault sizes are initially dis-
tributed. If the initial distribution have many larger faults or if they
are more even in size affects the outcome.

3.1.4 Prediction equation
The prediction equation is defined in Paper II:

Number of tests = τ

Number of failures detected = ε

Number of identified unique faults = υ

Failure density = ρ

(sum of remaining undetected faults)
λ = υ2/(ε × τ)

ρ = λ × e−λ

(3.1)

The equation predicts the sum of the remaining faults, after a given test ef-
fort. The result is in this context called failure density, i.e., the risk of a random
input vector triggering a fault. The equation considers longer test suites (test
cases > 1k), which means that the exponential term is close to 1. However, de-
spite not contributing much to the prediction, the exponential term improves
the correlation slightly. The equation predicts well (correlation > 0.9) for a
number of fault size distributions, e.g., Normal, Lognormal, Uniform., Geo-
metric.

Correlation and accuracy are reduced for L-shaped distributions, were one
(or a few faults) are of a different order of magnitude than the others. In an
industry setting this would be manifested by one or a few faults being triggered
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much more often. The recommendation is to remove the occurrences of such
a fault(s) from the calculation.

The set of faults and their fault sizes (risks of being triggered) are distributed
in some form. As discussed above in section 3.1.2, the distribution can be as-
sumed to be affected by the software development process and the scope of the
testing, i.e., more rigorous process with more testing statistically finds more
of the larger faults. This means that the original distribution is flattened. If the
underlying distribution was (better) known, the prediction equation could be
improved using the Bayesian tools, described in[25].

Figure 3.3. R code. The code starts with a command to load the rethinking library.
This is followed by loading the data from a csv-file and assigning the parameters. The
most important are T (τ length of test suite)) , E (ε number of triggered faults), U (υ
unique faults), and d0 is the actual (not predicted) result of the simulation, i.e., sum of
remaining faults. The program is then asked to fit the data (T, E, U, and d0) with the
unknown factor a, and the coefficients t, e, and u.

Example:
Optimization of the equation parameters, through analysis of a dataset con-

taining the results from 3850 simulations of testing of systems with normally
distributed fault sizes. Each simulation was started with an initial fault density
of up to 0.02 (2%) and a test suite length between 1,000 - 100,000. The re-
sults comprise the following data; τ length of test suite , ε number of triggered
faults, υ unique faults, and ρ the final failure density. The optimization is a
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matter of finding an optimum fit for the relationship between τ , ε , and υ on
one hand and ρ on the other hand.

The dataset is analyzed using a Markov Chain Monte Carlo (MCMC) tool,
map2stan from the rethinking package. The code is shown in Figure 3.3.

Step one is to load the data from a csv file. Then the map2stan(...,...) call is
asked to fit the factor a and coefficients t, e, and u to the resulting final failure
density (d0). The priors are vague, which allows for fitting both negative and
positive values.

Figure 3.4. R console. The resulting fit of a, t, e, and u for the dataset given in
above Figure 3.3. The values can be read from the Mean column. The other columns
list Standard deviation, lower- and upper bounds, n_eff - an MCMC parameter for
the number of effective jumps, and Rhat which should converge to 1 for a successful
calculation.

After a few hours of computation, the results can be viewed with the com-
mand precis(mStan). Note that the results may vary somewhat, as this is a
random process. Figure 3.4 shows that the best fit is close, but not identical,
to equation 3.2. If the resulting values were rounded you have the original
prediction equation, as a represents the exponential term (expected to be close
to 1) and t, e, and u would be -1, -1, and 2, respectively. However, for this
dataset an optimized prediction equation (with minor variations) would be:

Number of tests = τ

Number of failures detected = ε

Number of identified unique faults = υ

Failure density = ρ

(sum of remaining undetected faults)
ρ = 0.93× (υ1.80 × ε−0.83 × τ−0.97)

(3.2)

In this case, the original (not optimized) prediction gives a correlation coef-
ficient of 0.9884, and a mean absolute error of 5.18 x 10

-4
. The corresponding

values for the optimized version are 0.9996 and 5.97 x 10
-4

, i.e., a minor im-
provement of the correlation but with a slightly higher mean error.
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However, in this case, such minor improvements may be of little interest,
as the purpose of the prediction equation is to give an order of magnitude of
the remaining faults, by summarizing a large number of test results.

In Figure 3.5, a comparison between the optimized- and original predictions
are shown. The results are comparable with few differences.
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Figure 3.5. Comparison between the original- and the optimized predictions. In the
upper plot the original predictions (blue) are plotted togehter with the actual results
(red). In the lower plot the optimized predictions (blue) are plotted against the same
results (red). In both plots, the y-axis represents failure density and the x-axis sim-
ulation sample number. The full vectors are of length 3850, in the plots only values
201-300 are shown.

The same optimization can be done using other fault distributions. Fig-
ure 3.6 shows the results of an optimization of a dataset from 1053 simula-
tions with Lognorrmal fault distributions, and Figure 3.7 shows 1040 simu-
lations with Uniform distribution. In both these cases there are minor im-
provements of the correlations. The mean absolute error for the Lognormal
case is improved from 6.18 x 10

-4
to 4.82 x 10

-4
. For the Uniform case it

is worsened from 5.05 x 10
-4

to 5.42 x 10
-4

. However, these relationships
are multi-dimensional and dynamic and for more L-shaped distributions the
improvements are expected to be greater. The results suggest that for the ex-
pected (relatively) flatter distributions, such as Uniform, minor optimizations
can be achieved. How to improve the prediction equation is further discussed
in section 6.1.
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Figure 3.6. R console - Lognomal. The resulting fit of a, t, e, and u for a dataset with
1053 simulations.

Figure 3.7. R console - Uniform. The resulting fit of a, t, e, and u for a dataset with
1040 simulations.

3.2 Conventional approach
The development standards, e.g., [18], [28], [17], define a minimum accept-
able test coverage, which results in a given number of tests. All faults iden-
tified during these tests need to be addressed. At this stage, the system is
considered to be safe enough, as all identified faults have been fixed. How-
ever, if one assumes that the identified faults actually comprise all existing
faults in the system, the probability of the performed number of tests actually
triggering them is close to zero.

Figure 3.8 shows an example of the result from a 5000 tests long test suite.
The detected faults are shown by the red bars and the still undetected in blue.
Initially, there were 100 faults comprising 1% of the input space, i.e., 100
normally distributed faults comprise 1% of the input space volume. The 5000
tests have detected 48% of the initial fault space (part of the input space).

If we assume that the 37 detected faults were the only faults in the system
and we reran a random test suite of the same length, the chance of triggering
the 37 specific faults is close to 0.00%. In this case the probability of find-
ing even the 10 largest faults is less than 1.4%. The point is that it is very
improbable that all faults have been identified by the performed (5000) tests.

There is a notion that safety-critical software is thoroughly tested, that the
use of the Modified Condition/Decision Coverage (MC/DC) criteria is compa-

27

Figure 3.6. R console - Lognomal. The resulting fit of a, t, e, and u for a dataset with
1053 simulations.

Figure 3.7. R console - Uniform. The resulting fit of a, t, e, and u for a dataset with
1040 simulations.

3.2 Conventional approach
The development standards, e.g., [18], [28], [17], define a minimum accept-
able test coverage, which results in a given number of tests. All faults iden-
tified during these tests need to be addressed. At this stage, the system is
considered to be safe enough, as all identified faults have been fixed. How-
ever, if one assumes that the identified faults actually comprise all existing
faults in the system, the probability of the performed number of tests actually
triggering them is close to zero.

Figure 3.8 shows an example of the result from a 5000 tests long test suite.
The detected faults are shown by the red bars and the still undetected in blue.
Initially, there were 100 faults comprising 1% of the input space, i.e., 100
normally distributed faults comprise 1% of the input space volume. The 5000
tests have detected 48% of the initial fault space (part of the input space).

If we assume that the 37 detected faults were the only faults in the system
and we reran a random test suite of the same length, the chance of triggering
the 37 specific faults is close to 0.00%. In this case the probability of find-
ing even the 10 largest faults is less than 1.4%. The point is that it is very
improbable that all faults have been identified by the performed (5000) tests.

There is a notion that safety-critical software is thoroughly tested, that the
use of the Modified Condition/Decision Coverage (MC/DC) criteria is compa-

27

29



Figure 3.8. In this example, 37 of the 100 faults were triggered during the test suite.
Each individual fault has a certain probability of being triggered by a random input,
this is sometimes called the “size” of the fault. The red bars represent the faults that
have been triggered during the test suite, and the blue bars the remaining undetected.
The probability can be read from the y-axis. In this case, the test suite length is 5000.

rable to exhaustive testing. MC/DC-criteria means that each condition in the
code needs to be shown to independently affect the decision. However, this is
not in any way a guarantee that a significant part of the full input space is cov-
ered. For more complex systems, with tens or hundreds of parameters, there
is a very large number of possible combinations of system states. This means
that the surface of possible outcomes is barely scratched, even though MC/DC-
criteria has been fulfilled. For example, if you test a cockpit switch and fulfill
the MC/DC-criteria during ground operations, you could miss unsafe system
responses elsewhere in the operational envelope. There is no guarantee of a
safe system response during take-off, landing, cruise, at high altitude, low fuel,
high speed, and so on.
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3.3 Alternative approach
This section discusses the reasons for the chosen approach.

Parnas states in [27] It is difficult to make accurate predictions of software
reliability and availability: Mathematical models show that it is practical to
predict the reliability of software, provided that one has good statistical mod-
els of the actual operating conditions. Unfortunately, one usually gains that
information only after the system is installed. Even when a new system re-
places an existing one, differences in features may cause changes in the input
distribution.

The uncertainties attached to determining statistical data or a reliable user
profile, with precision, makes such an approach unviable. Even a minute dif-
ference in the input may effect the output dramatically. Therefore, a different,
alternative approach was chosen. The aim was to look at the entire input space
and thus be able to reach more robust and objective conclusions.

The input space of safety-critical systems are typically more clearly defined
than that of other systems. The reason is that the input is strictly formatted and
checked to be within the allowed range before it is used.

Figure 3.9. Example of an input space for a safety-critical system. The N-dimensional
input space is defined by the number of states (x-axis) and the values (y-axis) of each
parameter. A safety-critical system is guarded against out-of-range values.

Random (uniform) sampling provides an unbiased alternative to focus on
an assumed user profile. This approach is independent of the number of input
parameters of the system. Figure 3.9 shows the defined range for parameters
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A-D. Within these ranges, samples need to be randomly selected. This will
reach all the code that is used during normal operations, as unreachable code
is not allowed in this type of software [30]. The remaining code that handles
errors need to be covered as well, this is done by selecting input from the
dashed area of the parameter ranges. The details, on how and to what extent
such values should be sampled are one of the focus areas of the upcoming
PhD-part of thesis.

Improving the prediction of the remaining faults does not improve the soft-
ware. In order to find and remove faults and reach an acceptable level of
remaining faults, a large number of tests need to be performed. How many
tests that are required depends on a number of factors, e.g., initial amount of
faults, distribution of faults, acceptable level of remaining faults. The example
from section 3.2 has 100 faults comprising 1% of the input space. As stated,
the probability of 5000 tests finding the specific 37 faults, is close to zero.
Figure 3.10 shows an analysis of the probability of fault finding as a function
of the length of the test suite. This shows the importance of finding ways and
methodologies to drastically increase the test coverage.

Figure 3.10. Simulation results. Probability of a test suite finding the 10 (blue), 25
(yellow) largest or all 37 (red) triggered faults. This illustrates that a certain test suite
length is required to identify a given set of faults. The probability of 5000 tests finding
the specific 37 faults is close to zero <=> it is unlikely that there are only 37 faults.
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4. Publications Included In the Thesis

Paper II
Prediction of Undetected Faults in Safety-Critical Software
Johan Sundell, Richard Torkar, Kristina Lundqvist, and Håkan Forsberg
Status: Published at 2019 IEEE International Conference on Software Test-
ing, Verification and Validation Workshops (ICSTW)

Abstract
Safety-critical software systems need to meet exceptionally strict standards in
terms of dependability. Best practice to achieve this is to follow and develop
the software according to domain specific standards. These standards give
guidelines on development and testing activities. The challenge is that even
if you follow the steps of the appropriate standard you have no quantification
of the amount of faults potentially still lingering in the system. This paper
presents a way to statistically estimate the amount of undetected faults, based
on test results.

Paper III
Safety-Critical Software - Quantification of Test Results
Johan Sundell, Kristina Lundqvist, and Håkan Forsberg
Status: Published at WoSoCer, The 10th IEEE International Workshop on
Software Certification, 2020.

Abstract
Safety-critical software systems have traditionally been found in few domains,
e.g., aerospace, nuclear and medical. As technology advances and software
capability increases, such systems can be found in more and more applica-
tions, e.g., self-driving cars, autonomous trains. This development will dra-
matically increase the operational exposure of such systems. All safety-critical
applications need to meet exceptionally stringent criteria in terms of depend-
ability. Proving compliance is a challenge for the industry and there is a lack
of accepted methods to determine the status of safety-critical software. The
regulatory bodies often require a certain amount of testing to be performed
but do not, for software systems, require evidence of a given failure rate. This
paper addresses quantification of test results. It examines both theoretical and
practical aspects. The contribution of this paper is an equation that estimates
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the remaining undetected faults in the software system after testing. The equa-
tion considers partial- and limited test coverage. The theoretical results are
validated with results from a large industry study (commercial military soft-
ware). Additionally, the industry results are used to analyze the concept of
entropy also known as Shannon information, which is shown to describe the
knowledge gained from a test effort.

4.1 Other Publications
Paper I
Model of Fault Distribution in Complex Safety Critical Sys-
tems.
Johan Sundell
Status: Not published. MDH reference: 2018/0071

Abstract
The suggested model is developed for the purpose of investigating the relation-
ship between test coverage and its effect on a given fault distribution in large
complex safety critical n-parameter software systems. The faults are repre-
sented by subspaces of the entire volume which represents the entire input
space of the system. The behavior of the system is considered to be either cor-
rect or incorrect. Inside the subspaces the system behaves faulty. The shape
of the subspaces have no meaning only the size of its volume. A uniform dis-
tribution of test points leads to predictable and quantifiable fault detection.

This early work lays the foundations for Papers II, and III, and many in-
teresting conclusions could be drawn from the described model. However,
the model has been evolved since the paper was written. A simpler and more
intuitive way of explaining the dynamics would have been used today, i.e.
the proportionality between the volumes of the subspaces (representing faults)
and their risk of being triggered. The analogy of fault size and risk of be-
ing triggered is used by others, and is often easier to understand than multi-
dimensional projections of overlapping subspaces. Moreover, newer versions
of the model allows for studying other distributions of fault sizes, e.g. Normal,
Lognormal, Pareto, Beta. In fact, this area has turned out to be very interesting
from a scientific point of view.

32

the remaining undetected faults in the software system after testing. The equa-
tion considers partial- and limited test coverage. The theoretical results are
validated with results from a large industry study (commercial military soft-
ware). Additionally, the industry results are used to analyze the concept of
entropy also known as Shannon information, which is shown to describe the
knowledge gained from a test effort.

4.1 Other Publications
Paper I
Model of Fault Distribution in Complex Safety Critical Sys-
tems.
Johan Sundell
Status: Not published. MDH reference: 2018/0071

Abstract
The suggested model is developed for the purpose of investigating the relation-
ship between test coverage and its effect on a given fault distribution in large
complex safety critical n-parameter software systems. The faults are repre-
sented by subspaces of the entire volume which represents the entire input
space of the system. The behavior of the system is considered to be either cor-
rect or incorrect. Inside the subspaces the system behaves faulty. The shape
of the subspaces have no meaning only the size of its volume. A uniform dis-
tribution of test points leads to predictable and quantifiable fault detection.

This early work lays the foundations for Papers II, and III, and many in-
teresting conclusions could be drawn from the described model. However,
the model has been evolved since the paper was written. A simpler and more
intuitive way of explaining the dynamics would have been used today, i.e.
the proportionality between the volumes of the subspaces (representing faults)
and their risk of being triggered. The analogy of fault size and risk of be-
ing triggered is used by others, and is often easier to understand than multi-
dimensional projections of overlapping subspaces. Moreover, newer versions
of the model allows for studying other distributions of fault sizes, e.g. Normal,
Lognormal, Pareto, Beta. In fact, this area has turned out to be very interesting
from a scientific point of view.

32

34



5. Related Work

The problem of predicting the failure rate for safety-critical software has been
an issue for decades. The problem has been described by many, e.g., McDer-
mid and Parnas [24, 27]. McDermid talks about a "prediction gap" between
the target failure rate and the failure rate that can be proven in testing. Dealing
with the strict failure rate requirements was early on seen as very challenging,
if not a futile problem. Parnas et al., [24, 27] state "Because of the large num-
ber of states (and the lack of regularity in its structure), the number of states
that would have to be tested to assure that software is correct is preposterous."

The strict requirements mean that conventional methods and metrics, e.g.,
reliability growth model, cannot be applied [14, 21, 26].

The problem has been viewed from different angles. The concept of testa-
bility [31], was introduced by Voas, and is defined as the probability of faulty
software failing. This concept has been further elaborated by Bertolini and
Strigini [4, 5, 6]. A lot of focus has been on which conclusions that can be
drawn from long test suites with no encountered failures. Voas et.al., describe
in [32] how expected failure rate can be calculated based on the number of test
cases and how they were sampled (user profiles), as long as no failures are en-
countered. In [7] Bertolino analyses the two extreme positions of assessment
of safety-critical software, i.e. the statistical position, requiring data from re-
alistic testing/operation, versus the probability of the software being fault free
(perfect).

Other noteworthy related work includes Arcuri’s et al., analysis of how
many test cases that are required to cover a given number of targets [3]. Bishop
has presented papers about worst case bound and worst case reliability func-
tion [8, 9].

Another approach, which aims at describing the state of the system, is to
look at the entropy or Shannon information of the software. Clark et al., [11]
state about entropy, "It is a negative quantity that measures ignorance - uncer-
tainty about the outcome of the experiment of sampling the random variable".
Testing reduces the ignorance of the system’s behavior, see [11, 33].

The concept of combinatorial testing is related to the work presented in this
thesis. Aspects of this research field help to explain some of the dynamics of
fault detection in relation to test coverage and number of parameters [19].

The above related work well describe the problem and the mathematical
challenges associated with testing safety-critical software. The work presented
in this Licentiate thesis builds on this theoretical foundation but focuses on the
gap between theory and practice. The approach presented here, accepts the
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theoretical limitations previously described, but takes the pragmatic stance of
quantifying the remaining faults, and thereby reducing the "prediction gap".
The work has a strong industry focus and is aimed at direct implementation in
such a setting. The quantification (prediction of undetected faults) is based on
parameters known in an industry test process.
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6. Conclusions and Future Work

In this thesis, we have investigated the relationship between number of tests,
test coverage, and detected/undetected faults for safety-critical software sys-
tems. We have reached results in the form of equations describing how the
scale of the testing affects the remaining undetected faults in a system. A
method has been defined to assess and quantify results from a structured test
process.

The model used for this work has been implemented in MATLAB. It has
proven to be a useful tool for investigating the dynamics of fault detection as
a function of number of test cases.

6.1 Improving the Prediction equation
There are always aspects of the prediction equation that can be modified and
improved.

The distribution of the remaining undetected faults changes as more and
more faults are discovered, i.e., the bigger faults are more likely to be detected
first. At some point the distribution of the remaining faults is no longer Gaus-
sian. This means that at some point (number of test cases), a modified equation
may be more accurate.

Another improvement would be an identification of the fault distribution
and a subsequent adaptation of the prediction equation. The relationship be-
tween the test data υ/τ (unique faults / number of test cases) and ε/τ (trig-
gered faults / number of test cases) can be used as an indicator of the shape
of the fault distribution. For example, if υ(τ) ≈ ε(τ) the fault distribution is
highly granular and may be more uniform. One the other hand, if υ(τ)� ε(τ)
a few larger faults dominate and the fault distribution may be better described
as a Pareto distribution. Bayesian analysis, could provide a flexible and a more
accurate approach for analysis of unknown and unusual fault distributions.

Technology is emerging that automatically can determine the root cause of a
triggered fault. The rate of discovery of new undetected faults provides useful
information about fault distribution in the system. If this information can be
exploited the accuracy of the prediction can be assumed to be improved.

The concept of using entropy shows promise. It would be interesting to
investigate limit values for acceptance of software, i.e. determine threshold
values and what they mean in terms of expected failure rates.
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6.2 Methodology for Autonomous testing
This methodology, which is the focus of the full PhD-scope, aims at imple-
menting and optimizing autonomous random testing and at the same time pro-
vide a prediction of the remaining faults in the software. The so called "auton-
omy", i.e., no user interaction is required, allows for continuous testing which
subsequently drastically increases the test coverage. The automated genera-
tion of input is in accordance with what the prediction equation requires, i.e.
sampling from a uniform distribution.

The optimization of such a test tool, though implemented and utilized, is
not part this Licentiate thesis.

6.3 Dynamics of software testing using failure density
and entropy

The purpose of software testing is to verify that the software does what it
is supposed to do, i.e., fulfills the requirements. It also detects bugs, finds
performance problems, and reduces development costs by finding problems
before it is used. The amount of bugs (total risk of triggering faults) that
remains after a test campaign primarily depends on the four factors, listed in
section 3.1.3.

When the SUT (System Under Test) reaches the testing phase it has a given
number of bugs, i.e., a given fault distribution, granularity (number of faults),
and failure density. At this point the quality of the software has been deter-
mined by factors such as the experience and qualifications of the staff, type
of development process, and environment (programming language, tools etc).
The effect of the testing that follows depends on the state of software prior to
testing. A holistic approach to improving the quality of safety-critical soft-
ware should not only focus on the testing. This section discusses some aspects
of how these factors interact. The dynamics of the interaction are complex.
In general, less bugs (a low failure density) prior to testing is good, and fewer
large bugs are better than many small bugs. On the other hand for a given
number of bugs the effect of the testing is better if the bugs are bigger. Fault
density and entropy can clarify how this works.

The concepts of failure density and entropy are related as shown in Figure
6.1. Both concepts can provide a prediction related to the operational failure
rate of a deployed system.

If the expected user profile is indeed uniform sampling of the full input
space, the failure density is the predicted operational failure rate. However, if
the expected user profile constitutes a subpart of the input space, the failure
density is a prediction of the average failure rate for all such subparts. The
obvious conclusion is that a reduction of the failure density (and entropy) is
always desirable. Detection and subsequent removal of faults can be achieved
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Figure 6.1. Entropy vs failure density. An entropy value 2.3×10−6 corresponds to a
failure density of 10−7. (Simulated data)

by increasing the length of the test suites. However, an alternative approach is
to make the existing faults more detectable. Testing the system will reduce the
failure density and entropy. Intuitively one might assume that the initial state
of the software is the most important factor in the end state, e.g., software that
has less faults will result in a lower post-testing entropy. However, this is not
always true in these extreme cases. Figure 6.2 shows how perceived entropy
(calculated from available parameters τ , ε , υ and sp), changes for long test
suites with 500k tests.

Three different scenarios were run four times each. All had 158 faults, but
with different initial failure densities. The upper starts at a failure density of
0.005 giving an entropy of 0.0382. The lower two starts at 0.001/0.01 and
0.0001/0.0013 respectively. Here the final entropy for the lower two is ap-
proximately 0.001 and for the upper 0.0003, which is roughly 3 times lower.
In this case, starting with a higher entropy, means ending up with better final
state. The reason for this paradox is that the size of the faults in the upper
curve are bigger, and thus easier to find. From a testing point of view, min-
imizing the risk of triggering each fault might not be the optimal approach.
This aspect is worth noticing for this type of software.

The dynamics of the problem are complex, Figure 6.3 shows that for a given
failure density, the number of faults triggered (ε) is more or less constant but
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Figure 6.1. Entropy vs failure density. An entropy value 2.3×10−6 corresponds to a
failure density of 10−7. (Simulated data)

by increasing the length of the test suites. However, an alternative approach is
to make the existing faults more detectable. Testing the system will reduce the
failure density and entropy. Intuitively one might assume that the initial state
of the software is the most important factor in the end state, e.g., software that
has less faults will result in a lower post-testing entropy. However, this is not
always true in these extreme cases. Figure 6.2 shows how perceived entropy
(calculated from available parameters τ , ε , υ and sp), changes for long test
suites with 500k tests.

Three different scenarios were run four times each. All had 158 faults, but
with different initial failure densities. The upper starts at a failure density of
0.005 giving an entropy of 0.0382. The lower two starts at 0.001/0.01 and
0.0001/0.0013 respectively. Here the final entropy for the lower two is ap-
proximately 0.001 and for the upper 0.0003, which is roughly 3 times lower.
In this case, starting with a higher entropy, means ending up with better final
state. The reason for this paradox is that the size of the faults in the upper
curve are bigger, and thus easier to find. From a testing point of view, min-
imizing the risk of triggering each fault might not be the optimal approach.
This aspect is worth noticing for this type of software.

The dynamics of the problem are complex, Figure 6.3 shows that for a given
failure density, the number of faults triggered (ε) is more or less constant but
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Figure 6.2. Observed entropy vs number of test cases. The full input space is sam-
pled. Three scenarios starting at 0.0382, 0.01 and 0.0013. Each scenario is run four
times each. The scenario starting highest (0.0382) ends up lowest after 500k tests.
(Simulated data)
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Figure 6.3. Triggered faults vs percentage covered. For a given initial failure den-
sity, here 0.01 and 158 faults, and 100k tests, the total number of triggered faults are
constant and the number of unique faults triggered is proportional to the percentage
sampled. (Simulated data)

the number of unique faults triggered increases linearly with the test coverage.
This is expected and can be explained by an example, e.g., if you focus testing
on one half of the input space (50%) you will trigger faults as many times (ε)
as if you were testing the full input space. However, you are triggering the
same faults over and over, as you can only find and trigger faults in that half,
i.e., the number of unique faults (υ) is lower.

Another way of illustrating the dynamics, and the importance of test cov-
erage is shown in Figure 6.4. Here it is shown that the final entropy (H ) is
linearly correlated to how much of the input space that is covered.

As can be seen in Figure 6.2, the change in entropy tapers off with more
and more tests, as there are less faults to be found. Both a stabilized H and
∆H could be used as a stopping criteria for testing. A ∆H value close to 0
means that there is little effect of further testing.

Future work is needed to find ways to make faults more detectable. Ad-
ditionally, work is needed to define stopping criteria for when testing can be
stopped, i.e., define acceptable levels for failure density/entropy.
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on one half of the input space (50%) you will trigger faults as many times (ε)
as if you were testing the full input space. However, you are triggering the
same faults over and over, as you can only find and trigger faults in that half,
i.e., the number of unique faults (υ) is lower.

Another way of illustrating the dynamics, and the importance of test cov-
erage is shown in Figure 6.4. Here it is shown that the final entropy (H ) is
linearly correlated to how much of the input space that is covered.

As can be seen in Figure 6.2, the change in entropy tapers off with more
and more tests, as there are less faults to be found. Both a stabilized H and
∆H could be used as a stopping criteria for testing. A ∆H value close to 0
means that there is little effect of further testing.

Future work is needed to find ways to make faults more detectable. Ad-
ditionally, work is needed to define stopping criteria for when testing can be
stopped, i.e., define acceptable levels for failure density/entropy.
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Figure 6.4. Entropy vs percentage covered. For a given initial failure density, here
0.01 and 158 faults, and 100k tests, the final entropy is reduced as the percentage
sampled is increased. (Simulated data)
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Figure 6.4. Entropy vs percentage covered. For a given initial failure density, here
0.01 and 158 faults, and 100k tests, the final entropy is reduced as the percentage
sampled is increased. (Simulated data)
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7. Thesis Outline

The proposed title of this thesis is Safety Critical Software - Test Coverage
vs Remaining Faults. The thesis will be written as a collection of papers.
Besides these papers, the thesis will also include a summarising chapter of the
compilation dissertation. The outline of the thesis is as follows.

Part I: Thesis

1 Introduction
Introduction to the research problem and objective of the thesis.

1.1 Problem Statement
The problem and its importance is presented.

1.2 Research Objectives
Description of the full PhD scope and how this Licentiate part fits in.

1.3 Thesis Objectives
Description of the Licentiate objectives.

2 Thesis Contributions
The contributions of the Licentiate are listed in detail.

2.1 Conventional Approach
As in this proposal.

2.2 Alternative Approach

3 Research Process
Overview of the included papers and their contribution.

4 Publications Included In the Thesis
4.1 Paper II: Prediction of Undetected Faults in Safety-Critical Soft-

ware
4.1 Paper III: Safety-Critical Software - Quantification of Test Results

5 Related Work
Overview of important and inspiring work that forms a foundation to

the thesis.

6 Conclusions and Future Work
6.1 Improving the Prediction equation
6.1 Methodology for Autonomous testing

8 Thesis Outline
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